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ABSTRACT

TOWARD EFFICIENT SPREADSHEET
COMPUTATION AND VISUALIZATION

Chris De Leon

M.S. in Electrical Engineering and Computer Science

Advisor: Professor Aditya Parameswaran

May 2022

Spreadsheets are ubiquitous tools that offer users an intuitive interface for

interacting with complex data. However, there are two major problems with

modern spreadsheet systems: scalability and usability. Scalability broadly refers

to a spreadsheet’s ability to remain responsive when dealing with a large dataset,

and usability measures how well users can make sense of a spreadsheet. Currently,

spreadsheet systems have trouble supporting large datasets that are increasingly

common interactively. They also do not provide users with sufficient tooling

to better understand the structural layout of their spreadsheets. These limita-

tions can make it much more difficult for most users to identify errors, keep the

spreadsheet organized for other users, and for the system to optimize certain com-

putations. To address these issues, we present TACO (Tabular Locality-Based

Compression), a framework for performing more efficient spreadsheet computa-

tion, and Sherlock, an interface that leverages the TACO framework to support

effective sense making of spreadsheets.

Keywords: spreadsheet, visualization, automation.
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Chapter 1

Introduction

Spreadsheets are a popular choice for users looking to analyze and make sense

of their data. In particular, they provide a powerful and intuitive UI that allows

users who may not be familiar with traditional relational database systems to

perform similar operations with ease. While modern spreadsheet systems pro-

vide users with a great deal of power in wrangling their datasets, they face two

over-arching challenges: scalability and usability [1, 2, 3]. Many modern spread-

sheet systems have trouble scaling to the size of modern datasets and oftentimes

crash or freeze for simple computations involving no more than 100,000 rows.

Furthermore, current spreadsheet systems do not provide users with sufficient

tooling to better understand the structural layout of their spreadsheets, which

can make it much more difficult to identify errors and keep the spreadsheet clean

and organized for other users.

1.1 Spreadsheet Scalability Issues

It is no question that we live in an age of big data and the need to analyze

this data has become a more important need than ever. However, many popular

spreadsheet systems have not scaled appropriately to accommodate today’s data
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analysis needs [2]. In particular, modern spreadsheet systems like Excel end up

hanging or freezing for extended periods of time when users perform a single

cell update on spreadsheets with as few as 50,000 rows [3]. Some spreadsheet

systems have increased the memory size limitations of their software to address

this problem [4, 5]. However, the computation involved in processing even a small

subset of these cells still takes a substantial amount of time [3], [1], which renders

the software often unusable for today’s demanding data analysis requirements.

We refer to scalability as a spreadsheet system’s ability to remain responsive

when dealing with a large dataset. One of the major factors that contributes to a

spreadsheet system’s responsiveness is its internal formula graph implementation

discussed more next. A formula graph keeps track of the dependencies between

cells, and is used internally by many modern spreadsheet systems today [5, 6, 7].

When a user edits a cell on a spreadsheet, the spreadsheet system queries its

formula graph to determine the cells that require recalculation. As we will see

later, real-world formula graphs are typically very large and complex. Thus, the

action of querying dependencies becomes a severe performance bottleneck leading

to much slower recalculations and potentially even UI crashes.

1.2 Structural Complexities of Real-World Spread-

sheets

As previously mentioned, spreadsheets allow users to express their computations

as formulae, which opens the door to more complex data analysis. One formula

cell can reference one or more other formulae creating what is known as a formula

graph. A formula graph captures the dependencies between cells and can be used

to determine how an update to one formula or data cell affects others. One

challenge with spreadsheet systems is that they provide very minimal tooling

for users who wish to deeply understand a formula graph and the dependencies

between cells in their spreadsheet in a more human-readable way. For example,

modern spreadsheet systems such as Excel have a built-in dependency tracker
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that can find the precedents and dependents of a cell. While this can provide the

user with clear insights for very simple spreadsheets, most real-world sheets can

have hundreds of thousands of dependencies. As a result, the tracker becomes

much less helpful and users have a more challenging time conceptualizing their

computations.

Take the spreadsheet in Figure 1.1 for example. Here we see that cell B7 has a

significant number of dependent cells with more than half the sheet covered by

overlapping dependency arrows. A closer look into the spreadsheet computation

reveals that many of B7’s dependents perform roughly the same operation (e.g.,

A1+B7, A2+B7, ...). This type of situation appears very frequently in real-world

spreadsheets because many users tend to take advantage of spreadsheet shortcuts

such as copy-paste and autofill. These shortcuts generate similar copies of the

same formula over large portions of the sheet, and as a result, the use of these

functionalities leads to very dense graphs with repeated computation. This makes

it nearly impossible for ordinary users to use Excel’s dependency tracker to obtain

any sort of useful information regarding the dependents of the cell, let alone how

their computations are arranged.

Figure 1.1: Excel Dependency Tracker for a Single Cell
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To understand how frequently these complex spreadsheets appear in the real-

world, we scraped a sample of 7.8K xlsx sheets from Github and analyzed the

number of formulae in each spreadsheet as well as the number of dependencies of

each cell. The results are displayed in Table 1.1. In the table, we list the name of

the spreadsheet, the number of formulae in the spreadsheet, the number of vertices

and edges in the uncompressed version of the spreadsheet’s formula graph, and

the largest number of direct dependents for a given cell in the spreadsheet. Note

that real world spreadsheets can contain cells with up to 300,000 dependencies

and over half a million formulae making it infeasible for a user to understand

the relationships between cells and the consequences of updating a single value.

We also see that these graphs can have millions of edges, so if we were to use

Excel’s existing formula dependency tracker to visualize the entire graph of cell

dependencies, the graph could span several workbook frames making it much

more difficult for the average user to catch computational errors, optimize their

computations, or explain their work to others.

File name Formulae Vertices Edges Max Direct Dependents

Master-Calculati....xlsx 518662 618902 2353656 304082

Tio Cash Master....xlsx 258764 333341 580650 189106

xx-30000.xlsx 539997 540051 539997 179999

beerDB05.02 10.11.xlsx 234586 320608 547305 156385

WM5603 LT tim....xlsx 175200 245281 350400 140160

aero test.xlsx 131532 131533 131532 131532

InputData.xlsx 219120 350595 569712 131455

191001....xlsx 329897 406051 1116394 126820

datalog1.xlsx 124534 124535 124534 124534

Detroit data (stata... 258660 268240 258660 120827

Table 1.1: Github data analysis results
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1.3 TACO and Sherlock

To address the issue of spreadsheet scalability, we introduce the Tabular Locality-

Based Compression framework or TACO. At a high level, TACO takes a spread-

sheet as input and outputs a compressed version of its formula graph. The com-

pressed version of the graph can then be used to quickly identify the cells that

need to be re-computed whenever a cell on the sheet is updated. In the traditional

formula graph representation, identifying cells that need re-computation can be a

very time-consuming and CPU-intensive process especially for spreadsheets with

more complex formula graphs. However, our framework makes use of a property

known as tabular locality to achieve much faster dependency identification times.

This in turn can allow spreadsheet systems to offer much better interactivity for

users analyzing large datasets.

To help users make better sense of the organization and computation in their

spreadsheet, we introduce Sherlock, an Excel add-in that users can use to vi-

sualize the spreadsheet’s formula graph. Sherlock uses the TACO framework to

identify useful patterns in spreadsheets and presents them to the user in a human-

readable way. By providing users with a high-level overview of the patterns in

their spreadsheet, users can more easily audit their computations and arrange

their sheets in much cleaner ways.

Take Figure 1.2 for example. In the figure, we have used Sherlock to analyze a

different portion of the same dense spreadsheet from Figure 1.1. Observe that

Sherlock has not only identified four primary patterns in the selected range, but

has also highlighted that cell NN16 may have a potential error. In simple terms,

cells with the same color perform essentially the same computation and only differ

by constant values or referenced cells. With that in mind, these four primary

patterns correspond to four general types of computation. This representation is

not only much clearer for the end user to interpret, but also greatly minimizes

the effort involved in tracking errors in dense spreadsheets, which as we have seen

above can be a very cumbersome process with existing tools.
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Figure 1.2: Example of Sherlock identifying a potential error in a dense spread-
sheet

The main contributions of this thesis are as follows. First, we introduce a new

compression framework that can be used to greatly reduce the memory usage of

many modern spreadsheet systems. Second, we present a complementary visu-

alization tool that can be used to automate the process of spreadsheet auditing

and analysis.

We divide the rest of this thesis into the following chapters. In Chapter 2, we

provide some technical background on how spreadsheet systems track dependen-

cies between cells, explain different execution modes for formula computation,

and dive deeper into the intuition for formula patterns. In Chapter 3, we dis-

cuss related work in spreadsheet compression and graph compression. We also

examine several existing visualization tools for modern spreadsheet systems. In

Chapter 4, we introduce TACO and provide the lower level details regarding its

compression algorithm and system design. In Chapter 5, we provide a perfor-

mance evaluation of TACO and compare its efficiency to a modern spreadsheet

system such as Excel. Finally, in Chapter 6 we introduce Sherlock and examine

some use-cases for its supported functionalities.
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Chapter 2

Technical Background

We now define a few pieces of useful terminology including formula graphs, exe-

cution models, and formula patterns. We also further discuss why current spread-

sheet systems are limited in terms of scalability and usability tooling.

2.1 Formula Graphs

Spreadhseets provide the notion of formulae for users to perform programmatic

transformations on their input data. A formula takes zero or more arguments

as input and outputs a value. Formulas are therefore functions that perform

some sort of operation on zero or more cells of the spreadsheet. Formulae can

be composed together creating a formula graph, a directed acyclic graph (DAG)

that captures the computational dependencies between cells. Each vertex in the

graph represents a cell or range of cells. There exists an edge from vertex vi to

vj if vj depends on vi. Figure 2.1 shows an example of such a formula graph.

Many modern spreadsheet systems such as Excel [5], Libre Office Calc [6], and

ZK Spreadsheet [7] implement these formula graphs internally to identify cells

that require re-computation when a cell is updated. When a cell is updated, two

main operations must be performed to keep the spreadsheet UI consistent:

7



A B

1 ? =SUM(A1:A3)

2 =SUM(A1:A3)?

3 ?

Spreadsheet Formula Graph
C

=AVG(B2:B3)

=B1+B3

? ?

A1:A3
B1

B2

B2:B3 C2

C1

B3

Figure 2.1: A sample spreadsheet and its corresponding formula graph

1. the dependents of the updated cell must be identified

2. the formula in each dependent cell must be recomputed

In other words, updating one formula cell requires a formula graph traversal to

determine the set of affected formula cells followed by a re-calculation of all the

affected cells. As we will show later, finding the dependents of an updated cell in

a formula graph tends to be a time-consuming process due to the sheer size of the

graph. Furthermore, if the size of the formula graph is too large to fit in memory

or the updated cell has so many dependents that the re-computation becomes

too computationally intensive, modern spreadsheet systems will begin to freeze

or crash, which leads to scalability issues for large datasets. Therefore, querying

the formula graph is a major bottleneck with most spreadsheet systems.

2.2 Execution Models

When a formula cell is updated, there are two primary approaches to dealing

with the re-computation of dependent cells.

In a synchronous execution model, the spreadsheet system will freeze the

entire UI until the result of the entire computation is completed. For simple

spreadsheets, the work involved in updating a cell is small enough not to inter-

fere with user interactivity. However, for larger scale spreadsheets, the traversal

and re-computation time becomes nontrivial, and spreadsheet systems like Excel,
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which utilize a synchronous computation model, will freeze or become unrespon-

sive until all cells are updated [3]. During this time, the spreadsheet is rendered

unusable to the end user, and performing data analysis becomes a slow and inef-

ficient process.

In an asynchronous execution model, the spreadsheet system returns control

to the user after it has identified the dependents of the updated cell. The com-

putation of the affected cells is then performed separately by another thread and

the user can interact with the spreadsheet as normal. All cells that need to be up-

dated will not be available to the user until the spreadsheet system computes its

value. Unlike the synchronous approach, the user can receive control back much

earlier and perform other data analysis tasks while their previous computation

completes. As the system computes the value of each cell, they are displayed to

the user one by one instead of being pushed to the UI all at once.

For either approach, dependency identification is a major component that directly

affects the usability of the spreadsheet. An inefficient dependency identification

algorithm can lead to severe interactivity issues and cause spreadsheets to remain

non-responsive for an unacceptable amount of time. Our TACO framework can

not only be used for either execution model but it can also provide more optimized

support for dependency identification, leading to much more scalable and usable

spreadsheet systems.

2.3 Formula Patterns

To address the computational inefficiencies of spreadsheets, we can apply com-

pression techniques to the spreadsheet’s formula graph thereby shrinking the size

of the graph and achieving faster graph traversal times for large computations. In

order to compress a formula graph, we need to identify some form of redundancy

in the graph that we can take advantage of.

In our analysis, we found that many real-world spreadsheets contain patches of

9



cells with formulae that follow a similar structure. Take Figure 2.2 for example,

which is a portion of a real-world spreadsheet taken from the Github corpus

described previously. In the figure, we have a column of formulae each of which

references a range in another column. Each referenced range involves the same

columns (e.g., A and B) and the row numbers follow a predictable sequence.

More generally, we see that the column can be represented by a single pattern:

the formula in row i can be derived by taking the formula in row i − 1 and

incrementing the row numbers of each cell referenced in the formula by 1. In the

traditional formula graph representation, each of these cells would be represented

using a single node and collection of edges in the graph despite their structures

being the same. This leads to a dense formula graph that is computationally

expensive to traverse. However, by taking advantage of the pattern described

above, we can instead represent this redundant patch of cells as one node in the

graph allowing for much smaller and robust formula graphs.

Figure 2.2: A patch of similar formulae observed in a real-world spreadsheet

Formula patterns such as the ones in Figure 2.2 tend to comprise large portions

of typical spreadsheets and formulae in very close proximity to each other. As a

10



result, it is possible to condense graphs with hundreds of thousands of nodes into

much smaller ones by identifying these fundamental formula patterns. We use

the term tabular locality to describe the phenomenon where cells appearing

very close to each other tend to follow the same formula structure. Spreadsheets

that exhibit a high degree of tabular locality tend to be more compressible since

their formula patterns span large portions of the sheet. We will dive deeper into

these formula patterns in an upcoming section.

11



Chapter 3

Related Work

In this section, we include a brief survey of solutions that have attempted to solve

scalability and usability issues with spreadsheet systems.

3.1 Spreadsheet Computation

There are several existing solutions that aim to help users understand formula

graphs by tracking dependencies [5, 8, 6, 9]. As mentioned in the introduction,

Excel has a built-in dependency tracker that can allow users to find the precedents

and dependents of a cell [10]. This can be useful for spreadsheets with simple for-

mula graphs, but as illustrated in the introduction, most real-world spreadsheets

have complex graphs with hundreds of thousands of connections making Excel’s

tracker less of a viable option if the user desires a concise and high-level overview

of the spreadsheet’s formula graph.
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3.2 Graph Compression

As far as we know, there are currently no spreadsheet systems that utilize some

form of graph compression on the internal formula graph. While graph compres-

sion is by no means a new topic, much research on graph compression has been

devoted to other applications such as biological networks, Web graphs, and social

networks [11, 12, 13]. Our research also suggests that existing solutions do not

make any clever use of tabular locality or compression methods to optimize for-

mula computation in any way even if a majority of the spreadsheet has repetitive

structures.

3.3 Spreadsheet Usability

There are many existing tools aimed at helping users make sense of their spread-

sheets. For example, Excelint is an Excel add-in that identifies errors in spread-

sheets [14]. The tool helps users perform much more efficient auditing on spread-

sheet systems, and in this regard it performs its intended function well. However,

in terms of scalability, the tool does not focus on optimizing spreadsheet calcula-

tions, so it is subject to the same re-computation issues as Excel. Furthermore,

while the tool does help users debug their spreadsheets, it is not capable of giving

users a human-friendly view of the dependencies between cells. As a result, the

tool only tackles a small subset of the spreadsheet visualization problem.

Another tool aimed at helping users make sense of their spreadsheets is

Perquimans [15]. Perquimans is tool that can help users visualize spreadsheet

function combinations. Unlike Excelint, Perquimans is capable of breaking down

formula computations, which can be useful in understanding how computations

are arranged on the sheet. However, it does not help identify the dependents or

precedents of a cell, so it is much less useful in providing users with a high-level

overview of what needs to be re-computed when a cell is updated. Perquimans

does not perform any sort of compression on their formula visualizations either,
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so in terms of scalability the tool also falls short in handling larger-scale datasets.

3.4 Conclusion

As shown above, there are very few frameworks or tools that attempt to:

1. optimize spreadsheet computations

2. help users visualize formula graphs in a human-readable way

To this end, we attempt to extend the state of the art by offering a practical

framework that is capable of scaling up to the size of modern datasets while

fulfilling the needs of breaking down complex spreadsheets in a more visually

interpretive way for users.
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Chapter 4

System Overview

TACO is a framework for compressing formula graphs and quickly querying the

dependencies of a particular cell. Below we describe the different aspects that

comprise the TACO framework.

4.1 Fundamental Patterns

As alluded to in Chapter 2, spreadsheets can be decomposed into a series of

fundamental patterns and these patterns can be used to compress the formula

graph of a spreadsheet. In this section, we review the fundamental patterns that

we discovered from our data analysis. For simplicity, we only consider the case

of adjacent formulae appearing in one column. The row-wise case can be derived

symmetrically.

4.1.1 Fixed and Relative Relationships

In order to describe the following patterns more formally, we introduce the con-

cept of fixed and relative relationships between cells. Before diving into these

15



relationships, we first introduce the following definitions. Suppose we have a cell

range A1:B1. We will refer to A1 as the head cell and B1 as the tail cell of the

range. Furthermore, we will sometimes describe the positions of cells using an

x-y coordinate system. In our framework, we can write A1 as the coordinate pair

(1, 1) and B1 as (2, 1).

With that in mind, consider a collection of formula cells where each references one

cell range. We call the relationship between the formula cell and its referenced

head / tail cell a fixed relationship if any of the following are true:

1. each referenced head cell is the same

2. each referenced tail cell is the same

3. the referenced head and tail cell are the same

In a relative relationship, we can derive the referenced range of each formula cell

by using a single x-y coordinate offset. In other words, given two cells’ positions

u⃗ = (x1, y1) and v⃗ = (x2, y2) and an offset (c, r), we say u⃗ is relative to v⃗ if

x2 = x1 + c and y2 = y1 + r.

4.1.2 Representing Fixed and Relative Relationships

In a compressed formula graph, we can store information about fixed and relative

relationships as part of the metadata for an edge. More specifically, we use four

variables to capture the fixed and relative relationships between cells. We again

consider a collection of formula cells that each reference one cell range.

1. If each formula cell in the collection references one range, and each range

has the same head cell, we use hFix to denote the x-y coordinate of the

head cell.
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2. If each formula cell in the collection references one range, and each range

has the same tail cell, we use tF ix to denote the x-y coordinate of the tail

cell.

3. If each formula cell in the collection references one range, and the head cell

of each range is relative the location of the formula cell by (c, r), then we

use hRel to denote the (c, r) offset.

4. If each formula cell in the collection references one range, and the tail cell

of each range is relative the location of the formula cell by (c, r), then we

use tRel to denote the (c, r) offset.

Now that we’ve defined fixed and relative relationships and further described how

to encode these in the edge metadata for a compressed formula graph, we now

review the fundamental patterns that can be derived from these relationships.

4.1.3 Relative plus Relative (RR)

We classify a collection of formula cells and their referenced ranges as an RR

pattern if for each referenced range, the head cell and tail cell of the range are

relative to the formula cell by the same offsets hRel and tRel respectively. For

example, in Figure 4.1 observe that each formula cell in column C is relative to

the head cell of its referenced range by (−2, 0) (i.e., to the left by two columns)

and relative to the tail cell by (−1, 2). The edge metadata for this example is

meta = (hRel = (−2, 0), hF ix = NA, tRel = (−1, 2), tF ix = NA) where NA

means that the particular parameter is not applicable to the given pattern. With

the metadata defined, we can now represent this graph with one compressed edge:

(prec = A1 : B6, dep = C1 : C4, pattern = RR,meta).
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A

1 ?

2 ?

3 ?

4 ?

A1:B3 C1

Spreadsheet Formula Graph

A2:B4 C2
A3:B5 C3

A1:B6

C1:C4

compress hRel=(-2,0) 
hFix = NA 
tRel=(-1,2) 
tFix=NA 

C

=SUM(A1:B3)

=SUM(A2:B4)

=SUM(A3:B5)

=SUM(A4:B6)

B

?

?

?

?

A4:B6 C4

Figure 4.1: An example RR pattern

4.1.4 Relative plus Fixed (RF)

A collection of formula cells and their referenced ranges is classified as an RF

pattern if all tail cells of the referenced range are the same, and the head cell

of each referenced range is relative to the formula cell by the same offset hRel.

For example, in Figure 4.2, note that each formula cell in column C is relative to

the head cell of its referenced range by (−2, 0) (i.e., to the left by two columns)

and points to a fixed tail cell B4 = (2, 4). The edge metadata for this example

is meta = (hRel = (−2, 0), hF ix = NA, tRel = NA, tF ix = (2, 4)) and we can

represent this graph with one compressed edge: (prec = A1 : B4, dep = C1 :

C4, pattern = RF,meta).

A C

1 ? =SUM(A1:B4)

2 =SUM(A2:B4)?

3 =SUM(A3:B4)?

A1:B4 C1

Spreadsheet Formula Graph

A2:B4 C2
A3:B4 C3

A1:B4

C1:C4

compress hRel=(-2,0) 
hFix=NA 
tRel=NA 
tFix=(2,4) 

B

?

?

?

4 =SUM(A4:B4)? ?

A4:B4 C4

Figure 4.2: An example RF pattern
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4.1.5 Fixed plus Relative (FR)

The FR pattern is symmetric to the RF pattern. That is, in an FR pattern, all

head cells of the referenced range are the same, and the tail cell of each referenced

range is relative to the formula cell by the same offset tRel. Using the same

reasoning in the preceding sections, we see that for Figure 4.3 the metadata of

the compressed edge is (hRel = NA, hFix = (1, 1), tRel = (−1, 0), tF ix = NA).

A C

1 ? =SUM(A1:B1)

2 =SUM(A1:B2)?

3 =SUM(A1:B3)?

A1:B1 C1

Spreadsheet Formula Graph

A1:B2 C2

A1:B3 C3

A1:B3

C1:C3

compress
hRel=NA 
hFix=(1,1) 
tRel=(-1,0) 
tFix=NA 
 

B

?

?

?

Figure 4.3: An example FR pattern

4.1.6 Fixed plus Fixed (FF)

The FF pattern describes the situation where for each referenced range, the head

cell and tail cell of the range are the same. Using the same reasoning in the

preceding sections, we see that for Figure 4.4 the metadata of the compressed

edge is (hRel = NA, hFix = (1, 1), tRel = NA, tF ix = (2, 3)).

A C

1 ? =SUM(A1:B3)

2 =SUM(A1:B3)?

3 =SUM(A1:B3)?

C1

Spreadsheet Formula Graph

C2A1:B3

C3

A1:B3

C1:C3

compress hRel=NA 
hFix=(1,1) 
tRel=NA 
tFix=(2,3)

B

?

?

?

Figure 4.4: An example FF pattern
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4.2 Formula Graph Compression Algorithm

Now that we’ve defined the patterns that TACO is capable of identifying, we

can move onto describing the algorithm used to compress a formula graph. At a

high level, the algorithm takes a list of dependencies between formula cells and

their referenced ranges as input and greedily builds the dependency graph. On

each iteration, the algorithm inserts and partitions the dependencies such that

the number of edges in the output graph is minimized. It makes use of the com-

pression patterns described previously and also applies several heuristics based

on our analysis of real-world spreadsheets to decide on the optimal insertion.

It’s important to note that the formula patterns mentioned above do not nec-

essarily need to be adjacent to be compressed. If there exists multiple pattern

types that are separated by a fixed number of cells, then our algorithm can still

perform compression. In the event that multiple pattern types are separated by

a fixed number of cells, we will refer to the number of cells between each pattern

type as the gap size.

The gap size between patterns can be used as a constraint to quickly find candi-

date edges that the input dependency can be compressed into. For instance, if

the gap size is 0, we only consider adjacent formula cells. Observe that smaller

gap sizes are much more efficient in compressing dependencies, so our algorithm

prioritizes patterns with smaller gap sizes. If there are multiple edges a depen-

dency can be compressed into, we use several heuristics based on our analysis of

real-world spreadsheets to decide the edge that can best reduce graph sizes (e.g.,

we prioritize column-wise compression over row-wise since the former is more

common).

With these intuitions in mind, Algorithm 1 shows our approach for compressing

one dependency e
′
= (prec, dep) into a compressed formula graph G.
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Algorithm 1: Compressing a dependency e
′
into G(E, V )

1 Algorithm compressDep(G(E, V ), e
′
)

2 isCompressed← false
3 for g ∈ [0,MAX GAP ] do
4 pSet← find patterns for the selected gap g
5 eSet← find all e ∈ E whose e.dep is g cells

6 away from e
′
.dep on column or row axis

7 for candE ∈ eSet do
8 edgePairs← genCompEdges(candE, e

′
, pSet)

9 edgePairSet.add(edgePairs)

10 end
11 if edgePairSet is not empty then
12 edgePair ← sort edgePairSet by heuristics and take the first
13 maintain G using edgePair
14 isCompressed← true
15 break

16 end

17 end
18 if isCompressed is false then
19 insert e

′
into G

20 end

21 Procedure genCompEdges(candE, e
′
, pSet)

22 if candE.p ==NoComp then
23 for p ∈ pSet do
24 pair ← (p.compressDep(candE, e

′
), candE)

25 edgePairs.addIfValid(pair)

26 end

27 end
28 else
29 pair ← (candE.p.compressDep(candE, e

′
), candE)

30 edgePairs.addIfValid(pair)

31 end
32 return edgePairs
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Note that the algorithm iterates through patterns with a gap size varying from

0 to MAX GAP , where MAX GAP is the maximum gap across all predefined

patterns. This parameter is configurable and for our experiments we have this

set to 7. To further illustrate the algorithm, we will use Figure 4.5.

1

2

3

4

C

=SUM(B1:B1)*A1

=SUM(B1:B2)*A1

=SUM(B1:B3)*A1

D

=SUM(B1:B4)

A

?

?

?

?

B

?

?

?

?

SUM(B1:B4)

?

?

?

B1:B3 C1:C3

A1

B1:B4 D4
NoComp

(FR, meta)

(FF, meta)

Compressed Formula Graph

Setup: insert one dependency at C4 Step 1: find candidate  edges

B1:B3 C1:C3

A1

B1:B4 D4NoComp

(FR, meta)

(FF, meta) C1:C3
B1:B4 C1:C4

B1:B4 C4:D4

(FR, meta)

(FF, meta)

Step 3: select the final edge

B1:B4 C1:C4

A1

D4
NoComp

(FR, meta)

(FF, meta)

Step 2: find valid edges

Figure 4.5: An example of the TACO compression algorithm

In the figure, each formula cell in column C references two ranges. The references

to column B follow the FR pattern and the references to column A follow the FF

pattern. Furthermore, we have an uncompressed edge where B1 : B4 references

D4. Now suppose we insert SUM(B1 : B4) at C4. In other words, say we want

to compress the dependency e
′
= (B1 : B4, C4) and the gap size is g = 0. In this

case, we have multiple patterns with the same gap size, and our algorithm will

perform three steps to compress the graph.

Find candidate edges:

In this step, we use the gap constraint to find candidate edges that the dependency

e
′
can be compressed into. More specifically, an edge e is a candidate edge if

e.dep is g cells away from e
′
.dep row-wise or column-wise. In step 1 of Figure

4.5, observe that all three edges qualify as candidate edges since e
′
.dep = C4 is

adjacent to both C1 : C3 and D4.

To find these edges, we first shift e
′
.dep by g + 1 cells in all four directions (i.e.

up, down, left, and right) and use a spatial index on the vertices (e.g., an R-

Tree [16]) to efficiently find ranges that overlap with the shifted e
′
.dep. For each

overlapping range (e.g. D4), we find its precedents (e.g. B1 : B4) and add this

edge (e.g. B1 : B4→ D4) into the candidate edge set.

Find valid candidates:

Once we collect a list of candidate edges, we need to verify if e
′
can be compressed

into each candidate edge using the compressDep(e, e
′
) routine. There are two
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cases to consider depending on whether the candidate edge is already compressed.

If the candidate edge candE is not compressed, then we check whether e
′
and

candE can be compressed into a new edge newEdge using the predefined patterns.

If this is possible, we store newEdge as a valid candidate edge. If candE is a

compressed edge, we check whether e
′
can be compressed into candE and if

this is possible, we generate a valid edge. Step 2 in Figure 4.5 shows two valid

compressed edges because the edge B1 : B4 → C4 can be compressed into

B1 : B3→ C1 : C3 or B1 : B4→ D4.

Select the final edge:

In the final step, we select an optimal valid candidate from the preceding step.

The algorithm’s selection is based on two heuristics. For the first heuristic, valid

candidate edges that lead to column-wise compression are prioritized over those

which lead to row-wise compression. If this heuristic does not return a single edge,

then we further compare the priority of each remaining edge’s pattern based

on the probability they appear in real-world datasets (these probabilities are

computed offline). In step 3 of Figure 4.5, we choose the compressed edge (B1 :

B4→ C1 : C4) over (B1 : B4→ C4 : D4) because the former one uses column-

wise compression. Finally, we delete the old edge from the original formula graph

and insert the newly compressed edge.

4.3 Querying the Compressed Formula Graph

Once TACO creates a compressed version of the graph, the framework can provide

more optimized usage for finding the dependents of a particular cell, which is a

fundamental operation for maintaining the interactivity of the spreadsheet. In

this section, we describe in more detail the algorithm that TACO uses to quickly

query the dependents of a cell.

In order to find the dependents of a range r in our compressed dependency graph

G, we use a slightly modified version of the Breadth-First-Search (BFS) algorithm.

In the traditional algorithm, we only need to query the direct dependents or
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Algorithm 2: Find deps of a column/row of cells r in G(E, V )

1 initialize Queue as a queue containing only r
2 initialize explored as an empty set
3 while Queue is not empty do
4 precU ← remove the first element in Queue
5 precRanges← overlapping ranges of precU
6 for prec ∈ precRanges do
7 edges← {e : e ∈ E and e.prec = prec}
8 for e ∈ edges do
9 depUSet← e.p.findDep(e, precU)

10 if explored does not contain depUSet then
11 add depUSet to explored
12 add depUSet to Queue

13 end

14 end

15 end

16 end
17 return explored

neighbors of a vertex v in the graph. However, in our setting we need to include

all the vertices in G that intersect r in order to find all the dependents of r.

Another slight variation on the traditional algorithm is that edges may either be

compressed or uncompressed. If an edge e is compressed, and want to find the

dependents of a range r in e, then we need to ensure that we’re retrieving all

dependents of r not just a subset of them. Algorithm 17 shows the pseudo code

for the modified BFS algorithm. The algorithm takes a column or row of cells r

as input and returns the set of ranges that depend on r.

To further break down this algorithm we consider the more concrete example

provided in Figure 4.6

A C

1 ? =SUM(B1:B1)+A1

2 =SUM(B1:B2)+A1?

3 =SUM(B1:B3)+A1?

4 =SUM(B1:B4)?

D4

(FR, meta)B1:B4 C1:C4

A1

D

?

?

?

=SUM(B1:B4)

B

?

?

?

?

No Comp

(FF, meta)

Figure 4.6: An example of finding dependents in a TACO graph
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Suppose we’d like to query the dependents of cell B2. First, our algorithm stores

B2 in a queue, which will store the ranges to be visited. For each range precU

in this queue, we find its direct dependents, and as mentioned earlier, we need

to consider all the ranges that overlap with precU , which in this example is

B1:B4. Next, we find the direct dependents of each overlapping range and the

corresponding edges like in the original BFS algorithm. In this case, we have

B1 : B4→ C1 : C4 and B1 : B4→ D4. Note that the edge B1 : B4→ C1 : C4

can be compressed, so we need to uncover the actual direct dependents within this

edge. This functionality is provided by the function findDep(e, precU) function

that we will describe shortly. For the inputs B1 : B4 → C1 : C4 and B2,

we return C2:C4 for the edge since C1 does not depend B2. We add the real

dependents, C2:C4, to the queue if they are not yet visited and repeat the process

until the queue is empty.

Next we move onto how the findDep procedure works. At a high level,

findDep(e, r) finds the dependents d of a range r that is contained in e. The algo-

rithm for findDep(e, r) varies slightly between the RR pattern and the RF, FR,

and FF patterns. We cover the RR pattern first. Suppose we have a compressed

edge e = (prec, dep, pattern = RR,meta) and we’d like to find the dependents

d of a range of cells r that are contained in e. To determine d, we need to find

its head cell and tail cell which we denote dh and dt respectively. Since the edge

follows an RR pattern, each cell’s precedent in d forms a sliding window on e.prec

like the one shown in Figure 4.7.

's prec

r

e.prec e.dep

d

's prec

tail of 's prec

head of 's prec

Figure 4.7: An example of finding dependents for the RR pattern
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To compute dh, observe that the top row of r must intersect with the bottom row

of dh’s precedent. Similarly, the bottom row of r must intersect the top row of

dt’s precedents. As a result, we can back calculate dh and dt based on r. More

specifically, we use the following invariant to compute dh,

dh = precdht − tRel

where precdht is dh’s precedent’s tail cell and tRel is the relative position of dh with

respect to precdht . Recall that tRel is known since it is encoded in the metadata

of a compressed edge. Thus, the remaining task is to compute precdht . We know

that precdht is in the bottom row of dh’s precedent since it is a tail cell and that the

bottom row of dh’s precedent intersects the top row of r. Therefore, precdht is in

the top row of r and its row index is the same as the row index of r’s head cell (i.e.,

r.head.row). Since precdht is a tail cell, it is in the right-most column of e.prec, so

its column index is e.prec.tail.col. Hence, precdht = (e.prec.tail.col, r.head.row)

and we have dh. To find dt we follow a similar procedure. In this case, we have

the invariant

dt = precdth − hRel

where precdth is dt’s precedent’s head cell and hRel is the relative position of

dt with respect to precdth . As shown in Figure 4.7, precdth should be in the last

row of r and in the left-most column of e.prec. Therefore, we have precdth =

(e.prec.head.col, r.tail.row). Note this procedure can output a range d that is

beyond e.dep. In this case, we take the intersection between d and e.dep to

return a valid range.

For the RF, FR, and FF patterns, findDep(e, r) works similarly. As with the

RR pattern, we need to find d’s head cell dh and tail cell dt. To compute dh, we

use the intuition shown in Figure 4.8
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r

e.prec e.dep

d

head of 's prec

Figure 4.8: An example of finding dependents for the RF, FR, and FF patterns

For the RF, FR, and FF patterns, e.dep.head references the entire range of e.prec

and is the dependent of any r contained in e.prec. Consequently, e.dep.head = dh.

To compute dt, we use the fact that

dt = precdth − hRel

where precdth is the head cell of dt’s precedents. Recall that hRel is known since

we are given e, so we only need to compute precdth . Using the same intuition as

the RR case, we note that precdth is in the bottom row of r, so the row index of

precdth is r.tail.row and the column index is e.prec.head.col since precdth is a head

cell.

4.4 Extensions

In addition to the fundamental patterns described previously, there is another

special case pattern that is typically found in real-world spreadsheets. Often-

times, users wish to compute some sort of commutative total on the input data.

In this scenario, we have a column of formula cells where each formula in the
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column either references the cell directly above or below it creating a chain of

dependencies.

While we could group this structure under the RR pattern, the compressed edge

we would obtain is not optimal for dependency identification. To understand why,

consider Figure 4.9. In the figure, each formula cell starting from A2 increments

the value of the above formula cell by one. Suppose A1 is updated and we now

need to find its dependents. If we were to use the findDep(e, r) functioned we

defined previously for RR, we would only return A2 as the dependent of A1. Our

algorithm would then repeat this process for A2, then A3, and so on until we reach

the end of the chain. Instead, it would be much more efficient to simply return

a range that encompasses all the cells in the chain. Fortunately, the RR-chain

pattern can help accomplish this.

We introduce a new pattern called the RR-chain which is a special case of the

RR pattern. Along with standard edge metadata that the four fundamental

patterns posses, the RR-chain edge metadata consists of a variable l to indicate

the dependency direction of the chain. For example, l is ABOVE in 4.9 since

each formula cell references the adjacent cell above it. The following discussion

focuses on the case where l = ABOV E. The case for l = BELOW is symmetric.

To compress a dependency e
′
into e for RR-chain, we first check if the edge follows

an RR pattern. If it does then we further check whether e
′
.prec is adjacent to

and above e
′
.dep. If this is the case, then to find the dependents of a range r,

we return a range d between r.head’s direct dependent and the tail cell of e.dep.

For example, if we wanted to find the dependents of A2 in Figure 4.9, we can

now return the range between A3 (i.e., A2’s direct dependent) and the tail cell

of e.dep (i.e. A4) rather than iteratively collect dependents for the entire chain

one by one.
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Figure 4.9: An example RR-chain pattern
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Chapter 5

Performance Evaluation of TACO

At this point, we have covered the basic TACO patterns used to compress formula

graphs, the types of operations that can be performed on the compressed formula

graph, and the compression algorithm used to transform a traditional formula

graph graph to a compressed version. In this chapter, we evaluate TACO by

examining several metrics. In particular, we will compare the TACO framework’s

performance with Excel, another popular spreadsheet system and we will also

examine how TACO helps alleviate issues with interactivity and memory.

5.1 Background

The following evaluations are performed using DataSpread [17], an open-source

spreadsheet system. DataSpread uses an asynchronous computation model

whereby control is returned to users once dependencies of an updated cell are

identified. It also follows a frontend-backend architecture with ZK Spreadsheet

[8] as its formula engine. Users can interact with Dataspread using a web-based

spreadsheet UI and computations make use of PostgreSQL on the backend side.

For the formula graph implementation, we have two versions: TACO and the

traditional, uncompressed formula graph implemented as an adjacency list which
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we denote NoComp.

The following experiments are run on a 12 GB RAM machine with an Intel i7-

10750H CPU with 6 physical cores. For all tests excluding the one involving

the comparison with Excel, we use Ubuntu 20.04. For the comparison between

TACO and Excel, we use a Windows 10 machine. Each experiment with Excel is

performed using a single thread and we report the average of three test re-runs.

Our evaluation is performed on two real-world spreadsheet datasets. The first one

is the Enron dataset [18] with 17K xls files. In our pre-processing, we removed

spreadsheets that caused exceptions (e.g. requiring password) or were too small

(i.e. fewer than 10 dependencies). This left us with 7.4K xls files. The second

dataset includes a collection of 7.8K xlsx files webscraped from Github. We

filtered the original dataset such that workbooks with less than than 10 KB (or

caused exceptions) were removed leaving 5.4K xlsx Github files. In total, our

evaluation encompasses a collection of 12.8K xls and xlsx files.

5.2 Storage Savings

In this section, we compare the memory consumption of TACO with that of the

traditional formula graph. We first analyze the reduction of the total number of

vertices and edges for all formula graph across the Enron and Github datasets.

he results are summarized in Table 5.1. As shown in the table, TACO can signif-

icantly decrease the size of a traditional formula graph. For example, the total

number of edges across the Github dataset decreased by about 98%.

Enron Github

Vertices Edges Vertices Edges

No Compression 27.1M 36.1M 176.3M 234.6M

TACO 3.0M 2.4M 4.7M 3.8M

Table 5.1: Formula graph sizes after TACO compression
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Next, we analyzed all sheets individually. Table 5.2 shows that there exists a

spreadsheet in the Enron dataset that TACO can reduce by 875K edges and

one in the Github dataset that TACO can reduce by 3.1M edges. The average

edge reduction by TACO is 4.5K and 42K for the Enron and Github datasets

respectively.

Max 75th per. Median Mean

Enron 875,286 1,680 258 4,544

Github 3,141,054 26,627 4,579 42,460

Table 5.2: Number of edges reduced by TACO (high is better)

Now we examine memory savings by pattern type. The results are summarized

in Table 5.3. In the table, note that show that the RR and FF patterns compress

the most edges. The RR pattern is capable of reducing the total number of edges

by more than 22M and 148M for the Enron and Github datasets respectively.

The FF pattern reduces more than 4M and 24M edges in total for the two re-

spective datasets. Other patterns also reduce a significant number of edges in

some spreadsheets. The RF and FR patterns, even though not as common, can

reduce up to around 10K and 39K edges for a single spreadsheet in the Enron and

Github datasets respectively. These results show that TACO’s patterns are not

only commonly used in real-world spreadsheets but can also significantly reduce

the graph sizes leading to much more robust spreadsheet systems.
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Pattern Enron Total Enron Max Github Total Github Max

RR 22,014,883 525,026 148,392,334 2,094,936

RF 2,820 1,413 13,514 9,999

FR 158,207 13,815 204,107 39,008

FF 4,258,701 174,948 24,291,075 1,043,702

RR-Chain 717,788 24,596 6,106,323 399,996

Table 5.3: Number of edges reduced by each pattern (high is better)

Finally, we examine the TACO compression benefits for a subset of the most com-

plex spreadsheets in the Enron and Github datasets. For each spreadsheet in the

corpus, we found the cell that has the greatest number of direct dependents and

the cell that has the longest chain of dependents. Once these were identified, we

extracted the top 3 spreadsheets with the longest dependency chain and the top

5 spreadsheets that have the max number of direct dependents for each dataset.

We also ensured that the group of 5 spreadsheets with the greatest number of

direct dependents did not contain any spreadsheets that were also included in

the group of 3 spreadsheets with the longest dependency chains for both the En-

ron and Github datasets. The group of 5 spreadsheets with the greatest number

dependents includes more diverse patterns, so we included more sheets than the

longest dependents group. The compression results are shown in Table 5.4. Note

that we renamed the original spreadsheet files to show the dataset and group that

the file belongs to.
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Filename Original Edges TACO Edges Source Cell Num of Deps Longest path

enron max1.xls 876,020 734 (0.084%) Z1 175,496 184

enron max2.xls 124,629 1,574 (1.263%) J5 34,481 4

enron max3.xls 114,101 1,534 (1.344%) J5 31,846 4

enron max4.xls 205,218 1,152 (0.561%) D4 29,029 17

enron max5.xls 50,540 1,342 (2.655%) B42 23,749 5

enron long1.xls 312,642 35 (0.011%) F2 20,846 6,952

enron long2.xls 4,290 1 (0.023%) A6 4,290 4,290

enron long3.xls 17,525 12 (0.068%) I7 4,381 2,191

github max1.xlsx 2,353,646 14,204 (0.603%) S82 304,082 22

github max2.xlsx 441,242 14 (0.003%) C6 189,106 2

github max3.xlsx 547,305 73 (0.013%) R5820 156,385 3

github max4.xlsx 350,400 8 (0.002%) D21917 140,156 4

github max5.xlsx 569,712 12 (0.002%) A8 131,455 43,819

github long1.xlsx 400,006 4 (0.001%) B2 199,999 199,999

github long2.xlsx 131,532 1 (0.001%) A8 131,532 131,532

github long3.xlsx 124,534 1 (0.001%) A2 124,534 124,534

Table 5.4: TACO compression results for most complex spreadsheets

For each spreadsheet s, the Source Cell column shows the cell that has the max

number of dependents or the longest dependency path. The last two columns

show the number of direct dependents and the length of the longest dependency

chain for the source cell.

Observe that many of the spreadsheets in Table 5.4 have very complex dependency

structures. For example, the source cell of enron max1 has more than 175K

dependents and has a chain of dependents spanning 184 cells. github max1 has a

cell with 304K direct dependents making it the spreadsheet with the most direct

dependents, and github long1 has a cell with a dependency chain of 200K cells

long making it the spreadsheet with the longest dependency chain. Regardless of

these complexities, we find that TACO can significantly reduce the size of formula

graphs. The most notable decrease occurs for enron max1, which was reduced

from 876K edges to 734 edges (99.916% decrease).
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5.3 Interactivity

Next, we examine the extent to which TACO is capable of reducing the time of

controlling control to users. We use the spreadsheets from Table 5.4 and update

the corresponding source cell. After the source cell is updated, we test the time

for returning control to users. The time for returning control mainly depends on

the time for finding the dependents of the source cell in the formula graph. If a

test does not finish within 30 mins, we mark it with DNF. The results are shown

below in Table 5.1.

Figure 5.1: Time of Returning Control to Users

5.4 Comparison with Excel

To wrap up our evaluation, we compare TACO with a popular commercial spread-

sheet system, Excel. For Excel, we use VBA macros for finding the dependents

of a cell [19]. We use the spreadsheet files in Table 5.4 and report the time for

35



finding the dependents of the source cell. The results are shown in figure 5.2. Ob-

serve that Excel does not finish for github max5, github long1, and github long3

whereas TACO can finish for all spreadsheets within 1000 ms. While TACO is

slower than Excel for two spreadsheets (enron max2 and enron max3), it is up

to around 850K times faster than Excel for a majority of the other spreadsheets

(e.g. github long2).

Figure 5.2: Performance comparison between TACO and Excel
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Chapter 6

Visualizing Formula Graphs with

Sherlock

In Chapter 4, we introduced the TACO framework and discussed its dependency

identification and compression algorithms, which are crucial to tackling scalability

issues with current spreadsheet systems. In this section, we introduce Sherlock,

an Excel add-in that utilizes the functionalities of TACO to help users understand

formula graphs more effectively.

6.1 System Overview

Sherlock follows a frontend-backend design scheme as shown in Figure 6.1.
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Figure 6.1: A high level overview of Sherlock

The tool is capable of performing two main types of analyses. On one hand,

Sherlock can generate visualizations based purely on the structure or the template

of a formula. This type of analysis does not take cell references into account, but

rather groups formulae together based on their superficial template. On the

other hand, Sherlock can generate visualizations by taking cell references into

account while ignoring any information regarding the structure of the formula.

The combination of these two types of analysis can be considered an area for

potential future work.

In order to support the two types of analyses above, Sherlock contains several core

components, which we briefly introduce next. For analyzing formula structure,

Sherlock has an analyzer that can cluster similar formulae based on a formula’s

string representation, excluding any of its references or constants. For formula de-

pendency analysis, Sherlock contains a separate analyzer that can identify TACO

patterns in the selected range using algorithms described in Chapter 4. To com-

plement dependency analysis, Sherlock also comes with a tool for displaying the

TACO graph representation of the selected range. As we will see in the next sec-

tions, these visualizations provide a much more concise overview of large repetitive

ranges of a spreadsheet, which in turn allows users to examine traditional formula

graphs in a much more efficient and automated way.

Each of the functionalities mentioned previously is aimed at addressing common
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usability needs with spreadsheet systems such as formula auditing [20], managing

the sheer volume of cells [21], and much more. Below we provide a more in

depth explanation of what each functionality does and how they help resolve the

usability issues described in the introduction.

6.2 Formula Template Visualization

6.2.1 Formula Clustering

When auditing spreadsheets, users need a quick and clear way to identify any

discrepancies in their formulae. As shown earlier, many real world spreadsheets

exhibit a high degree of tabular locality, which means that many formulae that

look alike tend to appear close to each other in large groups. Thus, if we were

given a range of formulae which may or may not have errors, we should expect

that most of the formulae should follow a similar structure. Any formula that

does not follow the same structure as a majority of its neighbors should be flagged

as a potential discrepancy.

With this observation in mind, we can help users identify cells that have potential

errors by examining what we call the formula template of each cell. Given a

cell with a formula f , we can derive the formula template by removing all of f ’s

cell references and constants. For example, the formula SUM(A1 : B1)+4 would

have a formula template of SUM(:)+.

A formula template can be hashed to obtain what we call a cluster ID. Performing

this operation on each cell of the spreadsheet creates a clustering, and we can

color each cell based on its cluster ID. With this clustering, the user can more

easily spot any discrepancies in a large range of cells and more deeply understand

how their spreadsheet is arranged.

We chose the lossy mapping scheme above as opposed to something more accu-

rate such as SUM(−) + 4 or SUM((0, 0), (0, 1)) + 4 for several key reasons. One
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of the more important reasons was that, based on our data analysis, the scheme

described in the preceding paragraph leads to fewer partitionings of the spread-

sheet since it ignores any variations with the constant values of the formula. As

a result, the coloring schemes are much easier for the end user to understand

and there is a much lower risk of Sherlock devolving into the Excel dependency

tracker for larger sheets.

Figure 6.2: A dense spreadsheet with no formula template highlighting
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Figure 6.3: An example of formula template clustering

To further illustrate the motivation for formula templates, we include Figures 6.2

and 6.3, which show a sample spreadsheet before and after a formula template

clustering respectively. In Figure 6.2, we see that it can be very difficult for

the end user to find potential discrepancies in the range, obtain a sense of how

formulae are arranged on the sheet, or determine columns of interest. Formula

template clustering provides a solution to these problems. In particular, the

user can now see that the colors are mostly uniform across each group indicating

a low chance of error. Similarly, the user can see that this range of formulae

consists of three different clusters, which suggests that there’s only three types

of fundamental computation being performed in the range. Finally, we note that

the column for 2016 is much more narrow than the others, which informs the

user that the computation differs from that of other years. Overall, the formula

template coloring scheme can provide a much more straightforward summary of

the user’s selected range.
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6.3 Formula Reference Visualization

6.3.1 Highlighting TACO Patterns

While formula template clustering can be useful for identifying potential errors

in a given range, it can also be useful to see what types of TACO patterns exist

on a particular portion of a spreadsheet. Using the same principles outlined

previously, Sherlock can identify any RR, FR, RF, FF, and RR-chain patterns on

a spreadsheet. It is also capable of analyzing row-wise and column-wise patterns

and can analyze patterns for formulae that reference more than one cell range as

well.

Figure 6.4: A dense spreadsheet with no TACO highlighting
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Figure 6.5: An example of TACO highlighting

6.3.2 Visualizing TACO Graphs

Finally, Sherlock provides a utility for transforming a range of cells on the spread-

sheet into its corresponding TACO graph visualization. In Figure 6.6, we demon-

strate the usage of this feature on a random spreadsheet from the Github dataset.

Here, we selected an arbitrary range from the spreadsheet and instructed Sher-

lock to generate the corresponding TACO graph from it. On the left side of the

image, we see that Sherlock identified two types of TACO patterns in the selected

range. On the right hand side, Sherlock provides a complete breakdown of the

types of the identified patterns, the nodes of the compressed formula graph, and

the dependencies between each of the nodes. In this case, we can see that a

large portion of the selected cells depend on CD7 to CD36 and each of these

dependencies fall under the RR pattern type. With this information, users can

better estimate how long an update to a particular cell will take, spot outliers in

the graph more easily, and can obtain a more localized view of the computations

within a particular area of the spreadsheet.
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Figure 6.6: Sherlock TACO graph visualization

This type of visualization can not only scale to larger input sizes, but also provides

a more holistic view of the user’s spreadsheet and its computation graph. The

conventional formula graph representation on the other hand would have dozens

of redundant edges for the same range shown in the figure, which can make it

challenging for the user to understand the dependencies between cells. In the

next section, we move onto describing more of the implementation details for

these functionalities.

6.4 System Implementation

6.4.1 Backend

Now that we’ve described the functionalities of Sherlock, we move more into the

algorithms and architecture that comprise the add-in starting with the backend

architecture. While the Excel API has plenty of rich functionalities for interacting

with the user’s spreadsheet, it does not provide utilities for parsing a formulae into

tokens, which is crucial for identifying patterns in spreadsheets [22]. To resolve

this issue, Sherlock was designed using a frontend-backend architecture scheme

unlike traditional Excel add-ins. The backend follows a model-view-controller
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(MVC) architecture and is written in Java so that we can make use of the Apache

POI library for parsing formulae [23]. TACO is implemented as a standalone

Maven package.

The backend API consists of a couple endpoints for analyzing formulae, which

we list below:

1. POST /formulas/cluster

2. POST /taco/patterns

Each endpoint accepts a 2D array of spreadsheet cell contents as input from the

frontend and uses a combination of the POI and sheet analyzer packages to help

automate the process of scanning through dense formula ranges manually. The

response format differs for each of these endpoints and we will briefly discuss

them here.

For the formula clustering endpoint, the backend receives the user’s highlighted

cell contents from the frontend as a 2D array. It then iterates over the 2D array

and computes the cluster ID for each element using the formula template mapping

process described previously. Once the formula templates have been computed,

the backend sends the results of the clustering to the frontend as a 2D array. The

returned 2D array has the same shape as the input 2D array, and each element in

the returned 2D array now corresponds to a cluster ID rather than the contents of

the original spreadsheet. An example of the formula template process is provided

in Figure 6.7.

Figure 6.7: An example formula clustering

For the TACO pattern endpoint, the backend utilizes the formula compression

algorithm described in chapter 4 to analyze the input 2D array. The response
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object is a mapping from a cell range to an array of metadata for the range. Each

metadata object in the array contains edge data and a cell reference data. In the

edge data, sheet analyzer provides info about the starting and ending offsets as

well as the pattern type, and in the reference data sheet analyzer returns info

regarding the workbook that the range exists on (e.g., book name, sheet name)

as well as data regarding the location of the range (e.g., column, last column,

row, last row, sheet index). These pieces of information are sent back to the front

end and TACO patterns can be highlighted based on the metadata returned. An

example of a single metadata object is provided below in Figure 6.8 for clarity.
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1 {

2 "taco": {

3 "default-sheet-name": {

4 "default:A4": [

5 {

6 "ref": {

7 "bookName": "default",

8 "sheetName": "default",

9 "_type": "AREA",

10 "_row": 3,

11 "_column": 1,

12 "_lastRow": 4,

13 "_lastColumn": 1,

14 "_sheetIdx": -1

15 },

16 "edgeMeta": {

17 "patternType": "TYPEFOUR",

18 "startOffset": {

19 "rowOffset": 0,

20 "colOffset": 0

21 },

22 "endOffset": {

23 "rowOffset": 0,

24 "colOffset": 0

25 }

26 }

27 }

28 ],

29 ...

30 }

31 }

32 }

Figure 6.8: Example response for TACO patterns endpoint
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6.4.2 Frontend

On the frontend, Sherlock presents a very simple UI consisting of four buttons

for the user. The user can select a range of formulae from their spreadsheet and

click one of the buttons on the side panel to interact with Sherlock’s supported

functionalities.

Figure 6.9: Sherlock UI

Once the user highlights a range and selects one of the buttons, the front end

will send the contents of the selected range as a 2D array to the front end. The

2D array contains the raw cell contents that were extracted by the Excel API

[24]. Once the contents have been sent to the backend, they are processed by the

sheet analyzer library, and the front end uses the response object described in

the preceding section to color the cells accordingly.

6.5 Conclusion

In this chapter we have introduced Sherlock, an Excel add-in that can help users

make sense of their spreadsheets in a much more automated way. Sherlock is
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capable of performing formula template analysis and formula dependency anal-

ysis. For formula template analysis, Sherlock examines a formula’s structure

and generates a colorful visualization based on how similar each formula looks

in comparison to others. Sherlock can also perform formula dependency analysis

by examining the TACO patterns of the user’s selected range. For this type of

analysis, Sherlock can generate two types of visualizations. The first is a coloring

of the TACO patterns on the spreadsheet and the second is an interactive graph

which users can use to navigate the compressed formula graph.

While Sherlock provides many functionalities for analyzing spreadsheets at scale,

the tool still has several limitations and hence many areas of potential improve-

ment. For example, Sherlock is only capable of analyzing either a formula’s

template or its TACO dependencies but not both. Thus, one area of future work

would involve using some algorithm to combine the information from both of

these types of analyses to achieve stronger formula pattern recognition. Another

limitation of the tool is that it is only capable of examining dependencies within

the user’s selected range of cells, so if there exists dependencies beyond the user’s

selected range, these will not be identified. To alleviate this, one could use the

Excel API to track dependencies beyond the user’s originally selected range and

apply the same techniques from above to highlight the patterns in the full depen-

dency chain.
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Chapter 7

Conclusion

In this thesis, we presented TACO, a system for efficiently compressing formula

graphs and optimizing spreadsheet computations. We also introduced Sherlock,

an Excel add-in that allows users to visualize their formula graphs in new ways

using the TACO framework. TACO addresses the scalability issue of spreadsheet

systems by making use of tabular locality to compress formula graphs and Sher-

lock allows users to better understand these formula graphs by providing a UI for

presenting them in a human-readable way.

Our experiments with TACO demonstrate that by leveraging the formula patterns

discussed above, we can achieve much faster dependency identification times and

thus much more efficient spreadsheet re-computations. Our Sherlock framework

complements TACO by providing users with simple functionalities to explore

formula graphs more intuitively and precisely. We believe these frameworks can

provide a foundation for scaling spreadsheet systems to the level necessary to

manage today’s big data needs.
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