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Abstract—Estimating the coincident peak load of a group of
loads is a critical task in power system planning and reliability
analysis. Classical methods using coincidence and load factors
have long been used, but leave a challenge for designers and
modellers to determine appropriate factors to use and do not
lend themselves to reliability analysis. This paper follows work
that models peak load as a random variable, and contributes a
parametric model that relates the probability distribution of peak
load to average energy consumption using extreme value theory.
This model allows designers to specify failure probabilities, and
under some simple assumptions yields closed-form functions that
can be used in planning models. The paper presents a procedure
for fitting the model and discusses some modifications for tuning
it to particular applications. Computational experiments on
reference residential load data sets from Texas and London show
the model predicts peak load with 2% median error on test data
across a range of group size and failure probabilities. We find
the performance degrades somewhat for small samples of more
heterogenous loads, with a 13% median error on a set of 25 loads
from New York with individual load factors as low as 0.02 and
as high as 0.15.

I. INTRODUCTION

MODERN power systems are being pushed to be more
resilient, efficient, and flexible, with increasing atten-

tion to grid decentralization and distribution system planning.
The cost-efficient design of microgrids and distribution net-
works, and the ability to model costs and reliability of different
grid topologies, are important topics for both practitioners
and researchers. Coincident peak load prediction at different
points on distribution networks is a fundamental component of
capacity sizing used in network modelling and planning. This
paper explores the use of Extreme Value Theory (EVT) as a
tool for stochastically estimating coincident peak load across
different group sizes.

Beyond specific modelling problems, general theoretical
insight into how the coincident peak load of a group of loads
scales with the group size is important for understanding
economies and diseconomies of scale in networked power sys-
tems. The positive economies of scale from relative coincident
peak reduction by aggregating loads onto a common power
source has been recognized since the early 20th century: be-
cause it is unlikely that all loads peak at exactly the same time,
they can share a power supply with a total capacity less than if
they each had individual supplies. However, this aggregation
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comes at the cost of a distribution network. Traditionally, the
balance has been in favor of greater aggregations; however,
reductions in the costs of smaller scale distributed energy
resources, increasing costs from transmission and distribution
networks due to wildfires and hardening against extreme
weather events, and the resilience benefits from having self-
sufficient sections of the grid call this into question. The ability
to characterize this tradeoff depends directly on models for
how coincident peak load scales with group size.

The greater availability of load data through automatic me-
tering infrastructure presents an opportunity to improve meth-
ods for peak load estimation by enabling estimation procedures
to be more data driven. This is a fertile research area that we
discuss in our review in the next section, and it is almost
certain that particular and perhaps more complex methods can
be tailored to perform well in different contexts. In this paper,
our objective is to develop a model that is transparent, general,
easily applicable, insightful, and grounded in statistical theory.
As such, we develop a compact parametric model with four
parameters fit from data and two user-supplied inputs. Perhaps
remarkably, our computational experiments show that it yields
highly accurate estimates despite its simplicity, and we also
provide some discussion on tuning it for specific contexts or
objects.

The model, which we call the Extreme Value Load Esti-
mator (EVLE), relates a certainty probability, which can be
thought of as a predicted reliability or the complement of a
failure probability, to a peak load value over a time interval.
In other words, given a peak load value, it estimates the
probability that over some time horizon a load will be observed
that exceeds that value. Mathematically, this corresponds ex-
actly to estimating the cumulative distribution function of the
peak load. The model is also meant to be used in inverse
for capacity sizing: given a desired probability, it estimates
the corresponding load value, i.e. the capacity necessary for
a conductor or a power source such that it has a desired
probability of being overloaded. In this way, it is equivalent
to estimating the value-at-risk of the maximum load.

The EVLE estimate depends on a prior assumption of the
expectation of the load of the aggregated group over time, or
equivalently, the total energy consumption of the group. This
can also be framed as the number of customers each with a typ-
ical energy consumption. This assumption begs the question,
“If the modeller can estimate the energy consumption, why
do they not also know the peak?” One reason in planning
problems is that an estimate of energy consumption can be
generated from socioeconomic and environmental factors, e.g.
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from home size or wealth, but such a model for peak load
is less likely to be found. Another arises when modelling
groups or aggregates of loads: the energy consumption of the
group is additive, meaning it can be computed as the sum
of each individual’s energy consumption, but the peak load
of the group cannot be computed from the individual peaks
without additional assumptions or information. Theoretically,
we should also expect that an empirically derived estimate of
the mean of a signal will be more stable than an estimate of
the maximum, and it has been observed that utilities generally
predict peak load especially poorly [1]. The essential structural
assumptions of the EVLE model are 1) scaling assumptions
that relate the expectation and variance of the peak load to the
mean, and 2) the form of the distribution of the peak load.

An example application of the EVLE model is to select an
inverter size for a DC-coupled solar plus battery autonomous
microgrid when the microgrid is expected to serve a com-
munity with an average energy consumption forecasted to be
200 kWh per day. Another is to size the conductor on feeder
segments for a given network layout, where each segment
serves e.g. 5, 10, 50 customers of different and known home
sizes, where the modeller has access to the typical annual
energy consumption for each of the home sizes. The EVLE
model yields formulae similar to some longstanding methods
in the literature, but provides a greater ability to control the
reliability, or failure probability, of different designs.

II. LITERATURE REVIEW

We focus our review on peak load estimation at the distribu-
tion spatial scale and at the planning time scale, although we
include some methodologically relevant work that studies the
transmission scale or operational time scales. We first discuss
classical “factor” based methods, modifications that have been
proposed, and statistical analyses. Second, we survey models
that directly address the relationship between peak power
and energy across different numbers of customers. Third,
we review recent work that uses extreme value theory to
estimate peak load. We rely primarily on academic literature,
engineering handbooks, and technical reports. The availability
of actual utility practices vary regionally. In the U.S., [1], [2]
detail peak load forecasting practices at the transmission scale,
but otherwise we were unable to find good references covering
modern utility practices at the distribution scale. Many of the
papers we cite focusing on European countries include more
information about the state-of-practice and industry guidelines,
and we note these below. One important area we do not
discuss is the use of simulations to estimate peak load. This
is because when constructed in a “bottom-up” manner from
behavioral models, this method is methodologically unrelated
to the EVLE model; however, the EVLE method could be
used in a “top-down” way to validate the results of bottom-up
models.

The classical method for estimating coincident peak load for
a group uses the coincidence factor (CF ), or its reciprocal,
the diversity factor (DF ). The CF is the ratio of the peak
aggregate load to the sum of the of peaks of the individual
loads, so one can estimate the aggregate peak as the sum

of individual peaks times the CF [3], [4]. If the individual
peaks are not given directly, the load factor (LF ) can be
used to estimate each peak. The LF is the ratio of the
mean load to the maximum. Note that we are referring to
the maximum and mean over time, and the “aggregate” load
refers to a time series given by summing over a group of
loads at each moment in time. Some representative values
for these factors are given in [3], which draws on empirical
studies from the mid 20th century, and more recent empirical
analyses of LF s can be found in [5], [6]. All of these show a
substantial variation in LF s across customer type and among
individual customers, and it is also well-recognized that the
CF depends on the scale; i.e. it is lower for 100 customers
than for 10. Reference [7] proposes an additional contribution
factor by customer type to improve the accuracy of CF s. It is
frequently noted in the literature that despite the availability of
some empirical studies that give typical factors, it is difficult
to determine the appropriate factors to use in any given
context. They can in principal be fit from data, but additional
statistical analysis beyond a standard regression is necessary
to estimate probabilities of exceeding any given peak load.
These considerations limit the usefulness of the factors.

A set of papers [8]–[10] examine the distributions of di-
versity and load factors of randomly sampled groups of cus-
tomers. Reference [8] claims the DF is normally distributed,
while later works [9] and [10] indicate it follows a Gamma
distribution. Both [9] and [10] show the distribution of the
DF depends on the group size. Their models do not take the
group size into account or generalize across scale; they are
fit to a particular group size. Additionally, when individual
peaks are not known and the LF must be used, then the
group peak depends on the ratio of random variables LF/DF
and becomes more complicated than fitting the distribution of
the peak directly with the energy usage or group size as a
covariate. This issue is recognized in the recent study [11],
which also finds that the expectation of the peak load has a
linear dependence on the number of customers.

Models including the relationship between peak load and
total energy consumption at distribution scales have been used
for decades in Scandinavian power systems and are reviewed
in [12]. In particular, the Velander method models the peak
load as a linear combination of the annual energy consumption
and its square root. In [13], the authors note there is little
knowledge of the proper coefficients to use in this model. The
model form can be derived by assuming the individual peak
load is normal and i.i.d., and then a probability distribution
can be constructed by assuming values for the mean and
standard deviation as shown in [13]; however, the assumption
of the normal distribution has not been compared against
others. Fitting this model can be understood as a standard
linear regression on energy consumption and its square root,
and other regression techniques have been proposed. The
study [14] uses a fuzzy linear regression model on energy
consumption to obtain tighter bounds around the peak load,
although the distribution of the residuals is not analyzed, and
[15] uses a quantile regression to predict transmission-scale
peak load in the U.S. from energy consumption and additional
features. Neither [14] nor [15] consider the square root of
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energy consumption.
More recently, researchers have begun to explore prediction

based on Extreme Value Theory (EVT). EVT studies the
distribution of sample maxima based on the Extreme Value
Theorem, which can be loosely thought of as an analog
to the Central Limit Theorem. The theorem states that the
only possible limiting distribution for the maximum of a
sequence of random variables is the Generalized Extreme
Value distribution (GEV). The GEV is classified according
to three types, called the Reversed Weibull, Gumbel, and
Frechèt, depending on its shape parameter ξ, with distinct tail
behavior. A formal overview of EVT is given in [16] and a
higher-level introduction including applications to electricity is
found in [17]. This theory is naturally attractive for modelling
maximum, or peak, loads. Reference [17] focuses on relatively
short-term forecasting of peak load on a weekly time scale,
finding that it follows the Reversed Weibull type with a sharp,
bounded tail, and using EVT to generate point estimates
of the upper bound. Reference [18] uses an EVT result to
estimate, for a single load profile, the number of times the
load exceeds a given threshold in a down-sampled period of
time given behavior over a longer period. EVT predicts the
threshold exceedances follow a Poisson Point Process (PPP).
Most closely related to our work, [19] uses the PPP result to
estimate the GEV parameters to predict the distribution of the
peak load. Unlike our work, [19] focuses on transmission scale
and predicting the future demand of a single substation, rather
than load aggregation at the distribution scale. They include
both the number of customers and total energy demand as
covariates; however, they do not consider the square root of
energy, which we find to be significant. Interestingly, they find
solar photovoltaic penetration to be an insignificant covariate.
Our study is the first to examine the ability of EVT to predict
peak load across scales within the distribution system.

III. EVLE MODEL

In this section, we formally develop 1) a probabilistic model
for the “block maximum” load over a period of time, and 2)
a process for fitting the model to data. We emphasize that the
model is of the empirical (also referred to as the observed,
sample, or realized) maximum, and not the maximum possi-
ble value, because a system designer is concerned with the
probability of actually observing a value higher than some
threshold, and that the true maximum of a distribution may be
unbounded while the empirical maximum can be computed
with some probability.

Our central hypothesis is that the distribution of coincident
peak load of a randomly selected group follows a GEV with a
location and scale that depends on the expectation of the mean
load of the group. The parameters of the model are fit from
a set of empirical observations of sample groups of different
sizes with varying empirical maxima and means. As a result
the model can be used to predict the maximum load of groups
of different size with different energy consumption.

A. Model Definition
Formally, we define a set of loads as L, where N := |L|

is the number of individual loads in the group. We denote the

block maximum coincident load over a discrete interval T =
{1, . . . , T} as the random variable M̂L, and estimate F , the
cumulative distribution function (CDF) of M̂L. To be precise,
let the sample of load n ∈ {1, . . . , N} at time t ∈ T be Xn,t.
Then M̂L = maxt

∑
n Xn,t and m̂L = T−1

∑
t

∑
n Xn,t,

where m̂L is the block mean. We assume T is sufficiently large
for F to converge to a GEV and also for m̂L to converge to
the expectation of the group load over time, denoted mL. Any
fit parameters will depend implicitly on the period length T ,
and also the sampling frequency, but we drop time from our
notation for brevity, except in section III-C where we discuss
extrapolation in time. In practice, we work with on the order
of a year of data sampled sub-hourly.

We assume that the only dependence of F on the specific
group L is captured by mL, and that a system designer has
an estimate of mL that is in general a probabilistic estimate
with density hL and support HL. In this way the model is
very general. In practice, most likely the designer will assume
a point estimate m, (in which case hL is a delta function at
m, hL(m) = 1), but it allows the designer to use a more
sophisticated estimate. Therefore, F is a conditional CDF,
conditioned on the mean load mL.

To apply the model, a system designer must specify only a
certainty probability ϕ ∈ (0, 1) in addition to hL. The model
returns a value ML,ϕ such that the probability of observing
a maximum load M̂L higher than this value is 1 − ϕ. Given
these inputs, the model can be stated as (1).

ML,ϕ = {M :P (M̂L ≤ M) = ϕ} (1)

P (M̂L ≤ M) =

∫
HL

F (M |x)hL(x)dx

hL(m) = 1 =⇒ ML,ϕ = F−1(ϕ|m) (2)

We assume F is approximately a GEV, parameterized by
shape ξ with location α and scale β > 0. The GEV density
gα,β,ξ and CDF Gα,β,ξ are defined by (3)-(4) [16].

gα,β,ξ(x) =
1

β
t(x)ξ+1e−t(x) (3)

Gα,β,ξ(x) = e−t(x) (4)

t(x) =

e−(
x−α
β ) if ξ = 0(

1 + ξ
(

x−α
β

))−1/ξ

if ξ ̸= 0
(5)

When ξ = 0, the GEV reduces to the Gumbel distribution and
has support x ∈ (−∞,∞), otherwise the support is bounded
by β + ξ(x − α) > 0. When ξ > 0, the support is bounded
to the left, and the GEV is heavy tailed to the right. When
ξ < 0, the support is bounded to the right, and the GEV is
light-tailed to the left. This was the behavior for electricity
found in [17], [19] and is the typical case for maxima of
random variables that are bounded on both sides, such as the
uniform or Beta distributions, which is the natural assumption
for electric loads. In our experiments, ξ > 0 was fit only in
isolated degenerate cases, so we restrict consideration to ξ ≤ 0
following [17], [19]. From here on out, we show formulae



4

assuming ξ ̸= 0 for brevity. In this case, the inverse CDF is
given by:

G−1
α,β,ξ(ϕ) = α+

β

ξ

(
log−ξ(ϕ−1)− 1

)
(6)

We make the following two assumptions that relate the
distributions parameters to the mean load: 1) the expectation
of the peak load is linear with respect to the mean load
and the square root of mean load, and 2) the variance is
linear with respect to the mean load. These assumptions are
theoretically justified for loads with similar individual statistics
(see Appendix A for discussion). The assumptions are stated
for coefficients a, b, and c in (7)-(8) with formulae for the
expectation and variance of a GEV, from which expressions
(9)-(10) for α and β conditional on m are derived. Γ denotes
the Gamma function.

Exp = α+ βξ−1(Γ(1− ξ)) := am+ b
√
m (7)

Var = β2ξ−2
(
Γ(1− 2ξ)− Γ(1− ξ)2

)
:= cm (8)

α = α(m) = am+ b
√
m− β(m)ξ−1(Γ(1− ξ)) (9)

β = β(m) = c|ξ|
(
Γ(1− 2ξ)− Γ(1− ξ)2

)−1/2 √
m (10)

Defining a parameter vector θ = [ξ, a, b, c], it is straight-
forward to substitute (9)-(10) into (3)-(6) to obtain density
f(·|m, θ), CDF F (·|m, θ), and inverse CDF F−1(·|m, θ) for
M̂L conditional on the true mean load m and parameters θ.
When mL is a point estimate at m, then the simplification (2)
holds, and the model can be written as:

ML,ϕ = k1m+ k2,ϕ
√
m if hL(m) = 1 (11)

k1 = a (12)

k2,ϕ = b+
log−ξ(ϕ−1)− 1− Γ(1− ξ)√

Γ(1− 2ξ)− Γ(1− ξ)2
c (13)

It is noteworthy that this expression is the same form as
the Velander formula [12], [13] for a given ϕ; however, this
formulation allows the designer to specify the confidence ϕ in
a meaningful way, thereby generalizing the Velander formula
to include a reliability parameter. However, our model yields
different equations to fit parameters to than standard regression
fitting procedure and follows from different statistical assump-
tions.

B. Fitting the Model

In this section we show the two steps to training the
model: 1) constructing aggregate load samples, and 2) fitting
parameters with maximum-likelihood estimation (MLE). The
main consideration with the sampling is the proportion of
aggregations of different numbers of loads. For the MLE, we
develop a search procedure with a locally convex subproblem
that can be used to efficiently train the model on large data
sets.

Each sample i selects a subset of load profiles Li from a
data set L. The data set has N individual profiles and each
sample has Ni ≤ N . We first draw Ni from a distribution
P (Ni = k) =

(
N
k

)
2−N , where k ∈ {1, 2, . . . , N}, such

that the probability of choosing Ni loads to aggregate is
proportional to the number of combinations of Ni loads in L.

Next, we randomly select Ni unique loads from L to obtain Li

and compute peak (Mi) and mean (mi) load. This is repeated
S times so that Li sampled from L with replacement. We set
S a priori, although a bootstrapping method could be used.

This sampling distribution for Ni is loosely “least-biased” in
the case that predictions will be made for new groups similar
to L without a prior assumption on the number of loads in
the new group. In practice, users may have a large training
data set, and benefit from restricting the sampling distribution
to specific ranges of Ni that are of interest. For example, one
could use a set of 1,000 loads to train separate models to
predict for groups of 5 to 20 and 20 to 50.

Given the training samples, we use MLE to compute the
parameters θ∗ that maximize the probability of observing the
output data {Mi} given the input data {mi}. This can be stated
as (14), and is equivalent to (15) by assuming the samples
are independent and transforming the objective to the log-
likelihood.

θ∗ = argmax
θ

P ({Mi}|{mi}, θ) (14)

= argmax
θ

S∑
i=1

log f(Mi|mi, θ) (15)

The MLE problem includes the constraint β(mi) + ξ(Mi −
α(mi)) > 0∀i enforcing the support of the distribution. As
the objective is undefined for Mi outside of this constraint,
it is necessary in practice to use a numerical solver that
either enforces feasibility at every iteration or can preserve
an estimate of the gradient when the objective is undefined.

The form of our model, where the location and shape pa-
rameters are linear functions of the covariates m and

√
m, is a

generalization of those presented in [20]. It is common practice
in the literature to solve the MLE problem for the GEV by
solving its the first-order optimality conditions; however, [21]
points out in an analysis of the consistency of the estimator
that local maximizers exist, and it follows that a local solution
to (14) does not converge to the true parameters. Because of
this, we provide more details on our solution implementation
for transparency.

We solve the problem numerically by starting with ξ = 0
(the Gumbel distribution) and solving the MLE problem for
[a, b, c], which can be shown to be convex under change
of variables. We then search by decreasing ξ by a small
fixed step-size of 0.01 and use the optimal [a, b, c] from the
previous step as an initial point to warm-start the MLE for the
new ξ (projecting the initial [a, b, c] to the feasible region if
necessary). The search continues while ξ > −0.5, recording
the likelihood and parameters at each step, and then concludes
by selecting the parameters associated with the maximum
likelihood. With this approach, we observed numerically stable
results and solution times of a few seconds on a personal com-
puter using the SLSQP algorithm with the SciPy optimization
package in Python (scipy.optimize.minimize).

C. Extrapolation in Time

The EVLE model for the maximum load developed in
Section III is fit over a a finite time interval T with T time
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steps, for example hourly samples over a year. In this section
we describe how the model can be extrapolated to a longer
time interval with potentially changing mean load, for example
a 20 year horizon with load growth, when the model is fit over
a subinterval with the same sampling frequency. In deriving
this extrapolation, we assume the model is independent in each
interval, conditional on the mean load in that interval. Care
should be taken to validate this assumption in practice.

Denote the longer interval T ′ and the j’th of J subintervals
as Tj , so T ′ =

⋃J
j Tj . The model output over the longer

interval T ′ is ML,ϕ,T ′ can be stated analogously to (1) as
(16).

ML,ϕ,T ′ = {M :P (M̂L,T ′ ≤ M) = ϕ} (16)

Eq. (17) follows from the assumption that the model is
independent in each interval, conditional on the mean load,
and reduces to (18) if the density of the mean load in each
interval j is a delta function at mj .

P (M̂L,T ′ ≤ M) =

J∏
j

(∫
HLj

Fj(M |x)hLj
(x)dx

)
(17)

hLj
(mj) = 1 ⇒ P (M̂L,T ′ ≤ M) =

J∏
j

Fj(M |mj) (18)

This further reduces to (19) when the model parameters
[ξ, a, b, c] are assumed identical in each sub interval, but the
mean changes. This must be solved numerically. When the
mean is constant, the model output can be written analytically
as (20), and is equivalent to the model output for a single
period with certainty probability ϕ

1
J , which can be substituted

for ϕ in (13) to obtain an expression for M
L,ϕ

1
J

.

Fj ≡ F ⇒ML,ϕ,T ′ = {M :

J∏
j

F (M |mj) = ϕ} (19)

mj ≡ m ⇒ ML,ϕ,T ′ = F−1(ϕ
1
J |m) = M

L,ϕ
1
J

(20)

IV. COMPUTATIONAL EXPERIMENTS

In this section, we perform computational experiments on
publicly available datasets to validate the EVLE model and
to compare it to alternatives. The first evaluates our scaling
assumptions (7)-(8) against alternative linear and affine alter-
natives. The second compares the quality of fit of the EVLE
model against alternative distributions to the GEV using the
same scaling assumptions. The third compares examines how
the model performance and fit parameters vary across the
different load data sets.

We follow the methodology and nomenclature introduced
in [22], of which the key aspects are defining independent
variables for each experiment, varying confounding variables
over a set of trials, and analyzing the distribution of perfor-
mance metrics across trials for each independent variable. We
evaluate performance by comparing the predicted distribution
of the peak load to the observed peak load, normalizing
across the mean load in three ways: 1) rescaling the empirical
and predicted data to a standard GEV for visual tests, 2)
introducing a prediction percent error metric, and 3) computing

TABLE I
COMPARISON OF DIVERGENCE ON TEXAS DATA

Train Test
Model A 5.71 (5.58, 5.78) 6.35 (5.88, 7.05)
Model B 6.22 (6.08, 6.27) 6.67 (6.36, 7.17)
Model C 6.23 (6.1, 6.28) 6.85 (6.4, 8.12)
EVLE 5.61 (5.48, 5.71) 6.09 (5.84, 6.76)
EVLEG 5.63 (5.49, 5.73) 5.95 (5.79, 6.31)

the Kullback-Leibler (KL) divergence (also called relative
entropy) of the predicted and observed distributions.

The rescaling procedure computes an empirical distribution
Z = zi = (Mi − α(mi))/β(mi). This Z can be compared
visually and quantitatively against G0,1,ξ. We define a predic-
tion percent error εϕ such that scaling all predicted peak loads
in the sample by 1 − εϕ/100 would make the predicted and
observed failure rate equivalent:

εϕ :
1

S

S∑
i=1

I
(
(1− εϕ/100)F

−1(ϕ|mi) > Mi)
)
= ϕ (21)

ε :=
1

S

S∑
i=1

∣∣∣ε i
S

∣∣∣ (22)

Here, εϕ is only defined for ϕ ∈ { 1
S ,

2
S , . . . , 1} and is

computed as the largest value satisfying (21), I is the indicator
function, and ε is the mean absolute percent error over all
possible probabilities. In experiments where we use training
and test data, we partition 50% of the data to each so that
the number of loads is the same in both populations. In
each trial, the partition is selected randomly as a confounding
variable. We also use the KL-divergence from the fitted model
to the empirical data as a performance metric. While εϕ
emphasizes the quality of the fit in matching the empirical
percentiles, the divergence quantifies the similarity of the
fitted and empirical densities. Divergence is defined on a
pair of either discrete or continuous distributions; here we
are interested in the divergence between the continuous fitted
model and the discrete distribution of empirical samples from
the true model. We therefore use a goodness of fit formulation
of the divergence from [23] that is an estimator of the true
divergence under finite empirical samples.

We use three residential data sets in the experiments,
referred to as “Texas”, “New York”, and “London”. The Texas
and New York data are from Pecan Street, Inc. [24] and the
London data is from the Low Carbon London project as used
in [10]. We processed the data by removing anomalously
high values from the Pecan Street Data, removing negative
values, and removing any load profiles with less than 90% data
coverage. In constructing aggregate load profiles, we ignored
any aggregate profiles with less than 95% data coverage
averaged across all individuals in the group, and computed the
aggregate mean as the sum of all individual means ignoring
missing values. Table II gives the number of loads in each data
set and their temporal sampling. Figure 1 shows the mean and
max of individual loads. Note that both the U.S. data sets
have higher mean loads, and some of the New York loads
have extremely low load factors.
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Fig. 1. Individual load characteristics

A. Scaling Assumptions

We compare the performance of the EVLE model to alter-
nate models with similar, but theoretically unjustified, scaling
assumptions. The comparisons show the efficacy of EVLE
over other models in matching the empirical data, bolstering
our claims from Section III on the relationship between the
parameters of the peak load distribution and mean load. The
three alternate scaling models are termed Model A, Model B,
and Model C. The functional forms they assume for the peak
load distribution parameters in terms of mean load are:

• Model A: Exp = am+ b, Var = cm
• Model B: Exp = am, Var = cm
• Model C: Exp = am, Var = c

The fit of the models compared to EVLE is visualized in Fig.
2. The upper plot compares the empirical data with expectation
of maximum load for a given mean load as predicted by each
model. The lower plots compare the distribution of Z, the
rescaled empirical data, with the fitted model distributions.
If the model is accurate, we expect the distribution of Z to
closely match the fitted distribution curve. Visually, the EVLE
model fits the data better than Models A, B, or C. This is also
evident in the kl-divergences from the fitted models to the data,
recorded in Table I. The table includes divergence on training
and test data, reporting the median followed by the 5th and
95th percentiles in parentheses across 30 trials. Notice that the
EVLE divergence is lower than that of Model A, B, or C on
both training and test data sets. Fig. 3 compares the absolute
value of the prediction percent error εϕ of the models across
a range of failure probabilities. EVLE generally outperforms
the alternate models across probabilities. The difference is very
significant for high values of ϕ, implying that EVLE captures
the tail of the empirical distribution the best. Altogether, these
results are compelling evidence that the scaling assumptions
of the EVLE model are sound.

B. Comparison of Distributions

A fundamental assumption of the EVLE model is that, for
a given mean load, the corresponding maximum load follows

Fig. 2. Visualizing the efficacy of EVLE’s scaling assumptions compared to
three alternate models for a single, sample trial.

Fig. 3. Comparing the absolute value of the prediction percent error εϕ over
a range of failure probabilities ϕ between EVLE and alternate models on
training data. A lower value implies better performance. Plot shows median
across 30 trials.

a GEV distribution. This assumption is well motivated by
the literature on extreme value theory. However, for further
justification, we compare performance of the EVLE model to
the EVLEG model, which makes identical scaling assumptions
on the expectation and variance of maximum load, but models
the distribution of the maximum load for a given mean load as
Gaussian. Fig. 4 visualizes the fits of the EVLE and EVLEG.
In the upper plots, empirical data is overlaid on color bands,
where the color bands correspond directly to the bands in
Fig. 2, and indicate the probability of observing a sample in
that region according to each model. The lower plots compare
the distribution of rescaled empirical data Z with the fitted
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Fig. 4. Comparison of EVLE and EVLEG in describing the distribution of
the maximum load for a single, sample trial.

distributions. Visually the models appear very close. In terms
of kl-divergence too they have comparable performance: ELVE
outperforms EVLEG on training, but not test data (Table
I). A closer inspection of Fig. 4 suggests that EVLE does
match the empirical distribution tails better than EVLEG: the
scatter points appear to fit more comfortably within the EVLE
probability bands and the asymmetric EVLE tails seem a
better match to the empirical tail of the rescaled data. This
assessment is corroborated by Fig. 3, in which EVLE does
outperform EVLEG in terms of εϕ at high failure probabilities.
Therefore the GEV matches the empirical data distribution on
the tails better than a Gaussian, as we would expect from
extreme value theory.

C. Comparison of Data Sets

This experiment compares the EVLE model performance on
the Texas, New York, and London data sets over 20 trials. The
main results are in the bottom panel of Table II, which shows
the median value of the parameters and error metric over the
trials, followed by the 5th and 95th percentiles in parentheses.
The much larger London data set yields the best performance,
with a median error of 2.0% on test data over the trials. The
Texas data yields similar median performance (2.4% median)
but has a higher 95th percentile error.

The model performs notably worse on the New York data,
which we attribute to it having especially high variation in the
mean and max of individual loads as shown in Fig. 1. Here,
the model fits a less than 1 (even equal to 0 in some trials)
and yields higher b and c values. This can be explained by
the dominance of the loads with low load factor in the small
population (the scaling is highly nonlinear in this low mean
load region), and shows a case where the data do not exhibit
the scaling assumption of the model. Following the reasoning
in Appendix A, this can be explained by the very high level
of heterogeneity of the loads, and suggests that an extension
to the model that considers different classes of loads could

TABLE II
EVLE MODEL PARAMETERS AND PERFORMANCE BY DATA SET

Texas New York London

N 25 25 624
Res. 1 min 1 min 30 min
Range 01/2018 - 01/2019 05/2019 - 11/2019 02/2012 - 01/2014

a 2.06 (1.82, 2.49) 0.61 (0.00, 1.25) 1.90 (1.73, 2.07)
b 7.72 (6.94, 8.36) 10.79 (8.96, 13.47) 2.00 (1.37, 2.88)
c 0.85 (0.64, 0.95) 1.86 (0.91, 2.38) 0.42 (0.38, 0.57)
ξ -0.12 (-0.23, -0.07) -0.07 (-0.17, -0.03) -0.18 (-0.21, -0.06)
ε (train) 0.4 (0.2, 0.8) 1.1 (0.5, 2.5) 0.1 (0.1, 0.3)
ε (test) 2.4 (0.6, 9.3) 13.1 (1.9, 32.6) 2.0 (0.8, 5.2)

yield improved performance. However, the good performance
London data, which contains some variation in load factor but
is a larger data set, suggests the heterogeneity is less of an
issue with a large sample size.

The parameters between the Texas and London data are
similar, with a higher c value in the Texas data indicating
a higher variance of the GEV, and consequently a greater
sensitivity of the maximum load to the certainty probability
ϕ.

V. CONCLUSION

In this paper, we develop the EVLE model, a method for
peak load estimation using the Generalized Extreme Value
(GEV) distribution to model the peak load as a random
variable conditional on the average energy consumption. We
show that a scaling model that assumes the expectation and
variance of the peak load scale has both a theoretical intuition
and performs well in computational experiments on groups of
similar loads, and we show that the GEV distribution captures
the tail of the distribution better than a Gaussian. We present
a procedure for fitting the model from data, including the
sampling strategy for constructing aggregate load samples that
can be tuned for specific group sizes.

This paper contributes to a recent body of work applying
Extreme Value Theory (EVT) to predicting peak electricity
demand. Unlike classical factor based methods, EVT methods
yield models for the distribution of peak load, which lends
itself to reliability analysis and studying how system designs
depend on reliability through the certainty probability ϕ. As
a parametric approach with only four parameters that are fit
from data, the model provides transparency and portability,
which enables it to be included and interrogated in planning
models. The model can take into account uncertainty in
predicted energy consumption by accepting the mean load as
an input that is a random variable. In this case, the model
output is obtained by integrating with respect to the density
of the mean load; however, when the mean load is a point
estimate, the EVLE model simplifies to formula that can be
evaluated directly (11). In principle, this model can be applied
as an explicit risk-based constraint in an optimization-based
planning model for sizing power system components, and this
application is an important area for future work.

One of the computational experiments we conducted that
compares the EVLE model on different data sets shows the
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model performs relatively poorly on data sets with a small
number of individual loads with very heterogeneous individual
load factors, specifically the New York meter data. We suspect
this can be addressed by classifying loads and generalizing the
model to include the number of loads from different classes
as an input in addition to the mean load. Further developing
this approach to include classification would be a welcome
contribution, as would including the interaction of peak load
with distributed generation. However, in the current form
presented here, the model shows good prediction accuracy on
test data when the individual loads have consistent load factors,
as is the case with the London and Texas meter data. Most
significantly, the model’s accuracy is robust across different
group sizes, mean loads, and failure probabilities.

APPENDIX A
MODEL JUSTIFICATION

We propose that the distribution of the maximum load
conditioned on the mean load follows a GEV distribution:
M̂L ∼ gα(m),β(m),ξ where the GEV location and scale param-
eters are modelled as functions of the mean load according to
(23) and (24) respectively.

α(m) = am+ b
√
m− γβ(m) (23)

β(m) = c
√
m (24)

Therefore, the claim of this model is that the expectation of
the maximum load is linear in the mean and square root of
the mean load, while the variance is a linear function of the
square root of the mean load. To motivate these claims, we
consider the simplified scenario where the individual loads
are independent and identically distributed and sampled from
a Gaussian Distribution:

Xn,t ∼ N (µ, σ2) (25)

The aggregate load over group L with size N = |L| at time
t, denoted X (L)

t is then normally distributed with mean Nµ
and variance Nσ2:

X (L)
t ∼ N (Nµ,Nσ2) (26)

⇒ mL = Nµ (27)

We are interested in the maximum over T time points:

M̂L = max(X (L)
1 , . . . ,X (L)

T ) (28)

There is no closed form solution for the distribution of M̂L.
However, the expectation of the maximum can be bounded
above and below by functions of the variance and mean. From
[25], if Y ≜ max1≤i≤n Xi, where Xi ∼ N (0, σ2) are i.i.d.,
we have:

1√
π log 2

σ
√
log n ≤ E[Y ] ≤

√
2σ
√
log n

If Xi is instead distributed according to N (µ, σ2)—i.e. with
arbitrary mean µ—we can incorporate this into the bounds
using linearity of expectation: E[Y ] = E[Y − µ] + µ =

E[max1≤i≤n(Xi − µ)]. Note that (Xi − µ) ∼ N (0, σ2).
Therefore, the bounds become:

µ+
1√

π log 2
σ
√

log n ≤ E[Y ] ≤ µ+
√
2σ
√

log n (29)

We can now apply (29) to bounding M̂L. Defining κ ≜√
log T , and plugging the distribution parameters of X (L)

t in
(26), we obtain:

Nµ+
1√

π log 2

√
Nσκ ≤ E[M̂L] ≤ Nµ+

√
2
√
Nσκ (30)

Replacing N with mL
µ according to (27), allows the bounds

of (30) to be expressed in terms of the aggregate mean. After
some simplification, we obtain the final expression:

mL +

(
σκ√

µπ log 2

)
√
mL ≤ E[M̂L]

≤ mL +

(√
2

µ
σκ

)
√
mL

These bounds justify the form of (23).
We can standardize X (L)

t to arise from a standard normal:

X (L)
t ∼ N (Nµ,Nσ2) =⇒ X (L)

t −Nµ√
Nσ

∼ N (0, 1) (31)

Suppose the maximum of T standard normals has variance
σ2
max. Then, the variance of M̂L = max(X (L)

1 , . . . ,X (L)
T ) will

be:

var(M̂L) = Nσ2σ2
max =

(
σ2σ2

max√
µ

)
mL (32)

Therefore the variance of the maximum scales linearly in the
mean aggregate load. The scale parameter is proportional to
the square root of variance, which justifies the form of (24).
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