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Abstract

The Serverless Datacenter: Hardware and Software Techniques for Resource Disaggregation

by

Nathan Trawick Pemberton

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Randy Katz, Co-chair

Professor Joseph Gonzalez, Co-chair

Datacenters have grown beyond a simple collection of independent computers. They are now
a complex and interconnected ecosystem of heterogeneous hardware and software services: a
warehouse-scale computer. These computers are wildly expensive to provision and operate,
yet we struggle to effectively utilize them. It is not uncommon to have half of allocated re-
sources unused, while other resources cannot be allocated at all. Resource needs vary widely,
both between jobs, and even over time within a single job. When we aggregate resources into
fixed “slots” (i.e., servers), we take away the flexibility needed to accommodate these varying
needs. I propose a different approach: resource disaggregation. Rather than requiring the
system to fit jobs into fixed-sized servers, we make any resource in the system available to
any job (physical disaggregation). Rather than requiring jobs to allocate all their resources
up-front, we allow them to allocate resources only when they actually need them (logical
disaggregation). I argue that unlocking the full potential of physical disaggregation requires
moving logical interfaces to a fundamentally disaggregated paradigm. Likewise, logically
disaggregated systems can provide some benefit on today’s hardware, but only reach their
full potential when co-designed with physically disaggregated hardware. In this dissertation,
I present tools and methodologies I developed to support that hardware/software co-design.
I then describe how I used these tools to implement a simple hardware accelerator that works
with the operating system to improve the performance of physically disaggregated memory.
I evaluate it with end-to-end benchmarks in RTL simulation and find that it reduces the
latency of remote memory access by 2.2x and improves end-to-end performance by 20% over
a software-only approach. Next, I show how I extended the logically disaggregated serverless
programming model to heterogeneous compute resources. My prototype achieves 50x bet-
ter performance with fewer resources than today’s aggregated approaches. Together, these
techniques form a vision of a serverless datacenter that unlocks the promise of pay-per-use
and rapid innovation that warehouse-scale computers should provide.
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Chapter 1

Introduction

Warehouse-scale computers (WSCs), and the cloud in particular, present a unique set of goals
and challenges when compared to traditional single-node systems. Unlike PCs or individual
servers, warehouse-scale computers are multitenant and can dynamically allocate resources
to different users. In the cloud, these allocations correspond directly to monetary cost, both
for the user and for the provider. Since allocations are expensive, a core objective in WSCs
is to maximize resource utilization. For the customer, this means that they do not pay
for resources that they don’t use. For the provider, this means that they can defer capital
expenditures by supporting more customer workloads on existing resources. In practice,
achieving high utilization is easier said than done. A workload trace released by Google in
2019 showed that average CPU and memory utilization rarely exceeded 60%. This is despite
allocating 150% of total resources to account for poor intra-task utilization [267]. This is
only slightly better than the 50% utilization reported nearly 10 years earlier [224]. Microsoft
similarly reports only 52% average utilization of their deep learning GPUs while Alibaba
sees about 50% CPU utilization [123, 106]. Supercomputers also struggle to utilize their
resources [282, 66, 176].

At a high level, there are two primary categories of underutilization in WSCs:

• Stranded Resources: There are enough resources cluster-wide for a job, but no one
server has enough of each resource type (Figure 1.1a). Think of this like external
fragmentation [219].

• Idle Resources: We have allocated resources to a job, but it doesn’t use every resource
at all times (Figure 1.3a). Think of this like internal fragmentation [219].

In both cases, the problem stems from a requirement to allocate multiple resources simul-
taneously. In the case of stranded resources, this is because we have created discrete physical
servers that aggregate a relatively small amount of each resource type. For idle resources,
we are aggregating multiple resources into a single logical allocation even when the job only
needs a subset of them at any given time. As we introduce new resource types like non-
volatile memories and accelerators, this problem only gets worse. I propose removing these
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restrictions by disaggregating resources, both physically (Figure 1.1b) and logically (Figure
1.3b). This allows the system to access physical resources from anywhere in the datacenter
and the applications to allocate and release individual resources dynamically. While this im-
proves utilization, it often comes at the cost of performance. In this dissertation, I present
software and hardware techniques for disaggregation that provide both high performance
and high utilization. I also describe the tools and methodologies for hardware/software co-
design that I developed to support my research. I implement prototypes of these techniques
and evaluate them with end-to-end benchmarks on realistic platforms. For the hardware
techniques, this includes synthesizable designs evaluated with cycle-exact simulation. These
results suggest that focusing on only one aspect of disaggregation will not be sufficient to
reach its full potential. Future systems will need to be disaggregated both logically and phys-
ically to achieve high performance and high utilization in a way that is intuitive to users,
and practical for providers.

1.1 Physical Disaggregation

Traditional datacenter designs aggregate all necessary resources into many self contained
server chassis. This design was motivated by the ability to leverage commodity PC compo-
nents and networks [12, 260, 33]. Additionally, an aggregated design was desirable because
in-chassis interconnects were significantly faster than networks. However, networking tech-
nology has seen a rapid increase in performance, with 40Gbit/s Ethernet becoming com-
monplace, and 100Gbit/s networks readily available, narrowing the bandwidth and latency
gap between local and remote resources [40]. Workloads have also changed; applications are
fundamentally distributed, use larger and rapidly changing datasets, and demand latencies
that can only be delivered by in-memory processing [136].

These hardware and software trends have led to proposals from both academia [17, 135]
and industry [114, 118, 120, 85] for a new style of WSC where resources are disaggregated.
At Berkeley, Krste Asanović proposed such a system, called FireBox, that has served as a
conceptual framework for my work (see Figure 1.2) [17]. In a disaggregated WSC, resources
like disk and memory become first-class citizens over a high-performance network. This
allows datacenter operators to scale resource capacity beyond what fits in a single chassis
while allocating it more flexibly [157].

Disaggregated resources are not without their drawbacks. No matter how fast networks
become, accessing remote resources always carries a latency penalty. Fault tolerance and
allocation policies also become more complex. Reaping the benefits of disaggregation while
enabling high performance and reliable applications will require new approaches to both
hardware and software.

In this dissertation, I focus on one resource type for physical disaggregation: memory.
Disaggregation is particularly important for memory because state, unlike compute, is non-
fungible. While any CPU or GPU can run any program right away, state must be explicitly
moved in order to free or re-allocate memory. Furthermore, memory demands have exploded
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(a) Physically Aggregated Resources Servers each con-
tain a relatively small amount of each resource type. Even
though Server 2 has enough CPU resources to accommo-
date both jobs 1 and 2, it has insufficient memory, wasting
both a GPU and half of its CPUs.

(b) Physically Disaggregated
Resources Resources can be ac-
cessed from anywhere in the clus-
ter independently. This allows the
jobs to pack more densely into
the available resources, reducing
stranding.

Figure 1.1: Stranded Resources and Physical Disaggregation Resources can be
stranded when they are physically aggregated into servers. By physically disaggregating
resources, we can allocate resources independently and accommodate all jobs more densely.

Figure 1.2: Overview of the proposed FireBox warehouse-scale computer
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(a) Logically Aggregated Re-
sources: Every resource must be
allocated to a job for its full duration.
Jobs are unlikely to need every resource
at all times, causing some to go idle.

(b) Logically Disaggregated Re-
sources: Resources can be allocated to
jobs independently in time. Jobs con-
sume resources only when needed, min-
imizing idleness.

Figure 1.3: Idle Resources and Logical Disaggregation Resources can go idle when they
must be allocated together (logical disaggregation). The shaded regions represent periods
where a resource is allocated to a job, but is not being used (idle resources). By allocating
and deallocating resources independently, logical disaggregation reduces waste.

in the last decade with the rise of big data and analytics, quickly outstripping the capacity of
servers, even if any particular job only touches a subset of it at any given time. In Chapter
4, I present my work on hardware acceleration for paging-based approaches to memory
disaggregation along with a broader discussion of the design space.

1.2 Logical Disaggregation

While networking technologies and new chip designs enable direct physical access to remote
resources, they make no assertions about how users ought to access these resources. For
this, we need a logical model of disaggregation (Figure 1.3). This interface can be fully
transparent like a distributed operating system [48] or very explicit like web services [276],
or anywhere in between (see Figure 1.4).

One interface of particular interest is serverless computing [56, 239]. Serverless structures
applications around explicit state (objects) and transformations over that state (functions).
Functions can take many forms, but the most general incarnation is called Function-as-a-
Service (FaaS). In FaaS, users supply code in a high level language that is then run in a
conventional operating system environment, typically a Linux container. Importantly, func-
tions do not maintain any implicit state of their own; computation is logically disaggregated
from state. This moves us closer to the ideal of Figure 1.3b. Explicit state means that com-
pute resources can be freed as soon as a function completes, reducing idleness. Short-lived
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Figure 1.4: Warehouse-scale computer interfaces span a spectrum of very implicit (users
don’t know it’s distributed) to very explicit (users manage all resources and networks).

and fine-grain functions provide more placement flexibility, reducing stranding. By remov-
ing the concept of a physical server, serverless computing also greatly simplifies operational
concerns like resource provisioning or server maintenance.

In this thesis, I argue that serverless computing provides a good, but incomplete, abstrac-
tion for logical disaggregation that maps well to physically disaggregated resources [206, 207].
In Chapter 5, I begin by comparing serverless to the more aggregated interfaces in use to-
day. I then extend the serverless model to other resource types like GPUs. In doing so,
I enable systems to effectively utilize these expensive resources, even when they must be
shared among many users.

1.3 Hardware/Software Co-Design

Getting the full potential out of disaggregation will require designing hardware and software
to work together. This sort of co-design is hard in practice, especially for complex distributed
systems running general purpose software. It is not enough to evaluate our hardware with a
few bare-metal instructions, nor is it sufficient to run end-to-end software on abstract models
of our hardware. Real systems must be designed jointly, informed by constant feedback and
rapid iteration.

In the course of my research, I often found that the existing tools and methodologies
available to me were insufficient. Simulators were either too slow to be practical, or too ab-
stract to provide useful insights into performance or implementation practicality. Hardware
was monolithic and difficult to adapt as end-to-end evaluation identified new problems or re-
quirements. Software workloads were built ad-hoc and were difficult to manage, particularly
as hardware designs evolved. These limitations are particularly problematic for research into
disaggregation and WSCs. These systems are physically distributed, requiring simulation of
multiple networked components. Beyond just the physical, logical disaggregation requires
an understanding of full-stack software including operating systems, network protocols, and
long-running applications.

To make progress, I needed to design new tools and methodologies for agile hardware
development, particularly for software workload management. Simultaneously, others in my
research group were developing tools for other aspects of the agile hardware design process.
Eventually, we combined these tools into an end-to-end system on chip (SoC) development
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framework called Chipyard [10]. Chipyard provides tools for low-level VLSI concerns, RTL
base designs, simulators and evaluation, and software development. I focus primarily on
that last component: software workload management. Software workload management is
more than just building the software artifacts like boot-binary and disk image, it is about
end-to-end lifecycle management including designing, building, and evaluating.

In Chapter 3, I describe FireMarshal, a tool I built to tackle these challenges. I also
go over Chipyard and the hardware/software co-design process more generally. These tools
enabled me to quickly build and evaluate realistic systems rather than relying on incomplete
or abstract designs.

1.4 What to Expect from this Dissertation

In this dissertation, I describe how to address underutilization in WSCs by disaggregating
both our logical programming models, and the hardware those models run on. I do this
by presenting several disaggregated systems that I have designed, both logical and physical.
While physical disaggregation often hurts performance in favor of utilization, I show that
those performance impacts can be partially mitigated through improvements in hardware
using one such accelerator as an example. However, the greatest gains came when systems
presented a fundamentally disaggregated logical model of computation. These systems could
maintain higher performance while using fewer resources than their aggregated counterparts.
I argue that moving logical interfaces to a fundamentally disaggregated paradigm is necessary
to unlock the potential of physically disaggregated systems.

I begin in Chapter 2 with a look at what warehouse-scale computers are, and how they can
be disaggregated using today’s state-of-the-art techniques. Chapter 3 lays out the context
for the remainder of this dissertation by describing the tools and methodologies I developed
to make hardware/software co-design practical and agile. I then use these tools to explore
disaggregation from a physical perspective in Chapter 4 where I focus on the topic of memory
disaggregation. There, I present an implementation of a hardware accelerator I designed that
reduces page fault latency by 2.2x and improves end to end performance by 20%. I then show
how a more explicitly disaggregated interface to process checkpointing sees even greater gains
with nearly 4x faster checkpoints than today’s less explicit approaches. Next, in Chapter
5, I come from the other direction and explore techniques for logical disaggregation, with a
focus on serverless computing and application accelerators. I evaluate a prototype system I
developed to present a serverless interface to GPUs that improves throughput by 50x over
traditional approaches by more effectively utilizing GPUs. Chapter 6 looks toward the future
by proposing ways that logical disaggregation, in the form of serverless computing, can enable
a rich vein of new research on cloud system interfaces and hardware. I conclude in Chapter
7 with some reflections on disaggregation, and research practice more broadly. At the end of
this document, I provide a list of references and a glossary of terms and abbreviations. In the
digital version, references and terminology can be clicked on to link to their definition.
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Chapter 2

A Brief History of Warehouse-Scale
Computers

In the 1990s, computers were becoming cheaper and smaller while the cost and performance
of local networking were rapidly improving. Academics and industry soon began taking
advantage of these trends by grouping multiple computers together into tightly coupled
clusters [12, 260, 110]. With the emergence of the internet and web, these clusters grew
to fill entire buildings; the warehouse-scale computer (WSC) was born [33, 34]. Finally,
companies recognized the value in their WSCs and began allowing customers to use their
excess capacity (for a fee, of course). This model became known as cloud computing [15].
The cloud model is so lucrative that WSCs are now being designed exclusively to offer cloud
services.

WSCs, and the cloud in particular, present a unique set of goals and challenges when
compared to traditional single-node systems. Unlike PCs or individual servers, WSCs are
multitenant. Multitenancy makes security even more critical and challenging while adding
the need for performance isolation. On the other hand, multitenancy means that resource
demands are averaged over many users, leading to more stable aggregate system load. It also
allows providers to dynamically allocate resources to different users as needs arise, though
this may make performance less predictable to users. Since clouds are centrally designed and
administered, they are incentivized to innovate on both hardware and software systems.

This chapter begins with a brief survey of how providers have specialized their hardware
for the WSC setting. In §2.2, I describe the range of system interfaces that are available for
WSCs today. I finish in §2.3 with some more recent proposals for a physically disaggregated
WSC.

2.1 Hardware Specialization in WSCs

An important consequence of the cloud is the centralization of cost and administration. Tra-
ditional vendors of server hardware need to appeal to a broad market and wide range of scales.
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On-premises operators and “server-farm” style datacenters need standardized and modular
components. They might buy one server or one hundred servers, and they all need to fit into
standard physical slots and network architectures. These market forces work to suppress
innovation. Vendors are discouraged from introducing new accelerators because customers
would need to make deep changes to their environments to use them. Networks and devices
can’t be co-designed, and specialized systems rarely scale beyond a single rack (referred to
as appliances). WSC operators are different. They manage their entire deployments and
invest hundreds of millions of dollars in each one. They compete on raw performance, cost,
and features. This centralization and shift in market forces incentivizes innovation. Indeed,
cloud and hyperscale operators are investing heavily in custom hardware.

The most high-profile efforts toward custom hardware have come in the form of deep
learning and other application accelerators. Google developed a custom system on chip
(SoC) for deep learning training in 2015 called the tensor-processing unit (TPU) [127]. These
accelerators are deployed in custom clusters called TPU Pods that connect thousands of
TPUs with a high performance interconnect [261]. Google also has custom accelerators for
video transcoding [220]. Similarly, Amazon built a custom deep learning inference chip called
Inferentia that is available directly to users as well as powering their inference services [119].
Microsoft has deployed network-attached FPGAs in their datacenters to support a wide range
of tasks, including model serving through their Brainwave project [215, 65]. While Microsoft
did not develop a new SoC for this purpose, they worked with Altera (now Intel) to build
custom FPGA boards. There are also many startups developing deep learning accelerators
that can be deployed in WSCs [155, 5].

Perhaps less flashy, but equally important, are systems and platform-level accelerators.
While storage appliances have been around for a long time, they were typically not cus-
tomized for particular environments. Now, some hyperscale operators have custom storage
hardware systems to optimize density, power, and performance [25, 30]. Amazon built a
platform and virtualization chip called Nitro that handles many common cloud-specific func-
tions independently of the target platform, enabling rapid innovation on instance types [156].
Google reported a number of “datacenter taxes”, common tasks that consume significant re-
sources [130]. This has proven a rich vein for research on accelerators for things like memory
copying or protocol offloading [170, 133].

2.2 System Interface Specialization in WSCs

As with hardware, WSCs and the cloud provide an opportunity to re-think our system
interfaces. Cloud provider application programming interfaces (APIs) provide resource allo-
cation, protection, communication, naming, and scheduling for their WSCs. These are the
same things that a traditional operating system must do. If we are going to think of these
systems as warehouse-scale computers, it is worth considering what the operating system
interface to this computer ought to be. In other words: What is the POSIX for the cloud?
In this section, based on joint work with Johann Schleier-Smith [207], I describe the range
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(a) Web Services: Appli-
cations are structured around
static allocations of virtual
machines or containers com-
municating over web proto-
cols like HTTP.

(b) Distributed Operating
System: The WSC is pre-
sented as a single operating
system image to users. Appli-
cations are structured around
conventional processes and
files.

(c) Serverless: Applications
are structured around ex-
plicit state, and transforma-
tions over that state.

Figure 2.1: System interfaces to WSCs today

of WSC interfaces that exist today.

2.2.1 Virtual Machines, Containers, and Web Services

Arguably the most common interface to the cloud is through servers and web services (Figure
2.1a). Amazon’s cloud division is even called “Amazon Web Services”. Web services build
on the rich ecosystem of internet and web technologies that are known to scale to millions
of users. TCP/IP handles routing and flow control at internet scale while HTTP provides
a portable and abstract interface to web services. By structuring applications as state-
less HTTP endpoints (called REST [88]), we can add load balancers and seamless fail-over
mechanisms.

As the cloud emerged, users wanted to continue building applications using this proven
architecture. In response, clouds typically provide high-level services through a RESTful
API. For user-defined services, they rely on open-ended allocations of virtual machines or
containers, mimicking the server farms their customers are used to. A number of systems have
arisen to support the provisioning and scheduling of these allocations. Kubernetes (based on
Google’s internal Borg scheduler [273, 267]) has particularly strong industry adoption [44,
47]. More broadly, there are systems like Mesos or OpenStack that seek to provide a unified
view of job scheduling and deployment [199, 300].

While this style of WSC interface does indeed scale, it also brings with it certain dis-
advantages. Web services assume internet-like latencies between communicating entities.
In reality, WSCs support networks with microsecond latencies and hundreds of gigabits
per second bandwidths. At these speeds, HTTP processing and redundant computations
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from stateless APIs become significant overheads [32]. Since servers experience time-varying
demands, it can be hard to right-size allocations. This leads to both idle and stranded
resources. This problem only gets worse with applications like deep-learning that require ex-
pensive specialized hardware. In essence, the web services interface assumes too little about
WSC locality, performance, and allocation flexibility.

2.2.2 Distributed Operating Systems

Making a collection of computers work like one powerful computer is a longstanding goal of
distributed operating systems research [264, 242]. There was a great deal of research on this
topic in the decades after inexpensive workstation hardware and local networks first became
available [201, 279, 182, 108, 240, 8, 64, 74, 110, 12]. These efforts generally sought to provide
a UNIX-like interface to a group of machines (Figure 2.1b). However, this line of work was
largely eclipsed by the emergence of the internet, which ushered in a new era of distributed
systems that operated on a far larger scale [33, 34]. The internet technologies won in the
market with the help of tremendous investment, which makes it hard to conclude whether
POSIX-like distributed operating systems suffered from technical failings, or whether they
simply were not ready to meet the needs of gigantic internet services.

In [242], Schwarzkopf, Grosvner, and Hand argue that hardware trends have made
warehouse-scale computers suitable for distributed operating systems. Indeed, there have
been several recent projects exploring designs in this direction [288, 289, 208, 253, 211, 241,
246, 69].

The problem with POSIX and locality transparent operating system designs is the inverse
of the problem with web services. While web services have a built in design assumption that
everything is remote, POSIX has the built in assumption that everything is local. NFS
provides a clear example of how interfaces designed in a local setting can prove troublesome
in a distributed setting. A remote file system that becomes unreachable may cause API
responses not possible with a local file system [278]. Compliance with POSIX consistency
guarantees [191], notably linearizability [111], has also been a perennial source of pain for
distributed file system implementations [187, 281, 113, 102]. This transparency also makes
performance less predictable, a significant challenge for large-scale applications. I discuss
this effect in more detail in §5.1.4.

Distributed operating systems provide some advantages from the perspective of utiliza-
tion. They can allocate or re-locate tasks to any idle resources in the system. Since they have
greater insight into application resources, they can transparently disaggregate some individ-
ual resources [82, 93, 92]. However, this transparent disaggregation introduces performance
overheads that applications may not account for. I will give some concrete examples of
this effect in §4.2 and §5.1.4. Long-running processes are still assigned resources that are
difficult to reclaim dynamically. Likewise, current operating systems allocate accelerators to
processes exclusively, whether they use them or not. This resource-centric, locality-unaware,
conception of applications fundamentally limits our ability to address sources of underuti-
lization.
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2.2.3 Serverless

More recently, we have seen a new programming paradigm emerge in the cloud: Server-
less [56]. Serverless computing avoids explicit provisioning of resources in favor of time-
bounded invocations of functionality (Figure 2.1c). Users ask for some function or service
to be invoked without considering how or where it will run. These functions are typically
narrow in purpose and use few resources, favoring multiple invocations rather than a single
large function. When the function has completed, the resources are freed. Often, functions
are user defined, called Function-as-a-Service (FaaS), though functionality may also take the
form of scalable services like a database. Users express applications as a graph of function
invocations, often with a common data layer to express state. Since functions have a finite
lifetime, they are not permitted to maintain implicit state (i.e., state that is invisible to
the provider). Instead, all state must be explicitly persisted to a data layer. This design
addresses both sources of underutilization. Since functions are small and fine-grained, many
can be packed onto a single server, reducing stranded resources. Since functions always
run to completion and lack implicit state, the provider can quickly reclaim idle resources.
Serverless is a promising and quickly evolving paradigm in both the academic and industrial
communities [239].

Serverless is not without its limitations [109]. I will mention two major drawbacks here.
The first is the significant deviation from traditional programming models. Few applications
are designed to identify all critical state explicitly and may not be factored into sufficiently
fine-grained functionality. While a legitimate concern, cloud users have demonstrated a will-
ingness to adopt new models. Agility is often favored over backwards compatibility. The
widely used microservice architecture provides a good example [26]. Microservice archi-
tectures break monolithic applications into many independent components communicating
through well-defined APIs. This popular technique requires significant re-design of applica-
tions but enables organizational flexibility, agility within individual components, and scala-
bility.

Another major drawback of serverless computing is the increased communication and
invocation costs of communicating state to many function invocations through a data layer.
While a significant concern, it is mitigated somewhat by the observation that logical dis-
aggregation does not imply physical disaggregation (an observation made in [258]). It is
often possible to place a subset of functions on the same physical server. More generally,
the serverless programming model frees providers to implement novel scheduling, placement,
and even hardware techniques [206].

While promising, there remain many questions about how this may be achieved in prac-
tice, particularly for new technologies like remote memory or domain-specific accelerators.
Despite these challenges, the serverless model is well aligned with the physical realities of
modern WSCs. The logically disaggregated state maps to physically disaggregated memory
and storage. Functions can be instantiated on any compute resource in the datacenter, re-
gardless of its locality to other resources. In Chapter 5, I argue that these properties make
serverless an appealing starting point for a logically disaggregated WSC interface that will
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enable higher performance and better utilization of physically disaggregated resources.

2.3 The Disaggregated Datacenter

Computer hardware has advanced at an incredible rate since the first internet servers ap-
peared in the 1980s. Networks have gone from a few kbit/s to hundreds of Gbit/s. Proposed
integrated silicon photonic networks promise Tbit/s of bandwidth at sub-microsecond laten-
cies [262]. CPUs are many thousands of times faster and their caches have more capacity
than the hard drives of a few decades ago. Despite these advances, today’s servers follow
much the same format as the original PCs that powered the first modern datacenters [260,
12, 33]. These “pizza boxes” contain a power supply, one or more CPUs, local memory, and
any number of peripherals. They run a single operating system instance and integrate with
the outside world through IP.

The power of these new technologies, especially networking, has motivated a new WSC
design: the disaggregated datacenter (DDC) [118, 135, 17]. In a DDC, resources are moved
from aggregated multi-resource partitions (servers) into globally accessible resource-specific
network endpoints (see Figure 1.2 in Chapter 1). This physical disaggregation minimizes
resource stranding by allowing applications to directly access any resource in the system.
They also enable flexible system administration and provisioning. Today, WSC operators
must decide on the resource mix in their servers up-front. If more of one resource is needed,
they must buy more servers, including other resource types that they may not need. If a
new resource type emerges, the operator must design and provision a new server type. In a
DDC, resources can be scaled independently and new types can be introduced as standalone
network endpoints.

While the term “disaggregated datacenter” may imply disaggregation across an entire
warehouse, the core techniques can apply at multiple scales. For example, Hewlett-Packard
Enterprise sells a rack-scale system with disaggregated memory [179], while Oracle sells a
database appliance with globally accessible resources that scales up to 12 racks [3]. DDCs
may also focus on a subset of resources rather than disaggregating every resource at once.
Today, persistent storage resources are commonly disaggregated [25, 91]. Some operators
have disaggregated accelerators for applications like deep learning [261, 215] or data analyt-
ics [30].

2.4 Takeaways

Warehouse-scale computers have grown along with the internet and the dramatic expansion
of computation across science and industry. While they began as a simple extension of PCs,
they have now become highly innovative dedicated systems. The economies of scale and con-
solidation of system administration in the cloud has driven this innovation to new heights.
The highly multitenant nature of these systems also brings the need for high utilization to
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the forefront. Single-application clusters are sized for peak usage, while average utilization
remains a secondary concern. In contrast, modern clouds experience a more consistent av-
erage load even though individual tenants remain highly variable. In this new paradigm,
average utilization is critical as it brings down costs for users and providers. However, tech-
niques to improve this utilization can hurt performance, particularly in the tail. Providers
must carefully manage this trade-off.

Today’s systems are far more specialized than the first warehouse-scale computers, and
that specialization will only increase. On the frontier, we are seeing a trend toward resource
disaggregation through specialized resource-specific hardware units. At the extreme, tech-
nologies like integrated silicon photonics and custom SoCs promise a fully disaggregated
datacenter. System interfaces like web services and distributed operating systems were a
good fit for traditional datacenters, but future physically disaggregated WSCs will require
an equally disaggregated logical interface like serverless. In the coming chapters I move the
frontier of disaggregation forward with new techniques for physical disaggregation, and new
logical models to support them.
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Chapter 3

Hardware/Software Co-Design
Methodologies

3.1 Overview

Designing hardware is challenging. Unlike software, hardware cannot be changed after it is
released (well, not much anyway). This means that designs must be extremely high perfor-
mance and stable before being sent to fabrication. As a result, the hardware design process
has traditionally followed a rigid waterfall development model while the tools available to
designers favor low-level control over productivity. Furthermore, the high barrier to entry
has led to a heavily siloed industry that rarely leverages open-source to accelerate devel-
opment. This state of affairs makes research into computer architecture very challenging,
particularly in an academic setting with limited resources and person-power.

Of course, hardware isn’t useful without software. Architectures that don’t embrace the
needs of software are doomed to fail. Ideally, hardware and software teams should work
together to co-design their systems for maximum impact. Unfortunately, hardware design
has one further challenge that complicates this ideal: the need for simulation. If we are going
to develop software for a new piece of hardware, we need to run it on that new hardware.
The problem is that we can’t just spin out a new chip over night; fabrication costs millions
of dollars and takes months to complete. Instead, we rely on simulators that execute our
software on a faithful model of the hardware design, a slow and resource-intensive process.
This, coupled with the inherent difficulties of writing software for custom hardware, makes
the co-design process difficult to achieve in practice.

Resource disaggregation presents a particularly difficult target for co-design. Disaggre-
gation is fundamentally concerned with relatively large clusters of networked components
rather than a single self-contained accelerator or system on chip (SoC). We also require
long-running and complex software workloads to fully understand the behavior of any new
technique. Indeed, many of my early efforts were stymied by the rigid development practices
and slow evaluation methodologies that were available to me. I needed a new approach: ag-
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ile hardware design. Being agile means that we can quickly modify our designs to changing
requirements without sacrificing quality. In the world of software development, we can lever-
age standardized and open application programming interfaces (APIs), open-source software,
and high-level languages to be more agile in our development. The question was: how can
we get those same benefits for hardware/software co-design?

In the remainder of this section, I quickly review several ways the community at large has
progressed in answering this question. Later in the chapter, I describe the tools and method-
ologies for agile hardware design that I developed with the Berkeley Architecture Research
group to support my work on disaggregation. §3.2 goes over our SoC develop framework,
called Chipyard, while §3.3 describes FireMarshal, the software workload management tool
I built as part of Chipyard. Ultimately, I argue that research into new hardware designs for
disaggregation will require an agile and collaborative methodology that tightly integrates
hardware and software development processes.

3.1.1 Standard Interfaces

While designing hardware is challenging, building a functional software stack on top of a
custom chip can account for over a third of total development costs [115]. Much of this
effort goes toward relatively mundane tasks. Operating systems must be ported, new targets
and extensions must be added to compiler toolchains, and any number of common software
packages must be fixed. This is expensive and time-consuming.

The need for all this effort largely results from differences in the primary interface between
hardware and software: the instruction set architecture (ISA). The solution is to develop a
fully open and extensible ISA that can be used for any new project by anyone. There have
been a number of attempts at open ISAs including SPARC, OpenRISC, and MIPS [287,
197, 178, 286]. While these open ISAs saw some adoption, they also carried technical and
legal limitations [19]. In response, a group at UC Berkeley developed a new ISA called
RISC-V that was truly open and designed to support a wide range of CPU designs though a
flexible extension system [283]. RISC-V has since seen wide adoption in both academia and
industry, with many high-quality open-source and proprietary implementations [116]. This
widely adopted and open ISA meant that software could be ported once and re-used across
a wide range of implementations.

3.1.2 Open Source Hardware

There are now a number of open-source designs for full-stack RISC-V based systems-on-chip
(SoCs). These include frameworks like OpenPiton, BlackParrot, ESP, and Chipyard [27,
210, 168, 10]. These designs include complete hardware implementations of processors that
support the RISC-V privileged specification [284]. They boot full operating system kernels
such as Linux and support a broad range of applications. Together with additional platform-
level components, these frameworks enable the design of complete SoC implementations at
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fabrication quality. I will refer to these concrete, synthesizable, designs as register-transfer
level descriptions (RTL) as opposed to, e.g., analytical models of hardware.

Figure 3.1 depicts the typical components included in such a system. Open-source SoC
development frameworks often provide a baseline hardware implementation and allow users
to modify or add components in order to customize the SoC for a particular use-case. Eval-
uating such a system often requires a fully functioning software stack from firmware all the
way up to user-space applications.

Figure 3.1: Full-stack hardware development components.

3.1.3 Software Stacks

While RISC-V ensures that software does not need to be ported to each new design, gener-
ating and maintaining a working software stack for a particular project is still challenging.
The top half of Figure 3.1 shows the range of software that might be affected by custom
hardware. At the lowest level, we have the firmware and boot loader, device drivers, and
operating system kernel. These are usually compiled into a single boot binary that is loaded
by the hardware system. Above that, we have a wide range of user-space software including
utilities like networking or shells as well as user application logic. These are packed into a
filesystem image that is loaded by the boot-binary. Together, these components form the
software workload that must support the hardware platform. Projects may require multiple
software workloads. For example, one workload may provide a generic interactive environ-
ment while others support automated experiments or unit tests. A change in any part of this
stack may require changes to others. For example, an updated platform device may require
a new software driver, or a change to the CPU boot configuration may require updates to
the firmware. Likewise, updated software components may expose bugs in the hardware
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implementation or require new features. While a hardware project may require changes to
any part of this stack, it is unlikely to require changes to all parts.

Developers use these software workloads to support experimentation, testing, and deploy-
ment. This software workload lifecycle includes specifying the workload in a shareable and
repeatable fashion, building that specification into the boot binary and disk image, running
it in multiple levels of simulation, and finally installing it onto the real hardware. This pro-
cess needs to be repeated periodically during the development process so automated testing
is also valuable.

Containers have become a standard mechanism for building and distributing workloads
in the cloud and other server-side environments. Docker is a popular tool for describing and
distributing these containers [175]. While there is much to learn from Docker’s composable
workload descriptions and highly configurable build process, it does not directly apply to
hardware development. Docker only manages a Linux userspace setup and cannot modify
the full software stack as needed for architectural research. It is also not designed to manage
the other parts of the workload lifecycle like testing, output parsing, or simulator integration.

For lower-level control, developers can leverage Linux distributions that package most
user-space components into a coherent environment. Some like Fedora or Debian target
general-purpose workloads [87, 76]. For more specialized environments, there are distribution
generators like Buildroot, Kickstart, or AutoYast that allow users to describe a minimal
Linux environment in a configuration file [46, 161, 20]. Of particular note is Yocto which
includes a flexible and composable build system called Bitbake [296].

These systems are primarily designed for system administration and deployment rather
than experimentation. They do not manage user applications, experiment management, or
simulator integration. For that, hardware development frameworks usually include some
form of software development kit (SDK) to jump-start software development. For example,
Raspberry Pi, Nvidia and Xilinx all provide SDKs for some of their products [189, 193, 305].
For RISC-V SoCs, examples include the Ariane SDK and the SiFive freedom-u-sdk [14, 94].
The SDKs integrate an embedded distribution generator, along with a default Linux kernel
configuration and firmware tuned for their platforms. These SDKs are primarily targeted at
producing a production software platform rather than a suite of experiments over the rapidly
changing and non-standard hardware used by architecture researchers. In §3.3, I present my
approach to overcoming these limitations.

3.1.4 Simulators

Open ISAs, hardware implementations, and software stacks allow us to quickly develop new
systems, but we still have to evaluate them. To do that, we use a spectrum of simulators at
different levels of detail and performance. On one end of the spectrum, we find functional
simulators such as QEMU [216] and riscvOVPSim [226] that faithfully implement the system
specification without particular concern for timing modeling. These can often be used as
a reference implementation of system behavior for verification. On the other end, we have
cycle-exact RTL simulators such as VCS, NCSim, ModelSim and Verilator [254, 252, 180,
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272], as well as RTL hardware emulation tools such as Palladium, Zebu, and FireSim [49,
301, 134]. In between, we find functional ISA simulators such as Spike [257], as well as
cycle-approximate modeling simulators such as gem5 and Sniper [263, 167].

The general trade-off is between modeling-detail and performance. While functional sim-
ulators are very fast and flexible, RTL simulation is much slower and requires complete
hardware designs, but provides a higher fidelity of performance results and feature correct-
ness. Ideally, initial software development can be done on functional simulation while slow
and expensive cycle-exact simulation is only used for hardware verification and final perfor-
mance evaluation. However, switching between simulators is not a trivial task, and software
setup is often tightly intertwined with some simulator assumptions.

3.2 The Chipyard SoC Development Framework

There are a lot of moving parts in the hardware development stack. At the top of the stack, we
have software applications, operating systems, and low-level interfaces. Below that, we need
interfaces between hardware and software. These include the ISA and platform APIs. Next
we need to implement those interfaces in RTL using some hardware-description language.
Finally, we have to simulate those designs or convert them into wires and gates on a piece
of silicon (typically referred to as VLSI). Each of these steps requires specialized tools and
methodologies, but they all need to work together to create a complete chip. At UC Berkeley,
we had experience with most of these steps, but their interactions were ad-hoc and driven
by word of mouth. As we became more agile in our hardware development flows, this ad hoc
approach became untenable. The result was a unified project, called Chipyard, that brought
together all of these tools and codified the chip development process into a unified flow
(see Figure 3.2). As a large collaborative project, I will leave a comprehensive description
of Chipyard to our jointly published work [10]. Instead, I will use this section to quickly
go over the general design process using Chipyard, with a focus on the hardware-software
co-design methodology I used in my work on disaggregation.

Chipyard facilitates five key phases of the co-design process (Figure 3.3):

1. Specification: We begin by documenting an initial design in a semi-formal specifica-
tion. We then implement the proposal in a functional model that strictly defines the
expected behavior. This becomes the contract between hardware and software.

2. Leverage Existing Designs: Any given proposal may need to modify any part of
the hardware/software stack, but it is unlikely to modify all parts. We therefore find
an existing, known-good, implementation of a base system to serve as a starting point
and reference baseline.

3. Focused Modifications: Once we have a base design that is functional end-to-end, we
can begin implementing our proposal. Since our base design has most of what we need,
our changes can be focused and will involve minimal work on unrelated components.
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Figure 3.2: General structure of the Chipyard SoC development framework. Chipyard con-
sists of many independent tools spanning everything from physical design and layout to
software workload management.

Figure 3.3: A typical agile hardware design flow using Chipyard
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4. Decoupled Simulation: To evaluate and debug our designs, we leverage domain-
specific simulators. For hardware, we are primarily interested in cycle-by-cycle behav-
iors of our modules or short sequences of instructions for end-to-end testing. Software-
based RTL simulators give us high timing accuracy and insight for these short tests,
but run too slow for end-to-end benchmarks. In software, we rely on the behavior of
our hardware on complex workloads, but we are not concerned with the details of how
it produces that behavior. This allows us to use functional simulators that elide timing
accuracy in favor of high performance.

5. Integrated Simulation: Once we have confidence that both hardware and software
behave correctly, we evaluate them together for correctness and performance. This step
requires both high simulation speed and high fidelity. For this, we can use hardware-
accelerated simulators that have higher cost and more complex deployment, but can
simulate realistic software workloads in a reasonable time frame.

I now present these phases in more detail and describe how Chipyard facilitates them.

3.2.1 Problem Identification and Solution Specification

Chipyard includes a set of reasonable and high-performance designs, including end-to-end
software workloads for standard benchmarks. Furthermore, projects that use Chipyard are
easily shared with the open-source community. This provides a rich ecosystem of designs
to evaluate when identifying new problems. A security researcher may use our out-of-order
core (BOOM [58]) to find new speculative execution exploits (such as the famous Spec-
tre exploit [142]) [101, 103, 235]. In Chapter 4, I will talk about how I used Chipyard’s
base designs, along with an open-source RDMA network interface to identify performance
bottlenecks in disaggregated memory.

Once a problem is identified, we propose a solution. This solution might be a new
hardware accelerator or microarchitectural modification. From here, we write a semi-formal
specification in prose. This specification describes only the proposed changes to the base sys-
tem and must include enough detail for hardware and software developers to implement the
proposal. Next, this specification is codified into a functional model. In Chipyard, we typi-
cally implement this model manually using the included Spike RISC-V ISA simulator [257].
This functional model serves as the contract for both hardware and software designs. So long
as both designs conform to the functional model’s behaviors, we can have confidence that
our designs will work together. In practice, we rarely get the functional model completely
right the first time, so this process is iterative.

3.2.2 Building on Existing Designs

Chipyard includes a complete, silicon-proven, set of designs. These are tied together us-
ing a modular SoC generation framework called Rocketchip [18]. We provide a number
of modules for common SoC components. This includes two CPU cores: an in-order core
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called Rocket, and an out-of-order core called BOOM [58]. We also have modules for net-
work interfaces, caches, accelerators, etc. All of these components are written in the Chisel
hardware-description language [22]. Chisel allows us to design our modules as generators
rather than fixed designs. Generators allow us to parameterize our designs so that a sin-
gle implementation can be instantiated with different features. For example, the BOOM
core can be instantiated as 2, 4, or 8-way out-of-order. In some projects, we simply modify
these parameters to explore different design points. For more complex designs, we can im-
plement new modules in Chisel and integrate them using Rocketchip’s on-chip interconnect
Tilelink [251], or as an ISA extension using RoCC [21].

On the software side, we provide base workloads for general-purpose Linux distribu-
tions, as well as standard benchmarks like SPEC or Coremark [256, 96]. As with hard-
ware, there are more software workloads available in the open-source community. These
workloads are specified using the FireMarshal software-workload management tool that I
developed [205]. FireMarshal allows users to inherit from these base workloads by specifying
whatever application-specific changes must be made. I describe FireMarshal in detail in §3.3.

3.2.3 Correctness Testing and Evaluation

While designing new modules, we are primarily concerned with the correctness of our im-
plementations. We require tight feedback cycles for this correctness checking since designs
change rapidly and debugging often requires testing many small changes. In hardware, we
use RTL-level simulators like Verilator or VCS [254, 272]. These simulators do not require
any specialized resources and can run directly on our development machines. They also
provide high levels of insight into our designs (e.g., individual cycle-level waveforms). Unfor-
tunately, this convenience comes with a high performance cost. Software simulators typically
run in the kilohertz and produce far too much data for evaluating long-running end-to-end
benchmarks. This trade-off is acceptable in the primary implementation phase as small
traces of instructions are typically sufficient for verifying compliance with the specification.

During software development, we are not concerned with the cycle-by-cycle behaviors
of our hardware. Instead, we rely on functional simulators that faithfully reproduce the
behaviors of our specification, but do not rely on any particular hardware implementation.
These simulators can be very fast, often running at near-native speeds. In Chipyard, we use
QEMU for simulating standard RISC-V software due to its extremely high performance [216].
For more custom designs, we use the official RISC-V ISA simulator, Spike [257]. Spike has
extremely high-fidelity to the RISC-V specification and is easy to extend for new designs.
FireMarshal integrates directly with these simulators to allow rapid iteration on designs and
frequent regression tests.

Eventually, we need to evaluate our hardware and software designs together. This is
important for correctness since our specification may be incomplete or incorrect. More im-
portantly, we need to evaluate the performance of our design on real end-to-end benchmarks.
This requires running billions of instructions on our real hardware implementation with high
fidelity. Functional models are fast enough, but don’t match the hardware implementa-
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tion precisely. Software RTL simulators are sufficiently accurate, but simply too slow to be
practical. They also lack the network models needed by research on warehouse-scale comput-
ers (WSCs) and disaggregation. Instead, Chipyard uses an FPGA-accelerated cycle-exact
RTL simulator called FireSim for integrated end-to-end evaluation [134]. FireSim uses a
tool called Golden Gate that takes RTL designs and converts them into a timing-decoupled
model running on FPGAs [166]. It is important to note that this process does not pro-
duce an FPGA prototype of the design, it creates an FPGA-accelerated simulator of the
designs. This process is able to create a simulator that runs at tens or hundreds of mega-
hertz. FireSim instantiates these simulators on cloud FPGAs using Amazon’s F1 instance
type and automates much of the simulation process. FireSim was motivated, in part, by my
research efforts toward a disaggregated datacenter called FireBox that required simulation
of entire clusters. To do this, FireSim includes a cycle-exact network model and connects
many FPGAs, each simulating one or more instances of our SoC design. We have simu-
lated clusters of up to 1024 nodes using this approach. While FireSim is extremely high
performance and accurate, it requires specialized resources (FPGAs) that may be limited
and/or expensive. It also requires more effort to set up than local simulation. Fortunately,
our decoupled design process allows most development to be done locally, with FireSim used
only for final evaluation.

3.3 Software Workload Management with

FireMarshal

As we saw earlier in this chapter, software workload management on custom hardware is
a tricky problem. Chipyard and other similar frameworks have drastically improved our
ability to design and simulate complex RISC-V based SoCs. These advances have greatly
increased the complexity of software that can be reasonably used for evaluation; a blessing
and a curse. A complete software stack needs to track the exact version of various hard-
ware interfaces with software functionality from the firmware up to user-level applications.
This increased complexity and velocity presents challenges to the management of software
workloads for experimentation and research. Firstly, we must be able to rebuild and re-run
our own experiments in a consistent way (repeatability). Second, we must communicate
our experiments in a way that allows the community to evaluate and compare them (repro-
ducibility). Furthermore, we would like to avoid duplication of effort within the community
by reusing workloads, even as software and hardware evolve (benefaction1).

In this section, based on joint work with Alon Amid [205], I present FireMarshal, a
software workload management system to wrangle this complexity. FireMarshal allows users
to describe and share workloads in an unambiguous human and machine readable form
that can be stored, version controlled, and shared. FireMarshal is included in the Chipyard

1The terms “repeatability” and “reproducibility” are used as defined by the ACM [16] while the term
“benefaction” is derived from the work of Collberg and Proebsting [68].
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framework, though it is designed to be general purpose and extensible. In §3.3.1 and §3.3.2, I
describe problem of software workload management in more detail. §3.3.3 and §3.3.4 present
the FireMarshal tool design and implementation. I conclude in §3.3.5 with a number of
example use-cases for FireMarshal.

3.3.1 Software Workload Management Pitfalls

There are a number of common pitfalls to an ad-hoc approach to workload management.
The first is simulator compatibility. Each simulation platform may require a slightly different
configuration and care must be taken to ensure that software remains correct and faithful
to the experiment when switching simulators. Another common pitfall is the generation of
magic images : software workload artifacts that were built ad-hoc and are hard to reproduce.
System configuration is challenging and error-prone, if multiple manual steps are needed there
is significant room for forgotten steps or inconsistencies. Furthermore, a poorly documented
build process can make experiment reproduction difficult or impossible. Finally, without
additional system support, experiments may require manual interventions. Users need to
wait for the system to boot completely before logging in and running a benchmark, and
results need to be manually extracted from the serial output or disk image after a run.
These interventions can introduce non-determinism in the experiment and, again, are time
consuming and error prone.

3.3.2 Requirements

In contrast to the ad-hoc approach, I advocate for the use of an automated workload man-
agement system where the software workload life-cycle is managed automatically through
standardized workload descriptions. I now identify several key requirements that a more
general workload management tool should provide:

1. Flexible Design: Users should be able to change any part of the system, but provide
only what is needed for their specific project. Reasonable and up-to-date defaults must
be available for all system components.

2. Maximal Reuse: Workloads must be described in a way that can be shared and built
upon without inside knowledge.

3. Flexible Simulation: It must be easy and reliable to switch between different levels
of simulation while minimizing software differences.

3.3.3 The FireMarshal Tool

To address these requirements, I developed FireMarshal. FireMarshal is an open source
software workload management tool for RISC-V based hardware systems development [90].
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Figure 3.4: FireMarshal Workflow

FireMarshal generates workloads from machine-readable configuration files in JSON or
YAML. Under FireMarshal, workloads can be tracked in a version-controlled repository and
reproduced as needed. Configuration files specify a base workload to serve as a starting point,
and any workload-specific changes that must be made to that base (see §3.3.4.1 for details).
FireMarshal comes with several standard workloads that are configured to work on the target
platform and are updated regularly to keep in sync with the evolving ecosystem. We currently
supply general-purpose Fedora and Buildroot-based Linux distributions. Complex projects
may create hierarchical workloads, where common options are defined once and inherited
by many workloads. Most software development can occur in functional simulation on any
development machine, with slow and expensive RTL simulation utilized only to drive the
final performance evaluation.

FireMarshal is designed around five major phases of the workload lifecycle: specify,
build, launch, test, and install (depicted in Figure 3.4). Users begin by creating a
FireMarshal specification for their workload; they can then build the software artifacts
(i.e., boot binary and disk image). After building the workload, users can launch it in
fast functional simulation for testing and software development. Once users are satisfied
with their workload, they can install it to a cycle-exact RTL simulator for performance
evaluation. The same tests can be run on both functional and RTL simulation to ensure
consistent behavior.

3.3.4 FireMarshal Design and Implementation

FireMarshal is implemented as an open source command line application along with a set of
preconfigured software components. Table 3.1 summarizes the commands that FireMarshal
supports. In the following sections, I describe how FireMarshal supports each phase of the
software workload lifecycle.
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Command Description

build Construct the filesystem image and boot-binary
launch Launch this workload in functional simulation
install Set up a cycle-exact RTL simulator to launch this workload.
test Build and launch the workload and compare its outputs against a reference

Table 3.1: Commands supported by FireMarshal.

3.3.4.1 Specify

The workload lifecycle begins with users specifying their workload through a YAML con-
figuration file, along with any artifacts that should be included (e.g., benchmark sources).
FireMarshal provides options for workload inputs and outputs, component customization,
and hooks for user scripts to run at different points in the workload lifecycle. Table 3.2
describes several common options. All options except base are optional.

Inheritance and Jobs A key concept in FireMarshal is inheritance. There are many avail-
able options for each workload, some fairly complex. To minimize repeated work, FireMar-
shal allows users to specify only the options that have changed relative to a base workload.
For example, many workloads change only the run option to create workloads for differ-
ent benchmarks while the base may include a filesystem overlay or a script for installing
benchmark prerequisites.

Some simulators support multi-node simulations. In this case, several workloads are
expected to run simultaneously. The jobs option allows users to specify multiple related
workloads. Jobs are implicitly based on the top level workload description and follow all
inheritance rules.

Boards and Bases FireMarshal supports multiple hardware platforms through the ab-
straction of a board. Boards encapsulate support for SoC details, peripherals, and any
associated logic or quirks. Users will rarely need to define or modify a board, they should
be provided by the SoC generation framework. Instead, users inherit from common base
workloads provided by the board that abstract these details. To define these base workloads,
the framework authors must provide a number of key components:

• Linux Source: A version of Linux known to work with the board or a link to the
default version included with FireMarshal.

• Firmware: RISC-V systems require a supervisor binary interface (SBI) to perform
low-level functions. Users may provide their own implementations of either OpenSBI
[198] or the Berkeley Boot Loader (BBL) [214].
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Option Description

base Start from a pre-existing workload
overlay/files Files to include in the image
host-init Script to run before building (e.g. cross-compile)
guest-init Script to run once on the guest (e.g. install packages)
run/command Script to run every time the image boots (e.g. default experiment)
outputs Files to copy out of the image after an experiment
post-run-hook Script to run on the output of the experiment (e.g. parse or format

results)
linux Linux customization options including Linux source directory, kernel

configuration options to modify, as well as any needed kernel module
sources

firmware Firmware-related options including choice of firmware and build op-
tions.

spike Custom Spike binary to use
spike/qemu-args Additional arguments to pass to functional simulators
jobs Additional, related images to build (each node of a networked work-

load)

Table 3.2: Common FireMarshal configuration options.

• Drivers: If the board includes any additional devices such as a network or disk in-
terface, the user must include the needed Linux drivers. Drivers will automatically be
built and loaded by FireMarshal.

• Base Workloads: A board must include base workloads for supported distributions.

3.3.4.2 Build

The next step in the workload lifecycle is to build the workload. A FireMarshal build
produces a bootable binary and a filesystem image (Figure 3.5). The boot binary includes
the firmware, Linux kernel, and an embedded filesystem (initramfs) containing platform
drivers and other early-boot code. In some cases, users may wish to produce a workload
that does not involve a disk device. In this case, they specify the --no-disk command line
option, which causes the disk image to be embedded in the initramfs. This process happens
transparently and does not require further user intervention.

Build Phases FireMarshal goes through a number of steps during a build, although not
every step is required for every workload:
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Figure 3.5: Outputs of the build command By default, a complete bootable binary and
a disk image are produced. For diskless builds, users provide the --no-disk option, in which
case the disk image is embedded in the Linux embedded ramdisk (initramfs).

1. Configuration: The first step is to read the workload configuration file and any poten-
tially related configurations. FireMarshal employs a search order similar to the $PATH
variable in a Unix shell to locate workloads. Parent workloads are parsed recursively,
with children inheriting options from their parents (and overriding as needed).

2. Build Parents: The build process from this step forward is performed recursively to
produce filesystem images for all parents.

3. host-init: If the workload includes a host-init script, this is run before proceeding to
ensure that any generated artifacts are available in future steps.

4. Boot Binary: If the user has hard-coded a boot binary, the following steps are
skipped. If the child workload would not generate a different binary than its parent,
FireMarshal simply makes a copy of the parent’s binary and skips this step.

a) Final Linux Configuration: To form the final Linux configuration, FireMarshal
begins with the RISC-V default configuration. If needed, users can provide Linux
kernel configuration fragments that contain a list of options to change in the
default configuration. The use of configuration fragments makes workloads more
portable between kernel versions.

b) Kernel Module Generation: With a valid kernel configuration, any needed
kernel modules defined in the workload can now be built. This includes system-
provided device drivers, as well as user-provided kernel modules.

c) Generate Initramfs: To load drivers as early as possible, and to provide a
mostly workload-independent boot phase, FireMarshal generates an initramfs as
the first-stage init. This initramfs loads both system and user-provided kernel
modules.

d) Linux Compilation: The full Linux kernel can now be compiled with a reference
to the initramfs to embed.
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e) Firmware: The desired firmware is compiled and linked with the Linux binary.
At this stage, the boot binary is complete.

5. Disk Image: As with the boot binary, users may provide a hard-coded disk image in
which case the following steps are skipped.

a) Copy Parent Image and Add Files: FireMarshal makes a copy of the parent’s
disk image and then copies over any files from the file or overlay options.

b) guest-init: At this stage, we have a bootable (albeit incomplete) workload. Fire-
Marshal now configures the workload to run the guest-init script and boots it in
QEMU. This script is run exactly once.

c) Boot Command: The final step in filesystem generation is to configure the
workload to run user-provided code from the command or run option on every
startup. This is done by inserting a new step in the Linux distribution’s init
system.

6. Initramfs-Embedded FileSystem: As shown in Figure 3.5, users may provide the
--no-disk option to FireMarshal to eliminate the need for a disk device. To do this,
FireMarshal runs the build process as described above, but recompiles the kernel with
the generated disk image as its initramfs payload.

As this process can be quite time consuming, especially for workloads with deep in-
heritance hierarchies, FireMarshal uses a dependency tracking system to avoid unnecessary
rebuilding [237].

3.3.4.3 Launch

After building, the launch command runs the workload in functional simulation. Serial
inputs and outputs are presented to the user interactively and logged to a file for later
analysis. For workloads with a command or run option, the user does not need to interact
with the simulation. When the simulation completes, FireMarshal copies any output files
and the serial port log to an output directory. The post-run-hook script is run against this
output to produce final results.

3.3.4.4 Test

While the launch command is primarily used for interactive debugging and development,
FireMarshal supports hands-off testing with the test command. This is useful for running
suites of automated tests like those seen in continuous-integration (CI) workflows. The test
command builds and launches the workload, and then compares the outputs against any
provided reference outputs. A complete comparison of outputs is not typically appropriate as
there may be irrelevant or non-deterministic output (e.g. time stamps). Instead, FireMarshal
is able to clean outputs and allows the reference to contain only a subset of the expected
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output. A test that produces that subset somewhere in its output is considered a success.
Workloads with more complex success criteria can use the post-run-hook option to perform
custom analysis of outputs.

3.3.4.5 Install

Once a workload passes functional simulation, users may wish to run it against a cycle-exact
RTL-level simulator. Unlike functional simulation, RTL-level simulators require hardware-
specific configuration and build processes that are out of scope for a workload management
tool like FireMarshal. Instead, FireMarshal provides the install command to convert the
workload specification into a valid configuration for the RTL-level simulator. From there,
users interact with the simulator normally to launch the workload. After a simulation,
users can verify the outputs using the test command with the --manual option to compare
outputs as if FireMarshal had run the workload. It is important to note that the workload
outputs are not modified in any way between the launch and install commands; the exact
same artifacts are run on both simulators.

3.3.5 Case Studies

I now review a few examples of how I have used FireMarshal in my own research as well as
some community use cases.

3.3.5.1 The Page Fault Accelerator

For this case study, I show how I used FireMarshal to support research into using OS paging
to implement physical memory disaggregation. I will cover this project in detail in Chapter
4, but I give an overview of it here. Figure 3.6 gives a high level view of this page fault
accelerator (PFA). The PFA was designed to improve the performance of systems that use
remote memory as a swap device (e.g., Infiniswap [104]) by handling the basic remote memory
lookup and fetch in a new hardware module embedded in the MMU. The complex paging
logic in the OS could then be deferred to an asynchronous background thread. The OS
interacted with the PFA through several memory-mapped queues and special page table
entry values. Similar to regular RDMA, local memory regions were registered with the
PFA for fetched pages. The PFA directly interacted with the network interface through its
exposed queues, much the same way an OS driver would.

My collaborators implemented the accelerator itself using Chipyard in a few hundred
lines of Chisel while I focused on the software components. Since Chipyard provided a com-
plete base system, including an RDMA-capable network interface, the hardware components
required relatively little engineering effort. However, the kernel modifications to support the
accelerator were extensive and complex. Beyond the kernel, user level services like systemd
and cgroups required careful configuration and integration with experimental procedures.
This project required a number of software tasks:
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Figure 3.6: Block diagram of the PFA The kernel asynchronously provides free physical
pages to the PFA 1○. On a page fault 2○, the MMU consults the page table 3○ and requests
any remote pages from the PFA 4○. The PFA initiates an RDMA operation from the
network adapter 5○. The kernel can now asynchronously request a list of fetched pages for
bookeeping purposes 6○. The critical path for a remote page fault (steps 2○- 5○) is handled
synchronously in hardware while slow kernel interactions (steps 1○ and 6○) are moved off
the critical path.

Bare Metal Unit Tests To verify software drivers and the hardware implementation,
I implemented a golden model of the PFA in the Spike functional simulator. The golden
model exposed all software-visible interfaces and emulated remote memory. Low-level tests
were implemented either completely bare metal or in the RISC-V proxy kernel [214]. These
tests were critical for debugging hardware implementation issues and served as a reference
for the specification. In my FireMarshal workload configuration, I included a reference to the
modified simulator (using the spike option) and a script to cross-compile the benchmarks
(using the host-init option). I ran this using the launch command and debugged interac-
tively until I was satisfied that it worked correctly. The serial port output was saved as a
reference output (using the testing/refDir option) and used for regular automated tests
(with the test command). This same workload could then be run on FireSim to verify the
hardware implementation using the install command. This test was revisited periodically
as the hardware specification evolved, or as new corner-cases were identified that required
additional unit-tests.

Linux Unit Tests The most significant engineering challenge in the PFA project was to
modify the Linux kernel to asynchronously process page faults. I also modified the default
Linux kernel build configuration to enable certain swapping-related features. For basic unit
testing, I used the Buildroot base workload. Buildroot could boot quickly and minimized the
amount of extra code running in the system. I began with pfa-base, a base workload that
would handle the common setup tasks (Listing 3.1). Individual tests and benchmarks inher-
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{

"name" : "pfa -base"

"base" : "buildroot",

"host -init" : "cross -compile.sh",

"linux" : {

"source" : "pfa -linux/",

"config" : "pfa -linux.kfrag",

},

"overlay" : "pfa -test -root/",

"spike" : "pfa -spike"

}

Listing 3.1: Base workload for PFA Linux unit tests. This workload was written once and
re-used by all Linux-based tests and experiments.

{

"name" : "latency -microbenchmark",

"base" : "pfa -base",

"post -run -hook" : "extract_csv.py",

"jobs" : [

{"name" : "client",

"linux" : {"config" : "pfa.kfrag "}

"command" : "latencyTest.sh"

},

{"name" : "server",

"base" : "bare -metal",

"bin" : "serve"

}

]

}

Listing 3.2: An example microbenchmark workload. The microbenchmark has one Linux-
based job for the client benchmark, and a bare-metal job to serve remote memory. The jobs
will be instantiated as network nodes in FireSim simulation. There were many workloads
similar to this for each unit test or experiment.
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ited from pfa-base, typically adding only a Linux configuration fragment and a command

option to run a particular benchmark. Listing 3.2 shows an example for one particular
benchmark, a microbenchmark that measured the latency of each step in a remote page
fault. This workload also included a post-run-hook option that automatically extracted
and formatted the experiment results into a CSV format. I could then inspect those results
manually or produce figures for publication. I used this process to generate the results in
§4.2. Note that there were many workloads similar to latency-microbenchmark, but only
one pfa-base.

The first step in developing the kernel modifications was to create a non-accelerated base-
line by emulating the PFA’s behavior in the regular page fault handler. These modifications
were non-trivial and introduced complex, non-deterministic, bugs. QEMU allowed me to run
long-running tests in a reasonable time frame, as well as providing an integrated GDB server
for interactive debugging. Once I was satisfied with the emulated behavior, I introduced
the real hardware driver and ran the tests against my Spike golden model. The only change
required in the workload was a one-line Linux configuration fragment to enable the PFA
driver. This meant that the experimental setup and test parameters were identical between
the two simulators, giving me confidence that any errors were due only to the driver change.
When everything worked in both Spike and QEMU, I could run the unmodified workload on
FireSim for final verification. Since the software had been verified against the golden model,
and the golden model had been verified with the bare-metal unit tests, I could narrow down
any errors quickly. Since the process of targeting different simulators was automated, there
was minimal room for human error.

End-To-End Benchmarks Once I had confidence that the system operated correctly, I
was able to evaluate the PFA against end-to-end macro-benchmarks. Some of these real-
world applications had many dependencies that would be difficult to fulfill manually as
required by Buildroot. Instead, I leveraged the package management system of Fedora to in-
stall dependencies at build time using a guest-init script. While more full-featured, Fedora
took significantly longer to boot and introduced hard-to-debug features like asynchronous
systemd services.

The workload description process was similar to that of the Buildroot unit tests, but I
additionally included a post-run-hook option to automatically process experimental results
from the serial output into CSV files for analysis. This ensured that experiments could be re-
run by myself or external users and processed in a consistent way. The FireMarshal workload
served as unambiguous documentation of my experimental procedure for reproducibility and
comparison.

Repeatability, Reproducibility, and Benefaction While developing these workloads,
I manually inspected results and interactively debugged any issues. Once they were stable, I
used the test command to re-run the test workloads after any major changes. The end-to-
end benchmarks similarly supported an automated workflow with the launch and install
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commands. These served as the core artifacts used for evaluation by myself and others in
the community that wanted to reproduce my results.

3.3.5.2 Benchmarking: SPEC2017

Not every research project requires custom software for evaluation. Changes to a branch
predictor or cache design are best evaluated using standard benchmarks. In this section, I
describe how I used FireMarshal to provide one common benchmark used in the architecture
community: SPEC2017 [256]. SPEC provides a number of scripts for interacting with the
benchmark, while tools like Speckle [59] simplify the process of cross compiling for new
architectures. However, having the binaries alone is not sufficient for a benchmark. Users
still need to invoke and measure the benchmarks in a consistent way as well as compile and
format results. Listing 3.3 shows one example workload for the intspeed benchmark suite.

In this section, I describe an experiment to compare two different branch predictors
on the Berkeley Out-Of-Order Machine (BOOM [58]) using the intspeed benchmark suite
from SPEC2017. In one case, I use an older branch predictor from BOOM v2 based on
Gshare [172], in the other I use the more recent TAGE-based predictor [304, 243]. Switch-
ing between these configurations was a simple matter of modifying the BOOM generator’s
parameters in Chipyard.

In the general case, SPEC does not require changes to system software and simply in-
herits from the default Buildroot environment. This means that the SPEC workload will
transparently receive any updates to the built-in workloads and will be portable across many
boards and versions. Users are free to copy this workload description and change the base if
their particular example requires additional configuration. No changes were needed for this
branch-predictor experiment. Cross-compilation of the benchmark is provided by Speckle
(in the host-init option), while the FireMarshal workload marks the Speckle outputs as an
overlay. For each benchmark, the run script will place results in /output, so FireMarshal is
instructed to retrieve these after the workload finishes running (using the outputs option).

Each benchmark in the suite is independent and can run in parallel. I exploit this in
the workload by specifying 10 jobs, one for each benchmark. Each job differs only in the
command option, specifying which benchmark to run. When installed to FireSim, each job
is instantiated as a node in the simulated cluster and run in parallel. This optimization
reduced the runtime for the experiment from about two weeks to roughly two days.

Once the workload has finished, the workload passes the results through a post-run-hook
script that combines all results into a CSV file (Listing 3.4), as well as plotting a simple
diagram for quick reference (omitted for brevity). Figure 3.7 shows the combined output of
the two experiments from the result CSVs.

I developed this workload entirely on a cheap local machine using QEMU and without
regard for the eventual branch-prediction experiment. I ran it for the first (and only) time on
cycle-exact simulation to gather the final performance numbers on real RTL. Since FireMar-
shal ensures that identical inputs are run on both functional and cycle-exact simulations, I
had confidence that the workload would run correctly the first time.
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{

"name" : "intspeed",

"base" : "buildroot",

"host -init" : "speckle -build.sh intspeed ref",

"overlay" : "overlay/intspeed/ref",

"rootfs -size" : "3GiB",

"outputs" : ["/output"],

"post -run -hook" : "handle -results.py",

"jobs" : [

{

"name": "600. perlbench_s",

"command": "./ intspeed.sh 600. perlbench_s --threads 1"

},

...

{

"name": "657. xz_s",

"command": "./ intspeed.sh 657. xz_s --threads 1"

}

}

Listing 3.3: Workload for the intspeed benchmark suite from SPEC2017. In total, there are
10 jobs, one for each benchmark in the suite. Jobs are able to run in parallel in FireSim.

name ,RealTime ,UserTime ,KernelTime ,score

600. perlbench_s ,1428.54 ,1428.0 ,0.43 ,1.24

...

657.xz_s ,3034.63 ,2999.81 ,34.63 ,2.04

Listing 3.4: Example CSV output of the spec2017 intspeed workload for the TAGE
configuration.
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Figure 3.7: Combined graph output of the spec2017 intspeed workload. A similar graph
is generated automatically for each experiment while the combined graph can be generated
manually using an included script.

User Experience Most users do not need to look at the workload description. It was
written once and can be reused by anyone without modification. A typical user would run
the SPEC workload with the following steps:

1. Install SPEC: Since SPEC is closed-source software, I am unable to automate instal-
lation. Users must first acquire and install the SPEC benchmark suite sources and a
license to use them.

2. Download the FireMarshal Workload: The FireMarshal workload can be cloned
from a public git repository [255].

3. Build the Workload: Once SPEC is installed, FireMarshal can build the entire
workload suite with one command: marshal build intspeed.yaml.

4. Install the Workload: Once built, the workload could be run in functional simulation
with the launch command, but this is not typically needed since users do not need to do
any software development. Instead, users will typically have FireMarshal create RTL
simulator-compatible configuration files using marshal install intspeed.yaml.

5. Run the Simulation: Users now interact with their RTL simulator as usual, pro-
viding their hardware configuration and any other simulation parameters they wish.
When the simulation completes, the simulator will provide an output directory con-
taining the benchmark results as generated by the post-run-hook script (see Figure 3.7
and Listing 3.4).
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Other than acquiring the licensed SPEC suite itself, I did not need to interact with any
target software in order to run the branch-prediction experiment. All that was required was
to generate my desired hardware configurations (the feature I actually cared about); the
software “just worked”. Furthermore, results were recorded in a standard and reproducible
way. If I were to add a new branch predictor in the future, I could have confidence in my
experimental setup to compare against previous results without needing to re-run them.
Most importantly, now that the workload has been implemented, it is freely available for
anyone to use or improve without repeated effort.

While I describe SPEC here, there are other similar benchmark workloads already avail-
able including CoreMark [96] and the ONNX-runtime deep learning framework [99, 195]. As
new benchmarks are ported or developed, they too can be shared with the community in a
similar fashion.

3.3.5.3 Education: Computer Architecture and Engineering

Educational settings are notoriously sensitive to consistency and reproducability of results.
As computer science classes scale to a large numbers of students, mass assignments and
automated grading are becoming necessities in many university courses. However, reprod-
ucability is often extremely sensitive to software versioning and simulator compatibility. A
simple change in the Linux kernel version can dramatically change performance characteri-
zation results, which would be reflected in various student assignment submissions.

Furthermore, we would like students to invest their time in the educational objectives of
characterization and measurement rather than spending the majority of their time on setting
up environments and boiler-plate setup procedures.

While system environment platforms such as Docker or Vagrant provide a solid platform
for systems-oriented classes, they are insufficient for hardware-simulation classes that require
support for a broader set of configurations and cross-compilation. In 2020, FireMarshal
was used in an advanced graduate and undergraduate class at UC Berkeley on the subject
of hardware for machine learning [11]. As part of this class, students had to optimize
tiled convolution and matrix multiplication implementations for an RTL implementation
of a machine learning accelerator integrated into a RISC-V SoC. The optimizated software
implementations were to be used as a library within deep neural-network (DNN) inference
applications using the ResNet-50 and MobileNet DNN models. Figure 3.8 depicts the student
workflow for this assignment.

To enable students to integrate their optimized libraries with the DNN inference applica-
tions, the course instructors used a FireMarshal workload definition. This enabled students
to focus their time on the development of their library implementations rather than spending
it on setting up their testing environment on various iterations and platforms.

As part of their development process, students initially developed their implementations
using the Spike functional simulator, and then performed measurements using FireSim. By
using the same FireMarshal workload definition, students were able to take advantage of the
portability of FireMarshal workloads across different RISC-V simulation platforms.
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Figure 3.8: Student Workflow Students were asked to tune a matrix multiplication routine
for a particular deep learning accelerator. The course staff provided a FireMarshal workload
as a starting point. Students used fast and inexpensive functional simulation when devel-
oping their code, while slow and expensive cycle-exact simulation was only used to evaluate
performance.

Thanks to the determinism of FireSim simulations, and the reproducability of FireMar-
shal workloads, students were able to obtain repeatable results down to an exact cycle-count
of each executing application and course staff could reproduce these results for grading pur-
poses.

3.3.5.4 Other Use Cases

I now briefly summarize additional real-world use cases:

Centrifuge Centrifuge is a tool for design-space exploration of accelerators using high
level synthesis [117]. Centrifuge automatically generates several candidate accelerator de-
signs and their associated unaccelerated baselines. I designed a common base FireMarshal
workload that provides kernel and user-space modifications to support accelerator interfaces.
I also provided scripts to generate per-benchmark base workloads from the accelerator de-
scriptions. Users could use these base workloads to develop any final benchmark workloads
they required. FireMarshal’s inheritance mechanism and clear YAML interface made this
workflow simple to implement.

Keystone Keystone is a secure enclave for RISC-V based systems [150]. Unlike other
hardware enclaves, most of Keystone is implemented in the firmware and operating system.
Keystone provides a FireMarshal workload that includes these changes. Enabling the en-
clave is as simple as switching the base option in a workload from the board default to
keystone-base.yaml.
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Post-Silicon Bringup FireMarshal is also being used to support post-silicon bringup of
experimental SoCs. FireMarshal’s configuration system and board primitives allow users
to minimize image sizes to fit in limited on-board memories and to automate host-device
interface configuration. Researchers can re-use the diverse range of existing FireMarshal-
based benchmarks. The ability to run software binaries set up in an identical manner on
both functional simulation and the test board is a valuable debugging capability when dealing
with potentially faulty hardware.

3.4 Conclusions

This chapter has focused on tools and standards rather than grand insights into computer
architecture. While these may seem like simple “nice to have” features, those grand in-
sights come slowly, or not at all, when the community fails to be productive. More than
just productivity, the computer science community, like other scientific domains, is facing a
reproducibility crisis [68, 121, 144, 274, 232]. To quote Krishnamurthi and Vitek: “Science
advances faster when we can build on existing results, and when new ideas can easily be
measured against the state of the art” [144]. Tools that build on common designs, share
their outputs openly, and automate the process of experimentation can move our community
forward at an unprecedented rate. Indeed, the agile co-design methodology I described in
this chapter enabled much of the work I describe in upcoming chapters.



39

Chapter 4

Physical Disaggregation: Memory

In Chapters 1 and 2, I introduced the concept of physical disaggregation. In this chapter, I
explore this topic in more detail, with a particular focus on disaggregated memory. Mem-
ory is a crucial resource in distributed computing and it has an out-sized impact on how
we structure our applications. Memory capacity limitations are central to algorithms for
distributed databases, linear algebra, simulators, and almost any other data-intensive dis-
tributed application. The problem with memory is that it is difficult to share or reallocate.
While CPUs can be time sliced and networks can interleave many flows, memory must be
allocated exclusively for the duration of the job. Not only is it hard to structure applications
around this limitation, it’s hard to implement them correctly, even within that structure.
Exceeding a CPU allocation simply results in the application being throttled, a performance
concern. In contrast, exceeding available memory by even one byte results in a crash. To
avoid this, ysers typically request more resources than they actually need [149, 224]. These
properties make disaggregating memory particularly appealing as we would no longer be
limited by discrete resource pools and can make far more flexible placement decisions.

We have already seen the benefits that disaggregation can bring to data management.
Storage systems have been disaggregated for many years in the form of file servers and block
storage appliances [188, 77, 25]. Databases and object stores also allow applications to use
remote resources. While this past work has proven the potential of disaggregation, translat-
ing it to memory is not straightforward. Disks have access latencies in the milliseconds and
tend to be accessed only intermittently. Memory is accessed in hundreds of nanoseconds and
experiences a wide range of access patterns. Where network latencies are trivial compared
to disk accesses, they are orders of magnitude slower than memory. Disaggregating memory
therefore presents a true test of physical disaggregation.

I begin the chapter with an overview of the design space of memory disaggregation
techniques (§4.1). I then describe one particular approach I’ve taken that uses demand
paging to transparently present remote memory to applications (§4.2). Finally, I present a
process checkpoint/restart system I developed that exploits remote memory to provide fault
tolerance (§4.3).



CHAPTER 4. PHYSICAL DISAGGREGATION: MEMORY 40

Figure 4.1: Two major dimensions of memory interface design. I place a number of common
techniques in this design space.

4.1 The Memory Disaggregation Design Space

The core concept of disaggregated memory is straight-forward: allow any process to access
any memory in our warehouse-scale computer (WSC). If we try to get more specific than
that, definitions become more challenging. Different people have widely varying conceptions
of what it means to access remote memory and how systems should be implemented to
provide this access. In this section, I bring structure to that question by presenting several
dimensions of disaggregated memory interface design. I describe these dimensions and list
a number of additional desiderata in §4.1.1. Next, I map several existing and proposed
interfaces into this taxonomy in §4.1.2. Finally, in §4.1.3, I explore the implications of this
structure on future research into disaggregated memory.

4.1.1 Dimensions of Memory Disaggregation

I begin by exploring two key dimensions that allow us to compare a wide array of techniques.
Figure 4.1 places some common techniques in this space.

4.1.1.1 Explicit ↔ Implicit

The Explicit/Implicit dimension describes the level at which users must reason about
local and remote memory resources. A fully implicit interface would require no application
changes relative to a single-node aggregated implementation to operate correctly, though
performant code may still require modification. In contrast, fully explicit interfaces may
require significant re-writing of applications to achieve both correctness and performance.

Implicit interfaces typically resemble caches. The system is automatically moving data
from remote to local memory on-demand, and evicting old data to remote memory. We can
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borrow terms from the computer architecture community to further refine our understanding
of a particular system. For example, caches can be write-back or write-through, inclusive or
exclusive, coherent or incoherent. This approach also carries the well-studied limitations of
caches such as requirements on temporal or spatial locality, maximum working set size, and
metadata size vs block size. One effect of this similarity is that high-performance applications
are already written to take advantage of caches, and many of the same optimizations will
translate directly to the disaggregated memory setting. In general, users should find the
implicit interface to be familiar.

Explicit interfaces more closely resemble scratchpads. These systems require explicit
movement of data from remote to local memory and vice versa. One implication of this
strategy is that fully explicit systems require users to track their memory usage to avoid
overflowing their local allocation; size miscalculations are a correctness issue. Scratchpads
allow maximum flexibility for applications, allowing complex application-specific prefetching
patterns and eviction policies. These interfaces can also be more efficient than implicit

approaches by avoiding excessive cache metadata or stranded resources. Distributed sys-
tems and data-intensive applications are likely to support explicit interfaces well as these
systems already must account for limited local memory. Despite this, management of local
memory remains a significant challenge.

It is important to note that this is not a strict dichotomy, but rather a spectrum of designs.
Traditional hardware caches are fully implicit, but OS-managed paging allows some input
from applications (e.g., mmap, pinning, etc.). One could also imagine a system that is
explicit by default, but degrades gracefully to implicit as memory pressure increases.

4.1.1.2 Hardware Assisted ↔ Software Managed

Orthogonal to the Explicit/Implicit dimension is the level of hardware assistance provided
by the remote memory interfaces. A fully hardware assisted system would perform all
performance critical operations in hardware. A fully software managed system would use
only the barest possible hardware interfaces to manage memory.

Hardware Assisted systems can provide orders of magnitude performance improve-
ments over software alone, particularly for latency-oriented tasks. However, they imply
significant adoption barriers and may become outdated as systems evolve. A more subtle
concern with hardware support comes from Myer and Sutherland’s concept of the “wheel of
reincarnation” [185]. In short, as we add sophistication to a hardware accelerator, we may
end up effectively re-inventing the CPU. Hardware sophistication does not come for free. For
example, smart network interface cards (NICs) often contain CPUs and non-trivial memory
with their associated power and area costs. This can complicate analyses of total cost of
ownership.

Software Managed interfaces benefit from flexibility and ease of deployment, but can
suffer from performance limitations. While careful systems engineering can overcome some
of these limitations without introducing new hardware, these solutions may require fragile
tuning and complex control flow [154, 129, 107].
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Again, there are appealing points along this axis that compromise between the two ex-
tremes. Hardware has the potential to introduce a much simpler interface by offloading
latency critical tasks to dedicated compute elements while maintaining a rich software inter-
face for less critical tasks. Amazon’s Nitro system on chip (SoC), for example, accelerates
complex network virtualization tasks but interfaces with guests running traditional operating
systems [156].

4.1.1.3 Other Dimensions

In addition to the two main design dimensions, there are several other critical properties
that any disaggregated memory interface must specify.

Durable ↔ Ephemeral Because remote memory is in a separate failure domain from
node-local memory, its lifetime can be managed independently from any particular pro-
cess. Varying levels of durability can be provided, from fully ephemeral systems like mem-
cached [174], to atomically durable like ramcloud [234]. Intermediate points, such as Pocket,
are also available [141].

Isolated ↔ Fate Shared Related to durability, independent failure domains allow a sys-
tem designer to choose the extent to which a failure will propagate. A totally isolatedmem-
ory system will remain available regardless of failures in any compute node. This behavior
may be desirable for checkpoint/restart or systems with transactional semantics. However,
we may choose to crash dependent compute nodes when their memory fails and vice versa
(i.e., fate share). There has been work showing how to track dependencies dynamically and
execute flexible fate sharing policies [53].

Private ↔ Shared Finally, disaggregated memory can be connected to multiple compute
nodes simultaneously. A fully shared system would allow fine-grained access to any memory
location, by any compute node, at any time. In contrast, a fully private interface would al-
low no sharing at all, typically implying some level of ephemerality. In addition to durability
and fate-sharing, shared memory must specify the access granularity in both time and space.
For example, does the sharing occur at the level of bytes, pages, or some higher-level object?
Must sharing occur in phases or can it occur simultaneously? The choice of consistency
model can have significant implications on achievable scale and performance.

4.1.1.4 Other Requirements

In addition to the preceding dimensions, any new disaggregated memory will need to address
at least the following questions:
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1. Naming: How do tasks address remote memory? In the case of (ephemeral, private)
data, this may be simple. Systems that support sharing and/or durability may
impose non-trivial requirements on naming.

2. Coherency and Consistency: If sharing is supported, data may exist in multiple
locations simultaneously and require special handling.

3. Security/Fairness: Disaggregation increases the degree of sharing in a system. A
new design must include mechanisms to protect applications from both malicious and
accidental interference.

4.1.2 Common Approaches to Disaggregated Memory

I now survey this design space by describing a number of established and recently proposed
memory interfaces.

4.1.2.1 NUMA (Implicit, HW Assisted)

Non-uniform memory access (NUMA) architectures partition memory resources across sev-
eral compute nodes such that all memory can be accessed directly with loads and stores,
but access latencies are not uniform. Some NUMA systems include hardware services to aid
in page migration to mitigate this effect [146]. Recent projects have extended NUMA to
include disaggregated memory nodes that do not include CPUs [153] while others leverage
cache coherence hardware to make memory movement decisions [51].

The implicit interface presented by NUMA systems is appealing because they appear
to software as a single, large memory. Because they are hardware assisted, they can
also offer memory access latencies on the order of hundreds of nanoseconds. However, this
performance and tight coupling limits scalability. The largest NUMA systems can scale to
hundreds of nodes and tens of terabytes of memory [244, 179, 3], but typical systems support
only a few terabytes and less than ten nodes due to poor scaling in cost and power. These
scalability and flexibility limitations are common in (implicit, HW) systems.

4.1.2.2 RDMA (Explicit, HW Assisted)

Remote direct memory access (RDMA) systems are similar to NUMA in that memory re-
sources are partitioned among several compute nodes so that memory is always local to some-
one [228, 222]. The difference is that while NUMA systems typically expose an implicit,
cache-coherent load-store interface to both local and remote memory resources, RDMA uses
an explicit put/get interface to access remote memory. Typically, this service is provided
through the network interface (hardware assisted). The explicit interface allows RDMA
systems to scale beyond NUMA to thousands of nodes and petabytes of memory, but this
comes at the cost of slower remote memory access performance and a more complex interface
to applications [79]. RDMA can also be enhanced with location transparency, consistency
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and coherency models, or persistence [50, 280, 7, 163]. StRoM allows for more complex
access patterns with features like indirect memory lookup or data shuffling [250].

Typical of hardware assisted systems, RDMA devices are costly and primarily de-
ployed in supercomputing environments, though recent Ethernet-based implementations
have made them increasingly accessible [228].

4.1.2.3 Memory Semantic Fabrics (∗, HW Assisted)

A new class of interface has recently been introduced; the memory semantic fabric. A memory
semantic fabric abstracts memory into a simple load-store interface rather than technology-
specific protocols. These hardware assisted interfaces are tightly coupled with the CPU,
often loading memory directly into local caches. Unlike traditional NUMA, this abstraction
enables heterogeneous memory technologies in flexible topologies. From the OS perspective,
memory thus becomes an explicit first-class citizen on a memory-optimized interconnect
and can be exposed to users as such. However, the OS may choose to make the interface
implicit, typically through virtual memory techniques. Such interfaces promise to allow
for greater scalability and flexibility than NUMA, while providing a less complex interface
than RDMA. There are several commercial and academic projects developing cache-coherent
interconnects for integrating accelerators and memories within a rack [57, 290, 190, 157, 98,
248].

4.1.2.4 Paging and Page Migration (Implicit, SW Managed)

While memory semantic fabrics and RDMA offer an explicit interface at their lowest-levels,
software managed abstractions like page migration can be added to make the interface more
implicit [131]. In general, explicit interfaces are more general than implicit interfaces
and can be abstracted through system software like the OS or language runtime.

In NUMA systems, the OS is responsible for choosing which NUMA domain to allocate
memory from. This can be a complex decision and much effort has gone into studying such
allocation policies [159].

More generally, operating systems may dynamically move pages between local and remote
memory via paging. This (implicit, software managed) interface effectively treats local
memory as a cache for disaggregated memory. This approach is taken by many projects
in disaggregated memory due to the generality and ease of adoption implicit interfaces
provide [97, 246, 104, 158, 9, 171].

Note that paging-based techniques vary in their degree of hardware assistance and
explicit user control; they are not strictly in one camp or the other. Of particular note
is the interface described by LegoOS, in which the authors describe a hardware assisted

cache, and demonstrate the concept using a software managed technique [246]. This demon-
strates the orthogonality of these dimensions. There are also variations along several of the
dimensions listed in section 4.1.1.3. For example, the Mojim project uses virtual memory to
present an (isolated, durable, private) interface to non-volatile memory (NVM) [303].
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Aguilera, et al. present an mmap-style approach that adds some explicit properties to
paging based techniques and uses filesystem semantics to handle naming [6]. Mirage and
Mach’s memory server added concepts of leases and explicit mapping [93, 92]. Later in this
chapter, I will describe and evaluate a (hardware assisted, implicit) system I developed
to accelerate the paging process.

4.1.2.5 Language-Based Approaches (∗, SW Managed)

Some programming languages present a software managed interface to remote memory
with a range of approaches along the explicit/implicit axis. Partitioned global address
space (PGAS) languages make it appear as if some variables are shared while others are
private [54, 186, 60, 247]. PGAS is partially explicit because users must choose which
variables can be shared remotely while the language runtime implicitly handles data move-
ment and caching. Actor models present another partially explicit interface where objects
are explicitly shared through channels, but the language handles much of the complex shar-
ing semantics described in §4.1.1.4. AIFM allows users to allocate “remoteable” objects
that can be moved to disaggregated memory by the language runtime as needed [233]. The
runtime manages updating pointers as objects are moved between local and remote memory.

These languages are typically implemented such that they can take advantage of hardware
assistance when available, but fall back to software techniques when needed [41].

4.1.2.6 Data Stores (Explicit, SW Managed)

Many systems expose remote memory through higher-level software constructs like databases
([143]) and key value stores. Memcached is a widely used system for memory object caching
that operates entirely in software [174]. Other systems use RDMA hardware assistance

to accelerate access to these stores [234, 81]. Because these systems are typically shared,
isolated, and (sometimes) durable, they must address the issues in section 4.1.1.4 and there
are a wide range of approaches [292, 271, 63]. Lower-level (explicit, hardware assisted)

interfaces may enable new abstractions as proposed by Volos, et al. [138]. Remote regions
allow users to move objects between local and remote memory using file semantics [6]. Others
provide a more complete file system interface [238, 160, 295].

4.1.3 Implications for Future Research

If we re-consider Figure 4.1, we observe that the extreme corners of the design space are well
explored by established techniques like paging and RDMA. Much of the recent academic work
has thus focused on hybrid designs that trade off between the dimensions (see Figure 4.2).
For example, Infiniswap moves the software managed paging approach down the HW/SW

dimension using RDMA [104]. In general, I believe that approaches that fix one dimension
while exploring another represent a significant opportunity for progress. Indeed, previously
impractical approaches may become practical with changes to an orthogonal dimension.
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Figure 4.2: Research opportunities in the disaggregated memory design space.

The logical disaggregation techniques I present in Chapter 5 can help move designs along the
Implicit/Explicit dimension, while advances in agile hardware design like those described
in Chapter 3 allow us to explore novel hybrid HW/SW designs.

Outside the core design space, the dimensions laid out in §4.1.1.3 and §4.1.1.4 repre-
sent opportunities for future research. Recent work on key-value stores has explored the
durable/ephemeral dimension [141], while others have continued the long tradition of re-
search into memory consistency [292]. New hardware may enable progress on issues of
security, fault tolerance [53], or fairness. For example, memory blades could authenticate
memory requests using capabilities or access control lists [291].

Finally, the impact of other disaggregated resources must be considered. Disaggregated
accelerators and storage may lack the sophisticated software stacks required to participate
in software managed interfaces, while full hardware assistance may be prohibitively ex-
pensive on legacy nodes. Interfaces must provide a flexible interface to bridge this gap and
provide a path to future upgrades. I revisit these ideas in Chapter 6.

4.2 Paging-Based Approaches: The Page-Fault

Accelerator

In the previous section, I presented a wide range of possible approaches to disaggregated
memory. In this section, I focus on one particular strategy: demand paging to dedicated
memory blades. In this approach, I use the OS’s virtual memory system to treat local
memory as a cache of much larger memory servers called memory blades. Along with my
collaborators Howard Mao and Emmanuel Amaro, I used Chipyard to design an implemen-
tation of this system using Rocketcore and Linux [204].
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As I presented in §4.1.2.4, paging is appealing because it is implicit and requires few
changes to applications. However, it is not without limitations. Traditionally, paging has
been backed by slow disks with access latencies in the milliseconds. This led to a fully
software managed approach that uses sophisticated algorithms that can take several mi-
croseconds for every cache miss. With today’s high performance networks, however, these
algorithms begin to dominate the latency of a remote memory access.

An alternative is to have fully hardware managed DRAM caches [277, 151, 169]. These
eliminate much of the overhead, but lack the sophistication and application-level insight
of OS-based approaches. For example, operating systems often use significant memory for
optimistic pre-fetching and caching of disk blocks. A hardware-managed cache may choose
to store these in remote memory, while the OS would simply delete them.

These two approaches exemplify the trade-offs along the hardware/software axis of the
disaggregation design space. However, this design space is not a strict dichotomy. In the
coming sections, I describe a design called the page fault accelerator (PFA), that compromises
between hardware and software management. The sophisticated paging algorithms continue
to be managed in software, but the primary page fetching behaviors occur in hardware. §4.2.1
describes remote memory paging in more detail, including its limitations. I then present my
hardware-accelerated solution in §4.2.2. In §4.2.5, I show that this technique can improve
page fetch latency by 2.2x and end-to-end runtime by 20%.

4.2.1 Remote Paging Background

Many architectures expose the abstraction of virtual memory. While the implementation of
virtual memory is fairly similar across architectures and operating systems, for concreteness
I will use Linux running on the RISC-V ISA for most examples in this chapter1.

Figure 4.3 shows a typical flow for translating a virtual address. Most translations occur
completely in hardware and require no immediate OS intervention. However, when physical
memory is constrained, the operating system may choose to store logical pages in secondary
storage (called paging). In this case, some mappings are invalid and not present in physical
memory. Accessing these pages requires immediate OS intervention to resolve. Throughout
this chapter, I will refer to the logical data as a page, and the physical location in memory
as the page-frame or simply frame.

There are three main contributors to page fault time: trap time, processing, and backing
store access. Trap time depends on the microarchitecture of the underlying system. On an
Intel Haswell CPU, this takes approximately 800 ns. Rocketcore is a much simpler in-order
processor, resulting in very fast traps of about 100 ns. Backing store access is dependent on
the device technology. Spinning hard disks will have access times in the tens of milliseconds,
SSDs are closer to one or two milliseconds, while Infiniband will have a page read latency of
about two microseconds.

1RISC-V privileged architecture version 1.10 [285] and Linux 4.15 [269]
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Figure 4.3: Flow chart for virtual to physical address look up in a typical virtual memory
system. The translation look aside buffer (TLB) caches translations. The page-table walker
fetches mappings from main memory when the TLB misses. Most mappings are valid and
can be returned directly to the CPU, but invalid mappings result in a trap to the OS.

The remaining component is processing time. This is the time spent by the operating
system running its paging algorithms and looking up metadata. I collectively refer to these
tasks as bookkeeping (see §4.2.4.1 for details of this process). These steps can be time con-
suming and degrade the performance of other parts of the system. On the microarchitectural
side, we see a large number of complex data structures being accessed. These can require
many small memory accesses and tend to fill up caches with rarely accessed data. The trap
itself may also disrupt the CPU pipeline, branch prediction, and other components. From
a software perspective, many of these operations require locking and synchronization. This
can add lock contention and disrupt the memory system of other cores, not to mention the
additional TLB flushes. This process takes approximately 5µs on Rocketchip when there are
no competing workloads. The impact on microarchitectural state is more difficult to quan-
tify. I describe the paging algorithms in detail in §4.2.4.1 and measure their performance
cost, including their impact on microarchitectural state, in §4.2.5.2.

Taken together, these overheads mean that a näıve paging-based approach will see sig-
nificant slowdowns, even with an infinitely fast network. To demonstrate this, I modified
the Linux kernel to use reserved physical memory as a swap device. This means that our
backing store is effectively a single memcpy. Figure 4.4 plots several benchmarks’ runtime as
they are run under increasingly memory constrained environments. Note that even without
waiting for secondary storage, applications can slow down by as much as 12.5x due to paging
overheads.

4.2.2 The Page Fault Accelerator

Much of the work done during a page fault does not need to occur for the application thread
to make progress. Allocating free frames or updating page metadata can be performed at
any time. Other tasks may be more efficient in hardware than in the OS; the walking of page-



CHAPTER 4. PHYSICAL DISAGGREGATION: MEMORY 49

Figure 4.4: Application slow-down when paging to local memory. I first measure the peak
memory requirements for each benchmark. I then reduce the amount of available local
memory as a fraction of peak.

Figure 4.5: Paging with the PFA. Instead of an invalid PTE causing a trap to the OS (as
in Figure 4.3), invalid pages are passed to the PFA to be fetched from remote memory. The
PFA may still cause a trap if it cannot handle the request (e.g., full queues). The OS can
then asynchronously query the PFA for a list of fetched pages.
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Figure 4.6: Timeline of page-fault processing with and without the PFA. Without the PFA,
the OS must be invoked on every page miss. The PFA allows this bookkeeping to occur any
time after the fetch in a separate kernel thread. Only the actual page read must occur before
the application can be restarted.

tables for example. I propose a hardware accelerator that performs only the bare-minimum
of copying a remote page into a pre-allocated frame, updating the relevant page table entry
(PTE), and restarting the application. Figure 4.5 shows the new page fetch process.

While this does not eliminate the need for software management of page meta-data, it
does provide considerable flexibility to the OS in how such tasks get scheduled. Figure 4.6
illustrates the difference from the perspective of the OS. One immediate benefit is that the
OS can schedule this bookkeeping task when the system is idle or the application thread is
blocked. Another benefit is that bookkeeping tasks can now be batched. Batching improves
cache locality and amortizes the microarchitectural impacts.

The primary interface to the PFA is through a number of memory-mapped queues: FreeQ,
NewQ, and EvictQ. The FreeQ contains unused page frames that the PFA can use for fetching
new pages, the NewQ reports any recently fetched pages to the OS bookkeeping thread, and
the EvictQ contains a list of local pages that should be stored in remote memory. Remote
page metadata is stored in the page table using a custom PTE format.

4.2.2.1 Remote Page Table Entry

The MMU must be able to recognize that a page is remote and the PFA must know where
in remote memory that page is. I do this through a special PTE format. Fortunately, the
RISC-V ISA leaves most PTE fields undefined for entries with the valid bit cleared. I exploit
this by marking remote pages as invalid and defining a new PTE format for these invalid
entries. Figure 4.7 depicts this new format. The fields are as follows:

• PageID: This acts as an address in remote memory for the remote page. It is used
by the PFA to look up pages in remote memory, and by the OS to identify each page
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Figure 4.7: Remote PTE Format. The Page ID is a unique identifier of this page and serves
as a remote memory address. The Prot field contains the permission and metadata bits that
should be set after a page is fetched. The R bit indicates that this page is remote while the
V bit indicates that the PTE is not a valid mapping.

during bookkeeping.

• Prot: This sets the protection bits that the PFA will use when fetching a page. These
bits include things like read/write permissions, as well as other page metadata as
defined by the RISC-V specification.

• R: This bit indicates that a page is remote when the valid bit is clear.

• V: This indicates whether a page is valid. A valid page is currently in main memory
and would not trigger a page-fault. This is also referred to as the present bit in Linux.

An interesting feature of this design is the use of pre-defined protection bits. This includes
a valid bit which can be cleared by the OS before evicting to trigger a page fault on this
page immediately after fetching (a useful debugging feature). Also, bits 8 and 9 are reserved
for software by the RISC-V ISA and can aid the OS in bookkeeping and debugging.

4.2.2.2 PFA Operation

There are three core components of PFA operation. The first is page eviction where local
pages are written to remote memory. Next is page fetch where the PFA synchronously moves
a remote page into local memory. Finally, the OS must asynchronously manage the PFA by
allocating physical memory for new pages, and checking for fetch notifications.

Eviction The PFA handles all communication with the memory blade, including page
eviction. The basic procedure is as follows (see Figure 4.8):

1. The OS identifies pages that should be stored remotely.

2. It evicts them explicitly by writing to the EvictQ.

3. The PFA sends a remote memory write command to the NIC which reads the page
and sends it to remote memory.

4. When the send is complete, the PFA updates the EvictQ status to notify the OS.
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Figure 4.8: Detailed eviction flow

5. The OS stores a page identifier in the PTE and marks it as remote once the PFA
eviction is complete.

In addition to the three main queues, there are a number of other maintenance registers
that are used for querying queue status and initializing the PFA. I will mention one status
register here; the EVICT STAT register. When a page is placed on the evict queue, the PFA
begins transferring it to remote memory, but does not block the OS. This allows the OS to
perform useful work while the eviction is taking place, potentially hiding some of the write
latency. To re-use the page frame, however, the OS must poll the EVICT STAT register to
ensure the write has completed.

Fetch The primary function of the PFA is to automatically fetch pages from remote mem-
ory when an application tries to access them. It does this by detecting page table entries
that are marked remote and transparently re-mapping them to the next available free frame.
The basic operation is as follows (see Figure 4.9):

1. Application code issues a load/store for a remote page.

2. The MMU detects a remote page using the valid and remote bits and requests it from
the PFA.

3. The PFA issues a remote memory read command to the NIC, providing the next
available frame from the FreeQ.

4. The PFA updates the PTE with the new physical address, clears the remote bit, and
writes it back to the page table.

5. The PFA pushes the virtual address of the fetched page to the NewQ.
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Figure 4.9: Detailed fetch flow

6. The MMU updates the PTE and restarts the application.

Metadata Management The OS should ensure that there are sufficient free frames in
the FreeQ to ensure smooth operation. If a remote page is requested and there are no free
frames, the PFA will trap to the OS with a conventional page-fault. The OS must enqueue
one or more free frames before returning from the interrupt. This may involve evicting pages
synchronously in the page-fault handler. Similarly, the OS needs to drain the new page queue
periodically to ensure it does not overflow. This will also trap to the OS with a conventional
page fault if full.

4.2.3 Hardware Implementation

There are many possible arrangements for physically disaggregated hardware. For this
project, I assume an approach based on the FireBox system I introduced in Chapter 2. In
this arrangement, shown in Figure 4.10, compute elements are packaged into self-contained
systems in package (SiPs) with a modest amount of on-package high-bandwidth memory.
The bulk of system memory is contained on dedicated memory blades that include a large
amount of DRAM and a high performance RDMA-like network interface.

Along with my collaborators Howard Mao and Emmanuel Amaro, I used Chipyard to
design an implementation of this system. Table 4.11 describes the hardware parameters
I used in my evaluation. The compute SiPs used Rocket core as the compute element.
Networking was provided by an RDMA-capable NIC, coupled with a parameterized network
model configured to resemble Infiniband’s 2µs round trip latency and 200Gbit/s throughput.
I designed the software for this SiP using FireMarshal and evaluated its performance using
FireSim. Howard Mao describes the hardware implementation of the memory blade in detail
in his dissertation [169].
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Figure 4.10: Example system with physically disaggregated memory. Compute SiPs contain
the primary programmable computational resources while memory blades contain the bare
minimum hardware to serve memory requests. All nodes contain some amount of controller
logic to handle protocol processing and system administration.

CPU Type Rocket (5-stage in order)
CPU Frequency 3.2GHz
Caches 16 kB Data and Instruction
NW Topology Single Switch
NW Bandwidth 200Gbit/s
NW Link Latency 2 µs
Remote Page Read 4.8 µs
Remote Page Write 4.8 µs

Figure 4.11: System parameters used for evaluation.

While I present the completed product here, it is worth noting that this hardware was
built concurrently with the Chipyard project. Many of the methodologies introduced in
Chapter 3 were developed in response to challenges we faced in this memory disaggregation
project.
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4.2.3.1 Functional Model

Following the methodology of Chapter 3, I first implemented a golden model of the PFA in
Spike. Due to its simplicity, the PFA implementation required only a few weeks of implemen-
tation effort and less than 1000 lines of code. With Spike, software development was able to
proceed concurrently with the concrete hardware design. Furthermore, unit tests developed
under Spike were used to validate the hardware implementation, reducing debugging effort.
In all, the only software change that was needed to go from Spike to a concrete implemen-
tation in FireSim was one extra TLB flush due to a difference in TLB design between Spike
and Rocketchip.

4.2.4 Linux Integration

I modified the Linux kernel to support the PFA. The majority of software development was
done using the functional simulator.

4.2.4.1 Non-PFA Paging in Linux

I now briefly describe paging in vanilla Linux. Note that the kernel internally uses the
term swap in reference to all paging activity, I use these terms interchangeably. For a more
complete discussion of memory management in Linux, see [43]. Figures 4.12a and 4.12b show
the steps involved in evicting and fetching pages, respectively.

Page Reclaiming Linux manages memory limits on a per-task basis. A task refers to
the kernel-specific abstraction of a process. Each task has its own resource limits which are
exposed to system administrators through the control group (cgroup) interface. When a
task approaches its assigned limit of a certain resource, it is throttled in a resource-specific
manner. In the case of memory, the kernel attempts to free task-assigned memory. It will first
attempt to shrink any file caches, especially clean disk blocks that can simply be deleted
without requiring any disk activity. If shrinking caches is not enough, the kernel begins
to page non-file backed pages called anonymous pages. This is done using a pseudo-least
recently used (LRU) eviction algorithm.

Page Eviction Figure 4.12a shows the steps involved in evicting pages to a swap device
in Linux. Paging was originally intended to use hard disks as the backing store, and this
is reflected in the design of paging in Linux. To swap, one or more block devices must be
formatted and mounted as swap devices. Linux then uses the block offset on this disk as a
unique identifier for an evicted page. To support more complex paging schemes such as page
compression or heterogeneous memory, Linux introduced the transcendent memory (TMem)
layer [165]. This scheme still uses disk offsets as identifiers, but completely bypasses the block
layer. This is important because many optimizations in the block layer like write coalescing
and block reordering are not suitable for these alternative paging devices. Evictions do not
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(a) Page Eviction (b) Page Fetch

Figure 4.12: Steps taken by Linux to evict or fetch a page from a swap device.

immediately result in writes to TMem or a swap device. Instead, pages are stored in a data
structure called the page cache. The page cache is used for all block device I/O, not just
swapped pages. This page cache helps reference count shared pages, and hedges against
poor eviction choices. Once a page is no longer physically available, Linux replaces the
corresponding PTE with a swap entry which clears the valid bit, and uses the remaining bits
to store the swap device ID (called type in the kernel) and block ID (called offset). When
changing PTEs, RISC-V requires the OS to flush the translation look-aside buffer (TLB).
This forces a page-table walk on the next access to this virtual address. Finally, the kernel
begins a write to the swap device in the background.

Page Fetch Figure 4.12b shows the steps taken when a user program attempts to access
a page that has been swapped out. The MMU first notices the invalid PTE and issues a
page fault to the OS. Note that hardware does not examine the remaining bits; the swap
entry is purely a software construct. Upon receiving a page fault, Linux first determines
if the requested virtual address has been assigned to this task. It does this by iterating
through regions of virtual memory called virtual memory areas (VMAs). VMAs are groups
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(a) Page Eviction Changes (b) Page Fetch Changes

Figure 4.13: Major changes to Linux paging to accommodate the PFA

of virtually contiguous pages that all share properties like permissions and file mappings.
They allow the kernel to reduce the amount of metadata it must store, and batch metadata
changes. If a VMA is found for the faulting address, the OS begins a page table walk to
locate the corresponding PTE. There are several reasons that a page fault may occur, the OS
must check the PTE to determine the cause. Assuming the cause was an invalid PTE, the
OS then searches the page cache for this page. This is in case some other process that shares
it has already brought it in. If the page is not found, a new frame is allocated and a transfer
is initiated to read the page from the swap device. If the page is found in TMem, the transfer
occurs synchronously, otherwise the process initiates the transfer and yields to the scheduler,
resulting in a context switch. When the transfer is complete, the kernel changes the PTE
from a swap entry to a valid PTE with permissions defined by the VMA. Finally, the kernel
updates page tracking metadata. This includes the LRU lists maintained by the eviction
algorithm, VMA membership, and a number of other kernel subsystems. Note that several
of these updates require synchronization with other kernel threads. Once all bookkeeping is
complete, and the PTE is updated, the kernel flushes the TLB and restarts the application.

4.2.4.2 PFA Modifications

The PFA handles steps 1, 3, and 4 from figure 4.12b synchronously in hardware while
the Linux kernel manages steps 2, 5, and 6 asynchronously. This changes a number of
assumptions underlying baseline paging behavior. Figure 4.13 summarizes these changes.
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Fetched Page Permissions Linux uses the faulting virtual address to make a number of
decisions during the page fetch process. For instance, the permission bits are taken from the
VMA. With the PFA, however, the OS must decide on this information at eviction time.
Pre-allocating physical frames is not an issue in my system because frame selection does not
depend on the VMA in non-NUMA systems. Permission bit selection is more problematic.
My approach is to encode page permissions in the remote PTE at eviction time. These will
be used provisionally when the PFA first fetches the page. I then update those permissions
while performing bookkeeping. In practice, this is unlikely to cause problems as permissions
rarely change. Furthermore, Linux is able to correct inappropriately restrictive permissions
during page-faults. However, there may be security concerns if permissions are made more
restrictive while a page is remote. This vulnerability exists in the window between page fetch
and bookkeeping. To mitigate this concern, the OS would need to be modified to update
remote PTEs when changing VMA permissions.

Asynchronous Bookkeeping In normal paging, Linux is able to update metadata as soon
as a page is fetched. With the PFA, this bookkeeping is delayed for a bounded but potentially
non-trivial period of time. Many of these bookkeeping tasks are in support of heuristics or
resource accounting. Delaying these tasks reduces the accuracy of various algorithms, but
does not result in incorrect behavior. Others are needed for correct execution (e.g., VMA
membership or shared page tracking for copy-on-write). I address these correctness issues by
performing bookkeeping preemptively before any of the related algorithms execute. These
tasks may be fairly common, but they are unlikely to actually involve a recently fetched
page. To avoid preemptively performing bookkeeping, I use one of the reserved bits in the
PTE protection field to indicate a page that has been recently fetched but not yet processed.
This bit gets set at eviction time, but is cleared during bookkeeping. I always refill the FreeQ
after bookkeeping.

Swap Device and Block ID Allocation Linux assumes that all swap activity is backed
by a block device and it uses the physical address on this device to identify all evicted pages.
This block ID is needed during the bookkeeping process to identify the page. To address
this problem I make a number of simplifying assumptions.

1. A real swap device is available. Even if it is not used, a swap device must always
be available. I use a ram-based file system (ramfs) to trick the kernel into thinking
it has a large disk attached. Ramfs only consumes physical memory when written to,
even though it appears to the kernel as a large disk.

2. There is only one swap device. This allows me to not track the device ID. This is
achieved by making the ramfs sufficiently large to address all swap activity.

3. Block IDs are contiguous on the integers (0,228]. This allows the block ID to be
packed into the remote PTE format. I achieve this by ensuring that the ramfs is the
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same size as the memory blade (and less than 228 pages). Since block IDs correspond
to physical offsets on the swap device, the system is guaranteed to never see an invalid
block ID.

While these assumptions hold, I am able to compress the swap entry into a 28 bit PageID
by eliding the type, and using the offset directly. Finally, I avoid overheads in the block
layer by implementing the PFA as a TMem device. Since bookkeeping is asynchronous, and
eviction occurs earlier in the process, this TMem plugin simply returns immediately. The
current implementation evicts synchronously. This is because the expected write time is
much smaller than a scheduling quantum and asynchronous eviction would result in wasteful
context switches. Future implementations may attempt to overlap eviction with low-latency
tasks such as bookkeeping.

Baseline Swapping I modified Linux to use the remote memory blade directly while
paging rather than using the PFA. This was done by implementing a software interface to
the remote memory blade as a TMem device. The swapping mechanism uses a custom
network driver that provides zero-copy semantics and bypasses the normal Linux networking
stack.

4.2.5 Evaluation

4.2.5.1 Experimental Design

My evaluation is based on two benchmarks with significantly different access patterns. The
first is quicksort (Qsort). This benchmark first allocates a large array of random numbers,
and then sorts it using the well-known quicksort algorithm. Quicksort is a divide and conquer
algorithm that automatically partitions the input array into small local blocks before per-
forming a final sort. This leads to excellent cache behavior and predictable access patterns.
This benchmark performs no file I/O and is never blocked on OS interactions.

The other benchmark is a de-novo genome assembly benchmark (Gen). Gen begins by
loading a large text file that represents raw genome data. Raw genome data consists of short
overlapping sequences of base-pairs called contigs, the goal is to align these overlapping
contigs into a single contiguous sequence representing a genome. This is done by loading
contigs into a large hash table and probing into it repeatedly to find matching sequences. This
leads to very little locality and unpredictable access patterns. Furthermore, Gen performs
file I/O on the input, which allows for more complex OS interactions.

4.2.5.2 End-to-End Performance

I ran the benchmarks under a cgroup in Linux to reduce the available memory and emulate
a system where applications would need to share limited local memory. This is the same
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Figure 4.14: PFA vs Baseline without kswapd. Applications run approximately 20-40%
faster when the PFA is enabled.

mechanism that system administrators use today to control application memory consump-
tion. I configured the PFA to allow up to 64 outstanding page faults before bookkeeping
must be performed.

Both applications use 64MB of memory at their peak. I then varied the cgroup memory
limit from 100% (64MB) down to 25% (16MB), triggering increasing levels of paging. For
both benchmarks, the PFA reduces end to end run time by up to 20%. I now analyze the
sources of this performance improvement.

Fetch Times I begin my analysis by looking at the key metric of average fetch time. This
is the time between when an application attempts to access a remote page, and when it
is able to continue processing. In this experiment, I use a simplified memory blade and
network implementation with a constant 4 µs access latency in order to better understand
local overheads. Figure 4.15 plots the time for accessing a single remote page on an unloaded
system. I classify time into four categories:

• Trap: The time for the hardware to detect an invalid access and context switch to the
OS.

• Proc: The time spent processing the page locally.

• NIC: The time spent interacting with the NIC.

• MemBlade: The time spent on the network and in the memory blade.
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Figure 4.15: Breakdown of time in fetching a single remote page. All data are the average
of 10 runs. Error bars represent standard deviation (but are almost too small to be seen).
Note that local processing time, including the trap and NIC interaction, only accounts for
8% of time with the PFA, but accounts for over 50% of time for the baseline.

Note that the trap overhead is a very small fraction of total time (just 113 ns). This is a
result of using a simple in-order RISC core like Rocket. This overhead is more significant on
more complex architectures like those found in servers and mobile devices. Next, note that
the time spent on the network and in the memory blade accounts for less than half of the
time in the baseline implementation, but completely dominates the PFA fetch time. This
effect will be even more pronounced as network and memory blade performance improves.
For example, if MemBlade time were reduced to 1129 ns to simulate a 1Tbit/s link with
1 µs round-trip latency as predicted in Chapter 2 for photonic networks, then client-side
processing would account for 83% of time in the baseline but only 23% of time with the PFA
(Figure 4.16). Finally, note that the NIC time in software is larger than with the PFA.
This is due to a more efficient hardware to hardware interface between the PFA and the
NIC. While not visible in the figure, the actual PFA-specific processing takes only 1 cycle in
hardware, the remaining time is split between detecting and delivering the remote PTE to
the PFA (Trap), and interacting with the NIC (NIC). The total time to fetch a page with
the PFA is 2.2 times faster than the baseline, but this does not tell the whole story. The
PFA does not eliminate the work that is done during Proc, it simply moves it to another
thread. Likewise, the 113 ns trap overhead may seem small, but this does not account for
the microarchitectural effects of the handler on application performance when it restarts.

Total Page Faults One key function of the PFA is to reduce the number of page faults due
to paging. Recall from §4.2.1 that there are many causes for faults, in Figure 4.17 I plot the
number of paging-related faults each benchmark experiences as a fraction of total faults. The
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Figure 4.16: Breakdown of time in fetching a single remote page from a hypothetical fast
memory blade with 1µs page read latency. As network and memory technology improves,
the relative benefit of the PFA increases (from 2.2x faster with the baseline memory blade
to 4.6x faster with the optimistic memory blade).

first thing to note is that the number paging-related faults decreases by approximately 64
when the PFA is used. This is because the PFA interrupts the OS to perform bookkeeping
only when its queues are full (every 64 fetches in this experiment). However, these only
account for 45% of faults, even in the worst-case of of Qsort with 25% local memory. The
more complex Gen benchmark has an even lower fraction of paging-related faults. While
there are certainly some savings due to fewer kernel crossings, they are not frequent enough
nor long enough to explain all the performance benefits we see end-to-end.

Bookkeeping Time While the PFA does reduce the number of paging-related faults, the
kernel still needs to perform bookkeeping on the same number of pages. This batching means
that more work is performed per page fault with the PFA. Figure 4.18 shows total time spent
bookkeeping, regardless of the number of page faults. What we see is that while the number
of evicted pages is the same in both configurations, using the PFA leads to a 2.5x reduction
in bookkeeping time on average. The same code path is executed for each new page, but
the PFA batches these events. This leads to improved cache locality for the OS, and fewer
cache-polluting page-faults for the application. The result is that, even in the worst case, the
PFA spends less than half its time handling paging-related faults while the baseline spends
about 80%.

Scaling Figure 4.19 shows the improvement in end-to-end runtime due to the PFA. While
the improvement is significant, the savings are constant. This is because the PFA does not



CHAPTER 4. PHYSICAL DISAGGREGATION: MEMORY 63

Figure 4.17: Number of paging-related faults as a fraction of total faults experienced.

Figure 4.18: Proportion of time spent bookkeeping.
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Figure 4.19: Total runtime improvement due to the PFA

change any of the caching algorithms, and therefore experiences the same number of faults.

4.2.5.3 Evaluation Limitations

This evaluation used a single, in-order, CPU core and relatively simple benchmarks. Both
Gen and Qsort operated over a fixed dataset for a fixed period of time. This predictabil-
ity meant that they made effective use of a known amount of memory. Many real-world
applications are less predictable. Microsoft reports that many applications do not use a
significant fraction of their memory after first use [153]. For the median VM, this “frigid”
memory accounts for 50% of all memory used. For these applications, we would expect
remote memory paging to have a much smaller impact on end-to-end performance. The
impact of paging overheads may also be reduced in applications that use large page sizes
to amortize virtual memory management costs. While these effects make remote memory
paging more appealing, they do not reduce the cost of handling the pages that do fault. In
this evaluation, I have shown how the PFA can improve the performance of a single fault,
regardless of the application that caused it. I have also shown how bookkeeping costs scale
with paging activity when it does occur. For any workload using software-only remote pag-
ing, we can expect to similarly see a 2.2x reduction in individual page fault latency by using
the PFA (Figure 4.15). Similarly, we can expect bookkeeping times to reduce by roughly
30% due to batching in the background thread, but still consume a large fraction of total
processing time when paging activity is frequent (Figure 4.18).

From a hardware perspective, our simple in-order core may not be representative of
high performance server-grade CPUs. Rocket has fast traps because it is in-order and has a
short pipeline while more complex out-of-order cores can expect much higher trap overheads.
While Rocket’s small caches will be more impacted by page fault handling than larger cores,
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its simple microarchitecture will see less disruption from the context switch. Interestingly,
these differences result in very similar page fault latencies between the two platforms. While
Figure 4.15 reports roughly 5 µs for trap and processing time on Rocket, my experiments on
an Intel Xeon core also show 5µs trap and processing latency.

4.2.6 PFA Conclusions

The PFA improved the performance of remote memory paging by introducing new hardware
to accelerate key phases of the process. Users did not need to change their applications
to take advantage of disaggregation and in fact did not need to know it was happening.
However, the PFA did not fundamentally change the underlying approach to disaggregated
memory. This means that applications like Gen that are not particularly cache-friendly can
see significant slowdowns in a disaggregated environment, even with the PFA. The PFA
pushes the boundaries of what is possible with cache-like interfaces, but it cannot change
their fundamental limitations. Applications like Gen will need deeper changes to be viable
on a disaggregated system. In the next section, I describe one system I designed that requires
users to adapt their applications to disaggregation, but reaps large benefits from this more
explicit approach.

4.3 Example Application: Process Checkpointing

So far I have focused on how memory disaggregation might be achieved. In this section, I
present one application of this technique to improve failure recovery.

Warehouse-scale computers allow users to scale their applications to thousands of nodes.
This scale enables high performance applications spanning deep learning training to mas-
sive scientific simulations. Scale also means that failures become common. For long-
running large-scale applications, the chances of at least one component failing approaches
certainty [224, 236]. The result is that fault-tolerance must be a first-class concern in the
design of such applications. There are many solutions to this problem, of particular inter-
est for disaggregation is the use of state checkpointing. This strategy involves periodically
saving the state of a running task to some remote location in a different fault domain. If a
failure occurs, the task is restarted using the checkpointed data.

One way to checkpoint tasks is to replicate the entire OS process. This requires little or
no changes to the application and can be implemented using generic tools like Berkeley Lab
Checkpoint Restart (BLCR), checkpoint/restart in userspace (CRIU), or Condor [83, 70,
35]. As noted earlier, implicit approaches like this tend to introduce inefficiencies because
they cannot exploit application-level insights. In this case, process checkpoint/restart must
checkpoint the entire application, even temporary or unimportant data. They must also qui-
esce operating system state and ensure that all user-visible state is saved properly. To avoid
this, some applications take a fully explicit approach by manually serializing and storing
all critical state on each checkpoint. As expected from an explicit approach, this requires
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neph cfg [create/destroy] Initialize the system and recover memory if needed
neph [alloc/free] Allocate a region of recoverable memory
neph txn [start/commit] Mark a point of consistency in the program
neph [set/get] usr data Register a pointer to your state

Table 4.1: Nephele API

significant effort from application developers and can be tricky to make fast. Serialization
is already a major bottleneck in distributed applications and it can be difficult to identify
all critical state accurately. MODC is one approach that couples a task-based programming
model with explicit, named, objects that are persisted to remote memory [138]. OpenFAM
provides an application programming interface (API) for storing and naming persistent ob-
jects in remote memory [137].

Together with João Carreira and Howard Mao, I designed a system called Nephele that
compromises between the two extremes of implicit and explicit. It is explicit because
it requires users to identify memory allocations that must be checkpointed as well as safe
points in their application where a checkpoint can be taken. The system then implicitly
tracks changes to the critical state and replicates data as needed at these safe points. Unlike
full process checkpointing, Nephele checkpoints only critical state and does not require fully
transparent OS state management. However, it also does not require the use of special data
structures and serialization code from applications.

4.3.1 The Nephele Interface

The Nephele interface is designed around two features: a recoverable memory allocator,
and commit points. The recoverable memory allocator has the same API and semantics as
the standard malloc function, but additionally marks memory as recoverable. As a drop-
in replacement for malloc, the recoverable allocation API is relatively easy for application
developers to integrate into existing code. Commit points allow users to mark points in
their application where they are able to recover using only recoverable memory. Nephele
will checkpoint all recoverable memory at each commit point. Upon restart, Nephele loads
all recoverable memory into their original virtual addresses using the mmap system call and
begins the process from its normal entry point. Memory allocation is done early in process
creation to ensure that the recoverable virtual addresses are not allocated to any other
objects. Users may also require additional metadata to be able to interpret their recoverable
memory. Nephele provides this through a user-defined user data data structure. Nephele
will provide a pointer to this data structure upon restart. Table 4.1 lists the entire Nephele
API.

While this API is designed to be minimally intrusive, it does require some application
support. Applications must include recovery code to prepare for execution given the re-
coverable state. Nephele also does not manage external state like file pointers or network
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sockets. While not as easy as full process checkpointing, these tasks are less complex than
full state deserialization and recovery. Since recoverable memory is placed in identical virtual
addresses, there is no need for application-specific serialization routines.

4.3.2 Implementation

Nephele consists of a high-level layer that is responsible for tracking recoverable memory and
commit points, and a low-level atomic replication library.

4.3.2.1 Atomic Replication Library

Nepehele uses an atomic replication library to manage remote memory. Clients can allocate
remote memory on a byte granularity, though Nephele only uses page-sized blocks. Once
allocated, users can read and write remote memory. Writes occur atomically through the
use of a redo log on the server. We use an Infiniband backend to implement this library.
Reads and writes use one-sided puts and gets. The client initiates an atomic commit using
a two-sided RPC to the memory server which applies the redo log.

Infiniband requires users to pin virtual addresses in memory and register each region
with the Infiniband driver. In this project, we used an early prototype of the replication
library that managed pinned memory at a fine granularity, leading to significant performance
overheads. Future versions of the library used a more sophisticated memory management
algorithm that eliminated many of these constant overheads. The replication library was
designed by João Carreira and is described in more detail in [55].

4.3.2.2 The Block Table

Nephele tracks recoverable memory in blocks, fixed-sized regions of memory that are persisted
atomically. Most functionality is based around the block table, a persistent data structure
that keeps track of each allocated block in the system. This table is replicated using the
same mechanism as any other recoverable memory. The first page of the block table is
always stored with a constant identifier in remote memory. After that, the block table is
self-describing and can be recovered using the mechanisms described below.

Each entry in the block table contains the virtual address of the active block on the client
and a remote identifier that can be used to identify the block in remote memory.

4.3.2.3 Initialization and Recovery Procedure

When neph cfg create() is called the first time, it initializes the block table to an empty
state and persists it to remote memory. When recovering, neph cfg create() fetches the
first block of the block table. The block table is walked from start to finish, fetching each
block as it goes. Even if the block table takes up multiple blocks, each one is fetched in order,
ensuring that all data can be found eventually. When Nephele fetches a remote block, it
must ensure that it is loaded to the same address it was at before failure, otherwise pointers
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in the data would no longer be valid. The original address is read from the block table
and then allocated using the mmap() system call. To ensure that these addresses are always
available, Nephele requires that any OS address space layout randomization be disabled, and
that neph cfg create() be called before any other local allocations.

4.3.2.4 Allocation

To ensure that memory is recoverable, the user must allocate it using a special neph alloc()

function. The neph alloc() function allocates memory both locally and on the remote node.
Recoverable memory is allocated from pools of virtual pages that are then checkpointed on a
page granularity rather than tracking individual allocations. Any modifications to the local
pages allocated by neph alloc() are automatically detected and copied to the remote node
at commit time. Detection is achieved through the use of mprotect(), a Linux system call
that can be used to make the application take an interrupt when a page is written to. Our
interrupt handler then marks the page as changed, removes the memory protection, and
returns. This means that Nephele needs to be involved only in the first modification to a
page.

4.3.2.5 Marking a Point of Consistency

The user is required to identify points in their code where the state of recoverable memory
is considered consistent. This means that recovery is possible from that particular state.
neph txn commit() can be called at these points to ensure that memory is atomically per-
sisted. Upon entering neph txn commit(), Nephele goes through the list of changed pages
and copies them to a shadow page in remote memory. This ensures that a consistent version
of memory is always available, even if the client crashes during checkpointing. When all the
pages have been copied, Nephele commits the changes to remote memory.

4.3.3 Evaluation

4.3.3.1 Microbenchmarks

I evaluate Nephele first with a simple microbenchmark. For commits, I allocate and modify
a variable number of pages. I report the time for each checkpoint to complete. For recovery,
I measure the time before the first useful instruction executes after recovery. I compare
Nephele against BLCR, a common process checkpointing tool from the high-performance
computing community.

Figure 4.20a shows the results of the commit microbenchmark. At the smallest page
count, Nephele’s commit time is around 150 µs. Time then scales linearly with page count,
with a slope of approximately 14µs per page. Commit time is dominated by the low level
remote memory interface since page change tracking only requires maintaining a simple list
of changed addresses. BLCR sees significantly longer commit times in all cases with roughly
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(a) Commit (b) Recovery

Figure 4.20: Microbenchmark results

60ms even when we have not allocated any test pages. Commit times then increase linearly
with the number of pages by 47ms per page.

Figure 4.20b shows the results of the recovery micro-benchmark. Recovery is significantly
slower than commit with an initial latency of roughly 50ms. Recovery time is dominated
by Infiniband overheads, particularly page registration with the Infiniband driver. BLCR
recovery times are noisy, but take well over one second to complete regardless of process
size. Nephele experiences little constant overhead compared to BLCR because it does not
need to replicate process state precisely. As I increase the number of pages, BLCR begins
to outperform Nephele due to the poor scaling of the remote memory interface.

4.3.3.2 DGEMV Benchmark

DGEMV is an iterative dense matrix-vector multiplication benchmark. This benchmark
is designed to be ammenable to checkpoint/restart. The matrix is kept constant between
iterations so there is very little new data to save on each checkpoint. The only dynamic
state, the vector, is also relatively straightforward to serialize. Upon recovery, the DGEMV
benchmark loads the output vector and current iteration count from recoverable memory
and restarts the computation. I compare Nephele against a manual serialization scheme
using a local SSD. In this experiment, I run 100 iterations using a matrix of double-precision
floating point numbers with dimension (100M × 100). I then vary the number of iterations
between checkpoints and failures.

Figure 4.21 shows the results of this experiment. I first observe that the commit fre-
quency does not have a significant impact on runtime for this benchmark due to the very
small dynamic state. Nephele consistently outperforms the manual serialization approach
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(a) Commit The number of iterations between
commits increases from every iteration up to
“None” where no commits were taken.

(b) Recovery The number of iterations be-
tween induced failures increases from every it-
eration up to every 100 iterations.

Figure 4.21: DGEMV benchmark results

due to the lower latency infiniband interface. When simulating failures, however, we see a
much stronger effect due to the overhead of starting a new process. At all but the most
extreme failure rates, Nephele has similar performance compared to the manual serialization
approach. As I presented in the microbenchmark, most of the startup time for Nephele is
due to inefficiencies in the Infiniband interface. Overall, Nephele performs similarly to a
tailored manual serialization approach.

4.3.3.3 Genome Assembly Benchmark

I also evaluated the genomics benchmark, Gen, described in §4.2.5. To summarize, this
benchmark involves building a large hash table from short DNA sequences and then repeat-
edly probing to find matching substrings. The benchmark tracks which phase it is in and the
current state of the hash table in recoverable memory. During the build phase, recoverable
memory also includes the index of the last input that has been loaded. When probing, it
includes the current substring, position within the substring, and the list of matches found
so far. To recover, the benchmark first checks which phase it is in and calls the appropriate
function. Since all working state was stored in recoverable memory, the build and probe
functions can begin processing immediately without any additional recovery code.

Unlike the DGEMV benchmark, Gen uses a complex data structure that is not easily
serialized. Furthermore, each iteration changes only a small subset of the state, but that
subset is spread around the large hash table. In Gen, I use a 100MB dataset with 8 million
probing iterations. Larger problem sizes would increase the initial recoverable memory size,
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Figure 4.22: Genome commit performance results. They number of iterations between com-
mits increases from every 10K up to “None” where no commits were taken.

but the rate of state change is independent of scale. I would expect Nephele’s commit times
to remain roughly constant after the first commit as we increase the problem size.

Figure 4.22 shows the result of an experiment where I vary the interval between commits
from a very aggressive rate of one checkpoint per 10K iterations down to no checkpointing
at all. Since the state is difficult to track and serialize, I compare against the general-
purpose checkpoint/restart framework BLCR. For aggressive commit rates, Nephele greatly
outperforms BLCR. This is due to Nephele’s efficient change tracking mechanisms. While
BLCR must checkpoint the entire process on each iteration, Nephele only copies the pages
of the hash table the have been updated. At less aggresive commit rates, overheads in
infiniband initialization overwhelm any savings from efficient replication.

4.3.4 Nephele Conclusions

Nephele takes advantage of application insights to create a highly efficient checkpoint/restart
system. For Gen, Nephele was over 4x faster than a general purpose system. While I observed
performance overheads from our network interface, many of those limitations were solved in
later versions of the atomic replication library [55]. The true limitation of this approach was
not in the underlying technologies, but in the significant effort it required from users. For
some simple applications it can be easy to identify critical and ephemeral state. For others,
it may require significant changes to the application design. Likewise, recovery code can be
complex, particularly for high level languages like Python. These changes may introduce
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some essential complexity to applications, but most of the new complexity is accidental2. In
other words, Nephele may be challenging to retrofit into an existing application, but it is
much easier to include in new designs.

4.4 Final Thoughts on Physical Disaggregation

In this chapter, I provided a largely physical perspective on disaggregation for memory.
With the page fault accelerator, my goal was to increase the amount of memory available to
applications with minimal changes to their structure. In Nephele, I used an Infiniband based
library to replicate memory changes automatically to memory in a different failure domain.
From the perspective of the taxonomy presented in §4.1, I fixed one dimension and explored
options along the other. For the PFA, this meant adding hardware acceleration to a largely
implicit interface. It did not fundamentally change the behavior of existing techniques like
Infiniswap, it simply accelerated critical phases of their execution. While this allowed me to
make large improvements in performance, the absolute performance remained quite poor in
many cases. In Nephele, I picked a middle ground along the implicit/explicit axis, but
assumed a fixed hardware environment. This more explicit approach leveraged application
insights to provide significant performance improvements. A major limitation of both these
techniques is that they do not address the question of how disaggregated memory should
interact with a larger system. How should it be allocated and deallocated? Which remote
memory locations should be used? How do applications access and share remote memory?

The answers to these questions will constrain our choices for physical disaggregation.
If our system interface demands fault tolerance for user memory, the PFA would need to
be augmented with replication and consensus protocols. It is possible that these features
would make the hardware implementation infeasible. Since the PFA is based on Unix’s
concepts of long-running processes, it is not possible to dynamically deallocate resources
from a user. Nephele is more flexible. It allows the system to free a process’s local resources
by terminating and restarting it from a checkpoint. It also does not require any particular
hardware, though its performance is sensitive to the underlying network interface.

The reason that Nephele was so flexible was that it presented users with a logical view
of the system that is well suited for disaggregation. The PFA struggled because its logical
model was based on single-node abstractions that don’t map well to remote memory. In
the next Chapter, I will continue to explore this insight by considering how a disaggregated
system should be presented to users logically.

2Fred Brooks introduced these terms in his book “No Silver Bullet”. They refer to complexity that is
fundamental to the problem (essential) or due only to details of the available tools (accidental).
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Chapter 5

Logical Disaggregation: Serverless

In Chapter 2, I described a number of available interfaces to warehouse-scale computers.
These interfaces present a logical view of the system. That is, they represent what the
user thinks the system is, independently of how it is physically deployed. In Chapter 4,
I described a number of novel ways to physically deploy a system while assuming a fixed
logical interface. In this chapter, I explore the interplay between these two concepts with a
particular focus on disaggregated compute resources. I first show in §5.1 how a distributed
operating system can address underutilization with high performance by using low-noise
operating system environments called unikernels. I then present a Xen-based operating
system that coordinates the scheduling of these unikernels to further reduce noise as we
distribute applications across a warehouse-scale computer (WSC). I go on to argue in §5.2
that the logically disaggregated serverless computing model can provide higher utilization
while enabling rapid innovation in hardware. I demonstrate this property by designing a
new serverless interface to GPUs that reduces cold start times by over 20x and sustains 50x
higher throughput than traditional approaches in a multitenant setting.

5.1 Noisy Performance in Distributed Operating

Systems: WabashOS

Distributed operating systems seek to provide a familiar single-node abstraction to users of
large clusters. Logical disaggregation is provided using a wide range of techniques ranging
from microkernel style message passing as in Mach [177], to POSIX-compatible interfaces
like LegoOS [246]. In this section, I will describe an operating system called WabashOS
that my collaborators John Kubiatowicz, Juan Colmenares, Steven Hoffmeyer, Eric Roman,
Matthew Francis-Landau, Sven Schwermer, and I proposed (Figure 5.1). WabashOS is
based on the Tessellation distributed operating system [69]. Rather than using a bespoke
kernel, WabashOS uses the Xen hypervisor to provide heterogeneous environments called
cells. Like Tessellation, we envisioned a resource allocation broker and monitor that would
tailor resource allocations to cells to meet performance goals with the minimum allocation.
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Figure 5.1: WabashOS Design WabashOS is designed around a per-node kernel based
on Xen, heterogeneous per-process execution environments called cells, and a distributed
resource allocation broker (RAB) that handles adaptive resource management. Processes
can communicate via built in communication channels.

Larger applications would be constructed from groups of these resource-optimized cells. In
other words, WabashOS logically disaggregates resources by providing tailored allocations
and resource-specialized cells. By focusing on a single resource, these cells were less likely
to lead to stranding. Cells communicated through channels facilitated by the kernel that
enabled physical disaggregation. This flexibility would allow WabashOS to make placement
decisions based on expected communication patterns and resource availability. Barrelfish and
Popcorn Linux provide other examples of using resource-specialized kernels for distributed
heterogeneous computers [36, 28].

Though not a full end-to-end implementation, WabashOS provided a framework for sev-
eral research projects. In this section, I will describe two of my efforts to improve utilization
of compute resources in WabashOS while enabling high performance. The key insight in
these projects was that while distributed operating systems present a familiar single-node
logical interface, they can have very different performance characteristics. In the case of
WabashOS, I was interested in the impact of poor performance predictability (i.e., noise) on
coordination-heavy applications. In §5.1.1, I describe the impact that noise can have on ap-
plication performance. I then describe how I used unikernels to reduce the noise experienced
by a single cell. Finally, §5.1.4 describes how multiple cells can be co-scheduled to minimize
noise while still enabling multitenancy.

5.1.1 The Impact of Noise

On modern systems, multiple identical runs of an application may take varying amounts
of time. This may be caused by variations in hardware performance, because of non-
deterministic scheduling decisions in the OS, or from interference from other applications
or the OS itself [37]. Collectively, I refer to this non-deterministic performance as noise.
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The impact of noise on application behavior may not be apparent for long runs because
the noise does not consume a large fraction of total application time, and affects all threads
equally on average. However, applications that synchronize frequently can be impacted.
For example, the Linux kernel has a 1000Hz timer tick that lasts for approximately 5 µs.
This results in a modest 0.5% overhead. However, suppose that an application is run on an
Intel Knights Landing many-core processor with 72 threads, and all threads synchronize on a
barrier. Even if all threads make equal progress between barriers, there is a 30% chance that
at least one of them will be interrupted by the timer tick during the barrier1. If barriers are
frequent, this overhead can be significant. Such frequent barriers are common in scientific
applications such as simulators.

Indeed, system noise has been identified as a major source of performance degradation
in several HPC deployments where the number of threads can be in the tens or hundreds
of thousands [37, 209, 38]. A more detailed analysis of the issue can be found in [89]. In
the cloud and web-scale communities, scheduling uncertainty, interrupt routing, and inter-
fering applications have all been cited as contributing to tail latency [154, 152]. Logically
disaggregated systems like WabashOS exacerbate this issue by decoupling applications into
resource-specialized tasks, leading to potentially many communicating threads.

5.1.2 Common Noise Management Techniques

5.1.2.1 High-Performance Computing

In high-performance computing (HPC), ultimate performance is often favored over utiliza-
tion. Applications also tend to be more self-contained and specialized than in cloud settings.
These properties enable more aggressive and disruptive approaches to noise mitigation.

One example of this trade-off is the emergence of low-noise operating systems [139, 126,
100]. These systems have high performance for core application components, but may not
support every aspect of the application. Kitten is a minimal OS designed to run in a co-
kernel mode, where both Linux and Kitten run bare-metal on disjoint resources within the
same physical node [145]. This configuration allows two cooperating applications, each with
different OS requirements, to run on the same machine. A highly tuned simulation code may
run on the low-noise Kitten cores, while a visualization application processes its output on
top of Linux. Some efforts have shown that Linux can be made to match the performance
of specialized operating systems [249].

At the cluster level, HPC deployments typically use a batch scheduling interface such as
Slurm [297]. Batch scheduling ensures that applications receive their full resource allocation
up-front to avoid unpredictable performance from dynamic resource allocation. Even with
static allocations, a job may experience noise from other nearby jobs in the system, necessi-
tating even more careful and exclusive placements [38]. These long-running, all-or-nothing,
static allocations can lead to poor utilization with both idle and stranded resources [176].

1Assuming that per-core interrupt timers are independent, and the probability of any one core being in
an interrupt is 0.5%, then P (interrupted) = 1− 0.0572 = 0.30
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5.1.2.2 Cloud Computing

Cloud applications are often designed to support online user interactions. As such, they are
primarily concerned with worst-case performance, called tail latency. These are measured
in terms of percentiles and may be associated with an explicit tolerance called a service-
level objective (SLO). Violating an SLO is considered unacceptable while latencies below
the SLO provide little benefit. Li, et al., survey the sources of noise in large scale interactive
applications [154]. These sources include queing delays and head of line blocking, background
tasks, and hardware behaviors like NUMA or dynamic power management.

There are many strategies for mitigating tail latency in the cloud. In “The Tail at Scale”,
Dean and Barroso describe the impacts of noise on Google’s applications and propose a
number of mitigations [75]. Some techniques mirror those seen in HPC environments. These
include SLO-aware scheduling, physical isolation for sensitive jobs, and careful scheduling
of background tasks. However, they also acknowledge the inevitability of noise and design
applications to tolerate noise when it does occur. These applications may hedge requests
by sending the same request to multiple servers and using only the fastest response. They
also factor applications into small partitions that can be easily moved between servers to
balance load. Tail latency is also critical when serving machine learning models, leading to
specialized SLO-aware model-serving systems [105, 230].

5.1.3 Unikernels

In Kitten, OS heterogeneity was provided by the split kernel approach where multiple oper-
ating systems ran on physically disjoint and persistent partitions of a physical machine. For
highly predictable and long-running workloads, this approach can be reasonable. The diffi-
culty arises when we introduce multitenancy and heterogeneity. An ideal partition between
Kitten and Linux for one application is unlikely to be ideal for another. Even within an
application, different phases of execution may have differing resource and operating system
requirements.

In datacenter applications, hypervisors have been used extensively to provide more flex-
ibility in OS deployment. As this approach became more ubiquitous, operating systems
began to employ virtualization-native optimizations such as virtio in Linux [125] or Xen’s
paravirtualized interfaces [29]. These interfaces allow the guest OS to cooperate with the hy-
pervisor on virtual memory management, trap handlers, and IO device management rather
than emulating low-level hardware interfaces. Even more radically, some began designing
operating systems that only ran on hypervisors. These operating systems are called uniker-
nels [164, 132, 84, 95]. In WabashOS, we took advantage of these trends by reconceiving of
hypervisors as an OS kernel, while unikernels provided the process abstraction. One advan-
tage of this approach is that users are free to choose any guest operating system they wish,
from general-purpose Linux to a highly specialized unikernel.
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5.1.3.1 Specialization for Unikernels

I focused on one particular unikernel called Rumprun [132]. Rumprun is a framework for
generating unikernel instances that are tailored for a particular application. Unlike a general-
purpose OS, Rumprun is intended to run only a single application with a known set of
dependencies and required features. This approach provides a lightweight and low-noise
environment for applications. To reduce noise even further, I worked with Juan Colmenares
and Steven Hoffmeyer to build a custom low-noise scheduler for Xen. Rather than considering
all CPUs simultaneously, our scheduler partitioned the available resources into dedicated
pools with differing policies. In this section, I evaluate our lowest noise policy, called Batch,
that simply dedicates physical cores to virtual cores statically and never migrates or preempts
the virtual machine. This drastically reduced the noise contributed by Xen in the guest
operating systems. In §5.1.4, I describe an alternative policy that enables multitenancy
while maintaining a low-noise environment.

5.1.3.2 Evaulation of Unikernel Noise

I measured noise using the Selfish Detour benchmark from the Netgauge benchmarking
suite [112]. Selfish Detour repeatedly polls the CPU’s real-time clock and records any devi-
ations from the expected poll duration (called detours). I report the full histogram of these
detours as well as the time contribution of detours on end-to-end runtime of the benchmark,
here called waste. In all cases, I ran the benchmark on a dedicated CPU core with all
other configurable OS tasks pinned to a separate CPU socket. I disabled symmetric multi-
threading and dynamic frequency and voltage scaling on the test machine. Table 5.2 shows
the details of my experimental environment. Figure 5.3 shows the result of this experiment.

CPU 2x Intel Xeon E5-2697 v3
CPU Frequency 2.6GHz (dynamic frequency disabled)
#Cores 14 per socket
#Threads 1 per core (SMT disabled)
Memory 64GB DDR4-2133
Xen Version 4.4.2
Linux Version 3.16

Figure 5.2: Evaluation platform details

In Figures 5.3a and 5.3b, I ran the benchmark with no other user processes on the system.
This presents an optimal scenario for low-noise execution. However, we see significant noise
on Linux with 1004 detours measured per second and an average duration of about 5 µs.
The peak at 5 µs corresponds with the Linux scheduling quantum while other detours come
from Linux background events such as RCU management (see [173]) and variability in the
runtime of the scheduler itself. Rumprun has significantly lower noise with only 238 detours
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(a) Linux Alone (b) Rumprun Alone

(c) Linux with a competing workload (d) Rumprun with a competing workload

(e) Rumprun with a competing workload us-
ing my custom Xen scheduler

Figure 5.3: Results of the selfish detour benchmark on different operating system environ-
ments.
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per second and a lower average duration of 2.15 µs. The cluster of detours between 40µs to
50 µs corresponds with very rare Xen-specific events.

I then configured the experiment to include a competing workload on a separate CPU
socket (Figures 5.3c and 5.3d). The competing workload consisted of a 10-way parallel build
of the Linux kernel. For the Rumprun experiments, this workload was run in a Linux virtual
machine on top of Xen. For Linux, the workload was run as a set of processes pinned to
the appropriate cores. This workload interacts with the OS frequently and uses a significant
amount of memory and CPU cycles. The results for Linux show a similar frequency of detours
to the unloaded case, but the duration of those detours increases signicantly from 6.13 µs at
the 99.9% tail to 16.99 µs. This is concerning because the selfish-detour benchmark runs on
dedicated cores, requires no OS services, and is completely CPU-bound. The interference is
instead due to synchronization overheads in the Linux kernel that slow regular events like
timer interrupts, even on unrelated cores. Rumprun on Xen sees no significant change in
behavior due to the competing workload.

Finally, Figure 5.3e shows the behavior of our custom scheduler on Rumprun with a
competing workload. Since our scheduler gave complete control of the CPU to the guests,
the only major source of detours comes from a 100Hz internal rumprun timer used to perform
background operations. There are also a number of very rare detours from Xen and hardware
variability. In all, we see only 102 detours per second with low mean and tail durations of
1.6 µs and 4.48 µs, respectively.

5.1.3.3 Unikernel Conclusions

These results demonstrate the challenges in using a general purpose operating system for
high-performance applications. In this case, I had little need for most operating system
services in my benchmark application and would not benefit from the sophisticated shared
services like page caches or multitasking schedulers provided by Linux. Applications on
a multi-tenant WSC will similarly have little need for such shared services at the node
level. Unlike other low-noise operating systems, our approach also enabled heterogeneity of
operating system services. The selfish-detour benchmark had few dependencies and a low-
noise requirement while the competing workload required a full-featured operating system
but would not have benefited from low noise. This heterogeneity also presents a more
flexible interface for logical disaggregation where execution environments can be specialized
for individual resources.

5.1.4 Gang Scheduling

In the previous section, I showed how Xen could be modified to support low noise unikernel
environments. Low noise is an important goal, but that performance predictability came
at the cost of resource utilization. Applications ran to completion on dedicated resources,
even if they became blocked on IO or synchronization. Michelogiannakis, et al., report me-
dian CPU utilization of only 50% for traditional CPUs and 75% for the specialized Knights
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Figure 5.4: Example execution for different scheduling policies. Thread scheduling considers
each job’s threads independently. Batch runs an entire job to completion while Gang runs
all threads concurrently, but interleaves execution between different jobs.

Landing processors on the Cori supercomputer [176]. Specialized compute units like the
Knights Landing see particularly variable utilization. At the 40th percentile, we see less
than 10% utilization. Another consequence of this static allocation is that users in a multi-
tenant environment may need to wait for previous jobs to finish before theirs can start. This
is frustrating for users, particularly those with short-running jobs. It also means that appli-
cation pipelines with varying resource needs at different stages may become blocked, even
if the system has enough resources for one phase but not others. In this section, I evaluate
the impact of scheduler flexibility on noise and utilization. I compare traditional algorithms
against a middle ground, called Gang Scheduling, that we implemented in WabashOS.

5.1.4.1 WSC Scheduling Background

There is a broad range of scheduling strategies in common use that trade off between utiliza-
tion and application performance. Figure 5.4 shows three categories of scheduling algorithms
that I considered in my work. Per-thread scheduling is common in cloud and general-purpose
computing. Examples include Linux’s Completely Fair Scheduler, Xen’s default Credit algo-
rithm, or even real time strategies like Earliest Deadline First [13, 294, 259]. This strategy
maximizes utilization by allowing threads to run on any idle resources, regardless of other
threads in the application. While this uses resources effectively, communicating threads
are not guaranteed to be scheduled simultaneously. This can lead to poor performance for
jobs with frequent synchronization between threads. The HPC community is more con-
cerned with ultimate performance of a single job than pure utilization. The most common
HPC strategy is a batch scheduler that runs every job from start to finish on dedicated
resources [297, 270]. This strategy ensures that all threads can synchronize without waiting
for the scheduler. Gang Scheduling aims for a middle ground. It ensures that every job
thread is scheduled at the same time, but it interleaves jobs in time to ensure that all jobs
make progress [200, 124]. It enables high performance for synchronization-heavy jobs while
still allowing multitasking. While gang scheduling is often associated with HPC environ-
ments, it has also been used in enterprise settings. For example, VMWare’s vSphere product
approximately co-schedules VMs to minimize clock drift [265].
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Figure 5.5: CPU utilization of the CoEVP benchmark over time on a 14 core CPU.

5.1.4.2 Gang Scheduling in WabashOS

I worked with Steven Hoffmeyer and Juan Colmenares to add support for gang scheduling
to WabashOS. Matthew Francis-Landau, Sven Schwermer, and I then evaluated this design
with a microbenchmark and two scientific applications: CoEVP and CoHMM.

5.1.4.3 Benchmarks

Microbenchmark Gang scheduling ensures that threads can communicate without wait-
ing for each other to be scheduled. It also ensures that all threads make similar progress
over time, a valuable property for applications with frequent barriers. In this section, I use
a microbenchmark to measure how much skew different scheduling policies introduce be-
tween threads. The benchmark repeatedly runs a simple CPU-bound loop for 100ms on 14
threads. Ideally, every thread would make equal progress to minimize the time spent waiting
for barriers. For this benchmark, I require that all threads remain within one iteration of
each other. If any thread lags by more than one iteration, I consider it to have missed its
deadline. I run the benchmark for 28000 iterations with a varying number of concurrent
applications and measure the number of missed deadlines.

CoEVP CoEVP simulates the deformation of a tantalum cylinder fired at a solid wall [80].
It simulates this scenario at multiple levels of detail by combining many independent fine-
grain simulations into a large-scale result. These fine-grain simulations use OpenMP to
parallelize the algorithm. The results of these fine-grain simulations are collected into an
embedded database that is later queried by the coarse-grain simulation before beginning
a new phase. It does not perform significant IO and is primarily compute-bound. Figure
5.5 shows the CPU utilization of CoEVP over time when run with 14 cores. CoEVP has
consistent CPU utilization, but does not scale beyond 10 cores.

CoHMM CoHMM simulates shock propagation in a copper plate after it is hit by a pro-
jectile [67]. Like CoEVP, CoHMM performs a multi-scale simulation with the bulk of compu-
tation spent on fine-grained simulations. CoHMM adapts the granularity of simulation based
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Figure 5.6: CPU utilization of the CoHMM benchmark over time on a 14 core CPU.

on previous results and may re-use the results of previous simulations. Intermediate results
are stored in a dedicated key-value store that is queried periodically. In our experiment, we
used Redis in a Linux cell running on a separate CPU socket from the main CoHMM appli-
cation. Figure 5.6 shows the CPU utilization of CoHMM over time on a 14-core cell. Note
that it is often able to utilize all 14 cores, but experiences periods of idleness at simulation
epochs where it must perform IO to the key value store.

5.1.4.4 Gang Scheduling Results

I evaluated the Gang scheduler against Xen’s default per-thread scheduler called Credit [294]
and our Batch policy that runs jobs serially on dedicated resources. The experimental setup
is the same as described in the Unikernel experiments, but I used only Linux-based cells.

Microbenchmark Figure 5.7 shows the results of the microbenchmark. Regardless of the
number of concurrent cells, Gang scheduling ensures that all threads make equal progress.
An application with frequent barriers could expect to make predictable progress between
threads. Xen’s Credit scheduler interleaves threads from multiple cells opportunistically,
leading to significant differences in per-thread runtime. The Credit scheduler missed 86%
of all deadlines, even at a conservative 100ms period.

Macrobenchmarks I now evaluate the macrobenchmarks by running multiple concurrent
cells and recording the total runtime for all cells to complete. For reference, CoEVP takes
approximately 13 s when run in isolation, CoHMM runs for 10min.

I begin my analysis with CoEVP in Figure 5.8a. At low levels of concurrency, Gang
scheduling behaves similarly to the per-thread scheduler. As concurrency increases, how-
ever, the advantages of a per-thread scheduler become apparent. Recall that CoEVP cannot
effectively utilize all cores on our system, leaving 2 cores idle. Since we have a fixed-size phys-
ically aggregated CPU, this leads to stranded resources with the Gang and Batch scheduling
approaches. The per-thread scheduler can effectively utilize these cores to run threads from
other cells. Surprisingly, Gang scheduling slightly outperforms Batch at all levels of con-
currency. I hypothesize that this advantage comes primarily from an overlap of WabashOS
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Figure 5.7: Results from the synchronization microbenchmark. I report the number of missed
deadlines under Gang and per-thread scheduling as we increase the number of competing
workloads. The benchmark was run for 28000 iterations.

tasks such as process loading or terminal outputs. Although the application code sees similar
behavior in both cases, the Batch scheduler cannot even begin loading the next application’s
cell until the previous cell terminates.

CoHMM is a longer running application with more complex system interactions. Figure
5.8b shows the behavior of CoHMM under different schedulers with 8-way concurrency.
While the per-thread scheduler still outperforms the other strategies, it does so by a narrower
margin than with CoEVP. Where CoEVP had poor internal CPU utilization, CoHMM is
better able to utilize all cores. Since CPU utilization is quite good under all scheduling
policies, there is little room for the per-thread scheduler to improve. Gang and Batch also
perform very similarly on this long-running benchmark, supporting my hypothesis that cell
start up overlap contributed to Gang’s advantage in CoEVP.

5.1.5 WabashOS Conclusions

Distributed operating systems like WabashOS allow applications to transparently span mul-
tiple resources across a cluster. With WabashOS, we provided some amount of logical dis-
aggregation through the Adaptive Resource Centric Computing paradigm introduced by
Tessellation [69]. Applications were decomposed into resource specialized cells that could
be created and destroyed as needed rather than allocating all resources up-front. In this
section, I mostly focused on the impact of this flexibility on application performance. While
general purpose operating systems and schedulers provide good utilization, they also make
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(a) CoEVP runtime as the number of concur-
rent applications increases.

(b) CoHMM runtime under different scheduling
policies with 8 concurrent applications.

Figure 5.8: Macrobenchmark Results

performance less predictable. For parallel applications, this noise can result in poor perfor-
mance.

Reducing noise, however, also comes with a cost. Gang scheduling ensured that appli-
cations saw system behaviors that mimicked the batch scheduled environments they were
designed for, but led to stranded resources. This result parallels those seen in Chapter 4
where transparent and familiar interfaces limited our ability to disaggregate and improve
utilization. In the case of Unikernels, I made more radical changes to the programming envi-
ronment, but also saw large reductions in noise without hurting performance. The problem
there was that the specialization that reduced noise also reduced generality. Applications
wishing to use a Unikernel will likely need to be adapted to that environment and may not
find every feature they need.

While not a focus of my work, WabashOS had other limitations from a disaggregation
perspective. The cell abstraction allowed for some degree of resource specialization, but
it still aggregated multiple resources into a single allocation. Cells got all of their CPU
and memory resources up-front and maintained those allocations for their lifetime. State
was managed by the application rather than the system, limiting our ability to physically
disaggregate memory resources. These unbounded allocations of multiple resources would
still lead to the idle and stranded resources we see in serverful environments.

This tradeoff is fundamental. Reaching the full power of physical disaggregation will
require re-thinking the system abstractions that we present to users. Retrofitting logical dis-
aggregation onto fundamentally aggregated abstractions will always limit our ability to phys-
ically disaggregate. In the next section, I present my work on creating a more fundamentally
disaggregated system interface by generalizing the serverless computing paradigm.
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5.2 Logically Disaggregated Accelerators:

Kernel-as-a-Service

I have already argued in Chapter 2 that serverless computing, and function-as-a-service in
particular, provides a strong basis for logical disaggregation. Later, in Chapter 6, I will
present how I think serverless and physical disaggregation can be combined into a truly
disaggregated datacenter. In this section, I describe work I’ve already done toward this goal
by extending the serverless model to specialized compute resources like GPUs.

Serverless computing has already seen significant adoption. Users get true pay-per-use
and providers can quickly reallocate resources to other jobs. However, today’s Function-
as-a-Service (FaaS) systems remain narrow in scope by focusing on CPU-based workloads
running general purpose code on familiar OS environments. To date, none of the major
cloud providers offer a GPU-enabled FaaS service. This is somewhat surprising given the
growing popularity of application accelerators. Why is it challenging to deploy accelerators
like GPUs in a FaaS system? The problem lies in the techniques that make FaaS practical to
implement. FaaS functions are small and limited in scope, they consume few resources when
not executing, and use easily shared and subdivided resources. Providers are free to kill
FaaS containers as needed to free resources, or aggressively cache them to reduce cold starts.
Furthermore, providers can mitigate the performance costs of explicit state by maintaining
shared caches of their data layer. GPUs upend these assumptions. Unlike CPUs, GPUs are
expensive, difficult to share on a fine granularity, and have their own memory that must be
managed by the user.

This is not to say that GPUs are fundamentally incompatible with the FaaS model; they
simply require different techniques. Unlike general-purpose code, GPU functions (called
kernels) have limited capabilities and few dependencies which greatly simplifies function
startup. GPU functions also have more predictable inputs and outputs, enabling greater
optimizations from the FaaS scheduler and data layer.

In this section, I present a truly serverless interface to GPUs, called Kernel-as-a-Service
(KaaS), that is able to take advantage of these properties to enable high-utilization of GPUs
in the cloud with minimal performance overheads. In KaaS, GPUs become first-class citizens
that are directly invoked through a GPU-specific function type (see Figure 5.10a). Rather
than explicitly mixing host and device code, users register CUDA kernels that run inde-
pendently with no user-provided host code. Since the KaaS system is in full control of the
GPUs, it is able to explicitly manage device memory and multiplex kernels from many users
at a fine granularity.

For compute-heavy tasks, KaaS experiences virtually no decrease in aggregate perfor-
mance, even when there are far more users than available GPUs. For memory-heavy work-
loads, KaaS performance degrades gracefully when GPU memory requirements exceed capac-
ity. In my evaluation, I compare KaaS to a traditional FaaS approach that allocates GPUs
exclusively to functions during execution. My results demonstrate 50x higher throughput and
16x lower latency for a compute-intensive linear system solver when the number of clients
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Figure 5.9: Three possible GPU deployment strategies. In a serverful deployment, users
get allocated a large collection of CPUs and GPUs for an unbounded period of time. In
GPU+FaaS, users run short tasks written in a high level language. These tasks have access to
both a CPU and a GPU, but cannot not maintain state between invocations. In KaaS, users
submit CPU and GPU tasks separately that each run in a resource-specific environment.

exceeds available GPUs by 4x. Even when total available GPU memory is exceeded by
1.5x, KaaS supports 53x greater throughput and 12.6x lower latency for a memory-intensive
deep-learning inference benchmark.

I present the following key contributions:

• A new GPU-native serverless function type, kernel task (kTask), that treats GPUs as
first-class citizens.

• Three programming interfaces to KaaS functions: a low-level application programming
interface (API), a TVM-based compiler, and a suite of built-in libraries.

• Two scheduling algorithms that take advantage of the unique properties of FaaS and
KaaS functions.

• A Ray-based prototype of KaaS with drastically improved utilization of GPU resources
in a multitenant environment.

In §5.2.1, I discuss how GPUs are deployed today. §5.2.2 presents the KaaS programming
model while §5.2.3 describes my Ray-based prototype. In §5.2.4, I evaluate this prototype
against a traditional mixed host/GPU approach with a diverse set of applications ranging
from deep neural-network model serving to general purpose linear algebra. I conclude in
§5.2.5 with a discussion of some other ways the community has approached the problem of
GPU utilization in the cloud.

5.2.1 Cloud GPUs Today

Today, GPUs are exposed to users through a number of allocation schemes that largely
mirror the WSC interfaces I presented in Chapter 2. I present the most relevant approaches
here (see Figure 5.9).
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5.2.1.1 Serverful

Traditionally, GPUs have been deployed in a serverful manner as PCI-E attached cards in
a virtual machine (Figure 5.9a). Users are fully responsible for driving enough utilization
to justify the added cost. This can be challenging. In an interview with the manager of
a genomics assembly and analysis service, I was told that a promising new algorithm had
been rejected due to its GPU requirements. While the GPU would have made the system
sufficiently fast to offset the added costs when running, the cost of idle resources was deemed
too high. In another example, a team had added GPU support to Spark. Results were
excellent in some workloads, completing jobs faster and for less money. However, the static
resource allocations in most Spark clusters meant that even small delays in a job could result
in higher costs than a CPU-only implementation.

5.2.1.2 Service API

Rather than exposing accelerators directly to users, some cloud systems expose services
that then utilize the accelerators. Of particular note is Microsoft’s Catapult system that
deploys FPGAs as network endpoints that can be programmed into “FPGA Microser-
vices” [215]. Unlike full-blown servers, FPGAs can be optimized for networked applications
with microsecond-level latencies and line-rate processing. For example, the Microsoft Brain-
wave project places deep neural network models directly on a network of FPGAs that can be
addressed from conventional software [65]. Unfortunately, Catapult is neither general pur-
pose nor multi-tenant, limiting its deployment to internal tools or high-level customer-facing
services [78]. Broadly speaking, these services lack generality and continue to suffer many of
the challenges associated with serverful deployments.

5.2.1.3 Remote GPUs

A lower-level solution to GPU underutilization is to provide network-attached GPUs through
API forwarding [82, 128, 275]. In this approach, user applications interact with their allo-
cated GPU exactly as if it were local using the same driver APIs. Under the covers, the
GPU driver is modified to proxy all requests over the network to a server running on re-
mote machines with idle GPUs. Much as we saw with distributed operating systems, this
approach addresses stranded resources, but it does not resolve the other challenges presented
by a serverful approach. It says little about device state management or utilization within
an application (idle resources). Furthermore, applications written for local GPUs may not
account for the increased latency or bandwidth limitations of remote GPUs.

5.2.1.4 FaaS+GPU

Some systems have offered a more serverless FaaS+GPU approach. In these systems, users
upload a CPU-oriented function and the provider ensures that the function runs in a con-
tainer that includes a GPU (Figure 5.9b) [181, 192, 196, 140]. While these approaches
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present a familiar interface to accelerators, they give away many of the features that make
serverless appealing.

As an example, the Ray distributed computing framework supports GPU-enabled remote
functions called tasks, but requires that applications carefully design their tasks to manually
share resources and clean up properly when they finish. In practice, this is difficult to
achieve. Indeed, users are advised in the documentation to force Ray to restart workers
on each task invocation to ensure resources are properly freed [221]. Rather than using
serverless functions, users are often advised to fall back to non-serverless stateful actors to
manually manage GPU resources.

Another challenge that arises with this approach comes from cold start mitigation strate-
gies. CPU functions incur a significant startup latency due to container and language runtime
initialization. A Python script that simply imports tensorflow and immediately exits takes
1.9 s when the OS buffer cache is warm, a true cold start that must read from disk takes
even longer at 6.8 s2. To minimize the impact on users, cloud providers often keep function
executors allocated in anticipation of a new request [245]. This policy is reasonable because
SMT threads are cheap and processes are easily idled. The same policy applied to a GPU
would cost at least 60x more since the provider would need to keep the much more expensive
GPU idle3. While the increased cost of a GPU is justified when fully utilized, both resources
provide the same utility when idle: zero.

5.2.2 A New Approach: Kernel-as-a-Service

Fundamentally, existing approaches struggle because they cede control of GPUs to applica-
tions by tightly coupling host and GPU code. I take a different approach, called Kernel-as-
a-Service (KaaS), that explicitly decouples host functions from GPU kernels at the system
level (Figure 5.9c). Following the principles of serverless computing, my system takes user
descriptions of GPU functionality rather than providing GPU allocations. This puts the re-
sponsibility for GPU memory management and scheduling on the system rather than relying
on users to make optimal use of these expensive resources.

This strategy elevates GPU functionality to a first-class entity, along with traditional
FaaS functions and other serverless services (see Figure 5.10a). I will refer to CPU-specialized
functions as CPU tasks (cTasks) and GPU-specialized functions as kernel tasks (kTasks).
Rather than providing a Python source file or Linux container, kTasks take the form of a
graph of CUDA kernels to be executed. Graph inputs and outputs are provided as objects in
the system data layer (e.g., keys in a key-value store). Other buffers like intermediate outputs
and temporary buffers are described simply by their size. The system is then responsible for
ensuring that all required buffers are available in GPU memory before beginning execution
of the kernel graph. kTasks are not permitted to dynamically allocate memory or access
the data layer, leading to highly predictable resource requirements. Furthermore, kTasks do

2Run on an Amazon EC2 p3.2xlarge instance with a general-purpose SSD (gp2).
3Based on the capital costs of the 56 SMT core Xeon Platinum 8380 ($10k MSRP[1]) and an Nvidia

A100 ($12k[2]).
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(a) Serverless graph including both GPU and
CPU-specialized tasks. While different task
types have different implementations, at the
application graph level they all behave sim-
ilarly; they take inputs, perform computa-
tion, and produce outputs.

(b) kTasks are defined as a dataflow graph of indi-
vidual CUDA kernels with predefined inputs, out-
puts, and temporary buffers. Inputs and outputs
go through the data layer of the broader server-
less infrastructure.

Figure 5.10: KaaS introduces a new GPU-specialized function type called a kTask.

not include any host code whatsoever, which simplifies the software environment on KaaS
executors and prevents external side effects.

5.2.2.1 Why KaaS?

The KaaS approach uses GPUs exclusively in its programming, and presumably billing,
model. This means that users are charged only for the time their code actually ran on the
GPU rather than paying for long lived allocations. Users also do not need to allocate an
entire server or VM just to use its GPUs. In serverful and FaaS approaches, the user must
pay for idle CPU, memory, and disk resources while the GPU is running. Furthermore, KaaS
users do not manage the GPU themselves and do not need to (and in fact cannot) maintain
any state that might interfere with sharing. Instead, the system is free to manage device
memory and allocation at a fine granularity. Like serverless more generally, these properties
free users from complex deployment decisions and allow for transparent autoscaling.

5.2.2.2 KaaS Interface

kTasks appear to the rest of the system like any other function. They provide named
functionality without any explicit resource allocation, and interact with a common data
layer for inputs and outputs. While the KaaS approach is not tied to any specific serverless
framework, it does assume a graph of functions communicating through a common data
layer. Figure 5.10a depicts a typical application in such a system. Each node in this graph
can be implemented in many different ways, and node implementations can be modified or
replaced without affecting the rest of the application. While this project focuses on GPU-
typed functions, the KaaS approach can be applied to other function types such as deep
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learning-specific accelerators and specialized systems on chip (SoCs). I will talk about this
more in Chapter 6.

While the external interface is assumed to be common to all function types, their internal
implementation can be specialized. Figure 5.10b depicts the user’s view of a kTask. Users
register a library of precompiled CUDA kernels that can then be combined into an execution
graph when invoked. These kernels can come from common highly optimized libraries like
NVidia’s Cutlass linear algebra library [73], code compiled by frameworks like TVM [62], or
custom application-specific kernels. Each kernel is provided a set of GPU memory addresses
representing inputs, temporaries, and outputs. These data objects are identified using the
global data layer’s semantics. Users may optionally specify a fixed number of iterations for
a particular request. Future work will allow for more dynamic control flow similar to TVM’s
Relay IR or Dandelion’s EDGE graph representation [229, 231].

Nearest-Neighbors Example I now describe an example kTask: N nearest neighbor.
In this algorithm, I iteratively multiply an adjacency matrix A by a vector X representing
starting vertices. On each iteration, the set of visited vertices in this iteration is accumulated
into a vector V representing the set of nearest neighbors. Algorithm 1 describes this more
formally.

Algorithm 1 An iterative N nearest-neighbor search over an adjacency matrix A. X1

contains an initial set of vertices while VN+1 contains the final set of nearest neighbors.

1: for i← 1, N do
2: Xi+1 ← A · (Xi − Vi)
3: Vi+1 ← Vi +Xi

4: end for

Figure 5.11 shows how this algorithm could be implemented in KaaS. The A matrix
along with an initial set of starting vertices Xinp are passed in as objects in the data layer.
Since A is large and constant, it can be cached by the KaaS executor in GPU memory while
the smaller Xinp may change on each invocation of the algorithm. Some buffers like Xtmp

and Xiter represent intermediate values and can simply be allocated by the KaaS executor.
Finally, Viter represents an output of the system and will be written back to the key specified
in the KaaS request. The kernels vsub, vadd, andmatmul can be implemented in a number of
ways, including user-provided code or a built in and optimized library like graphBLAS [45].
Users would likely call this function as part of a larger application with potentially long
gaps between invocations. Unlike traditional approaches, users would not need to explicitly
provision GPUs in their system and would only pay for the time the GPUs were actually
running. In between user requests, the KaaS system would be free to execute functions from
other users.

Challenges These benefits do not come for free. The CUDA ecosystem has evolved around
a model of locally-attached GPUs. Even multi-GPU workloads require host involvement to
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Figure 5.11: KaaS graph of a nearest-neighbors algorithm (equation 1). Xinp and A are read
from the system data layer, while Viter will be written back as an output. Xtmp and Xiter

are ephemeral buffers that will never be copied off the GPU.

manage data transfers and scheduling. These assumptions are often baked into highly-tuned,
but opaque, libraries. The KaaS model upends many of these assumptions. Additionally,
placing GPUs behind a distributed abstraction will lead to additional invocation latency.
Applications that finely interleave host and device code may not be able to amortize this
additional latency.

The rise of serverless computing and modern machine learning frameworks suggests a
promising path out of these challenges. Users have shown a willingness to decouple appli-
cations further in cloud applications, and backwards compatibility often takes a backseat to
agility. The widely-adopted microservice architecture provides a good example of this [26].
These systems are a radical departure from traditional monolithic designs but enable rapid
development, flexible deployment, and organizational flexibility. Another important trend is
the rise of GPU-enabled application frameworks [62, 4, 203, 217]. Many GPU applications,
and deep learning in particular, are no longer interacting with the GPU directly. Instead,
these applications are increasingly relying on frameworks and libraries to generate GPU code
transparently. In many cases, these frameworks already support, and optimize for, remote
execution. KaaS can leverage these trends to make radical changes to accelerator interfaces
with minimal impact on users.

5.2.3 Implementation

I now present an implementation of KaaS using the Ray distributed computing frame-
work [181]. In addition to the core system, I provide a number of methods for users to
implement kTasks, including a TVM-based deep learning compiler, a pre-made BLAS li-
brary based on Nvidia Cutlass, and hand-written applications.

Throughout this section, I will assume a scenario in which there are multiple clients
submitting requests for a particular function. I use the term function to refer to a particular
logical function, independent of any particular instantiation of that function. For simplicity,
I will assume clients send requests to only one function and that different clients use different
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functions.

5.2.3.1 Ray Implementation

Ray Background Ray provides users with a Python API to run stateless functions called
tasks, or stateful actors across a cluster. Data are communicated using references to objects
in an immutable object store called Plasma. References are a form of future [24] and can
be created before their associated object is available. Ray takes advantage of this to create
lazily-executed graphs of tasks/actors that are scheduled only when their input references
are available. Ray maintains a number of processes on each node called workers that execute
tasks and actors. A single worker may execute many tasks, but actors are always run on
a dedicated worker. To control resource usage, users may annotate tasks or actors with
resource requirements such as the number of GPUs required. Ray then ensures they are run
on a worker that has been allocated those resources.

GPU-Enabled Functions in Ray Ray does not enforce isolation of resources for tasks.
Instead, it relies on applications to ensure they do not exceed their limits. Furthermore,
tasks running on the same worker share resources at a fine granularity and must ensure
that all resources are freed before exiting. This is difficult to ensure in practice, so the Ray
documentation recommends forcing worker restarts on every invocation of GPU-enabled
tasks [221].

Actors are persistent and run on dedicated workers. They are less sensitive to resource
management concerns and can cache GPU state between invocations. However, there cannot
be more GPU-enabled actors than available GPUs in the system and users must manually
manage their actors to ensure that they do not exhaust available resources.

As a baseline, I enhance Ray with a new safe GPU-enabled task type called Exclusive
Task (eTask). eTasks are written in Python in the same way as regular Ray actors and tasks.
Unlike Ray native tasks, eTasks run on a dedicated worker per task with exclusive control
of a GPU. They can opportunistically cache state between invocations. However, because
eTasks have exclusive control of their GPU, the system may need to terminate them to free
resources for new eTasks. eTasks provide an interface similar to many FaaS platforms like
AWS Lambda or Google Cloud Functions.

KaaS Implementation in Ray To implement KaaS in Ray, I provide an additional GPU-
typed function called a kTask. kTasks behave similarly to Ray’s CPU-based tasks; they take
in object references, output new references, and execute based on input availability. However,
rather than providing Python source, kTasks are defined by a request object consisting of a
DAG of kernels to invoke and buffer specifications describing input, temporary, and output
buffers as well as literals for simple pass-by-value inputs.

kTasks are run by an alternative worker implementation called the KaaS executor (Figure
5.12). Much like regular workers, the KaaS executor is responsible for managing kTask code
and caching objects from the object store. Unlike eTasks, the KaaS executor is responsible
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Figure 5.12: Design of the KaaS executor. CUDA kernel code and a data cache are main-
tained on the host. The GPU maintains its own cache, independent of the host, and runs
user kernels to completion in a CUDA stream.

for managing the GPU rather than individual kTasks. This means that a single executor can
handle any kTask without needing to restart. kTasks are routed to KaaS executors based on
a centralized scheduler that augments Ray’s internal scheduler to consider input availability,
data locality, and per-GPU load.

Internally, the KaaS executor manages code through a kernel cache that handles linking
CUDA libraries and preparing kernels for invocation. Upon invocation, the linked kernel is
launched using regular CUDA APIs on a single stream. Currently, kernels are invoked seri-
ally, though future implementations could support concurrent invocation of non-dependent
kernels.

Data are managed through tiered host and GPU memory caches that extend Ray’s built-
in data layer. Objects are first loaded from Ray’s object store into a data cache in host
memory before being loaded into GPU memory. Ephemeral intermediate buffers are also
cached in GPU memory to avoid frequent calls to CUDA’s expensive memory allocator.
The current design is a hybrid inclusive/exclusive cache where inputs are kept in both host
and GPU caches, but outputs and intermediates exist only in the GPU cache. When GPU
memory capacity is exceeded, the GPU cache first evicts from the set of objects with only
one use before considering more frequently used objects. Both sets use a least-recently-used
policy.

GPU Worker Pool Both kTasks and eTasks require custom workers to run on each GPU.
For eTasks, these workers are user-defined actors. For kTasks, this is the KaaS executor.
I implemented a custom worker pool mechanism in Ray to manage the scheduling of these
workers. The worker pool includes two scheduling policies:

• Balance: The balance policy routes requests to the next available GPU regardless of
locality or isolation. One permanent worker is started on each GPU at system boot
time.



CHAPTER 5. LOGICAL DISAGGREGATION: SERVERLESS 94

(a) Balance Policy Requests from any client
can go to any GPU. The balance policy will
route requests in FIFO order to the next avail-
able GPU. In this scenario, the request from
Client1 will be routed to GPU3.

(b) Exclusive Policy There must be a client-
specific worker on each GPU. Clients 0 and 2
have pools of GPUs assigned to them while
Client 1 currently has no assigned GPUs. In
this scenario, the exclusive policy would need to
re-balance the pools, taking GPU3 from Client
2 and cold-starting a worker for Client 1 on it.

Figure 5.13: KaaS Schedulers In this scenario, clients are submitting a series of requests
for a client-specific function. there are three independent clients and four GPUs. GPUs 0−2
are currently running requests. GPU3 was previously running a request from Client 2 but
is now idle.

• Exclusive: The exclusive policy ensures that no two functions run on the same worker,
while repeated invocations of the same function are always routed to the same set of
workers. To maintain this property, the exclusive policy must kill existing workers to
make room for new requests if the number of unique functions exceeds the number of
GPUs.

The Balance policy, depicted in Figure 5.13a, is straightforward. The policy creates a
permanent generic worker on each GPU upon system initialization. Clients submit requests
to a single queue on the scheduler. When a GPU becomes idle, the scheduler routes the next
available request to that GPU. This algorithm ensures that no GPU is ever idle if there are
pending requests. KaaS can safely use the Balance policy because the permanent worker
is the KaaS executor which can service requests from multiple kTasks without needing to
restart. eTasks require strict isolation between workers and cannot use this policy.

The Exclusive policy in Figure 5.13b is more complex. It must ensure that requests always
run on a dedicated per-client worker rather than sharing a GPU execution environment. To
do this, the Exclusive policy maintains independent per-client pools of workers. Internally,
these pools follow the Balance policy, but they only service requests from one client. If a
client submits a request that cannot be serviced from its pool immediately, the policy may
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consider shrinking an existing pool to free GPU resources for the new request. It begins by
finding the largest pool to use as an eviction candidate pvictim. If there are multiple pools
with the largest size, the least-recently evicted pool is chosen. If the requesting client’s pool,
preq, is smaller than pvictim, the algorithm will evict a GPU from pvictim and assign it to a new
worker in preq. If pvictim has idle GPUs, they are simply re-assigned to preq. Otherwise, the
algorithm selects a busy GPU and waits for the currently executing request to finish before
re-assigning the GPU to preq. If preq is in the set of largest pools, the algorithm simply
blocks the request until a worker from preq becomes available. I use the Exclusive policy for
all eTask experiments.

5.2.3.2 Application Support

There are several ways to specify kTasks:

Low-Level API KaaS exposes a python API for describing kTask requests. Figure 5.14
depicts an example of a dot product request. These requests consist of a list of kernels to
invoke and their associated inputs, outputs, and temporary buffers. Kernels may also take
literal arguments that are passed by value in the KaaS request. The kernels themselves
are described using a filesystem path to the compiled CUDA code and a kernel name within
that file along with the appropriate CUDA grid and block dimensions to use when launching.
In addition to kernels, I provide a simple control-flow mechanism for fixed-length iteration.
These requests are then serialized by Ray and sent to the KaaS executor for processing.
Callers immediately receive a reference to the future response, just like any other Ray task.

kTask inputs are passed as Ray object references, while output references are provided
in the kTask return value. Internal buffers are only valid for the duration of the request and
are not associated with the Ray object store. Upon completion of the request, any output
buffers are written back to the Ray object store and a reference to this output is returned
to the caller.

TVM-Based Deep Learning Compiler I worked with Anton Zabreyko to modify the
TVM deep-learning compiler to generate KaaS-compatible code. While we chose TVM for
our prototype, KaaS can behave as a backend to any deep learning framework that generates
static graphs of CUDA kernels. At a high level, TVM functions by generating a linearized
DAG of operations to execute the model. It then runs these operations sequentially, each of
which consists of one or more CUDA kernels. This scheme has a 1-1 correspondence with
KaaS graphs, with the only difference being that each operation needs to be expanded into
one or more kernel nodes.

Our approach to converting the TVM runtime graph to a KaaS request is straightforward.
First, we use TVM to generate the CUDA kernel library and the static runtime graph. We
then extract the necessary information, such as the grid and block dimensions for each kernel.
This information is then used to generate the KaaS code for the request.
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Req_Dot_Product

Lib: “./kerns.cubin”
Kern: “prod”

IN: [vecA, vecB]
TMP: []
OUT: [prodOut]
LIT: [(“int64”, 16)]

Lib: “./kerns.cubin”
Kern: “sum”

IN: [prodOut]
TMP: []
OUT: [resultBuf]
LIT: [(“int64”, 16)]

Figure 5.14: Low-level KaaS API request for a dot product. This request consists of two
kernels (an element-wise product followed by a summation). The vecA and vecB buffers
are loaded from the data layer while prodOut is an ephemeral intermediate result, it is only
valid while the request is running. resultBuf will be written back to the data layer after the
request has completed. Each kernel also takes a literal value representing the vector length.

BLAS Library The CUDA ecosystem has benefited greatly from high quality libraries of
common kernels such as cuBLAS and cuDNN [71, 72]. These libraries are often authored by
service providers or device manufacturers. Likewise, I expect a similar ecosystem would grow
around a realistic KaaS deployment. For this project, Zhoujie Ding and I ported one such
library based on Nvidia’s Cutlass BLAS library [73]. Cutlass is a C++ template library that
allows users to instantiate handles to specialized linear algebra kernels. We provide a KaaS
interface to Cutlass through built in functions. Rather than uploading specific kernels, users
can simply reference one of the system-provided functions. KaaS then manages interfacing
with the library and managing device resources as needed.

While porting Cutlass to KaaS was non-trivial, it was a one-time cost borne by the
system provider rather than individual users.

5.2.4 Evaluation

5.2.4.1 Experimental Setup

My experiments were performed on a single p3.8xlarge Amazon EC2 instance with 32 vCPUs
and 4 Nvidia V100 GPUs (with 16GB memory each).
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Figure 5.15: Chained matrix multiply micro-benchmark. Each multiply has one constant
matrix and one dynamic matrix. Dynamic inputs are preprocessed before being passed to
the first layer. Each subsequent step uses the output of the previous layer. The initial input,
constants, and final output are stored in the data layer while the intermediate matrices are
ephemeral.

5.2.4.2 Micro-Benchmarks

For this analysis, I will use the chained matrix multiplication micro-benchmark shown in
Figure 5.15. Inputs are taken from the data layer, preprocessed on a CPU, fed through a
series of multiplications on a GPU, and the output is written back to the data layer. Each
multiplication uses a constant matrix that is read from the data layer but will not change
between invocations (enabling caching). I configured the benchmark to use three layers
with square matrices with a side length of 1024 single precision floats. The baseline eTask
implementation required the numpy, pickle, and pycuda python modules. For cold starts,
the system has not seen any requests for the benchmark. For eTasks, this means that it must
create a new worker and initialize any python dependencies before running the eTask code.
For kTasks, the system already has KaaS executors initialized since they are independent of
any particular request. However, those executors must parse the request, link against the
specified CUDA libraries, and load all data from the data layer. On warm starts, both task
types already have a worker ready to execute the request immediately.

Figure 5.16 shows the results of this experiment. I begin by observing that kTasks
and eTasks have similar warm-start performance (Figure 5.16a). This is not surprising as
both implementations must perform the same steps. Any differences are mostly down to
implementation details. Next, I move my attention to cold starts (Figure 5.16b). Here
we see the drastic impact of starting a new Python process for eTasks. Even though my
microbenchmark only imports a minimal set of packages, it still takes an additional 400ms
to load (a 46x increase). In contrast, the only cold-start overheads experienced by kTasks
come from warming the data caches with the constant matrices. To see this in more detail,
Figure 5.16c compares warm and cold starts experienced by kTasks. As expected, the time
to load an additional three matrices adds significant time to both the data layer and GPU
memory management phases, but there are no other overheads.
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(a) Warm Start (b) Cold Start (c) KaaS Cold vs Warm Start

Figure 5.16: Microbenchmark Results. Kernel Run is the time spent actually executing the
request’s kernels. Kernel Init is the time to link any needed precompiled CUDA libraries.
GPU Mem Alloc and GPU Copy encompass all device data management while Data Layer
measures host data management. Overheads measure any additional tasks performed by the
worker including request parsing, worker initialization, and Ray framework overheads.

5.2.4.3 Multitenant Workload

As we saw with the microbenchmarks, kTasks behave similarly to eTasks for a single warm
workload. However, when there are multiple clients, the behavior changes dramatically. As
discussed in §5.2.3.1, the eTask approach requires a policy that assigns GPUs to workloads
exclusively, falling back to terminating and restarting workers as the number of workloads
exceeds the available GPUs. These cold starts prevent the system from fully utilizing its
GPU resources. KaaS, in contrast, supports a broader range of scheduling policies that can
share a limited pool of GPUs more effectively.

I now evaluate four real-world applications in a multi-tenant environment with two scenar-
ios: online and offline. In the online scenario, I evaluate how my system supports latency-
sensitive workloads like model serving or interactive data analytics where requests arrive
according to a Poisson process. To understand sustained throughput, I evaluate an offline
scenario where all workloads submit requests as fast as possible. Two of my workloads,
resnet50 and BERT, are deep-learning inference workloads generated by the TVM interface.
These workloads consist of many small kernels operating over many small buffers. Deep
learning models also have significant data re-use through the model weights. The cGEMM
workload is a chained complex number matrix multiply using our Cutlass library interface.
It multiplies a large constant 10000 × 25000 matrix by a narrow 100 × 10000 matrix that
changes on each invocation, both contain 32 bit complex floats. This results in small inputs
and outputs but a large amount of cacheable data. Finally, the Jacobi workload uses the
low-level KaaS interface to implement an iterative solver using the Jacobi method [122].
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Figure 5.17: Multitenant Environment Clients submit requests over a ZeroMQ socket to
a server that submits per-request function pipelines to Ray. Each request pipeline involves
optional CPU-only pre and post-processing steps with a GPU-based execution phase. The
server proxies pipeline outputs back to the client.

Name Constant Mem Dynamic Mem GPU Time Host Time

resnet50 129MB
5.63MB (TVM)
45.9MB (KaaS)

3.8ms 9.7ms

BERT 1.34GB
6.33MB (TVM)
1.89GB (KaaS)

91.8ms 132.0ms

cGEMM 2.00GB 8.00MB 38.8ms 0ms
Jacobi 0MB 1.08MB 52.1ms 0ms

Table 5.1: End to end workload properties. For the dynamic memory of resnet50 and BERT,
TVM implements buffer recycling while KaaS does not, so we provide the two different
numbers for this category. See §5.2.3.2 for more details.

This workload uses KaaS’s iteration control-flow mechanism to run a fast update kernel for
3000 iterations. The input matrix contains 512 × 512 float32s and is accumulated into a
512× 1 float64 output, there is no data re-use between invocations. Table 5.1 summarizes
the properties of these workloads.

In addition to the GPU-based functions, the workloads also include pre and post process-
ing functions that occur exclusively on the host with no GPU requirements. These functions
form a graph that is lazily executed as inputs become available. Finally, this experiment uses
multiple external clients that communicate with the Ray-based service through a network
protocol using ZeroMQ [302]. Figure 5.17 shows the complete setup.

Offline Workloads I begin with a throughput-oriented scenario where workloads from
many clients submit requests as quickly as possible with no regard for latency. In this case,
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my key metric is the aggregate throughput of the system. This indicates whether or not the
GPU resources remain highly utilized as the number of clients increases.

Figures 5.18 and 5.19 show the results from this experiment. We see that kTasks and
eTasks both perform well when there are sufficient GPU resources to support the workloads.
However, as I exceed the number of available GPUs, the eTask approach’s throughput drops
dramatically due to frequent worker cold starts. kTasks do not suffer significant slowdowns
as I exceed available GPUs because the system is able to handle requests from different
clients without restarting the KaaS executor.

The kTask implementation of BERT only begins to slow after 10 replicas. This is the
point at which I begin to exceed available GPU memory for cached weights and KaaS must
begin evicting and re-loading constant buffers. Unlike the sharp performance drop seen
with eTasks, we see a more gradual performance impact with kTasks since the cache can be
managed at a fine granularity. Even at 16 replicas, we still see significantly higher throughput
(12 QPS for kTask vs 0.23 QPS for eTask). This comes down to the difference in cold-start
behaviors between the two approaches. For eTasks, the system must boot a fresh python
process and initialize any packages and state needed to run the model, while kTasks need
only reload model weights from the host data cache. For BERT, the Python process takes
2.5 s to load while KaaS can load the model weights in only 160ms.

Unlike BERT, resnet50 is a small model that fits easily within GPU memory. It ex-
periences no significant slowdowns, even at 16 replicas. However, single-client warm-start
performance is somewhat slower for kTasks than the eTask implementation. This is due
to implementation differences between the two systems. The eTask implementation uses
TVM’s highly optimized C++ runtime while KaaS uses a simple Python implementation.
While these differences are easily amortized by the larger kernels used by BERT or cGEMM,
resnet50 consists of many very small kernels that accentuate system overheads. Fundamen-
tally, the same work is done in both implementations and a more optimized KaaS executor
implementation should behave similarly to TVM.

Finally, I note a slight dip in performance at three replicas for the eTask workloads.
While KaaS is able to utilize any available GPU for any request, eTasks must be routed
to the same actors each time. Re-balancing an eTask system would take several seconds.
As a result, at three replicas one workload gets two GPUs assigned while the others get
only one GPU. This load imbalance causes head-of-line blocking in our scheduler as the two
workloads with only 1 GPU see significantly lower throughput than the two GPU workloads.
While a more sophisticated scheduler may be able to alleviate this issue somewhat, poor
load balancing is a fundamental property of the eTask approach.

Online Workloads In this experiment, I simulate a latency-sensitive online environment
using the MLPerf Inference load generator in server mode [223]. Clients submit requests to
the framework according to a Poisson process with their mean arrival rate set to 80% of peak
throughput (to ensure stability). I report the median and 90th percentile response latency
for each configuration.
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Figure 5.18: Aggregate throughput of low-memory workloads These workloads fit
easily within GPU memory and see no aggregate throughput loss in KaaS as we increase
the number of replicas. eTask workloads require exclusive access to GPUs and must begin
cold-starting workers after 4 replicas.

Figure 5.19: Aggregate throughput of high-memory workloads These workloads con-
sume a large amount of GPU memory. When the aggregate memory requirements exceed
available GPU memory, KaaS must begin evicting and re-loading objects from the GPU
memory cache. This leads to a gradual decline in performance as cache pressure increases.
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(a) resnet50 (b) Jacobi

(c) BERT (d) cGEMM

Figure 5.20: Online benchmark results The median response latency is plotted along
with the 90th percentile tail. For each model, we send requests under a Poisson distribution
with the average arrival rate set to 80% of the slowest model’s peak throughput.
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Figure 5.20 shows the results of this experiment. We see very similar behavior to the
offline scenario. When the number of clients does not exceed available resources, both
approaches behave reasonably well. However, when I exceed available resources, the eTask
approach is forced to cold-start new actors for nearly every request, resulting in very poor
tail latency. In effect, the tail latency becomes a measure of cold start time. This latency
depends primarily on the python dependencies and initialization tasks for each workload.
kTasks are able to effectively share GPUs, resulting in no significant impact on tail latency,
even as I exceed the number of available GPUs. However, the BERT kTask begins to slow
down after 10 replicas as the aggregate constant memory exceeds GPU memory. Still, even
at 16 replicas, the BERT kTask’s tail latency is far below the eTask version due to the
difference in cold start performance.

Figure 5.21 shows the CDFs of response latency at key points in the configuration space.
Similar to Figure 5.20, I configure the experiment to submit requests at 80% of peak through-
put to ensure queue stability. The maximum throughput of eTasks is significantly lower than
kTasks so I plot CDFs for kTasks at both an equivalent submission rate to eTasks, and at
peak kTask throughput. At 4 replicas, each replica has a dedicated GPU. In this case, both
kTasks and eTasks behave similarly with only minor differences due to implementation de-
tails. For resnet50, the large number of small kernels highlights overheads in my Python
implementation. BERT’s kernels are large enough to effectively amortize these overheads
while the KaaS executor’s memory management and caching systems outperform eTasks on
BERT’s larger memory requirements. As I exceed 4 GPUs, the system must begin sharing
GPUs between replicas. Even with only one extra replica, we see the eTask tail latency
suffer significantly since replicas may need to evict an existing eTask before cold-starting.
As I increase the concurrency to 16 replicas, even the best 10th percentile latency suffers as
replicas become nearly guaranteed to require a cold start. In contrast, kTasks experience
very consistent latencies as the number of replicas increase. Even at 16 replicas, there is no
noticeable reduction in latency.

5.2.5 Other Approaches

The need to share and manage accelerators in a distributed system is not a new one. In
§5.2.1 I covered several broad categories of techniques to achieve this. In this section, I
briefly cover several specific approaches.

5.2.5.1 Single GPU Sharing

There are a number of techniques for sharing an individual GPU among multiple processes.
Nvidia GPUs support multiple forms of sharing including CUDA contexts, MPS, or virtual
GPUs [183, 194]. CUDA contexts allow sharing but do not enforce resource usage limits while
MPS and virtual GPUs provide some level of resource limits. Techniques like rCUDA are
similar to MPS or virtual GPUs but proxy requests across a network to a remote GPU [82,
128]. In all cases, individual clients are assigned a specific GPU resource and must man-
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Figure 5.21: CDFs of BERT and resnet50 model response latency for different numbers of
replicas.
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age their own GPU resources explicitly for the lifetime of their allocation. While sharing
increases the number of supported clients, those clients are still responsible for driving uti-
lization of their allocation. They also do not address the issues of cold starts and support of
general-purpose host code. KaaS allows for a more dynamic sharing of remote resources by
abstracting all device management from clients, particularly data caching. Future versions of
KaaS may take advantage of these sharing techniques to further improve device utilization,
particularly for inter-request concurrency.

5.2.5.2 Domain Specific Systems

Some domain-specific services, particularly for deep learning applications, are able to share
accelerators among multiple clients. Google Cloud’s TPU interfaces decouple TPU devices
from host servers and manage communication and allocation. However, applications are still
assigned specific devices for their lifetime and are responsible for driving adequate utiliza-
tion [261].

RAMMER is a deep learning compiler and associated runtime that improves device uti-
lization by abstracting deep learning models and accelerators into finer grained components
and optimizing their scheduling [162]. KaaS applications also provide graphs of CUDA
kernels which could be further optimized by systems like RAMMER.

PipeSwitch [23] and Salus [299] are two frameworks to facilitate sharing of a GPU between
multiple cooperating deep learning processes on a single node. Like KaaS, they abstract GPU
resources by handling memory allocation and kernel scheduling for the clients. Unlike KaaS,
PipeSwitch still allows direct GPU access from host applications and requires applications
to cooperate. Salus is more similar to the KaaS executor because it accepts graphs of kernel
requests and associated memory needs. Neither system integrates into a larger serverless
environment, requiring a strong association between host process and server/GPU while
KaaS allows for higher-level resource allocation/de-allocation. The design of the KaaS ex-
ecutor was influenced by these systems and would be improved by further application of
their techniques.

There are also a number of systems specifically tailored to deep learning inference ([230,
105]) or training ([293]). These systems exploit the unique properties of deep learning, as well
as cooperation from deep learning frameworks, to drive utilization and performance. Unlike
these systems, KaaS is a general purpose serverless GPU interface for mutually unaware
clients.

5.2.6 KaaS Conclusions

Serverless computing is a wonderful thing; it simplifies programming at scale, drives higher
resource utilization, and frees users from complex provisioning decisions. As expensive appli-
cation accelerators like GPUs rise in importance in modern workloads, these properties are
more important than ever. Simply adding GPUs to existing serverless techniques will not be
sufficient; they are too different. In this section, I presented KaaS, a truly serverless interface
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to GPUs that can integrate them naturally into the serverless ecosystem while preserving all
the benefits we’ve come to know and love. KaaS frees users from tricky explicit allocations,
effectively utilizes precious GPU resources in a multitenant environment, and frees system
implementers to take full advantage of the unique properties of these devices.

5.3 Logical Disaggregation Takeaways

To reach the full potential of disaggregation, it’s not enough to simply move resources around
a network. We need a logical model of how users see and interact with those remote re-
sources. In WabashOS, I started from the fundamentally aggregated logical abstraction of
single-system image operating systems. I then enhanced that abstraction to be more flexible
with resource allocations and distributed communication. Still, these abstractions needed to
remain similar enough to traditional systems to support existing applications. This transpar-
ent disaggregation resulted in issues of noise that applications weren’t designed to address.
While gang scheduling techniques improved the situation somewhat, they sacrificed utiliza-
tion to achieve familiarity. Unikernels made more radical changes to the user environment,
but saw greater benefits in noise reduction without sacrificing utilization. Similarly, state-of-
the-art techniques in distributed computing are noise-tolerant rather than noise-free. Again,
these gains came because the logical model of execution deviated from familiar single-node
abstractions.

In KaaS, I applied this insight to improving the performance and utilization of application
accelerators like GPUs. Rather than requiring that users completely manage GPUs from a
static server allocation, I changed the logical model to be more naturally disaggregated. This
transition required users to adapt their applications to this new environment, but they saw
huge benefits because of that effort. I assert that these two interfaces are not fundamentally
more or less difficult to use, they are simply different. System interfaces like POSIX and the
CUDA API were not designed for the multitenant and distributed systems we see today. In
the final chapter of this dissertation, I will continue this argument by presenting a vision for a
new, serverless, abstraction of WSCs that builds on the work I have presented so far.
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Chapter 6

The Serverless Datacenter

In this chapter, I consider the implications of my work on future warehouse-scale computers
(WSCs). I begin in §6.1 with a proposal for a new cloud system interface, while §6.2 suggests
possible future research directions for serverless computing. §6.3 looks at the opportunities
that such a system interface would enable for next-generation disaggregated hardware.

6.1 A POSIX for the Cloud

In Chapter 2, I described a number of existing interfaces to WSCs. These included web
services that are based on static server allocations communicating over internet protocols
like HTTP (REST). These static allocations led to idle resources and the coarse-grain servers
could strand resources. They also struggled to take advantage of new hardware due to
their stateless and highly-decoupled REST interfaces. There were also distributed operating
systems that tried to make the WSC appear to users as a single node. These avoided stranded
resources by transparently distributing work across the cluster, though that transparency
came at a performance cost. They could also reduce idle resources somewhat by using more
flexible process abstractions, but these resource allocations remained static and prone to
idleness.

In Chapter 5, I argued that a new interface, called serverless, presented a more logically
disaggregated abstraction that could address both idle and stranded resources. However, that
abstraction remains incomplete. Indeed, my Kernel-as-a-Service (KaaS) project was needed
to expand the model to heterogeneous compute resource types like GPUs by introducing
the kernel task (kTask) function type. While that project made serverless GPUs practical,
similar efforts will be needed to incorporate the ever expanding set of compute resources
available to us. Existing serverless interfaces also say little about non-compute services like
storage or WAN communication.

Today’s clouds consist of a large set of constantly evolving services and interfaces that
have grown organically over time. Contrast this with traditional single-node environments.
While users have a wide choice of languages and frameworks, all applications follow the same
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fundamental patterns. Compute occurs through stateful processes while interactions with the
outside world occur through a filesystem or other named read/write objects. The portable
operating system interface (POSIX) arose to formalize these patterns, not just for portability
as the name implies, but also as a model of how an operating system behaves [266]. The
question now is: What should the POSIX for the cloud be?

This new “POSIX” needs to be flexible enough to enable rapid innovation in both hard-
ware and software systems. It also needs to enable high performance and high utilization by
naturally aligning the structure of applications with the physical realities in the datacenter.
In this section, I present a vision, based on joint work with Johann Schleier-Smith [207],
for a new approach that extends serverless computing into a complete system interface. I
refer to this hypothetical interface as the portable cloud system interface (PCSI). Any good
interface will need abstractions for how computation occurs (§6.1.1), how state is named and
accessed (§6.1.2), and how those abstractions interact beyond the boundaries of the PCSI
(§6.1.3).

6.1.1 Compute Abstraction

I define computation as any transformation over state and refer to these transformations
generically as functions. Functions receive state as input and produce state as output.
They may also read and manipulate state as they execute. Figure 6.1 shows a hypothetical
application structured around PCSI functions. These functions have three key properties:

• Universal Compute Interface: A function can be reimplemented without changing
its external interface. Drop-in replacement is possible, even when the new function
relies on new underlying technology. Multiple implementations of the same function
can even be provided simultaneously, allowing an optimizer to choose dynamically
among them to meet performance and cost goals [230].

• No Implicit State: Functions receive state, produce state, and interact with external
state via the data abstraction, however they cannot rely on internal state beyond a sin-
gle invocation. As with current serverless Function-as-a-Service (FaaS) offerings [56], or
the vision of granular computing [148], this facilitates pay-per-use and allows functions
to scale from a single invocation to thousands (or more).

• Narrow and Heterogeneous Implementations: A wide and evolving range of
platforms may be used to implement functions. However, each function should focus
on a narrow and resource homogeneous operation. This decoupling enables maximum
innovation and helps resource allocation by isolating bottlenecks [202] and maximizing
resource utilization.

Function arguments include explicit data layer inputs and outputs, and a small pass-by-
value request body. Users store functions themselves as objects in the data layer, allowing
them to be invoked by other functions. In addition to invoking individual functions, users can
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Figure 6.1: Hetergeneous function graph in PCSI While each function can be imple-
mented in different ways, the general graph structure is common to all.

build task graphs, which opens up optimization opportunities such as pipelining or physical
co-location. Such task graphs can either be specified ahead-of-time, as in Cloudburst [258],
or dynamically, as in Ray [181] or Ciel [184].

PCSI functions are inspired by FaaS and share similar design motivations and aims.
However, PCSI pushes these abstractions toward a more universal and integrated system
interface. For example, rather than require distinct services for things like model serving or
data analytics, PCSI exposes these features through the same interface as any other function.
Likewise, new hardware and software platforms can be introduced without requiring new
system interfaces.

6.1.2 State Abstraction

State in PCSI encompasses all information that is preserved beyond the lifetime of a single
function. Access to state in PCSI is always explicit, which means that functions always
access state over system interfaces. My design centers around a few key principles:

• Universal Storage Interface: Applications interact with state through a common
interface. This ensures that the system has full visibility into communication and
storage patterns, allowing it to optimize scheduling and placement for utilization or
performance. This also provides a clear division between application and system,
enabling implementations to evolve over time.

• Everything is an Object: If applications must use a common state interface, then
that interface must be able to express the wide range of functionality available in the
cloud. PCSI achieves this in much the same way as UNIX and its descendants [227,
212], by allowing various implementations of data layer objects. While some objects
may represent persistent data, others may represent network connections or interfaces
to system services.

• Flexible Semantics: There are many storage systems in today’s cloud systems. These
systems vary in their consistency, fault-tolerance, and security semantics, among oth-
ers. Much as POSIX filesystems can have different properties, PCSI objects can have
different semantics.
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Though there is a diversity of object types and behaviors, PCSI insists on a common
naming and reference system. Objects may be named, allowing identifier-based lookup.
These names may be global or use a hierarchy similar to directories. Naming and persistence
implies a level of coordination since the system cannot determine a priori where that object
will be needed. For more ephemeral objects, functions can use unnamed references to objects.
References allow the system to reason about object visibility and movement, enabling it to
potentially elide costly serialization or consistency tasks.

As with functions, this state abstraction permits a great deal of heterogeneity. Ob-
jects may be stored in memory, disks, or application-specific data systems. In the case of
ephemeral references, objects may even exist only within a function’s memory. This ab-
straction also extends beyond traditional storage semantics by allowing objects to represent
complex services like WAN connections. All this flexibility means that the system can choose
to optimize for cost, utilization, or performance. It also means that new technologies can be
integrated without deep changes to applications.

6.1.3 Fundamental Limits of Serverless

In system design, what is not included is just as important as what is. I believe that a
serverless system interface like PCSI can enable a broad range of cloud workloads, but not
every workload will run well as a collection of functions with explicit state. Things like trans-
actional databases or highly synchronous stateful computations like those seen in scientific
computing will always work best on explicit resource allocations. Still, these exceptions need
not invalidate the larger system design. Instead, we can model these specialized computa-
tions as particularly large or expensive function types. While their resource allocations may
be persistent, they can still invoke (and be invoked by) other standard functions. They may
also read and write the data layer, or expose their services as specialized objects.

6.1.4 The Path to PCSI

While the system interface proposed here is far from complete, it provides the foundation
for a truly disaggregated logical cloud interface. Indeed, I do not suggest that a system like
PCSI would simply appear fully formed in the cloud ecosystem. Instead, cloud providers
would evolve their serverless offerings over time to include more and more features. My work
on KaaS represents one such incremental feature. Looking forward, that technique can be
generalized to other resource types like FPGAs or deep-learning accelerators. Beyond KaaS,
questions remain around appropriate consistency models, security, performance isolation,
and many others. As these and other questions are answered, existing serverless offerings
can evolve toward a common portable cloud system interface.
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6.2 Frontiers in Serverless Computing

A core motivation throughout this thesis is that WSCs, and the cloud in particular, present
an unprecedented opportunity for innovation. The challenge with this innovation is get-
ting it into users’ hands. Many of the existing interfaces described in Chapter 2 struggled
with inappropriate abstractions that could not adapt to changing realities. Even my work
on WabashOS was limited by a reliance on an aggregated process abstraction. Techniques
like the PFA are able to integrate new technologies like remote memory, but remain funda-
mentally limited in their achievable performance. A flexible, fundamentally disaggregated,
logical interface like PCSI offers the ability to quickly deploy new hardware or services. The
KaaS model allows providers to deploy GPUs without affecting any other parts of the sys-
tem. Similarly, the performance predictability of unikernels that I demonstrated in Chapter
5 came at the cost of generality. The heterogeneous function abstraction of PCSI would
allow users to replace individual functions with this new high-performance OS environment
without refactoring the entire application. There are similar opportunities for state. New
memory or storage technologies become new object properties. New services or complex
systems can be integrated as new object types.

In this section, I speculate on a few future directions in serverless computing and logically
disaggregated interfaces.

6.2.1 Serverless Interfaces to Other Resources

The KaaS project focused on GPUs due to their ubiquity and central role in modern appli-
cations. How might we expand serverless to other resource types? FPGAs are an appealing
target for disaggregation due to their high cost and ability to support diverse workloads. Mi-
crosoft has deployed FPGAs in their datacenters to support a wide range of workloads from
deep learning to network function offload [215]. While these FPGAs are accessed through
a remote function interface, functions are assigned to devices statically. One challenge with
serverless FPGAs stems from their cold start behaviors. In addition to loading any constant
data, FPGAs must be reconfigured to perform a new function. We must also define what an
FPGA-typed function would look like. This includes a standard description of the FPGA
configuration, standard interfaces, and resource accounting. In [225], Ringlien, et al., present
a system architecture to address some of these concerns.

With the growth in demand for deep learning, cloud providers have begun to design
compute accelerators with simple, application-specific, interfaces [127, 119]. These accel-
erators are typically programmed using a high-level framework such as Tensorflow or On-
nxruntime [4, 195]. This high-level interface provides opportunities to simplify the serverless
accelerator interface. Rather than requiring pre-compiled CUDA code, these interfaces could
accept only high-level descriptions of the task. The provider would then be free to optimize
for different metrics as needs arose. For example, functions could be compiled to mini-
mize compute resource utilization to improve multitenancy or for maximum throughput.
RAMMER describes one way that deep learning applications can be compiled for compute
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resource utilization in addition to raw performance [162]. High level interfaces also simplify
security and isolation as the provider has full insight into application behavior. Deep neural
networks have been shown to be very predictable, enabling the provider to make informed
performance isolation and scheduling decisions [105].

6.2.2 Physical Co-Location

While the abstractions in PCSI are designed to support distributed systems, logical disag-
gregation does not imply physical disaggregation [258]. A näive implementation might send
intermediate data from a CPU-based function to remote storage before pulling it onto a
GPU. However, a more sophisticated implementation could use knowledge of application be-
havior to make much better decisions [39]. If the task graph indicates that the two functions
will be composed, the system can schedule the first CPU function on a physical server that
also contains a GPU. Since data were intended only for the next task, data movement is re-
duced to a single CPU-GPU memory copy. This implementation would achieve performance
similar to a monolithic server-based interface.

While this approach improves performance, it also inherits challenges from monolithic
designs. Direct communication between functions also couples their fates. If one function
fails, the other is left in an inconsistent state and must also be terminated. We may choose
to accept this situation; any function could fail regardless. We may also attempt to mitigate
it using the approach proposed by MODC [138]. MODC uses disaggregated memory and
idempotent semantics to provide fault tolerance to task graphs. Physical co-location also does
not address the challenge of data serialization and deserialization. In monolithic approaches,
all components of an application are carefully designed to support a common data format.
In Serverless systems, we prefer to decouple applications to enable agility, much as was
done for microservices [26]. However, portable protocols and serialization formats can be
expensive. Google reports that roughly 5% of fleetwide cycles go to protocol and serialization
processing [130]. Future designs that use physical co-location or memory-semantic access
to disaggregated memory will need to carefully design their data formats or use hardware
acceleration to mitigate serialization impacts [133].

6.2.3 Scheduling for Diverse Metrics

Performance is not the only metric of concern in cloud computing. Indeed, the work I pre-
sented in this dissertation has primarily been focused on improving utilization, even at the
cost of performance. Logically disaggregated systems like PCSI also enable the flexibility
to optimize for a range of metrics. While a physically aggregated strategy would provide
the highest raw performance, the system may instead choose to utilize an idle resource from
elsewhere in the system to avoid stranding local resources. If there are multiple implemen-
tations of the same function, the system may choose the cheapest implementation based on
current system state [230]. In the case of applications with service-level objectives (SLOs),
lower performance will have little impact on user satisfaction so long as the SLO is met.
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As discussed in Chapter 5, FaaS systems must decide between expending resources to
keep a worker warm or terminate it and run the risk of a cold start [245]. While KaaS does
not assign workers to functions exclusively, it still must consider the resource usage/warmness
tradeoff. In the case of KaaS, warmness is determined by the presence of a kTask’s inputs
in GPU memory. When a kTask is sent to a GPU, it may displace data from other kTasks.
However, strictly assigning kTasks to GPU pools might prevent the system from utilizing idle
GPUs outside the pool. Furthermore, we may encounter situations where all warm GPUs
are busy. It may be the case that using a cold GPU would have lower latency than waiting
for a warm GPU to complete its current request. Clockwork presents a method for making
this determination [105], but focuses on the context of a single-application model serving
environment. As we continue to expand the scope of serverless resources, we will need to
design efficient algorithms to trade between utilization, throughput, and tail latency. Aditya
Ramkumar’s masters thesis presents this topic in more detail [218].

6.3 Logical Enables Physical

A core argument of this dissertation is that physical and logical structures are fundamentally
intertwined. An inappropriate logical model fundamentally limits the achievable performance
of new hardware technologies. Hardware features and limitations become assumptions built
into our logical interfaces. When these two perspectives are not aligned, systems fail to
reach their full potential. WabashOS’s logically aggregated model was limited in its ability
to improve utilization. New network and memory technologies promised disaggregation,
but transparent logical interfaces led to poor performance. This is not to say there is no
opportunity for advancement. Indeed, the page fault accelerator (PFA) saw performance
improvements over a pure-software approach to remote memory. Similarly, my evaluation
of KaaS in Chapter 5 showed benefits in performance and utilization even with today’s
hardware. In this section, I argue that further alignment of the physical and logical models
will enable far more progress on the goals of utilization, cost, and performance.

In the previous section, I proposed a truly disaggregated logical interface. Figure 6.2
compares this interface to the physically disaggregated datacenter proposals of Chapter
2. There is a deep symmetry between these two approaches. New fast networks enable
tightly coupled application graphs. Rather than the implicit interfaces of the PFA, physically
remote memory is naturally aligned with an object abstraction [137, 6]. Where serverful
approaches would need to create new server types for a new device, KaaS-like approaches
enable standalone deployment of new devices. In §6.3.1, I explore how accelerators could be
designed from scratch to support a KaaS-like interface while §6.3.2 describes how notions of
locality can be applied to a disaggregated setting.
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(a) Logical View (b) Physical View

Figure 6.2: Two perspectives on a disaggregated datacenter. A serverless logical abstraction
mirrors the physical organization of DDCs.

Figure 6.3: A dedicated serverless system on chip (SoC) would package only the bare mini-
mum hardware to support KaaS-style functions. Due to the constrained workload, platform
functions like protocol handling, serialization, or RDMA can be offloaded to custom logic.

6.3.1 A Serverless SoC

In Chapter 5, I presented systems that took advantage of the unique properties of existing
devices to improve utilization. In the process, I created interfaces with much simpler seman-
tics and much more predictable requirements. KaaS executors do not need to run arbitrary
host code and they do not need a full-featured operating system. They also do not present
a particularly challenging CPU workload to the host. The vast majority of time is spent
either on the accelerator itself or in handling predictable network and protocol tasks.

As applications move toward a PCSI model of computation, cloud providers will become
incentivized to optimize their hardware platforms for these properties. Figure 6.3 shows
a hypothetical serverless SoC that contains only the bare-minimum hardware needed to
support KaaS-like workloads. Network connectivity could be provided by high performance
integrated silicon photonic networks [262]. Common platform tasks would be supported
through either specialized logic [133, 147] or through a low-power control CPU. The bulk of
package area would be consumed by the application accelerator and local high-performance
memories.

These specialized SoCs bring a number of important benefits. First, the platform accel-
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erators and control CPU can be sized to handle the serverless protocol and no more. This
will save significant power over a high performance general purpose processor. Since the
provider controls the entire platform, they can quickly iterate on designs. Deploying these
devices is also simplified. Adding additional accelerator capacity is as simple as adding a
new card to the network. There is no need for additional server hardware as is the case
for traditional PCI-E attached accelerators. Physical racks, power supplies, and networks
can all be tailored for these fine-grained SoCs. These benefits have already been realized in
the storage space [91, 25]. Microsoft’s Catapult system and Google’s TPU pods similarly
demonstrate the potential benefits of resource-specific hardware platforms [261, 215].

6.3.2 Locality Under Disaggregation

As discussed in §6.2.2, the requirement for explicit state may lead to additional data move-
ment and serialization costs. The fine-grained decomposition of functions may lead to addi-
tional synchronization and complicates fault tolerance. Fortunately, the ability to disaggre-
gate does not imply the need to disaggregate. Figure 6.4 shows both a logical and physical
perspective on how this fact might be exploited. While users provide a disaggregated graph
of functions, they may additionally indicate that subgraphs of their application are likely to
be tightly connected. In this case, we may choose to fate-share within that subgraph. This
allows us to elide expensive synchronization or fault-tolerance steps by simply failing the
entire subgraph if any part of it fails.

Physically, we may exploit knowledge of tightly-coupled subgraphs to co-locate functions
on the same physical server or under the same top-of-rack network switch. As datacenter
hardware becomes more specialized for the serverless setting, locality becomes even more
flexible. A serverless SoC, coupled with a high fanout photonic link, can use high performance
optical circuit switches to create pseudo-physical servers where every component is directly
connected over high bandwidth, low-latency photonic links. In some cases, we may want
to directly connect two compute resources to avoid data materialization. In other cases, we
can exploit reconfigurable locality to ease data movement, exploiting the duality of memory
and communication [298]. In a physically disaggregated setting like Figure 6.4b, memory
resources can be directly connected to compute resources. In this example, Objects 2 and
3 are directly available to the compute resources while Objects 0 and 1 must be addressed
through a higher latency packet switched network. If a new function requires a serverless
SoC and Object 0, the system would reconfigure the network to ensure maximum locality.

As with physical co-location, network reconfigurability provides a new capability, but not
a new requirement. The system must decide whether to move data explicitly or reconfigure
the network. It must also decide the optimal connectivity for each task in a constantly chang-
ing environment. The right policies will require new research into serverless task scheduling
and placement.
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(a) Logical Optimizations The two func-
tions can elide consistency protocols and se-
rialization if they are known to communicate
directly and are allowed to fail together.

(b) Physical Optimizations The physical re-
sources needed for the application sub-graph can
be chosen from physically adjacent nodes. New
environments with circuit switching and low-level
physical disaggregation can create pseudo-physical
servers with temporary tight connectivity.

Figure 6.4: Application insights can enable opportunistic co-location and optimization. In
this example, the FaaS function is known to have significant communication with the KaaS
function. These functions are instantiated on a traditional aggregated server and a special-
ized serverless SoC, respectively.

6.4 Concluding Thoughts

WSCs have given us an unprecedented opportunity to invest in radically different hardware
and software systems. The work I presented in this dissertation has shown some examples
of how we can take advantage of that opportunity to improve utilization and performance
through disaggregation. However, many more challenges remain. As we look toward the
future, new system interfaces will be needed to provide a framework for future innovation
in disaggregation. I propose one such approach through the PCSI abstraction. With this
abstraction, we can expand the serverless abstraction to new resource types like FPGAs or
deep learning accelerators. We can even embrace the serverless model when designing new
datacenter hardware like accelerator SoCs or network technologies. As always, the physical
and the logical will need to be designed to work together to reach their full potential.
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Chapter 7

Conclusion

I end this dissertation with a summary of the key lessons to be learned from my work (§7.1).
I also include some reflections in, §7.2, on the practice of research and the lessons I have
learned throughout my PhD journey.

7.1 Lessons on Disaggregation

In this dissertation, I have described a wide range of approaches to providing high utilization
with reasonable performance through disaggregation. In the process, I presented method-
ologies for hardware/software co-design, techniques for physical disaggregation of memory,
and logically disaggregated interfaces. In this section, I summarize my findings from these
projects with an eye toward the key lessons to be learned from them.

7.1.1 Hardware/Software Co-Design Methodologies

My work explores how hardware and software can work together to improve the performance
and usability of resource disaggregation. As we saw with the PFA, it is not enough to
evaluate just the software or just the hardware; they need to be co-designed. This process is
not trivial. Prior techniques were not sufficiently agile for a small team to evaluate the wide
range of possible designs. Hardware and software designers were too decoupled by disparate
simulation technologies and ad-hoc software workload management. Disaggregation made
this even more difficult as existing evaluation methodologies struggled to support clusters of
heterogeneous resources and complex end-to-end software.

The solution was to build agile hardware design methodologies. In my work, I focused on
managing software workloads in a way that was reproducible, repeatable, and reusable by the
community. I did not just consider the process of building static software images, but instead
focused on the complete software workload life cycle. This included building the software
images, launching them in functional simulation, installing them to external simulators, and
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repeating this process for testing. This broadened definition led to FireMarshal, my tool for
managing this life cycle.

Chipyard combined software workload management with tools for hardware design, simu-
lation, and manufacture into a complete SoC generation framework. This framework formed
the basis of my methodology for designing and evaluating hardware/software solutions to
disaggregation. Rather than relying on microbenchmarks and hardware models, the PFA
project used real, synthesizable, hardware designs with end-to-end benchmarks running on
a real operating system. This process exposed realistic behaviors and limitations that may
have been masked by a less rigorous approach.

My methodology goes beyond just a single project. FireMarshal provided an unambigu-
ous description of my software workloads. Others in the community are free to use those
descriptions to reproduce my results, or as a basis for new research. Tools that build on
common designs, share their outputs openly, and automate the process of experimentation
can accelerate the pace of progress in our community.

7.1.2 Physical Disaggregation

Physical disaggregation can take many forms. I identified two important axes in this design
space: implicit/explicit, and hardware/software. Paging to remote memory took an implicit
approach by automatically moving data between local and remote memory, but existing
approaches were hampered by slow software management. The PFA added hardware support
to improve performance, but did not fundamentally change the implicit interface. While
performance did improve, paging still required significant work from the OS. This limited
the achievable gains. Nephele used an explicit interface to disaggregated memory to improve
the performance of process checkpointing. Users had to change their applications, but they
saw large performance gains as a result.

When physically disaggregating memory, we need to consider both axes. Hardware ac-
celeration can improve performance, but it is costly and may not always be feasible. Implicit
interfaces are easy to deploy, but explicit interfaces have the potential to be much faster.

7.1.3 Logical Disaggregation

The two axes of disaggregation design are fundamentally intertwined. An explicit interface
may enable a richer set of hardware features, while implicit interfaces constrain our options.
Some interfaces may only be feasible with certain hardware capabilities. To get the most
out of disaggregation, we need to consider the logical view of the system that we present to
users.

Web services and virtual machines focus on aggregated servers and long-running alloca-
tions. This leads to both stranded and idle resources. It also assumes too little about the
hardware capabilities of modern datacenters. Distributed OSs embrace the tightly-coupled
nature of WSCs, but they offer an implicit interface that limits our ability to drive utiliza-
tion and performance. In WabashOS, applications designed for a single node suffered from
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poor performance predictability on a disaggregated system. My attempts to improve that
predictability sacrificed utilization for performance. However, my work on KaaS showed
how a fundamentally disaggregated interface like serverless computing could improve both
performance and utilization. As WSCs evolve, we must ensure that their logical interfaces
align with their needs and capabilities.

7.2 Reflections on Research Practice

I would like to finish this dissertation with some reflections on the practice of research. In
§7.2.1, I opine on the drawbacks of writing high quality software for research while §7.2.2
reflects on the lessons I learned about managing research projects.

7.2.1 Good Software Considered Harmful

The fantasy author Terry Pratchett once wrote of his “boots theory”. It goes like this:

A man who could afford fifty dollars had a pair of boots that’d still be keeping his
feet dry in ten years’ time, while a poor man who could only afford cheap boots
would have spent a hundred dollars on boots in the same time and would still have
wet feet. – Terry Pratchett

This also holds in the world of software development. An initial investment in software
engineering and testing can pay dividends when it comes time to extend or debug a codebase.
However, there is an alternative theory that I will call the wrench theory :

I once needed a special wrench to remove an odd component on my car. I could buy
one from the local discount store for one dollar, or order a twenty dollar wrench
from a reputable dealer. If the cheap one works once, I have saved nineteen
dollars. If it breaks, I have only lost one dollar. – Nathan Pemberton

The moral is, the first time you buy something, buy cheap. The second time you buy it,
buy expensive. In research, we often want to quickly prove or disprove a hypothesis. In all
likelihood, our code will be abandoned once the paper is published. In the unlikely scenario
that the project sees adoption in the real world, it can be re-written correctly. This is not
to say that the code should be unrealistic or incorrect; it should be as good as necessary to
demonstrate the problem and solution, but no more.

As counter-intuitive as it sounds, “good” software can be harmful to pure research
projects. Rather than quickly proving hypotheses or exploring design spaces, quality soft-
ware plans for scenarios that may never come to pass. What good is extensibility when the
experimental code will be thrown out after the paper is published? Is it worth spending
25% of your time on testing for a codebase that will never run production workloads [61]?
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I have seen this in my own work. Johann Schlieir-Smith and I attempted to develop a
flexible platform for serverless research called the Serverless Research Kit (SRK). The goal
was to create a unifying environment for the broad range of serverless research happening
at UC Berkeley. SRK included extensive testing, good documentation, and an elegantly
modular design. It was an expensive wrench. Despite our best efforts, the framework saw
little adoption. In practice, it was often easier to hack something together quickly rather
than extend SRK to meet some new requirement. As bugs and incompatibilities arose in
off-the-shelf software, we simply worked around them rather than fixing them. SRK did not
provide enough value to justify the time investment.

When I began the KaaS project, I made a conscious effort to write “bad” code (the cheap
wrench). This meant that new features often introduced bugs that were only caught much
later due to insufficient testing. Poor software architecture and a lack of documentation
meant that new collaborators were difficult to on-board and new features often required
significant re-factoring. Despite this, the KaaS project moved quickly, producing publishable
results in under one year. While not suitable for practical use, the current codebase and
subsequent paper are more than enough to guide a serious implementation effort if the need
arises.

Of course, the cheap wrench sometimes breaks. My early work on the PFA was plagued by
frequent mistakes and setbacks due to poor software workload management practices. Entire
experiments were lost due to accidentally deleted code. Work done several months earlier
was unlikely to still work, if I even remembered how to use it. I also spent a large amount
of time and money debugging software in RTL simulation due to the difficulty of switching
between simulators. These problems were being faced across the research community. It was
time to buy the expensive wrench. FireMarshal required a significant time investment, but
has drastically eased the co-design process for my own work and the work of others. Indeed,
FireMarshal arguably constitutes my most visible and influential work, being used by over
20 institutions.

The definition of “bad” is a tricky one. Often, new research directions appear while trying
to solve seemingly boring problems. In other cases, buggy code may mask real effects that
should be reported. Even bad code must be able to run real benchmarks in realistic settings.
Researchers also must be careful to inspect results and make sure all data makes sense. In the
KaaS project, I noticed unrealistically poor performance when running concurrent workloads.
While I could simply have published those results. I instead investigated the discrepancy.
It turned out that the load generators at each client were using the same random seed.
This violated the independence assumption of queuing theory and led to poor performance.
In this case, my cheap wrench broke. This was not a failure of the wrench theory; many
other cheap components worked perfectly well. To quote an old Russian proverb: “trust, but
verify”.
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7.2.2 What to Work on and When to Give Up

7.2.2.1 Picking a Problem

In research, picking a problem is often harder than finding a solution. A good problem
must be well motivated and have a potentially interesting solution. It must also be solvable
within a reasonable time frame. A more subtle requirement is that it must have a context
within your research group. A team can provide diverse perspectives on a problem, supply
benchmarks, and has the ability to leverage each other’s work. This is especially true in
systems and hardware projects that require a large amount of engineering. Often, many
distinct problems must be solved to build a realistic system. Without a team to support
you, projects go slowly and have poorer outcomes. You may have to adjust your research
focus to find a good team, but the benefits are well worth it.

7.2.2.2 Identifying Negative Results

Once you have started a project, the next decision you must make is when to stop. Research
is, by definition, uncertain. Some ideas simply don’t work. Other times, a problem you
thought was solvable in a reasonable time frame is in fact intractable. These are called
negative results.

When encountering a negative result, it can be difficult to differentiate between the
normal challenges faced by all research projects and more fundamental problems. This is
made particularly difficult in an environment rife with imposter syndrome. From the outside,
other students and projects can seem so successful as to set an unrealistically high bar. In my
own experience, I often abandoned projects too soon because their results seemed inadequate
and their problems insurmountable. In hindsight, many of these projects provided significant
contributions to the community despite their problems.

The PFA saw only 20% improvements on many benchmarks which seemed insignificant
at the time. However, paging techniques have seen interest despite their limitations [104, 52,
171]. Techniques like the PFA would have significant impact on those projects. Furthermore,
the PFA would require changes to application processors to see real adoption. At the time,
this seemed unlikely as cloud providers overwhelmingly used commodity platforms. Today,
there has been great interest in developing fully custom SoCs and hardware platforms for
cloud settings [156, 31]. It is hard to predict how a project may influence or be influenced by
developments in the future. I saw this in the Nephele project as well. While Nephele showed
large performance improvements, I was concerned with the difficulty of adapting applications
to a new interface. The rise of serverless computing and cloud-native applications has shown
that users are, in fact, willing to make deep changes for large gains.

7.2.2.3 Dealing with Negative Results

If a project truly has deep problems, you have to decide what to do next. In some cases, the
project is simply not worth pursuing further. In these cases, it is useful to write a detailed
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postmortem of the project. In this paper, you articulate in detail why the project cannot
proceed and what insights you have learned about the underlying problem space. Even
though the academic community has a publication bias against negative results [86, 42, 213],
these types of analyses often lead to new, more productive, projects.

Often, projects fail not due to the proposed solution, but due to limitations of the problem
statement or evaluation methodology. In the PFA project, I focused on relatively small
benchmarks. These benchmarks ran a specific algorithm against fixed input data from start
to finish. This is a particularly poor fit for resource disaggregation as they are likely to use
all of their memory. I also configured my benchmark to measure memory pressure based
on the actual memory usage of the benchmark rather than requested memory. As previous
research has shown, users often overestimate their memory requirements [66, 268, 176]. If I
had compared against business and big-data applications, memory disaggregation may have
looked more appealing.

In these situations, it is important to remain humble. As one person, you have limited
perspective. When a project is struggling, it is important to seek the advice of others in
your community. The first step is to consult with your immediate colleagues. After that, it
can be worthwhile to submit your project to a conference or journal, even if you are unsure
of the impact of your results. If your methodology is sound, reviewers may find the results
compelling. Even if they don’t, they can provide valuable insights into how you should
proceed. It is arrogant to be convinced of your own greatness, but equally arrogant to be
convinced of your failure. Be humble.

7.3 Departing Thoughts

We have the ability to design amazing hardware. Networks are approaching sub-microsecond
latencies and Tbit/s bandwidths. Memory, storage, and compute technologies are all advanc-
ing rapidly. These physical advances provide benefits to today’s computers, but unlocking
their true potential will require re-thinking the logical model that we present to users. In
this dissertation, I have applied this principle to one key metric of today’s warehouse-scale
computers: resource utilization. I built systems like the PFA and WabashOS that pro-
vided physical disaggregation on top of familiar logically aggregated interfaces. While these
projects enabled higher utilization, their performance was limited. When I changed the
logical interface to be more fundamentally disaggregated with Nephele and KaaS, I saw far
greater gains in both utilization and performance. As we look to the future, we will need
new unifying logical models like PCSI that will bring the advantages of disaggregation to
a broader set of workloads. Hardware will also need to advance, and I have shown how
agile hardware/software co-design with FireMarshal and Chipyard enables that advance-
ment. Together, these techniques will enable a truly serverless datacenter that utilizes its
resources effectively, provides high performance, and enables future innovations in hardware
and software.
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Glossary

anonymous page A page that does not contain disk-backed information. This is primarily
“heap” memory (e.g. memory allocated through malloc()) 55

application programming interface A standard set of user-controllable features that a
system supports 8–11, 15, 18, 66, 86, 87, 92, 93, 95, 96, 106, 126

cgroup The per-task (or group of tasks) resource management system in the Linux kernel.
55

Chipyard A system-on-chip development framework developed at UC Berkeley. 6

CPU task Traditional CPU-oriented serverless functions 88, 126

CUDA NVidia’s GPU programming language 85, 88–90, 93, 95–98, 103, 105

disaggregated datacenter A warehouse-scale computer design that physically deploys in-
dividual resources as globally accessible network-attached components. 12, 126

EvictQ Queue of pages to be evicted by the PFA. Populated by the OS when it needs to
free local physical memory. 50, 51

Exclusive Task A FaaS+GPU approach where serverless functions run with exclusive ac-
cess to a GPU. 92–95, 97, 98, 100, 101, 103, 126

FaaS Function-as-a-Service: A programming style focused on explicit state and ephemeral
functions that operate on that state. 4, 11, 85, 86, 89, 92, 108, 109, 113, 116

frame Synonym for page frame Glossary: page frame

FreeQ Queue of free frames to be used by the PFA to service page-faults. 50, 52, 53, 58

function A logical transformation over data that can be executed by a serverless framework.
Functions can be implemented in many ways. 91, 92, 94, 99

kernel task The GPU-specialized serverless function type proposed by KaaS 86, 88–95, 97,
98, 100, 103, 107, 113, 126
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Kernel-as-a-Service My proposed GPU-specific extension to the FaaS paradigm. 85, 86,
88–101, 103, 105–107, 110, 111, 113, 114, 119, 120, 122, 126

least recently used An algorithm that attempt to pick pages that have not been used
recently. 55, 57, 126

network interface card The hardware device providing network connectivity. This term
is used even if the network device is not implemented as a discrete external card. 41,
51–53, 60, 61, 126

NewQ Queue of new-page descriptors populated by the PFA on every page fault and drained
by the OS for bookkeeping. 50

non-uniform memory access A system where memory is cache-coherently available to
multiple CPUS, but with varying access latencies and bandwidths (a type of multi-
socket machine). 43, 44, 126

non-volatile memory Storage devices with near-DRAM performance, and byte address-
ablity, that do not lose their data when powered off. 44, 126

page fault accelerator The proposed hardware-accelerator that handles page-faults for
remote pages automatically. 29–32, 47, 49–53, 55, 57–62, 64, 65, 113, 117, 118, 120–
122, 126

page table A hardware-visible tree in main memory that contains translations from virtual
to physical addresses. 57

page table entry A single entry of the page-table. Each PTE refers to a single virtual
page. 50–53, 56–58, 61, 126

pageID A unique identifier for a page in remote memory. Acts as a remote-memory address.
50

partitioned global address space A language-based technique that partitions the pro-
gram’s address space between local and remote objects. 45, 126

portable cloud system interface A hypothetical unified system interface to warehouse-
scale computers based on serverless computing. 108–112, 114, 116, 122, 126

remote direct memory access A system where memory is directly addressable between
multiple nodes through a network interface. RDMA systems are not typically cache-
coherent. 43–45, 126

service-level objective A target latency for an operation below which the user experiences
little additional benefit. 76, 112, 126
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SiP system in package 53

SoC system on chip 5, 8, 13–17, 19, 20, 22, 25, 36, 38, 42, 90, 114–116, 118, 121

swap Historically used to refer to the process of moving an entire process’s memory image
to disk, Linux uses “swapping” to refer to all paging. see 55

swap entry A Linux-specific value stored in evicted PTEs that contains information on
where to locate an evicted page. 56, 57, 59

tail latency The worst case latency of some task. These are typically measured as per-
centiles (i.e., 99th percentile latency). 76, 103

task Linux kernel internal abstraction of a process. 50, 55

transcendent memory A layer in the Linux paging subsystem that stores pages in spe-
cialized memory that may not be disk-backed. 55–57, 59, 126

translation look-aside buffer A cache of virtual to physical address translations. 56, 57,
126

virtual memory area Contiguous region of virtual memory used by Linux to simplify
memory management. 56–58, 127

warehouse-scale computer Generic term referring to tightly-integrated clusters of ma-
chines deployed in the datacenter. 1, 2, 5–9, 11–13, 22, 40, 73, 79, 86, 106, 107, 111,
116, 118, 119, 127
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Acronyms

API application programming interface 8–11, 15, 18, 66, 86, 87, 92, 93, 95, 96, 106

cTask CPU task 88

DDC disaggregated datacenter 12

eTask Exclusive Task 92–95, 97, 98, 100, 101, 103

KaaS Kernel-as-a-Service 85, 86, 88–101, 103, 105–107, 110, 111, 113, 114, 119, 120, 122

kTask kernel task 86, 88–95, 97, 98, 100, 103, 107, 113

LRU least recently used 55, 57

NIC network interface card 41, 51–53, 60, 61

NUMA non-uniform memory access 43, 44

NVM non-volatile memory 44

PCSI portable cloud system interface 108–112, 114, 116, 122

PFA page fault accelerator 29–32, 47, 49–53, 55, 57–62, 64, 65, 113, 117, 118, 120–122

PGAS partitioned global address space 45

PTE page table entry 50–53, 56–58, 61

RDMA remote direct memory access 43–45

SLO service-level objective 76, 112

TLB translation look-aside buffer 56, 57

TMem transcendent memory 55–57, 59
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VMA virtual memory area 56–58

WSC warehouse-scale computer 1, 2, 5–9, 11–13, 22, 40, 73, 79, 86, 106, 107, 111, 116, 118,
119
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Stanko Novaković, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh,
Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei.
“Remote regions: a simple abstraction for remote memory”.
In: 2018 USENIX Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, July 2018, pp. 775–787.
isbn: 978-1-939133-01-4.
url: https://www.usenix.org/conference/atc18/presentation/aguilera.

[7] William Allcock, Bennett Bernardoni, Colleen Bertoni, Neil Getty, Joseph Insley,
Michael E. Papka, Silvio Rizzi, and Brian Toonen.
“RAM as a Network Managed Resource”. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 2018, pp. 99–106.
doi: 10.1109/IPDPSW.2018.00024.

[8] Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and Jerre D. Noe.
“The Eden system: A technical review”.
In: IEEE Transactions on Software Engineering (1985), pp. 43–59.

[9] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout,
Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.
“Can Far Memory Improve Job Throughput?”
In: Proceedings of the Fifteenth European Conference on Computer Systems.
EuroSys ’20. Heraklion, Greece: Association for Computing Machinery, 2020.
isbn: 9781450368827. doi: 10.1145/3342195.3387522.
url: https://doi.org/10.1145/3342195.3387522.

[10] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao,
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[18] Krste Asanović, Rimas Avižienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig,
Yunsup Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto,
Albert Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg,
Huy Vo, and Andrew Waterman. The Rocket Chip Generator.
Tech. rep. UCB/EECS-2016-17.
EECS Department, University of California, Berkeley, Apr. 2016. url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.
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Resource-Efficiency Gap Between ASICs and FPGA Prototypes”. In: In Proceedings
of the International Conference on Computer-Aided Design (ICCAD). Nov. 2019,
pp. 1–8.

[167] Neethu Bal Mallya, Cecilia Gonzalez-Alvarez, and Trevor E Carlson.
“Flexible Timing Simulation of RISC-V Processors with Sniper”.
In: Second Workshop on Computer Architecture Research with RISC-V.
CARRV ’18. Los Angeles, California, USA.

[168] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni,
Joseph Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato, and
Luca P. Carloni. “Agile SoC Development with Open ESP”.
In: Proceedings of the 39th International Conference on Computer-Aided Design.
ICCAD ’20. Virtual Event, USA: Association for Computing Machinery, 2020.
isbn: 9781450380263. doi: 10.1145/3400302.3415753.
url: https://doi.org/10.1145/3400302.3415753.

https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://pykickstart.readthedocs.io/en/latest/index.html
https://www.usenix.org/conference/osdi20/presentation/ma
https://doi.org/10.1145/3373376.3378511
https://lwn.net/Articles/454795/
https://doi.org/10.1145/3400302.3415753
https://doi.org/10.1145/3400302.3415753


BIBLIOGRAPHY 148

[169] Howard Mao.
“Designing New Memory Systems for Next-Generation Data Centers”.
PhD thesis. University of California at Berkeley, 2020.

[170] Howard Mao, Randy H Katz, and Krste Asanović.
“Hardware acceleration for memory to memory copies”.
MA thesis. EECS Department, University of California, 2017.

[171] Hasan Al Maruf and Mosharaf Chowdhury.
“Effectively Prefetching Remote Memory with Leap”.
In: 2020 USENIX Annual Technical Conference (USENIX ATC 20).
USENIX Association, July 2020, pp. 843–857. isbn: 978-1-939133-14-4.
url: https://www.usenix.org/conference/atc20/presentation/al-maruf.

[172] Scott McFarling. Combining Branch Predictors. Tech. rep. TN-36.
Western Research Laboratory, 1993.

[173] Paul E McKenney and Jonathan Walpole. “What is RCU, Fundamentally?”
In: Linux Weekly News (2007). url: https://lwn.net/Articles/262464/.

[174] memcached: a distributed memory object caching system. 2019.
url: https://memcached.org/.

[175] Dirk Merkel.
“Docker: lightweight linux containers for consistent development and deployment”.
In: Linux journal 2014.239 (2014), p. 2.

[176] George Michelogiannakis, Benjamin Klenk, Brandon Cook, Min Yee Teh,
Madeleine Glick, Larry Dennison, Keren Bergman, and John Shalf.
“A Case For Intra-rack Resource Disaggregation in HPC”. In: ACM Transactions
on Architecture and Code Optimization 19.2 (Mar. 2022), 29:1–29:26.
issn: 1544-3566. doi: 10.1145/3514245.
url: https://doi.org/10.1145/3514245.

[177] Dejan S. Milojicic, David L. Black, and Steven J. Sears.
“Operating System Support for Concurrent Remote Task Creation”.
In: Proceedings of the 9th International Symposium on Parallel Processing.
IPPS ’95. USA: IEEE Computer Society, 1995, p. 486. isbn: 0818670746.

[178] MIPS® Architecture For Programmers Volume II-A: The MIPS64® Instruction
Set Reference Manual. Version 6.06. MIPS. 2016.

[179] Mission-critical infrastructure for the data-driven enterprise. Tech. rep.
Hewlett-Packard Enterprise, 2020.

[180] ModelSim. Mentor, a Siemens Business.
url: https://www.mentor.com/products/fv/modelsim/.

https://www.usenix.org/conference/atc20/presentation/al-maruf
https://lwn.net/Articles/262464/
https://memcached.org/
https://doi.org/10.1145/3514245
https://doi.org/10.1145/3514245
https://www.mentor.com/products/fv/modelsim/


BIBLIOGRAPHY 149

[181] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, et al.
“Ray: A distributed framework for emerging AI applications”. In: 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 2018,
pp. 561–577.

[182] Sape J. Mullender, Guido Van Rossum, AS Tananbaum, Robbert Van Renesse, and
Hans Van Staveren. “Amoeba: A distributed operating system for the 1990s”.
In: Computer 23.5 (1990), pp. 44–53.

[183] Multi-Process Service. Nvidia. Oct. 2021. url: https:
//docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf.

[184] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith,
Anil Madhavapeddy, and Steven Hand.
“Ciel: A universal execution engine for distributed data-flow computing”. In: Proc.
8th ACM/USENIX Symposium on Networked Systems Design and Implementation.
2011, pp. 113–126.

[185] Theodore H. Myer and Ivan E. Sutherland. “On the Design of Display Processors”.
In: Communications of the ACM 11.6 (1968).

[186] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze,
Simon Kahan, and Mark Oskin.
“Latency-tolerant software distributed shared memory”.
In: 2015 USENIX Annual Technical Conference (USENIX ATC 15). 2015,
pp. 291–305. url: https://www.usenix.org/node/190522.

[187] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout.
“Caching in the Sprite network file system”.
In: ACM Transactions on Computer Systems (TOCS) 6.1 (1988), pp. 134–154.

[188] NetApp FAS9000 Modular Hybrid Flash System. Tech. rep. NetApp Inc, 2019.
url: https://www.netapp.com/pdf.html?item=/media/8939-ds-3810.pdf.

[189] NOOBS (New Out of Box Software). Version 3.0. Raspberry Pi.
url: https://github.com/raspberrypi/noobs/releases/tag/v3.0.

[190] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and
Boris Grot. “Scale-out NUMA”.
In: Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’14.
New York, NY, USA: ACM, 2014, pp. 3–18. isbn: 978-1-4503-2305-5.
doi: 10.1145/2541940.2541965.

[191] Gian Ntzik, Pedro da Rocha Pinto, Julian Sutherland, and Philippa Gardner.
“A concurrent specification of POSIX file systems”.
In: 32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://www.usenix.org/node/190522
https://www.netapp.com/pdf.html?item=/media/8939-ds-3810.pdf
https://github.com/raspberrypi/noobs/releases/tag/v3.0
https://doi.org/10.1145/2541940.2541965


BIBLIOGRAPHY 150

[192] Nuclio. iguazio, 2021. url: https://github.com/nuclio/nuclio.

[193] NVIDIA Jetson Linux Developer Guide. Version 32.4.3.
NVIDIA Corporation. July 2020.
url: https://docs.nvidia.com/jetson/l4t/index.html.

[194] NVIDIA Virtual Compute Server. Tech. rep. Apr. 2021.
url: https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/solutions/resources/documents1/nvidia-virtual-compute-

server-solution-overview.pdf.

[195] ONNX Runtime. Microsoft Corporation.
url: https://microsoft.github.io/onnxruntime/.

[196] OpenFaaS. Version 0.21.1. OpenFaaS Ltd. url: https://www.openfaas.com/.

[197] OpenRISC 1000 Architecture Manual. Version 1.3. OPENRISC.io. June 2019.

[198] OpenSBI. Western Digital Corproration.
url: https://github.com/riscv/opensbi.

[199] OpenStack. https://www.openstack.org/.

[200] John K Ousterhout. “Scheduling Techniques for Concurrent Systems.” In: ICDCS.
Vol. 82. 1982, pp. 22–30.

[201] John K. Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N. Nelson, and
Brent B. Welch. “The Sprite network operating system”.
In: Computer 21.2 (1988), pp. 23–36.

[202] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott Shenker.
“Monotasks: Architecting for performance clarity in data analytics frameworks”.
In: Proceedings of the 26th Symposium on Operating Systems Principles. 2017,
pp. 184–200.

[203] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala.
“PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
In: Advances in Neural Information Processing Systems. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32.
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