
Robust 3D Quantitative Phase Imaging

Regina Eckert

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-29

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-29.html

May 1, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Robust 3D Quantitative Phase Imaging

by

Regina Frances Eckert

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Laura Waller, Chair
Associate Professor Ren Ng
Associate Professor Na Ji

Summer 2021



Robust 3D Quantitative Phase Imaging

Copyright 2021
by

Regina Frances Eckert



1

Abstract

Robust 3D Quantitative Phase Imaging

by

Regina Frances Eckert

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Laura Waller, Chair

Biomedical research relies upon quantitative imaging methods to measure functional and
structural data about microscopic organisms. Recently-developed quantitative phase imag-
ing (QPI) methods use jointly designed optical and computational systems to recover struc-
tural quantitative phase information for biological samples. However, these methods have
not seen wide adoption in biological research because the optical systems can be difficult
to use and the computational algorithms often require expert operation for consistently
high-quality results. QPI systems are usually developed under a computational imaging
framework, where the optical measurement system is jointly designed with the computa-
tional reconstruction algorithm. Designing QPI systems for robust and practical real-world
use is often difficult, however, because each imaging and computational configuration has
unique and difficult-to-quantify practical implications for the end-user.

In this dissertation, I present three frameworks for increasing the robustness and practicality
of computational imaging systems, and I demonstrate the usefulness of these three frame-
works by applying them to 2D and 3D quantitative phase imaging systems. First, algorithmic
self-calibration directly recovers imaging system parameters from data measurements, do-
ing away with the need for extensive pre-calibration steps and ensuring greater calibration
accuracy for non-ideal, real-world systems. I present a robust and efficient self-calibration
algorithm for angled coherent illumination, which has enabled new QPI system designs for
2D Fourier ptychographic microscopy (FPM) and 3D intensity optical diffraction tomog-
raphy (ODT) that would have otherwise been infeasible. Second, increased measurement
diversity better encodes useful information across measurements, which can reduce imaging
system complexity, data requirements, and computation time. I present a novel pupil-coded
intensity ODT system designed to increase measurement diversity of 3D refractive index (RI)
information by including joint illumination- and detection-side coding for improved volumet-
ric RI reconstructions. Finally, physics-based machine learning uses a data-driven approach
to directly optimize imaging system parameters, which can improve imaging reconstructions
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and build intuition for better designs of complicated computational imaging systems. I show
results from a physics-based machine learning algorithm to optimize pupil coding masks for
3D RI reconstructions of thick cell clusters in the pupil-coded intensity ODT system.

In addition, I provide practical methods for the design, calibration, and operation of Fourier
ptychography, intensity-only ODT, and pupil-coded intensity ODT microscopes to aid in the
future development of robust QPI systems. I additionally present a validation of joint system
pupil recovery using FPM and a comparison of the accuracy and computational complexity
of coherent light propagation models that are commonly used in 3D quantitative phase imag-
ing. I also compare field-based 3D RI reconstructions to intensity-based RI reconstructions,
concluding that the proposed pupil-coded intensity ODT system captures similarly diverse
phase information to field-based ODT microscopes.

Throughout this work, I demonstrate that by using the frameworks of algorithmic self-
calibration, increased system measurement diversity, and physics-based machine learning
for computational imaging system design, we can develop more robust quantitative phase
imaging systems that are practical for real-world use.
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Chapter 1

Introduction

A thick, unstained slice of a mouse’s brain is a desert landscape under the microscope.
Unmyelineated axons mesh into smooth grey plains that buffer between the bright ridged
canyons of sulci and the wilder regions of white matter, snarled through with myelin and
tree-like dendrites. Spinal tissue is the surface of a melting glacier, with sudden holes and
bright ridges that meet and part unexpectedly. Individual cells catch the light at the edge of
an organoid’s embryonic cell cluster like the crescent moon reflects sunlight: only a fingernail
of light to show what is there. The cluster’s center is a field of speckle where the light is
scrambled by the profusion of cells as through churning ocean waves, hiding secrets deep
within.

Each sample is a different line of poetry under the microscope, an expression of knotted
creation, formed from cells unique in conformation but not in underlying principle and
structure. To look through the microscope is to ask fundamental questions about life. The
microscope is not simply a tool, but a method of expression, of interrogation. The power of
the lenses, the field of view, the depth of focus, the working distance, the imaging contrast:
they all define the bounds of the scientific questions we can ask and the certainty with which
we can answer.

In this dissertation, the microscope itself is the object of focus. Throughout my PhD,
I have sought to answer how microscopes might best be designed to answer biological re-
searchers’ questions about the many forms of embodied life. Specifically, I have focused on
creating robust computational imaging systems for 2D and 3D quantitative phase imaging
(QPI). Quantitative phase imaging has the potential to be extremely useful to biological
researchers, as it provides quantitative structural data about biological samples without re-
quiring labor-intensive labeling processes. However, in order for QPI systems to be widely
adopted for biological imaging, they must be made more robust and usable across a wide
variety of applications. Achieving system robustness and usability in computational imaging
systems is not straightforward, though, as it requires that both the physical optical system
and the computational reconstruction algorithm be robust to system noise and practical for
an end-user.

In this work, I present three methods for building more robust and practical 2D and 3D
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quantitative phase imaging systems, including algorithmic self-calibration, increased mea-
surement diversity for improved system robustness, and use of physics-based machine learn-
ing for the optimization of imaging parameters. The QPI systems presented under these
three frameworks have increased robustness compared to previous systems, enabling novel
imaging designs with reduced physical constraints and increasing QPI system practicality.
Moreover, these design frameworks can be extended beyond QPI to provide useful guidance
for the design of robust computational imaging systems across imaging domains.

The majority of this thesis will explore these frameworks and QPI systems in detail.
However, in this introduction, I focus on the larger space of microscope design and devel-
opment, especially that of the more recent field of computational microscopy. I review the
wide range of functional and structural imaging systems for biological research. I addition-
ally discuss the development of 3D imaging for biological samples and review quantitative
phase imaging methods. Finally, I present an overview of design methods typically used for
computational imaging systems. By providing a strong foundation in both biological mi-
croscopy applications and computational imaging system design, I hope to provide context
for the work presented throughout this dissertation.

1.1 Computational Microscopy

Microscopes have a long history, with the first compound microscope built in the late 1500s
by Dutch inventors Hans and Zacharias Janssen. Later improvements to optical micro-
scopes lead to important biological discoveries in the late 1600s by English scientist Robert
Hooke and Dutch scientist Antony van Leeuwenhoek [176]. Over centuries of innovation in
optics, visible light microscopes, which operate at wavelengths λ from 380 nm to 750 nm,
have become masterpieces of engineering, enabling humans, whose eyes only resolve down
to ∼ 90 µm [153] on a 13 ms timescale [177], to see objects as small as ∼ 200 nm [152] on
a 1 µs timescale.1 This neglects the amazing advances in the extreme ultra-violent (EUV)
wavelengths and electron microscopy, which offer imaging resolutions as low as 50 pm [61]. In
traditional visible light microscopes, this has been achieved by designing compound objective
lenses and other compound lens systems that magnify and relay high resolution information
through the optical system. With use of high-quality optical lenses, traditional optical mi-
croscopes have allowed biologists to easily view microscopic samples in a laboratory setting.
Traditional non-optical microscopes, such as early electron microscopes in the 1930s [191],
relied upon photographic film rather than the human eye to perceive and record the image
of the sample at hand.

With the advent of digital cameras recorded the electromagnetic signal through the mi-
croscope, rather than relying on the human eye to view and record the microscope’s output,
microscopes began to enter a new age. With modern, high-quantum efficiency scientific
cameras, the photons received at the camera sensor can be converted into low-noise digital

1As judged by the Phantom v2512, which offers 25,700 frames per second imaging for high throughput
imaging and up to 1 million frames per second for smaller image sizes [169].
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signals that can be analyzed computationally. Computation has also increasingly become a
part of microscope automation, including autofocus controls [119, 174] and control of multi-
wavelength fluorescence systems [11]. This has led to computationally-assisted microscopes
that are optimized for use with a digital camera and computer, rather than a human operator.
In both traditional, human-operated microscopes and computationally-assisted microscopes,
the output of the optical system is a well-formed image that can be analyzed directly by a
human user, whether that output is captured by a human eye, photographic film, or digital
camera sensor.

In contrast, computational microscopes require both an optical system and a computa-
tional algorithm to create a useful data output from the microscope. This might be a well-
formed image that can be visually understood by the end-user or quantitative sample data.
Perhaps the simplest form of computational microscope is one where the measured image is
improved by removing the effects of well-characterized lens aberrations via a deconvolution
algorithm [205]. More complicated systems include quantitative phase or 3D refractive index
reconstructions, where the recovered object must be reconstructed from multiple captured
images. In these computational microscopes, the optical system encodes a signal into the
measured images which the computational algorithm then decodes, recovering the desired
sample information from the measured images.

1.2 Biological Microscopy

While microscopes have been useful across many domains, from verification of semiconductor
chip fabrication processes [193] to material characterization [196], one of the largest applica-
tion spaces is biological imaging. In general, biological imaging seeks to capture functional
and structural information microscopic samples, from single cells, such as cancer cells, up
to large biological systems, such as the brain. While cell function and structure are deeply
interconnected, functional imaging involves understanding the function of each cell or sys-
tem component, while structural imaging seeks to capture the physical morphology of the
sample at hand. Both of these components are useful for researchers across a wide range
of application spaces, from those seeking to understand how the brain works [166], how or-
gans grow [123], how bacteria react to antibiotic treatment [154], or analyze phytoplankton
properties for oceanic studies [44, 114].

Functional imaging generally involves labeling cell components based on their underlying
chemistry to reveal the interaction of different cell components inside the larger system. The
most common functional imaging method used today is done with fluorescent labeling [184].
Fluorescent labels are engineered to attach to certain binding sites in a cell. They con-
tain fluorophores that, when illuminated with a certain wavelength of light, emit light at a
different wavelength that can be detected at the imaging plane. Multiple cell components
can be labeled with tags that fluoresce at different wavelengths of light so many functional
components can be imaged simultaneously. While fluorescence imaging can create beautiful
images, the fluorescence labeling process is very time-intensive, the fluorescence degrades,
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or “bleaches”, over time as it is illuminated, and the labels only bind to a small percentage
of the desired cell components. In addition, unless the cell walls are labeled with their own
fluorescent tag, the overall cell structure can be difficult to discern from sparse fluorescent
labels. However, other label-free methods are also available for functional imaging, including
methods based on cell auto-fluorescence, Raman scattering, and second harmonic generation
(SHG) properties.

A prime example of functional imaging is optogenetics, where mice have been genetically
modified to attach a fluorescent label to neuronal calcium ion channels in the brain [47]. If the
fluorescent tag is illuminated through a thinned skull, optical fiber, or skull window when the
neuron fires, the tag emits light, which can be imaged through the brain tissue. The neurons
can also be stimulated optically through the light-sensitive ion channels, allowing read/write
control of the fluorescence-expressing neurons. By correlating the measured fluorescence
with stimuli to the mouse, researchers are attempting to understand brain functionality at
a much deeper level than ever before.

Structural imaging, on the other hand, focuses on imaging the overall cell morphology.
Since biological tissue is often transparent, this has traditionally been accomplished by stain-
ing the cell with dyes [10]. As with fluorescent imaging, this can be a time-intensive process
and requires altering the sample prior to imaging, which might destroy the cell structure
before it can be captured. Starting in 1934 with Frits Zernike’s invention [237], phase con-
trast microscopes have been developed that used the phase delay of light through the sample
to image its structure. Since it is the cell structure itself that creates the image contrast
in phase contrast imaging, the cell does not have to be altered for phase contrast imaging
microscopes. More recently, quantitative phase imaging techniques have been designed from
a computational imaging framework. Quantitative phase imaging (QPI) seeks to quantify
the phase delay of light through the sample, which relates to the sample’s thickness and
refractive index. QPI systems can be used to image cell structure and can quantify cell dry
mass [6] and other important cell properties [7]. QPI methods are discussed in detail below.

Most practical imaging methods are, at their base, two-dimensional (2D) data capture
systems that measure 2D spatial information, but many multi-dimensional imaging method-
ologies exist for both functional and structural imaging. Fast imaging systems capture images
as the sample evolves over time, adding a time dimension to the captured data [93, 206].
Three-dimensional (3D) imaging methods seek to reconstruct the full 3D sample volume
that resulted in multiple measured 2D images [36, 215, 217]. Hyperspectral imaging cap-
tures data at multiple wavelengths, beyond that of a typical red-green-blue (RGB) digital
camera [180]. Polarization imaging captures the polarization properties of the sample by
measuring the polarization change in light transmitted through the sample [144]. This list
is not exhaustive and only attempts to convey the breadth of multi-dimensional imaging
methods that are useful for biological imaging.

In general, each system described here must be designed specifically for the task at hand.
Trade-offs in the system design must be made to capture higher-dimensional data beyond 2D
spatial information. For example, capturing high-resolution 3D information often requires
that many images must be captured of the sample, and so time-resolved imaging capabilities
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are discarded in order to recover 3D information. Traditional optical design also often
involves a trade-off between resolution and field of view (FOV). It is difficult and costly
to design and build lens systems that image very fine, high resolution features over a large
field of view. For this reason, optical systems are often evaluated on their space-bandwidth
product (SBP), which accounts for the amount of space (or field of view) and Fourier domain
bandwidth (related to resolution) that can be captured through the imaging system [134].
However, the SBP metric does not easily extend to comparisons between multi-dimensional
systems, as the comparison between the information captured by, for example, spatial 3D
imaging and hyperspectral imaging is not straightforward. Therefore, while traditional 2D
optical systems might be designed to optimize for SBP, the design of multi-dimensional
capture systems is less well-understood.

1.3 3D Biological Microscopy

Most biological tissue and cells are inherently spatial, three-dimensional objects. However,
since digital cameras capture 2D, not 3D, spatial information and microscope systems have
a limited depth of field (axial region in which the object is in focus) it is difficult to capture
3D information in biological microscopy. This difficulty is enhanced by increased scattering
of light inside thicker biological tissues, which distorts the measured images of thick, 3D
samples.

There are two basic ways to account for the 3D, scattering nature of biological samples in
microscopy. First, imaging methods can correct for the distortions caused by the microscope’s
limited depth of field or by the sample’s scattering in order to capture undistorted images.
This includes optical clearing methods, where the sample is chemically treated to reduce
or eliminate sample scattering by delipidization, decoloration, or other methods so that the
sample is clear and easy to image with either 2D or 3D methods [220]. This also includes
systems that increase the microscope’s depth of field so that the entire axial region of interest
is in focus on the camera plane [132, 178]. Finally, incoherent illumination can be used to
create better depth sectioning inside thick, scattering objects, so that each 2D plane inside
the object is measured with a minimum of distortions from off-focus planes inside the volume.
While these methods allow for thick samples to be imaged, they often throw away valuable
axial spatial information.

The second method of imaging 3D samples is to build systems that reconstruct the entire
3D sample volume. This is beneficial because it allows the entire 3D structure of the sample
to be viewed and analyzed. However, these systems often require multiple captures, so they
cannot image fast phenomena. Additionally, they can have large data requirements, long
computation times, and can be difficult to build and design. In general, some 3D imaging
systems are commonly used in tandem with fluorescent labeling to capture 3D information,
including confocal and light sheet microscopes, and more recently developed sparsity-based
microscopes.2 In addition, other 3D imaging systems capture a thick sample’s structural

2We note that the fluorescence is not intrinsically necessary to the concept of confocal and light sheet
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information through manipulation of the illumination light and detection system encoding,
including systems such as optical coherence tomography (OCT) [90], focal stack methods [29,
135], computed tomography (CT) [155], and optical diffraction tomography (ODT) [225]. We
call these 3D phase imaging methods, as they generally rely upon the phase delay of light
through the sample to provide 3D information.

1.3.1 3D Fluorescent Imaging Methods

One of the earliest 3D imaging methods was confocal imaging, where a small focused beam
is scanned across the entire sample volume in tandem with a detection pinhole that filters
out all out-of-focus light [45, 168, 203]. Confocal microscopes are commonly used today
because they are relatively easy to build and use. However, the imaging process can be
time-intensive, since the entire volume must be scanned. In addition, the scanned light
beam and attendant excitation of off-focus fluorophores means the sample is exposed to a
large amount of high-powered light, which often bleaches the fluorophores and damages the
sample during capture.

More recently, light sheet microscopy has been developed to answer these deficiencies
by scanning a planar sheet of light through the object. Instead of capturing data at each
point in the volume, light sheet microscopy captures images at each plane the light sheet
moves through the volume, enabling a 3D capture built from multiple images [222]. This
decreases the capture time and light exposure to the sample, thereby decreasing bleaching
of the fluorophores and increasing the overall amount of time a sample can be imaged. Light
sheet microscopes are more difficult to build, but have come into common commercial use
since the mid-2010s.

A main benefit of imaging fluorescence in 3D is that the fluorophore tags are often sparse
in 3D space, which is leveraged in various imaging methods. One method to leverage the
sparsity of fluorescent imaging is to engineer the point spread function (PSF) of the imaging
system to create different patterns for fluorophores at different depth planes. Since the
fluorophores are generally sparse, these patterns can be imaged with enough fidelity for a
deconvolution algorithm to reconstruct an undistorted 3D volume. Example systems often
used for 3D fluorescent imaging include the double-helix PSF microscope [165], light field
microscopy [115], the DiffuserCam microscope [12, 230], and various other coded aperture
microscopes [3, 127, 128]. Additionally, the native axial variation in the system PSF can be
measured and used to reconstruct the 3D volume in the same way [179, 199]. Multi-focal
imaging [48, 84] is another common method for recovering 3D information for fluorescent
samples.

microscopes, but since most of these microscopes are built to image fluorescent samples, we discuss them in
that context here.
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1.3.2 3D Phase Imaging Methods

3D phase imaging systems are label-free methods that reconstruct a sample’s 3D structural
volume using information from the delay of light through the sample. There are four main
ways that 3D phase information is captured in microscope imaging systems: by 1) leveraging
coherence properties [90, 100, 150, 231], 2) focal scanning [29, 48, 66, 68, 94, 141, 143, 200,
204, 226, 244], 3) sample rotation [14, 27, 80, 155, 190], or 4) illumination angle scanning [33,
36, 65, 105, 113, 150, 213, 215, 225]. All of these systems involve the capture of multiple
images and require a computational algorithm to reconstruct the output volume, which is
generally not sparse and can be defined in terms of reflectivity, phase contrast, quantitative
phase, or refractive index values.

The coherence of light transmitted through the sample can be leveraged to determine
depth information by interference with a reference arm at a known axial position, as in optical
coherence tomography (OCT) [90]; at a known time delay, as in CLASS microscopy [100];
or at a known spatial shift and phase delay, as in gradient light interference microscopy
(GLIM) [150]. OCT can also be formulated in the Fourier (frequency) domain, where multi-
spectral illumination is used to reconstruct 3D depth [231]. In these systems, off-focus and
multiply scattered light are coherence-gated by the interference mechanism. This limits
the volume that can be recovered using OCT in particular, as deep regions where multiple
scattering make up most of the sample’s reflected light will have little to no single-scattered
signal detected at the camera plane.

Another way to capture 3D phase information is by capturing images at different focal
planes. The simplest way to do this is to have an imaging system with a very small depth of
field, thus blurring out most off-focus light, and capturing images while moving the sample
at very small ∆z axial intervals to scan through the volume [141, 143, 200]. However, this
system has long capture times, distortion from off-focus light, and low contrast for transpar-
ent phase objects, if a brightfield illumination scheme is used. Multi-focal imaging [48, 226],
where different focal planes are relayed onto one camera plane, decreases the imaging time of
this method, but does not address off-focus or contrast issues. By illuminating with specif-
ically designed partially-incoherent illumination patterns and scanning through focus, 3D
differential phase contrast (DPC) imaging [29] increases the phase contrast in the measured
images, and additionally uses a model-based optimization reconstruction to account for off-
focus light in the reconstruction. Transport of intensity equation-based (TIE) methods [94,
244] also involve focal-scanning, and particularly uses the high contrast defocus patterns of
transparent phase objects (such as biological cells) to reconstruct 3D phase information [68,
204].

Sample rotation provides 3D information by capturing the transmission of light through
the sample at many different rotation angles. One of the most well-known 3D imaging sys-
tems that uses relative rotation of the sample and imaging system is a computed tomography
(CT) scanner, commonly used in medical imaging [155, 190]. Similar to CT, microscopic to-
mography methods rotate either the sample itself [14, 27, 80] or the imaging system around
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the sample3 to measure the transmission of light through the sample at different angles.
In the case where direct transmission is measured and multiply scattered light is rejected,
as in medical CT imaging, the transmission of light through the sample is equivalent to a
projection through the sample. Classically, the 3D volume can be reconstructed using a fil-
tered back-projection algorithm [195]. As they require large but consistent changes in either
sample location or imaging system configuration, these systems can be difficult to build and
use in a microscopy setting.

Finally, scanning the incident angle of coherent plane wave illumination through a sam-
ple also provides 3D phase information about a sample. Optical diffraction tomography
(ODT) uses scanned illumination angle in tandem with an interferometric detection sys-
tem to directly capture phase information in the intensity measurements [113, 150, 213,
225]. Recently, intensity-only ODT [36, 126], which is conceptually equivalent to 3D Fourier
ptychographic microscopy (FPM) [88, 215], has done away with the reference arm for in-
terferometric detection to reconstruct 3D volumes directly from the intensity measurements
using an optimization algorithm, which simplifies the imaging system.

One way to compare these 3D phase imaging methods is to compare the 3D Fourier space
information captured by each system. To do this, the Ewald sphere formulation [62, 63] can
be used, which describes the envelope of spatial frequencies in the single-scattered coherent
wave transmitted through an optic of a certain numerical aperture (NA). For each of the
tomography methods described above, the envelope of 3D Fourier space coverage for each
captured measurement can be combined to determine the maximum 3D Fourier coverage
for each imaging method, as in [163]. From this formulation, we see that angled illumi-
nation provides higher lateral resolution than the other methods, but has poor low-spatial
frequency coverage, in what is commonly called the “missing cone problem” in diffraction
tomography [124].

1.4 Quantitative Phase Imaging

Quantitative phase imaging captures the phase delay of light through a biological sample,
capturing rich structural information. Transparent or nearly-transparent biological samples
can be well-described by a complex 3D refractive index volume, where the refractive index
n = c

v
describes the delay of light from the speed of light c to the (slower) phase velocity v

inside a material. When n is complex, it can be written as

n = nr + jni, (1.1)

where real part, nr, describes the phase delay and the imaginary part, ni, called the extinction
coefficient, describes the amplitude attenuation of light through the object. The refractive
index and the distance d light propagates in a material is used to calculate the optical path
length (OPL) of light,

OPL = nd (1.2)
3Theoretically, anyway; this would be difficult to implement experimentally for microscopic imaging.
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which determines the relative phase of light in the material. The phase delay of light that
has propagated a physical distance d through a material of refractive index n relative to light
transmitted the same distance through vacuum, where n0 = 1, is given by

∆φ =
2πnd

λ0

, (1.3)

where λ0 is the wavelength of the light in vacuum. The phase delay of light through an
object is thus deeply interconnected with that object’s refractive index and thickness prop-
erties. 2D quantitative phase imaging seeks to recover the 2D quantitative phase delay of the
light through the sample, ∆φ, while 3D quantitative phase imaging generally reconstructs
the volumetric refractive index (RI) distribution, n, of the 3D sample, or another related
property. For this reason, 3D QPI systems are also referred to as 3D RI imaging systems.

Investigation into 2D quantitative phase imaging systems began with phase-shifting inter-
ferometric systems and defocus-based systems based on the transport of intensity equation
(TIE) [164, 245]. 3D QPI systems were first developed with the introduction of illumination
angle-scanning optical diffraction tomography (ODT) [113, 225] and tomographic phase mi-
croscopy (TPM) [33]. We refer to [164] for a thorough review of the development of QPI
systems. Overall, most QPI systems involve capturing multiple images of a biological sample
with different illumination- or detection-side encoding of the optical signal, which are then
used by a computational reconstruction algorithm to recover the quantitative phase delay of
the electric field through the sample.

Given that current technology only allows measurement of the intensity of the electric
field for visible wavelengths, rather than complex amplitude and phase, QPI systems require
illumination- or detection-side optical manipulation to encode phase information into inten-
sity measurements. Many QPI systems capture phase information using an interferomet-
ric4 detection system, where the light exiting from the sample is interfered with a reference
beam. The complex amplitude and phase of the electric field at the camera can be recovered
from this interferometric measurement. Common interferometric systems include phase-
shifting interferometry and off-axis interferometry, as described in [164]. In phase-shifting
interferometry, the complex field is recovered from four measurements with reference beam
phase delayed by θ = 0, π/2, π, 3π/2, respectively, with the measured intensity at the
detector given by:

I(r) = Ir + I1(r) + 2
√
IrI1(r) cos (φ(r) + θ) (1.4)

4Interferometric systems are also often called holographic systems, and thus interferometry and hologra-
phy can be regarded somewhat interchangeably when referring to camera-based imaging systems. However,
this is not to be confused with holographic displays or storage. While both use the principle of interference to
record a complex electric field, holographic displays directly display a complex visible electric field that is, in
principle, indistinguishable to a human viewer from light perceived from the world. In contrast, holographic
(interferometric) detection at a camera plane encodes phase information in an intensity measurement and
requires processing to extract complex field information. While holographic (interferometric) detection is
relatively mature, it cannot reconstruct the phase in all circumstances, especially when the object is thick
and the phase has many wrapping artifacts. These systems indirectly detect the complex field, and thus are
distinct from holographic displays and storage which directly display or store the complex field.
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and the wrapped electric field phase φ(r) recovered by

φ(r) = arctan (
I3π/2 − Iπ/2
I0 − Iπ

), (1.5)

where r = (x, y) denotes the spatial coordinates, and Ir and I1(r) are the intensities of the
reference and detection arm, respectively. In contrast, off-axis interferometry is a single-shot
method where a constant plane wave reference beam is interfered at angle θα, giving the
measured interferogram intensity as:

I(r) = Ir + I1(r) + 2
√
IrI1(r) cos (φ(r) +

2π sin θα
λ

x), (1.6)

where λ is the wavelength of the light. This effectively shifts the interference term
√
IrI1(r)

to a side-lobe in the Fourier transform of the image I centered at spatial angular frequency
α = 2π sin θα/λ. This side-lobe can be selected via filtering and inverse Fourier transformed
to recover the (wrapped) complex field; however, this comes with a loss of measurement
resolution [164]. Thick samples often require a phase unwrapping algorithm, which can be
unstable or difficult to use because phase unwrapping is an ill-posed problem [32, 236].

3D QPI algorithms that involve interferometric detection often first reconstruct the 2D
complex field of multiple interferometric intensity measurements, then use those recovered
field values from to reconstruct 3D quantitative phase or refractive index. For example,
ODT systems capture multiple phase-shifted interferometric measurements of the sample
illuminated with coherent plane waves at different incident angles. The complex field of
each of these measurements is recovered, and then these recovered field values are used to
reconstruct the complex 3D scattering potential, V (r, z) [113]. The reconstruction methods
used often require accurate phase recovery from the interferograms and are formulated solely
for use with complex field measurements. Instabilities in the field recovery can lead to error
in the reconstruction. In addition, interferometric systems can be difficult to build and use,
and the commonly used methods require a trade-off between imaging speed, in the case of
phase-shifting interferometry, or resolution, in the case of off-axis interferometry.

Recent QPI methods have been developed that directly process the measured intensity
images to recover 2D quantitative phase or 3D refractive index values. This includes differ-
ential phase contrast (DPC) microscopes [82, 216], which encode phase information into four
intensity measurements with specifically-designed partially-coherent illumination patterns.
Ptychography [138, 186, 187] captures far-field intensity diffraction patterns as a focused
beam is scanned across an object plane. Fourier ptychographic microscopy (FPM) [240] is
essentially a Fourier-transformed ptychography system, where images are captured at dif-
ferent incident angles of plane wave illumination. All of these methods use intensity-only
measurements to directly reconstruct quantitative phase values. DPC systems can recover
2D quantitative phase with fewer measurements5 and with less computational complexity
than FPM and ptychography, both of which use an iterative, model-based reconstruction
algorithm. Both ptychography and FPM reconstruct high-resolution amplitude and phase

5DPC can be single-shot if a multiplexed color-based illumination scheme is used [171].
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by capturing high spatial frequency information in multiple low-resolution measurements,
breaking the traditional optical trade-off between resolution and field of view.

Similarly, many intensity-only 3D QPI methods have been developed in recent years.
DPC, ptychography, and FPM systems have all been extended to 3D reconstructions. In the
case of 3D DPC, the designed partially-coherent illumination patterns are augmented by focal
stack scanning to capture 3D information [29]. The 3D DPC algorithm relies upon a first-
order linear Born approximation to calculate system transfer functions for reconstruction.
Both 3D ptychography [69, 118, 136] and 3D FPM [88, 215] formulate a 3D reconstruction
problem based on the same measurement systems for their equivalent 2D formulations. 3D
FPM has the same physical illumination angle-scanning system as intensity-only ODT [36,
88, 126, 215], but a different processing algorithm. Intensity-only ODT formulates the
reconstruction to reconstruct sample refractive index (RI), and can be used with any forward
light propagation method.

While we make the distinction here between interferometric and intensity-only QPI sys-
tems, we note that all methods capture intensity images at the camera plane. In the case
of interferometric systems, there is then an intermediate processing step where the complex
field of the measurement is recovered before the final result is reconstructed. In contrast, in
intensity-only systems, phase information is still encoded into the intensity measurements,
but there may be no intermediate processing step where the complex field is reconstructed;
instead, the final result is often reconstructed directly from the intensity measurements using
a model-based optimization algorithm. So while many make distinctions between the two
types of systems, this is largely a historic artifact due to the earlier development of interfer-
ometric QPI systems. It is important to note that both interferometric and intensity-only
systems are merely different choices in how to design a QPI system that can optimally encode
multi-dimensional phase information into intensity measurements such that a computational
algorithm can be used to recover 3D quantitative phase information. These different system
design choices have practical implications for the physical system’s cost, ease of use, and
robustness in real-world settings, as well as the computational algorithm’s speed, accuracy,
and stability, among other factors, which are not easy to compare across systems.

1.5 Design of Computational Imaging Systems

Computational microscopy is a subset of computational imaging and lies at the boundary
of signal processing and traditional optical design. Computational imaging seeks to reframe
traditional imaging domains from a signal processing perspective. A few of the many compu-
tational imaging systems in common use are ultrasound, magnetic resonance imaging (MRI),
computed tomography (CT), high-dynamic range (HDR) cell phone cameras, synthetic aper-
ture radar (SAR), and radio telescopes, such as the very-long baseline interferometry (VLBI)
telescope recently used to image a black hole [5]. Computational imaging includes systems
from across the electromagnetic spectrum for a wide variety of imaging scales and applica-
tions.
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Many computational imaging systems have specifically formulated algorithms developed
in tandem with the imaging system for the desired reconstruction process. However, most
systems can also be formulated in a model-based optimization framework, where the imaging
system is modeled as operator A {·} on the desired object x to produce estimates of the
measurements y. In this general framework, the desired object x can be reconstructed by
an optimization procedure that optimizes a cost function, such as given by:

x∗ = argmin
x
||A {x} − y||22 + P(x) (1.7)

where P(x) represents a prior penalty where prior knowledge about the object x can be in-
cluded in the optimization algorithm to drive the reconstruction x∗ to be physically realistic.
An example is that a certain cell might be known to have a refractive index that is strictly
higher than the background RI, in which case a positivity penalty would be used to enforce
that x∗ have RI greater than the background. In practice, a proximal operator version of
the prior is often used, which is more computationally efficient to calculate [162]. Eq. 1.7
includes an `2 norm loss function, but other norms can be used in computational imaging. In
particular, compressed sensing systems specifically rely upon the sparsity-enforcing `1 norm
to reconstruct sparse signals from data captured using systems that can operate below the
Nyquist sampling rate [23].

In linear systems, the system model A {x} can be written in linear algebraic terms,

y = Ax, (1.8)

where A is a linear system matrix. This linear equation often has a closed-form solution and
so the estimate of the object, x∗ can be recovered in a single step from measurements y, given
knowledge of A. However, in the case where A is large and the analytical solution is there-
fore computationally complex, or in the case where A {x} represents a nonlinear system,
iterative algorithms are used to solve Eq. 1.7. First-order gradient descent methods rely upon
calculation of the gradient to iteratively converge upon the estimate x∗ that best satisfies the
data consistency and prior penalty. Second-order methods utilize the second-derivative Hes-
sian matrix for optimization. Many optimization algorithms exist, with trade-offs in speed,
stability, and ease of implementation. These include methods such as: conjugate gradient,
FISTA [15], ADMM [21], maximum likelihood, and Newton’s method, among many others.

These algorithms are usually formulated to guarantee recovery of a global minimum of the
cost function for convex problems. However, many imaging problems are not only nonlinear
and high-dimensional, but non-convex as well. When applied to non-convex problems, convex
optimization algorithms may return an estimate x∗ from a local minimum of the optimization
problem in Eq. 1.7. Local minima can be avoided by introducing stronger prior knowledge
P(x) to eliminate non-physical answers for x∗. However, especially in high-dimensional,
nonlinear, non-convex problems like 2D and 3D QPI, many local minima exist, and thus
the algorithm, initialization, and calibration must be chosen correctly for consistently stable
reconstruction results.
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One goal of computational imaging is to jointly design the imaging system and the com-
putational algorithm to capture and reconstruct the desired signal in the most efficient and
robust manner possible. However, it is often difficult to identify the optical and computa-
tional trade-offs that can be leveraged to make a system more robust and practical. The
physical arrangement, ease of alignment, cost, ease of use, optical quality, noise, imaging
speed, stability over time, and other characteristics must be considered in the optical design,
all of which is difficult to quantify. Simultaneously, the computational complexity, speed,
data requirements, stability, signal-to-noise ratio (SNR) requirements, and accuracy must
be accounted for. All of these qualities can be optimized over, but there are many inherent
trade-offs between them. The optimal trade-off between all of these factors will depend on
the system’s application space.

Generally speaking, computational imaging system design has followed three phases.
The oldest computational imaging systems were designed using intuition and physical un-
derstanding to determine how to capture information relevant to the desired application. For
example, we can understand the use of coherence gating, focal scanning, sample rotation,
and closely-related illumination angle rotation for 3D imaging by intuitively considering how
these different optical operations will capture 3D information about the object, as described
above. The computational representation of this optical operation is conceived, and then
a specific reconstruction algorithm is designed and deemed to be feasible given the compu-
tational constraints. Then, given hardware constraints and resolution requirements of the
microscope, an optical system is built that allows the specifically-designed computational
algorithm to function stably. In this way, the computational and optical practicality are
both considered in the system design. However, while these designs are robust and practical,
they are not necessarily the best design with the most efficient use of the available opti-
cal and computational resources. For example, computed tomography (CT) scanners were
created from the observation that collecting only the transmitted light through a sample is
equivalent to a mathematical 2D projection operator, which enables use of the filtered back-
projection algorithm for 3D reconstruction with few errors [95]. In order to allow use of this
computational algorithm, medical CT scanners typically include an anti-scatter grid (ASG)
to absorb multiply scattered light [67]. More recent work [67], following from previous work
in x-ray diffraction CT [83], has shown that by removing this component and using a new,
optimization-based algorithm, conventional CT scanners can use multiply scattered light for
better reconstructions with lowered radiation dose for patients. This example shows that
these traditional systems, while robust and practical, are not fully leveraging the currently
available optical and computational power.

In the second phase, computational imaging system design has been framed as a direct
trade-off between the optics and the computation. In these designs, designers have sought
to re-implement typically-optical operations as computational operations or vice versa in
order to simplify either the optics or the computation. For example, a low-aberration mi-
croscope can be implemented traditionally by designing an expensive and difficult-to-build
objective lens system. Equivalently, a computational deconvolution algorithm can be paired
with a less expensive, easier-to-build, higher-aberration objective lens to produce equiva-
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lent deblurred images [205]. In this way, difficult optical operations are traded off for an
added computational element. Difficult computations can also be simplified by adding opti-
cal elements to the system. For example, work has been done to optically implement deep
neural network classification algorithms [26, 117, 125]. Other work has used a biomimetic
framework to build systems with optical elements that reduce computational requirements,
as inspired by the eyes of jumping spiders [9, 79]. However, this design framework generally
focuses upon optimizing a preexisting system rather than creating an entirely new system
design. For example, in the example case of building a low-aberration microscope, perhaps
doing away with a lensed system completely and instead modulating light through scattering
media might produce even higher resolution results [34, 35, 182, 234]6. When considering
the direct trade-off between optics and computation, these more unconventional ideas are
much less likely to be considered, though they might represent useful ways to address certain
application needs.

In the most recent phase of computational imaging design, many works have focused
on the joint design of optical and computational systems through either model-based op-
timization [12, 64, 142, 140] or data-driven machine learning [51, 87, 102, 149, 185]. In
this design regime, a general optical and computational system design is known and can
be computationally modeled with some tunable optical and computational parameters that
can be optimized for an improved system design. In model-based optimization, the optical
and computational system parameters are optimized to improve some predetermined met-
ric, such as system condition number, resolution, SNR, or other metrics [12, 64, 142, 140,
181]. In general, these systems tend to optimize the optical system to work best with the
predetermined computational algorithm, and require a useful metric to optimize the sys-
tem parameters, which is not always straight-forward to design. In data-driven machine
learning, the tunable parameters are instead optimized to improve the fidelity of the final
reconstruction to a ground truth comparison object [51, 87, 102, 149, 185]. These systems
can optimize both optical and computational parameters and are fairly easy to apply across
different optical systems thanks to modern computational tools and advancements, doing
away with the need for specifically-designed optimization metrics. However, the computa-
tional cost and data requirements can be very high for these algorithms. They additionally
require knowledge of the ground truth object, which often means system optimization must
be done completely on simulated data. In this case, real-world nonidealities like noise, sys-
tem misalignments, and spurious reflections will not be (easily) captured in the machine
learning algorithm. Therefore, the systems designed using this method might not be robust
to these real-world nonidealities. Both model-based optimization and data-driven machine
learning design moreover explicitly optimize a pre-existing system to create more optimal
imaging parameters. While these methods may produce more non-intuitive designs that

6Though in most applications, a high-quality objective lens can be bought off the shelf and, due to many
years of standardized optical design, fitted easily into a microscope system, and so is usually preferable.
However, specific applications exist where a scattering lens-based design would be more useful than an off-
the-shelf lens, as detailed in [34, 35, 182, 234]. In addition, many diffractive [1] and metalens [28, 227] optical
designs have been proposed to replace refractive lens systems for certain applications.
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better leverage the available optical and computational power, they do not usually provide
a useful framework for thinking about wholly new computational imaging systems. In addi-
tion, they generally do not account for the practicality of the optical system, as this can be
difficult to include in the optimization or learning algorithm, either due to computational
limitations, lack of a good model, or difficult-to-optimize discrete parameters.7

1.6 Dissertation Outline

In this dissertation, I focus on three methods for approaching computational imaging design
with an emphasis on robustness and practicality. I focus in particular on 2D and 3D quan-
titative phase imaging systems; specifically, 2D Fourier ptychography and 3D intensity-only
optical diffraction tomography. Overall, QPI systems were chosen because they are an ex-
citing new imaging modality that has not yet seen wide adoption in the biological research
community, and so represent a space where better computational imaging designs could have
a large impact on biological research processes. FPM and intensity-only ODT were chosen
because they explicitly process intensity images, rather than relying upon the intermediate
creation of recovered field measurements, as in interferometry-based systems, widening the
available system design space considerably and eliminating the need for interference refer-
ence arms. I present work on self-calibration algorithms, increased measurement diversity,
and physics-based machine learning for more robust system design through the lens of these
systems. I additionally give practical advice for designing, building, and using FPM and
intensity-only ODT systems based on my own experience, which I hope will be helpful to
those who want to use these systems in a research setting.

Fourier ptychographic microscopy (FPM) uses multiple low-resolution images from a
low-cost, low numerical aperture (NA), and wide field of view objective lens to reconstruct
a high-resolution object amplitude and phase, breaking the traditional optical trade-off be-
tween imaging resolution and field of view. This has proved exciting for many application
spaces where cheap, high resolution amplitude and phase imaging across a wide field of view
would be beneficial, such as in vitro cell culture studies [218] and white blood cell counts [39].
In comparison to ptychography, an equivalent high-resolution phase system implemented in
Fourier space, FPM is easy to implement in a conventional microscope by replacing the
condenser lens with a programmable LED array [240]. However, high-quality FPM recon-
structions require system parameters such as illumination angle to be well-known for a good
reconstruction.

In Chapter 2, I discuss practical considerations for FPM optical and reconstruction pa-
rameter design, including illumination system design, background removal and initialization
options, methods to account for system vignetting, and joint system pupil reconstruction sta-
bility. In Chapter 3, I present work on a self-calibration algorithm that directly recovers illu-

7For example, only certain objective lenses are available for purchase, with pre-determined parameters
such as NA, field of view, working distance, and cost. As these parameters do not exist on a continuum, it
is difficult to represent them inside the algorithm for optimization.
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mination angle parameters from measured data for more robust FPM system operation [56,
57]. This algorithm has enabled multiple new optical systems to be used for FPM [4, 96,
173] and intensity-only ODT [36], as well as to enable aberration correction methods [76]
that would not have been previously possible. I discuss how the self-calibration framework
can be useful for overall computational imaging system design.

Intensity-only ODT reconstructs 3D refractive index (RI) volumes from intensity im-
ages captured at multiple incident plane-wave illumination angles. The intensity-only ODT
framework is easy to use with many forward light propagation models, including models
that account for multiple scattering and therefore can reconstruct thicker, more complex
samples than single-scattering models. High-resolution systems can provide gorgeous 3D RI
reconstructions [36], but are difficult to align and use, require large amounts of data and
long computations times, and additionally have many local minima in the reconstruction
algorithm, so are sensitive to algorithm parameters.

In Chapter 4, I introduce intensity-only ODT and compare the accuracy and compu-
tational complexity for three common 3D coherent light propagation models that can be
used for 3D RI imaging [58]: the first Born approximation [18], the multislice (or beam
propagation) algorithm [42], and an optimization-based series-expanded Born method called
SEAGLE [129]. I discuss techniques for intensity-only ODT system design and alignment,
including illumination and objective lens design choices, alignment methods, and hardware
synchronization. I also present a comparison between intensity-based and complex field-
based ODT reconstructions.

In Chapter 5, I present a novel 3D RI imaging system design called pupil-coded inten-
sity ODT which was designed to increase the ODT system’s measurement diversity. The
pupil-coded intensity ODT system captures 3D RI data by scanning incident plane-wave
illumination angle in tandem with dynamic Fourier-plane phase pupil coding. I show that
this joint illumination- and detection-side coding technique increases the diversity of 3D RI
information in the measured images, leading to a reduction in the computational processing
time and data requirements needed to reconstruct high-quality 3D refractive index volumes.
This system additionally reduces design constraints on the illumination system for ODT by
eliminating the need for high-NA illumination angles, which were needed in intensity-only
ODT systems for high-quality reconstructions. Using a transfer function analysis of the sys-
tem, I show that the proposed system better encodes the low-spatial frequency components
of the 3D RI across all measured images compared to traditional intensity-only ODT. While
in general, pupil-coded intensity ODT requires dynamic phase coding, I also show that a
single, well-designed pupil aberration can be used for similar results. I present a highly
non-intuitive result of this finding, which is that an uncorrected objective lens with high
aberrations due to glass in the imaging path can be used through the pupil-coded intensity
ODT framework to produce better 3D RI reconstructions than a corrected, aberration-free
objective lens for a limited illumination condition, which eliminates the need for a dynamic
pupil modulation element such as a spatial light modulator (SLM) for pupil-coded intensity
ODT, further reducing ODT system complexity. Through this work, I show that increasing
measurement diversity is a useful design principle for developing more robust and effective
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computational imaging systems.
In Chapter 6, I present results from a physics-based machine learning algorithm for pupil-

coded intensity ODT that optimizes the system’s dynamic pupil coding masks for imaging
of thick cell clusters. While initial results show promise for reconstruction improvements,
implementation of specific system constraints due to use of a liquid crystal on silicon (LCOS)
SLM in the Fourier plane of the system means that the optimized pupil coding designs under
this algorithm have equivalent performance when compared to the randomly-weighted pupil
coding designs discussed in Chapter 5. I discuss opportunities for future optimization of the
pupil-coded intensity ODT design system. Additionally, I discuss the benefits and drawbacks
of using machine learning to optimize computational imaging system designs.

Overall, my aim is to present useful frameworks for the design of robust computational
imaging systems, through the lens of specific quantitative phase imaging systems. I also aim
to provide guidance for the practical operation of Fourier ptychographic microscopes and
intensity optical diffraction tomography systems, so that these quantitative phase imaging
systems can be useful to a wide variety of applications in the future.
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Chapter 2

Practical Fourier Ptychography
Systems

Fourier ptychographic microscopy (FPM) is an exciting framework for computational imag-
ing in general and quantitative phase imaging specifically, as it showcases how combining
a model-based computational algorithm with cheap, cleverly-designed optics can break tra-
ditional boundaries in optical microscopy. In particular, Fourier ptychography uses angled
illumination to scan the Fourier space of a sample, enabling high-resolution quantitative
phase imaging across a wide field of view with low-cost objective lenses. The literature
since the inception of the Fourier ptychographic microscope [240] is extensive, reflecting the
research community’s search for the best implementation of FPM for a wide variety of ap-
plications. This includes an illumination angle self-calibration algorithm for FPM presented
in Chapter 3, which has made FPM systems more robust and has enabled the use of novel
imaging systems for FPM.

In this chapter, I present a brief review of Fourier ptychography, with practical notes from
my experiences in aligning and using various FPM systems to image samples with different
characteristics. Recent works have also been published which attempt to cover the basics of
FPM systems [109, 242], which I hope to augment here with my own knowledge in building
robust and practical FPM systems. I begin with an introduction to Fourier ptychography,
discuss microscope and reconstruction algorithm design considerations, including a discussion
of vignetting effects in FPM, and conclude with a demonstration of the efficacy of joint
system pupil recovery with FPM. It is my hope that this guidance will prove useful in the
wide adoption of FPM systems for biological applications.

2.1 Introduction to Fourier Ptychography

Fourier ptychographic microscopy is a recently developed quantitative phase imaging method
that uses intensity-only measurements to reconstruct high-resolution amplitude and phase
of a 2D object O(r) across a wide field of view [240], where r = (x, y) denotes the spatial
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coordinates. This is accomplished by illuminating the sample with spatially coherent plane
waves from diverse angles up to the maximum illumination angle of NAillum,max. The sample
is imaged with a low-resolution, wide field of view objective lens with numerical aperture
NAobj, which defines a low-pass filter pupil support P̃ (k), where k = (kx, ky) are the spatial
frequency coordinates. The FPM reconstruction algorithm computationally combines these
measurements to build up a high-resolution image with numerical aperture

NAsys = NAobj +NAillum,max. (2.1)

Since low-resolution objective lenses typically have much wider field of views than high-
resolution objectives, FPM therefore increases the available system space-bandwidth prod-
uct (SBP) by providing high-resolution across the entire field of view of the low-resolution
objective lens. This is useful for a variety of biological applications, including in vitro cell
culture studies [218] and white blood cell counts [39]. Example FPM results can be seen in
Fig. 2.1 and Fig. 2.2, where two regions of a mouse brain slice have been imaged in high
resolution across a wide field of view.

For illumination at wavelength λ in a medium of refractive index n, the ith illumination
of object O(r) by a coherent plane wave at angle θi = (θx,i, θy,i) can be described as multi-
plication by a phase ramp at spatial frequency ki = 2πNAi

λ
= 2πn sin θi

λ
, giving the ith intensity

measurement
Ii(r) = |O(r)e−jkir ∗ P (r)|2 (2.2)

where ∗ denotes convolution and P (r) is the system’s point spread function, the real-space
version for the complex Fourier-space pupil function P̃ (k). By the Fourier shift theorem,
this is equivalent to shifting the object spectrum Õ(k) by ki in the Fourier domain, giving
the equivalent formulation

Ii(r) = |F−1(Õ(k− ki)P̃ (k))|2. (2.3)

The angled illumination in FPM shifts high spatial frequency (and therefore high spatial
resolution) information into the pass-band of the objective lens. The shifted pupils must
generally have large overlap in Fourier space between measurements for a good FPM re-
construction [53, 212]. When the ith angle of illumination’s NA |NAi| ≤ NAobj, the DC
component of the object spectrum passes through the pass-band of the objective lens, giving
brightfield images with high intensity values in transmissive regions of the object. When
|NAi| > NAobj, the object spectrum is blocked by the objective pupil, resulting in dark-
field images that typically have little to no light in transmissive object regions. Darkfield
images generally have lower SNR, but contain important high resolution information. A
high-resolution image is built up from these measurements with a computational reconstruc-
tion algorithm, as in synthetic aperture imaging [50, 221]. The successful transfer of the
FPM algorithm to new imaging domains (e.g., reflection-mode rather than transmission-
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Figure 2.1: Example wide field of view (8.9 mm×10.78 mm), high resolution (rRayleigh =
0.732 µm) phase image of a 20 µm thick mouse brain slice reconstructed using Fourier pty-
chography.

mode) hinges upon whether the interaction of the plane wave illumination with the object
is properly described by the forward model in Eq. 2.2.1

We formulate the FPM reconstruction algorithm as a minimization problem on the am-
plitude of the measured images to better account for Poisson noise statistics in the measure-
ments [233], giving

O∗(r) = argmin
O(r)

∑
i

∣∣∣∣∣∣|F−1(Õ(k− ki)P̃ (k))| −
√
Ii(r)

∣∣∣∣∣∣2
2
. (2.4)

Many improvements on the FPM algorithm have been proposed [53, 54, 56, 109, 158, 156,
219, 218, 233, 240, 242]. One especially important set of improvements for FPM centers

1For example, if a sample is highly scattering, this model might no longer be accurate and good recon-
struction results may not be achieved. In general, this is why we say FPM is object-dependent, as some
samples may not fit this simplified imaging model, leading to incorrect reconstructions with many artifacts.
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Figure 2.2: Example wide field of view(7.93 mm×10.71 mm), high resolution (rRayleigh =
0.732 µm) phase image of a 20 µm thick mouse brain slice reconstructed using Fourier pty-
chography.

around the calibration of the system pupil P̃ (k) [89, 156, 214] and illumination angles [4,
56, 57, 130, 137, 210, 233, 238], among other system parameters [17, 16, 54, 194, 160],
which are essential for a high-quality reconstruction. These improvements, and especially
the self-calibration of illumination angles, are discussed in detail in Chapter 3.

In practice, we find that calibrating the illumination angles as in [56] and jointly esti-
mating the pupil function as in [156] provide consistently high-quality FPM reconstructions
using the algorithm described in Algorithm 1. Important system characteristics include the
camera pixel pitch dcam, system magnification mag, and image patch size Nim×Nim pixels, as
well as the NA of the objective lens NAobj, and angles of illumination for each measurement,
NAi. In the initialization steps, the background of the intensity images is removed as de-
scribed in Sec. 2.3.1, giving images I(r). We initialize the object estimate O0(r) as described
in Sec. 2.3.2 and the pupil estimate P̃0(k) to the binary low-pass filter support P̃support(k),

which is unity where |k| ≤ (
2πNAobj

λ
) and zero everywhere else. Since the final system NA,

NAsys, is larger than the objective NAobj, the number of pixels in the FPM reconstruction
is usually increased to avoid aliasing of the high-resolution result. The upsampled number of
pixels, Nsys×Nsys, is defined to be the smallest integer multiple of the image size Nim×Nim
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to prevent aliasing and avoid other upsampling artifacts.2 The minimum requirement for
Nsys to avoid aliasing is

Nsys,min =
4NAsys

λ

Nimdcam

mag
. (2.5)

Accounting for the integer multiplication of Nim, the final system reconstruction size is given
by

Nsys = ceil

(
Nsys,min

Nim

)
Nim = ceil

(
4NAsysdcam

λ ·mag

)
Nim. (2.6)

The illumination angles are sorted in order of increasing magnitude of numerical aperture,
|NAi| ≡ NAillum, i, for best results. Additional parameters include eps, the minimum value
that can be represented computationally by the data type to avoid division by zero, as well
as α and β, the respective regularization parameters for the object and pupil reconstruction.
We find that α = 10 and β = 1 are usually good choices. The best way to search for the
optimal values of α and β for a certain object is to vary them by orders of magnitude across
different reconstructions. The update steps in Algorithm 1 are drawn from previous work
in ptychography’s PIE algorithm [75, 186], as well as multiplexed and 3D FPM [215, 219],
where they have been shown to be robust. Many other formulations of the FPM update
steps are available and are given in detail in [109, 233, 242].

Algorithm 1 Fourier ptychography reconstruction

1: Õ[Nsys×Nsys] ← F (O0) . Initialize variables
2: P̃ [Nim×Nim] ← P̃0

3: pupilshifti ← round(ki
Nimdcam
2πmag

) . Define shift and crop of pupil by ith illumination

4: roiCoordi ← pupilshifti + floor(Nsys/2)± floor(Nim/2)
5: while iter < itermax do
6: for i image do
7: Õ

[Nim×Nim]
roi ← Õ|roiCoordi . Crop object spectrum around ith illumination shift

8: Ofwd ← F−1(ÕroiP̃ ) . Forward imaging model for ith angle

9: Õup ← F
( √

IiOfwd
|Ofwd+eps|

)
. Update with ith measured image amplitude

10: P̃ ← P̃ +
|Õroi|conj(Õroi)(Õup−F (Ofwd))

|Õ|max(|Õroi|2+β)
P̃support . Update pupil

11: Õ|roiCoordi ← Õroi +
|P̃ |conj(P̃ )(Õup−F (Ofwd))

|P̃ |max(|P̃ |2+α)
P̃support . Update object spectrum

12: end for
13: end while

2Though Nsys can be chosen to be an arbitrarily large number, restricting its size reduces the computing
needs of the algorithm.



CHAPTER 2. PRACTICAL FOURIER PTYCHOGRAPHY SYSTEMS 23

Figure 2.3: Four illumination systems for Fourier ptychography. In all examples, a sample
is imaged by an objective lens (OL) and tube lens (TL) onto a camera. The maximum
illumination angle for the planar and quasi-dome LED arrays is limited by simple geometry.
The dual-objective lens system’s maximum illumination angle is limited by the NA of the
illumination-side objective lens.

2.2 Fourier Ptychography Microscope Design

FPM imaging systems are typically easier to design and build than their Fourier-conjugate
system of ptychography, since in their simplest form, they can be implemented by replacing
the condenser lens on a traditional microscope with a low-cost programmable LED array [53,
158, 218, 219, 240]. However, a low-cost programmable LED array might not be the best illu-
mination system for FPM applications that need fast, reliable, or extremely high-resolution
imaging. This section discusses design considerations for the illumination system and the
detection objective lens and camera for FPM.

2.2.1 Light Sources

The simplest way to implement a FPM system is to replace the condenser lens of a tradi-
tional microscope with a programmable LED array, such as an Adafruit LED array [240].
However, off-the-shelf LED arrays are often slow, low-power (thus either leading to increased
measurement noise, increased camera exposure time, or both), and can be difficult to control.
In addition, they often have a diffusive film deposited on top of the LEDs which destroys the
LED light’s spatial coherence, which must be removed for proper FPM functionality. There-
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fore, custom LED arrays and other illumination systems designed specifically for FPM are
important for practical FPM systems. Many custom LED arrays have been demonstrated for
FPM, including planar grid-like arrays [133, 215, 218, 219], circular arrays [78], and domed
arrays [159, 173, 172, 198]. Systems have also been designed for high-NA illumination [157,
159, 173] for extremely high-resolution reconstructions. In particular, a quasi-dome array
was developed to allow fast, multiplexed Fourier ptychography captures with illumination
up to 0.98 NA [173], as shown in Fig. 2.3. As of this writing, these quasi-dome arrays are
some of the only commercially available LED arrays specifically designed for FPM and other
computational microscopes.3

FPM requires coherent light sources to properly function. LEDs, which emit light in an
approximately spherical wave, have a coherence area Ac = λzLED

dLED
by the van Cittert-Zernike

theorem, where zLED is the distance from the LED to the sample plane and dLED is the size of
the LED’s active emitting region (dLED = 120 µm× 120 µm is one example size) [215]. LED
illumination is approximately planar within this area, but reconstructions can be slightly
improved by increasing the illumination coherence by shrinking the LED size, moving the
LED further away, or using a more coherent light source, as seen in Fig. 2.4. We note
that the observed loss of reconstruction sharpness is slight, and that many very successful
FPM systems have been built using LED array-based illumination sources. Common high-
coherence light sources are lasers and fiber-coupled LEDs, where a fiber with few optical
modes effectively filters the partially incoherent LED, increasing its coherence. Lasers are
higher power than LEDs, allowing for lower exposure times and lower measurement noise.
However, the extremely high coherence of lasers means laser-illuminated systems can have
many ringing artifacts from dust in the optical path, which often makes fiber-coupled LEDs
preferable for practical imaging. Arrays of lasers or fiber-coupled LEDs are not currently
available on the market, so other methods for creating dynamic angled illumination must
be used for these higher-coherence sources, as seen in Fig. 2.3. Systems using steerable
mirrors [36, 41, 56], digital micromirror devices (DMDs) [111], and liquid crystal displays [77]
have been used for this purpose.

Steerable mirrors might be galvanometer-, motor-, or piezo-driven, with galvanometric
mirror systems generally having a larger angle range and piezo-driven mirrors having the
fastest operation. The main problem with using steerable mirrors is that the system needs
to relay a non-moving, angled illumination spot from the mirror surface to the sample plane.
This can be accomplished through lensed relay systems [36, 56] or mirror systems [41]. Note
that using a dual-axis steerable mirror where the x- and y-coordinate controls are physically
offset, such as the Thorlabs GVS012 as in [56], means that the ideal sample planes where the
illumination beam does not move laterally will be different for the x and y directions. Thus
the illumination spot will have to be physically large enough to still illuminate the desired
sample field of view when placed between these two planes across all angles of illumination.

3These LED arrays were developed by Zachary F. Phillips and Michael Chen as graduate students in
Prof. Laura Waller’s lab at UC Berkeley. They are available to purchase through SCI Microscopy at
https://www.sci-microscopy.com/.
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It is therefore preferable to use a steerable mirror that rotates in x and y around a single
rotation axis, as done in [36].

A relay lens system can be used to relay a coherent, non-moving illumination beam to the
sample plane. If a simple 4f system is used, where the sample plane is 4 focal lengths f from
the mirror plane, there is a practical limit to the maximum angle of illumination geometrically
given by the lens diameter dlens and the focal length f , as well as the illumination beam
diameter dbeam. In this case, the maximum illumination angle is θ = arctan(R

f
), where the

maximum radial distance on the lens with a clear aperture is given by R = (dlens− dbeam)/2.
We used large f = 80 mm, dlens = 4 inch relay lenses in combination with a dual-axis
galvanometric mirror control (Thorlabs GVS012) with a dbeam = 10 mm laser beam, as seen
in Fig. 2.3, for high-quality laser-based FPM results, shown in Fig. 2.4. While the system
was high-speed due to the fast galvanometric mirrors and high laser illumination intensity
(and thus low exposure time), the maximum practical illumination NA of the system was
NAillum,max ≈ 0.35. We searched for larger relay lenses with shorter focal lengths, but all
available options were condenser lenses, which created extreme aberrations in the laser beam
that destroyed the desired plane wave illumination. After extensive searching, we concluded
that the maximum NAillum for a simple 4f relay system is ≈ 0.35 with readily available
commercial lenses at this time.

Another option for a steerable mirror design with a lensed relay system is to use an
objective lens to obtain high-angle illumination. We call this system a dual objective system,
since it pairs an illumination objective lens with the objective lens used to image the sample,
as seen in Fig. 2.3. In this system, the steerable mirror is placed in the back focal plane of
an illumination objective tube lens, as shown in [36]. This system effectively steers a small
focal spot around the back focal plane of the objective lens, creating collimated illumination
at the sample plane at angles up to the NA of the objective lens. These systems can create
high-power illumination at high angles, but create many system design constraints, especially
for high NA objectives. First of all, the spot size exiting the objective can be very small, so
precise alignment and optical stability is important for high-quality results. Second, since
the working distance of an objective generally decreases with increasing NA, the axial space
available for the sample might be very small for high-NA illumination systems, making the
system difficult to align and use. Additionally, axial alignment of the imaging objective
is difficult. If the illumination-side tube lens is removed, a shearing plate interferometer
could reveal when the imaging objective is correctly placed to output a collimated beam.
However, this method doesn’t work well for high-NA objectives, which are not optimized
to work without a tube lens, and so exhibit many aberrations. Therefore, in practice, the
imaging objective is iteratively aligned by observing if a feature in the beam-path does not
move as the illumination angle is changed.

Another option for steering collimated light is a mirror array, which can be bulky and
costly [41]. A DMD [111] or liquid crystal spatial light modulator [77] can be used to create
angled illumination by placing it in the back focal plane of an illumination lens. The DMD
system reported in [111] uses a dual-objective illumination system, with the DMD effectively
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Figure 2.4: Increased illumination coherence leads to sharper phase reconstructions. 3D
FPM reconstructions of cheek cells on either side of a glass coverslip, captured with an LED
array (less coherent) and laser (more coherent) illumination source with similar numbers of
images. While the on-axis laser image is much noisier due to coherent ringing from off-focus
dust and system reflections, the reconstructed phase edges appear crisper with the laser
illumination. Both datasets were captured with NAobj = 0.25.

selecting the illumination angle by transmitting light from a single pixel only, which leads to
large light losses. The liquid crystal display system reported in [77] places an LCD in front of
a commercial microscope’s backlight, using it as a transparent phase spatial light modulator
to change the angle of illumination. Additional FPM systems have used a multi-aperture
configuration to further extend the system resolution [107, 108], or have been engineered for
low-cost, portable form-factors [4, 52, 172].

In FPM, the maximum NAillum,max is chosen to complement the objective NAobj to
produce the desired final system NAsys, typically with NAillum,max � NAobj to fully leverage
the wide field of view of the low-NA objective lens with the high-resolution features provided
by the high-NA illumination source and the computational reconstruction. It is therefore
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best to measure as many darkfield images as possible in FPM (where NAillum, i > NAobj)
to build up the reconstruction resolution, though since the camera must capture both high-
intensity brightfield images (where NAillum, i < NAobj) and low-intensity darkfield images,
the dynamic range of the camera should be considered. When many darkfield images are
included, the noise statistics in the low-intensity darkfield images should be considered in
the algorithm formulation for higher-quality reconstructions [233]. The light intensity fall-off
at extreme angles should also be accounted for, and has spurred the creation of domed and
quasi-domed LED arrays [173, 172, 198] and multi-aperture systems [107, 108].

While these light sources have been discussed here in the context of FPM, they are
applicable to any computational imaging system where the incident angle of plane-wave
illumination is changed to capture diverse information about the sample at hand. This
includes 3D RI imaging ODT systems. While the light source options are the same for
both systems, the choice of optimal light source might varies based on the application space.
Dual-objective lens systems have so far proven useful for these 3D quantitative phase imaging
systems [36], though they come with many constraints. See Sec. 4.4.1 for more details on
ODT illumination system design.

2.2.2 System Design and Calibration

The FPM imaging objective lens is generally chosen under field of view and cost constraints,
since the numerical aperture (i.e., resolution) of the system can be built up via the system’s
angled illumination. Depending on the illumination system chosen, the imaging objective
NAobj should be chosen to provide the required final NAsys when considering the available
maximum illumination NAillum,max, as shown by Eq. 2.1. Flat-field corrected Plan Apoc-
hromatic objective lenses that are rated as well-suited for brightfield operation are good
choices for FPM. If high-NA lenses are used, care should also be taken to select an objective
that is corrected for the spherical aberrations introduced by glass coverslips if samples with
coverslips are expected in the system.

The choice of camera may also be important for consistently high-quality FPM recon-
structions, especially if NAillum,max � NAobj and many darkfield images will be measured.
In this case, a low-noise, high quantum efficiency scientific camera should be used, such as
an sCMOS camera. All results presented here use a monochromatic 16-bit PCO Edge 5.5
sCMOS air-cooled camera with a dcam = 6.5 µm pixel pitch.

Ideally, the imaging system would be designed to avoid aliasing of the optical signal on
the camera plane. Following the Nyquist sampling rate, this means the camera’s spatial
sampling rate must be double the maximum system spatial frequency. This implies that the
system must obey

mag ≥ 4NAobjdcam

λ
(2.7)

to avoid aliasing, where mag is the total system magnification and dcam is the camera pixel
size. The FPM algorithm can account for aliasing artifacts, so this is not strictly necessary.
However, it is practically much simpler to tell if a sample is at or very near focus if the
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Figure 2.5: Example FPM calibration steps. (a) Compare the frequency of USAF resolution
target bars in an on-axis image along a vertical axis (dashed white line) to the expected
period to verify the system magnification. (b) Verify objective NA by viewing the contrast-
stretched or log plot of the Fourier transform amplitude and estimating the pupil radius.

imaging system is not aliased, which is necessary for high-quality results, since aliasing
artifacts distort high-resolution features at focus. Therefore, it is practically better to ensure
that the imaging system is not aliased, if possible.

Once the system is designed and built, the final system magnification and NA should be
verified to check that the system has been properly aligned. The system magnification can
be checked by imaging a USAF resolution target with on-axis illumination, as seen in Fig 2.5.
The USAF target’s resolution are given in terms of line pairs per millimeter (lpmmUSAF) or,
equivalently, line width wUSAF for each three-bar element of each group. The line pairs per
millimeter lpmmmeas or line width wmeas at the camera for a set of elements within a group
can be measured using knowledge of the camera pixel size dcam. A white dotted line shows
the potential for using horizontal elements 2-6 of group 8 in Fig. 2.5(a) for calibration. The
system magnification mag will then be given by

mag =
lpmmUSAF

lpmmmeas

=
wmeas

wUSAF

. (2.8)

It is best to take an average over many elements and line pairs to average out noise when
calibrating the magnification, and preprocessing of the image can also be done to ensure that
the USAF bars are perfectly horizontal and vertical before the magnification calibration. The
objective NA can be verified by looking at the Fourier transform of the measured calibration
image, as seen in Fig. 2.5(b). For on-axis illumination, the low-pass filtering by the objective
lens will create a circular pass-band in the center of the image’s Fourier transform magnitude.
Note that either contrast-stretching or taking the log of the Fourier transform amplitude
might be needed to view the circular pass-band. The radius of this circle in k-space is given
by 2πNAobj/λ. If the physical radius in the captured data is different than expected, there
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may be misalignments in the system. In general, viewing the Fourier transform amplitude
of measured images can be useful for debugging FPM systems.

Correct system operation can additionally be verified by reconstructing a high-resolution
image of a USAF target using FPM by comparing the highest resolvable reconstruction
features to the expected final system NAsys. Different resolution criteria define the minimum
resolvable line width r, all with some multiple of λ

NA
. The Rayleigh criterion states rRayleigh =

0.61λ
NA

; another commonly used value is the Abbe Resolution rAbbe = λ
2NA

. In practice, the
highest resolution USAF element that can be discerned as three separate bars in the final
reconstruction should have a line width wUSAF in the approximate range of rRayleigh and rAbbe.
If the system is not functioning well, there will usually be many artifacts and the finest line
width that can be resolved will be much wider than these two resolution definitions.

2.3 FPM Reconstruction Methods

While the FPM optical system design and alignment is important to consider for system
functionality and robustness, the reconstruction parameters are also important to consider.
Background removal and object initialization are particularly important for high-quality
reconstructions. Additionally, two computational models exist for implementations of the
Fourier shift theorem, one involving cropping in the Fourier domain, the other involving
multiplication by a phase ramp, resulting in different reconstruction artifacts. Practical con-
siderations for these algorithmic design choices are discussed. The effect of vignetting inside
the objective lens is also discussed, along with mechanisms for avoiding reconstruction vi-
gnetting artifacts. Another common source of error in FPM reconstructions is misestimation
of the angles of illumination, which is separately addressed in Chapter 3.

2.3.1 Background Removal

Background removal is important for removing the effects of dark current noise and off-
focus dust artifacts, as well as for normalization of background values across illumination
angles to better match the forward model, which expects uniform illumination intensity
across all angles. Two main methods for background removal are background subtraction
and background division.

Background subtraction generally involves estimating the background dark current level
from user-designated background regions in the captured darkfield images Iraw. Since there
should be zero signal in the background regions of darkfield images, the average intensity
of designated background regions, mean(Ibk,region), can be assumed to approximately equal
the dark current noise level of the camera system under the measurement scheme. The
background-subtracted intensity images are given by Isub = Iraw−mean(Ibk,region), with Isub
set equal to 0 in all regions where (Iraw −mean(Ibk,region)) < 0. Background subtraction is
beneficial because it allows for correction of background without having to capture separate
background frames and empirically provides more stable reconstructions; however, it does
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Figure 2.6: FPM artifacts due to improper background subtraction present as a high spatial
frequency “dimpling” of both the object amplitude and phase (top row). With proper
background subtraction parameters, the reconstruction background is smooth (bottom row).

not account for illumination intensity variation or off-focus dust artifacts and leads to incor-
rect scaling of jointly recovered pupil phases, as discussed below. Common reconstruction
artifacts due to improper background subtraction appear as high-spatial frequency dimpling
of the reconstruction as seen in Fig. 2.6.

Background division instead requires that a separate set of background images, Ibk,images
be captured across all illumination angles. The background-divided images are given by
a pointwise division of the data measurements by the background measurements, Idiv =
Iraw/Ibk,images. This has the benefit of accounting for intensity illumination variation and
off-focus dust artifacts, as well as correct scaling of the recovered pupil phase. However,
it is inaccurate and unstable for darkfield images and, experimentally, has less stable FPM
reconstructions than images processed using background subtraction.4

2.3.2 Initialization

As FPM is a nonlinear optimization algorithm, there are many local minima that satisfy
the minimization algorithm given by Eq. 2.4 but that may not represent the best possible
object reconstruction at the optimization problem’s global minimum. In order to reconstruct
objects with local minima near the global minimum, the object O(r) must be properly

4That is, the FPM algorithm diverges more often when the background division method is used, though
still converges a majority of the time.
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initialized. The simplest method is to initialize the object as a constant value with unity
amplitude and zero phase; however, this may take longer to converge to a good solution or
may lead to less desirable minima. The average over all measurements might be taken as the
object amplitude, again with zero phase. This method effectively initializes the object to a
low-contrast version of the final high-resolution reconstruction. However, if the majority of
measurements are darkfield, this method will bias the initial background value to be too low.
The on-axis image might also be taken as the object amplitude with zero phase, providing
a decent initialization of the object’s low-resolution features. This will not include the high-
resolution information gained by averaging all measurements, but will no longer face biases
of the background due to the darkfield measurements. All of these methods are suitable for
objects that are expected to be primarily amplitude objects, since they initialize the phase
to a constant zero value.

Alternatively, a differential phase contrast (DPC) algorithm [216] can initialize both the
object amplitude and phase to non-constant values, providing by far the best initialization for
phase-only objects [41]. DPC measurements are taken with partially incoherent half-circles of
illumination and so can be synthesized from the individual coherent measurements of FPM.
The synthesized DPC measurements are created by summing the FPM measurements whose
angles of illumination are in the top (NAy > 0), bottom (NAy ≤ 0), left (NAx > 0), and
right (NAx ≤ 0) half planes of the illumination angle space. These measurements are then
processed with the linear DPC reconstruction algorithm given in [216] to return an initial
object amplitude and phase for FPM. This initialization method provides more consistent
and stable FPM reconstructions for phase-only objects.

All of these initialization schemes will produce an initial object that is the same image
size and pixel pitch as the measured data (i.e., [Nim × Nim] pixels), rather than the larger
image size (and smaller pixels) of the higher-resolution reconstruction. Therefore, all of
these images must be upsampled to the system reconstruction size [Nsys × Nsys] pixels.
All methods of upsampling introduce artifacts into the initialization that can affect the
reconstruction. The preferred method of upsampling is by padding the Fourier transform
of the initialization with zeros to the correct image size, then inverse Fourier transforming
to retrieve the upsampled image. While this also introduces initialization artifacts, they
generally exhibit fewer artifacts than other upsampling methods.

2.3.3 Crop- and Phase Ramp-Based Fourier Shift

Fourier ptychography relies upon the Fourier shift theorem, whereby a phase ramp (i.e., an
angled plane wave) applied in the image domain corresponds to a coordinate shift in the
Fourier transform domain (i.e., the shift of the object’s spectrum in the imaging system’s
pupil plane), as discussed above. In the FPM algorithm, this Fourier shift can be represented
in one of two ways: 1) by directly applying a phase ramp at each given illumination angle
in image space, or 2) by shifting the Fourier transform of the intensity image by the amount
dictated by the angle of illumination. The latter method is shown in Algorithm 1.
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While both of these reconstruction algorithms can create impressive results, their recon-
struction artifacts will differ from each other, even with the same input data and initial-
ization. The phase ramp-based method generally has more low-spatial frequency artifacts
and edge artifacts due to the circular boundary conditions of the computationally efficient
FFT implementation of a Fourier transform. Therefore, the shift-based algorithm is gener-
ally preferred, as it explicitly enforces integer pixel shifts of the spectrum, which eliminates
many of these FFT boundary condition-based artifacts.

2.3.4 Vignetting

Vignetting is an imaging artifact due to natural and opto-mechanical mechanisms that result
in high-angle light beams being attenuated and potentially physically blocked in an optical
system. In systems with incoherent illumination, such as photographic cameras, this man-
ifests as lower intensity light at the edge of the field of view, also called “light fall-off” [2].
Natural vignetting results in a cos4(θ) illumination intensity fall-off across light angle θ due
to three sources. The angled projection of high-angle light onto the lens and the camera sen-
sor planes each contribute a cos(θ) fall-off term. High-angle light additionally propagates a
longer distance inside the lens system, contributing an additional cos2(θ) fall-off term [223].5

Opto-mechanical vignetting occurs due to blockage of the light inside the lens system, where
a portion of the high-angle light beam falls outside of the projection of the aperture stop,
and thus a portion of the light is clipped [2, 223].

Low-cost objective lenses are typically built to work in traditional microscopes, where a
condenser lens directs wide-field, incoherent light at illumination angles up to and beyond
the objective NA onto the sample, which is imaged by the objective lens. In this case, vi-
gnetting appears as a gradual fall-off of intensity at the edge of the field of view. While this
intensity fall-off is a metric in the objective lens design process, it is difficult and expen-
sive to achieve a flat intensity across an objective’s entire field of view. For FPM systems,
where angled coherent plane-wave illumination is used instead of incoherent illumination,
this means that the angles of illumination near the objective NA, NAillum,i ≈ NAobj, will
generally be vignetted in most commonly used objective lenses. We can therefore see signif-
icant opto-mechanical vignetting in angles near the objective NA in typical FPM systems,
as seen in Fig. 2.7.

While natural vignetting can be accounted for in FPM by including the cos4(θ) fall-
off term in forward model’s light intensity for each illumination angle, opto-mechanical vi-
gnetting is not so easily accounted for. By definition, vignetting clips the optical ray at
a separate plane from the system pupil plane, so can be thought of as applying an angle-
dependent amplitude filter at a partial Fourier transform plane. Fresnel-diffraction based

5We note that cos4(θ) is an approximation, since the angle of light incident upon the lens, θlens, will
generally be different than the angle incident upon the camera sensor plane, θsensor. With this, the natural
fall-off term is closer to cos(θlens) cos3(θsensor), assuming the angle of light inside the camera ≈ θsensor.
However, since θlens is generally small for normal camera lenses, and thus θlens ≈ θsensor, cos4(θ) is usually
a good approximation [223].
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Figure 2.7: Example vignetted images when NAillum,i ≈ NAobj. Overall vignetting is easy to
see in large field of view image (left image), but appears as an average between a brightfield
and darkfield image in the small, reconstruction field of view (right images). Example
vignetted small field of views are shown for illumination angles from the system’s top, bottom,
left, and right.

methods have been proposed to deal with this problem in FPM reconstructions [161]. How-
ever, this is not computationally simple to model, especially because the objective lens
designs are usually proprietary and therefore unavailable for modeling the precise location of
vignetting planes. This makes it more difficult to develop a simpler vignetting model for use
inside the FPM reconstruction. Therefore, we must use more heuristic methods for dealing
with this system nonideality.

In Fig. 2.8, we present several processing options to account for vignetting in FPM sys-
tems. Without accounting for the vignetting, the reconstruction has many artifacts due to
the model mismatch in the vignetted images. Since vignetting results in low-spatial frequency
mismatch in the measured images (i.e., the background intensity is lower than expected),
the reconstruction artifacts are low-spatial frequency ripples in the background of the ampli-
tude and phase reconstructions. Judging by the lack of low-spatial frequency reconstruction
artifacts, the two best methods for dealing with the vignetting are to 1) exclude vignetted
images and 2) use the joint pupil calibration algorithm described above [156] with a slightly
larger effective objective NA support, NAobj, eff ≈ NAobj+0.015, where the additional 0.015
is a heuristically chosen value. In this second option, the pupil amplitude will be updated
to weight the high-NA angle images appropriately, self-calibrating away the vignetting ar-
tifacts, though we note that this means the reconstructed pupil amplitude will no longer
strictly describe the physical system pupil, since it will include additional vignetting model
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Figure 2.8: Methods for correcting for vignetting in FPM. (a) Vignetting causes low spatial
frequncy artifacts. (b) Heavy background subtraction, (c) dynamic updating of the illumi-
nation angles, and (d) heuristically scaling the illumination intensity corrects for some of
the artifacts, but still has problems. (e) Excluding the vignetted images and (f) increasing
the pupil support NA in the reconstruction (in tandem with joint pupil estimation) correct
for the vignetting best. The joint reconstructed complex object and pupil are shown for all
methods.

mismatch.
Additional methods for accounting for system vignetting include: 3) heavily background

subtracting the vignetted images, effectively making them darkfield images; 4) allowing the
illumination angles to be updated inside the algorithm, which allows the algorithm to “move”
the angles to a pupil location with the appropriate weighting; and 5) heuristically modeling
the reduced illumination intensity for the vignetted images, accounting for the lower back-
ground. All of these are shown in Fig. 2.8. All reconstructions shown included a joint pupil
estimation step, which often results in improved reconstructions since it increases the de-
grees of freedom in the reconstruction. However, both the third and fourth options introduce
significant model mismatch of their own, and the fifth would ideally include a separate algo-
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rithm to model and calibrate the illumination intensity under vignetting. Therefore, these
options do not work as well as the first two mentioned options in correcting for vignetting
in FPM reconstructions.

2.4 Joint Pupil Reconstruction

Joint estimation of system pupil via the EPRY algorithm [156] is often essential for high-
quality FPM object reconstructions. We note here and in Chapter 5 that accurate pupil re-
covery can be equally useful for microscopy applications as FPM’s recovery of high-resolution
information, as the pupil recovery enables novel lens design [4, 96] and expediates deconvolu-
tion methods for fluorescence imaging [40, 202]. We present validation of pupil recovery via
FPM using a system with a phase spatial light modulator (SLM) in the conjugate Fourier
plane of an FPM system shown in Fig. 5.1. We show that the system pupil phase recovered
via FPM has high fidelity to displayed phase values on the SLM.

The system uses a 50 µm fiber-coupled LED source (Thorlabs M530F2) with wavelength
λ = 530 nm which is beam-expanded and collimated by a 0.1 NA objective, as seen in
Fig. 5.1. A mirror mount with a single rotation axis is driven by DC servo motors to
steer the collimated beam in θx and θy at a conjugate imaging plane. The angled beam is
relayed through a dual-objective system with 0.8 NA, 50×, working distance 1 mm objectives
(Olympus M Plan Fluorite air objective, tube lens f = 180 mm). A linear polarizer is placed
close to the tube lens to linearly polarize the collimated light in the same direction as the
SLM’s modulation axis. A 300 mm lens Fourier transforms the light between the imaging
plane and the pupil plane at the LCOS SLM (Hamamatsu X13138-01) surface, where the
pupil phase is displayed. The modulated light is reflected, Fourier transformed again by the
300 mm lens, and relayed by a beamsplitter (Thorlabs BS031) to the camera (PCO Edge 5.5),
where the intensity image is measured. Calibration steps for the SLM phase are discussed
in Sec. 5.4.1.

In order to jointly verify the SLM’s displayed phase and the FPM pupil reconstruction,
we imaged and reconstructed well-understood planar phase objects with a DPC-initialized
FPM algorithm. In these results, we imaged a phase USAF resolution target (Benchmark
Technologies6, target #3). We first imaged the sample with the SLM displaying zero phase
in order to recover the aberrations of the imaging objective, then imaged the sample with
the random SLM patterns on different bases seen in Fig. 2.9(a). We ran the FPM algo-
rithm described above for 250 iterations with a simple binary pupil support initialization
for the pupil function P̃ with background subtracted images to produce the initial pupil re-
construction P̃initial . We then restarted the FPM algorithm, re-initializing the object with
a DPC initialization and using background divided images. We initialized this second FPM
reconstruction with a binary pupil support amplitude and the phase of the initial pupil re-
construction, ∠P̃initial = φinitial, again running the algorithm for 250 iterations. We found

6See a detailed user report at https://www.benchmarktech.com/sites/default/files/UserReport.pdf
[170].
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Figure 2.9: Verification of joint pupil estimation in FPM using a spatial light modulator
(SLM) in the conjugate Fourier plane of the imaging system. The (a) expected, displayed
phase on the SLM is compared to the (b) recovered pupil phase from an FPM reconstruction
of a phase resolution target with joint pupil estimation. (c) RMSE maps are shown comparing
the recovered to the expected pupil phase.

that the initial background subtracted step provided reconstruction stability, giving a good
initial estimation for the pupil phase, while the background divided reconstruction gave highly
accurate pupil phase values P̃recon when compared to the expected results.

The reconstructed pupil phase without SLM coding, φrecon,no coding, represents the objec-
tive lens aberrations. We subtracted this lens aberration phase from the reconstructed pupil
phases with SLM coding, giving φfinal = φrecon,SLM coding − φrecon,no coding. The final recon-
structed phase values φfinal are shown in Fig. 2.9(b). We see that the reconstructed FPM
phase results match the expected SLM phase values well with low absolute phase errors,
as shown in Fig. 2.9(c). These results suggest that the FPM pupil recovery can be highly
accurate and a useful tool for imaging system calibration.
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Chapter 3

Efficient Illumination Angle
Self-Calibration in Fourier
Ptychography

Fourier ptychography captures intensity images with varying source patterns (illumination
angles) in order to computationally reconstruct large space-bandwidth-product images. Ac-
curate knowledge of the illumination angles is necessary for good image quality; hence,
calibration methods are crucial, despite often being impractical or slow. Here, we propose a
fast, robust and accurate self-calibration algorithm that uses only experimentally-collected
data and general knowledge of the illumination setup.1 First, our algorithm makes a fast di-
rect estimate of the brightfield illumination angles based on image processing. Then, a more
computationally-intensive spectral correlation method is used inside the iterative solver to
further refine the angle estimates of both brightfield and darkfield images. We demonstrate
our method for correcting large and small misalignment artifacts in both 2D and 3D Fourier
ptychography with different source types: an LED array, a galvo-steered laser, and a high-NA
quasi-dome LED illuminator.

Self-calibration is a useful principle for designing robust optical systems. Self-calibration
algorithms retrieve important system parameters directly from the measured data, rather
than requiring additional pre-calibration procedures that are vulnerable to system instabil-
ities over time. The illumination angle self-calibration algorithm presented in this chapter
has enabled multiple novel optical systems to be used for FPM [4, 96, 173], for intensity-
only ODT [36], and for novel aberration correction methods [76]. This work shows the
importance of considering the inclusion of self-calibration algorithms when designing robust

1Chapter 3 represents work done in collaboration with Zachary F. Phillips. It is primarily drawn from [56]
Regina Eckert, Zachary F. Phillips, and Laura Waller, ”Efficient illumination angle self-calibration in Fourier
ptychography,” Appl. Opt. 57, 5434-5442 (2018). The work was initially published as a conference paper [57]
Regina Eckert, Lei Tian, and Laura Waller, ”Algorithmic self-calibration of illumination angles in Fourier
ptychographic microscopy,” in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical
Society of America, 2016), paper CT2D.3.
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computational imaging systems.

3.1 Introduction

Computational imaging leverages the power of both optical hardware and computational
algorithms to reconstruct images from indirect measurements. In optical microscopy, pro-
grammable sources have been used for computational illumination techniques including
multi-contrast [133, 241], quantitative phase [29, 216, 217, 240] and super-resolution [53,
158, 218, 219, 240]. Implementation is simple, requiring only an inexpensive source attach-
ment for a commercial microscope. However, these methods are also sensitive to experimental
misalignment errors and can suffer severe artifacts due to model mismatch. Extensive system
calibration is needed to ensure that the inverse algorithm is consistent with the experimental
setup, which can be time- and labor-intensive. This often requires significant user exper-
tise, making the setup less accessible to reproduction by non-experts and undermining the
simplicity of the scheme. Further, pre-calibration methods are not robust to changes in
the system (e.g. bumping the setup, changing objectives, sample-induced aberrations) and
require precise knowledge of a ground-truth test object.

Algorithmic self-calibration methods [16, 17, 40, 54, 57, 89, 130, 137, 156, 160, 194,
210, 214, 233, 238] eliminate the need for pre-calibration and precise test objects by making
calibration part of the inverse problem. These methods jointly solve two inverse problems:
one for the reconstructed image of the object and the other for the calibration parameters. By
recovering system calibration information directly from captured data, the system becomes
robust to dynamic changes in the system.

Here, we focus on illumination angle self-calibration for Fourier Ptychographic Microscopy
(FPM) [240]. FPM is a coherent computational imaging method that reconstructs high-
resolution amplitude and phase across a wide field-of-view (FoV) from intensity images
captured with a low-resolution objective lens and a dynamically-coded illumination source.
Images captured with different illumination angles are combined computationally in an iter-
ative phase retrieval algorithm that constrains the measured intensity in the image domain
and pupil support in the Fourier domain. This algorithm can be described as stitching to-
gether different sections of Fourier space (synthetic aperture imaging [50, 221]) coupled with
iterative phase retrieval. FPM has enabled fast in vitro capture via multiplexing [218, 219],
fluorescence imaging [40], and 3D microscopy [88, 215]. It requires significant redundancy
(pupil overlap) in the dataset [53, 212], making it suitable for joint estimation self-calibration.

Self-calibration routines have previously been developed to solve for pupil aberrations [89,
156, 214], illumination angles [130, 137, 210, 233, 238], LED intensity [17], sample mo-
tion [16], and auto-focusing [54] in FPM. The state-of-the-art self-calibration method for
illumination angles is simulated annealing [210, 233], a joint estimation solution which (un-
der proper initialization) removes LED misalignment artifacts that usually manifest as low-
frequency noise. Unfortunately, because the simulated annealing procedure operates inside
the FPM algorithm iterative loop, it slows the run-time of the solver by an order of magni-
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Figure 3.1: Illumination angles are calibrated by analyzing Fourier spectra. (a) A cheek cell
is illuminated at angle α and imaged with NAobj. (b) Brightfield images contain overlapping
circles in their Fourier spectra; darkfield images do not. (c) We perform a fast and efficient
brightfield calibration in pre-processing, then extrapolate the correction to darkfield images
and, finally, iteratively calibrate angles inside the FPM algorithm using a spectral correlation
calibration.

tude or more. For 3D FPM (which is particularly sensitive to angle calibration [215]), the
computational costs become infeasible.

Moreover, most self-calibration algorithms require a relatively close initial guess for the
calibration parameters. This is especially true when the problem is non-convex or if multiple
calibration variables are to be solved for (e.g. object, pupil, and angles of illumination).
Of the relevant calibration variables for FPM, illumination angles are the most prone to
error, due to shifts or rotations of the LED array [78], source instabilities [57, 111], non-
planar illuminator arrangements [41, 173, 172, 198], or sample-induced aberrations [86, 101].
Sample-induced aberrations can also change the effective illumination angles dynamically,
such as when the sample is in a moving aqueous solution.
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We propose here a two-pronged angle self-calibration method that uses both pre-processing
(brightfield calibration) and iterative joint estimation (spectral correlation calibration) that
is quicker and more robust to system changes than state-of-the-art calibration methods. A
circle-finding step prior to the FPM solver accurately identifies the angles of illumination in
the brightfield (BF) region. A transformation between the expected and BF calibrated angles
extrapolates the correction to illuminations in the darkfield (DF) region. Then, a local grid-
search-based algorithm inside the FPM solver further refines the angle estimates, with an op-
tional prior based on the illuminator geometry (Fig. 3.1). Our method is object-independent,
robust to coherent noise, and time-efficient, adding only seconds to the processing time. We
demonstrate on-line angle calibration for 2D and 3D FPM with 3 different source types: an
LED array, a galvanometer-steered laser, and a high-NA (max NAillum = 0.98) quasi-dome
illuminator [173].

3.2 Methods

The image formation process for a thin sample under off-axis spatially coherent plane wave
illumination can be described by:

Ii(r) = |O(r)e−jkir ∗ P (r)|2 = |F−1(Õ(k− ki)P̃ (k))|2, (3.1)

where ki is the spatial frequency of the incident light, P̃ (k) is the system pupil function, Õ(k)
is the object Fourier spectrum, and F is the 2D Fourier transformation operation, valid for
shift-invariant systems. Intensity images are captured at the sensor plane, corresponding to
auto-correlation in the Fourier domain:

Ĩi(k) = F (|O(r)e−jkir ∗ P (r)|2)

= Õ(k− ki)P̃ (k) ? Õ(k− ki)P̃ (k),
(3.2)

where ∗ denotes convolution and ? denotes auto-correlation. Õ(k− ki)P̃ (k) corresponds to

the shifted spectrum of the object within the circle |k| ≤ 2πNAobj
λ

and 0 everywhere else.

The auto-correlation operation essentially scans two copies of Õ(k − ki)P̃ (k) across each
other, coherently summing at each shift to give Ĩi(k). Typically, the object spectrum has a
large zero-order (DC) term that decays sharply towards higher frequencies. In the brightfield
region, when the DC term at ki is within the pupil’s passband, the auto-correlation effectively
scans this DC term across the conjugate spectrum, giving high values where the DC term
overlaps with the conjugate pupil and negligible signal elsewhere. This interference between
the DC term and pupil in the auto-correlation creates two distinct circles centered at ki and
−ki in the intensity spectrum amplitude (Fig. 3.1). Hence, we can calibrate the illumination

angle by finding these circle centers. For darkfield images, the DC term is outside
2πNAobj

λ

and so we do not observe clearly defined circles in |Ĩi| (Fig.3.1(b)), making calibration more
complicated.
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Our algorithm relies on analysis of the raw intensity Fourier transform to recover illu-
mination angles. Fourier domain analysis of intensity images has been used previously to
deduce aberrations [201] and determine the center of diffraction patterns [24, 43] for system
calibration. We show here that the individual Fourier spectra can be used to accurately
determine illumination angles in both the brightfield and darkfield regime.

3.2.1 Brightfield Calibration

Locating the center of the circles in the amplitude of a Fourier spectrum is an image pro-
cessing problem. Previous work in finding circles in images uses the Hough transform, which
relies on an accurate edge detector as an initial step [46, 235]. In practice, however, we find
that edge detectors do not function well on our datasets due to speckle noise, making the
Hough transform an unreliable tool for our purpose. Therefore, we propose a new method
which we call circular edge detection.

Intuitively, circular edge detection can be understood as performing edge detection (i.e.
calculating image gradients) along a circular arc around a candidate center point in k-space
(the Fourier domain). To first approximation, we assume |Ĩi| is a binary function that is 1
inside the two circles and 0 everywhere else. Our goal is to find the strong binary edge in
order to locate the circle center. We need only consider one of the circles, since the intensity
image is real-valued and so its Fourier transform is symmetric. Based on information we have
about our illumination set-up, we expect the illumination spatial frequency (and therefore
circle center) for spectrum Ĩi to be at ki,0 = (kx,i,0, ky,i,0) (polar coordinates ki,0 = (di,0, θi,0))
(Fig. 3.2(a)). If this is the correct center k′i, we expect there to be a sharp drop in |Ĩi| at
radius R along any radial line f(r, φn) out from k′i (Fig. 3.2(b)). This amplitude edge will
appear as a peak at r = R in the first derivative of each radial line with respect to r, f ′(r, φn)
(Fig. 3.2(d)). Here (r, φn) are the polar coordinates of the radial line with respect to the
center ki, considering the nth of N radial lines.

We identify the correct k′i by evaluating the summation of the first derivative around the
circular arc at r = R from several candidate ki = (di, θi) positions:

E1(R, di, θi) =
N∑
n=1

f ′(r = R, φn, di, θi). (3.3)

When ki is incorrect, the edges do not align and the derivative peaks do not add construc-
tively at R (Fig. 3.2(c)). The derivatives at R are all maximized only at the correct center
k′i (Fig. 3.2(d)), creating a peak in E1 (Fig. 3.2(e)). This is analogous to applying a classic
edge filter in the radial direction from a candidate center and accumulating the gradient
values at radius R.

In order to bring our data closer to our binary image approximation, we divide out
the average spectrum meani(|Ĩi|) across all i spectra. Because the object remains constant
across images while the angles of illumination change, the average spectrum is similar in
form to the object’s auto-correlation spectrum, with a sharp central peak decaying towards
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Figure 3.2: Circular edge detection on brightfield images finds circle centers, giving illu-
mination angle calibration. (a,b) Comparison of uncalibrated (red) and calibrated (black)
illumination ki. The blue box in (b) indicates the search range for ki. (c,d) Ĩi along radial
lines, f(r, φn), and derivatives with respect to r. (e,f) E1 and E2, sums of the derivatives at
known radii R and R+ σ, peak near the correct center. Boxes show uncalibrated (red) and
calibrated (black) ki centers.

higher frequencies. The resulting normalized spectra contain near-constant circles on top of
background from higher-order terms. We then convolve with a Gaussian blur kernel with
standard deviation σ to remove speckle noise (Alg. 2.1-2). Experimentally, we choose σ = 2
pixels, which balances blurring speckle noise and maintaining the circular edge. Under this
model, the radial line f(r, φn) from our correct center k′i can be modeled near the circular
edge as a binary step function convolved with a Gaussian:

f(r, φn, d
′
i, θ
′
i) = rect(

r

2R
) ∗ 1√

2πσ
e
−r2
2σ2 . (3.4)
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Figure 3.3: BF calibration uses a fast pre-processing step to estimate illumination angles,
then SC calibration iteratively refines them within the FPM solver. (a) Algorithm block
diagram, (b) uncalibrated (red) and BF + SC calibrated (green) illumination angle map.
Insets are example search spaces, showing local convexity. (d) FPM convergence plot for
different methods.

By differentiating through f ′′′(r, φn) and setting equal to zero, we find the peak of f ′(r, φn)
still occurs at r = R. Additionally, we find that the second derivative f ′′(r, φn) has a
maximum at r = R + σ. Experimentally, we have found that considering both the first and
second derivatives increases our accuracy and robustness to noise across a wide variety of
datasets. We therefore calculate a second derivative metric,

E2(R + σ, di, θi) =
N∑
n=1

f ′′(r = R + σ, φn, di, θi), (3.5)

which is jointly considered with Eq. 3.3. We identify candidate centers ki that occur near
the peak of both E1 and E2 (Fig. 3.2(e-f)), then use a least-squares error metric to determine
the final calibrated k′i (Alg. 2.5-9). In practice, we also only consider the non-overlapping
portion of the circle’s edge, bounding φ.

Until now, we have assumed that the precise radius R of the pupil is known. However, in
pixel units, R is dependent on the pixel size of the sensor, ps, and the system magnification,
mag:

R =
NAobj
λ

ps ∗M
mag

, (3.6)

as well as NAobj and λ, where Ĩi is dimension M ×M . Given that mag and NAobj are often
imprecisely known but are unchanged across all images, we calibrate the radius by finding
the R′ which gives the maximum gradient peak E1 across multiple images before calibrating
k′i (Alg. 2.3). A random subset of images may be used to decrease computation time.
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Algorithm 2 Brightfield Calibration

1: Ĩf ← |Ĩ|/meani(|Ĩi|) . Divide out mean spectrum
2: Ĩf ← gauss(Ĩf , σ) . Smooth speckle
3: R′ ← argmaxRE1(R, di, θi), subset (Ĩf,i)

. Calibrate radius
4: for i image do . Circular edge detection
5: ki,1 ← (di, θi) where E1 near max

(within 0.1 std)
6: ki,2 ← (di, θi) where E2 near max
7: ki ← ki,1 ∩ ki,2 . Consider both metrics
8: k′i ← argminki

||Ii −F (Ĩi · P̃ (k− ki))||2
. Evaluate ki

9: end for
10: A, ioutliers ← RANSAC(A = k′i/ki,0)

. Identify outliers
11: k

(0)
inliers ← k′inliers . Initialize for FPM

12: k
(0)
outliers ← Akoutliers,0

13: k
(0)
darkfield ← Akdarkfield,0

Finally, once all images are calibrated, we want to remove outliers and extrapolate the
correction to the darkfield images. Outliers occur due to: 1) little high-frequency image
content and therefore no defined circular edge; 2) strong background; or 3) shifts such that
the conjugate circle center −ki is identified as k′i. In these cases, we cannot recover the
correct center based on a single image and must rely on the overall calibrated change in
the illuminator’s position. We find outliers based on an illuminator-specific transformation
A (e.g., rigid motion) between the expected initial guess of circle centers ki,0 (e.g., the
LED array map) and the calibrated centers k′i using a RANSAC-based method [91]. This
transformation is used to correct outliers and darkfield images (Alg. 2.10-13), serving as an
initialization for our spectral correlation (SC) method.

3.2.2 Spectral Correlation Calibration

While the brightfield (BF) calibration method localizes illumination angles using intrinsic
contrast from each measurement, this contrast is not present in high-angle (darkfield) mea-
surements (Fig. 3.1(b)). Therefore, we additionally solve a more general joint estimation
problem to refine the initialization provided by BF calibration, where the object O(r), pupil
P (k), and illumination angles ki are optimized within the FPM algorithm. At each inner
iteration, we estimate the ith illumination angle by minimizing the FPM objective function
with respect to illumination angle (Fig. 3.3(a)). This step finds the relative k-space location

of the current spectrum Ĩi relative to the overall object, providing an estimate k
(m)
i relative
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Figure 3.4: Experimental results with an LED array microscope, comparing reconstructions
with no calibration (average reconstruction time 132 seconds), simulated annealing (3453
s), our BF calibration (156 s), and our BF + SC calibration (295 s). (a) Amplitude re-
constructions of a USAF target in a well-aligned system. (b) Amplitude reconstructions of
the same USAF target with a drop of oil placed on top of the sample to simulate sample-
induced aberrations. (c) Phase reconstructions of a human cheek cell with computationally
misaligned illumination, and (d) a Siemens star phase target with experimentally misaligned
illumination.

to the other illuminator angles k
(m)
j , j 6= i. We call this the spectral correlation method

because this optimization implicitly finds k
(m)
i which best aligns the ith spectrum with the

estimated object spectrum Õ(k)(m).
Unlike previous joint estimation methods [210, 233], we constrain ki to exist on the k-

space grid defined by the our image sampling. Our k-space resolution is band-limited by
the size of the image patch, s = (sx, sy), across which the illumination can be assumed
coherent. This coherent area size is determined by the van Cittert-Zernike theorem, which
can be simplified [18] to show that the coherence length lc of illumination with mean source
wavelength λ̄ produced by a source of size ρ at a distance R is determined by:

lc =
0.61Rλ̄

ρ
. (3.7)
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For example, a 300 µm wide LED placed 50 mm above the sample with λ̄ = 530 nm gives
lc = 53.8 µm, which provides an upper bound on the size of image patch used in the FPM
reconstruction, (sx, sy) ≤ lc. This limitation imposes a minimum resolvable discretization of
illumination angles ∆k = 2π 2

s
due to the Nyquist criterion. Since we cannot resolve finer

angle changes, we need only perform a local grid search over integer multiples of ∆k, which
makes our joint estimation SC method much faster than previous methods.

SC calibration is cast as an iterative optimization of discrete perturbations of the esti-
mated angle using a local grid search. At each FPM iteration, we solve for the optimal per-
turbation of illumination angle k

(m)
i over integer multiples n = (nx, ny) of k-space resolution-

limited steps ∆k such that the updated illumination position k
(m+1)
i = k

(m)
i +n·∆k minimizes

the `2 distance between the object and illumination angle estimates and measurements,

argmin
n

||Ii − |O(m+1)e−j(k
(m)
i +n∆k)r̃ ∗ P (m+1)|2||22

subject to n = (nx, ny), (nx, ny) ∈ [−1, 0, 1].
(3.8)

This grid search is performed iteratively within each sequential iteration of an FPM recon-
struction until ki converges, giving a lower reconstruction cost than BF calibration alone
(Fig. 3.3(b-c)).

The choice of n = (nx, ny) to search can be tuned to match the problem. In most
experimental cases, we find that a search of the immediate locality of the current estimate
((nx, ny) ∈ [−1, 0, 1]) gives a good balance between speed and gradient performance when
paired with the close initialization from our BF calibration. A larger search range (e.g.
(nx, ny) ∈ [−2,−1, 0, 1, 2]) may be required in the presence of noise or without a close
initialization, but the number of points searched will increase with the square of the search
range, causing the algorithm to slow considerably.

Including prior information about the design of the illumination source can make our
calibration problem more well-posed. For example, we can include knowledge that an LED
array is a rigid, planar illuminator in our initial guess of the illumination angle map, ki,0.

By forcing the current estimates k
(m)
i to fit a transformation of this initial angle map at

the end of each FPM sub-iteration, we can use this knowledge to regularize our optimiza-
tion (Fig. 3.3(a)). The transformation model used depends on the specific illuminator. For
example, our quasi-dome LED array is composed of five circuit boards with precise LED posi-
tioning within each board but variable board position relative to each other. Thus, imposing
an affine transformation from the angle map of each board to the current estimates k

(m)
i

significantly reduces the problem dimensionality and mitigates noise across LEDs, making
the reconstruction more stable.
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Figure 3.5: Experimental angle calibration in laser and high-NA quasi-dome illumination
systems. (a) Laser illumination is steered by a dual-axis galvanometer. The angled beam is
relayed to the sample by 4”, 80 mm focal length lenses. (b) Our calibration method removes
low-frequency reconstruction artifacts. (c) The quasi-dome illuminator enables up to 0.98
NAillum using programmable LEDs. (d) Our 1.23 NA reconstruction provides isotropic
425 nm resolution with BF + SC calibration.

3.3 Results

3.3.1 Planar LED Array

We first show experimental results from a conventional LED array illumination system with
a 10×, 0.25 NA and a 4×, 0.1 NA objective lens at λ = 514 nm and NAillum ≤ 0.455
(Fig. 3.4). We compare reconstructions with simulated annealing, our BF pre-processing
alone, and our combined BF+SC calibration method. All methods were run in conjunction
with EPRY pupil reconstruction [156]. We include results with and without the SC calibra-
tion to illustrate that the BF calibration is sufficient to correct for most misalignment of the
LED array since we can accurately extrapolate LED positions to the darkfield region when
the LEDs fall on a planar grid. However, when using a low NA objective (NAobj ≤ 0.1),
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as in Fig. 3.4(d), the SC method becomes necessary because the BF calibration is only able
to use 9 images (compared to 69 brightfield images with a 10×, 0.25 NA objective, as in
Fig. 3.4(a-c)).

Our method is object-independent, so can be used for phase and amplitude targets as
well as biological samples. All methods reconstruct similar quality results for the well-aligned
LED array with the USAF resolution target (Fig. 3.4(a)). To simulate an aqueous sample,
we place a drop of oil on top of the resolution target. The drop causes uneven changes in
the illumination, giving low-frequency artifacts in the uncalibrated and simulated annealing
cases which are corrected by our method (Fig. 3.4(b)). Our method is also able to recover a
5◦ rotation, 0.02 NA shift, and 1.1× scaled computationally-imposed misalignment on well-
aligned LED array data for a cheek cell (Fig. 3.4(c)), and gives a good reconstruction of an
experimentally misaligned LED array for a phase Siemens star (Benchmark Technologies,
Inc.) (Fig. 3.4(d)). In contrast to simulated annealing, which on average takes 26× as long
to process as FPM without calibration, our brightfield calibration only takes an additional
24 seconds of processing time and the combined calibration takes roughly only 2.25× as long
as no calibration.

3.3.2 Steered Laser

Laser illumination can be used instead of LED arrays to increase the coherence and light
efficiency of FPM [41, 111]. In practice, laser systems are typically less rigidly aligned than
LED arrays, making them more difficult to calibrate. To verify the performance of our
method, we constructed a laser-based FPM system using a dual-axis galvanometer to steer a
532 nm, 5 mW laser, which is focused on the sample by large condenser lenses (Fig. 3.5(a)).
This laser illumination system allows finer, more agile illumination control than an LED
array, as well as higher light throughput. However, the laser illumination angle varies from
the expected value due to offsets in the dual-axis galvanometer mirrors, relay lens aberrations,
and mirror position misestimations when run at high speeds. Our method can correct for
these problems in a fraction of the time of previous methods (Fig. 3.5(b)).

3.3.3 Quasi-Dome

Since the FPM resolution limit is set by NAobj+NAillum, high-NA illuminators are needed for
large space-bandwidth product imaging [173, 211]. To achieve high-angle illumination with
sufficient signal-to-noise ratio in the darkfield region, the illuminators must become more
dome-like, rather than planar [172]. We previously developed a novel programmable quasi-
dome array made of five separate planar LED arrays that can illuminate up to 0.98 NA [173].
This device uses discrete LED control with RGB emitters (λ̄ = [475 nm, 530 nm, 630 nm]) and
can be easily attached to most commercial inverted microscopes (Fig. 3.5(c)).

As with conventional LED arrays, we assume that the LEDs on each board are rigidly
placed as designed. However, each circuit board may have some relative shift, tilt, or rota-
tion since the final joining of the five boards is performed by hand. LEDs with high-angle
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Figure 3.6: Even small calibration errors degrade 3D FPM resolution severely when defocus
distances are large. (a) Experiment schematic for a USAF target placed at varying defocus
distances. (b) Measured reconstruction resolution degrades with defocus distance; our cali-
bration algorithm reduces this error significantly. (c) Amplitude reconstructions for selected
experimental defocus distances, with and without calibration of the illumination angles.

incidence are both harder to calibrate and more likely to suffer from misestimation due to
the dome geometry, so the theoretical reconstruction NA would be nearly impossible to
reach without self-calibration. Using our method, we obtain the theoretical resolution limit
available to the quasi-dome (Fig. 3.5(d)). The SC calibration is especially important in the
quasi-dome case since it typically has many darkfield LEDs.

3.3.4 3D FPM

Calibration is particularly important for 3D FPM. Even small changes in angle become
large when they are propagated to large defocus depths, leading to reduced resolution and
reconstruction artifacts [57, 215]. For example, using a well-aligned LED array, [215] was
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Figure 3.7: Our calibration methods are robust to large mismatches between estimated and
actual LED array position. Simulation of misaligned illumination by (a) rotation, (b) shift,
and (c) scale. Our calibration recovers the illumination with < 0.005 NA error for rotations
of −45◦ to 45◦, shifts of -0.1 to 0.1 NA, and scalings of 0.5× to 1.75× before diverging.

unable to reconstruct high-resolution features of a resolution target defocused beyond 30 µm
due to angle misestimation; using the same dataset, our method allows us to reconstruct
high-resolution features of the target even when it is 70 µm off-focus (Fig. 3.6).

Since iterative angle estimation (including our SC calibration) unfeasibly increases the
computational complexity of 3D FPM, we use BF calibration only. While we do not attain
the theoretical limits for all defocus depths, we offer significant reconstruction improvement.
Our calibration only slightly changes the angles of illumination (Fig. 3.6(c)), highlighting
that small angular changes have a large effect on 3D reconstructions. Experimental resolution
was determined by resolvable bars on the USAF resolution target in Fig. 3.6(c), where we
declare a feature as “resolved” when there is a > 20% dip between Imax and Imin.

3.4 Discussion

Our calibration method offers significant gains in speed and robustness as compared to
previous methods. BF calibration enables these capabilities by obtaining a good calibration
that needs to be calculated only once in pre-processing, reducing computation. Since an
estimation of a global shift in the illuminator based only on the brightfield images provides
such a close initialization for the rest of the illumination angles, we can use a quicker, easier
joint estimation computation in our SC calibration than would be otherwise possible. Jointly,
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these two methods work together to create fast and accurate reconstructions.
3D FPM algorithms are slowed an untenable amount by iterative calibration methods,

since they require the complicated 3D forward model to be calculated multiple times during
each iteration. Combined with 3D FPM’s reliance on precise illumination angles to obtain a
good reconstruction, it has previously been difficult to obtain accurate reconstruction of large
volumes with 3D FPM. However, since BF calibration occurs outside the 3D FPM algorithm,
we can now correct for the angle misestimations that have degraded these reconstructions in
the past, allowing 3D FPM to be applied to larger volumes.

We analyze the robustness of our method to illumination changes by simulating an object
illuminated by a grid of LEDs with NAillum < 0.41, with LEDs spaced at 0.041NA intervals.
We define the system to have λ = 532 nm, with a 10×, 0.25 NA objective, a 2× system
magnification, and a camera with 6.5 µm pixels. While the actual illumination angles in
the simulated data remain fixed, we perturb the expected angle of illumination in typical
misalignment patterns for LED arrays: rotation, shift, and scale (analogous to LED array
distance from sample). We then calibrate the unperturbed data with the perturbed expected
angles of illumination as our initial guess.

Our method recovers the actual illumination angles with error less than 0.005 NA for ro-
tations of −45◦ to 45◦ (Fig. 3.7(a)); shifts of -0.1 to 0.1 NA, or approximately a displacement
of +/- 2 LEDs (Fig. 3.7(b)); and scalings of 0.5× to 1.75× (or LED array height between
40-140 cm if the actual LED array height is 70 cm) (Fig. 3.7(c)). In these ranges, the aver-
age error is 0.0024 NA, less than the k-space resolution of 0.0032 NA. Hence, our calibrated
angles are very close to the actual angles even when the input expected angles are extremely
far off. This result demonstrates that our method is robust to most misalignments in the
illumination scheme.

3.5 Conclusion

We have presented a novel two-part calibration method for recovering the illumination angles
of a computational illumination system for Fourier ptychography. We have demonstrated
how this self-calibrating method makes Fourier ptychographic microscopes more robust to
system changes and aberrations introduced by the sample. The method also makes it possible
to use high-angle illuminators, such as the quasi-dome, and non-rigid illuminators, such as
laser-based systems, to their full potential. Our pre-processing brightfield calibration further
enables 3D multislice Fourier ptychography to reconstruct high-resolution features across
larger volumes than previously possible. These gains were all made with minimal additional
computation, especially when compared to current state-of-the-art methods. Efficient self-
calibrating methods such as these are important to make computational imaging methods
more robust and available for broad use in the future. Open source code is available at
www.laurawaller.com/opensource.
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Chapter 4

Practical 3D Refractive Index
Imaging Systems

3D refractive index imaging provides quantitative structural information about biological
sample morphology, and thus has great potential for a wide variety of biological research
applications. However, these systems are often difficult to build and use, and require large
amounts of measured data and long computational reconstruction times. 3D refractive index
imaging is therefore an important area to focus on for designing more robust and practical
computational imaging systems.

The main contribution of this chapter is to introduce previous work in 3D refractive
index imaging and give practical guidance for the design and operation of intensity-only
optical diffraction tomography (ODT) 3D RI imaging systems. I present a review of 3D
RI imaging methods and a comparison of forward light propagation models for use in 3D
RI reconstruction algorithms. I also present practical guidance on how to build and use
an angle-scanning, dual-objective intensity-only ODT imaging system, which I hope will be
useful to those who wish to build and use 3D RI imaging systems. In addition, I present a
comparison of field- and amplitude-based 3D RI reconstructions, concluding that field-base
ODT measurements contain a similar degree of diverse phase information as the pupil-
coded intensity ODT measurements described in detail in Chapter 5. Further methods
for increasing the robustness of intensity-only ODT are discussed in Chapter 5, with the
introduction of pupil-coded intensity ODT, and Chapter 6, with the application of physics-
based machine learning system optimization.

4.1 Introduction to 3D Refractive Index Imaging

In biological microscopy, the ability to measure the morphology of transparent samples is use-
ful to advance scientific understanding of cells, tissue, and small organisms. While many bi-
ological researchers use fluorescent labeling or staining to render biological sample structures
and functions visible under the microscope [10, 47, 184], label-free phase imaging methods
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rely on the sample’s natural interaction with light to provide image contrast [164]. Label-
free methods are beneficial because they do not require time-intensive labeling processes, yet
still capture structural information about the sample. More recently, 2D quantitative phase
imaging (QPI) [138, 164, 186, 187, 216, 240] and 3D refractive index (RI) imaging [33, 36, 98,
126, 150] methods have been developed to reconstruct quantitative phase information, which
can be useful in imaging samples that cannot be stained, such as stem cell organoids [123] or
developing embryos [29, 150]; calculating cell dry mass [6] and other cell properties [7]; or in
tandem with fluorescent imaging methods to simultaneously gather functional and structural
information [38, 106, 139, 232]. 3D RI imaging in particular can provide 3D morphological
information useful in interpreting sample structure and function, or could be used to better
model microscopic organisms’ interaction with light, which could be important for reducing
uncertainty in climate models when applied to phytoplankton or snow algae [44, 114].

Since biological samples are usually transparent, QPI and 3D RI imaging systems typi-
cally rely on manipulation of the light on either the illumination-side or the detection-side
of the microscope to measure phase contrast information in the collected images, using the
sample’s innate interaction with light to make its structure visible. Illumination-side coding
includes annular illumination [122, 237], angled plane wave illumination [33, 36, 65, 105, 113,
150, 213, 215, 225], or otherwise patterned illumination sources [29]. Detection-side coding
includes manipulation of the pupil function [72], including the simplest case of blocking the
DC component of the sample spectrum in the Fourier plane, as in Zernike phase contrast mi-
croscopy [237]; scanning through focus [29, 48, 66, 68, 94, 141, 143, 200, 204, 226, 244] (which
can be formulated as a pupil function manipulation but is often implemented by physically
moving the object or imaging system through focus); or through interference with a reference
beam that has not passed through the sample (i.e., interferometry) [90, 150]. In addition,
3D information can be captured by rotating the sample relative to the imaging system [14,
27, 80, 190]. In all cases, the intensity of the electric field ui is measured at the camera plane.
These measured images are then processed computationally to reconstruct quantitative 2D
phase or 3D refractive index, usually using an optimization algorithm which reconstructs
the object O that best explains the measurements Ii given the imaging system parameters
and light scattering model. In interferometric imaging systems, the amplitude and phase of
the electric field ui is usually first reconstructed from the intensity measurements before the
quantitative object O is recovered.

3D RI reconstruction quality is determined by both the amount of high-contrast 3D
phase information captured through the imaging system in the measurements Ii and by the
efficacy of the computational algorithm in reconstructing an accurate object O from these
measurements. In particular, the accuracy of the forward light scattering model, which
models how light propagates through the sample, is important for the efficacy of the re-
construction algorithm [58]. While the physics of light scattering can be described with
Maxwell’s equations, reducing to the Helmholtz equation under the scalar wave assumption,
calculating light scattering in a computationally feasible way is computationally expensive,
especially as 3D RI reconstruction algorithms are often iterative and require many repeti-
tions of the forward light scattering model. Many 3D RI methods therefore use the Born
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approximation [113, 126, 213], which limits samples to a single-scattering approximation, or
the Rytov approximation [33], which limits samples to be smoothly varying in phase. More
recently, multiple-scattering models, such as the multislice model, have been developed for
3D RI imaging [31, 98, 99, 129, 215] which better account for multiple scattering involved
in thicker, more scattering samples.

In this chapter, we review multislice-model based intensity-only ODT. We present a
comparison of four forward scattering models for use in 3D RI imaging, including the Born
approximation, a series-expanded Born algorithm called SEAGLE, the multislice model, and
a rigorous finite-difference time-domain (FDTD) method. In addition, we present alignment
techniques for intensity-only ODT systems and a comparison between simulated intensity-
based and field-based 3D RI reconstructions.

4.2 Intensity-only Optical Diffraction Tomography

In a 3D intensity-only ODT microscope [36, 98, 215], a refractive index sample O(r) with low
absorption is illuminated sequentially by coherent plane waves at different incident angles
up to the numerical aperture (NA) of the imaging objective lens, NAobj. The ith measured
intensity is given by

Ii(r) = |F−1 {F {Si(O(r))}P (k)} |2, (4.1)

where F {·} and F−1 {·} are the Fourier transform and inverse Fourier transform, respec-
tively; r and k are image- and spatial frequency-space coordinates; Si(·) is the forward light
scattering operator of the ith angled plane wave illumination; and P (k) is the pupil function
of the imaging system. Many forward scattering models have been used for 3D quantitative
phase imaging, including the linear Born and Rytov models [33, 126, 213], a series-expanded
Born model called SEAGLE [129], multislice [42], and the recently developed multi-layer
Born and multi-layer Rytov models [31]. Several of these methods are discussed in Sec. 4.3
below.

In this work, we selected the multislice algorithm as our forward light scattering model
Si(·), as it allows for multiple scattering of the light inside the reconstructed volume, which
allows thicker, more scattering objects to be reconstructed than single-scattering models.
The multislice algorithm is also computationally feasible for our selected object sizes [58].
In the multislice algorithm, the incident angled plane wave electric field is defined as

u0(r) = exp (jki · r), (4.2)

where ki = (ki,x, ki,y) is the spatial frequency of the ith illumination angle and j here denotes
the imaginary unit. The incident electric field u0 is multiplied by the transmission matrix
of the 1st object slice, then is propagated by a distance z1 to the 2nd layer using the angular
spectrum propagation kernel [73]. The resultant electric field um is successively multiplied
by the mth object slice and propagated by a distance zm to the (m+1)th layer of the volume.
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This process is repeated through all M slices of the object volume, producing output electric
field uM(r) which is then filtered by the microscope’s pupil function and imaged onto the
camera plane.

In intensity-only ODT, quantitative 3D refractive index is recovered by formulating an
iterative optimization problem that minimizes the error between the modeled and measured
image amplitudes given an estimated RI volume Ô(r),

Ô(r) = arg min
O(r)

∑
i

∥∥∥∣∣F−1 {F {Si(O(r))}P (k)}
∣∣−√Ii(r)

∥∥∥2

2
+ αP(O(r)), (4.3)

where P(O(r)) is a prior penalty that can be chosen to constrain the solution space of
O(r), and α is a tunable regularization parameter. In 3D RI imaging, some common choices
for P(O(r)) are to enforce the assumptions that Ô(r) is purely real (i.e., the sample does
not absorb any light), strictly positive (i.e., the sample’s refractive index is strictly greater
than that of background media), or that it is smoothly varying and therefore has low-
valued first-derivatives, often enforced through a total variation regularizer which forces the
reconstruction to be piecewise constant [25, 192, 207]. The optimization problem is nonlinear
due to the choice of the multislice scattering operator Si(·), so must be solved iteratively.

In addition, this optimization problem is highly nonconvex, meaning that many local
minima exist that can satisfy the data consistency penalty but may produce sub-optimal
reconstructions that do not accurately represent the sample’s true refractive index distri-
bution. Experimentally, we find that the most common local minima in traditional ODT
reconstructions capture the high spatial frequencies (i.e., the high-resolution edges) of the
object O well but do not capture the low spatial frequencies (i.e., the internal RI values).
In particular, in angle-coded intensity-only ODT, the reconstructions under a low-angle
illumination constraint do not reconstruct low spatial frequencies well, giving inaccurate
reconstructions. A low-angle illumination constraint exists when the maximum angle of
illumination is approximately 85% or lower than the numerical aperture of the imaging ob-
jective, NAillum,max <∼ 0.85NAobj. As discussed in Chapter 5, intensity-only ODT therefore
requires high-angle illumination (i.e.,NAillum,max ≈ NAobj) for high-quality reconstructions,
increasing the complexity of the imaging system to guarantee these high illumination angles,
which in turn can make the imaging system more constrained and difficult to use.

4.3 3D Coherent Light Propagation Models

3D RI imaging systems require accurate forward models1to reconstruct high-quality 3D RI re-
sults. With thick refractive index samples, the forward model must simulate the propagation
of coherent light through the 3D object, taking into account both interference and diffraction
effects. 3D RI reconstruction methods [36, 49, 88, 98, 215] often use iterative algorithms
that require re-evaluating the forward model many times as the object estimate is updated.
In order to build practical 3D RI imaging systems, the forward model must therefore also
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be computationally efficient, to reduce both the memory footprint and computation time
required for reconstructions. Here, we compare the computational complexity and accuracy
for large amounts of scattering for the finite-difference time-domain (FDTD), multislice, first
Born approximation, and series-expanded Born (SEAGLE) simulation methods.

The finite-difference, time-domain (FDTD) method is the most accurate wave optics
simulation method available. However, the memory and time requirements of FDTD grow as
N3 and N4, respectively, where the simulation volume is N×N×N [8]. Hence, FDTD works
well as a ground truth simulation for small objects, but is not practical for iterative algorithms
where the forward model must be computed many times. To avoid excessive computation,
many models make assumptions about the object, illumination, or imaging system. For
example,the Born approximation assumes that variations in refractive index are small and
scattering is weak [18, 213]. The multislice model (beam propagation method) can account
for multiple scattering, but assumes there is no back-scattered light [42]. The recently
developed series-expanded Born SEAGLE method also accounts for multiple scattering, but
has increased computational complexity. In this chapter, we compare the tradeoffs in time
vs. accuracy for forward models of a biological cell phantom via FDTD, multislice, first Born
approximation, and SEAGLE methods.

4.3.1 Finite-Difference Time-Domain

The finite-difference time-domain (FDTD) method is a numerical analysis technique for
finding solutions to differential equations. The FDTD method can model electromagnetic
wave propagation through a refractive material by iteratively solving Maxwell’s equations
(Fig. 4.1(a)). The object, described by a distribution of dielectric constants, is gridded into
finite points. The electric and magnetic fields are solved at each point by stepping through
small time increments. As the increment size decreases, the FDTD algorithm more closely
approximates the solution to the continuous Maxwell’s equations. We use FDTD simulations
computed using the freely available software package MEEP [8]) as the ground-truth forward
model for light propagation through a 3D phase object.

4.3.2 Multislice

The multislice method (also known as the beam propagation method) models a 3D object as a
series of thin 2D slices separated by homogeneous medium [42]. The incident wave propagates
through the volume from slice to slice. Each slice acts as a complex transmission mask that
modulates the incident electric field (Fig. 4.1(b)). After each slice, the field is propagated to
the next slice using Fresnel or angular spectrum propagation [73]. The multislice algorithm

1Sec. 4.3 represents work done in collaboration with Nicole Repina and Michael Chen. It is drawn
primarily from [58] Regina Eckert, Nicole Repina, Michael Chen, Yishuang Liang, Ren Ng, Laura Waller,
”Modeling Light Propagation in 3D Phase Objects,” in Imaging and Applied Optics 2017, OSA Technical
Digest (Optical Society of America, 2017), paper DW2F.2.
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Figure 4.1: Four forward models for coherent light propagation through a refractive object
are studied. (a) FDTD: Maxwell’s equations are evaluated at each time step and volume
grid point. (b) Multislice: the object is modeled as a stack of 2D slices with complex
transmission masks, and light is propagated from slice to slice through the volume. (c)
Born approximations: the perturbation of the object on the incident light is propagated
across the volume via convolution with a Green’s function, either under a single-scattering
approximation (First Born approximation) or a full-scattering, series-expanded approach
(SEAGLE).

divides a 3D sample into lateral slices of a defined thickness, which impart a phase shift to
an incoming electric field based on the refractive index of the preceding material.

For a phase object, the refractive index distribution n along path s determines the phase
delay ∆φ imparted to the incident wave at each slice:

∆φ =
2π

λ
∆OPL =

2π

λ

M∑
m=1

nmsm, (4.4)

where λ is the illumination wavelength and ∆OPL is the change in optical path length caused
by each slice. The multislice algorithm assumes forward scattering by the sample. Model
accuracy is improved by decreasing the distance between slices, which should be smaller than
the depth-of-field of the microscope system.

The incoming field, um−1(x, y) is multiplied by the phase shift and then propagated to
the next slice using using near-field free-space propagation

um(x, y) = (um−1(x, y) · Am−1(x, y)ejφm−1(x,y)) ∗ hz(x, y), (4.5)

where Am−1(x, y) and φm−1(x, y) are the amplitude and phase of the (m− 1)th slice’s trans-
mission mask, hz(x, y) is the diffraction impulse response, and ∗ denotes convolution. Prac-
tically, this convolution is implemented as a multiplication in the Fourier domain. The
angular spectrum kernel Hangular(k) is used when z is small and Fresnel propagation kernel
HFresnel(k) is used when z is larger. They are given by the equations [73]
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Hangular(k) = ejz
√

4π2

λ2
−k2x−k2y

HFresnel(k) = ej
2π
λ
ze−jπλz

1
4π2

(k2x+k2y),

where k = (kx, ky) are the spatial frequency-space coordinates.

4.3.3 First and Series-Expanded Born (SEAGLE)
Approximations

The scalar Helmholtz equation defines the resultant field of a wave scattered from an inho-
mogeneous volume as:

u(r) = ui(r) +

∫
G(|r′ − r|)V (r)u(r)dr, (4.6)

where V (r) = 4π2

λ2
(n(r)2−n2

0) is the scattering potential of the volume, n(r) is the refractive
index distribution, ui is the incident field, and G(|r′ − r|) is the Green’s function describing
how a perturbation at r affects point r′. We take the Green’s function to be a spherical
point spread function (PSF) G(r) = 1

4π
ejk0|r|

|r| , where k0 = 2π
λ0

is the wavenumber in vacuum.

we define G(r = 0) numerically based on the grid size of our simulation to avoid division by
zero.

G(0) =
1

k2
0

[(1− jk0R)ejk0R − 1] (4.7)

where

R = (
3

4π
∆x∆y∆z)

1
3 (4.8)

is the radius of the sphere around the center, given grid spacing ∆x, ∆y, and ∆z.
The field u(r) forms an inherently recursive definition of the scattering of light through

the volume. The first Born approximation replaces the recursive reliance on the resultant
field u(r) with the incident field ui(r), reducing computational complexity:

u(r) = ui(r) +

∫
G(|r′ − r|)V (r)ui(r)dr. (4.9)

This effectively approximates the sample V (r) as scattering an unperturbed volumetric in-
cident field ui(r). Scattering effects are propagated in 3D by convolving the perturbed field
with G(r), which spreads the effect of each perturbation across the volume. This gives us the
first-order approximation of the scattered field, which assumes that the surfaces closest to
the source do not substantially scatter the incoming plane wave such that the field incident
on the interior surfaces is approximately a plane wave. This is an accurate approximation
when the changes in refractive index across a sample are low and the scattering is weak.
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Higher-order estimations of the scattered field can be obtained by directly using the
recursive definition of u(r) in the recursive Born approximation. SEAGLE, a series-expanded
Born method, was developed from this concept for more accuracy in highly scattering objects
and is implemented using accelerated-gradient optimization[129].

4.3.4 Comparison of 3D Light Propagation Models

The 3D phase object used in our simulations (Fig. 4.3) is designed to have the same refractive
index variations as a mammalian cell [13]. It is a 10 × 12 × 6 µm ellipsoid and contains a
nucleus with a 5.2 µm diameter. Two organelles (800 nm diameter, 0.8 µm apart, refractive
index n = 1.1) are in the plane of focus, while a third organelle is 1.8 µm behind focus. A
thin plasma membrane (100 nmthick, n = 1.1) surrounds the cell and nucleus. The cell is
placed in a uniform background n = 1.0, while the cell cytoplasm has a slightly higher index
of refraction due to solubilized proteins (n = 1.03). This phantom maintains the relative
refractive index of these cell components, with a background value of n = 1.0 chosen for
simplicity rather than the more accurate aqueous background n = 1.33. However, since
the primary differences in forward scattering model accuracy are due to the differences in
refractive index ∆n, as seen in Fig. 4.3, the choice of background value n = 1.0 is not
expected to affect the results of this comparison.

For each forward model, we simulated illuminating the cell from three different angles
(Fig. 4.2): on-axis brightfield ((θx, θy)=(0◦, 0◦)), off-axis brightfield (8.6◦, 8.6◦), and darkfield
(25.8◦, 25.8◦). We also modeled image formation with increasing refractive index values
of the cell parameters to simulate increased scattering (Fig. 4.3). The cell was imaged
with a 0.6 NA, 40× objective focused at the cell’s center. All images are scaled to their
background intensities. Both the multislice and SEAGLE methods match the FDTD results
well, excepting that multislice has slightly lighter cell features when normalized (implying a
brighter background). The first Born approximation exhibits large differences in brightfield
and a brighter cell interior in darkfield, especially for larger refractive index differences ∆n.
These large differences are expected for the first Born approximation, since it is a single-
scattering model of a multiply-scattering object. Small differences in the multislice results
can be largely attributed to lack of backscattered light and in SEAGLE to the possibility
that the algorithm had not fully converged.

On average, each illumination angle took the following computation time for the base cell
refractive index values: FDTD 1980 seconds, multislice 0.8 seconds, first Born approxima-
tion 1.4 seconds, SEAGLE 240 seconds (Fig. 4.4). Considering the lengthy simulation times
of FDTD and SEAGLE, as well as the poor applicability of the first Born approximation
to highly scattering objects, we conclude that multislice is a good choice for quick, accurate
simulation of 3D cells and objects that have relatively little backscattered light. The SEA-
GLE algorithm considers backscattered light and is orders of magnitude faster than FDTD,
making it more useful for highly backscattering objects. However, SEAGLE’s computation
time increases with the degree of scattering inside the modeled object since it is based on
an optimization algorithm, as seen in Fig. 4.4. On-going work may accelerate the SEAGLE
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Figure 4.2: Forward model comparison across illumination angle. (a) 3D visualization and
cross-section of the simulated mammalian cell model for comparing forward models. (b)
Simulated 2D intensity at center focus for three different illumination angles. Considering
FDTD as the ground truth (0.05 µm resolution), the multislice and series-expanded Born
(SEAGLE) methods provide a close approximation, whereas the first Born approximation
method deviates in the brightfield cases (all 0.1 µm resolution). Grid artifacts from refocusing
in FDTD are negligible and can be solved with a larger simulation volume.

algorithm, which would make it competitive with the multislice algorithm for speed and
accuracy.

Not included in this comparison are the Rytov model [213], the recursive Born method [97],
which calculates the forward-scattered field through multiple iterations of the Helmholtz
equation in Eq. 4.6, and the multi-Born model [31], which divides the sample into small
axial sections and applies the Born approximation to each section iteratively to model both
the forward and reverse scattering of the light. Future work to compare these and other co-
herent light propagation models would prove useful in the determination of the best forward
scattering model to use for 3D RI imaging of thicker, more scattering samples.
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Figure 4.3: Forward model comparison across ∆n for on-axis illumination. The background
refractive index nbk = 1.0 for all simulations while the cell body ncell = [1.01, 1.03, 1.06, 1.09]
and organelle norganelle = [1.03, 1.1, 1.2, 1.3] are changed in each row. This greater disparity
in RI is related to increased scattering in the volume. The SEAGLE model best matches the
ground truth FDTD simulations across all scattering levels, closely followed by the multislice
model. The First Born approximation performs well for low ∆n but poorly at high ∆n.

4.4 Intensity-only ODT System Design and

Alignment

4.4.1 Illumination System and Objective Lens Design

Angle-scanning ODT systems scan the angle of incident plane wave illumination at the
sample plane in the same manner as Fourier ptychographic microscopy (FPM). Therefore,
the same illumination source designs described in Sec. 2.2.1 can be used for ODT systems.
However, since ODT is a 3D imaging method, ODT systems have different imaging system
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Figure 4.4: Comparison of model computation time and overall error shown across increasing
∆n. The SEAGLE and multislice RMS error is similar across scattering levels, while the First
Born approximation’s error is higher and increases more with higher ∆n. The computation
time is much higher for SEAGLE, and increases with object complexity. The computation
time for both multislice and First Born are relatively low and do not depend on object
complexity.

design considerations than 2D FPM.
While darkfield images could theoretically be used in 3D reconstructions, they typically

are not because of the large intensity difference between brightfield and darkfield images,
which can cause reconstruction instability.2 Typically, therefore, the maximumNAillum,max ≤
NAobj, measuring all brightfield images, where the DC term of the scattered field’s Fourier
spectrum is passed through the pass-band of the imaging objective lens.

In 3D imaging, we also desire NAobj to be as large as possible, unlike in FPM, since
the axial resolution of the 3D reconstruction scales with the square of the objective NAobj.
Typically, we select NAobj ≥ 0.7 for high-quality 3D reconstructions.3 In intensity-only ODT
systems, the majority of the low-frequency information comes from the high-NA illumination
angles. Therefore, a high-NA illumination source must be chosen (typically a dual-objective
lens design) with attendant constraints on the physical system design and use. As discussed
in Chapter 5 below, our proposed pupil-coded intensity ODT system relaxes this constraint
by capturing low-frequency content in low-NA illumination angle images, which allows for
different, less constrained illumination sources to be used. This results in a large gain in 3D
RI imaging system practicality, since the high-NA illumination angles often introduce the

2However, this remains an open area of inquiry.
3We note that the multislice algorithm may limit the maximum illumination angle possible for recon-

struction [188]. In practice, we have stopped down the pupil plane to NA ≈ 0.7 in air, even in high-resolution
systems [36], to avoid model mismatch with the multislice algorithm. However, given a forward light propa-
gation model that works well at high NA, this constraint would be relaxed.
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Figure 4.5: Intensity-only ODT system overview. (a) Intensity-only ODT system diagram.
An objective lens collimates the fiber-coupled LED beam and relays it onto a scanning mirror,
which relays the light through tube lenses (TL) and objective lenses (OL) to image the sample
at the camera plane. (b) Dual-objective systems have a short distance d = WDillum+WDim

between them for the sample, defined by the working distance (WD) of the illumination and
imaging objectives, respectively. (c) Pictures of the “X” beam alignment technique. (d) Cell
cluster phantom used for field and amplitude reconstruction comparisons.

most constraints on the system design.

4.4.2 Dual-Objective Alignment Methods

While most ODT system alignment can be done with standard optical alignment techniques
and tools4, the alignment of the dual-objective system necessary for intensity-only ODT is
more complex and is important for correct system functionality.

In the dual-objective angled illumination system, collimated light is relayed onto a
computer-controlled angle scanning mirror at back focal plane of the illumination objective’s

4Including though not limited to use of a centered “X” in the beam path to determine beam alignment;
use of centered irises at different axial locations to determine beam size and alignment; use of reflections to
check alignment; and use of a shearing plate interferometer to check beam collimation.
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tube lens. The tube lens is placed roughly a focal length away from the illumination-side
objective. This first objective is aligned axially by placing it at a position where it will make
the finest possible spot. If a centered “X” is placed in the beam path, as seen in Fig. 4.5(c),
it should be as sharp as possible when the objective is at the correct axial position. The
objective is aligned laterally by shifting the objective to center the beam path “X” on a
fiducial marker that was placed in the beam prior to the insertion of the lenses, also shown
in Fig. 4.5(c).

Alignment of the second objective (the imaging objective) is done iteratively. First,
we align the imaging objective so that it is approximately the correct distance away from
the illumination objective based on the combined working distance of the two objective
lenses (Fig. 4.5(b)). When we do this, we place the same glass thickness (i.e., two 0.17 mm
thick #1.5 coverslips) between the two objectives that are expected for the sample, since the
optical thickness of glass is different than of air and affects the axial alignment. We then align
the imaging tube lens so that the output beam is collimated, as determined by a shearing
plate interferometer. The camera is placed a focal distance from the tube lens. If the system
allows access to an intermediate image plane, we place a resolution target at the intermediate
image plane, a focal distance from the imaging tube lens. The camera placement can then
be fine-tuned by finding the camera position which results in the best-focused image with
the highest resolution features.

Now that the imaging objective has been initially aligned, we can determine how to
fine-tune its axial alignment. To do this, we scan the angles of illumination at relatively
large NAillum and observe the images at the camera plane. If the centered “X” in the beam
path do not move as the illumination angle is scanned, then the imaging objective is at the
correct axial location. We repeat this process until the circular boundary and centered “X”
do not move as the illumination angle is scanned. Then we repeat the alignment steps for the
imaging tube lens and camera placement described above, especially if large changes of the
objective’s axial position were needed. While this procedure could include many iterations
if the imaging objective was initially extremely misaligned, we find in practice that using a
single fine-tune alignment of the imaging objective, tube lens, and camera is sufficient for
high-quality system operation.

4.4.3 Hardware Synchronization

Hardware synchronization is important for both ODT and FPM, as the ith camera measure-
ment must correspond with the ith illumination angle. In the pupil-coded intensity ODT
system discussed in Chapter 5, this synchronization is even more important because three
pieces of hardware must work in tandem: the illumination angle control, the spatial light
modulator display, and the camera capture system. One of the most difficult parts of build-
ing a computational imaging microscope is finding a platform where all necessary hardware
can be simultaneously controlled. While the examples given here are not exhaustive, they
are hopefully useful for identifying available hardware synchronization platforms.

The three basic options for hardware synchronization across many different devices are:
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1. Dedicated hardware control, such as a microcontroller, FPGA, or DAQ

2. Device advanced programming interfaces (API’s) accessed through general program-
ming languages, such as Python or Matlab

3. Micro-Manager5 [60, 59] and Pycro-Manager6 [175] for microscopy-specific, open source
control

If devices are purchased through the same company, it is possible that their software might
allow joint control of the hardware. However, this is generally not true. In addition, some
devices allow for trigger signals to be sent to the device to trigger an action (e.g., a camera
exposure), which is useful for fast synchronization but might require a chain of devices. For
example, a DAQ or Raspberry Pi microcontroller can be used to send TTL signals to trigger
a PCO Edge 5.5 camera exposure, rather than directly controlling the camera exposure from
the computer. Overall, camera API’s have a speed and functionality reduction from what
is offered in the camera software, since the camera’s software is usually specifically designed
for fast imaging speeds. This reduction can be avoided by controlling the camera through
trigger signals and capturing with the camera software, if this functionality is available.

Dedicated hardware control is the best choice for enabling extremely fast imaging, but re-
stricts the control logic to a pre-programmed set of options, requires hardware programming
experience, and can be opaque to new users. In addition, it can be difficult to alter if system
parameters or devices change. It is usually easier to control hardware programmatically,
unless high imaging speeds are needed. There are two main ways to do this. First, device
API’s for general programming languages, such as Python or Matlab, may be available open
source or from the device manufacturer. Second, open source Micro-Manager API’s may also
be available for the device. Micro-Manager is an open source company dedicated to making
microscopy systems easier to build by providing a common hardware and software operating
platform [60, 59]. While base versions of Micro-Manager restrict the control and logic design
functionality of the microscope system to a pre-designed set of commands, recently devel-
oped Pycro-Manager works directly with Python [175]. Using Python (and Pycro-Manager)
or Matlab to synchronize hardware allows for extreme system flexibility, which is especially
important for research-level computational imaging systems. However, this might come at
the cost of reduced speed. In addition, not all devices are easy to control through these
interfaces. It is therefore useful to review the available control systems before purchasing
different controllable hardware devices in order to determine how easy they would be to
synchronize with the rest of the system.
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Figure 4.6: Comparison of simulated field- and amplitude-based 3D RI reconstructions. Re-
constructions from simulated field and amplitude measurements at (a) 100 images, with
NAillum,max ≈ NAobj and (b) 60 images, with NAillum,max ≈ 0.8NAobj show that field-based
reconstructions are similar to amplitude-based reconstructions. While the field-based recon-
struction in the (b) limited illumination case is better than the amplitude-based reconstruc-
tion without pupil coding, the field-based results are similar to the pupil-coded amplitude-
based results (Zernike coding), which similarly introduce increased phase information into
each measurement. Cost functions show that all recontructions have converged. RMSE from
NA-filtered and raw ground truth values show that the pupil-coded amplitude-based results
are best in the (b) limited illumination case and equivalent to the amplitude-based results
in (a) the full illumination case.

4.5 Comparison of Field- and Amplitude-Based 3D

RI Reconstructions

Many 3D RI imaging systems have been created in recent years, as discussed in Sec. 1.3.2.
We have chosen to focus on angle-scanning systems such as ODT because illumination angle

5See https://micro-manager.org/.
6See https://github.com/micro-manager/pycro-manager.
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scanning is much more practical to implement than sample or system rotation, provides more
diverse and higher-NA measurements than focal scanning, and allows for multiple scattering
of the light, unlike methods that involve coherence-gating, which reject multiply scattered
light.

As stated previously, traditional ODT systems use interferometric measurements to en-
code field information into the measured intensity images at the camera plane [33, 113, 150,
213]. In these interferometric systems, the intensity images are first processed to recover
the complex scattered electric field for each illumination angle. These recovered fields are
then processed to reconstruct the 3D RI volume. Interferometric systems introduce optical
complexity, however, and may degrade multiple-scattered signal that could be used in the
reconstruction. We opt to use an intensity-only ODT system which does away with the op-
tical interferometric component and reconstructs the 3D RI volume directly from intensity
measurements. We note that both of these systems only measure intensity images; the inter-
ferometric systems merely pre-process the data to obtain scattered field amplitude and phase
information, which is central to traditional ODT algorithms such as filtered back-projection.
While the interferometric system provides a useful method for encoding phase information
in intensity measurements across illumination angles, it is unclear that the intermediate step
of recovering field data is useful for the reconstruction. We use simulated data from field
measurements and from intensity measurements to investigate how 3D RI reconstructions
compare when field information is available to the 3D RI reconstruction algorithm.

We simulated a cluster of five 10 µm-diameter, ncell = 1.015 refractive index cells in a
volume of refractive index nbk = 1.0. Each cell had one randomly-placed 4 µm-diameter nu-
cleus (nnucleus = 1.01) and ten randomly-placed 1 µm-diameter organelles (norganelle = 1.02),
as shown in Fig. 4.5(d). These values were drawn from typical cell characteristics [13], with
a focus on maintaining the relative refractive index difference ∆n between cell components,
as this controls the accuracy of the light propagation model (see Sec. 4.3 above for more
details). We used the multislice model to simulate the propagation of light through the
volume at 0.12 µm resolution in all dimensions, with wavelength λ = 532 nm, objective NA
0.45, and camera pixel size dcam = 2.4 µm. We simulated a total of 100 illumination angles
with maximum NAillum,max = 0.45. This forward simulation produced the complex field
exiting the volume for each illumination angles.

We used these simulated complex field measurements ui(r) to reconstruct the 3D volu-
metric RI of the sample under three different imaging cases:

1. Field-based reconstruction, where the simulated field measurements ui(r) were used
directly in the reconstruction to simulate an ideal interferometric ODT system

2. Amplitude-based reconstruction, where the amplitude measurements |ui(r)| were used
to simulate use of an intensity-only ODT system

3. Pupil-coded amplitude-based reconstruction, where the field was additionally modu-
lated by a random pupil coding mask M̃i(k), then converted to amplitude via intensity
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measurement, giving |ui(r) ∗F (M̃i(k))|, where ∗ denotes convolution. This simulates
use of the pupil-coded intensity ODT system described in Chapter 5.

For all of these imaging cases, the volume was reconstructed at lateral resolution 0.24 µm
and axial resolution 0.7314 µm with a multislice-based FISTA optimization reconstruction
algorithm, as described in Sec. 4.2. We note that this is a comparison of field- and amplitude-
based reconstruction given this specific reconstruction algorithm, since field-based 3D RI
reconstructions are usually done with different algorithms than the results presented here.
However, we believe this still represents a good comparison for the amount of phase informa-
tion encoded into each of these measurement systems that can be utilized by an optimization-
based reconstruction algorithm. Additionally, given that the optimization reconstruction
framework can be used with light propagation models that incorporate multiple-scattering,
while traditional field-based reconstruction algorithms are built around single-scattering ap-
proximations, such as the Born or Rytov approximations, we argue that this is an important
comparison to make to understand the usefulness of field measurements when reconstructing
3D RI volumes using these more general frameworks.

We compare these three imaging cases in two imaging conditions. First, we reconstruct
with all 100 measurements with maximum NAillum,max = 0.45, as seen in Fig. 4.6(a). In
this case, all reconstructions produce reasonable results, with a good reconstruction of low-
spatial frequency RI. Second, we reconstruct with a limited illumination condition, where
we only use 60 measurements to reconstruct with a maximum NAillum,max = 0.36, as seen
in Fig. 4.6(b). As discussed in detail in Chapter 5, the excluded high-angle measurements
provide the majority of the phase information for the amplitude-based reconstruction with-
out pupil-coding. When pupil-coding is introduced to the amplitude-based reconstruction,
more phase information is included in the low-angle measurements. Therefore, we see that
the amplitude-based reconstruction without pupil coding has a poor reconstruction in the
limited illumination angle case, with the recovered RI at much lower values than expected,
while the pupil-coded amplitude-based reconstruction still provides good results. The field-
based reconstruction provides similar good-quality results in this limited illumination angle
condition. This suggests that both field measurements and pupil-coded amplitude measure-
ments introduce diverse phase information into the measurements across illumination angle,
allowing for good-quality reconstructions even in this limited illumination condition.
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Chapter 5

Measurement Diversity for Improved
3D Refractive Index Imaging

3D refractive index microscopy has great potential to provide quantitative, structural data
to biological researchers, but currently available methods become less accurate as sample
volume, thickness, and scattering increase. Recent algorithms have been developed that
extend 3D refractive index imaging to use models that better account for multiple-scattering.
However, in order to tackle large, complicated samples, these methods require large amounts
of data for high-quality reconstructions. In this chapter, we present a novel system for 3D
refractive index imaging which we term pupil-coded intensity optical diffraction tomography
(ODT) that utilizes both illumination- and detection-side coding to encode complex three-
dimensional refractive index information into intensity-only images.

In the proposed system, angled coherent illumination is used to measure different 3D
Fourier space regions of the object spectrum, as in previously presented ODT methods.
This illumination-side coding is additionally augmented by random phase pupil coding ap-
plied on the detection side. We show that joint illumination- and detection-side coding better
encodes diverse phase information into each measurement, leading to better simulated and
experimental refractive index reconstructions that require less measured data and computa-
tion time than previous methods. We present simulated and experimental reconstructions
showing these improvements. Our results show that the glass-induced spherical aberrations
in an uncorrected objective lens can be used as a static pupil coding element, offering sim-
ilar 3D RI imaging improvements to dynamic pupil coding introduced by a spatial light
modulator. We present a transfer function analysis of the proposed system showing that
the additional detection-side coding improves the transfer of low-spatial frequency informa-
tion into the measured images. We additionally introduce a spatial entropy metric, which
could be used to directly compare the measurement diversity across different 3D RI imaging
systems.
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5.1 Introduction

Current methods for 3D refractive index imaging suffer from long capture times that limit
allowable sample motion; long computation times and large data requirements for high-
quality RI recovery; inaccurate reconstructions for samples that are too thick or too highly
scattering; and many constraints on the imaging system design. Recent work has aimed
to reduce the capture and computation time through better system design [37], improve
the results by using higher-resolution objectives [36]1, and incorporate multiple-scattering
into the computational model to extend the reconstruction to thicker samples [98, 99, 215].
Even with these improvements, challenges still remain. In this chapter, we introduce a novel
imaging system called pupil-coded intensity ODT that uses joint illumination- and detection-
side coding to increase encoding of diverse phase information into all intensity measurements,
which in turn reduces the capture time, computation time, and data requirements for high-
quality RI recovery, and also reduces optical constraints on the illumination system.

High-quality 3D RI reconstructions depend on capturing sufficient 3D phase information
through the imaging system. From general principles, a high numerical aperture (NA) objec-
tive should be used for 3D imaging since the axial resolution increases with the square of the
objective NA. Beyond general principles, 3D imaging systems are difficult to directly opti-
mize, however, as there are many possible configurations with different physical and practical
limitations. Therefore, instead of directly optimizing the imaging system for 3D RI imag-
ing, we focus on increasing the system’s measurement diversity. We observe that a 3D RI
imaging system will require the least amount of measured data when each measurement in-
troduces diverse, non-redundant 3D phase information to the reconstruction algorithm. One
of the motivating factors in this chapter is addressing how we can increase this measurement
diversity for 3D RI imaging.

In previous 3D RI imaging work, Ewald sphere analyses [62, 63] have been made for
various 3D RI capturing methods [163], showing the 3D Fourier space coverage of different
measurement systems under a single-scattering assumption. This analysis suggests high-
angle illumination and high-NA objectives should be used and the object rotated to cover as
much 3D Fourier space as possible. Transfer function analysis of different illumination pat-
terns under linear, single-scattering models have been used used to optimize the illumination
pattern for phase imaging [126, 142]. This analysis shows that low-spatial frequency phase
information is not transferred into measurements in current 3D RI imaging systems except
when the incident illumination is at or near the NA of the imaging objective. Thus, high-NA
illumination is needed, which increases imaging system complexity, data requirements, and

1Which, however, leads to increases in measured data, reconstructed volume size, and therefore com-
putation times in intensity-only ODT. The measured data is increased because the angle scanning-only
intensity-only ODT method requires the maximum illumination angle to be near the NA of the imaging
objective, NAillum,max ≈ NAobj , so more measured data is required as NAobj increases. Additionally, as
the effective pixel size decreases (since higher NA usually implies increased magnification), the volume size
will also increase to cover the same physical area. Both of these effects increase the computation time of the
reconstruction.
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capture time when working with multiply-scattering samples. Related work in phase diver-
sity has shown that measuring two images with different, known phase delays breaks the
ambiguity of intensity measurements, leading to more efficient wavefront recovery [72, 92].
The phase diversity concept has been applied to diffraction-limited imaging [147] and gener-
ally illustrates the importance of capturing diverse phase information in each measurement
for improved complex field reconstructions.

In this chapter, we introduce a novel 3D RI imaging microscope which combines illumination-
side coherent plane wave angle scanning with detection-side phase pupil coding using an
LCOS phase-only spatial light modulator (Fig. 5.1). We use the multislice forward light scat-
tering model to allow for thicker, more complex samples and reconstruct with an iterative
optimization algorithm. Our method builds on previous, intensity-only optical diffraction
tomography (ODT) systems [36] that use angle-scanned illumination without pupil coding
to capture 3D RI information. In our proposed system, however, the addition of different
random pupil phase masks for each angle of illumination increases our system’s measure-
ment diversity and more effectively encodes phase information across measurements. We
find that the low spatial frequencies of the 3D refractive index are encoded into low-angle
illumination measurements under the proposed system’s increased measurement diversity,
unlike in methods without pupil coding. This increased measurement of diverse 3D phase
across all measurements simplifies high-angle illumination constraints, leading to more prac-
tical imaging systems, and reduces data capture requirements, thus reducing capture time.
In addition, we find that the system’s increased measurement diversity leads to faster 3D
RI reconstruction convergence, shortening computation times. We present simulated and
experimental results showing the improved reconstructions under low-NA illumination and
limited computation conditions with the proposed system. We analyze the transfer functions
of the proposed system to show that it encodes more low spatial frequency information across
measurements, and present a spatial entropy metric to visualize the increased measurement
diversity compared to prior imaging systems. Finally, we show that with a properly selected
pupil phase, only a single, static pupil phase mask is needed across all angles of illumination
for these 3D RI imaging improvements. We demonstrate a highly effective static phase mask
experimentally using a highly aberrated, off-the-shelf uncorrected objective lens without ad-
ditional pupil coding, showing the benefits of joint illumination- and detection-side coding
in a simple imaging system. This static pupil-coded system further reduces imaging system
complexity by eliminating the need for the spatial light modulator required for dynamic
pupil coding.

5.2 Methods

In the novel proposed measurement diversity 3D phase imaging system, an additional phase
spatial light modulator (SLM) coding element is added in the pupil plane of a traditional
3D intensity-only ODT microscope, as shown in Fig. 5.1. For each ith angle of plane
wave illumination through a refractive index volume O(r), a different known phase mask
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Figure 5.1: Joint illumination- and detection-side coding captures diverse measurements
for improved 3D refractive index reconstructions. (a) A 2D angle-scanning servo mirror
assembly provides angled illumination through a 50×, 0.8 numerical aperture (NA) objective
lens (OL) and 180 mm tube lens (TL). An identical 50×, 0.8 NA objective and 180 mm tube
lens are used to image the sample. A linear polarizer (LP) selects the polarization aligned
to the modulation axis of the LCOS phase spatial light modulator (SLM). The light passes
through a beamsplitter (BS) and through a 300 mm lens (L1), which Fourier transforms
the signal. The SLM is modulated to code the phase of the conjugate pupil plane, and
the final signal is reflected, Fourier transformed at L1, and imaged at the camera plane.
(b) A map of simulated angled illumination, with three representative angles shown in red
and the objective NA shown in blue. (c) Three representative random Zernike basis pupil
phase coding masks displayed on the SLM. (d) Three representative simulated measurements
showing measurement diversity.

M̃i(k) = exp jφi(k) is displayed in the pupil plane, introducing a unique pupil coding for
each measurement, where r and k are image- and spatial frequency-space coordinates. Under
this system, the ith measured intensity Ii(r) is given by:

Ii(r) = |F−1
{

F {Si(O(r))} P̃ (k)M̃i(k)
}
|2 (5.1)



CHAPTER 5. MEASUREMENT DIVERSITY FOR IMPROVED 3D RI IMAGING 73

Figure 5.2: (a) Example SLM phase masks φi(k) and (b) respective simulated measured
images Ii(r) at illumination NA’s 0, 0.27, 0.48 are displayed for no coding, random pixel
coding, random Zernike coding, and random defocus coding.

where F {·} and F−1 {·} are the Fourier transform and inverse Fourier transform, respec-
tively; Si(·) is the forward light scattering operator of the ith angled plane wave illumination;
and P (k) is the pupil function of the imaging system. We use the multislice forward prop-
agation algorithm for the scattering operator Si(·) to allow for thicker objects with more
scattering, as described in Chapter 4.

The object reconstruction algorithm is given by the optimization problem

Ô(r) = argminO(r)

∑
i

∥∥∥∣∣∣F−1
{

F {Si(O(r))} P̃ (k)M̃i(k)
}∣∣∣−√Ii(r)

∥∥∥2

2
+ αP(O(r)), (5.2)

where P(O(r)) is a prior penalty that can be chosen to constrain the solution space of O(r),
and α is a tunable regularization parameter. We solve this optimization problem using a fast
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iterative shrinkage-thresholding algorithm (FISTA) [15]. We also utilize a joint optimization
of the objective pupil function P̃ (k), which we find improves experimental results, as the
objective pupil function is imperfectly known.

This optimization problem is highly nonconvex, meaning that many local minima exist
that can satisfy the data consistency penalty but may produce sub-optimal reconstructions
that do not accurately represent the sample’s true refractive index distribution. Experimen-
tally, we find that the most common local minima in traditional ODT reconstructions capture
the high spatial frequencies (i.e., the high-resolution edges) of the object O well but do not
capture the low spatial frequencies (i.e., the internal RI values). In particular, in angle-
coded intensity-only ODT, the reconstructions under a low-angle illumination constraint do
not reconstruct low spatial frequencies well, giving inaccurate reconstructions. A low-angle
illumination constraint exists when the maximum angle of illumination is approximately 85%
or lower than the numerical aperture of the imaging objective, NAillum,max <∼ 0.85NAobj.
As discussed in Chapter 5, intensity-only ODT therefore requires high-angle illumination
(i.e.,NAillum,max ≈ NAobj), increasing the complexity of the imaging system to guarantee
these high illumination angles, which in turn can make the imaging system more constrained
and difficult to use.

This optimization problem is highly nonconvex, meaning that many local minima exist
that satisfy the data consistency penalty but produce sub-optimal reconstructions that do not
represent the true refractive index distribution well. Experimentally, we find that the most
common local minima in traditional ODT reconstructions capture the high spatial frequen-
cies (i.e., the high-resolution edges) of the object O well but do not capture the low spatial
frequencies (i.e., the internal RI values). In particular, in traditional, angle-coded only inten-
sity ODT, the reconstructions under a low-angle illumination constraint do not reconstruct
low spatial frequencies well, giving inaccurate reconstructions. A low-angle illumination con-
straint exists when the maximum angle of illumination is approximately 85% or lower than
the numerical aperture of the imaging objective, NAillum,max <∼ 0.85NAobj.

2 This means
that the traditional intensity-only ODT imaging system requires high-angle illumination
(i.e.,NAillum,max ≈ NAobj), increasing the complexity of the imaging system and making it
more difficult to use in practical settings. Conversely, the proposed pupil-coded intensity
ODT system removes this constraint and can reconstruct low spatial frequencies even when
limited to low angles of illumination.

When faced with an optimization reconstruction that is converging to a sub-optimal local
minima for a given sample, there are two main approaches to improving the reconstruction
result. First, a prior penalty P(O(r)) that is well-matched to the sample parameters can be
applied to further constrain the optimization and eliminate spurious local minima. However,
these penalties are object-specific and therefore are not always sufficient or applicable, espe-
cially thicker, more complex samples. Second, more diverse data can be measured to make

2The maximum value of NAillum,max where the traditional intensity-only ODT reconstruction degrades
is given as ∼ 0.85NAobj because it will change depending on the sample and the regularization parameters
used in the reconstruction. However, we have observed that across objects and regularization parameters,
NAillum,max = 0.85NAobj typically results in degraded results for traditional intensity-only ODT.
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the reconstruction more well-conditioned. In traditional ODT systems, however, collecting
more data is analogous to taking images at more densely packed angles of illumination.
Intuitively, we can see that there are diminishing returns in this system as we add more
closely-spaced angles of illumination because these angles encode very similar information
about the object, which is sub-optimal for improved reconstructions. The addition of a
dynamic coding element in pupil-coded intensity ODT increases the controllable degrees of
freedom available in the system for increasing the diversity of measurements from a given
sample. This system produces higher contrast, more diverse measurements Ii for better-
conditioned reconstructions across a wide variety of samples.

In this chapter, we demonstrate the pupil-coded intensity ODT method with sets of phase
masks based on random defocus values, random coefficients on a Zernike basis, and random
pixel values, respectively, to explore the best pupil phase mask properties for 3D RI imaging
(Fig. 5.2(a)). Across all three phase mask types, we find that including dynamic detection-
side pupil coding increases the diversity of our measurements, as seen by the increased
contrast across representative images in each dataset in Fig. 5.2(b) and corroborated by a
spatial entropy metric discussed in Sec. 5.5.2. This increased measurement diversity means
that fewer images at lower maximum angles of illumination are required for high-quality
reconstructions with pupil-coded intensity ODT. We also find that optimization of these 3D
RI reconstructions converges faster than the traditional intensity-only ODT method due to
the system’s increased measurement diversity.

5.2.1 Phase Mask Formulation

We investigated the proposed pupil-coded intensity ODT method with phase masks from
random coeffiecients on the defocus, Zernike polynomial, and pixel bases. Each set of phase
masks is formulated separately, as discussed below. Within each set of phase masks, an
[Nim×Nim] pixel phase mask φi(k) are generated for each ith angle of illumination, where the
Nim is the lateral pixel dimension of the reconstruction volume. The phase mask coefficients
for each basis are drawn from a uniform distribution to ensure high measurement diversity.
The pupil coding masks are given by M̃i(k) = exp (jφi(k)). The phase generation process
for each mask type is given below. For each basis, the scaling of the uniform distribution
is chosen heuristically. Typical values are given below. Example masks and simulated
measurements from each set of phase mask types are shown in Fig. 5.2.

The phase masks are generated with the constraints of the LCOS phase-only SLM used
to modulate the pupil function. The phase masks are first generated at the lateral recon-
struction dimension, [Nim×Nim], where typically Nim = 500 pixels. All experimental masks
are wrapped to (0, 2π) radians to fit within the SLM’s modulation range and then Gaussian
filtered, typically with σ = 4, to avoid fringing field effects on the SLM [81, 146, 167, 189],
which result in nonidealities in the displayed phase at large phase changes due to physical
properties of the SLM’s pixelated liquid-crystal display. The phase masks are then upsam-
pled to the SLM dimension, [1024 × 1280] by a factor of ducamera/duSLM , giving the SLM
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display phase Φi(k). The reconstruction and SLM frequency space pixel size are given by

ducamera =
1

N dcamera
mag

duSLM =
dSLM ·mag
λ · fSLM

,

where dcamera and dSLM are the pixel size of the camera and SLM, respectively; mag is the
system magnification; fSLM is the focal length of the Fourier transform lens before the SLM;
and λ is the wavelength of the illumination. In experiment, SLM phase masks Φi(k) are
then translated to SLM grey levels via an experimentally calibrated phase mapping process
described in Sec. 5.4.1.

Defocus Basis

Defocus basis mask phases are created using the angular spectrum propagation kernel [73] for
a set of distances di chosen from the uniform random distribution, di ∈ U(−15 µm, 15 µm).

φdefocus,i(k) = 2πdi
√
λ−2 − k2 (5.3)

The total depth of 30 µm was chosen because it provided for a relatively large focus change,
leading to high contrast between measurements, but small enough that signal was primarily
kept within the chosen field of view. Phase masks were blurred with a Gaussian filter σ = 4
in experiment.

Zernike Basis

Zernike basis phase masks are generated by multiplying uniform random coefficients cp,i ∈ U
by Zernike polynomials for pz = 15 Zernike modes, giving

φzernike,i(k) =

pz∑
p=0

cp,iZp(ρ, θ), (5.4)

where Zp(ρ, θ) are the Zernike polynomials, ρ and θ are polar coordinates, and p is the linear
index of the polynomials, which are typically denoted by two indices (n,m).3 Following the
implementation in [224], we define:

n = ceil(
−3 +

√
9 + 8p

2
)

m = 2p− n(n+ 2)

Zm<0
n (ρ, θ) = Rm

n (ρ) sin(|m|θ)
Zm≥0
n (ρ, θ) = Rm

n (ρ) cos(|m|θ)
3n here is disambiguated from the other usages in this chapter, where it denotes refractive index.
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where the radial functions Rm
n (ρ) are given by

Rm
n (ρ) =

{∑(n−m)/2
l=0

(−1)l(n−l)!
l![ 1

2
(n+m)−l]![ 1

2
(n−m)−l]!ρ

n−2l, for n−m even

0, for n−m odd

In simulation, typically cp,i ∈ U(−π, π). However, in experiment we found these large
coefficient values led to many phase wrapping points between 0 and 2π, which in turn created
many experimental nonidealities due to fringing field effects on the SLM. In experiment, we
therefore chose cp,i ∈ U(−0.5, 0.5) and additionally scaled the NA and pixel size used in the
creation of the Zernike polynomials by a factor of 1.2 to effectively zoom in on the center of
the Zernike polynomials. This eliminated the edge of the high-NA Zernikes, which tend to
exhibit large phase wrapping and therefore large experimental SLM model mismatch, while
still providing phase modulation for the full NAobj on the SLM. Phase masks were blurred
with a Gaussian filter σ = 4 in both simulation and experiment.

Pixel Basis

Each random pixel phase mask is generated by Gaussian filtering a random matrix from
the continuous uniform distribution, U(0, 2π), where ∗ denotes convolution and gσ(x, y) =

1
2πσ

e−
x2+y2

2σ2 .
φpixel,i(k) = U(0, 2π)(k) ∗ gσ(k) (5.5)

We find in both simulation and experiment that σ = 4 provides sufficiently diverse measure-
ments without amplifying noise.

5.2.2 Utilizing Randomness

The choice of random coefficients for the pupil phase masks presented in this chapter was
based on many recent imaging systems designed under compressed sensing principles [12, 55,
112, 208, 230], which use random coding mechanisms. These compressed sensing systems
exploit signal sparsity and sensing system incoherence, which is often obtained through
random coding mechanisms, to guarantee reconstruction with a lower data sampling rate
than suggested by Shannon-Nyquist sampling theorem [23]. However, we note that proposed
pupil-coding ODT system proposed in this chapter does not directly utilize compressed
sensing, which requires that object sparsity be enforced in the reconstruction.

5.3 Simulation Results

In order to investigate the effectiveness of the proposed pupil-coded intensity ODT method
for thick objects, a structured refractive index phantom was simulated with similar features
as cell clusters in embryo growth [123], as seen in Fig. 5.3. Cell clusters of varying size
were simulated to observe the effect of increased multiple scattering, but similar results
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were observed across all simulated cell cluster sizes. Results are shown for a cluster of 40
spherical cells positioned inside a 55 µm cube using Poisson disk sampling [22], which provides
a random, non-overlapping packing of the cells in 3D. An additional constraint that the cells
be packed within a sphere centered within the volume was imposed to ensure the phantom
was tightly clustered. Each cell were simulated with a 10 µm diameter cell body of refractive
index n = 1.345, a randomly placed 4 µm diameter nucleus (n = 1.34), and ten randomly
placed 1 µm diameter organelles (n = 1.35) in a uniform aqueous background (n = 1.33) [13,
131, 197]. The cells were simulated with 100 nm resolution.

The multislice (a.k.a beam propagation) forward model was used to simulate angled
coherent plane-wave illumination at λ = 0.532 µm through the simulated RI volume. The
forward simulation was performed at full, 100 nm pixel size inside a 2× padded volume to
reduce circular boundary artifacts and ensure that the forward simulation was done at a
more accurate size scale than the reconstruction. Forward simulations were performed for a
grid of illumination angles (θx, θy), related to numerical aperture (NA) by NA = n sin(θ) and
spatial frequency by k = 2πNA

λ
= 2π n sin θ

λ
, where n is the refractive index. The maximum

illumination angle was simulated at NA = 0.8 with the spacing between illumination grid
points ∆NA = 0.05.

This forward simulation produced electric fields ui(r) at the last plane of the simulated
phantom volume, which were then simulated through objectives with various numerical
apertures. The magnification of these virtual objectives were chosen to avoid aliasing with
camera pixel size dcamera = 6.5 µm. The magnification was rounded up to a multiple of 5
for simplicity. In particular, we here present results from a 0.8 NA, mag = 40× objective
and a 0.5 NA, mag = 25× objective. The electric fields were filtered by the objective’s
low-pass filter in Fourier space, then downsampled to the pixel size of the reconstruction,
drecon = dcamera/mag. For each ith angle of illumination, the ith SLM pupil mask M̃i(k) was
applied via a Fourier space multiplication. New sets of random masks were generated for each
reconstruction with the three chosen pupil coding bases (i.e., defocus, Zernike, and pixel).
For the comparison case with no SLM coding, a phase mask of all zeros was applied to each
illumination angle. The intensity of the electric field was then taken as the measured image at
the camera plane, Ii(r). This process was also performed for a constant background volume of
refractive index n = 1.33 to give background intensity measurements Ibk,i(r). The measured
amplitude through the sample |Ii(r)| was divided by the background amplitude |Ibk,i(r)| to
reduce spurious structured background artifacts created by FFT boundary conditions and
to scale each measured amplitude to have a background value of roughly unity. Random
Gaussian noise with standard deviation σ was then added to each simulated measurement.
Example simulated measurements can be seen in Fig. 5.2(b).

Reconstructions based on these simulated measurements were performed following Eq. 5.2.
We compare these reconstructed RI volumes to ground truth under a variety of illumination,
reconstruction, and pupil coding conditions, discussed below, to investigate the improve-
ments offered by the proposed system.
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Figure 5.3: 3D refractive index of a simulated sample consisting of a 40 cell cluster. (a)
3D view of simulated cell cluster RI distribution. (b) xy and xz slices of ground truth RI
volume. (c) Maximum 3D frequency space support for a 0.8 NA objective (λ = 0.532 µm)
under an under an Ewald sphere single-scattering assumption with NAillum,max = NA−obj.
(d) Filtered ground truth RI, representing the best possible reconstruction with the chosen
objective and illumination scanning under a single-scattering assumption.

5.3.1 Ground Truth Comparisons

We calculated the root-mean-squared error (RMSE) of each reconstruction to the raw ground
truth refractive index to quantify the reconstruction quality. The raw ground truth RI
volume was downsampled to the reconstruction size, shown for the 0.8 NA objective system
in Fig. 5.3(b).

We note that due to the “missing cone” problem in 3D RI imaging, wherein high axial
spatial frequencies are not captured at low lateral spatial frequencies due to the lowpass
filtering by the objective lens, a better comparison volume is the NA-filtered ground truth
refractive index, shown in Fig. 5.3(d). This NA-filtered ground truth volume reflects the best
possible reconstruction under a single-scattering assumption for a given objective NA. We
construct the NA-filtered Fourier support of our system by considering an Ewald sphere for-
mulation [62, 63, 148]. Under this formulation, the 3D Fourier space support of a plane wave
at angle (NAx, NAy) scattered through an object and imaged by an objective of numerical
aperture NAobj is described by an arc in 3D k-space with spherical radius km = 2πn

λ
, lateral

radius 2π
NAobj
λ

(defining the maximum angle imaged through the system), and centered at
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kx =
2πn

λ
NAx

ky =
2πn

λ
NAy

kz =
2πn

λ
(1−

√
1−NA2

x −NA2
y)

Scanning illumination angles is analogous to scanning this arc in 3D Fourier space, with a
captured image at a certain illumination angle containing information from that region of
Fourier space. Assuming an illumination angle-scanning system where the maximum possible
illumination angle is the same as the objective NA, NAobj, the maximum possible frequency
support is therefore described by the overlap of two toroids given by:(

2πNAobj
λn

−
√

kx
2 + ky

2

)2

+

(
kz ±

2π

λn

√
1−NA2

obj

)2

≤
(

2π

λn

)2

(5.6)

where λn = λ
n

is the wavelength in the medium. The resulting 3D Fourier space support for
a 0.8 NA objective is shown in Fig. 5.3(c). We note that since the reconstructions presented
in this chapter are based off of the multiple-scattering multislice model, it is theoretically
possible that more information can be reconstructed with the multislice model than the
NA-filtered ground truth volume shown here, given that multiple scattering can send high
spatial frequency information through the lowpass filter of an objective lens [34, 35, 182,
234]. However, in general the NA-filtered ground truth presents a reasonable comparison for
simulations performed with the relevant objective NA. We therefore also present the RMSE
of the reconstructions compared to the NA-filtered ground truth RI volume.

5.3.2 Limited Illumination

With illumination angles up to the NA of the objective (NAillum,max = NAobj), sufficient
optimization algorithm iterations to reach convergence of the cost function (150 iterations),
and low noise conditions (σ = 0.001), we show in Fig. 5.4(a) that both the previous, no
SLM coding method and the proposed SLM pupil coding methods achieve reconstructions
comparable to the NA-filtered ground truth. The convergence to both the filtered and raw
ground truth occurs faster using the proposed pupil-coding method, and the Zernike coding
basis has the lowest RMSE across all datasets, as seen in Fig. 5.4(c-d).

As these results show, traditional intensity-only ODT method without pupil coding re-
quires high illumination angles to measure and reconstruct low spatial frequency information
about the sample’s 3D RI distribution. Unfortunately, designing an illumination system that
can create coherent plane waves at angles with NAillum,max = NAobj creates large design
constraints, especially in systems with high-NA objectives for better axial resolution. While
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Figure 5.4: Reconstructed simulated volumes under (a) full, high-angle illumination and (b)
limited, low-angle illumination conditions for the traditional system (no SLM coding) and
proposed system (defocus, Zernike, and pixel coding). xy and xz slices into the volumes
are shown for each. Reconstructions have more accurate low spatial frequency content (i.e.
better refractive index estimation) when pupil coding is used, and the difference is especially
stark in the limited illumination condition (b). The plots of RMSE from the raw ground
truth volume (c) and filtered ground truth volume (d) show this improved reconstruction,
and also show that a reasonable reconstruction is obtained with fewer iterations under the
proposed system, regardless of pupil coding basis. (e) The reconstruction cost function shows
that all reconstructions converge. All simulations were run with a 0.8 NA, 40× objective,
and λ = 0.532 µm for 150 iterations and σ = 0.001 of additive Gaussian noise.
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planar LED arrays could provide high-NA illumination, they have a large illumination inten-
sity fall-off at high incident angles. A domed illumination source [159, 173, 172, 198], such
as the quasi-dome LED array [173], can provide high-NA illumination without this intensity
fall-off. In practice, however, we find that the quasi-dome LED array has relatively low-
intensity illumination, requiring prohibitively long exposure times for high-NA objectives in
the proposed sytem. Therefore a dual-objective lens system, with two objectives on either
side of the sample as seen in Fig. 5.1, is often the most practical for simultaneously illu-
minating and detecting at high-NA. But as objective working distance generally decreases
with increasing NA, using identical objectives on either side of the sample in order to obtain
high-NA illumination constrains the physical extent of the sample and can be therefore be
practically difficult to use.

Reducing the requirement that the maximum illumination angle must be near the NA
of the imaging objective for high-quality RI reconstructions would therefore be extremely
helpful in 3D RI imaging system design. We see in Fig. 5.4(b) that this goal is obtained with
the proposed method. Under a limited, low-angle illumination condition where the maximum
illumination NAillumination ≤ 0.75NAobj, we see that good reconstructions are obtained using
the defocus, Zernike, and pixel random pupil coding. Conversely, the traditional intensity-
only ODT system without SLM coding performs poorly, particularly failing to reconstruct
the low spatial frequencies of the sample. While the RMSE from the ground truth is higher
in all cases under the limited illumination condition, the proposed method reconstructions
have lower RMSE after 150 iterations than the traditional, no coding method across both
the full- and limited-illumination conditions(Fig. 5.4(c)). This reduction in the requirement
for high-angle illumination reduces constraints on the imaging system, which could make 3D
RI imaging systems easier to use.

The proposed method’s improved reconstruction under the limited illumination condition
also represents a reduction in the measured data, from 437 images in the full illumination
condition to 249 images in the limited illumination condition. This data reduction leads to a
commensurate reduction in capture time and processing time, which scales with the dataset
size. This means that under the proposed system, since we are better capturing the data we
need for the reconstruction, we can get better reconstructions with less data, capture time,
and processing time, while also making the system more robust to changes in the maximum
available angle of illumination NAillum,max. The proposed system therefore offers significant
improvements to practical 3D RI imaging. However, we note that the limited illumination
reconstructions cannot reach the same low RMSE offered by the proposed method under the
full illumination, since the axial resolution is reduced by limiting the illumination NA.

5.3.3 Limited Computation

We show that the proposed method approaches the ground truth refractive index in fewer
iterations than the previous method without pupil coding. In Fig. 5.5(a), we present re-
constructed 3D RI volumes at 50 iterations of the optimization algorithm under the full,
high-angle illumination condition, representing a limited-computation condition where the
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Figure 5.5: Reconstructed simulated volumes under (a) a 50 iteration, limited-computation
condition with low noise (σ = 0.001) and (b) a full-computation (150 iterations), high-
noise condition with σ = 0.1 of Gaussian noise added to each measurement. Both (a)
and (b) were reconstructed under the full, high-angle illumination condition for NA = 0.8,
λ = 0.532 µm. (a) shows that all pupil coding bases under the proposed method reconstruct
low spatial frequency components sooner in the iterative optimization process, and thus
begin to converge to ground truth values with less required computation compared to the
previous system without pupil coding. (b) shows that increased additive Gaussian noise
equally affects reconstructions with and without pupil coding.

optimization algorithm is stopped early. We see in this case that the proposed method
has better reconstructions than the previous, no coding method. The Zernike coding ba-
sis shows particularly good results. This test demonstrates that the proposed method is
better-conditioned to reconstruct the low spatial frequency components of the 3D RI vol-
ume, since it converges more quickly to a high-quality result. Additionally, this result could
be used to reduce the computation time required for large volumes via early stopping of the
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optimization algorithm.

5.3.4 High Noise

We also present reconstructions with high, σ = 0.1 additive Gaussian noise in Fig. 5.5(b).
These reconstructions were performed with full, high-angle illumination and full, 150 iter-
ation computation. We see that while the noise degrades the resultant reconstructions, it
does so evenly across the different methods, showing that noise is not disproportionately
amplified by the reconstruction under the proposed method.

5.3.5 Mask Diversity Requirements

We hypothesized that having a diverse set of random phase masks under the proposed
method increases the proposed system’s measurement diversity, giving the reconstruction
improvements shown above. While clearly the addition of random phase masks has beneficial
consequences, it is unclear how many distinct random masks are needed to provide these
benefits.

We simulated measurements for different numbers of distinct masks for each pupil cod-
ing basis under a limited, low-angle illumination condition to see how many distinct phase
masks are required for high-quality reconstructions in pupil-coded intensity ODT. For each
simulation, C distinct phase masks of the relevant pupil coding basis were generated and
randomly assigned to each ith measurement Ii. We simulated reconstructions for C =
[1, 2, 5, 10, 25, 50, 75, 97] distinct masks across 97 images with 97 distinct angles of illumi-
nation. To reduce the computational cost of the simulation, we simulated with a 0.5 NA,
25× objective lens.

Reconstructions are shown in Fig. 5.6. Both visual inspection and RMSE plots show
that only one distinct random mask is needed to obtain a good-quality reconstruction under
the limited illumination condition for the Zernike and pixel bases, while the defocus bases
requires ≈ 5 or more distinct masks for good-quality reconstructions. This is a surprising
result, as it suggests that only a single phase mask of certain properties is needed to obtain
the necessary measurement diversity in the dataset, unlike phase diversity systems, which
require two distinct phase masks. We theorize that this is due to the object spectrum being
scanned across the pupil plane by the angled plane-wave illumination under the Fourier
shift theorem. If the chosen single pupil phase mask varies widely across the pupil plane,
the effective pupil coding applied to the object spectrum at each angle will be effectively
diverse across measurements. We further explore this result by analyzing the system transfer
functions for a single, static pupil phase mask in Sec. 5.5.1.

This result also has large practical implications. In order to achieve dynamic pupil
coding experimentally, we must use a spatial light modulator in the pupil plane of the
imaging system, which increases the imaging system complexity. However, this simulated
result suggests that we could augment a traditional angle-scanning ODT system with a single
phase aberration, which could be applied through an engineered or off-the-shelf transmission
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Figure 5.6: Reconstructed simulated volumes under a limited, low-angle illumination condi-
tion to evaluate the importance of number of distinct random phase masks used for each (a)
defocus, (b) Zernike polynomial, and (c) pixel coding basis. All reconstructions are run with
150 iterations for a 0.5 NA objective, λ = 0.532 µm, with σ = 0.001 of additive Gaussian
noise. Comparative ground truth RI volume slices are shown in (d). The final RMSE of each
reconstruction against the (e) filtered ground truth RI and (f) raw ground truth RI across
number of distinct masks used in the simulation are shown. For the (a) defocus basis, we
see that more than 25 distinct random phase masks are needed to reconstruct a high-quality
result under the limited illumination condition. However, for the (b) Zernike polynomial
basis and (c) pixel basis, only one distinct random mask is necessary for a high-quality
reconstruction.
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phase mask, or even using the native aberrations present in an objective lens. We explore
the experimental implications further in the following section.

5.4 Experimental Results

A 50 µm fiber-coupled LED source (Thorlabs M530F2) with wavelength λ = 530 nm is beam-
expanded and collimated using a Nikon Plan Apochromatic 2×, 0.1 NA objective, as shown
in Fig. 5.1. A dual-axis mirror mount with DC servo motors (Thorlabs Z812 with Kinesis
brushed motor controller) is used to angle the collimated beam at a conjugate imaging plane.
The angled beam is relayed through the illumination-side objective (0.8 NA, 50×, working
distance (w.d.) 1 mm Olympus M Plan Fluorite air objective) and 180 mm tube lens assembly
to illuminate the sample with a coherent, angled plane wave. The light is modulated by the
sample and imaged with the imaging objective and tube lens assembly. We opted for high-
NA imaging and illumination objective lenses to obtain high resolution reconstructions in
both the comparison reconstructions without SLM coding and the proposed system with
SLM coding.

We used two imaging objective lenses in our experiments. A 0.75 NA, 40× Nikon Plan
Fluorite, glass aberration-corrected air objective lens (w.d. 0.66 mm) with a 200 mm tube
lens was used as the imaging objective for the comparison (no SLM coding) case. An
uncorrected 0.8 NA, 50× Olympus M Plan Fluorite air objective with a 180 mm tube lens
was used as the imaging objective for the proposed method with SLM pupil coding. This
uncorrected objective lens exhibits strong aberrations when a #1.5 coverslip (0.17 mm thick
glass) is placed on top of the sample (Fig. 5.7(i-j)). We present results with the aberrated 0.8
NA, 50× objective without SLM pupil coding to show that these glass-induced aberrations
act as a single, well-chosen Zernike pupil phase coding that improves 3D RI reconstructions
under low-angle illumination as predicted by simulations in Sec. 5.3.5.

A linear polarizer is placed close to the tube lens to linearly polarize the collimated
light in the same direction as the SLM’s modulation axis. A fL1 = 300 mm lens performs
a Fourier transform between the imaging plane and the pupil plane at the SLM’s surface.
The focal length fL1 focal length was chosen to increase the area modulated at the SLM
from the objective’s native pupil diameter to make the greatest possible use of the SLM’s
[12.8 mm× 16 mm] active area. An objective’s native pupil diameter is given by

dobj = 2NAobj
ftube
mag

, (5.7)

where ftube is the focal length of the tube lens. The fL1 = 300 mm Fourier transform lens
magnifies the pupil diameter, giving the pupil diameter at the SLM plane as

dobj at SLM = 2NAobj
ftube
mag

(
fL1

ftube
) = 2NAobj

fL1

mag
. (5.8)

For the 0.75, 40× objective, dobj at SLM, 0.75NA = 11.25 mm. For the 0.8, 50× objective,
dobj at SLM, 0.8NA = 9.6 mm.
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The LCOS SLM (Hamamatsu X13138-01) modulates the phase of the incident light,
which is then reflected and Fourier transformed again by the fL1 = 300 mm lens. A beam-
splitter (Thorlabs BS031) redirects the modulated signal to the camera (PCO Edge 5.5),
where the intensity image is measured. For each ith illumination angle, a different upsam-
pled phase coding mask Φi(k) is displayed in the pupil plane on the SLM for each coding
basis. In the cases without applied SLM coding (both the comparison case and the case
where the objective lens’ native aberration supplies the phase coding element), the SLM
displays a calibrated pattern corresponding to a uniform phase of 0 radians.

5.4.1 Calibration Methods

It is important that the experimental system be properly calibrated (i.e., accurately repre-
sented in the reconstruction algorithm) for any computational imaging system to succeed.
One of the primary sources of error in computational imaging systems is “model mismatch”,
where the computational system model does not match the physical system, introducing
error. One of the main sources of model mismatch comes from inaccurate representation of
how the optical system modulates the light, which will be addressed in this section. Another
source of model mismatch in 3D RI imaging is due to the light scattering model, which might
trade off proper modeling of the light scattering physics through the object for computa-
tionally feasibility. Addressing model mismatch due to the choice of forward light scattering
model is outside the scope of this chapter, but is an important area of inquiry.4

Calibrating the physical optical system has many practical challenges, described below.
In particular, we describe how we calibrated the mapping between digital LCOS display
values on the SLM to phase delays of the incident field; SLM fringing field effects [81, 146,
167, 189]; and the lateral, axial, and tilt positions of the SLM surface. Additionally, we
describe how to calibrate other system parameters such as angle of illumination and the
overall system pupil function, which predominantly includes aberrations from the imaging
objective lens.

The success of the proposed method in part relies on the fact that we are introducing
additional, known information into the reconstruction algorithm with pupil coding. As in
traditional intensity-only ODT, we enforce that the angle of illumination for each measure-
ment is known in the reconstruction algorithm. In the proposed method, we are additionally
enforcing that each measurement was pupil-coded with a known unique phase mask. We
theorize that this additional constraint on the measurement increases the ability of the op-
timization algorithm to infer important information about the sample being imaged with
fewer overall measurements.

4See recent works that seek to reduce this model mismatch by developing new forward models [31, 129].
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Figure 5.7: Calibration of the SLM, angled illumination, and objective pupil aberrations
are needed for accurate reconstructions. (a) Modified set-up for calibration of the pixelated
phase mapping parameters shown in (b), which map from desired phase delay Φ to SLM grey
levels ΦSLM . (c) Example data from cheek cell used to calibrate illumination angles via circle-
finding in the Fourier spectrum (d), as well as recover pupil functions (f-k). (e) Illumination
angle calibration corrects for angle misestimation. (f) Phase of alignment target Φ displayed
on SLM to calibrate SLM position. (g,h) Reconstructed pupil phase and amplitude using
Fourier ptychography, used to align SLM position. (i) Reconstructed objective pupil phase
aberration without coverslip in place (no coding, no aberrations). (j) Reconstructed objective
pupil phase aberration with no. 1.5 coverslip in place (no coding, with aberrations), due to
uncorrected objective. (k) Aberrated pupil phase from (j) fit to Zernike polynomials with
15 modes for smoothing.
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SLM Response Calibration

The SLM response is controlled by integer display values s ∈ [0, 255], which are translated
to phase values Φ by the relationship

Φ = aΦs+ bΦ. (5.9)

A modified set-up is used to measure the pixelated SLM phase response maps given by aΦ

and bΦ, as seen in Fig. 5.7(a). Two 150 mm lenses are placed between the beamsplitter and
the SLM, forming conjugate image planes at the SLM and camera planes. An on-axis plane
wave at wavelength λ = 530 nm illuminates the entire SLM surface. Two linear polarizers
are placed with crossed polarization axes, one in the illumination path and the other in the
detection path. Both are at 45to the modulation axis of the SLM. This set-up turns the
phase-modulation SLM into an amplitude-modulation SLM, with measured intensity I at
the camera plane related to SLM phase delay Φ by

I = A2
0 sin2(

Φ

2
) (5.10)

where A0 is an arbitrary constant. We display a uniform grey level s on the SLM with values
from 0 to 255, capturing an image at each display value, giving intensity measurements
across s, I(s). We then reorder the relation to give

Φ(s) = 2 sin−1

√ I(s)− Imin
Imax − Imin

 (5.11)

where Imin and Imax are the minimum and maximum values per pixel across all I(s). This
normalization step effectively accounts for the arbitrary A0 constant from Eq. 5.10. We use
Eq. 5.11 to recover the phase delay value Φ associated with the display value s for each
image pixel by normalizing, phase-unwrapping, and then performing linear regression on
the measured data to recover aΦ and bΦ. The scalar aΦ and offset bΦ mappings shown in
Fig. 5.7(b) have additionally been resampled to fit the size of the SLM, with interpolation
performed for edge values that were not measured at the camera plane. We note that the
objective pupil is relayed to the center of the SLM’s surface in pupil-coded intensity ODT ,
so interpolation at the edges has no bearing on the presented results. The relative camera
pixel and SLM pixel position was determined by displaying known patterns on the SLM in
the amplitude-coding mode and determining the relative rotation, shift, and scaling between
the camera and SLM planes.

System Calibration

The remaining system calibration is performed with the system in the experimental config-
uration shown in Fig. 5.1. We utilize a previously developed illumination angle calibration
technique [56] which finds the illumination angle-defined offset of the circular pupil in the
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Figure 5.8: Fourier ptychography is used to recover pupil phase to verify SLM coding for
representative phase masks across the pixel, Zernike, and defocus bases. (a) Expected phase
Φ displayed on SLM. (b) Recovered SLM pupil phase via Fourier ptychography, after ob-
jective pupil phase aberration subtraction. (c) Recovered SLM pupil amplitude via Fourier
ptychography. Amplitude effects can be seen and are believed to be related to SLM fringing
field effects. (d) RMSE of recovered SLM pupil phase (b) compared to displayed phase (a),
showing that the SLM correctly displays the expected phase values.

Fourier spectrum of each brightfield image in order to directly calibrate the angle of illumi-
nation from measured data, as seen in Fig. 5.7(d-e).

We also make use of the fact that Fourier ptychographic microscopy (FPM) [240], a
method to recover high-resolution images from low-NA, high field-of-view objective lenses,
uses the same angled illumination system as intensity ODT. We reconstruct a two-dimensional
sample, such as a phase USAF resolution target (Benchmark Technologies Quantitative
Phase Microscopy Target [170]) or cheek cell (Fig. 5.7(c)) using FPM, leveraging the re-
duced dimensionality of the reconstructed object to also reconstruct a high-fidelity system
pupil function under the EPRY algorithm [156]. Using EPRY’s pupil recovery capabilities,
we can estimate the microscope’s base pupil aberrations when the SLM displays a uniform
phase of 0 radians (Fig. 5.7(i)). When using the 0.8 NA, 50× Olympus imaging objective lens
that is not corrected for glass coverslips, we can also estimate the glass-induced aberrations
of the imaging system by placing a #1.5 coverslip (0.17 mm thick glass) on top of the phase
resolution target or cheek cell sample and performing an FPM reconstruction to recover the
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aberrated pupil function (Fig. 5.7(j)). Since this aberration is large, it takes more iterations
to recover an accurate pupil phase. We additionally fit the recovered aberrated pupil phase
to a Zernike polynomial basis to smooth out the edges of the estimated pupil function, which
tend to be noisy (Fig. 5.7(k)).

We designed a custom alignment phase SLM display pattern that involves a central
cross pattern (Fig. 5.7(f)). By displaying this pattern on the SLM and performing an FPM
reconstruction, we can experimentally calibrate the lateral location of the SLM with respect
to the rest of the imaging system (Fig. 5.7(g-h)). We calibrate the axial position of the SLM
by using a shearing interferometer in front of the camera plane while aligning the system.
The tilt position of the SLM is verified by placing a pinhole at the center of the 300 mm
Fourier transform lens and ensuring the reflected light from the SLM returns through the
pinhole.

Finally, we verify the SLM displayed phase by capturing FPM datasets of the phase
USAF target with a single phase mask of each type (i.e., pixel, Zernike, and defocus) across
all images (Fig. 5.8). Each dataset was reconstructed using FPM to recover the complex
pupil function. We see that the recovered pupil phase matches the expected SLM displayed
phase in Fig. 5.8(a-b) when the system’s base pupil aberrations are subtracted. Additionally,
the FPM pupil reconstruction has reduced amplitude along sharp phase jumps in the phase
pattern (Fig. 5.8(c)), due to diffraction at the SLM’s surface and the SLM fringing field
effect [81, 146, 167, 189]. In order to reduce the effect of SLM diffraction, we smoothed
all experimental phase masks with a Gaussian filter, σ = 4, to maintain the equivalency
between the expected pupil phase, which is used in the reconstruction algorithm, and the
actual pupil phase used to physically encode the measurements. As seen in Fig. 5.8(c), this
is not adequate to remove all amplitude effects imparted by the SLM.

5.4.2 Results

We experimentally demonstrate the usefulness of the proposed method on benchmark ob-
jects, including polystyrene beads and a fabricated 3D refractive index object [243]. For all
results, we captured 100 images of the object for each reconstruction, with the highest angles
of illumination occurring at 0.685 NA, near the NA of the imaging objectives, which were
0.75 NA and 0.8 NA, respectively. We note, however, that the experimentally observed NA
of the uncorrected 0.8 NA, 50× objective in the presence of a #1.5 coverslip was 0.69 NA,
due to the objective’s extreme glass aberrations. This resulted in the functional limitation of
the NAillum,max = 0.685, as an identical objective lens was used as the illumination objective
in all presented results.

For the polystyrene bead reconstructions, we observe that the results with the pupil cod-
ing are of similar quality to the results without pupil coding when all images are used for the
reconstruction. However, when the maximum illumination NA is reduced to NAillum,max =
0.6, we see that the refractive index reconstruction without pupil coding suffers while the
pupil-coded datasets still obtain high-quality reconstructions. Conversely, for the facbricated
3D RI object, the reconstruction without pupil coding fails to recover the background RI
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even with all 100 images, since the maximum illumination NA (0.685 NA) is still 9% lower
than the imaging NA (0.75 NA) without pupil coding. These results are discussed in detail
below. Besides showcasing an avenue for reducing data requirements for 3D refractive in-
dex imaging, these results show that the proposed system could greatly simplify the current
physical limitations of 3D RI imaging systems by reducing the required maximum incident
angle at the sample plane.

Given that 3D refractive index is a quantity that cannot be directly measured, but
must be inferred through optimization procedures such as those presented in this work, it
is important to use benchmark objects to demonstrate the efficacy of 3D RI recovery. We
stress, however, that the presented method is object-dependent, so successful reconstruction
of these benchmark objects does not necessarily translate to successful reconstruction of
biological samples. The fabricated 3D cell phantom from [243] is especially useful because
it was fabricated using Nanoscribe photolithography to mimic typical biological cell features
and refractive index differences, and also includes lateral and axial resolution target features
to benchmark system performance. We therefore might expect successful reconstruction of
this cell phantom to indicate successful reconstruction of biological samples.

Each dataset of 100 images was captured sequentially, scanning through the angles of
illumination. For the aberration-corrected (NA 0.75 objective) and uncorrected glass aber-
ration (NA 0.8 objective) datasets without SLM pupil coding, the SLM displayed a uniform
phase of 0 radians, obtained using the calibrated SLM mapping shown in Fig. 5.7(b). For the
datasets with pupil coding (i.e. the defocus, Zernike, and pixel basis datasets), each ith pupil
coding mask was mapped to the SLM grey levels using the calibrated SLM mapping and
shifted according to the calibrated SLM alignment shift to align the center of the pupil to
the imaging axis before being displayed on the SLM. A control loop ensured that the mirror
controlling the angle of illumination was at the proper tilt position and that the SLM was
displaying the correct phase value before the intensity image was captured at the camera.

A separate dataset was captured with two blank #1.5 coverslips at the sample plane
to obtain data on the background intensity at each angle. This background dataset was
Gaussian filtered with σ = 4 to remove effects from dust on the blank coverslips. Before pro-
cessing, the captured datasets were divided by the Gaussian-smoothed background dataset
to remove bulk background effects from the processing pipeline.

Polystyrene Beads

8 µm diameter polystyrene beads (n = 1.596 at λ = 530 nm [239]) were suspended in Cargille
n = 1.564 immersion oil (n = 1.57 at λ = 530 nm), placed between two #1.5 coverslips, and
imaged with both the 0.75 NA, glass-corrected objective without pupil coding (Fig. 5.9(a))
and the 0.8 NA, uncorrected objective with dynamic pupil coding on the SLM (Fig. 5.9(b-d)).
In addition, the beads were imaged with the 0.8 NA, uncorrected objective without pupil
coding (Fig. 5.9(e)) to demonstrate the effect of using the imaging objective’s aberrations as
a static pupil coding element. The difference in the magnification and field of view between
the different objectives is apparent in Fig. 5.9.
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We reconstructed the 3D refractive index of the beads under four different illumination
conditions, with maximum illumination NA’s of 0.685, 0.6, 0.5, and 0.4 NA, respectively, to
test performance. All reconstructions used the prior P that the 3D RI reconstruction was
purely real and strictly greater than the background RI n = 1.57. The results without SLM
coding have high refractive index for the NAillum,max = 0.685 illumination condition, but the
reconstruction degrades as the maximum illumination NA decreases. In particular, the center
of the bead becomes much darker without pupil coding under limited illumination conditions,
as the low spatial frequencies are not reconstructed. Conversely, both the dynamically pupil-
coded and glass-aberrated results maintain the flat bead RI structure across all illumination
angle conditions, even when NAillum,max = 0.4. We note that the bead refractive index value
reconstructed by the 0.8 NA system is lower than expected (n ≈ 1.58), but that this value
is consistent across reconstructions.

We notice also that the axial bead extent is larger for the 0.8 NA system; this is likely
due to the NA of the system being functionally restricted to ≈ 0.69 by the objective’s glass
aberrations from empirical observation. Ideally, the 0.75 NA imaging objective system would
have used a larger maximum illumination NA than functionally available in this system
(NAillum,max = 0.685, which is 91% of the imaging objective’s 0.7 NA), but was limited by
experimental constraints. The decent reconstruction with the 0.75 NA imaging objective
without SLM coding at NAillum,max = 0.685 is therefore partially due to the strong prior
constraint that the object is purely real and strictly greater than the background RI.

Fabricated 3D Cell Phantom

A fabricated refractive index cell phantom target [243] was placed between two #1.5 cov-
erslips with Cargille n = 1.52 immersion oil (n = 1.5247 at λ = 530 nm). We expect the
unexposed USAF lines to be n = 1.5241, the nucleus background to be n = 1.5353, and
the cell body and nucleoli to be n = 1.5476 at λ = 530 nm. We again imaged with both
the 0.75 NA, glass-corrected objective without pupil coding (Fig. 5.10(a)) and the 0.8 NA,
uncorrected objective with dynamic pupil coding on the SLM (Fig. 5.10(b-d)) and without
pupil coding, to demonstrate the effect of the objective’s glass aberrations (Fig. 5.10(e)).

We reconstructed with the same range of limited illumination conditions described above,
with maximum illumination NA’s of 0.685, 0.6, 0.5, and 0.4 NA. We did not use any regular-
ization in the reconstruction. Since we did not use prior constraints, the 0.75 NA objective
system without pupil coding is unable to reconstruct the object’s background RI values even
at the highest possible experimental angle of illumination, NAillum,max = 0.685, as seen in
Fig. 5.10(a). While the high-spatial frequency cell features are reconstructed, the low-spatial
frequencies are not reconstructed without pupil coding, showing how reliant intensity-only
ODT systems without pupil coding are on high-NA illumination angles for good-quality re-
constructions. Conversely, the results with pupil coding (Fig. 5.10(b-d)) show high-quality,
flat reconstructions of the cell background and features, as expected for maximum illumina-
tion NA’s of 0.685, 0.6, and 0.5. At maximum illumination NA 0.4, the amount of data is
decreased to 37 images and so reconstruction instabilities occur, as in the case of the Zernike
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Figure 5.9: Reconstruction of polystyrene beads shows improved reconstructions for limited
NA illumination for defocus, zernike, and pupil coding (b-d) over no coding, no aberration
case (a). Additional reconstructions using the imaging objective’s extreme glass aberrations
(e) also show good-quality reconstructions. Regularization was applied to enforce that O
was purely real and strictly greater than the background RI.
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coding results. Similarly, the results with the imaging objective’s glass aberrations providing
a static, single pupil coding element show decent reconstructions across all angles of illumi-
nation. However, the background is not flat in the NAillum,max = 0.685 case, exhibiting a
high-valued ring around the edge of the cell, and the background RI value is reduced in
the NAillum,max = 0.4 case. Across results, the axial extent of the object increases as the
maximum illuminaton NA decreases, due to reduced axial information through the system.
In all cases, the highest resolution lines at 300 nm can be discerned. These results show that
the proposed pupil-coded intensity ODT system is much more robust to limited illumination
angles, allowing for easier-to-use imaging systems with less physical constraints.

Figure 5.10: Reconstruction of calibration phase object across different maximum angles of
illumination for (a) no SLM coding with a glass-corrected objective, dynamic SLM coding
with (b) defocus, (c) Zernike, and (d) pixel bases, and (e) no SLM coding with an uncor-
rected objective, exhibiting strong aberrations that also exhibit a pupil-coding effect. No
regularization was used for the reconstruction.
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5.5 Analysis

Due to the nonlinear and nonconvex nature of the multiple-scattering 3D RI imaging prob-
lem, it is difficult to theoretically analyze improvements in 3D RI reconstructions under the
proposed system. In this section, we therefore present an analysis of a linearized form of
the 3D RI imaging problem, which uses a single-scattering Born approximation rather than
the multislice method used in the reconstructions presented above. We also discuss a more
general spatial entropy analysis that could be used as a measure of dataset measurement
diversity across different imaging system designs.

Overall, we theorize that the improvement in the proposed system is provided by increased
transfer of low spatial frequency phase information into the measured intensity images. This
is achieved because the pupil coding couples different parts of the scattering electric field
phase into the electric field amplitude across all angles, which is then measured in the
intensity images at the camera. We thus expect the measured intensity image Ii with pupil
coding to include phase information from electric field ui that would not be captured without
pupil coding. This is similar to the analysis of phase diversity methods [72, 92, 147], which
shows that imaging with different phase delays in the measurement path breaks the ambiguity
of intensity measurements with the introduction of additional phase information.

However, we note that the phase encoding of an arbitrary pupil function is not the only
mechanism for the proposed system’s improvement. If it were, we would expect that imag-
ing with two distinct defocus masks across all illumination angles would provide an equal
reconstruction improvement as having a different random mask for each illumination angle.
We see in Fig. 5.6, however, that at least 5 distinct defocus masks are needed for recon-
struction improvement from pupil coding. Moreover, this theory also fails to explain why,
under the Zernike and pixel coding bases, only one distinct pupil phase mask is needed for
the reconstruction improvement, as seen in simulation in Fig. 5.6 and verified in experiment
in Fig. 5.10(e) and Fig.-5.9(e).

We theorize that the diversity of the phase encoding across images is important for the
success of the proposed system. We explore this through a transfer function weight matrix
analysis and a spatial entropy metric of measured data under the proposed system.

5.5.1 Transfer Function Weight Matrix Analysis

While the 3D RI imaging problem is nonconvex, making it difficult to analyze, the choice of
forward light scattering model S(·) can range from linear forward models, such as the Born
single scattering approximation, to nonlinear models, such as the multislice algorithm. As
noted above, we choose in this chapter to use the multislice algorithm in our reconstructions,
as this allows for more complicated objects to be reconstructed. However, in order to analyze
the usefulness of random phase coding in 3D RI imaging, we find it useful to turn to a linear,
single-scattering Born approximation [18, 29, 30, 142, 217] to better understand why random-
phase encoded measurements give simulated and experimental reconstruction improvements.
While the change in forward light scattering models means the analysis below does not
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Figure 5.11: A transfer function weight matrix reveals the measurement system’s frequency
space weighting. (a) Example complex transfer functions Hre and Him calculated under a
single-scattering Born approximation for a random Zernike pupil phase at an off-axis angle of
illumination. (b) Weight matrix W at the focal plane for 60 images (maximum illumination
NA 0.565) across pupil coding types. Metric D across axial planes is displayed for each
dataset. W shows how the introduction of pupil coding weights the low spatial frequencies
in the measurements much higher than the case with no pupil coding. This is true even with
a single, aberration-induced pupil code. (c) Radial average of W (laterally), displayed across
axial planes for all pupil coding types under the low-angle, maximum NA 0.565, 60 image
measurement condition. Pupil coding introduces low spatial frequency coverage across axial
planes. (d) Radial average of W for z = 0 across different illumination angle conditions. As
the maximum illumination angle nears the NA of the imaging objective, the traditional, no
pupil coding system includes low spatial frequency weighting. At all measurement conditions
shown, the low spatial frequency weighting is better under the proposed, pupil-coded system.
(e) Higher D values correspond to lower RMSE from filtered ground truth for simulated
datasets across different numbers of distinct pupil coding masks.
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capture any multiple-scattering phenomena in the system, the single-scattering light makes
up a large part measured signal even for the multislice model for the presented samples.

We refer to the formulations in [29, 30, 142] which utilize the Born approximation to the
Helmholtz equation to model the 3D scattering of light through a volume with scattering
potential V (r). In short, this formulation allows us to write the linear process of light
scattering through the sample volume using real and imaginary transfer function matrices,
Hre(k) andHim(k), which operate on the real and imaginary parts of the 3D Fourier spectrum
of the scattering potential, as denoted by:

Ĩi(k) = Hre, i(k)Ṽre(k) +Him, i(k)Ṽim(k) (5.12)

where Ĩi(k) is the Fourier spectrum of the measured intensity image. Given the angle of
illumination, objective pupil support P̃ (k) and applied SLM pupil mask M̃i = exp(jφi(k)),
we can calculate the transfer functions via
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where Sflip,i contains a Dirac delta at the conjugate location of the illumination angle at
(kx,i, ky,i), as given in [29, 30].

We follow the formulation in [142], which defines an overall transfer matrix

H =

Hre[1, 1] . . . Hre[qz, 1] Him[1, 1] . . . Him[qz, 1]
...

. . .
...

...
. . .

...
Hre[1, N ] . . . Hre[qz, N ] Him[1, N ] . . . Him[qz, N ]

 (5.13)

containing the real and imaginary transfer functions for q = 1 . . . qz z planes and i = 1 . . . N
images. Following from the work in [142], the SVD of H[q], the system transfer function for
each axial plane, renders a weight matrix W given by:

W [q] =

(∑
i

|Hre[q, i]|2
)(∑
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|Him[q, i]|2
)

−
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H∗re[q, i]Him[q, i]
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Hre[q, i]H
∗
im[q, i]

)
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Figure 5.12: Transfer function weight matrix analysis shows that the primary pupil-coding
improvement of objective glass aberrations are due to high spherical aberrations. The focal
plane weight matrix W and radial average of W across depth are shown for a system with
60 images with NAillum,max = 0.565 and (a) no pupil coding and (b) glass aberrations
experimentally derived from an uncorrected objective lens, as well as the (c) the spherical
component, (d) defocus component, and (e) all other components of the glass aberrations.
The radial average of W at the focal plane for (f) NAillum,max = 0.7 and (g) NAillum,max =
0.565 show that the high spherical aberration is the primary cause for increased low spatial
frequency weighting observed in measurements with an uncorrected objective lens.

where q indexes into axial position and i indexes image number. W is related to the Tikhonov
regularization weighting factor in 3D differential phase contrast algorithms [29, 30, 142, 217]
and describes the relative weighting of the different Fourier space regions by the transfer
functions of the imaging system. Broadly speaking, the spatial frequencies with higher
values in W have increased weighting across all measured images captured by the imaging
system. It does not strictly match measured information, but rather shows what regions of
Fourier space are relatively well-represented by the measurement system. We adopt a similar
metric D to that used in [142], defined as

D =

∑
W |W≥α∑
W |W<α

(5.14)

to evaluate the weighting W across all available regions of Fourier space.
The weight matrix W at the focal plane across the five different measurement systems



CHAPTER 5. MEASUREMENT DIVERSITY FOR IMPROVED 3D RI IMAGING 100

under consideration is shown in Fig. 5.11(b) for a low-angle, limited illumination condition
(60 images, with maximum illumination NA 0.565) for a 0.8 NA, 50× imaging objective
lens. We see that under this limited illumination condition, the system without pupil coding
resembles a wide donut, where the low-spatial frequency components are not well-represented
in the system measurements. This matches previous research in LED array pattern design
for phase imaging, which finds that low-spatial frequency phase information is best captured
in high-angle measurements, with the angle of illumination near the NA of the imaging
objective [64, 116, 216]. However, when we include random pupil coding, much of the
low-spatial frequency region has increased weighting. This is also true for the single-mask
Zernike case where we use the objective aberrations to directly provide pupil coding, as seen
in Fig. 5.12. Subsequently, the D metric is higher under the proposed system with pupil
coding, showing that the pupil coding provides better weighting in the Fourier domain in all
available regions.

Given that the W matrices are reasonably radially symmetric, we present the lateral
radial average of W across all z positions for comparison in Fig. 5.11(c). We see that the
proposed pupil coding system exhibits improved weighting of low spatial frequency compo-
nents across all z positions. We compare the radial average of the focal plane W (at z = 0) in
Fig. 5.11(d) for different illumination conditions. We see that for the high-angle illumination
condition (100 images, maximum illumination NA 0.7), the low-spatial frequency weighting
is improved for the classic, no-coding ODT system. As the maximum angle of illumination
drops, so too does the low-spatial frequency weighting. However, for the proposed system
with pupil coding, the low-spatial frequency weighting is high even with very low angles
of illumination. In Fig. 5.11(e), we see that higher values of metric D is related to lower
reconstruction RMSE from the NA-filtered ground truth for the simulated multislice-based
reconstructions presented in Fig. 5.6, showing that the D metric and transfer function anal-
ysis is useful for predicting improved multislice-based 3D RI reconstructions. This analysis
matches our experimentally-derived observations that by simultaneously scanning illumina-
tion angle and randomly phase coding at the Fourier transform plane, we can better re-
construct low-spatial frequency 3D phase information even with limited illumination angles,
leading to large experimental improvements.

We note that the improvement in the single-Zernike phase aberration directly provided by
the objective lens glass aberrations is driven by the large spherical aberration component, as
seen in Fig. 5.12. This relates to our argument that the diversity of the phase coding across
angles of illumination is what matters to improve results. When we calculate the weight
matrix W for the limited illumination case for the defocus-only component of the objective
aberration, we see some improvement in low spatial frequency weighting. However, this
is far surpassed by the improvement in low spatial frequencies in W for the spherical-only
component. By deconstructing the calculation of the weight matrix W in these two cases
(Fig. 5.13), we can begin to uncover how phase coding patterns result in improved low-
frequency weightings. We view the components of the focal plane weight matrix for the first
10 measurements with the lowest illumination angles to build intuition. First of all, the term



CHAPTER 5. MEASUREMENT DIVERSITY FOR IMPROVED 3D RI IMAGING 101

Figure 5.13: Transfer function analysis shows encoding of diverse phase information with
well-chosen pupil coding. Components of the transfer function W matrix are shown for the
10 images with the lowest illumination NA. (a) With no pupil coding, the phase transfer
function Hre is low-valued for low spatial frequencies, resulting in low values for the final
W in the low spatial frequencies. (b) With a single defocus pupil code across illumination
angles, both the phase and amplitude transfer functions have high amplitudes. However,
a lack of diversity in this phase encoding means w1 and w2 are identical in the low spatial
frequencies, resulting in low values for the final W in this region. (c) With a single spherical
aberration, diverse phase information is measured by the system, resulting in a W with high
values for low spatial frequencies.

given by

w1 =

(∑
i

|Hre[q, i]|2
)(∑

i

|Him[q, i]|2
)

(5.15)

must have low-spatial frequency content in both the
∑
|Hre|2 and

∑
|Him|2 components. In

the no-coding case, we see that while the
∑
|Him|2 term (referred to in [29] as the absorption

transfer function) has low-spatial frequency content, the
∑
|Hre|2 (the phase transfer func-

tion) does not. Therefore, when the multiplication of the two terms occurs, the low spatial
frequency weighting is near zero for the first term, as seen in Fig. 5.13(a). However, when we
introduce phase coding, we see that both transfer function terms have high values in the low
spatial frequency regions (Fig. 5.13(b-c)). This is related to the intuition that pupil coding
couples phase information into the intensity measurements.

However, this cannot be the only improvement required, otherwise we would expect the
defocus phase coding to prove as effective as spherical phase coding (which is proven false in
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Fig. 5.12). We must also consider the second, cross-term in the calculation of W , given by

w2 =

(∑
i

H∗re[q, i]Him[q, i]

)(∑
i

Hre[q, i]H
∗
im[q, i]

)
(5.16)

which is subtracted from the first term w1. We want this term to be as low-valued as
possible, suggesting that the pupil phase should be incoherent between measurements in
the low-spatial frequency regions around the object spectrum’s DC term, which is scanned
across the pupil plane by the changing angle of illumination. We find that in the defocus-
only phase encoded case, the low-spatial frequency phase term is similar across illumina-
tion angles. Thus, the second, cross-term w2 is high-valued in the low-spatial frequencies,
which results in lower overal low-spatial frequency weighting in W when subtracted from
the first term (Fig. 5.13(b)). However, for the spherical-only phase encoded case, the low
frequency terms are dissimilar across angles of illumination, even at low NA. Thus, this
cross-term is low-valued, resulting in a high-valued W matrix in the low-spatial frequency
regions (Fig. 5.13(c)).

We can understand this result by visualizing the scanning of the electric field spectrum
across the pupil coding plane. In the single-mask defocus-only case with a single mask, the
coding does not change much across low-NA illumination angles, so the phase information
coupled into the intensity measurements is roughly the same across all images. However,
in the single-mask spherical-only case, the spherical coding varies a large amount across
even low-NA illumination angles. Therefore, as the electric field spectrum is scanned across
low-NA angles, the modulation at each angle by the spherical aberration phase is incoher-
ent across measurements, especially when the spherical aberration coefficient is large, as
in the presented results. The measurements will thus have diverse phase information, and
will therefore collectively better weight low spatial frequencies across measurements. This
intuition would suggest that a single random pixel or large-coefficient random Zernike mask,
which have large variation in all parts of the pupil plane, would also perform well as pupil
coding bases with a sufficiently diverse single mask, which matches the simulated results
presented in Fig. 5.6 and the experimental results presented in Fig. 5.9-5.10.

Transfer function analysis builds shows that the proposed pupil-coded intensity ODT sys-
tem has increased measurement of diverse phase information, leading to improved recovery
of 3D RI low-spatial frequency components. Though the weight matrix W does not directly
apply to the multislice-based reconstruction algorithm as it does to 3D differential phase
contrast imaging, the presented transfer function analysis matches the multislice-based sim-
ulated and experimental results, giving confidence applicability of the analysis framework.
This transfer function analysis could be used in future work to explore further improvements
to 3D RI measurement systems.

5.5.2 Spatial Entropy Metric for Measurement Diversity

A more general way to approach the analysis of the proposed system is through the lens of
measurement diversity. Phase diversity systems have been mathematically shown to break
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Figure 5.14: Spatial entropy across measurements is used to calculate measurement diver-
sity. Image spatial entropy across illumination angle for (a) simulated 40 cell cluster, (b)
experimental polystyrene beads, and (c) experimental fabricated phase object. In all cases,
we see that the traditional, no-coding data has the lowest spatial entropy, while the pupil-
coded and glass-aberrated data have much higher spatial entropy, which increases as the
image’s illumination angle increases. (d) Average spatial entropy across number of distinct
masks used for each pupil coding basis. (e) Average spatial entropy for simulated datasets
is compared to NA-filtered ground truth under a limited, low-angle illumination condition,
showing that higher average spatial entropy relates to lower RMSE, with some exceptions.
(f) Similarly, average spatial entropy is related positively with the D metric calculated from
the transfer function weight matrix W . While D can only be calculated theoretically, aver-
age spatial entropy is calculated directly from measured data, so could be used to compare
measurement diversity across imaging systems.

the ambiguity of intensity-only measurements when recovering wavefront phase information
by introducing diverse phase delays between measurements [72, 92, 147]. A related concept
is random encoding in compressed sensing systems, which guarantee recovery at sub-Nyquist
sampling rates for sparse systems with incoherent (often random) measurement systems [12,
23, 55, 112, 208, 230]. These concepts argue for diverse measurements in optimization
systems, and suggest that using random coefficients on the presented pupil coding bases could
be useful for pupil-coded intensity ODT. We have shown heuristically that the measurements
obtained under the proposed system with random pupil coding are more diverse (i.e., have
higher contrast measurements) than measurements measured without pupil coding. We
here present an information-theoretic spatial entropy metric to quantify and compare this
measurement diversity across datasets.

Information-theoretic entropy can be thought of as a generalized standard deviation



CHAPTER 5. MEASUREMENT DIVERSITY FOR IMPROVED 3D RI IMAGING 104

calculation that can be justly compared across all types of probability function shapes.5 If
we calculate the histogram of all pixel values across h bins as histh(Ii) in a single background-
normalized measured image Ii, we can calculate a proxy to the probability mass function
governing the distribution of pixel values in the image as

ph =
histh(Ii)∑
h histh(Ii)

. (5.17)

We term this the spatial probability distribution of pixels, since it describes the variation
of pixels in the spatial domain (i.e., inside a single image, rather than across images). We
calculate the spatial entropy for the ith image as

Hentropy = −
∑
h

ph log ph. (5.18)

Using this basic calculation of image statistics, we can compare the measurement diver-
sity across different imaging systems. In Fig. 5.14(a-c), we see that pupil coding provides
higher spatial entropy, and therefore higher contrast, measurements than the traditional
angle-scanning-only ODT system across different types of samples in both simulation and
experiment. We see in Fig. 5.14(d-f) how this metric relates to reconstruction RMSE and
transfer function weight matrix D metric to verify its usefulness as a experimental measure
of measurement diversity, all based on the simulated reconstructions with different numbers
of distinct pupil coding masks described in Sec. 5.3.5. We observe that increased average
spatial entropy of the measurements is related to decreased reconstruction RMSE and in-
creased weight metric D metric, suggesting that average spatial entropy may be a good proxy
function to evaluate a system’s measurement diversity and related reconstruction efficacy.

Theoretically speaking, a measure of pointwise mutual information would be more di-
rectly useful in measuring the information content of the measured images to determine
which measurements are more useful for reconstruction. However, this measure is compu-
tationally untenable to calculate. Conversely, spatial entropy is simple to calculate for any
dataset, but is a less accurate measure of diverse information content. Increased spatial en-
tropy might as easily come from increased noise as increased information content about the
object. For example, we can see that the measurements for random defocus coding with two
distinct masks has high spatial entropy in Fig. 5.14(d) but also high reconstruction error in
Fig. 5.14(e). While in general higher spatial entropy correlates with increased measurement
diversity, and therefore better reconstructions, it also correlates to higher noise, and so is
not a good proxy for measurement diversity in all cases. Thus, spatial entropy should only
be compared across similar noise conditions if this metric is used to compare measurement
systems.

5Whereas the standard deviation is only applicable to Gaussian distributions.
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5.6 Conclusion

In this chapter, we have presented a novel 3D RI imaging framework called pupil-coded
intensity ODT which utilizes joint plane wave illumination angle-scanning and detection-
side pupil coding. We have shown in both simulation and experiment that introducing pupil
coding improves 3D RI imaging reconstructions under low-angle, limited illumination and
limited computation conditions due to the increase in diverse phase encoding in the intensity
measurements. This improvement has several practical system-level implications which could
be used to make high-resolution 3D RI imaging systems easier to use in real-world settings.

While 3D RI imaging is a promising imaging technique with a wide array of applications,
we are only beginning to understand the best way to measure 3D RI information. When
determining what measurements are optimal, we must both consider reconstruction accuracy
and stability as well as data requirements, imaging speed, and computation time; practical
optical system complexity and constraints; and availability of robust calibration. We have
shown in simulation and experiment that the proposed system encodes more diverse phase
information in each measurement, thus allowing for stable 3D RI reconstructions with less
measured data. This reduced data requirement leads to increased imaging speed and de-
creased computation time, since fewer measurements need to be measured and used in the
optimization algorithm. Additionally, we have shown that the proposed system increases
the low-spatial frequency content across measurements, which leads to better convergence
to ground truth 3D RI in fewer iterations, also reducing required computation time for
high-quality results.

While practical optical system constraints are necessarily system-specific, we find the
proposed system to be a promising direction for practical real-world 3D RI imaging systems.
3D RI imaging systems that utilize illumination angle scanning to collect 3D information are
less complicated than systems that utilize sample rotation, which either require the imaging
system to rotate around the sample or the sample to be manipulated with optical tweez-
ers [80] or placed on a minutely controlled object like a pipette tip [27], which limits the
samples that can be imaged. However, high-resolution angle-scanning 3D RI imaging sys-
tems require both high-NA illumination and detection objective lenses located on either side
of the sample, which results in a very small working distance between the two lenses, making
nonexpert use of the system infeasible. Under the proposed system, the highest angle of
illumination no longer needs to be near the NA of the imaging objective for high-quality
reconstructions, allowing the illumination-side objective to be a lower cost, longer working
distance, low-NA objective. The reduced constraint on the maximum NA of illumination
thus translates into greater ease in the design, building, and use of an angle-scanned 3D
RI imaging system. In addition, our system utilizes a non-interferometric system, encoding
phase information into intensity measurements that is directly processed by the optimiza-
tion algorithm, also resulting in reduced system complexity by eliminating the need for an
interferometric reference arm.

The downside of the proposed system is the inclusion of a phase spatial light modula-
tor (SLM) in the conjugate Fourier plane of the imaging objective, which is used to create
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dynamic pupil phase coding. The SLM adds system complexity, increases system space re-
quirements, and requires more complex alignment and calibration steps. However, we have
shown in simulation and experiment that introducing a single well-chosen phase mask in the
Fourier plane is sufficient to increase the measurement diversity in an angle-scanning ODT
system. Under this finding, we have shown it is possible to improve the 3D RI reconstruc-
tions under the proposed system using only the glass-induced aberrations of an uncorrected
objective lens, given proper calibration procedures, simplifying the proposed system imple-
mentation greatly. An even more promising, as yet unexplored avenue would be to fabricate
a single, known phase mask to place in the optical path, thus eliminating the need for the
SLM while also including a known, pre-calibrated modulation element for the desired pupil
phase coding.

In addition to the proposed system improvements, we demonstrated the use of a transfer
function-based weight matrix analysis and spatial entropy metric to compare 3D RI imaging
methods. The transfer function weight matrix analysis drawn from work in 3D differential
phase contrast [29, 30, 142] shows how the proposed joint illumination- and detection-side
coding increases the weighting of low-spatial frequency components of the single-scattered
light due to diverse electric field phase encoding across all angles of illumination. The spa-
tial entropy metric was used to analyze simulated and experimental data, showing that the
measured images under the proposed system have measurably higher contrast than the tradi-
tional angle-scanning ODT system. In general, higher spatial entropy across measurements
was shown to correlate with increased measurement diversity and decreased reconstruction
error in simulated datasets. While spatial entropy can also indicate higher amounts of imag-
ing noise, this relationship between increased spatial entropy and lower reconstruction RMSE
suggests that spatial entropy could be used as a metric to optimize 3D RI reconstruction
across imaging systems, as long as datasets are correctly normalized for noise.

3D RI imaging is a promising imaging technique with a wide variety of applications
across biological research, as well as in improved scattering models of small organisms for
climate-related modeling. We have shown that by increasing the measurement diversity in
an angle-scanning tomography system, we can improve our 3D RI reconstructions in many
dimensions, which we hope will lead to increased usability of 3D RI imaging systems in the
future.
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Chapter 6

Machine Learning for Pupil-Coded 3D
Refractive Index Imaging

Computational imaging aims to jointly leverage the strengths of computation and optics,
suggesting a need to explore the intersection of these two fields. In the last few years, data-
driven approaches have been used for the joint optimization of optical and computational
parameters for computational imaging. In this chapter, we apply a data-driven, physics-
based machine learning algorithm to optimize experimental design for 3D refractive index
microscopic imaging. 3D refractive index imaging recovers quantitative structural informa-
tion about biological samples, and thus has the potential to be extremely useful for biological
imaging applications. However, it is both an experimentally and computationally difficult
problem to solve, since neither three-dimensional nor refractive index information can be
measured directly using available technology. 3D RI imaging therefore requires multiple,
diverse measurements of a sample to be captured, which are then synthesized with a com-
putational algorithm to reconstruct the sample’s volumetric refractive index distribution. In
Chapter 5, we introduced a novel 3D RI imaging system called pupil-coded intensity ODT,
which uses joint illumination- and detection-side coding to capture more diverse measure-
ments, leading to reduced imaging constraints and faster, more robust reconstructions. In
this chapter, we investigate the use of physics-based machine learning methods to find more
optimal ways to encode 3D RI information in captured images by optimizing the pupil coding
masks used in pupil-coded intensity ODT.1 We present simulated and experimental results
and apply a transfer function analysis on the learned pupil coding masks. We conclude that
the learned pupil coding masks under the proposed algorithm produce similar-quality results
to randomly-generated pupil coding masks.

While the presented learned pupil coding masks do not improve upon randomly-generated
masks, physics-based machine learning has improved imaging parameters for many other
computational imaging systems [51, 103, 102, 185]. These physics-based, data-driven opti-
mization algorithms are an exciting tool for computational imaging system design, as they

1Chapter 6 represents currently-unpublished work done in collaboration with Michael Kellman.
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allow direct joint optimization of both the imaging and computational system parameters.
However, there is no guarantee that the results produced from physics-based machine learned
design will necessarily improve upon previous imaging system parameters, especially if the
learning algorithm must be trained on simulated data, which is often the case. Care should
therefore be taken when using these resource-intensive algorithms.

6.1 Introduction

The goal at the heart of computational imaging is to leverage the joint strength of optical
and computational systems to image properties of interest in the most accurate, most robust,
easiest, and fastest manner with the least amount of data. Computational imaging generally
approaches imaging problems from a signal processing standpoint, treating the optical system
as an encoder of desired information and the computational algorithm as a decoder that
reconstructs the desired signal.

The choice of how to best encode and decode the desired information in an optical sys-
tem depends highly on the imaging application. Computational imaging system design has
either been made through the application of theoretical optical principles, human intuition
backed by empirical evidence, or optimization over reconstruction parameters or heuristic
metrics [12, 64, 140, 142, 181]. More recently, attention has been turned to the power of
data-driven approaches as a way to evaluate and optimize optical system designs for joint use
with computational reconstruction algorithms [51, 103, 102, 185]. This approach follows on
an explosion of computer vision machine learning in recent years, where large convolutional
neural networks are trained on image datasets to perform a wide array of tasks, beginning
with the revolutionary use of AlexNet for image classification in 2012 [110]. Similarly, in
computational imaging, these deep neural networks can be trained to perform reconstruc-
tion [120, 121, 145, 151, 229] or classification [87, 149] tasks using measured data from the
optical system as inputs. Neural networks have also been used to regularize the output of a
traditional reconstruction method by forming statistical image priors [5, 20], denoising [183],
and using the properties of untrained neural networks [19, 85]. However, applying neural
networks directly as the reconstruction method for computational imaging, while promising,
does not guarantee that a reconstruction will not hallucinate a reasonable result that is not
physically accurate, though methods of quantifying learning-based reconstruction accuracy
are beginning to be adopted [209, 228]. These deep learning networks would also require vast
training datasets in order to learn useful reconstructions. Large experimental datasets with
ground truth reconstructions do not currently exist for most microscopy applications, and
synthetic training data is of limited use, as it may not generalize to experimental datasets. In
addition, deep neural networks for direct reconstructions usually discard the physics-based
knowledge available about the system, instead learning a data-driven mapping between im-
age inputs and reconstruction outputs that are difficult for the human user to interrogate
and understand. This differs from traditional methods which are based strictly in the physics
of the problem at hand and may have mathematical reconstruction guarantees.
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Physics-based machine learning leverages many of the benefits of both machine learning
and traditional, physics-based reconstruction algorithms, allowing for data-driven optimiza-
tion of computational imaging systems [51, 87, 103, 102, 149, 185]. These methods typically
work by unrolling a fixed-iteration traditional, physics-based iterative optimization algo-
rithm, treating each iteration (i.e. gradient step) of the traditional algorithm as a layer in a
neural network. In this unrolled form, the raw input measurements are mapped through a
fixed number of optimization algorithm iterations to reconstruct the desired output. Unlike
in traditional reconstructions, however, the error between the reconstructed object and a
ground truth object can be backpropagated through the optimization algorithm to update
both imaging system and computational algorithm parameters for improved reconstructions.
This framework allows computational imaging to use both accurate physics-based modeling
and the statistics of real data to create better imaging system designs.

However, physics-based machine learning is a resource-intensive process, requiring large
amounts of GPU memory, long training times, and high energy consumption. Unlike deep
neural networks, unrolled algorithms cannot be easily parallelized, and so must usually fit
in the memory of a single GPU, which is currently practically limited to a memory footprint
of 10-16 Gigabytes. Since the unrolled algorithms directly process image data at every iter-
ation, the memory footprint of the algorithm can quickly grow. This is especially true for
3D reconstruction algorithms, where each gradient-based layer updates a memory-intensive
3D volume. Therefore, memory-efficient learning methods [70, 74, 104] have been devel-
oped, which selectively save certain parameters throughout the network in a method called
checkpointing, then recalculate the discarded parameters when needed, trading off memory
footprint for computational speed and complexity. These methods also selectively load data
into GPU memory for processing, which also trades memory footprint for processing time.

In this chapter, we apply physics-based machine learning to the pupil-coded intensity opti-
cal diffraction tomography (ODT) system proposed in Chapter 5 for improved 3D refractive
index (RI) imaging. In pupil-coded intensity ODT, joint illumination- and detection-side
coding is used to capture diverse measurements of thick biological samples. This data is pro-
cessed by a gradient-based optimization algorithm that reconstructs the sample’s volumetric
refractive index, revealing useful structural information about the sample without requiring
staining or fluorescent tagging. In pupil-coded intensity ODT, the coherent, plane wave illu-
mination is scanned through different angles while, simultaneously, the Fourier-space pupil
plane is simultaneously coded with phase masks. This joint illumination- and detection-side
coding encodes diverse phase information into the measured images, reducing imaging con-
straints and data requirements, as well as increasing computational reconstruction speed,
as it requires fewer iterations for good-quality 3D RI reconstructions. In this chapter, we
apply an unrolled, physics-based machine learning algorithm to this pupil-coded intensity
ODT system to investigate the efficacy of data-driven learning to improve the pupil coding
masks over those drawn from random coefficients. We use the MELD open source memory-
efficient learning kit developed by Kellman et al. [104] to allow us to apply physics-based
machine learning to 3D refractive index imaging, which would otherwise require an infeasible
amount of GPU memory. In this chapter, we compare the physics-based learned pupil coding
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masks to random pupil coding masks in simulation and experiment, and present a transfer
function-based analysis of the learned masks. We find that the learned and random pupil
coding masks perform equally well in simulation and experiment.

6.2 Methods

6.2.1 Pupil-Coded Intensity Optical Diffraction Tomography

Pupil-coded intensity ODT is a 3D refractive index imaging method that uses joint illumination-
and detection-side coding. In pupil-coded intensity ODT, a volumetric RI object O(r) is
illuminated sequentially by a coherent plane wave incident at different angles and simulta-
neously coded in the Fourier-space pupil plane, as seen in Fig. 6.1. This pupil coding might
be done dynamically using a spatial light modulator (SLM), or might involve a static, single
coding element, such as the use of native glass-based aberrations in an uncorrected objective
lens. The system’s ith intensity measurement is given by

Ii(r) = |F−1
{

F {Si(O(r))} P̃ (k)M̃i(k)
}
|2 (6.1)

where F {·} is the Fourier transform, r and k are image- and spatial frequency-space coordi-
nates, Si(·) is the forward light scattering operator, P̃ (k) is the pupil function of the imaging
system, and M̃i(k) is the ith pupil coding mask applied at the Fourier plane using the SLM.
We choose to use the multislice forward scattering operator [42] for Si(·) to account for thick
samples with multiple-scattering light. The refractive index volume O(r) is recovered using
an iterative optimization algorithm given by

Ô(r) = argminO(r)

∑
i

∥∥∥∥∣∣∣F−1
{

F {Si(O(r))} P̃ (k)M̃i(k)
}∣∣∣2 − Ii(r)

∥∥∥∥2

2

(6.2)

which seeks to minimize the difference between the modeled intensity given the current
volumetric RI estimate Ô(r) and the measured intensity Ii(r).

Combined illumination- and detection-side coding in pupil-coded intensity ODT increases
the diversity of phase information encoded into each measured image. This system thus re-
quires less data and less optimization algorithm iterations for good-quality 3D RI reconstruc-
tions. Additionally, this system discards the requirement that the maximum illumination
angle must be near the NA of the imaging objective for good results, which is necessary in
traditional, angle scanning-only intensity ODT. Pupil-coded intensity ODT makes the recon-
structions more robust and reduces the constraints on the imaging system by allowing the
maximum illumination angles to be smaller than the imaging objective NA. In Chapter 5, we
presented results from this system with pupil coding phase masks using random coefficients
on the defocus, Zernike polynomial, and pixel bases. In this chapter, we investigate the use
of physics-based machine learning to improve upon these results by optimizing the pupil
coding phase masks for improved reconstructions.
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Figure 6.1: Pupil-coded intensity ODT uses simultaneous illumination-side and detection-
side coding to increase measurement diversity for 3D RI imaging. A collimated LED beam is
angled by a 2D angle-scanning mirror and relayed through a tube lens (TL) and objective lens
(OL) to the sample plane. The sample-modulated light is detected by an illumination-side
objective lens assembly and passed through a linear polarizer (LP) and Fourier transform
lens (L1) to a spatial light modulator (SLM) at the pupil plane, which modulates the pupil
phase. The light is reflected, Fourier transformed at L1, and passed through a beamsplitter
(BS) to be imaged on the camera focal plane. The imaging objective lens pupil function
P̃ (k) is modeled in two ways: as ideal, aberration-free lens and with experimentally derived
glass-based aberrations.

6.2.2 Physics-Based Machine Learning Algorithm

In physics-based machine learning, a fixed-length optimization algorithm is unrolled to treat
every gradient step operation in the algorithm as a layer in a neural network. Certain
imaging system and computational reconstruction parameters are denoted in the algorithm as
learnable parameters, which are then updated by the algorithm to improve the reconstruction
quality based on a comparison to a ground truth object. The method is data-driven because
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Figure 6.2: Overview of physics-based machine learning algorithm. (a) Angled plane wave
illumination is scattered through a ground truth refractive index volume to produce N = 60
simulated electric fields ui(r). A limited illumination condition is used with NAillum,max =
0.565. (b) Each gradient stepG of the fixedM iteration physics-based optimization algorithm
is treated as a layer in a neural network. The electric fields ui(r) are filtered by the system
pupil P̃ (k) and learnable masks M̃i(k) to create simulated images Ii(r), with the ith image
initializing each Gm,i gradient step for each mth iteration. ωe represents noise and other
nonidealities in the system used to initialize the network. After each gradient step, the
reconstructed RI volume O(m,i) is updated. The RMSE between the final reconstructed
volume O(M,N) is backpropagated through the network to update the learnable masks M̃i(k).
This process is repeated for a set number of epochs to produce learned pupil masks.

it uses the properties of example data and reconstructions to optimize the system’s learnable
parameters. This process is limited by the need for a ground truth comparison object, which
is often difficult or impossible to obtain for experimental data. Therefore, simulated data is
often used for the machine learning training process, since the ground truth object is readily
available for simulated data.

To form the pupil-coded intensity ODT physics-based machine learning algorithm, we
unrolled Eq. 6.2 with a fixed number of M iterations, treating each gradient step Gm,i in
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the optimization algorithm as a layer in a neural network, as seen in Fig. 6.2. For a system
with N input images, the mth optimization algorithm iteration over the ith input image Ii
is associated with gradient step Gm,i, for a total of N ·M network layers. This algorithm
operates in the same way as the tradition gradient descent algorithm described in Eq. 6.2 in
that it takes input measured images Ii and system parameters (such as angles of illumination
NAi, system pupil function P̃ , and pupil coding masks M̃i) to reconstruct a 3D refractive
index volume O(r). This is beneficial, as the unrolled algorithm retains all of the important
physical models of both the optical system and light propagation that would be lost in a
typical deep learning algorithm. However, this unrolled algorithm is different from the tra-
ditional gradient descent optimization algorithm because it has a fixed number of iterations
and because it allows a loss function on the reconstructed volume to be backpropagated
through the system to optimize the system parameters for improved reconstructions. We
used this algorithm to update the pupil coding phase mask M̃i(k) = exp jφi(k) for each
image under a limited illumination angle condition with maximum illumination NA 0.565
for an imaging system with objective NA 0.8, which requires pupil coding for high-quality
3D RI reconstructions.

We separately investigated learning the pupil phase masks coefficients on the defocus,
Zernike polynomial, and pixel bases. For the defocus and Zernike bases, the pupil phase was
defined by the Zernike coefficients cp,i on the Zernike polynomials Zp(ρ, θ),

φzernike,i(k) =

pz−1∑
p=0

cp,iZp(ρ, θ), (6.3)

where ρ and θ are the polar coordinates, p is the linear Zernike index, and pz is the number
of Zernike polynomial modes used following the Zernike polynomial implementation given
in [224], as detailed in Chapter 5. For the defocus basis pupil functions, we used only the
p = 4 Zernike index, while for the Zernike basis pupils, we use the first pz = 15 Zernike
modes. For the defocus and Zernike basis phase masks, the Zernike coefficients cp,i were
denoted as the learnable parameters updated by the machine learning algorithm. Under
the pixel basis, the raw pixels of the pupil phase φpixel,i(k) were denoted as the learnable
parameters and were directly updated by the machine learning algorithm. The defocus-based
masks have the least degrees of freedom, as a single defocus value is optimized for each mask.
The Zernike-based masks have more degrees of freedom, with pz = 15 coefficients per mask,
while the pixel-based masks have the most degrees of freedom, with 7869 pixels inside the
pass-band of the imaging objective.

In order to increase the efficacy of the learned pupil phase masks when applied to the
experimental pupil-coded intensity ODT system, we additionally included experimental con-
straints in our physics-based machine learning algorithm. As seen in Fig. 6.1, we used a
phase-only LCOS SLM to create dynamic pupil coding in the experimental system. This
SLM required that the applied phase profile be smoothly varying to avoid fringing field ef-
fects [81, 146, 167, 189] and that the phase be within the modulation range of approximately
[0, 2π]. After each update step of the machine learning algorithm, we therefore 2π-wrapped
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the modeled pupil mask phase φi(k) and blurred it with a Gaussian blur kernel (σ = 1 pixel),
giving

M̃i(k) = exp j(mod(φi(k), 2π) ∗ g1(k)) (6.4)

where gσ(kx, ky) = 1
2πσ

e−
k2x+k

2
y

2σ2 and the mod(·, 2π) operator indicates that the phase has
been wrapped to range [0, 2π]. We note that we observed better results from the learning
algorithm in preliminary investigations without the Gaussian blurring, as blurring reduces
the high spatial frequency features of the masks.

6.2.3 Physics-Based Machine Learning Training Procedure

We optimized the pupil coding phase masks using simulated data, as ground truth data
does not exist experimentally for 3D RI imaging. Structured refractive index phantoms were
simulated with similar refractive index differences to typical biological cells [13], as seen in
Fig. 6.3(d). We simulated cell clusters of 5 to 6 spherical cells positioned using Poisson
disk sampling [22]. Each cell had a 10 µm diameter cell body (n = 1.015), a randomly
placed 4 µm diameter nucleus (n = 1.01), and ten randomly placed 1 µm diameter organelles
(n = 1.02), in a uniform background (n = 1.0). The cells were simulated with 0.065 µm
resolution. Following from previous work [103, 102], we used a single cell cluster object
Otrain(r) to train the system, with a second testing object Otest(r) to evaluate the efficacy
of the learning process without updating the learnable parameters. Since the objects in use
are high-dimensional and the algorithm is updating a handful of parameters, one object is
usually sufficient for good-quality results. We note that when more objects were used in the
training set, the learned masks did not change significantly.

The multislice (a.k.a. beam propagation) forward model [42] was used to simulate co-
herent plane-wave illumination through the phantom at illumination angles θi to produce
forward scattered electric fields ui(r) = Si(O(r)). The angle of illumination θi = (θx, θy) is
related to the illumination’s numerical aperture (NA) by the relation NA = n sin(θ), where
n is the background refractive index. We restricted the algorithm to N = 60 illumination
angles with max illumination NA of 0.565, or approximately 70% of the imaging objective’s
0.8 NA.

The forward scattered electric fields ui(r) across images were downsampled to 0.13 µm
resolution and given as inputs to the machine learning algorithm. Pre-computing the forward
scattered electric fields reduced the algorithm’s computational complexity and allowed the
initial forward scattering operation to be processed at a 2× pixel size compared to the
reconstruction algorithm, leading to a higher-fidelity forward scattering model. In each
iteration of the machine learning algorithm, the intensity fed into each layer was initialized
by

Ii(r) = |F−1
{

F {ui(r)} P̃ (k)M̃i(k)
}
|2 (6.5)

The images Ii(r) were designed to be 256× 256 pixels at 0.13 µm lateral pixel size, defining
a 33.28 µm×33.28 µm field of view. The axial pixel size was reduced to 0.3915 µm. The
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reconstructed object O(r) was therefore dimension 256 × 256 × 85 pixels. Given the high
memory footprint of 3D RI imaging and unrolled algorithms, we used the MELD open-source
memory-efficient learning kit [104] to enable this algorithm to fit on a 12 Gigabyte NVIDIA
Titan X GPU.

Figure 6.3: Final reconstructed RI volumes for the training and testing set for an (a) ideal,
noiseless system; (b) glass-aberrated, noiseless system; and (c) glass-aberrated system with
random SLM lateral shifts and additive Gaussian noise (σ = 0.001). The RMSE from the
(d) ground truth volumes are shown for each system across training epochs.
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We defined the imaging parameters of our simulated data based on our experimental
system, with a 0.8 NA, 50× imaging objective and a camera with pixel size 6.5 µm. We
trained the learned pupil coding masks under three different system configurations, as seen
in Fig. 6.3. In System 1, we simulated an ideal, noiseless system with a binary amplitude pupil
function P̃ (k) to simulate the pass-band of the imaging objective. In System 2, we simulated
a noiseless system with glass-induced aberrations in the pupil function P̃ (k) , based on the
aberrations present in our experimental uncorrected objective lens when imaging through a
0.17 mm thick #1.5 glass coverslip. In System 3, we simulated a glass-aberrated system with
Gaussian noise (σ = 0.001) added to each image Ii and SLM lateral position shifts of 1− 2
pixels, which changed randomly across training epochs. The two system pupil functions
used are shown in Fig. 6.1(b). The final training and testing set reconstructed volumes
O(M,N) for the last training epoch are shown in Fig. 6.3 for each of these cases, along with
the RMSE from the ground truth volume for each epoch. We can see from these results
that both the ideal (Fig. 6.3(a)) and glass-aberrated (Fig. 6.3(b)) systems show decreases
in RMSE for both the training and testing sets across all pupil coding bases through the
machine learning optimization algorithm. However, the random shifts of the SLM position
mean that the aberrated system with SLM shifts and additive noise (Fig. 6.3(c)) does not
have good-quality reconstructions for either the training or the testing set, even as the pupils
are updated.

6.3 Results

We present the learned pupil coding masks under the machine learning algorithm, as well
as simulation and experimental reconstructions using the learned pupil masks. Our results
indicate that the random coefficients on the different pupil coding bases perform as well as
the learned coefficients in simulation, and that the random coefficients produce better results
than the learned coefficients in experiment. This suggests that randomly chosen coefficients
are in general useful for the pupil-coded intensity ODT system, though further investigation
of the physics-based machine learning algorithm may prove useful to improve the learned
pupil mask results.

6.3.1 Learned Masks

We ran the physics-based machine learning algorithm with N = 60 illuminations and M = 25
iterations within the optimization algorithm, for a total of 900 neural network layers. In each
epoch, the unrolled algorithm was run to reconstruct the final layer’s reconstructed volume,
O(M,N), and the error was backpropagated to update the pupil coding masks M̃i for each ith

illumination. We ran the training algorithm for 15 epochs, when the learned masks appeared
to reach convergence. The Adam optimizer was used with a learning stepsize of 10 and a
gradient descent optimization stepsize of α = 0.0001. The system was configured for a 0.8
NA, 50× objective lens. All masks and associated coefficients were initialized with a flat
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Figure 6.4: Map of learned masks across pupil bases for ideal, noiseless system and aberrated
system with noise and SLM shifts. Each mask is displayed at the approximate location in
Fourier space as its corresponding angle of illumination.
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phase profile. For the defocus and Zernike bases, the Zernike coefficients for the defocus
index p = 4 and for the first 15 Zernike indices were updated by the algorithm, respectively.
These coefficients were then used to create the pupil phase masks M̃i = exp(jφi), which
were in turn used to create the simulated images Ii for the next training epoch. For the
pixel basis, the pixelated phase mask φi was updated by the algorithm directly. Given the
need to match experimental constraints of the SLM, after each epoch mask update step,
each mask’s phase φi was wrapped to be within [0, 2π] and smoothed with a Gaussian filter
with σ = 1 pixel. This allowed the masks to fit within the dynamic range of the SLM
and to avoid fringing field effects [81, 146, 167, 189] after the optimization. We note that
different experimental conditions will have different nonidealities that should be included
in the optimization algorithm in this way, and that results might improve if the Gaussian
blurring for the SLM could be avoided, allowing the trained masks to have sharper features.

For the ideal system (System 1), the system pupil function P̃ was set to be a binary
amplitude mask representing the lowpass filter of the objective lens (Fig 6.1(b)). For the
aberrated system (System 2), the system pupil function was set to be an experimentally-
derived pupil function from an uncorrected objective lens imaging through a 0.17 mm thick
glass #1.5 coverslip, which is primarily driven by spherical aberration, as seen in Fig. 6.1(b).
For the aberrated system with noise and SLM shifts (System 3), the same aberrated system
pupil function was used as in System 2 and random Gaussian noise with σ = 0.001 was added
to each image Ii before each training epoch. Additionally, the masks M̃i were shifted laterally
by a random shift (βx, βy) = round(N (µ = 0, σ = 1) in the creation of the simulated images Ii
while the known masks used inside the training algorithm were not shifted. This simulated
a relative shift between the experimental placement of the SLM and the estimated SLM
position in the reconstruction. The shift (βx, βy) was the same within each training epoch,
but varied randomly across epochs. The random additive Gaussian noise σ = 0.001 did not
appear to greatly affect the training process in separate tests not shown here. However, the
inclusion of glass-induced aberrations made large differences to the learned masks across all
pupil coding bases, and the random SLM shifts made a large difference in the pixel basis
learned masks. Given that the training was done on 256 × 256 pixel images with pixel size
0.13 µm, a single pixel shift of the SLM in the training process is the equivalent to a 7.6
pixel shift of the experimental SLM, or approximately 95 µm, which is entirely feasible for a
manually aligned experimental set-up.

The pupil coding masks learned through this training algorithm for the defocus, Zernike,
and pixel bases are shown in Fig. 6.4 for the ideal system (System 1) and aberrated system
with noise and SLM shifts (System 3). The learned coefficients for the defocus and Zernike
bases are shown for all three system configurations in Fig. 6.5. A combined plot of the pixel
basis pupil masks are also shown for each system in Fig. 6.5.

In general, we note that the coefficients and pixel coding amplitudes are much lower for
the ideal system (System 1) than for the two systems with glass aberrations (Systems 2-3)
across all coding bases. From Fig. 6.5, we see that the two systems with glass aberrations
produce very similar results for the noiseless case and the case with noise and random
SLM shifts for the defocus and Zernike bases, while the results for the pixel coding have
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Figure 6.5: Comparison of learned masks across the (a) defocus, (b) Zernike, and (c) pixel
pupil coding bases for the ideal system, aberrated system, and aberrated system with noise
and SLM shift. (a) The learned defocus distance in microns is displayed for each angle
of illumination, with the plotted circle size corresponding to absolute distance from focus
and color corresponding to defocus distance. (b) The learned Zernike coefficient weights are
displayed for each image. Coefficient values generally increase in magnitude as the image’s
illumination NA increases. (c) The learned pixel coding is averaged to create a composite
image, as each learned pattern is generally confined to a small area around the spectrum’s
angle of illumination-based shift. The learned coefficients for the ideal system are generally
lower magnitude than for the aberrated systems. The learned Zernike and defocus coefficients
are similar for the noiseless and noisy aberrated systems, while the learn pixel basis masks
differ across all modeled systems.
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slightly wider and more rounded features in the case with SLM shifts (System 3) than
without (System 2). This is due to the algorithm compensating for the random shifts in the
SLM position between training epochs. Since the defocus and Zernike bases already have
widespread structure, small shifts in the SLM location make less difference than in the pixel
basis case, where small shifts can lead to very different results.

For the defocus basis, we see in Fig. 6.5 that the images at low- and high-illumination
angles typically have larger amounts of defocus, while the middle-illumination angles have
smaller amounts of defocus. For the Zernike basis, we see that the defocus (p = 4), coma
(p = 7, 8), secondary astigmatism (p = 11, 13), and spherical (p = 12) components have the
largest magnitudes in all three systems. From Fig. 6.4, we can see how the Zernike basis
masks appear to rotate as the illumination changes, tracking the shifted object spectrum. In
the ideal system, the Zernike basis masks at the low- and middle-illumination angles have
lower coefficients and less phase-wrapping, while the high-angle masks generally exhibit high
coefficients and high phase-wrapping. In the aberrated system, only the middle-illumination
angles have lower coefficients, and both the low- and high-angles exhibit high coefficients
with high phase-wrapping. In both the defocus and Zernike cases, there is a diversity of low-
and high-coefficient masks in all modeled systems, demonstrating a need for diverse masks
across angle of illumination.

In the pixel basis masks, the learned masks are generally a flat π phase value except
in a local area around the mask’s corresponding angle of illumination. In this local area,
where the object spectrum’s DC term will be shifted by the angle of illumination, the phase
is modulated differently to produce higher contrast intensity images. Since the modulation
is confined to a local area, we can average all 60 masks to create a combined mask for
ease of viewing the resultant learned masks, as seen in Fig. 6.5. The dotted white line
represents the NA of the imaging objective. For the ideal system, the modulation phase has
smaller magnitude values than for the glass-aberrated systems. Seemingly random low-phase
speckles, similar to Zernike phase contrast imaging [122, 237], are apparent, especially at
mid-to-high illumination angles, with a fewer number of high-phase speckles. In the glass-
aberrated systems, the patterns show primarily low-phase speckles at low-illumination angles
and high-phase speckles at high-illumination angles. The features in the glass-aberrated
system with noise and random SLM shifts (System 3) have larger, smoother features in
general than the glass-aberrated system without noise (System 2), but otherwise exhibit
similar features.

6.3.2 Simulation Results

After the learned masks were obtained from the physics-based machine learning algorithm,
we tested them on larger simulated objects, reconstructing O(r) with a traditional, FISTA-
based optimization algorithm. A cell cluster volume was simulated with 10 spherical cells
positioned using Poisson disk sampling [22] inside a 33.28 µm cube. Each cell has a 10 µm
diameter cell body (n = 1.345), a randomly placed 4 µm diameter nucleus (n = 1.34), and
ten randomly placed 1 µm diameter organelles (n = 1.35), in a uniform aqueous background
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Figure 6.6: Simulated reconstruction results in the limited illumination condition with (a)
mask coefficients learned on an ideal, noiseless system, (b) mask coefficients learned on a
glass-aberrated system with noise and SLM shifts, (c) random coefficients, and (d) no pupil
coding, with NA-filtered and raw ground truth RI volumes for comparison. All learned and
random masks produce similar reconstruction results, and show great improvement over the
reconstruction without pupil coding.

(n = 1.33), as seen in Fig. 6.6(d). The multislice algorithm was used for the forward
propagation of angled light through the volume at 0.065 µm resolution. The resultant electric
fields were downsampled by a factor of 2 to a 0.13 µm resolution, to match the pixel size of a
dpixel = 6.5 µm camera with a 50× objective lens. The fields were then filtered by the system
pupil P̃ (k) and pupil coding masks M̃i(k) and the intensity images Ii(r) were taken at the
camera plane. This procedure was repeated for an empty volume with background n = 1.33
to produce background images Ibk,i(r), which were then divided out of the measured intensity
images Ii(r) to remove simulation artifacts and provide a uniform background across all
images. Random Gaussian noise with σ = 0.001 was added to each image. The simulations
were done under a limited illumination condition with 60 images and NAillum,max = 0.565
for a 0.8 NA, 50× imaging objective.

We performed the forward simulation for the learned defocus, Zernike, and pixel ba-
sis pupil masks from the three systems discussed above (ideal, glass-aberrated, and glass-
aberrated with noise and SLM shift). For each forward simulation, we reconstructed a 3D
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refractive index volume with a traditional, FISTA-based optimization algorithm. The re-
construction results for the ideal system (System 1) learned pupil masks and glass-aberrated
system with noise and SLM shift (System 3) pupil masks are shown in Fig. 6.6(a-b). Results
from the glass-aberrated system without noise (System 2) pupil masks are not shown, as
they are similar to results from System 1 and 3. We compared to simulations with random
coefficients drawn from the uniform random distribution on the same scale as the learned
coefficients (Fig. 6.6(c)) and for the case without pupil coding (Fig. 6.6(d)). All simula-
tions were done without glass-induced objective aberrations. The raw ground truth and
NA-filtered ground truth refractive index volumes are shown for comparison in Fig. 6.6(d).

Given the limited illumination condition, the reconstruction without pupil coding does
not produce good-quality results. Conversely, the results from all learned masks and all
random masks show high-quality reconstructions, with very little difference in reconstruction
quality across all sets of masks. This suggests that the learned coefficients and random
coefficients perform equally well for encoding greater amounts of diverse phase information
in the system’s measurements for improved 3D refractive index reconstructions.

6.3.3 Experimental Results

We tested the effectiveness of the learned pupil coding masks in an experimental setup
shown in Fig. 6.1. A λ = 530 nm wavelength LED is fiber-coupled into a 50 µm fiber, then
beam-expanded and collimated using a Nikon Plan Apochromatic 2×, 0.1 NA objective. A
dual-axis mirror mount with DC servo motors (Thorlabs Z812 with Kinesis brushed mo-
tor controller) is used to angle the collimated beam at a conjugate imaging plane. The
angled beam is relayed through the illumination-side objective (0.8 NA, 50×, working dis-
tance (w.d.) 1 mm Olympus M Plan Fluorite air objective) and 180 mm tube lens assembly
to illuminate the sample with a coherent, angled plane wave. The light is modulated by
the sample and imaged by an identical 0.8 NA, 50× objective lens and 180 mm tube lens
assembly. This objective has a long working distance, making it practically easier to use in
this dual-objective configuration. However, it is not corrected for imaging through glass and
therefore exhibits high glass-induced aberrations when imaging samples beneath a coverslip,
as in all experimental results shown here.

The light is relayed through a linear polarizer aligned to the modulation axis of the LCOS
spatial light modulator. A 300 mm lens Fourier transforms the light incident at the SLM’s
modulation plane, allowing pupil phase coding by the SLM (Hamamatsu X13138-01). The
light reflects from the back surface of the SLM and is Fourier transformed again by the
300 mm lens before being deflected by a beamsplitter to be imaged at the camera’s focal
plane.

We aligned and calibrated this experimental system in the same fashion as Sec. 5.4.1-
5.4.1. In addition, we had to ensure that the experimental angle of illumination matched
the angle of illumination used to produce the learned pupil masks, since the each learned
mask relies heavily on the corresponding angle of illumination, especially for masks on the
pixel and Zernike bases. In order to faithfully reproduce the desired angles of illumination
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Figure 6.7: Experimental results on a fabricated phase object in n = 1.4917 immersion oil
across three limited illumination conditions, with maximum illumination NA 0.565, 0.5, and
0.4, respectively. Results are similar for (a) mask coefficients learned on a glass-aberrated
system with noise and SLM shifts and (b) random coefficients. Results for (c) a glass-
aberrated system without SLM pupil coding exhibit more artifacts, but still show a decent
reconstruction. No regularization was used in the reconstruction.
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NAillum,desired, we first imaged a cheek cell (without a glass coverslip, to avoid the objective’s
aberrations) with an initial set of angled mirror voltages vinit and calibrated the correspond-
ing angles of illumination NAillum,init with the calibration described in [56]. We placed both
vectors in homogeneous coordinates

vH,init =

v(0,0)
init v

(0,1)
init ... v

(0,N)
init

v
(1,0)
init v
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to define the homographic transformation between mirror voltage and angle of illumination
given by

vH,init = C NAH,illum,init. (6.8)

The homography given by C was calculated from a least-squares fit and applied to the
desired illumination angles NAH,illum,desired to obtain the corresponding control voltages for
the mirror vH,desired. This process was iterated through twice to ensure that the proper
voltages were applied to obtain the correct angles of illumination. We additionally ensured
that the signal at the camera appeared to be modulated when the learned pixel basis masks
were in use, as the modulation area for the pixel-basis masks was small and located around
the angle of illumination-derived spectral shift in the Fourier plane. However, while we were
able to ensure that the angle of illumination was highly similar to that used in the training
algorithm, instabilities in the system and mirror control mean that the angle of illumination
varies slightly for each dataset, so we expect some error may have been introduced due to
small differences in the angle of illumination, as well as error in the SLM lateral positioning.
We present results for two objects: a fabricated refractive index phantom [243], shown in
Fig. 6.7, and a two-layer stack of 8 µm diameter polystyrene beads, shown in Fig. 6.8. All
learned results shown were captured using the defocus, Zernike, and pixel basis pupil masks
derived from the glass-aberrated system with noise and SLM shifts (System 3), as this
matches the experimental system parameters most closely. However, data was also captured
with the pupil masks created under the ideal system (System 1) and glass-aberrated, noiseless
system (System 2), with similar reconstruction results to those shown. We also imaged
with masks based on random coefficients chosen from the uniform random distribution.
Additionally, we imaged the samples without any dynamic SLM pupil coding, using instead
the native aberrations of the uncorrected objective lens to provide a static pupil coding.

The fabricated refractive index phantom developed by Ziemczonok et al. [243] was placed
between two 0.17 mm thick #1.5 glass coverslips with n = 1.488 Cargille immersion oil
(n = 1.4917 at λ = 530 nm). We expect the unexposed USAF lines to be n = 1.5241, the
nucleus background to be n = 1.5353, and the cell body and nucleoli to be n = 1.5476
at λ = 530 nm, representing a relatively large difference in refractive index between the
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Figure 6.8: Experimental results on a two-layer stack of 8 µm n = 1.596 polystyrene beads in
n = 1.57 immersion oil across three limited illumination conditions, with maximum illumina-
tion NA 0.565, 0.5, and 0.4, respectively. Results are similar for (a) mask coefficients learned
on a glass-aberrated system with noise and SLM shifts and (b) random coefficients, except-
ing the learned defocus coding, which shows poor results. Results for (c) a glass-aberrated
system without SLM pupil coding have a better reconstruction when NAillum,max = 0.565,
but exhibit a loss of low-spatial frequencies in the reconstruction for NAillum,max = 0.5 and
below. Regularization enforced that the reconstruction was purely real and had larger values
than the background.
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sample and background immersion oil. We reconstructed under three limited illumination
conditions without any regularization, with maximum illumination NA’s of 0.565, 0.5, and
0.4, as seen in Fig. 6.7. In all reconstructions, the expected phase object’s refractive indices
were not reproduced, due to the high mismatch with the background RI. However, the
relative refractive index across the sample was maintained, especially in the learned and
random reconstructions with maximum illumination NA’s of 0.565 and 0.5. In general,
the reconstruction quality is similar between the learned and random pupil masks. The
reconstructions without SLM pupil coding, using only the objective’s aberrations for pupil
coding, exhibit higher ringing artifacts and lose low-spatial frequency information as the
maximum illumination NA is decreased.

Two layers of 8 µm diameter polystyrene beads (n = 1.596 [239]) were immersed in
Cargille n = 1.564 immersion oil (n = 1.57 at λ = 530 nm) and placed between two #1.5
coverslips. The reconstruction algorithm used regularization to enforce prior knowledge
that the reconstructed volume was purely real and had larger values than the background
refractive index. We see in Fig. 6.8 that the learned and random pupil coding-based datasets
all reconstructed the two layers of beads well for the NAillum,max = 0.565 and NAillum,max =
0.5 limited illumination conditions, with the exception of the learned defocus pupil coding,
which did not provide good-quality reconstructions. The learned pixel coding and random
defocus, Zernike, and pixel coding datasets all reconstructed similar bead RI values for the
NAillum,max = 0.565 condition, with the glass-aberration coded dataset reconstructing the
highest bead RI, though none were close to the expected RI value of n = 1.596. However,
the glass-aberration-based dataset with no SLM pupil coding had significantly degraded
reconstructions for the NAillum,max = 0.5 and lower, as the low spatial frequencies of the
bead centers are not reconstructed. Overall, the random pupil coding appears to provide
the best reconstructions for the polystyrene bead sample.

6.4 Analysis

We compare the learned and random pupil coding masks using the transfer function weight
matrix analysis from Sec. 5.5.1. As seen in Fig. 6.9, both the learned and random pupil
coding masks promote the transfer of low-spatial frequencies into the measured images for
3D RI reconstruction under limited illumination conditions, improving on the case without
pupil coding. While the learned defocus and Zernike coding weight matrices W are more
uniform and have a slightly higher D metric value than their random counterparts, the
improvement is slight. Conversely, the learned pixel coding exhibits lower weighting and a
lower D metric value than its random pixel counterpart, though still transfers the low-spatial
frequencies through the imaging system well.

In both simulated results and the transfer function analysis, we have seen that the recon-
structions derived from learned pupil coding masks are of the same quality as random pupil
coding masks. This suggests that random coefficient-based pupil coding masks should be
used in pupil-coded intensity ODT instead of the learned masks presented here, to eliminate
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Figure 6.9: Transfer function analysis of learned and random pupil coding masks. The
transfer function weight matrix W at the focal plane and the radial average of W at each
z plane are shown for (a) learned masks and (b) random masks for N = 60 images under
limited illumination NA. (c) The radial average of the focal plane W is compared across
mask types for different limited illumination conditions. All masks support transfer of low
spatial frequencies into the measurements, even at very limited illumination NA.
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the need for the extra training and rigorous illumination angle alignment process required
by the learned pupil coding masks.

The experimental reconstructions with learned pupil coding masks can additionally be
worse quality than random pupil coding masks, as seen in Fig. 6.8. There are a few possible
causes for this reduction in reconstruction quality for the learned masks. First, the learned
masks rely upon rigorous illumination angle and SLM alignment, which is difficult to perform
experimentally. Second, the learned masks were defined on a much smaller scale than the
phase masks applied at the SLM surface and in the experimental reconstructions, since
the learning algorithm had to operate on a small enough volume to fit inside GPU memory.
Therefore, the masks were upsampled from 256×256 pixel images (pixel size 0.13 µm; Fourier
plane pixel size 0.024 µm−1) to be displayed on the 1024× 1280 pixel SLM surface (physical
pixel size 12.5 µm; Fourier plane pixel size 0.0031 µm−1; total upsampling factor 7.6×) and
for use in the reconstruction algorithm (500 × 500 pixel images; pixel size 0.13 µm; Fourier
plane pixel size 0.012 µm−1; total upsampling factor 1.95×). The upsampling process might
have created differences between the original learned mask and the pupil phase displayed at
the SLM, as well as in the reconstruction algorithm’s phase mask, creating model mismatch
that degrades reconstruction quality. In addition, while the original pupil phase masks were
Gaussian blurred with σ = 1, translating to a larger blur factor at the SLM plane, this
blurring might have been insufficient to avoid fringing field effects at the SLM, another
important source of model mismatch. More attention to the upsampling process might
reduce this source of model mismatch and improve experimental results with learned pupil
coding masks.

6.5 Conclusion

We have presented a physics-based machine learning algorithm that optimizes the dynamic
pupil coding masks for pupil-coded intensity ODT. We have presented learned pupil coding
masks for defocus, Zernike, and pixel bases across three system configurations. Simulated
results show that these learned pupil coding masks perform as well as random pupil coding
masks, and experimental results corroborate this finding, though show better performance
of the random pupil coding masks over learned masks in some cases. A transfer function
analysis reveals that the learned pupil coding masks have slight improvements over their
random counterparts in theory for the defocus and Zernike bases, but verify that the learned
and random pupil coding masks have similar performance for 3D refractive index imaging
using pupil-coded intensity ODT. These results suggest that random pupil coding masks
should be used instead of the presented learned pupil coding masks.

However, we believe there is great potential for further exploration of physics-based
machine learning system optimization for pupil-coded intensity ODT. There are many un-
explored avenues for investigation, including joint learning of the ideal illumination pattern
and pupil coding masks for 3D RI imaging. We note as well that the constraints introduced
by the experimental LCOS SLM may have effected the efficacy of the learned pupil coding
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masks. In particular, the limitation to smoothly varying phase values (to avoid fringing field
effects) within the modulation range [0, 2π] of the SLM meant that the learned masks were
constrained to low phase values without high-resolution features. In preliminary investiga-
tions without phase mask blurring, we observed more improvement in the learned masks over
the random masks in simulated reconstructions. If a better pupil coding mechanism could
be devised without the blurring requirement of the LCOS SLM, the learned pupil coding
might show more improvement over random pupil coding.

Another area where improvement is possible is by further reduction of the number of
images or reduction of the number of distinct pupil coding masks used across all images.
In particular, the native glass aberrations of an uncorrected objective are able to improve
the reconstruction of experimental objects in limited illumination conditions over corrected
objectives without pupil coding. Using the proposed machine learning algorithm to learn
optimal single pupil coding masks (or a small number of pupil coding masks) is a promising
avenue to pursue. This is particularly true since a single pupil coding mask such as a ground
glass plate could be fabricated specifically for 3D RI imaging and inserted in the imaging
system easily, getting rid of many of the constraints introduced by the spatial light modulator
for dynamic pupil coding.

Overall, physics-based machine learning presents an exciting new option for optimizing
computational imaging system parameters in a data-driven way. By combining the compu-
tational algorithm with experimental parameters, this method may be very useful in finding
new, unexpected imaging gains by optimizing optical and computational system parameters
for reconstruction quality. However, caution should also be taken when using these algo-
rithms, as they are resource-intensive, and may only provide equal performance to randomly
generated coefficients, as in the work presented here.
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Chapter 7

Conclusion

Computational imaging systems are in use across a wide variety of domains, from medi-
cal imaging systems such as CT, ultrasound, and MRI, to biological imaging, astronomical
imaging, and in consumer phone cameras. Computational imaging has a large design space
in which to leverage the power of both optical and computational systems, but designing
computational imaging systems for robust operation is not always straightforward. In this
dissertation, I have presented three methods for designing robust computational imaging sys-
tems, with a particular focus on 2D and 3D quantitative phase imaging systems. While the
presented algorithms and systems were specific to quantitative phase imaging, the presented
self-calibration, increased system measurement diversity, and physics-based data-driven sys-
tem design methods are applicable to computational imaging systems beyond quantitative
phase imaging.

In Chapter 3, I presented a self-calibration algorithm that efficiently calculates the illu-
mination angle of incident plane waves in a microscope system directly from measured data.
This self-calibration algorithm enables robust and simple calibration of coherent imaging
systems without requiring additional calibration steps, which has enabled novel microscope
systems to be used for FPM [4, 96, 173], intensity-only ODT [36], and aberration correction
methods [76]. Overall, self-calibration is a useful principle for designing robust computa-
tional imaging systems. By definition, self-calibrating algorithms retrieve important system
parameters directly from the measured data. This joint use of the measured data for calibra-
tion and reconstruction ensures that the retrieved calibration parameters are as accurate as
possible for each reconstruction. Pre-calibration procedures do not have this guarantee, as
system instabilities could create system misalignment before the measured data is captured.
In addition, self-calibration algorithms are easier to use, as they do not require additional
alignment or data capture steps beyond those routinely done in the capture of the measured
data. Therefore, it is useful to design computational imaging systems with the understand-
ing of how different system parameters might be self-calibrated in order to build more robust
systems.

In Chapter 5, I presented a novel pupil-coded intensity optical diffraction tomography
(ODT) 3D refractive index imaging system based on increased measurement diversity. By
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adding joint detection-side pupil-coding element to the traditional illumination-side coding of
ODT, pupil-coded intensity ODT measurements contained more diverse information about
the sample, leading to improved reconstructions. Through simulation and experimental
results, we found that the proposed method improved the robustness of 3D RI reconstructions
in limited-illumination and limited-computation conditions. We presented a transfer function
analysis that showed the increased coupling of diverse phase information into all measured
intensity images under the proposed system. This increased diverse phase information in
the measured images leads to a higher weighting of low-spatial frequency information in
the pupil-coded intensity ODT system, leading to more robust reconstructions and reduced
system constraints. Measurement diversity has also been shown to be important across
many other imaging systems, from phase diversity [72, 92, 147] and compressed sensing-
based imaging systems [12, 23, 55, 112, 208, 230], to the diverse data required for training
better machine learning algorithms [71]. Measurement diversity is a useful design principle
for computational imaging systems, as it encourages designers to think about how to reduce
the redundancy of measured data and introduce useful degrees of freedom into the imaging
system, potentially breaking through many of the trade-offs typically seen in traditional
optical systems.

Finally, in Chapter 6, I presented a physics-based machine learning algorithm that
used data-driven techniques to design the pupil-coding masks used in pupil-coded intensity
ODT. The presented learned pupil coding masks showed similar performance to randomly-
generated pupil coding masks in 3D RI imaging simulations and experiments, as well as
under a transfer function analysis. Despite this result, physics-based machine learning is
still a useful tool for exploring the joint optimization of optical and computational parame-
ters in computational imaging systems, and it has been successfully applied in a wide variety
of imaging systems [51, 103, 102, 185]. Care should be taken in using this tool, however, as
there is no guarantee that it will provide better imaging parameters, as in the work presented
here. As with all machine learning methods, it is additionally resource-intensive, requiring
large amounts of data, computation time, and energy.

In addition to these frameworks for robust computational imaging system design, I have
also presented practical advice for the building and operation of quantitative phase imaging
systems to aid the increased adoption of these systems. In Chapter 2, I gave an overview
of Fourier ptychographic microscopy (FPM) systems for high-resolution, wide field-of-view
2D quantitative phase imaging. This chapter included a description of illumination system
designs for angled, coherent illumination, which is applicable to both 2D FPM and 3D ODT
imaging systems. In addition, practical advice for FPM system design, reconstruction initial-
ization, background removal, and vignetting artifact mitigation were presented, alongside a
verification of joint system pupil recovery using FPM. In Chapter 4, I presented an overview
of intensity-only ODT systems for 3D refractive index imaging, including a comparison of
three forward light propagation models used for 3D reconstructions. I also gave practical
advice for the illumination system design and alignment for intensity-only ODT systems,
as well as a more generally applicable description of hardware synchronization techniques
for systems with many controllable hardware elements such as ODT. A comparison of field-
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based and intensity-based ODT reconstructions was also presented, showing that field-based
ODT measurements appear to encode similarly diverse phase information as the pupil-coded
intensity ODT system proposed in Chapter 5.

Throughout this work, I have demonstrated that by using the frameworks of algorithmic
self-calibration, increased system measurement diversity, and physics-based machine learning
for computational imaging system design, we can develop more robust quantitative phase
imaging systems that are practical for real-world use. Overall, I hope that the work pre-
sented in this dissertation will prove useful in the future design of more robust computational
imaging systems. Increased robustness of quantitative phase imaging microscopes is a par-
ticularly exciting goal, as it will allow for wide adoption of this useful imaging modality for
a wide range of biological research applications.
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[148] Paul Müller, Mirjam Schürmann, and Jochen Guck. The Theory of Diffraction To-
mography. 2016. arXiv: 1507.00466 [q-bio.QM].

[149] Alex Muthumbi et al. “Learned sensing: jointly optimized microscope hardware for
accurate image classification”. In: Biomed. Opt. Express 10.12 (Dec. 2019), pp. 6351–
6369. doi: 10.1364/BOE.10.006351. url: http://www.osapublishing.org/boe/
abstract.cfm?URI=boe-10-12-6351.

[150] Tan H Nguyen et al. “Gradient light interference microscopy for 3D imaging of un-
labeled specimens”. In: Nature Communications 8.1 (2017), p. 210. issn: 2041-1723.
doi: 10.1038/s41467-017-00190-7. url: https://doi.org/10.1038/s41467-
017-00190-7.

[151] Thanh Nguyen et al. “Deep learning approach for Fourier ptychography microscopy”.
In: Opt. Express 26.20 (Oct. 2018), pp. 26470–26484. doi: 10.1364/OE.26.026470.
url: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-20-26470.

[152] Nikon, ed. Super Resolution Microscopes. Nikon Technology and Design. url: https:
//www.nikon.com/about/technology/product/srm/index.htm (visited on ).

[153] Center for Nondestructive Evaluation, ed. Visual Acuity of the Human Eye. Iowa
State University. url: https://www.nde-ed.org/NDETechniques/PenetrantTest/
Introduction/visualacuity.xhtml (visited on ).

[154] Jeonghun Oh et al. “Three-dimensional label-free observation of individual bacteria
upon antibiotic treatment using optical diffraction tomography”. In: Biomed. Opt.
Express 11.3 (Mar. 2020), pp. 1257–1267. doi: 10.1364/BOE.377740. url: http:
//www.osapublishing.org/boe/abstract.cfm?URI=boe-11-3-1257.

[155] WILLIAM H. OLDENDORF. “The quest for an image of brain”. In: Neurology 28.6
(1978), pp. 517–517. issn: 0028-3878. doi: 10.1212/WNL.28.6.517. eprint: https:
//n.neurology.org/content/28/6/517.full.pdf. url: https://n.neurology.
org/content/28/6/517.

[156] Xiaoze Ou, Guoan Zheng, and Changhuei Yang. “Embedded pupil function recovery
for Fourier ptychographic microscopy”. In: Opt. Express 22.5 (Mar. 2014), pp. 4960–
4972. doi: 10 . 1364 / OE . 22 . 004960. url: http : / / www . opticsexpress . org /

abstract.cfm?URI=oe-22-5-4960.

https://doi.org/10.1364/OE.27.025046
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-18-25046
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-18-25046
https://doi.org/10.1016/S1076-5670(05)41001-0
https://arxiv.org/abs/1507.00466
https://doi.org/10.1364/BOE.10.006351
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-10-12-6351
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-10-12-6351
https://doi.org/10.1038/s41467-017-00190-7
https://doi.org/10.1038/s41467-017-00190-7
https://doi.org/10.1038/s41467-017-00190-7
https://doi.org/10.1364/OE.26.026470
http://www.opticsexpress.org/abstract.cfm?URI=oe-26-20-26470
https://www.nikon.com/about/technology/product/srm/index.htm
https://www.nikon.com/about/technology/product/srm/index.htm
https://www.nde-ed.org/NDETechniques/PenetrantTest/Introduction/visualacuity.xhtml
https://www.nde-ed.org/NDETechniques/PenetrantTest/Introduction/visualacuity.xhtml
https://doi.org/10.1364/BOE.377740
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-11-3-1257
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-11-3-1257
https://doi.org/10.1212/WNL.28.6.517
https://n.neurology.org/content/28/6/517.full.pdf
https://n.neurology.org/content/28/6/517.full.pdf
https://n.neurology.org/content/28/6/517
https://n.neurology.org/content/28/6/517
https://doi.org/10.1364/OE.22.004960
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-5-4960
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-5-4960


BIBLIOGRAPHY 148

[157] Xiaoze Ou et al. “High numerical aperture Fourier ptychography : principle , imple-
mentation and characterization”. In: Optics express 23.3 (2015), pp. 5473–5480. issn:
1094-4087. doi: 10.1364/OE.23.003472.

[158] Xiaoze Ou et al. “Quantitative phase imaging via Fourier ptychographic microscopy”.
In: Optics letters 38.22 (2013), pp. 4845–4848.

[159] An Pan et al. “Subwavelength resolution Fourier ptychography with hemispherical
digital condensers”. In: Opt. Express 26.18 (Sept. 2018), pp. 23119–23131. doi: 10.
1364/OE.26.023119. url: http://www.opticsexpress.org/abstract.cfm?URI=
oe-26-18-23119.

[160] An Pan et al. “System calibration method for Fourier ptychographic microscopy”. In:
Journal of Biomedical Optics 22.9 (2017), pp. 1–11. doi: 10.1117/1.JBO.22.9.
096005. url: https://doi.org/10.1117/1.JBO.22.9.096005.

[161] An Pan et al. “Vignetting effect in Fourier ptychographic microscopy”. In: Optics and
Lasers in Engineering 120 (2019), pp. 40–48. issn: 0143-8166. doi: https://doi.
org/10.1016/j.optlaseng.2019.02.015. url: https://www.sciencedirect.
com/science/article/pii/S0143816618316658.

[162] Neal Parikh and Stephen Boyd. “Proximal Algorithms”. In: Foundations and Trends R©
in Optimization 1.3 (2014), pp. 127–239. issn: 2167-3888. doi: 10.1561/2400000003.
url: http://dx.doi.org/10.1561/2400000003.

[163] Chansuk Park, Seungwoo Shin, and YongKeun Park. “Generalized quantification of
three-dimensional resolution in optical diffraction tomography using the projection of
maximal spatial bandwidths”. In: J. Opt. Soc. Am. A 35.11 (Nov. 2018), pp. 1891–
1898. doi: 10.1364/JOSAA.35.001891. url: http://josaa.osa.org/abstract.
cfm?URI=josaa-35-11-1891.

[164] YongKeun Park, Christian Depeursinge, and Gabriel Popescu. “Quantitative phase
imaging in biomedicine”. In: Nature Photonics 12.10 (2018), pp. 578–589. issn: 1749-
4893. doi: 10.1038/s41566- 018- 0253- x. url: https://doi.org/10.1038/

s41566-018-0253-x.

[165] Sri Rama Prasanna Pavani et al. “Three-dimensional, single-molecule fluorescence
imaging beyond the diffraction limit by using a double-helix point spread function”.
In: Proceedings of the National Academy of Sciences 106.9 (2009), pp. 2995–2999.
issn: 0027-8424. doi: 10.1073/pnas.0900245106. eprint: https://www.pnas.org/
content/106/9/2995.full.pdf. url: https://www.pnas.org/content/106/9/
2995.

[166] Nicolas C. Pégard et al. “Compressive light-field microscopy for 3D neural activity
recording”. In: Optica 3.5 (May 2016), pp. 517–524. doi: 10.1364/OPTICA.3.000517.
url: http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-5-
517.

https://doi.org/10.1364/OE.23.003472
https://doi.org/10.1364/OE.26.023119
https://doi.org/10.1364/OE.26.023119
http://www.opticsexpress.org/abstract.cfm?URI=oe-26-18-23119
http://www.opticsexpress.org/abstract.cfm?URI=oe-26-18-23119
https://doi.org/10.1117/1.JBO.22.9.096005
https://doi.org/10.1117/1.JBO.22.9.096005
https://doi.org/10.1117/1.JBO.22.9.096005
https://doi.org/https://doi.org/10.1016/j.optlaseng.2019.02.015
https://doi.org/https://doi.org/10.1016/j.optlaseng.2019.02.015
https://www.sciencedirect.com/science/article/pii/S0143816618316658
https://www.sciencedirect.com/science/article/pii/S0143816618316658
https://doi.org/10.1561/2400000003
http://dx.doi.org/10.1561/2400000003
https://doi.org/10.1364/JOSAA.35.001891
http://josaa.osa.org/abstract.cfm?URI=josaa-35-11-1891
http://josaa.osa.org/abstract.cfm?URI=josaa-35-11-1891
https://doi.org/10.1038/s41566-018-0253-x
https://doi.org/10.1038/s41566-018-0253-x
https://doi.org/10.1038/s41566-018-0253-x
https://doi.org/10.1073/pnas.0900245106
https://www.pnas.org/content/106/9/2995.full.pdf
https://www.pnas.org/content/106/9/2995.full.pdf
https://www.pnas.org/content/106/9/2995
https://www.pnas.org/content/106/9/2995
https://doi.org/10.1364/OPTICA.3.000517
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-5-517
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-5-517


BIBLIOGRAPHY 149

[167] Martin Persson, David Engström, and Mattias Goksör. “Reducing the effect of pixel
crosstalk in phase only spatial light modulators”. In: Opt. Express 20.20 (Sept. 2012),
pp. 22334–22343. doi: 10.1364/OE.20.022334. url: http://www.opticsexpress.
org/abstract.cfm?URI=oe-20-20-22334.
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