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Professor Joseph Hellerstein
Associate Professor Zachary Pardos

Spring 2022



RDMA-Based Distributed Data Structures for Large-Scale Parallel Systems

Copyright 2022
by

Benjamin Brock



1

Abstract

RDMA-Based Distributed Data Structures for Large-Scale Parallel Systems

by

Benjamin Brock

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Katherine Yelick, Co-chair

Adjunct Assistant Professor Aydın Buluç, Co-chair

Running programs across multiple nodes in a cluster of networked computers, such as in a
supercomputer or commodity datacenter system, is increasingly important across multiple
domains, including data science, machine learning, and scientific computing. This is brought
on by a combination of increasing data sizes, which push beyond the memory capacity of a
single node, and increasing computational demands from new, more elaborate simulations,
models, and applications.

However, writing parallel programs for clusters of computers remains a difficult task, partic-
ularly for programs that are irregular in terms of data distribution or access pattern. Many
parallel programs today are still written using communication libraries like MPI or OpenSH-
MEM, which require users to explicitly manage low-level details. While high-level parallel
programming languages and libraries do exist, and these can make implementing certain
types of programs much easier, developers often have to expend significant effort building
custom infrastructure and data structures for their applications.

This thesis argues that a large part of the reason why parallel programming remains difficult
is a lack of high-level distributed data structures analogous to the data structures that have
become ubiquitous in sequential programming environments like C++ and Python. These
especially include irregular data structures like hash tables and queues that may require
fine-grained memory accesses along with synchronization. This thesis examines techniques
for building high-level, cross-platform distributed data structures using one-sided remote
memory operations like remote put, remote get, and remote atomics. These memory access
primitives allow for a high degree of asynchrony, enabling better performance by removing
synchronization bottlenecks and allowing a high degree of overlap between communication
and computation. They can also be efficiently executed directly by the network hardware in
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modern supercomputer and commodity datacenter networks, removing the need to synchro-
nize with remote processes.

This thesis examines several RDMA-based distributed data structures, including hash tables,
Bloom filters, queues, and dense and sparse matrices. We provide a performance model for
evaluating the cost of RDMA-based distributed data structure methods in terms of their
component remote memory operations, and demonstrate how this model can be extended to
support GPUs in addition to conventional CPUs.
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Chapter 1

Introduction

Due to a number of trends across data science, machine learning, scientific computing, and
computer architecture, parallel computing has become more and more ubiquitous and im-
portant. Ever-growing datasets are pushing data and graph analytics workloads beyond the
limits of a single computer’s memory [104]. More and more sophisticated machine learning
models require more computational resources as well as more memory in order to be trained
and deployed in reasonable amounts of time [119]. In scientific computing, computational
demands in fields like genomics, climate science, and medical imaging mean that new scien-
tific advances often require ever-increasing amounts of computational resources [8, 46, 116].
At the same time, the breakdown of important trends in computer architecture like Dennard
scaling and Moore’s law mean that we can no longer depend on exponential gains in the
computational performance of individual conventional processors [109]. All of this means
that parallel computing has become an increasingly important tool across much of computer
science and adjacent fields [8, 75, 100]. However, writing parallel programs, or programs
that run on clusters of computers, remains notoriously difficult, particularly for applications
which have irregular data layouts or access patterns.

The software tools at the disposal of the average parallel programmer today are little
different than they were a decade ago. The most commonly used communication libraries,
such as the Message Passing Interface (MPI) [110] and OpenSHMEM [20], all have interfaces
that were crystallized in the late 90s or early 2000s. While these low-level communication
libraries can serve as excellent platforms for applications that are closely compatible to the
interfaces they supply, such as applications that can easily conform to bulk synchronous par-
allel communication model [37], where discrete phases of local computation are separated
from communication operations by global synchronization. For applications that are irreg-
ular, either because their data layouts do not conform to a regular block distribution or
because their data access patterns require sparse or random access, implementation can be
particularly difficult, with users having to explicitly manage the details of synchronization
and memory management across nodes [83, 117].

Dedicated programming languages and libraries do exist for writing parallel programs,
and these can somewhat ease the burden of parallel programming by introducing dedicated
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abstractions for communication and data distribution. However, these dedicated parallel
programming environments have seen relatively little uptake in the broader HPC commu-
nity. One of the primary reasons for this is that it can be difficult for developers to take
the leap to a new programming language, with new, often immature toolchains. This may
be exacerbated by the fact that developers often have pre-existing code in conventional pro-
gramming languages like C, C++, Python, or Fortran that they need to integrate with,
adding further barriers to adopting new languages. In addition, when developers are able
to use dedicated parallel programming languages, they often must spend time implement-
ing application-specific data structures, since most parallel programming environments lack
expressive data structures that have become ubiquitous in sequential programming environ-
ments. Before a parallel programmer can implement their application, it is not uncommon
to first have to implement the necessary data structures such as distributed hash tables,
matrices, or queues. While parallel programming environments may simplify the process of
writing these data structures, users are generally left to implement custom data structures on
their own. This leads to a situation in which application developers must spend significantly
more time implementing their parallel application than developing their parallel algorithms.

This thesis argues that one of the primary reasons that writing parallel programs for
supercomputers and commodity datacenter environments remains difficult is because of this
lack of high-level data structures. High-level data structures such as arrays, hash tables,
and matrices have become ubiquitous in sequential programming environments like C++
and Python and as a result have greatly reduced programmer burden. In parallel program-
ming environments and communication libraries, however, distributed data structures have
remained largely absent, even in many high-level parallel programming environments like
UPC [41] and UPC++ [17]. When they have provided data structures, most high-level
parallel programming environments have focused on regular data structures, such as multi-
dimensional dense arrays or regular grids. While these regular data structures are no doubt
useful for applications which fit them, they are of limited use for applications that are irreg-
ular, meaning that either their data is not structured in a way that allows it to be fit into
a data structure like a multi-dimensional array, hierarchical grid, or structured sparse ma-
trix, or their data access patterns are fine-grained or irregular. In fact, Kennedy, et al. [72]
cite a lack of support for irregular and sparse data distributions as one of the primary rea-
sons for the decline of High Performance Fortran (HPF), saying that the data distribution
mechanisms in HPF were not sufficiently expressive to efficiently handle sparse or irregular
data. This caused many performance-conscious users to switch to low-level libraries like
MPI, which gave them more granular control over performance [73].

In this thesis, I argue that providing high-level distributed data structures can reduce the
burden on parallel application developers, particularly for irregular applications. I present
a design for building distributed data structures using one-sided communication operations,
remote get, remote put, and remote atomic operations that allow processes to access and
manipulate data resident on a remote process. These operations can be executed directly by
the network hardware on modern supercomputer and commodity datacenter platforms using
remote direct memory access (RDMA). This allows processors to access and manipulate re-
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mote data at very low latencies, since the operations can be completed in hardware and also
there is no need to wait on a remote process to handle requests. This RDMA-based design
also allows for a greater level of asynchrony, since processes can retrieve data independently,
without needing to synchronize with other processors. This model of RDMA-based access
maps well onto the data structure interfaces that users are familiar with from sequential
programming environments, where inserting an element into a hash table or writing to an
element in an array is a fundamentally one-sided operation. I discuss the design and im-
plementation of several high-level distributed data structures, including hash tables, Bloom
filters, queues, and dense and sparse matrices, along with algorithmic and implementation
benefits that can be achieved by using an RDMA-based design. I demonstrate how this de-
sign can be extended to support GPUs. Finally, I build a performance model to evaluate the
cost of various RDMA-based data structure operations in terms of their component RDMA
operations, comparing these costs to a remote procedure call (RPC) implementation.

The rest of the thesis is as follows. Chapter 2 discusses background and related work.
Chapter 3 presents our general framework for building cross-platform, high-level distributed
data structures in C++ that can be used natively inside applications written using different
communication libraries. Chapter 4 discusses the supercomputer systems and experimen-
tal setup used in experiments throughout this thesis. Chapter 5 presents and analyzes a
number of different designs for RDMA-based queues. Chapter 6 discusses the design of
distributed set-based data structures, including hash tables and Bloom filters. Chapter 7
discusses the design of RDMA-based dense and sparse matrix data structures, along with
new RDMA-based algorithms for sparse matrix multiplication that are enabled by one-sided
access. Finally, Chapter 8 presents a performance model for RDMA-based data structure
operations, comparing the costs to RPC-based implementations, and Chapter 9 presents
overall conclusions.



4

Chapter 2

Background and Related Work

We begin this chapter with a brief overview of background necessary for the rest of this
thesis, beginning with execution models for parallel programs, which define how a program
can be executed across many nodes in a supercomputer or cluster. We then discuss different
communication models, along with their advantages and disadvantages. Finally, we discuss
related work in parallel programming environments, including dedicated programming lan-
guages as well as libraries, before providing an overview of related work in distributed data
structures and high-level programming models for parallel programs in general.

2.1 Execution Models for Parallel Programs
In order to execute a program in parallel across multiple computers, we need some model for
how the code will be executed across multiple computers. In a distributed memory context,
execution models roughly fall into two categories, single program multiple data (SPMD),
and task-based models. In this thesis, we assume a SPMD execution model, although the
RDMA-based data structures discussed here are applicable regardless of execution model.

SPMD Execution Model
In the SPMD execution model, a single program is run by multiple processes. Typically,
when users execute a program, they select the number of processes that it should be started
with (often stylized as nprocs). nprocs copies of the program will then be started on
different processes, with different processes possibly being executed on different nodes in a
cluster. Parallel execution frameworks will usually provide programmers with a mechanism
for each process to obtain its process ID (often stylized as rank) as well as the total number
of processes nprocs. These processes may then communicate with each other using a variety
of mechanisms, depending on the communication model in use.

A simple example of a parallel program written using the SPMD execution model is shown
in Figure 1. When the user starts the program, as with mpirun -n 4 ./spmd_example in the
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execution printout, multiple copies of the program will be executed on different processes
based on the number of processes specified by the user. Each statement in the program
will be executed by each process, as with the printf statement, unless an explicit branch
prevents it, as with the if statement. Each process has access to its process ID and the total
number of processes. The program in Figure 1 is written using BCL [26], the framework
described in this thesis, but in most other communication frameworks, including MPI [110],
OpenSHMEM [34], GASNet-EX [24], and others, the corresponding programs would be
written with only slightly modified syntax.

Algorithm 1 Simple example of a program using the SPMD execution model, with an
observed execution output in the comment below. Note that the lines could print in different
orders, depending on the order in which processes execute the program.
#include <bcl/bcl.hpp>

int main(int argc, char** argv) {
BCL::init();

printf("Hello, World! I am rank number %lu out of %lu\n",
BCL::rank(), BCL::nprocs());

if (BCL::rank() == 0) {
printf("Special hello from rank %lu\n",

BCL::rank());
}

BCL::finalize();
return 0;

}

/*
Execution output:
$ mpirun -n 4 ./spmd_example
Hello, World! I am rank number 1 out of 4
Hello, World! I am rank number 2 out of 4
Hello, World! I am rank number 3 out of 4
Hello, World! I am rank number 0 out of 4
Special hello from rank 0

*/

The SPMD execution model is the dominant execution model used for batch computing
jobs on supercomputers. This is likely due to scalability concerns, since as the number
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of processes in a distributed execution increases, the overhead associated with spawning
additional tasks increases. The SPMD model reduces the overhead of spawning tasks inside
the actual program execution by taking care of this with one large execution at program
startup.

Task-Based Models
In task-based execution models, programs are expressed as a collection of discrete tasks,
where each task is to be executed by a single processor. These tasks may either be dynami-
cally spawned on demand at runtime, as is the case in systems like Parallel Virtual Machine
(PVM) [49] and Ray [81], or, if the complete task graph is known ahead of time, they may be
spawned by a runtime system with an intelligent scheduler, as is the case with systems like
Legion [21]. The core difference between the SPMD execution model and task-based models
is how users express their programs, with users needing to segment their programs into tasks
in a task-based model and users needing to think about different processes or groups of
processes in the SPMD model. One of the advantages of task-based models is that the user
does not necessarily have to explicitly define how their program should be distributed, but
a static or dynamic scheduler can instead make the decision about how to partition tasks
across nodes in a cluster. An intelligent scheduler can then make optimal decisions for any
particular number of processors, partitioning tasks in such a way as to maximize parallelism.

Some frameworks that support remote procedure calls (RPCs), such as UPC++ [17],
can be viewed as a hybrid approach that blend aspects of task-based models into a SPMD
execution model. For example, while UPC++ programs are executed across a set number of
processes chosen by the user at runtime, UPC++ allows users to describe their programs in
terms of tasks, and users can compose these tasks into arbitrarily complex task graphs using
futures and continuations. Unlike traditional task-based models however, the user must
explicitly specify on which process each RPC task should be executed, which requires the
user to determine how the computation should be split up amongst the available processes
in the distributed execution.

2.2 Communication Models for Parallel Programs
Given a particular execution model, there are multiple mechanisms that can be used to
communicate between processes. These are roughly split into variants of the bulk syn-
chronous model, which separates communication and local computation into discrete phases
partitioned by global synchronization, and models that use asynchronous forms of one-sided
communication with primitives like remote memory operations and RPC.

Before we dive into the different communication models, let’s first discuss the underlying
mechanisms that can be used to send messages over the network. Message passing, also
called two-sided communication, is one of the primary methods used for sending data between
processes. When using two-sided communication, processes have the ability to send or receive
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messages using send or receive calls. In order for a process to send a message to another
process, the corresponding process must issue a matching receive call in order to complete
the message. Blocking send and receive calls inherently incur some synchronization cost,
since two processes must synchronize together in order for the message to be passed between
them. If one of the processes is delayed getting to its send or receive call, the other process
will be forced to wait, incurring some overhead. Asynchronous versions of send and receive
calls do exist, and these can be used to implement asynchronous runtime systems, as is the
case with YGM [93] or indeed MPI’s own implementation of one-sided remote memory access
primitives when RDMA hardware is not available [52].

One-sided communication, by contrast, requires the involvement of only one process to
complete. Primary examples include remote get, remote put, and remote atomic operations
that are supported by RDMA hardware. In order for a process to access or manipulate
another process’ shared memory segment, the remote process need not be involved. Instead,
the only requirement is that that process’ shared segment have been made available to the
origin process through some registration process before the remote operation is issued. On
systems without native network hardware support for RDMA, one-sided remote operations
can be emulated within the communication library in software, although this may incur a
runtime cost [44]. In terms of the user-facing communication model, operations are still one-
sided, since the user does not need to direct the remote process to take part in the operation.
Instead, a runtime system will ensure that the remote process performs the remote memory
operation at some point. In this vein, remote procedure calls (RPCs) may be considered
another form of one-sided operation, since a remote process’ involvement will at some point
be required to actually run the RPCs, with this typically taking place inside a runtime
system. However, this is generally invisible to the user, with the RPC library’s runtime
system ensuring that each process handles any waiting RPC requests, either using dedicated
progress threads that handle requests in the background, or by checking for waiting RPC
requests each time a library function is invoked [14].

Bulk Synchronous Model
One of the most dominant paradigms for distributed memory communication in use today
is the bulk synchronous parallel model [37]. The bulk synchronous model typically segments
applications into alternating phases of communication and computation. These phases are
separated from each other by barrier operations which ensure global synchronization be-
tween all the processes. During a computation phase, processes independently perform local
computation on local data. During a communication phase, these processes work together to
communicate data using collective communication operations such as broadcast, allreduce,
or all-to-all. Collective communication operations have a number of advantages, such as that
they provide a clear boundary for the programmer between local computation and global
communication. Not least of collective communication operations’ advantages is that they
provide a standardized interface for performing communication. This allows communication
library implementers to implement a set of standard communication collectives, possibly
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with different implementations for different network architectures, messages sizes, and data
distributions, and for users to automatically reap the benefits of new algorithms and opti-
mizations once they are implemented. These collective communication operations can be
implemented in a topology-aware manner, which allows for them to achieve better perfor-
mance on low-radix network architectures, where latency between pairs of nodes that are far
away from each other may be quite high, and bandwidth quite low. In addition, library im-
plementations of collectives are able to use techniques like recursive doubling and pipelining
to achieve asymptotically better performance compared to point-to-point versions [106]. In a
high-performance computing context, the MPI communication library [110, 54] is commonly
used to implement programs in a bulk synchronous style. MPI implements a number of fun-
damental primitives for performing bulk synchronous communication, including broadcast,
reduce, allreduce, and many others. While these collective operations may be implemented
using either one-sided or two-sided operations, the primitives themselves follow the bulk
synchronous model, with the corresponding advantages and disadvantages.

It is important to note that while there do exist asynchronous versions of collective
operations such as asynchronous broadcast and asynchronous allreduce, and these can allow
for greater overlap of communication and computation, these do not allow the same degree
of asynchrony as a fully one-sided approach. In general, it is not possible for a process
to exit an asynchronous broadcast until at least some other processes have entered the
broadcast. In broadcast operations that use low radix topologies along with aggressive
pipelining, as is done in collective operations for GPUs in nccl [69], which uses a ring topology,
no process can exit the collective operation until all processes have entered it, since the
collective’s performance depends on pipeline parallelism gained from having all processes
send messages simultaneously. This is also true regardless of topology for collectives like
reduce and allreduce, where inputs from multiple processes must be accumulated together.

Partitioned Global Address Space Model
In contrast to the bulk synchronous model, the Partitioned Global Address Space (PGAS)
communication model is based around allowing asynchronous one-sided communication oper-
ations. In the PGAS model, each process is equipped with a special region of memory called
a shared segment. The shared segments are typically allocated once at program startup, with
each process having an equally sized shared segment, where the size of the shared segments
is configurable at runtime. Processes can use global pointers, which reference memory that
lives in the shared segment of some process, to issue one-sided remote get, put, and atomic
operations to access and manipulate the memory of other processes. In this way, the shared
segments together form a globally addressable memory space. However, this memory space
is partitioned across all of the different processes. The PGAS model can allow for more
asynchronous algorithms than the bulk synchronous model, since processes do not necessar-
ily need to synchronize with other processes in order to access data. For instance, if a process
needs to access part of a distributed data structure, using the PGAS model, the process can
simply access that data directly using remote memory operations into the memory of the
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remote process. One of the other advantages of the PGAS model is that its communication
primitives correspond directly to RDMA primitives that are available in the hardware. This
means that when PGAS programs are executed on modern supercomputer or commodity
datacenter systems, these one-sided communication operations can be completed with very
low latencies, and without requiring the involvement of remote processes.

Examples of parallel programming environments that provide support for PGAS include
parallel programming languages such as UPC [41] and Chapel [111], as well as communica-
tion libraries such as OpenSHMEM [34], MPI’s remote memory access primitives [52], and
GASNet [23]

RPC-Based Models
As discussed above, remote procedure calls (RPCs) may be viewed as an extended form of
remote memory access that is able to handle more complex control flow. In fact, this was the
original vision for active messages (AMs) [47], which are a restricted form of RPC that sends
messages carrying a fixed-size data payload along with a pointer to a user space function
to be executed. Because of their low-latency design, active messages come with restrictions,
namely that their payloads are fixed size and that they cannot issue additional AMs [47, 23].
Active messages can be a very powerful tool, allowing programmers and library developers
to implement new, low-latency operations that include more complex control flow than is
possible with the current generation of RDMA operations.

Unlike active messages, remote procedure calls in general do not have these restrictions.
In most frameworks, RPCs are free to issue additional RPC operations and to carry payload
arguments of unlimited size. This creates additional latency due to the additional overhead
associated with maintaining an additional RPC queue of potentially unbounded length with
variable-size arguments [58].

While both RPC and the more restricted active messages have advantages over RDMA
operations in terms of expressiveness, they suffer from performance degradation due to lack
of attentiveness. When a process issues an RPC to be executed on a remote process, it must
wait until that process finishes any local computation or other communication operations it
is involved with, enters a progress function, and dequeues and runs the RPC. When RPCs
are interspersed with computation, this may cause a dramatic increase in latency unless
resources are dedicated to maintain progress threads. We discuss this tradeoff in further
detail in Chapter 8.

High-Level Parallel Programming Environments
A significant amount of the high-performance computing literature, as well as engineering
effort in the HPC space, has been devoted to alleviating the burden on programmers who
develop and optimize applications that run in large-scale distributed memory supercomputer
as well as commodity datacenter environments.
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Parallel Programming Languages
Most early approaches to developing high-level programming environments for parallel ap-
plication developers focused on developing new programming languages. A number of ded-
icated programming languages or language extensions provide language-level support for
one-sided remote memory access primitives, almost all using a Partitioned Global Address
Space (PGAS) programming model. UPC [41], Titanium [118], X10 [36], High Performance
Fortran [72], and Chapel [111, 32] are parallel programming languages which offer a PGAS
distributed memory abstraction. There are a number of advantages associated with using a
dedicated programming language that has a semantic understanding of a distributed memory
space. Chief among them is the ability to perform static optimizations using global program
knowledge. This can allow an optimizing compiler to automatically relax synchronization,
to convert remote operations into local ones, or to aggregate many small messages together
to improve network performance [71]. Language builders also have the ability to restrict the
syntax that users have access to, in order to encourage them to write easily parallelizable
programs. However, due to the complexities associated with developing and implementing
a new programming language, a compiler, and the libraries needed to make it usable, devel-
oping parallel programming languages can be a difficult task, and they have historically had
difficulties increasing adoption [72, 73].

High-Level Parallel Programming Libraries
UPC++ is a C++ library which offers a PGAS distributed memory programming model
as well as the ability to issue remote procedure calls (RPCs) [121, 16, 17]. UPC++ has
a heavy focus on asynchronous programming that is absent from BCL, including futures,
promises, and callbacks. UPC++’s RPCs can be used to create more expressive atomic
operations, since all RPCs are executed atomically in UPC++. However, these operations
require interrupting the remote CPU, and thus have slower throughput than true RDMA
atomic memory operations. The current version of UPC++ also lacks a library of data
structures, and UPC++ is closely tied to the GASNet communication library, instead of
supporting multiple backends.

Global Arrays provides a portal shared memory interface, exposing globally visible array
objects that can be read from and written to by each process [86]. While many application-
specific libraries have been built on top of Global Arrays, it lacks the kind of high-level
generic data structures that are the focus of this work.

Distributed Data Structures
DASH is another C++ library that offers a PGAS distributed memory programming model [48].
DASH has a large focus on structured grid computation, with excellent support for dis-
tributed arrays and matrices and an emphasis on providing each process with fast access to
its local portion of the distributed array. While DASH’s data structures are generic, they do
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not support storing objects with complex types. DASH is tied to the DART communication
library, which could potentially offer performance portability through multiple backends, but
is currently limited to MPI for distributed memory communication.

HPX is a task-based runtime system for parallel C++ programs [70]. It aims to offer
a runtime system for executing standard C++ algorithms efficiently on parallel systems,
including clusters of computers. Unlike BCL, which is designed to use coordination-free
RDMA communication, HPX’s fundamental primitives are remote procedure calls used to
distribute tasks.

STAPL, or the standard adaptive template library, is an STL-like library of parallel
algorithms and data structures for C++ [105]. STAPL programs are written at a much
higher level of abstraction than BCL, in a functional style using special higher-order functions
such as map, reduce, and for-each which take lambda functions as arguments. From this
program description, STAPL generates a hybrid OpenMP and MPI program at compile time.
Some versions of STAPL also include a runtime which provides load balancing. The current
version of STAPL is only available in a closed beta and only includes array and vector data
structures [103].

PETSc, Chombo, and AMReX provide data structures for sparse and dense matrices and
structured and unstructured grids, but do not focus on the types of irregular, generic data
structures discussed here [1, 40, 120].

Aguilera, et al. have proposed various hardware extensions to RDMA specifically to allow
for the efficient execution of operations on remote data structures in NIC hardware [3]. These
include an indirect access primitive that can be used to access a value at an offset from a
pointer on a remote node, allowing for a dynamically resizing remote vector; various scatter
and gather primitives, and a form of notifications. We believe that the performance model
presented here, in Chapter 8, is good fit for evaluating potential new RDMA instructions,
and that similar microbenchmark analysis can help hardware and software developers to
design and evaluate new hardware and data structures.

RPC-Based Programming Models
AM++ is C++ library built on top of MPI that provides a high-level active message API sim-
ilar to that discussed in this paper [113]. Active Pebbles extends AM++ by adding support
for message aggregation and more sophisticated termination detection mechanisms [112].
You’ve Got Mail (YGM) is an MPI-based system that provides an active message-like API
with message- and node-level aggregation [93].

The Multipol library provided a set of concurrent data structures on top of active mes-
sages, including dynamic load balancing and optimistic task schedulers [31]. However, it was
non-portable and did not have the rich set of hash table data structures discussed here nor
the notion of concurrency promises.

The Python-based parallel programming frameworks Ray [81] and Dask [95] expose par-
allelism using RPCs. However, both of them use a scheduler to automatically determine
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where to place RPCs within a cluster, rather than requiring users to explicitly declare where
tasks should be executed.

Libraries for Aggregation
Message aggregation is an important technique for optimizing the execution of parallel ap-
plications that perform a large number of fine-grained operations. By bundling up many
small messages together into larger aggregated messages, the latency costs associated with
sending many small messages over the network can be eliminated. Aggregation systems that
automatically bundle communication operations together can thus transform what would
otherwise be latency-bound problems into bandwidth-bound ones.

Significant work has been done on using aggregation within some of the parallel program-
ming environments already discussed, such as UPC and UPC++ [51, 17], but some libraries
have been specifically developed to support aggregation. Bale is a C library designed to
support aggregation, offering the core abstraction of conveyors, which are dedicated streams
shuttling data between processes [79]. Each process can pull data from a conveyor or push
data to a particular process using a conveyor. The Bale system will automatically aggregate
pieces of data that need to be transferred across the conveyor, and parameters such as target
message size can be tuned independently after a program has been written.

Many RPC-based programming environments also offer tools to automatically aggregate
RPC requests together, sending them over the network in larger bundled messages. The
previously mentioned Active Pebbles [112] implements aggregation automatic aggregation of
RPCs on top of the AM++ [113] programming environment, while YGM [93] implements an
RPC-like with node-level aggregation directly over MPI. The library ARL [114] implements
a future-based RPC interface with automatic node-level aggregation on top of GASNet.
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Chapter 3

Building Distributed Data Structures

This chapter introduces the overall design used to develop RDMA-based distributed data
structures in this work, starting with a discussion of the hardware capabilities of modern
RDMA-based networks in regards to building distributed data structures. We follow with
a detailed introduction of the BCL Core, which is the cross-platform communication API,
based on global pointers, that we use to implement distributed data structures. We then
discuss how this API can be augmented to support complex user-defined types and extended
to support addressing other types of remote memory, such as memory resident on GPUs.
We then continue with an overview of the general user-side interface for constructing and
manipulating distributed data structures as well two mechanisms for allowing user-guided
control of data structure optimizations, concurrency promises and buffers.

3.1 RDMA-Based Communication Primitives
This chapter discusses the BCL Core, which is a set of RDMA-based communication primi-
tives for implementing distributed data structures. The BCL Core provides a core abstraction
of global pointers, which are pointer-like C++ objects that can be used to reference memory
residing in the shared segment of another process. Users can interact with global pointers
in a similar manner to how they would interact with regular pointers, such as dereferencing
them to access individual data elements, issuing bulk data copies, or invoking atomic oper-
ations such as compare-and-swap. Operations on global pointers correspond directly to Re-
mote Direct Memory Access (RDMA) primitives supported by most modern supercomputer
interconnects, as well as in many commodity datacenter environments. This means that
operations on global pointers can be executed directly in the network hardware, which helps
reduce latency and prevents the need for direct synchronization between remote processes.
In addition, the one-sided nature of RDMA network communication corresponds directly to
the one-sided nature of most traditional data structures, which typically involve one thread
of executing manipulating a data structure using operations like insertions, retrievals, pushes
or pops.
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RDMA-Based Network Communication Capabilities
Before discussing a specific software API, it is important to consider the RDMA hardware
capabilities of modern Network Interface Cards (NICs). While the precise capabilities of dif-
ferent RDMA NICs varies, we can identify a common subset of RDMA operations supported
by the vast majority of RDMA-supporting networks, as well as their general synchroniza-
tion models and performance characteristics. When describing RDMA operations on remote
memory, we will refer to two processes, the local or origin process that is issuing the RDMA
operation and the remote process whose memory is being accessed. Remote get and remote
put are the two most fundamental operations supported by RDMA.

Remote put operations copy a block of data from a local buffer into a region of a destina-
tion process’ memory. Typically, one or more network packets are sent across the network to
the remote NIC. As these packets are received at the destination, a DMA (Direct Memory
Access) engine on the NIC copies them directly into DRAM memory. To signal to the origin
process that the remote put operation has completed, the destination NIC must send a signal
back to the origin, completing the roundtrip. The origin process can wait on this message
in order to synchronize on the completion of the put operation. In order to access remote
memory using RDMA operations, the memory must be registered with the NIC, allowing the
NIC to directly read or write into that memory when it receives an RDMA request over the
network. It is also important to note that before a put operation is completed, RDMA-based
networks do not necessarily check the validity of data that arrives in the buffer, nor do they
guarantee the order in which data may arrive in the buffer. This is because it is possible
for packets to arrive out of order or even with corrupted data when they are initially copied
into the destination buffer. Only when the operation fully completes is the data guaranteed
to be fully copied.

Remote get operations copy data from the memory of a remote process into a local buffer
on the origin process. Remote get operations typically operate by signaling to the remote
NIC to issue a remote put operation copying the desired remote data back into a buffer
on the local process. In order for the data to be copied back onto the origin process, the
local receive buffer must be registered with the NIC. This can either happen on-demand at
the time the remote get is issued, in which case the registration of the local output buffer
will incur a fixed cost, or it can be done beforehand using a bounce buffer of pre-registered
memory [78]. Typically, the bounce buffer is used for small, fine-grained transfers where the
cost of an additional copy is minimal, while the local output buffer is registered for larger
transfers where the cost of the registration is amortized by the time to copy the data over
the network [77].

In addition to remote get and remote put operations, the vast majority of RDMA net-
works offer remote atomic operations, which perform a restricted set of read-modify-write op-
erations atomically to locations in remote memory. These atomic operations include atomic
operations common in the CPU domain such as compare-and-swap on 32 and 64 bit value, as
well as basic integer arithmetic, including fetch-and-add, fetch-and-AND, fetch-and-OR, etc.
on 32 or 64-bit integers. Some networks support a broader set of atomic or other synchro-
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nization primitives, such as extended size atomics, which can operate on larger word sizes,
or signaling puts, which signal when a put has completed by updating an additional mem-
ory location. However, due to a lack of portability, these extended atomics are not widely
supported by communication libraries. Thus, in this work, we largely restrict ourselves to
remote get, remote put, and 64-bit atomic operations.

Since RDMA get, put, and atomic operations can all be executed directly in the NIC,
they can be completed with very low latency, typically on the order of 2 to 4 microseconds on
modern supercomputer and commodity Ethernet networks. Atomic operations sometimes
take slightly longer, particularly if many processes are modifying the same value. However,
even under high contention, a single remote atomic operation is unlikely to take longer than
6-8 microseconds, even at high concurrencies. Note that this hardware latency of a single
atomic operation is distinct from the overall latency of, for example, obtaining a lock if
multiple retries over the network are required.

Small RDMA transfers, for example an RDMA put of 512 bytes or smaller, are entirely
bound by latency. As the transfer size grows, however, RDMA transfers quickly achieve
better performance, becoming bound by network bandwidth once reaching a transfer size of
around 4 KB on Cray Aries networks, although the optimal message sizes do vary by net-
work [24]. In microbenchmarks, RDMA-based communication libraries like GASNet-EX are
able to reach peak bandwidth at lower message sizes compared to two-sided communication
primitives [24].

An API for Building RDMA-Based Data Structures
One of the main goals of this work is to provide a collection of high-level data structures that
are cross-platform, meaning that they can be used within programs written using a variety
of different communication libraries. To accomplish this, BCL uses a small cross-platform
internal API called the BCL Core. The BCL Core is supported by a number of different
communication backends which implement a limited number of fundamental communication
operations, typically using low-level communication libraries. These include an initialize
function, which initializes the communication library including a shared segment of globally
accessible memory on each process, as well as basic communication functions manipulating
these shared segments such as remote puts, gets, and atomic operations. One of these com-
munication backends is chosen at compile time using compiler directives. There are three
primary advantages to this approach. First, supporting a variety of communication libraries
aids integration of high-level data structures into an already-existing library. Since the BCL
library only consists of code that calls functions in the backend communication library, BCL
typically can be included as a header-only library without modifications to the compiler
toolchain. Second, this allows more opportunity for portability and performance tuning for
programs that only use BCL programs, since they can be compiled with any of the sup-
ported communication libraries. This is particularly useful when dealing with a collection of
varied supercomputer or commodity cluster environments whose optimized communication
libraries may not intersect. Third, implementing data structures on top of an internal DSL
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allows for new communication libraries to be supported more easily, including both tradi-
tional distributed memory communication libraries as well as communication libraries that
target new or experimental hardware, such as communication between GPUs or with custom
hardware.

While the BCL Core is a full-fledged distributed programming environment and can be
used to implement complex distributed programs, such as the data structures discussed in
this work, users need not learn or use any of the BCL Core functionality discussed here—
outside of the BCL::initialize(), BCL::finalize(), and BCL::barrier() functions—in
order to use them. The main contribution of the BCL Core is that it provides a minimal set
of communication functionality for implementing RDMA-based distributed data structures.

The BCL Core provides a high-level PGAS memory model based on global pointers,
which are C++ objects that allow the manipulation of globally accessible regions of remote
memory. During initialization of the BCL library, each process creates a shared memory
segment of a fixed size, and throughout the program every process can read and write from
or to any location within any process’s shared segment using global pointers.

Global pointers are C++ objects that keep track of (1) the rank, or process ID number
of the process on which the memory being pointed to is located, as well as (2) a particular
offset within that process’ shared memory segment. Together, these two parameters uniquely
identify an address in global memory. Global pointers are regular, trivially copyable C++
objects and can be passed around between BCL processes using communication primitives,
or indeed themselves be stored using global memory. Global pointers support pointer arith-
metic operations, comparison, dereference, and other operators and methods, making them
analogous to local pointers. They also fulfill the std::random_access_iterator concept in
the C++ standard library.

An important limitation of global pointers is that they may only be used to reference
trivially copyable objects, which are objects which can be copied by copying their byte level
representation, as would be done with memcpy. If a type has a trivial copy constructor, it
means we can byte copy that object into and out of remote memory. Types that do not
have trivial copy constructors often use dynamic memory management or perform other
operations that would cause their internal representations to be invalid if byte copied over
the network. We discuss a low-overhead mechanism for storing non trivially copyable types
using serialization in Section 3.3.

Global pointers can be used in a number of basic communication functions that imple-
ment primitives such as remote get and remote put, which read from or write to remote
memory. They can also be used with atomic operations such as fetch-and-op (with support
various operators such as addition, subtraction, and bitwise operations) as well as the more
fundamental compare-and-swap.
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Communication Primitives
Writing and Reading

The BCL Core’s primary memory operations involve writing and reading to and from global
pointers. Remote get operations read from a global pointer and copy the result into local
memory, and remote put operations write the contents of an object in local memory to a
shared memory location referenced by a global pointer. Remote gets and remote puts can
be done with a number of different communication functions, including BCL::memcpy(),
which functions similarly to the standard std::memcpy(), as well as various versions of
BCL::rput() and BCL::rget(), which can transfer individual elements as well as arrays of
data.

Memory Allocation

The BCL Core provides methods that allow each process to allocate and deallocate memory
within its own shared segment. This is implemented by the BCL Core itself using the
shared segment allocated by the BCL backend. Remote memory allocation is the ability
for processes to asynchronously allocate memory resident in the shared segment of another
process. In PGAS environments that also support remote procedure calls (RPC), remote
memory allocation can be trivially supported by invoking an RPC on a remote process that
then allocates memory in the desired shared segment, returning a global pointer to the
newly allocated memory [16]. However, in the absence of RPC, adding support for remote
memory allocation using only RDMA primitives must rely on remote atomics. This would
require either adding a significant performance penalty for allocation operations performed
in local shared segments or bifurcating memory to allow remote allocations using remote
atomics in a special region, reducing the size of the largest possible memory allocation
and fragmenting memory. In addition, freeing and compacting remote memory introduces
significant challenges. Thus, this work does not assume remote memory allocation as a
fundamental primitive, and instead relies on processes using coordination to communication
pointers to remote memory. This is usually done using broadcast operations to communicate
pointers to newly allocated memory during collective data structure construction or resize
operations.

Synchronization and Memory Model
The BCL Core’s communication primitives follow a relaxed consistency model shared by
most low-level communication libraries, which allows remote put operations to be completed
lazily in a “nonblocking” manner. When a remote put operation returns, the local buffer
whose data is to be copied to a remote location is free to be modified without interrupting
the operation. However, the data is not necessarily finished copying in place at the remote
location until a barrier or flush operation has been completed, which serves as a memory
fence and ensures that all previous remote memory operations are completed before the
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program continues. Remote get operations are completed synchronously—the data is copied
from the remote memory location to the local memory buffer immediately, and when the
call returns the local memory buffer with the copied data is available to be read. Remote
atomic operations are completed immediately, but do not necessarily force completion of any
previous memory operations, necessitating the addition of a flush if an atomic is to signal
the completion of some other remote memory operation.

Asynchronous Operations
BCL also supports asynchronous remote get, put, and atomic operations, which must be
synchronized using individual request objects to ensure completion. Unlike regular remote
put operations, when an asynchronous put operation returns, the local input buffer cannot
be modified without interfering with the operation until after waiting on the operation’s
completion handle. Similarly, for remote get operations and atomic operations, the local
output buffer is not guaranteed to be ready with the results of the operation until after
waiting on the corresponding completion request. Request objects have two methods,
check, which returns whether or not the request has been completed, and wait, which waits
until the request has been completed. Since each communication library may have different
synchronization handles and mechanisms, the request class is implemented by the backend.
Each request handle implementation typically requires around 20 lines of code.

Building on top of asynchronous communication and these generic request handles, fu-
tures provide a way to return an object asynchronously without having to wait for all of
the communication or computation involved in constructing that object to finish. In BCL,
some data structures have asynchronous versions of some of their data structure methods,
which return futures. When the object associated with a future is required, the method
get can be invoked, which performs any necessary synchronization and returns the object.
BCL provides a generic future implementation that can be used to return future to objects
being asynchronously read over the network. This future implementation takes in a pointer
to the object that is being read, along with any number of BCL requests that need to be
completed before the object will be ready to be read. Some data structures also implement
custom future types incorporating data structure-specific logic. For example, our hash table
provides a future implementation that will asynchronously probe until the desired key is
found.

Barrier and Flush

BCL applications can enforce synchronization using BCL barriers, which are both barriers
and memory fences, forcing ordering of remote memory operations. In order for a process to
enter a barrier, all of its memory operations must complete, both locally and at the remote
target. In order for a process to exit a barrier, all other processes must have entered the
barrier. Flush operations force the completion of any outstanding remote memory operations
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Figure 3.1: Organizational diagram of BCL.

issued by the calling process. Thus, a barrier contains an implied flush operation on each
process.

Collectives
BCL includes the broadcast and allreduce collectives. Depending on the backend, these
may be implemented using raw remote put and remote get operations, or, more likely, may
map directly to high-performance implementations offered by the backend communication
framework. In the work presented here, performance of these collectives is not critical, as
they are mainly used for organizing and transporting pointers and control values.

Atomics

BCL’s data structures avoid direct avoid coordination between CPUs, instead relying on
remote memory atomics to maintain consistency. BCL backends must implement at least
the atomic compare-and-swap operation, since all other atomic memory operations (AMOs)
can be implemented on top of compare-and-swap [61]. However, backends will achieve much
higher performance by directly including any atomic operations available in hardware. Other
atomic operations provided by current BCL backends and utilized by BCL data structures
include atomic fetch-and-add and atomic-fetch-and-or. We depend on backends to provide
high quality interfaces to atomic operations as implemented in hardware now commonly
available in both high-end supercomputers and commodity datacenters. When hardware
atomics are not available, backends often provide atomic operation support through active
messages or progress threads. This allows the application to run, but likely with higher
overhead due to the slower performance of atomics.

3.2 Backends
BCL backends implement a limited number of communication primitives to provide support
for the full BCL Core. These include an init() function which allocates symmetric shared
memory segments of a requested size, the barrier(), read() and write() operations that
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perform variable-sized reads and writes to global memory, at least an atomic compare-and-
swap, and broadcast and reduce operations. For asynchronous operations, backends must
implement a basic request class that provides a completion handle with a wait method.
The BCL Core then implements futures using this basic request object. BCL backends
typically require around 300 to 700 lines of code 1.

MPI
For our MPI backend, we use the MPI-3 one-sided communication interface [52]. Depending
on the MPI implementation and available hardware, these remote memory access routines
may be implemented using RDMA or shared memory, or emulated using two-sided commu-
nication if hardware support is unavailable. Remote get and remote put operations can be
directly implemented using the MPI_Get and MPI_Put functions. The flush operation can
be implemented using MPI_Win_flush_all, which forces the completion of all outstanding
remote memory operations. A barrier consists of a flush followed by an MPI barrier. Atomic
operations can all also be implemented using corresponding one-sided MPI functions.

OpenSHMEM
OpenSHMEM is a standardized interface for distributed memory communication offering
one-sided remote memory operations, atomics, and collectives [34]. SHMEM operations
map very closely to the low-level remote memory operations available in hardware. High-
performance SHMEM implementations that comply with the OpenSHMEM standard include
Cray SHMEM, Sandia OpenSHMEM, and Open MPI’s SHMEM implementation [98].

GASNet-EX
GASNet-EX is a high-performance communication framework for supercomputers and has
been used as a backend for many high-level PGAS libraries and languages, including UPC,
UPC++, Co-Array Fortran, Legion, and Chapel [23].

3.3 BCL ObjectContainers
While global pointers themselves cannot be directly used to store non trivially copyable types
in remote memory, the BCL Core includes a mechanism called BCL ObjectContainers that
allows non trivially copyable types to be stored in distributed memory. ObjectContainers
provide a transparent abstraction for storing complex data types in distributed memory with
low overhead. BCL ObjectContainers are necessary because not all data types can be stored
in distributed memory by byte copying. The common case for this is a struct or class, such as

1As reported by David A. Wheeler’s ‘SLOCCount,’ which reports “physical lines of source code,” not
including blank lines and comments.
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the C++ standard library’s std::string, which contains a pointer. The pointer contained
inside the class is no longer meaningful once transferred to another node, since it refers to
local memory that is now inaccessible, so we must use some other method to serialize and
deserialize our object in a way that is meaningful to remote processes. At the same time,
we would like to optimize for the common case where objects can be byte copied and avoid
making unnecessary copies.

Implementation

BCL ObjectContainers are implemented using the C++ type system. A BCL ObjectCon-
tainer is a C++ struct that takes template parameters T, a type of object that the Object-
Container will hold, and TSerialize, a C++ struct with methods to serialize objects of
type T and deserialize stored objects back to type T. BCL ObjectContainers themselves are
of a fixed size and can be byte copied to and from shared memory. An ObjectContainer has
a set method, which allows the user to store an object in the ObjectContainer, and a get
method, which allows the user to retrieve the object from the container.

BCL includes a number of TSerialize structs for common C++ types, and these will
be automatically detected and utilized by the BCL data structures at runtime. Users will
usually not have to write their own serialization and deserialization methods unless they
wish to use custom types which use heap memory or other local resources.

A finer point of BCL serialization structs is that they may serialize objects to either fixed
length or variable length types. This is handled automatically at compile time by looking
at the return type of the serialization struct: if the serialization struct returns an object
of any trivially copyable type, then the serialized object is taken to be fixed size and is
stored directly as a member variable of the serialization struct. If, however, the serialization
struct returns an object of the special type BCL::serial ptr, this signifies that the object
is variable length, even when serialized, so we must instead store a global pointer to the
serialized object inside the ObjectContainer.

User-Defined Types

To store user-defined types in BCL data structures, users can simply define serialization
structs for their type and inject the struct into the BCL namespace. For trivially copyable
types, this is unnecessary, since it will be automatically detected through the type system
that a byte copy is sufficient for serialization. Users can then either serialize their objects
into a trivially copyable object, as would be the case with a fixed-size list or other types that
do not use dynamic memory allocation, or serialize their object into a dynamically sized
BCL::serial ptr buffer.

Copy Elision Optimization

An important consideration when using serialization is overhead in the common case, when
no serialization is actually required. In the common byte-copyable case, where the serializa-
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tion struct simply returns a reference to the original object, intelligent compilers are able to
offer some implicit copy elision automatically. We have observed, by examining the assembly
produced, that the GNU and Clang compilers are able to optimize away the unnecessary
copy when a ObjectContainer object is retrieved from distributed memory, get() is called
to retrieve the item lying inside. However, when an array of items is pulled together from
distributed memory and unpacked, the necessary loop complicates analysis and prevents the
compiler from performing this copy elision.

For this reason, BCL data structures perform explicit copy elision when reading or writing
from an array of ObjectContainers stored in distributed memory when the ObjectContainer
inherits from the BCL::identity serialize <T> struct, which signifies that it is byte copy-
able. This is a compile-time check, so there is no runtime cost for this optimization.

3.4 Extension to GPUs
This model of pointers to remote memory can be extended to include other types of memory,
such as memory residing on GPUs. In BCL, this is supported through the addition of CUDA
pointers, which point to a location in device memory, that is memory residing on a GPU
in CUDA C++. In BCL, we have implemented an additional, optional backend that uses
the NVSHMEM communication library, which is an extension of the OpenSHMEM API
to support GPU communication. NVSHMEM enables direct GPU-to-GPU communication
using GPUDirect RDMA over Infiniband between GPUs on different nodes, or between
GPUs on the same node over an in-node fabric like NVLink or PCIe.

3.5 Building Distributed Data Structures
Using global pointers that support asynchronous, one-sided access into remote memory,
which can be executed using in hardware using RDMA, along with ObjectContainers, which
augment remote pointers by allowing us to store complex, user-defined types, we have all
the necessary components to build distributed data structures.

Data structures in this work are split into two categories: remote and distributed. Both
types of data structures are globally visible within the context of a distributed execution;
however, a remote data structure stores data only on a single process, and a distributed data
structure distributes data amongst multiple processes. The primary example of a remote
data structure within BCL is a queue, where multiple processes may push or pop data from
the queue, but the queue itself lives on a single process.

Both remote and distributed data structures rely upon processes having global knowledge
about the location and distribution of data within a data structure. Typically, data will be
stored using a collection of global pointers, which point to different segments of data. In
order to allow each process to independently manipulate the data inside the data structure,
it will need access to those global pointers, which typically means each process having a local



CHAPTER 3. BUILDING DISTRIBUTED DATA STRUCTURES 23

array with copies of the global pointers to each segment of data. This helps reduce latency,
as it allows a process to directly issue remote memory operations to manipulate the data
structure, instead of first loading in global pointers from remote memory.

In order to ensure that each process has a global view of the data structures, data
structures must be constructed and destructed collectively, meaning that every process within
the distributed execution must call the constructor at the same time. Inside the constructor,
the different segments of the distributed data structure are allocated, and remote pointers
are broadcast to all the processes. In addition to construction and destruction, any data
structure operation that reallocates data or modifies the layout of the data structure must
be a collective operation. This is due to the global knowledge that processes must have. Since
processes could attempt to access any part of the data structure at any time, the location of
data cannot be changed without informing all processes. This includes, for example, resize
or reshape operations, which must often reallocate and redistribute global pointers to newly
expanded data segments.

All other data structure operations, including primary data structure operations such
as inserts, lookups, pushes, or pops, are noncollective, and can be called by any process
individually at any time. To perform a data structure operation, a process can directly issue
remote memory operations that access remote data, and data structure methods will use
atomics or locks to synchronize access where necessary.

3.6 Concurrency Promises
Many data structure operations have multiple possible implementations that use different
levels of atomics or locking synchronization, trading off between the cost of coordination and
the consistency level that can be guaranteed. If we have appropriate global knowledge about
the context in which a particular data structure operation is issued (i.e., whether a particular
invocation of insert may be called concurrently with find, or will only be coincide with
other calls to insert), we can use that knowledge to select the fastest implementation that is
guaranteed to be correct. This can allow for constant factor increases in performance, since
an individual data structure operation may, for example, be reduced from 3 to 2 remote
memory operations if a single synchronization operation can be elided.

Since we are implementing distributed data structures in the context of a software library,
where we do not have the ability to perform static analysis or other compiler optimizations,
it is not possible for us to automatically select the optimal implementations. However,
it is possible to provide the user with the ability to provide concurrency promises, which
are optional pieces of information about the context in which a particular data structure
operation is being invoked. These are given in the form of a list of data structure methods
that may be invoked concurrently by other processes during a method invocation. Generally,
concurrency promises specify whether a data structure will undergo only reads, only writes,
or both reads and writes during a particular phase. For example, with the remote queue data
structure CircularQueue, users can optionally specify an extra parameter containing push,
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to indicate only push operations will occur concurrent with an operation, pop, to indicate
only pop operations, or push | pop to indicate both may occur. By default, data structure
methods will use the implementation that supports the highest level of concurrency (and
thus, typically the highest cost). Upon recognizing that a data structure invocation occurs
within a specific context, such as that it occurs in a part of the program in which only
other insert operations are being issued, or even in which only local insert operations
are being issued, users can add concurrency promises as an additional optional argument.
Concurrency promises are discussed in the chapters for their respective data structures, in
Chapter 5 for queues and Chapter 6 for hash tables. Additional performance modeling of
the different data structure methods for each promise level are discussed in Chapter 8.

3.7 Buffers
While concurrency promises can allow users to achieve constant factor speedups by remov-
ing unnecessary synchronization operations based on the context in which data structure
operations are issued, reducing the latency of individual operations, the overall performance
of an application that uses them will still be bound by network latency. While there is an
important class of applications which require the lowest latency possible in order to perform
asynchronous, real-time lookups, many applications also have phases during which opera-
tions do not necessarily have to complete immediately. One example of this is an insertion
phase, in which all processes insert values into a distributed data structure in order to fill
it with data, followed by a barrier before another phase begins. This type of pattern allows
for the use of aggregation, where operations that need to be completed, instead of being
issued in separate operations that would correspond to separate, latency-bound roundtrips
over the network, can be bundled together in larger messages that can saturate the network
bandwidth. When the operations are processed on the remote side, they can be performed
using local memory operations, which are much higher performance. We discuss buffer data
structures later along with the specific data structures that they support.
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Chapter 4

Experimental Setup and Methodology

In this work, we examine the performance characteristics of various distributed data struc-
tures using a collection of applications and benchmarks. These applications and benchmarks
are executed across a variety of distributed computing systems, each of which is equipped
with different networks, processors, and accelerators. Here, we include a brief description
of each of the compute systems used in benchmarks in this work, a summary of which is
presented in Table 4.1.

Cori Phase I
Cori Phase I is a supercomputer system at the National Energy Research Center (NERSC)
at Lawrence Berkeley National Laboratory. Each node of Cori Phase I is equipped with two
Intel Xeon E5-2698v3 processors, each of which has 16 cores using the Haswell microarchi-
tecture [84]. Each Cori node is equipped with 128 GB of DDR4 memory.

Cori nodes are connected with a Cray Aries network, with each node having an injection
bandwidth of approximately 9.25 GB/s. The Cray Aries network uses a Dragonfly topology,
which is a high-radix network that closely mimics the performance characteristics of a fully
connected network topology, such as a fat tree [6]. Like most Cray Aries installations, Cori
Phase I’s network is missing some global fiber optic links to save cost, which means that at
large scales the routing bandwidth, or bandwidth available to route messages between the
two endpoints, is lower than the aggregate injection bandwidth. This means performance
may be somewhat degraded at large scales for irregular all-to-all communication. On Cori

Name CPUs GPUs Interconnect Type Injection BW
Cori Phase I Intel Xeon E5-2698v3 x2 - Cray Aries 9.25 GB/s
AWS c3.4xlarge Intel Xeon - Commodity Ethernet 1.25 GB/s
Summit IBM POWER9 x2 Nvidia Tesla V100 x6 Mellanox EDR Infiniband 25 GB/s
Summitdev IBM POWER8 x2 Nvidia Tesla A100 x6 Mellanox EDR Infiniband 25 GB/s

Table 4.1: Summary of systems used in evaluation throughout this work.
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Phase I, the global bandwidth, which is the sum of all of the routing links, is equal to 2.41
GB/s per node. This means that for very large jobs with random communication patterns,
we would expect achieved bandwidth per node to decrease below the injection bandwidth as
the scale of the job increases. This is because unlike in a full fat tree network, there is not
enough routing bandwidth to sustain the injection bandwidth at scale for all communication
patterns.

Amazon Web Services
Amazon Web Services Elastic Compute (AWS EC2) is a cloud service providing on-demand
access to commodity datacenter servers. AWS servers are available in a number of different
configurations, including different processor, memory, accelerator, and network configura-
tions. In some of our experiments, we use AWS EC2 c3.4xlarge servers, which are advertised
as compute-oriented servers connected by a commodity Ethernet network. Each node is
equipped with an Intel Xeon E5-2680 v2 processor with 16 cores [7]. The nodes are con-
nected by a commodity Ethernet network, with each node’s network interface card (NIC)
capable of 1.25 GB/s of injection BW.

Amazon does not publish the topology of the network used by c3.4xlarge or most other
AWS EC2 server types. However, upon personal communication with AWS staff, we were
informed that users should expect the network to exhibit fat tree topology-like behavior with
a high amount of routing bandwidth, assuming all servers are requisitioned using the same
placement group using the cluster placement strategy, which attempts to place all servers in
an allocation close together. This was done for all of our AWS experiments.

Summit
Summit is a supercomputer system at the Oak Ridge Leadership Computing Facility (OLCF)
at Oak Ridge National Laboratory (ORNL). Each node of Summit is equipped with two 22
core IBM POWER9 processors, along with 6 Nvidia Tesla V100 GPUs [87]. Each node’s
CPUs share 512 GB of DDR4 memory, while each GPU is equipped with 16 GB of DDR5
memory.

Summit’s nodes are connected by a Mellanox EDR Infiniband network, with each node
equipped with two Network Interface Cards (NICs), each with an injection bandwidth of
12.5 GB/s for a combined injection bandwidth of 25 GB/s per node. Summit’s nodes are
connected using a fully connected fat tree topology.

Summitdev
Summitdev was an experimental supercomputer system at the Oak Ridge Leadership Com-
puting Facility (OLCF) at Oak Ridge National Laboratory (ORNL). Summitdev served
as a precursor system to Summit, with very similar hardware, but a smaller scale. Each
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node of Summitdev was equipped with two IBM POWER8 processors, along with 6 Nvidia
Tesla P100 GPUs [9].

Like Summit, Summitdev’s nodes were connected by Mellanox EDR Infiniband network
in a fully connected fat tree topology. Each node was equipped with two NICs, each with an
injection bandwidth of 12.5 GB/s for a combined injection bandwidth of 25 GB/s per node.
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Chapter 5

RDMA-Based Queues

Queues are important data structures for a variety of applications. In a parallel computing
context, they are commonly associated with a number of different computational patterns,
including producer-consumer task management, where each process has a queue of tasks it
needs to complete and new tasks are pushed onto the appropriate process’s queue when new
work is produced [4]; frontier-based graph algorithms [38], where queues are used to control
the ordering of vertices visited; and data redistribution, where processes can redistribute
data to other processes by pushing values onto their queues [50]. One of the key advantages
of using RDMA-based queues is that they can be highly asynchronous. A process can reserve
a spot in the queue to write its data and then allow that data to be sent over the network
while it attends to other computation. This allows for overlap between the computation
that is generating the data to be redistributed and the queue communication, unlike a
bulk synchronous all-to-all operation, where all the data must be ready at the start of the
operation. Section 5.1 discusses more details of using queues for all-to-all communication
patterns.

When designing a distributed memory queue, there are two families of queue designs
to consider from the shared memory programming literature, linked list-based queues and
fixed-size ring buffer queues [62]. The first design has the advantage of supporting queues
of unbounded length. However, linked list-based queues have several disadvantages when it
comes to a distributed memory implementation.

First, linked list-based queues traditionally rely on the ability to perform atomic compare-
and-swap on pointers, which can be used to atomically append a new element to the queue.
While this is relatively easy and inexpensive to perform on just about any shared memory
CPU architecture, since pointers are usually 64 bits, within the word limitations of CPU
atomic operations, remote pointers are typically larger than 64 bits. There are methods to
enable compare-and-swap operations in distributed memory, but they all come with compro-
mises. Some recent RDMA NICs support extended size atomics, enabling compare-and-swap
operations on values larger than 64 bits [68]. However, these operations are non-standard and
are currently not supported by major communication libraries, leading to a loss of portabil-
ity. Some PGAS programming environments, such as UPC and UPC++, have special modes
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that shrink the size of global pointers to 64 bits, thus enabling atomic compare-and-swap
operations on global pointers, but this also requires shrinking both the maximum amount of
memory and the maximum number of processes that can be supported [15, 58]. It is possible
to emulate compare-and-swap operations using a lock, but this comes with significant perfor-
mance limitations, since it quadruples the latency in the best case (requiring four roundtrips
instead of one: lock, read, write, unlock) and in the presence of contention results in even
worse slowdowns.

The second disadvantage of link list-based queues is that, without the ability to allocate
memory in the shared segment of other processes, the actual nodes of the queue will likely be
located on a number of different processes. While this haphazard placement could potentially
be seen as an advantage for some use cases, in practice, it prevents queues from being used
to redistribute data to a particular process. It also introduces difficulties when it comes
to memory management, as a process that pops a node off of the queue may now need to
deallocate memory located in the shared segment of another process.

For this reason, we focus on fixed-size ring buffer queues in this chapter. In a ring buffer
queue, queues have a fixed maximum capacity, the size of the buffer, and the actual range of
elements within the buffer that hold queue elements are marked with integers: head, which
holds the index of the first element stored in the queue, and tail, which points to one slot
past the last element held in the queue. In order to push elements onto the queue, tail
must be incremented in order to allocate space for them, and then a remote put operation
will write the actual data into the buffer. In order to pop elements from the queue, head
must be incremented, and then a remote get will read the popped elements from the queue.

One of the central issues around maintaining correctness with distributed ring buffer
queues concerns how to ensure that data that is being written to the queue will not be
read until the write has fully completed. If two processes were simultaneously pushing and
popping data to and from a queue using only the reservation process described above, the
popping process would be free to read data from the queue as soon as it has finished its
fetch-and-add operation. Using the head and tail pointers, the popping process can only
see whether a push has begun, not whether the data is fully written in place. This could
result in the reading process reading invalid, half-written data.

As previously discussed, different applications have different demands from remote queues.
When using queues to perform work stealing, work pushing, or other queue-based task man-
agement, it is crucial for a queue to support concurrent push and pop operations correctly
and efficiently [38]. In contrast, when queues are being used to redistribute data in dedi-
cated phases, where barriers are commonly used to ensure completion, simultaneous push
and pop operations need not be supported, and the synchronization operations in a queue
implementation that does support simultaneous pushes and pops only introduce unnecessary
overhead. In addition, there are multiple techniques that can be used for ensuring synchro-
nization between pushing and popping processes that may be more suitable for different use
cases.

All queues in BCL are implemented as ring buffer queues. There is one large data buffer,
which holds the data that will be inserted into the queue, and this data buffer sits on a
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single process, which is designated when the queue is created. Queues are thus remote data
structures in BCL, so while a queue is globally visible to all processes, it is resident on only
one process at a time. In order to signal where data is written in the queue and to ensure
synchronization, a globally accessible head and tail integers mark the locations in the buffer
where data elements are stored. To push and pop data from the queue, processes perform
atomic operations on these integers and remote get and put operations on the data buffer.
Depending on the specific queue implementation, there may be additional requirements for
synchronization.

BCL contains three different types of remote queues suitable for different situations.
CircularQueue supports concurrent push and pop operations from multiple processes. To
support this, it requires a higher level of synchronization, which comes at a higher cost, al-
though this can be somewhat mitigated using concurrency promises, discussed in Section 5.2,
which can disable some of the synchronization when it is not needed. By contrast, FastQueue
supports only simultaneous pushes or concurrent pops. This queue specifically targets data
redistribution, where data is sent in distinct phases partitioned by global barriers. It mini-
mizes synchronization by relying on barrier synchronization to ensure data is finished writing
before any pop operations are issued. As a result, it is able to achieve significant perfor-
mance improvements over CircularQueue. Finally, ChecksumQueue, is able to offer most of
the same guarantees as CircularQueue, but at the cost of increased space and computation
to maintain a checksum value for each element pushed to queue.

FastQueue
We begin our detailed discussion of queue implementations with FastQueue, since it is the
simplest, and is built upon by the other queues, which essentially add additional synchro-
nization to the same framework. FastQueue uses three shared objects: a data segment,
where queue elements are stored; a shared integer that stores the head of the queue; and a
shared integer that stores the tail of the queue. To insert, a process first increments the tail
using an atomic fetch-and-add operation, checks that this does not surpass the head pointer,
and then inserts its value or values into the data segment of the queue. An illustration of
a push operation is shown in Figure 5.1. In general, the head overrun check is performed
without a remote memory operation by caching the position of the head pointer, so an in-
sertion requires only two remote memory operations. We similarly cache the location of
the tail pointer, so pops to the queue usually require only one atomic memory operation to
increment the head pointer and one remote memory operation to read the popped values.

CircularQueue
To support concurrent reads and writes, CircularQueue has an additional set of head and
tail pointers which indicate which portions of data in the queue are ready to be read. As pre-
viously mentioned, there are multiple implementations of push and pop for a CircularQueue
data structure, as listed in Table 5.2.
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Data Structure Method Collective Description Cost
BCL::CircularQueue

bool push(const T &val) N Insert item into queue. 2A + W
bool pop(T &val) N Pop item into queue. 2A + R
bool push(const std::vector <T> &vals) N Insert items into queue. 2A + nW
bool pop(std::vector <T> &vals, size t n) N Pop items from queue. 2A + nR
bool local nonatomic pop(T &val) N Nonatomically pop item from a local queue. `
void resize(size t n) Y Resize queue. B + `
void migrate(size t n) Y Migrate queue to new host. B + nW

BCL::FastQueue
bool push(const T &val) N Insert item into queue. A + W
bool pop(T &val) N Pop item into queue. A + R
bool push(const std::vector <T> &vals) N Insert items into queue. A + nW
bool pop(std::vector <T> &vals, size t n) N Pop items from queue. A + nR
bool local nonatomic pop(T &val) N Nonatomically pop item from a local queue. `
void resize(size t n) Y Resize queue. B + `
void migrate(size t n) Y Migrate queue to new host. B + nW

BCL::ChecksumQueue
bool push(const T &val) N Insert item into queue. A + W (1 + c)
bool pop(T &val) N Pop item into queue. A + R(1 + c)
bool push(const std::vector <T> &vals) N Insert items into queue. A + nW (1 + c)
bool pop(std::vector <T> &vals, size t n) N Pop items from queue. A + nR(1 + c)
bool local nonatomic pop(T &val) N Nonatomically pop item from a local queue. `
void resize(size t n) Y Resize queue. B + `
void migrate(size t n) Y Migrate queue to new host. B + nW (1 + c)

Table 5.1: A selection of methods from BCL queues. Costs are best case, using implemen-
tation chosen with no concurrency promises. R is the cost of a remote read, W the cost of a
remote write, A the cost of a remote atomic memory operation, B the cost of a barrier, ` the
cost of a local memory operation, and n the number of elements involved. c is the number
of bytes in a checksum divided by the number of bytes per element (usually ≤ 1).

Method Concurrency Promise Description Cost
push

(a) push | pop Fully Atomic 2A + W
(b) push Only Pushes 2A + W
(c) local Local Push `

pop
(d) push | pop Fully Atomic 2A + R
(e) pop Only Pops 2A + R
(f) local Local Pop `

Table 5.2: Implementations of data structure operations for BCL’s circular queue data struc-
ture.
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Push and Pop Operations
The default fully atomic implementation used to push (Table 5.2a) to a CircularQueue data
structure involves 2 atomic operations and a remote put operation with a flush. First, we
issue a fetch-and-add operation to increment the tail pointer, then write the data to the queue
and flush it. Finally, we must perform a compare-and-swap operation to increment the “tail
ready” pointer, indicating that the pushed data is ready to be read. A compare-and-swap
(CAS) operation is specifically necessary for the final step because we must ensure that all
previous pushes are also complete before we modify the “tail ready” pointer. A fetch-and-
add operation could increment the ready pointer to mistakenly mark other processes’ writes
as ready to be read. In the case where no pop operations will be performed concurrently
with pushes, we may perform the final atomic increment using a fetch-and-add (Table 5.2b).
Analogous implementations are used for pop operations (Table 5.2d and 5.2e).

Both queues support resizing as well as migrating to another host process, both as col-
lective operations. We evaluate the performance of our circular queue data structures in
Section 5.3.

ChecksumQueue
An alternative mechanism to using an atomic compare-and-swap operation to signal that the
pushed data is ready to read—since using CAS operations in this way can cause contention
when the operation must be repeatedly retried—is to use a checksum. Instead of using an
additional atomic operation to signal that the pushed data is ready to be read, processes
write a checksum alongside each element being pushed. When the popping process desires
to pop an element, it must check the checksum corresponding to the element being popped.
This use of the checksum removes the need for an additional atomic operation, at the cost
of (1) additional data movement and computation, since a checksum must now be computed
and written for every data element, and (2) increased cost of popping, since the popping
process must now perform a checksum to verify each element has been successfully written
before popping. However, most importantly, the checksum-based queue is able to reduce
the cost associated with repeated compare-and-swap attempts in the circular queue, which
greatly reduces the cost of a push operation in the presence of contention.

Since a ring buffer design is being used, if the queue wraps around, popping processes
may see old data that was previously written, including a correct checksum. In order to
prevent popping processes from perceiving this data as ready to be popped, it is necessary
to use a different hash function each time the queue is rounded. This may be done by
dividing the slot number by the size of the queue to calculate the round, and if the round is
odd, hashing the value twice. This results in old data always having an incorrect checksum
value, meaning that popping processes will never verify old data as correct.
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Figure 5.1: Process for pushing values to a BCL FastQueue. First (1) a fetch and add
operation is performed, which returns a reserved location where values can be inserted.
Then (2) the values to be inserted are copied to the queue.

Advantages of FastQueue
FastQueue can only be used in cases where there are phases of only pushes and only pops.
As discussed previously, this special case is particularly important when it comes to data
redistribution. While limited in this way, FastQueue has the advantage of requiring one fewer
atomic memory operations per push or pop. While CircularQueue does support disabling
some of its synchronization when it is not needed, allowing the final pop to be a single non-
blocking fetch-and-add operation, it still introduces additional, unnecessary coordination
overhead. We felt that phasal pushes and pops were important enough to warrant a separate
version of the data structure, since queues that support only multi-reader and multi-writer
phases are crucial to multiple algorithms.

5.1 Asynchronous All-to-All Pattern
BCL circular queues provide a straightforward, object-oriented way to asynchronously re-
distribute data in a distributed setting. This can be accomplished by placing a queue on
each node, then reading and writing into the appropriate queues to redistribute data to
other nodes. This achieves an effect similar to MPI’s all-to-all collective operation, but is
asynchronous and avoids all-to-all’s bulk synchronous coordination, instead using one-sided
operations. Newer versions of MPI do include asynchronous all-to-all operations; however,
this new version still requires coordination: all processes must enter the all-to-all operation
to initiate it, and a process may not introduce new data in the middle of an asynchronous all-
to-all operation already underway. Performing data redistribution with BCL queues allows
for greater overlap of communication and computation, since processes can overlap asyn-
chronous queue insertions with sorting operations and other computation that may create
new data to push to other processes. Figure 5.2 demonstrates how BCL queues can be used
to overlap communication and computation in the data redistribution phase of a bucket sort.
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1 auto sort(const std::vector<int>& data) {
2 std::vector<std::vector<int>> buffers(BCL::nprocs());
3
4 std::vector<BCL::FastQueue<int>> queues;
5 for (size_t rank = 0; rank < BCL::nprocs(); rank++) {
6 queues.push_back(BCL::FastQueue<int>(rank, queue_size));
7 }
8
9 for (auto& val : data) {

10 size_t rank = map_to_rank(val);
11 buffers[rank].push_back(val);
12 if (buffers[rank].size() >= message_size) {
13 queues[rank].push(buffers[rank]);
14 buffers[rank].clear();
15 }
16 }
17
18 for (size_t i = 0; i < buffers.size(); i++) {
19 queues[i].push(buffers[i]);
20 }
21
22 BCL::barrier();
23
24 std::sort(queues[BCL::rank()].begin().local(),
25 queues[BCL::rank()].end().local());
26 return queues[BCL::rank()].as_vector();
27 }

Figure 5.2: Our bucket sort implementation in BCL for the ISx benchmark.

Later, we will show how this leads to better performance on the ISx bucket sort benchmark.

5.2 Concurrency Promises
As we have discussed specifically for CircularQueue, distributed data structure operations
often have multiple alternate implementations, using varying levels of coordination. De-
pending on the context in which an operation is issued, meaning which other types of op-
erations may occur concurrently with it, more or less coordination may be required. The
common example of this which we have already discussed is phasal operations, where data
structures are manipulated in separate phases, each of which is separated by a barrier. Fig-
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ure 5.2 demonstrates a phasal queue operation, and other phasal operations are discussed
in Chapter 6. Crucially, the barriers associated with phasal operations provide a guaran-
teed synchronization point between different types of operations that. For example, in a
push phase, we are guaranteed that a barrier will take place before any pop operations are
issued. This often allows the use of implementations that use less synchronization. As we
have discussed, CircularQueue is able to convert a compare-and-swap operation to a more
contention-tolerant fetch-and-add operation, depending on the concurrency promise given.
In Chapter 6, we also discuss how find operations in a hash table can be executed with a
more optimized implementation—a single remote get operation, rather than 2 AMOs and a
remote get—when we are guaranteed that only find operations will be executed in the same
barrier region.

To take advantage of optimized implementations using concurrency promises, users op-
tionally provide a list of data structure operations that can take place concurrently with the
operation being issued. For example, if the user is calling the push method on CircularQueue,
they could specify the concurrency promise push to specify that only push operations will
occur simultaneously with this call to push, or they could specify push | pop to specify
that either push or pop operations may occur. The data structure will then automatically
select the best implementation that will be correct based on the user-provided concurrency
promise.

Within a dedicated programming language that can perform compiler passes to apply
optimizations using global program knowledge, many of these optimizations could in principle
be applied automatically. Indeed, some parallel programming languages such as Chapel [71]
do provide static optimizations of this kind, although they are currently focused on lower-
level operations like reads and writes into dense arrays. Since BCL is a library and not a
programming language, it is not possible to perform automatic optimizations based on global
code knowledge that would determine static analysis to discover. Thus, we require user input
to give us this static knowledge directly, which we can then use to apply the optimizations.

5.3 Experimental Evaluation
We evaluated the performance of BCL’s queue data structures using ISx, an integer sorting
mini-application, as well as a collection of microbenchmarks. We tested these benchmarks
across three computing systems, including Cori Phase I, Summitdev, and AWS. The details of
these system’s configurations are discussed in Chapter 4. On Cori, experiments are performed
up to 512 nodes. On Summitdev, experiments are performed up to 54 nodes, which is the
size of the whole cluster. On AWS, we provisioned a 64 node cluster and performed scaling
experiments up to its full size.
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Figure 5.3: Performance comparison on the ISx benchmark on three different computing
systems. All runs measure weak scaling with 224 items per process.

ISx Benchmark
To test out our queue’s performance, we implemented a bucket sort algorithm to execute
the ISx benchmark [57]. The ISx benchmark is a simple bucket sort benchmark performed
on uniformly distributed data. It consists of two stages, a distribution stage and a local sort
stage. In the distribution stage, processes use pre-existing knowledge about the distribution
of the randomly generated data to assign each key to be sorted to a bucket, where there is
by default one bucket on each node. After this stage, each process simply performs a local
sort on its received data. The original ISx benchmark comes with an MPI implementation,
which uses an all-to-all collective for the distribution stage and an OpenSHMEM implemen-
tation, which sends data asynchronously. An implementation in Chapel, a high-level parallel
programming language, has also been published [60, 33].
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BCL Implementation

We implemented our bucket sort in BCL using the circular queue data structure. First,
during initialization, we place one circular queue on each process. During the distribution
phase, each process pushes its keys into the appropriate remote queues. After a global barrier,
each node performs a local sort on the items in its queue. During the distribution phase, we
perform aggregation of inserts to amortize the latency costs of individual inserts. Instead of
directly pushing individual items to the remote queues, we first place items in local buffers
corresponding to the appropriate remote queue. Once a bucket reaches a set message size, we
push the whole bucket of items at once and clear the local bucket. It’s important to note that
this push is asynchronous, meaning that the communication involved with pushing items to
the queue can be overlapped with computation involved with sorting the items. The fact
that BCL circular queue’s push method accepts a vector of items to insert simultaneously
makes adding aggregation very straightforward. Even with this optimization, our full BCL
sorting benchmark code, including initialization and timing, is only 72 lines long, compared
to the original MPI and SHMEM reference implementations at 838 and 899 lines, and the
Chapel implementation at 244 lines. A slightly abbreviated version of our implementation
is listed in Figure 5.2.

Analysis

As shown in Figure 5.3, our BCL implementation of ISx performs competitively with the
reference and Chapel implementations.

On the Cray Aries systems, BCL outperforms the other implementations. This is be-
cause BCL is able to overlap communication with computation: the asynchronous queue
insertions overlap with sorting the values into buckets. This is an optimization that would
be much more complicated to apply in a low-level MPI or SHMEM implementation (the ref-
erence implementation uses all-to-all patterns), but is straightforward using BCL’s high-level
interface.

There is an upward trend in the BCL scaling curves toward the high extreme of the graph
on Cori. This is because as the number of processes increases, the number of values sent to
each process decreases. At 512 nodes with 32 processes per node, each process will send, on
average, 1024 values to each other process. With our message size of 1024, on average only
one push is sent to each other process, and the potential for communication and computation
overlap is much smaller, thus our solution degenerates to the synchronous all-to-all solution,
and our performance matches the reference SHMEM implementation. Note that performance
with the MPI backend is poor on Cori; we believe this is because the MPI implementation
is failing to use hardware atomics.

The performance on Summitdev is similar, except that there is a slight downward trend
in all the scaling lines because of cache effects. As the number of processes increases, the
keyspace on each node decreases, and the local sort becomes more cache efficient.

Historically, PGAS programs have not fared well on Ethernet clusters, since PGAS pro-
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grams often rely on fast hardware RDMA support. With our BCL implementation, we are
able to increase the message size to amortize the cost of slow atomic operations. While our
performance on AWS does not scale as well as the reference MPI implementation, we con-
sider the performance acceptable given that it is a high-level implementation running in an
environment traditionally deemed the exclusive domain of message-passing. On the Ethernet
network, the GASNet-EX backend, which is using the UDP conduit, performs better than
the MPI backend, which is using Open MPI. The native MPI implementation likely performs
better than our BCL version for two reasons. The first reason is that on the Ethernet network,
which has significantly less bandwidth than the high-performance networks, communication
is much more expensive, which means that the bucketing computation constitutes a much
smaller portion of the runtime. This means that the computation/communication overlap
enabled by the asynchronous RDMA queues has less of a benefit. Second, the Ethernet
network has a higher inherent latency, and since it does not support RDMA, our commu-
nication library emulates it, which introduces even more latency. This generally results in
higher overheads for using an RDMA-based approach.

Microbenchmarks
We prepared a collection of microbenchmarks to compare (1) different backends’ performance
across data structure operations and (2) the relative performance of different implementa-
tions of data structure operations. Each benchmark tests a single data structure operation.

The queue microbenchmarks presented in Figures 5.4, 5.5, and 5.6 are split into two
categories: (1) benchmarks in which all all processes operate upon a single queue, living
on a single process, and (2) benchmarks in which there are many queues, specifically one
every process, (latter benchmarks labeled “many”). In general, we expect the single queue
benchmarks to achieve lower throughput than the “many” benchmarks. This is primarily
because of synchronization overheads. In the single queue benchmarks, all processes are
vying to perform pushes on a single queue. This increased contention results in greater
overheads, particularly when the level of synchronization used is high, as in the *pushpop
benchmarks. When operations are spread out over many queues, contention is lowered, and
with it the associated synchronization overheads.

In the CircularQueue benchmarks, we see that fully atomic operations (pop pushpop
and push pushpop) are quite expensive when all processes are inserting into a single queue,
compared to pop pop and push push, which perform less coordination. This is unsurprising,
since the final compare-and-swap (CAS) operation in an atomic CircularQueue push or
pop essentially serializes the completion of operations. Processes must continuously attempt
to update the reserve tail pointer using a CAS operation, which can only be completed
once the processor before it has completed its push. When pushing to multiple queues, this
contention is greatly decreased, although using the version of the operation that performs
less coordination results in a factor of two performance improvement (push many pushpop
vs. push many push).
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Figure 5.4: Microbenchmarks for CircularQueue. Benchmarks with “many” in the title
are performed with one queue per node, while benchmarks without “many” are performed
with all processes accessing a single queue. The label before the underscores indicates the
operation performed, while the label after the underscore indicates the concurrency promise
used. For example, “pushpop” indicates the concurrency promise push | pop.
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Figure 5.5: Microbenchmarks for FastQueue. Benchmarks with “many” in the title are
performed with one queue per node, while benchmarks without “many” are performed with
all processes accessing a single queue.

Looking at the FastQueue benchmarks, we see that this data structure does achieve
a significant performance improvement even over the less-atomic implementations of data
structure operations in CircularQueue. In particular, FastQueue achieves reasonable perfor-
mance even when all processes are operating on a single queue, compared to CircularQueue,
which slows two orders of magnitude when faced with that much contention. ChecksumQueue
strikes a balance between the two queues. It is faster than CircularQueue across the board,
but, like FastQueue, makes the best performance improvements on the single queue bench-
marks. ChecksumQueue has slightly lower performance than FastQueue, but comes close to
its performance on most benchmarks.
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Figure 5.6: Microbenchmarks for ChecksumQueue. Benchmarks with “many” in the title
are performed with one queue per node, while benchmarks without “many” are performed
with all processes accessing a single queue. ChecksumQueue does not support concurrency
promises, since the checksum must always be calculated and written for a push to complete
successfully. However, the label after the underscore indicates the concurrency promise level
that could be supported by the implementation for easier comparison with the CircularQueue
plots in Figure 5.4.
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Chapter 6

Set Data Structures

In this chapter, we discuss set data structures. Set data structures keep track of a set of
unique keys and can typically insert or remove keys from the set as well as answer queries
about set membership. In this chapter, we explore two kinds of set data structures: hash
tables, which store a collection of keys, each with a matching value, and Bloom filters,
which store a collection of keys and can answer questions about set membership with some
false positive rate. Both hash tables and Bloom filters are able to make extensive use of
remote memory atomics to achieve very low latency in operations like insert and find. Our
hash table and Bloom filter design are both centered around providing the lowest latency
possible in the best and average case. In cases where consistency can be relaxed, the user
can provide information about the context in which an operation is issued to elide some
of the remote memory operations. When consistency can be relaxed even further for bulk
operations, we demonstrate that high-level buffer objects can use queues to aggregate fine-
grained operations that would each require a small, latency-bound roundtrip message into
large bulk messages bundling together multiple requests.

6.1 Hash Tables
Hash tables are associative data structures used in a broad variety of applications, including
graph analytics, data analysis, and genomics. Hash tables are often used when data will
need to be queried in an irregular or unsorted fashion. In a distributed context, hash tables
can be used to create a balanced distribution of data elements to processes in a distributed
execution, relying on the statistical properties of the hash function to ensure a balanced
distribution. Hash tables are associative data structures that map keys onto values using
a hash function, which generates a deterministic, pseudorandom integer value for each key.
This integer value corresponds to a particular location in an array of stored values, which
allows hash tables to achieve order constant time lookups and insertions. While a large
variety of hash table designs exists, they broadly fit into two categories: open addressing
and closed addressing. In both designs, the hash table is stored in an array of buckets
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which can store key value pairs, and we use a hash function to map a particular entry into
a particular bucket. The different between the two techniques is in how they deal with
collisions, which occur when two entries produce hashes mapping onto the same bucket. In
closed addressing, if a key hashes to a particular bucket, the key value pair must be stored
in that bucket (thus the addressing scheme is closed). Since collisions are likely to occur,
mapping multiple elements into the same bucket, this means that each bucket must able to
hold multiple entries. This is typically accomplished using a linked list or other variable size
array. Because each hash bucket holds a variable size array with space for multiple entries,
hash table that use closed addressing can be expanded incrementally, even if every bucket
has at least one entry. In order to preserve constant time access, however, the hash table
must still eventually be expanded to include more buckets, as otherwise lookup time will
degrade to take order linear time as the linked lists grow in size.

In open addressing, by contrast, collisions are dealt with by moving to the next available
bucket, according to some probing scheme. Linear and quadratic probing are two common
schemes for deciding the next available bucket. When inserting an entry, the key value pair
are inserted into the first available bucket. When performing a lookup, probing continues
until either an entry with the desired key is found or an empty bucket is encountered. As
a hash table fills up, it becomes more and more costly to insert new elements into the
hash table, until eventually no new elements can be inserted. Hash tables that support
dynamic resizing, including those that use both closed and open addressing, typically aim
for a particular load factor, which is the ratio of filled buckets to total buckets. In order to
prevent slowdowns due to too many collisions, the hash table is expanded and all entries are
rehashed into the new table.

When it comes to implementing a distributed hash table, open addressing and closed
addressing have different advantages and disadvantages. Closed addressing has the obvious
advantage of supporting incremental resizing, since new entries can be inserted into a bucket’s
list even if all buckets have at least one element. However, as with sequential implementations
of closed addressing hash tables, they will still eventually need to be resized in order to
preserve order constant lookups and insertions. Distributed hash tables that use closed
addressing with linked lists for the buckets may also introduce an additional issue of locality.
As discussed in Section 3.1, BCL does not assume the ability to remotely allocate memory.
As such, allocating a new piece of global memory to store a node of the linked list must be
done on the local process, not the process where the remote list is located. That is to say,
the linked list inside a closed addressing hash table’s bucket would likely contain linked list
nodes allocated on processes scattered throughout the execution, rather than on the specific
processes that own the portion of the hash table the bucket is located in. This can prevent
the hash table design from being used for redistribution of data elements, since many hash
table entries will simply be stored in the memory of the process that inserted them. In
addition, the use of a linked list will always require pointer chasing to deal with collisions.
Using static capacity arrays for the buckets can fix both of these problems, allowing a single
remote get operation to retrieve all entries in the bucket. However, rehashing will still be
required whenever one of the static capacity buckets has been completely filled.
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In BCL, we implement our distributed hash table using open addressing, with a single
logically contiguous array of hash table buckets distributed block-wise among all processes.
Each bucket is a struct including space for a single hash table entry, including key and value,
as well as a status flag for synchronization. Our hash table uses open addressing with a user-
configurable probing strategy to resolve hash collisions. As our hash table is implemented
with remote get, put, and atomic operations, neither insert nor find operations to our hash
table require any direct coordination with remote ranks, and where hardware support is
available, hash table operations will take place purely with RDMA operations.

Interface

BCL’s BCL::HashMap is a distributed data structure. Users can create a BCL::HashMap
by calling the constructor as a collective operation among all ranks. BCL hash tables are
created with a fixed key and value type as well as a fixed size. BCL hash tables use Object-
Containers, discussed in Section 3.3, to store keys and values of any type. BCL hash tables
also use the standard C++ STL method for handling hash functions, which is to look for a
std::hash <K> template struct in the standard namespace that provides a mechanism for
hashing key objects.

The hash table supports two primary methods, insert and find. Section 6.3 gives a
performance analysis of our hash table.

Atomicity

By default, hash table insert and find operations are atomic with respect to one another, in-
cluding simultaneous insert operations and find operations using the same key. In addition to
this default level of atomicity, users can pass a concurrency promise as an optional argument
at each callsite that can allow the data structure to select a more optimized implementation
with less strict atomicity guarantees. All the available implementations for insert and find
operations are shown in Table 6.1.

Our hash table uses a lightweight, per-bucket locking scheme. Each hash table bucket
has a 32-bit used flag that ensures atomicity of operations. The lowest 2 bits of this flag
indicate the reservation status of the bucket. There are three possible states: (1) free, (2)
reserved, and (3) ready. The free state represents an unused bucket, the reserved state
represents a bucket that has been reserved and will immediately be written to by a process,
and the ready state indicates that a bucket is ready to be read. The remaining 30 bits are
read flag bits, and they indicate, if flipped, that a process is currently reading the hash table
entry, and prevent another process from writing to the entry before the other process has
finished reading.

Insert Operations

The default, fully atomic process for inserting (Table 6.1a) requires two atomic memory
operations (AMOs) and a remote put with a flush. First, the inserting process computes the



CHAPTER 6. SET DATA STRUCTURES 45

Method Concurrency Promise Description Cost
insert

(a) find | insert Fully Atomic 2A + W
(b) local Local Insert `

find
(c) find | insert Fully Atomic 2A + R
(d) find Only Finds R

Table 6.1: Implementations of data structure operations for BCL’s hash table data structure.

appropriate bucket. Then it uses a compare-and-swap (CAS) operation to set the bucket’s
status to reserved, a remote put to write the correct key and value to the reserved bucket,
followed by a flush to ensure completion of the put, then finally an atomic XOR to set the
status of the bucket to ready. Pseudocode for this implementation follows.

1. CAS bucket state from free → reserved. If state is discovered to be reserved/ready,
instead CAS ready → reserved.

2. Once successful, if the previous state was free, write the key and value to the bucket.
If the previous state was ready, check the key. If key is incorrect, reset status, move to
the next bucket, and begin at (1).

3. Set status bits to ready using an atomic XOR. (Flipped read bits from attempted reads
could interfere with a CAS, which is unnecessary.)

In some special cases, we may wish to have processes perform local insertions into their
own portions of the hash table. This may be done with only local CPU instructions, not
involving the NIC. Crucially, this cannot be done when other operations, such as general
find or insert operations, might be executed, since CPU atomics are not atomic with respect
to NIC atomics. This implementation requires the concurrency promise local (Table 6.1b).

Find Operations

The default, fully atomic implementation of the find operation (Table 6.1c) again involves
two AMOs and a remote read. First, the process uses a fetch-and-or to set a random read bit.
This keeps other processes from writing to the hash bucket before the process has finished
reading it. Then, it reads the value, and, after reading, unsets the read bit. Pseudocode for
this implementation follows.

1. Atomic fetch-and-or to set a random read bit. If bit was previously set, start again at
(1). If bit was unset and status was reserved, atomically fetch until status is ready.

2. Once read bit is set and status is ready, read the key and value.
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3. Unset read bit using atomic fetch-and-and. If key was incorrect, move on to next
bucket.

In the common case of a traversal phase of an application, where no insert operations
may occur concurrent with find operations, we may use an alternate implementation that
requires no atomic operations (Table 6.1d), but just a single read operation to read the whole
bucket including the reserved flag, key, and value.

Hash Table Size

A current limitation of BCL is that, since hash tables are initialized to a fixed size and do not
dynamically resize, an insertion may fail. In the future, we plan to support a dynamically
resizing hash table. Currently, the user must call the collective resize method themselves
when the hash table becomes full.

A dynamically resizing implementation could potentially have each process detect when
the hash table becomes too full and activate a collective resize operation automatically.
Whenever any process enters a hash table function, they would need to check whether a resize
operation had been triggered, which could be done using a low-latency RDMA signaling data
structure. The main software complexity to overcome with this approach is how to ensure
that all processes will periodically enter the hash table’s progress function to check whether
a resize needs to be performed. This would likely require allowing data structures to register
progress functions that must be checked every time certain BCL functions are called, such
as barriers or other functions that could initiate coordination. Since such a signaling system
does not fundamentally affect the operation of an RDMA-based hash table, we leave this
extension to future work.

Buffering Hash Table Insertions
Many applications, such as the Meraculous benchmark [85, 51], discussed in detail in Sec-
tion 6.3, exhibit phasal behavior, where there is an insert phase, followed by a barrier,
followed by a read phase. We anticipate that this is likely to be a common case, and so have
created a hash table buffer data structure that accelerates hash table insertion phases. An
application programmer can create a new BCL::HashMapBuffer on top of an existing hash
table. The user then inserts directly into the hash map buffer object using the same meth-
ods provided by the hash table. This simple code transformation is demonstrated in Figure
6.1. While the hash table interface ensures ordering of hash table insertions, insertions into
the hash table buffer are non-blocking, and ordering is no longer guaranteed until after an
explicit flush operation. The hash table buffer implementation creates a FastQueue on each
node as well as local buffers for each other node. When a user inserts into the hash table
buffer, the insert will be stored in a buffer until the buffer reaches its maximum size, when
it will be pushed to the queue lying on the appropriate node to be staged for insertion. At
the end of an insert phase, the user calls the flush() method to force all buffered insertions
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1 BCL::HashMap<int, int> map(size);
2
3 BCL::HashMapBuffer<int, int> buffer(map, queue_size,
4 message_size);
5
6 for (...) {
7 buffer.insert(key, value);
8 }
9

10 buffer.flush();

Figure 6.1: A small change to user code—inserting into the HashMapBuffer instead of the
HashMap—causes inserts to be batched together.

to complete. Insertions into the actual table will be completed using a local, fast hash table
insertion (Table 6.1b). The hash map buffer results in a significant performance boost for
phasal applications, as discussed in Section 6.3.

6.2 Bloom Filters
A Bloom filter is a space-efficient, probabilistic data structure that answers queries about set
membership [22]. Bloom filters can be used to improve the efficiency of hash tables, sets, and
other key-based data structures. Bloom filters support two operations, insert and find. To
insert a value into the Bloom filter, we use k hash functions to hash the value to be inserted
k times, resulting in k locations in a bit array that will all be set to one. To check if a value
is present in a Bloom filter, the value is hashed k times, and if each of the corresponding bits
is set, the value is said to be present. Because of hash collisions, a Bloom filter may return
false positives, although it will never return false negatives.

Distributed Bloom Filter

A simple Bloom filter can be implemented in distributed memory as an array of integers
distributed block-wise across all processes. To insert a value into this Bloom filter, the value
to be inserted is hashed k times to determine which bits in the distributed Bloom filter
must be set. Then, the appropriate bits are set using atomic fetch-and-or operations to the
corresponding integers. To check whether a value is in the Bloom filter, the value can be
hashed k times and the corresponding locations in the array checked.

There is, however, a fundamental limitation in implementing a distributed Bloom filter
this way, as it results in a loss of atomicity for insert operations. For many applications, it
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may be useful to have an atomic insertion operation that inserts a value into a Bloom filter
and atomically returns a boolean value indicating whether the value was already present in
the Bloom filter. In a regular serial Bloom filter, we define a value as already present if all k
bits for our value were already set in the filter, and not already present if we were required
to flip any bits in the filter. Since our insertion operation consists of multiple AMOs which
cannot be guaranteed to be executed together atomically, we cannot guarantee that two
processes which attempt to insert the same value simultaneously into the Bloom filter will
not both believe that they were the first process to insert that value into the Bloom filter.
This violates the invariant that a Bloom filter will return no false negatives, so the Bloom
filter described above cannot provide this information.

There is also a disadvantage in terms of communication cost for this implementation,
since performing an insert requires flipping k bits, generally resulting in k independent
atomic operations.

Blocked Bloom Filter

Instead of being comprised of a single bit array, blocked Bloom filters are composed of many
smaller Bloom filters [94]. To insert a value into a blocked Bloom filter, the value is first
hashed to determine which Bloom filter the value should be stored in. The item will then be
hashed k times to determine which bits in the smaller Bloom filter need to be set. In shared
memory systems, blocked Bloom filters are used to improve the cache performance of large
Bloom filters with a block size that is a multiple of the cache line size.

In BCL, we implement a distributed blocked Bloom filter as BCL::BloomFilter to solve
both of the issues with distributed Bloom filters raised above. Our distributed blocked Bloom
filter consists of a number of 64-bit Bloom filters. Inserting an item into our blocked Bloom
filter now requires, in all cases, a single atomic memory operation, and the operation is fully
atomic. Checking if an operation is present in the blocked Bloom filter requires one remote
read memory operation.

Blocked Bloom filters come with the disadvantage of requiring more space to maintain the
same false positive rate as a regular Bloom filter. While theoretically, under the assumption
that values will be uniformly distributed by a hash function, a blocked Bloom filter should
require no more space, in reality values may become clustered, requiring more Bloom filters
than theoretically necessary for a particular false positive rate [94]. Empirical experiments
with our distributed blocked Bloom filter have shown that an extra ln p factor of 64-bit
Bloom filters are necessary for our distributed blocked Bloom filter to maintain the same
false positive rate as a regular Bloom filter, where p is the false positive rate. In the practical
false positive range of 10-0.001%, this constitutes a 2-12x increase in space required. Since
Bloom filters, even for large sets of data, are very space-efficient (for example, a regular
Bloom filter requires only 172 MB to maintain a 0.1% false positive rate with a set of 100M
unique items), this is likely an acceptable overhead for the atomicity and performance gains.
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Figure 6.2: Performance comparison on the Meraculous benchmark on the chr14 dataset.

6.3 Experimental Evaluation
To evaluate the performance of our set-based distributed data structures, we used a number
of benchmarks, including two mini-applications, Meraculous, which performs contig genera-
tion, and k-mer counting, both of which are from large-scale genome assembly, as well as a
collection of microbenchmarks.

We tested these benchmarks across three computing systems, including Cori Phase I,
Summitdev, and AWS. The details of these system’s configurations are discussed in Chap-
ter 4. On Cori, experiments are performed up to 512 nodes. On Summitdev, experiments are
performed up to 54 nodes, which is the size of the whole cluster. On AWS, we provisioned a
64 node cluster and performed scaling experiments up to its full size. For reasons of space,
the microbenchmarks are presented only on Cori up to 64 nodes.
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Figure 6.3: Performance on the Meraculous benchmark

Genome Assembly
We evaluated BCL’s generic hash table using two benchmarks taken from a large-scale scien-
tific application, a de novo genome assembly pipeline: contig generation and k-mer counting.
Both use a hash table, contig generation to traverse a de Bruijn graph of overlapping sym-
bols, and k-mer counting to compute a histogram describing the number of occurrences of
each k-mer across reads of a DNA sequence.

Contig Generation in De Novo Genome Assembly

During the contig generation stage of de novo genome assembly, the many error-prone reads
recorded by a DNA sequencer have been condensed into k-mers, which are short error-free
strands of DNA guaranteed to overlap each other by exactly k− 1 bases. The goal of contig
generation is to process these k-mers to produce contigs, which are long strands of contiguous
DNA [35, 51, 35].

Assembling these k-mers into longer strands of DNA involves using a hash table to
traverse the de Bruijn graph of overlapping k-mers. This is performed by taking a k-mer,
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computing the next overlapping k-mer in the sequence, and then looking it up in the hash
table. This process is repeated recursively until a k-mer is found which does not match the
preceding k-mer or a k-mer with an invalid base is discovered.

A fast implementation for contig generation is relatively simple in a serial program, since
using any of a large number of generic hash table libraries will yield high performance.
However, things are not so simple in distributed memory. The reference solution for the
NERSC-9 Meraculous benchmark, written in UPC, is nearly 4,000 lines long 1 and includes
a large amount of boilerplate C code for operations like reading and writing to memory
buffers [85].

The implementation of the contig generation phase of a genome assembly pipeline is
greatly simplified by the availability of a generic distributed hash table in BCL. As described
above, the contig generation benchmark is really a simple application split into two phases,
an insert phase, which builds the hash table, and a traversal phase, which uses the hash table
to traverse the de Bruijn graph of overlapping symbols. Because of this phasal behavior,
we are able to optimize the performance of the hash table using BCL’s hash map buffer,
which groups together inserts by inserting them all at once into a local queue on the node
where they will likely be placed, then inserting them all using a fast local insert when a
flush operation is called on the hash map buffer. Our implementation of the Meraculous
benchmark is only 600 lines long, 400 of which consist of code for reading, parsing, and
manipulating k-mer objects. In contrast, the NERSC-9 Meraculous benchmark, written in
UPC, contains just over 4,000 lines of code, of which a similar number are devoted to I/O.

We implemented the contig generation phase of a genome assembly pipeline using the
Meraculous algorithm [51, 50, 35]. Our implementation is similar to the high-performance
UPC implementation [51], but (1) uses our generic hash table, instead of a highly specialized
hash table, and (2) uses a less sophisticated locking scheme, so sometimes processes may
redundantly perform extra work by reconstructing an already constructed contig. We should
note that the Meraculous UPC benchmark is based on the HipMer application, which may
have higher performance [50].

We benchmarked our hash table across the same three HPC systems described in Table
4.1 using the chr14 dataset, which is from sequencing data of human chromosome 14. We
compared our implementation to the high-performance UPC reference Meraculous bench-
mark implementation provided on the NERSC website, which we compiled with Berkeley
UPC with hardware atomics enabled [85, 51]. We also compared our hash table to Pa-
pyrusKV, a high-performance general-purpose hash table implemented in MPI which has
a Meraculous benchmark implementation available [74]. All performance results were ob-
tained by running one process per core. Benchmarks for the UPC implementation are not
available on Summitdev because the code fails on POWER processors due to an endianness
issue. We also used the Meraculous benchmark prepared by the developers of PapyrusKV
[74]. As shown in Figure 6.2, our BCL implementation of the contig generation benchmark
matches or exceeds the performance of both the reference high-performance implementation

1As measured by David A. Wheeler’s ‘SLOCCount’.
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Figure 6.4: Strong scaling for our k-mer counting benchmark using dataset chr14.

of Meraculous and the general PapyrusKV hash table. In Figure 6.3, we also show a larger
scaling experiment using the human genome as a dataset on Cori. Our BCL implemen-
tation appears to be both scalable to high numbers of nodes and portable across different
architectures and interconnects.

k-mer Counting

k-mer counting is another benchmark from de novo genome assembly. In k-mer counting,
we examine a large number of lossy reads of DNA sequences and split these reads up into
small, overlapping chunks of length k. We then use a hash table to calculate a histogram,
accumulating the number of occurrences of each individual k-mer, to try to eliminate errors.
A large number of k-mers will be erroneous, and, as a result, will appear only once in the
counting.

To speed up this histogram calculation, we can avoid unnecessary hash table lookups
for items which appear only once in the hash table by using our distributed blocked Bloom
filter as discussed in Section 6.2. With this optimization, we first atomically insert a k-
mer into the Bloom filter, then only update its histogram value if the k-mer was already
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Figure 6.5: Microbenchmarks for the hash table.

present in the Bloom filter. This optimization also significantly reduces the overall memory
consumption of k-mer counting because a high portion of the unique k-mers occur only
once due to sequencing errors. Consequently, Bloom filters are now common in single node
k-mer counters [80]. However, it is harder to efficiently take advantage of Bloom filters in
distributed k-mer counting. In the absence of an efficient distributed Bloom filter that keeps
global information about the k-mers processed so far, all the occurrences of a k-mer had to
be localized in and counted by the same process for local Bloom filters to produce accurate
counts [51]. BCL’s distributed Bloom filter avoids this localization and the expensive all-to-
all exchange of all k-mers associated with it.

As shown in Figure 6.4, our k-mer counting benchmark shows excellent strong scaling,
along with a slight performance boost when using our distributed blocked Bloom filter. Aside
from this performance boost, lower memory footprint is another benefit of BCL’s distributed
Bloom filter, since k-mers which appear only once need not be inserted into the hash table.
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Microbenchmarks
We prepared a collection of microbenchmarks to compare (1) different backends’ performance
across data structure operations and (2) the relative performance of different implementa-
tions of data structure operations. Each benchmark tests a single data structure operation.
In the HashMap microbenchmarks in Figure 6.5, we see clear differences between fully atomic
versions of data structure operations (find atomic and insert) and versions offering fewer
atomicity guarantees or buffering (find and insert buffer). We see that buffering offers
an order of magnitude increase in performance, which we would expect from transforming a
latency-bound operation into a bandwidth-bound operation, while the optimized find op-
eration offers a factor of 2-3x improved performance, as we would expect from the relative
best-case costs (2A + R and R).

Across these benchmarks, GASNet-EX is most effective at automatically utilizing lo-
cal atomics when only running on one node, while MPI lags behind on most benchmarks,
particularly those which make heavy use of atomic operations.
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Chapter 7

Matrix Data Structures

7.1 Introduction
Dense and sparse matrices are important data structures for a wide variety of applications
across different domains, from machine learning to genomics, graph algorithms, and more.
Matrices serve as fundamental building blocks for a wide array of algorithms, and as such
high-level matrix libraries such as Matlab [63] and NumPy [59] have become ubiquitous tools
for productive programming in sequential and shared memory environments. Since matrix
primitives such as matrix multiplication can be quite expensive, and since matrices are likely
to grow to a size too big to store in any one node’s memory as applications and data sizes
scale, there is a rich literature in distributed matrix algorithms and in different schemes for
partitioning matrices across nodes in a distributed execution. While there is a large body
of work in distributed memory linear algebra, both sparse and dense, the majority of this
work has been directed at distributed data structures and algorithms that use two-sided
communication [61]. Two-sided or message passing communication provide primitives based
on matching send and receive operations or on collective communication operations like
broadcast and reduce. While two-sided-based linear algebra (and two-sided communication)
has been very successful, there are a number of limitations in two-sided algorithms and
systems that can be addressed using one-sided communication, which allows processes to
directly read and write into each others’ memory.

Lack of Asynchrony Classical distributed matrix algorithms, like SUMMA [108] or Can-
non’s algorithm [76] for matrix multiplication, rely on a bulk-synchronous, lock-step execu-
tion, and are not easily extended to support asynchronous execution. While this is not an
issue for dense problems, in sparse problems where load balancing issues arise, this lack of
asynchrony may lead to performance issues.

New Architectures and Systems Some novel architectures and systems, such as GPUs,
cannot natively use send and receive operations themselves. Many of these systems, can,
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however, use one-sided communication primitives.

Programming Model There are numerous distributed linear algebra libraries that use
two-sided communication, and some of them, such as the Cyclops Tensor Framework [102]
and Elemental [92], even offer high-level matrix data structures. However, there is a lack of
intermediate-level primitives in such data structures, such as the ability to retrieve a local
copy of a submatrix, that can make development of sparse and asynchronous algorithms cum-
bersome. This lack of intermediate-level operations is not an oversight of library developers,
but a limitation of the programming model— with two-sided communication, retrieving a
remote part of a data structure will require send/receive calls from two, three, or even more
processes.

In this chapter, we build RDMA-based distributed dense and sparse matrix data struc-
tures. These data structures allow processes to retrieve or modify any part of the matrix
asynchronously, without coordinating with other processes. This allows us to implement
RDMA-based sparse matrix algorithms that are completely asynchronous, with processes
free to enter and leave a matrix multiply operation without coordinating with any other
processes in some algorithms. Compared to bulk synchronous approaches, which require
coordination inside the inner loop, this can help with load balance issues that arise when
processes have varying amounts of work due to nonuniform sparsity.

We begin by introducing our cross-platform distributed dense and sparse matrix data
structures, which support various ways of distributing the matrix. We then discuss the
various data structure primitives offered by our distributed matrices, including a new slicing
primitive for one-sided dense matrix data structures. We then discuss different RDMA-
based algorithms for matrix multiplication and other essential matrix operations, presenting a
performance model that can be used to evaluate their performance. We also demonstrate how
this data structure model can be extended to sparse matrices before discussing a collection of
different RDMA-based sparse matrix multiplication algorithms, including novel work-stealing
algorithms enabled by our RDMA-based data structure. We also discuss implementations
of our data structures for GPUs and evaluate the performance of various sparse matrix
algorithms on GPUs.

7.2 Distributed Matrix Data Structure
A standard way to store a matrix as a distributed object is to split it up into a collection
of tiles, where each tile is a single contiguous block of the matrix. In order to operate on
our distributed matrix data structure using one-sided operations, we will store each of these
tiles in the shared segment of a processor and will distribute a global pointer that references
the tile to each process. This way, every process can access any part of the matrix by using
index arithmetic to compute the appropriate global pointers and tile offsets, then performing
one-sided remote memory operations on the appropriate global pointers.
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Name Description Optional Parameters
BlockRect Rectangular tiles None
BlockRow Block row distribution—each tile spans a whole row Number of rows
BlockColumn Block column distribution—each tile spans at least a whole column Number of columns
BlockSquare Force a square processor grid Tile dimensions
BlockRow BlockCustom User provides explicitly controls distribution Tile dimensions, processor grid dimensions

Table 7.1: Matrix block descriptors, which describe different tiling strategies for a distributed
matrix.

Tile Distribution
In order to partition a matrix into multiple tiles, we need two facilities: (1) a strategy for
splitting up a matrix into a collection of tiles, and (2) a function that, given a particular
tile coordinate and grid dimensions, picks the process that will own that particular tile.
To do this, we’ve chosen a a distributed block cyclic layout scheme similar to that used by
ScaLAPACK [39], along with a collection of user-friendly Block data structures that describe
different tile layouts. A block cyclic data layout is a good choice because it can be configured
with only a few straightforward parameters and also because other important data layouts,
such as block row and column layouts, are special cases of a block cyclic layout. Given a
matrix, our block cyclic data layout requires two parameters to distribute that matrix to a
series of tiles, (1) a tile size, which defines the size of an individual tile, and (2) a processor
grid which provides a mapping from the tile grid to a particular processor. Given a tile size,
a matrix is partitioned into a tile grid, which is a collection of smaller tiles that together
make up the matrix. An example of a 4x3 tile grid is shown in Figure 7.1a.

The second parameter required, which assigns these tiles to processes, is the shape of
the processor grid, which is a rectangular grid of processes. In general, our tile grid may be
larger than our processor grid, in which case our processor grid is duplicated over the tiles
of the matrix. We can compute a tile’s corresponding process by taking its grid coordinates
and mapping them onto the processor grid with modular arithmetic. Figures 7.1b and 7.1c
show distributed matrices with 2x2 and 2x3 processor grids, respectively. Each tile is labeled
with the process that owns it, and the processor grid in the top left corner is in bold.

Controlling Matrix Distribution
In our distributed matrix data structure design, users determine how a matrix should be
split up using block descriptors, which are parameterizable objects that describe different
strategies for tiling a matrix. Examples include block row, block column, and rectangular
blocked, and are listed in Table 7.1. The block descriptors describe a method for splitting
up the matrix into different rectangular tiles and for assigning those tiles to be located on
different processors.

The BlockRect distribution produces tiles that are as square as possible and equally
distributed amongst all processors. By contrast, the BlockSquare distribution enforces a
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square tile size, at the cost of a possibly unequal tile distribution. BlockRow and BlockColumn
produce block row and block column distributions, such that each tile contains all elements
in the corresponding row or column dimension. BlockOpt, which uses a block cyclic layout,
using a heuristic to pick optimal tile sizes; Finally, the BlockCustom distribution allows users
to directly supply a tile size and processor grid, giving them explicit control over the grid
distribution. All the block distribution objects follow a standard interface, and users can
supply their own block distributions if desired, for example by using BlockCustom as a base
class.

In order to allow easy configuration of the parameterizable block distribution classes,
many of the block distributions allow users to optionally pass in parameters that will modify
their behavior. Typically, these modify the tile size, for example by setting the number
of rows to include in each block in BlockRow to achieve a cyclic block row distribution.
Anywhere that a dimension is required, users can pass in the constant div in order to
signify a tile size should be used that will evenly divide the dimension among processors in
that grid dimension. If the user does not provide any parameters, any free parameters are
automatically picked to be div. For example, with the default BlockRow distribution with
no configuration parameters given, the number of block row tiles is set to evenly divide the
number of processors, thus evenly distributing the matrix amongst all the processors.

Data Structure Operations

Every process has a global view of the matrix in an RDMA-based distributed matrix data
structure and can access and manipulate different parts of the matrix in a one-sided manner.
Our dense matrix distributed data structure has three primary mechanisms for accessing the
matrix data: access to a particular matrix element, access to a particular matrix tile, and
access to an arbitrary submatrix.

Elementwise Access The bracket operator provides a mechanism for accessing individual
elements of the matrix. Invoking the bracket operator along with a matrix index will return
a global reference object that can be written to or read from in order to write or read to
that element of the remote matrix. (For example, matrix[{1, 2}] will return a global
reference to the element row index 1 and column index 2.) While every process is free to
use elementwise access to manipulate the matrix, it is not a particularly efficient method for
implementing matrix algorithms, as each individual element access will result in a message
over the network, incurring a latency penalty.

Tile Access Users can also access individual tiles of the matrix. The dimensions of the
tile grid, which is determined upon matrix construction and is generally fixed over the
lifetime of the distributed matrix, are accessible using the function grid_shape. Users can
retrieve individual tiles by passing the grid coordinates of the desired tile into the method
get_tile, which returns a local matrix object containing the contents of the tile. The
method arget_tile retrieves a tile of the matrix asynchronously. Upon calling arget_tile,
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the method immediately returns a future object. When the tile is needed, the user can call
the get method on the future in order to return the tile. A global pointer to a particular
tile can be accessed using get_tile_ptr.

Slicing One limitation of accessing individual matrix tiles is that tiles are blocks of a fixed
dimension located in a fixed tile grid. If a user needs to retrieve an arbitrary submatrix, data
from multiple tiles may be required. Using remote get operations, we can also implement
a slicing operation that retrieves an arbitrary submatrix. Unlike get tile, which can only
retrieve blocks of the matrix that are pre-determined by the tile distribution, slicing provides
a general mechanism for obtaining a local copy of an arbitrary submatrix. Slicing is a useful
operation for more complicated algorithms that require access to non-tile-aligned submatrices
as well as for algorithms in which the user does not have control over data partitioning. Two
matrices which would otherwise require an expensive repartitioning in order to multiplied
together can instead be multiplied using what we call a slicing matrix multiply, which can
multiply two matrices together regardless of the layouts of their respective tile grids.

Slicing is performed by iterating through the rows of the required submatrix, and, for each
row, iterating through the tiles that contain that row. Each portion of a tile row included in
the slice is copied into a local matrix data structure using an asynchronous remote memory
operation. These independent remote memory operations are completed before returning in
the blocking slice method. In the non-blocking arslice method, a future object to the
submatrix is returned, and synchronizing on the future will synchronize the corresponding
communication operations and return the final submatrix output. This is done using BCL
futures, described in detail in Section 3.1. The future contains a pointer to the object that is
being constructed along with several request handles, associated with each network transfer
needed to retrieve the slice, that must be competed in order for the slice to be ready. Once
the user calls the get method, all necessary synchronization will be performed, and the slice
object will be returned.

Optimizing Remote Get Using C++ Allocators

One caveat of using remote get operations to retrieve objects stored in remote memory is
that the local receive buffer into which the remote data will be copied must be registered
(or “pinned”) with the network interface card (NIC). This is necessary so that the NIC on
the remote process will be able to copy the payload data over the network into the receive
buffer. (More discussion of the primitives supported by RDMA hardware can be found in
Section 3.1.) Remote get operations work by instructing the remote process to perform
a put operation into the local receiving buffer in the memory of the process that issued
the get operation. In order to perform this remote put, the local receive buffer must be
registered. It is important to note that this hardware limitation is not present in most
software communication libraries, which automatically handle remote get operations using
one of two methods. For large remote get operations into an unpinned local receive buffer,
the receive buffer will be registered with the NIC inside the remote get operation, which
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Data Structure Method Description Cost
BCL::DMatrix

GlobalRef<T> operator(size_t i, size_t j) Read or write to an individual of the matrix. W |R
std::vector<T> get_tile(size_t i, size_t j) Synchronously copy tile of matrix to local memory. R ∗mtilentile
BCL::future<std::vector<T>> get_tile(size_t i, size_t j) Asynchronously copy tile of matrix to local memory. R ∗mtilentile
std::pair<size_t, size_t> tile_shape(size_t i, size_t j) Get the shape of a particular tile. 0
std::pair<size_t, size_t> grid_shape(size_t i, size_t j) Get the shape of the submatrix grid. 0
std::pair<size_t, size_t> shape(size_t i, size_t j) Get the shape of the matrix. 0

BCL::SPMatrix
CSRMatrix<T> get tile(i, j) Synchronously copy tile of matrix to local memory. R ∗ (2nnztile + mtile)
BCL::future<CSRMatrix<T>> arget tile(i, j) Asynchronously copy tile of matrix to local memory. R ∗ (2nnztile + mtile)
size t tile nnz(size t i, size t j) Get the number of nonzeros in the sparse matrix. 0
void set tile(size t i, size t j, CSRMatrix<T> matrix) Assign a sparse matrix tile to a matrix. `
void rebroadcast tiles() Propagate new tile updates B

Table 7.2: A selection of methods from our dense and sparse distributed matrix data struc-
tures. R is the cost of a remote read, W the cost of a remote write, A the cost of a remote
atomic memory operation, B the cost of a barrier, ` the cost of a local memory operation,
and n is the number of elements involved in the data structure operation. mtile, ntile, and
nnztile are the number of rows, columns, and nonzeros per tile.
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Figure 7.1: A collection of matrix tile grids and distributions.

adds the overhead of an operating system call in addition to the latency of communicating
with the NIC over the PCIe bus. For smaller transfers, typically the data will first be copied
into a pre-allocated bounce buffer of pinned memory, after which it will be copied into the
receive buffer [78].

In order to eliminate the overhead associated with performing a remote get with an
unpinned local receive buffer, matrix data structure methods that retrieve data, such as
get tile() and slice() by default use a custom C++ allocator that allocates memory
inside the BCL shared memory segment, which is already registered. The allocator is config-
urable via a template parameter, so users can use other allocators if they have another source
of registered memory or they prefer to use unpinned memory. One example of a source of
registered memory is the MPI-specific MPI Alloc mem() function, which provides fast access
to pre-registered memory using an internal cache. A C++ allocator that allocates memory
using MPI Alloc mem() is available in BCL’s MPI backend.
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7.3 Distributed Sparse Matrix Data Structure
Similar to the previously described dense matrix data structure, our sparse matrix data
structure splits up a matrix into tiles, each of which stores elements that lie in its corre-
sponding submatrix. In the sparse case, instead of storing a dense tile with a single global
pointer, we store a sparse matrix for each tile. In our implementation, we chose to store
tiles using the CSR format, but this design is straightforwardly extendable to other sparse
storage formats.

Each tile is stored as a globally-accessible CSR matrix, consisting of four values that are
copied to each process: a global pointer to a row pointers array that marks the beginning and
end of each row, a global pointer to the stored values, a global pointer to the corresponding
column indices, and an integer indicating the number of stored values. Any process can
retrieve a tile by copying these values locally, and then operate on them as a local sparse
matrix. Processes can also calculate the exact shape of each tile using the shape of the
overall matrix and the shape of matrix tiles, both of which are globally known.

Tile Access Similarly to our distributed dense matrix data structure, our sparse matrix
data structure supports a get_tile method, which retrieves a tile of the matrix. In the
sparse case, get_tile fetches the corresponding CSR matrix data arrays and returns them
in a local CSRMatrix data structure. An asynchronous version, arget_tile, returns a future
to a sparse matrix data structure.

Writing to a distributed sparse matrix tile, however, is somewhat more complex than in
the dense case: while processes can simply read and write directly to the dense global array
used to hold a tile of a dense matrix, modifications to a tile of a sparse matrix will usually
change the nonzero structure of the underlying sparse matrix, necessitating the allocation of
a new space in remote memory for the tile. Since other processes rely on global knowledge
of the size and location of the tiles in remote memory to access the matrix, modifying a tile
of the sparse matrix will ultimately require some communication in order to update other
processes with the location of the new tile. Other sparse matrix formats could potentially
allow for more dynamic, element-wise updates. For example, using a coordinate format
sparse matrix for each tile implemented as a distributed queue could potentially allow users
to append new values to a particular tile. However, building sparse matrix data structures
that are incrementally updatable in normal sequential programs is still an active area of
research [43, 89], so we leave this to future work.

Writing to a tile of a sparse matrix happens in two phases. First, the process calls
set_tile with a local CSR matrix that holds the new values for the tile. set tile allocates
a new buffer in the shared segment if necessary, then copies the local matrix over into the
shared segment, staging the new global pointer address so that it can be updated. To
update all the other processes with the new tile location, the user can issue a collective call
to rebroadcast_tiles, which will update all of the global pointers resident on each process
and will cause the new updated tiles to be visible to all processes.
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Sparse Slicing Accessing an arbitrary submatrix of the distributed sparse matrix is once
again slightly more complicated. In order to retrieve an arbitrary submatrix, we first retrieve
all of the tiles that the submatrix intersects. After the tiles are retrieved, we collect all of
the values that are part of the submatrix into a single output matrix using one of our sparse
accumulators, which we will introduce shortly. This process can be completed asynchronously
using non-blocking methods to retrieve each of the necessary tiles and then accumulating
them into the output matrix as they arrive.

The slicing problem that we have defined here can be seen as a special case of sparse ma-
trix indexing as outlined by Buluç and Gilbert [27], who present a bulk synchronous algorithm
for sparse matrix indexing based on sparse matrix multiplication. Our RDMA-based algo-
rithm has an asymptotic improvement in communication volume compared that technique,
whose communication cost scales with the size of the whole matrix A as O(nnz(A)/√p) [27].
By contrast, given a fixed rectangular tile size, the cost of retrieving a submatrix using our
RDMA-based algorithm depends only on the size of submatrix being retrieved. So, given a
fixed submatrix and tile size, the cost of our slicing algorithm remains constant as the size
of the matrix increases. This is because having one-sided remote access to the matrix allows
processes to retrieve only the parts of the matrix that they need to access.

Note that this slicing algorithm will sometimes retrieve more than just the specific nonze-
ros that must be transferred, particularly in the case where a small submatrix is retrieved
that intersects many larger tiles. With row and column compressed storage, such as CSR
and CSC, it is possible to reduce communication volume in exchange for a higher latency
cost. For example, in the case of CSR, an RDMA-based slicing algorithm could first retrieve
part of the row pointer array in order to determine which parts of the values and column
indices arrays contain rows that are part of the slice. The specific range of elements within
each sorted row that needs to be retrieved could then be determined using a binary search
algorithm. The high latency costs associated with such an algorithm make it unlikely to
compete favorably with the algorithm we have implemented that is outlined above, except
in extreme cases, so we leave exploration of alternate sparse slicing algorithms to future
work.

The sparse matrix data structure also includes methods that describe the matrix, tile,
and grid shape in a manner identical to those in the dense matrix data structure, and the
sparse matrix data structure also supports all the block distribution classes supported by
the dense matrix data structure. See Table 7.2 for a list of methods supported by the sparse
matrix data structure.

Sparse Accumulation Interface
A number of different algorithms, including sparse matrix multiplication as well as the sparse
slicing algorithm discussed above, require efficient sparse accumulation, or the ability to
accumulate a collection of sparse values into a sparse output matrix. Depending on the
density and distribution of sparse values being accumulated, as well as the underlying hard-
ware architecture and amount of memory available, there are many different methods for
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Name Description Needs Sorted Rows?
MKL Accumulator Calls MKL to greedily sum matrices. N
Heap Accumulator Lazily uses a heap to accumulate each row. Y
Merge Accumulator Lazily calls a merge-based algorithm implemented in CombBLAS. Y
Hash Accumulator Lazily uses a hash table to sum each row. N
SPA Accumulator Lazily uses a sparse accumulator to sum each row. N

Table 7.3: Sparse accumulators.

accumulating sparse matrices that might achieve good performance. In order to allow algo-
rithms to flexibly select from a number of different sparse matrix accumulation methods, we
created a generic SparseAccumulator interface along with a number of different implemen-
tations. Classes that fulfill the sparse accumulator interface must provide two methods: (1)
accumulate, which accepts a sparse matrix to be accumulated, along with an optional off-
set and bounds offset and bound the region being accumulated, and (2) get matrix, which
returns the sparse matrix being accumulated. Some sparse accumulators are lazy, storing
matrices internally to only be accumulated once get matrix is called, and some are greedy,
maintaining an internal representation of the accumulated matrix that is updated with each
call to accumulate.

Sparse accumulator interfaces that we explored include an accumulator based on Intel
MKL’s matrix summation kernel that calls MKL to greedily sum sparse matrices together, an
accumulator that uses a heap-based algorithm to lazily accumulate matrices, an accumulator
that calls a lazy merge-based algorithm in the Combinatorial BLAS [12], an accumulator
that uses a hash table to sum each row of the resultant sparse matrix on demand, and an
accumulator that uses a SPA sparse accumulator [53] to sum each row of the sparse matrix
on demand. These accumulators are listed in Table 7.3.

RDMA-Based Matrix Multiplication
In this section, we provide a brief introduction to RDMA-based distributed matrix mul-
tiplication before introducing an inter-node roofline model that can be used to model the
performance of RDMA-based matrix multiply algorithms. We describe how the inter-node
roofline model can be used to evaluate different variants of distributed matrix multiplica-
tion, such as Stationary A, B, and C algorithms, and to select the optimal algorithm for a
particular problem. We then show how these algorithms can be extended to the sparse case
and to support execution on GPUs in Section 7.4.

Distributed matrix multiplication can be viewed as a collection of smaller matrix multi-
plications that compute each block of the output result matrix. Here, we refer to the result
matrix as AB = C. To compute one output block of the C matrix, we must multiply a row
block of A by a column block of B. This can be calculated incrementally as the accumulation
of a series of matrix multiplications of the tiles in the corresponding rows of A and columns
of B. Figure 7.2 illustrates the component matrix multiplications necessary to compute one
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Figure 7.2: Illustration of the local matrix multiplications necessary to compute one block of
the output matrix. All submatrices in the block row of A are multiplied by the corresponding
submatrices in the block column of B.

block of the C matrix. Each of these four matrix multiplications pictured is independent,
and can be computed in any order, but the results must be accumulated together to arrive
at the resulting output block of the C matrix.

Stationary C Algorithm

Given this decomposition of matrix multiplication into local matrix multiplication operations
whose outputs must be accumulated together in order to produce one block of the output,
a distributed matrix multiplication algorithm must use some strategy to split up this work
amongst all the processors in the distributed execution. One of the most common strategies
for this is a Stationary C approach, which dictates that the process that owns a particular
tile of the output C matrix should perform each of the component matrix multiplications
needed to produce the output. This technique typically results in a need to communicate
the tiles of A and B to each of the processors that require them as inputs, while the tiles of
C remain in place. Thus, the C matrix remains stationary.

In a traditional bulk synchronous approach, communication occurs using collective broad-
cast operations in the tile rows of A and the tile columns of B. Pseudocode for such a SUMMA
implementation is shown in Algorithm 2. As we discuss in more detail in Section 7.4, this
collective communication forces a global synchronization inside the inner iteration, which
can cause performance degradation when there is load imbalance due to differences in com-
putation or communication volume, as commonly occurs when the matrices are sparse.

An RDMA-based version of this algorithm instead allows processes to directly access tiles
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Algorithm 2 Bulk-synchronous SUMMA implementation.
i,j = C.my_block()
for k in 0..K-1:

# Broadcast k'th tile of A in row
broadcast(local_a, k, A.row_comm(i))
# Broadcast k'th tile of B in col
broadcast(local_b, k, B.col_comm(j))
# C is local
local_c = C.tile_ref(i, j)
local_c += local_a*local_b

of the matrix using remote memory operations. Thus, in a Stationary C algorithm, a process
that owns a tile of C can iterate through the corresponding tile row of A and tile column of
B and directly retrieve the tiles of A and B needed to perform the component local matrix
multiplications without synchronizing with any remote processes. This decouples the itera-
tions of the inner loop, allowing for greater asynchrony. Algorithm 3 shows pseudocode for
our RDMA-based algorithm, while Algorithm 6 shows C++ code for a naive implementation
of the algorithm using the get_tile method to retrieve each tile.

Algorithm 3 RDMA-based 2D C-Stationary SpMM. M, N, and K represent tile dimensions.
for i in 0..M-1:

for j in 0..N-1:
if C.owner(i, j) == rank():

for k in 0..K-1:
local_a = A.get_tile(i, k)
local_b = B.get_tile(k, j)
local_c = C.tile_ref(i, j)
local_c += local_a*local_b

barrier()

Optimizations
Two important optimizations are necessary in order to achieve good performance for the
RDMA-based algorithms described here. First, we use the non-blocking version of get tile
to asynchronously retrieve a remote tile of the matrix. This allows us to prefetch the tiles
needed for the next iteration before entering into the local matrix multiply operation, creating
overlap of communication with computation. Second, we apply an iteration offset to the inner
loop, which ensures two things: (1) it spaces processes apart, so that not all processes will
request the same tile in their row and column at the same time, and (2) it generally ensures1

1For square block tile grids, both remote gets in the first iteration will be to a local tile, while for
rectangular block tile grids, one of them will be to a remote tile.
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that the first remote get issued is to a local tile, which helps jumpstart communication
and ensures that almost all communication can be overlapped with computation. For the
stationary C algorithm, we apply an iteration offset of i + j, while in the stationary A
and stationary B algorithms, we apply an iteration offset of i + k and k + j, respectively.
Pseudocode which demonstrates these optimizations applied to a stationary C algorithm is
shown in Alg 4.

Algorithm 4 Optimized RDMA-based 2D C-Stationary SpMM. M, N, and K represent tile
dimensions.
for i in 0..M-1:

for j in 0..N-1:
if C.owner(i, j) == rank():

k_offset = i + j
buf_a = A.async_get_tile(i, k_offset % K)
buf_b = B.async_get_tile(k_offset % K, j)
for k_ in 0..K-1:

k = (k_ + k_offset) % K
local_a = buf_a.get()
local_b = buf_b.get()
local_c = C.tile_ref(i, j)

if (k_ + 1 < K):
buf_a = A.async_get_tile(i, (k+1) % K)
buf_b = B.async_get_tile((k+1) % K, j)

local_c += local_a*local_b
barrier()

Performance Model

In this section, we develop an inter-node roofline model that we can use to model and evaluate
the performance of RDMA-based distributed matrix multiplication algorithms.

Let us consider a distributed matrix multiply computing the product C = AB. Here,
each of the matrices C, A, and B is split up into tiles which live on different processes.
These tiles could be dense or sparse, but we first assume a dense matrix multiplication. Say
that C is distributed into a grid of M × N tiles, A is distributed among a grid of M × K
tiles, and B is distributed into a grid of K × N tiles. As outlined above, in this work we
assume that tiles will be regular, meaning that each tile will have the same size, dimensions,
modulo differences due to the tile size not dividing the matrix size evenly. A different, more
irregular tiling mechanism might be more appropriate for matrices from certain applications
such as those involving linear-scaling quantum-chemical calculations [25], where the near-
sightedness creates natural block-sparse structure. However, the vast majority of application
targets (Graph Neural Networks, graph algorithms, eigenvector computations, and tensor
decompositions) do not have this natural block-sparse structure, so the added complexity of
irregular tiling is not justified for us.
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As outlined above, to compute a single tile of the C output matrix Ci,j, we must compute
the result Ci,j = Ci,j + ∑K

k=0 Ai,kBk,j, where the indices i, j, and k index into tiles of the
matrices. This computation space can be thought as a 3D cube where each block corresponds
to a single local matrix multiply. These pieces of work can be assigned to processors in
different ways, resulting in 1D, 2D, and 3D structured algorithms. We are then left with
the choice of how to assign pieces of the computation to processors, as well as how to
communicate tiles of the matrices necessary to execute the matrix multiply. In the stationary
C method outlined above, the A and B matrices will be communicated, while tiles of the C
matrix will be available locally. For each tile of the matrix Ci,j, the process that owns that
tile will be responsible for calculating the output block Ci,j = Ci,j + ∑K

k=0 Ai,kBk,j.
Similarly, we could organize the computation so that the owner of each tile of A will be

responsible for executing each of the local matrix multiplication operations in which it is
used. In this stationary A method, tiles of A will thus be available locally, while tiles of B
will be fetched through some method, and output updates to C will be sent and accumulated
at their final location. This means that for each tile of A Ai,k, the process that owns that
tile will be responsible for executing Ci,j = Ci,j + Ai,kBk,j for all j. Note that this means
that the tile of B Bk,j must be somehow retrieved from remote memory, while the result of
each local matrix multiply Ci,j must be sent and accumulated to the corresponding block of
C. The stationary B method is similar, except that B remains stationary, while A must be
communicated.

As in our performance model for distributed dense matrix multiply, assume a two-
dimensional grid of matrix tiles, where the matrices A (m× k), B (k× n) B, and C (m× n)
are distributed amongst p processors laid out in √p×√p tile grids. Tile dimensions for A,
B, and C are then m√

p
× k√

p
, k√

p
× n√

p
, and m√

p
× n√

p
respectively, with √p tile columns and

√
p tile rows in each matrix. For a dense matrix, the total number of elements in each tile is

the product of its dimensions. Our RDMA-based stationary C algorithm performs a remote
get operation to retrieve a dense tile of A of size mk

p
and a dense tile of B of size kn

p
. The

total communication cost is the sum of these two sizes.
If we offset the order of iteration of the k loop by i + j, as discussed in Section 7.3, we

can also ensure that communication will be balanced with each process sending exactly two
tiles per iteration, one of the A matrix, and one of the B matrix. To prove this, assume tile
(i, j) is stored on processor i(N + 1) + j, where i ∈ [0, N), j ∈ [0, N), and N = √p.

Proof. Towards a contradiction, assume that i(N +1)+j is not unique. Then, i(N +1)+j =
i′(N + 1) + j′. Assume i′ > i. Then j = (i′ − i)(N + 1) + j′. Since i′ − i ≥ 1, j > N + 1,
which is a contradiction.

With the offset, each process sends and receives exactly mk
p

kn
p

elements over the network
in each iteration. In a fully connected network, each of these transfers is independent and
will not interfere with each other, in the sense that they will not inhibit other transfers from
achieving full link bandwidth. Many modern datacenter networks, such as that used by
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Summit, are indeed fully connected fat trees where this assumption holds completely. Many
other network topologies, such as Dragonfly, closely approximate a fully connected network.

In the case of Cannon’s algorithm [76], which reaches the theoretical lower bound for
distributed matrix multiplication without replication [67], each process also sends 2(N/

√
p)2

elements in each iteration (for N = m = k = n), which includes one tile of A, continually
passed on to the right, and one tile of B, continuously passed down. The popular SUMMA
algorithm also achieves within a log factor of this lower bound.

Next, we present an inter-node roofline model that predicts the performance of each it-
eration of the distributed matrix multiplication by examining the ratio of data that must
be communicated over the network and computation that must be performed. The roofline
model predicts the maximum possible performance of a computational kernel depending on
its arithmetic intensity, or number of operations performed per byte that must be fetched
from memory. Typically, the roofline model is used to characterize serial or multi-threaded
compute kernels in terms of how compute or bandwidth intensive they are, where the limit
on “compute” is defined by the processor’s arithmetic peak, and “bandwidth” is determined
by memory bandwidth. Here, we develop an inter-node roofline model to characterize per-
formance of our distributed memory, RDMA-based matrix multiply algorithms. In this
instance, the bandwidth involved is network communication, and the roofline peak of local
operations serves as our “arithmetic peak.” In our inter-node roofline model, we compute the
inter-node arithmetic intensity of each iteration as the number of flops performed divided
by the number of bytes that must be communicated over the network. The flat portion,
providing the “roof” on performance of our inter-node roofline, is the local roofline peak for
our local dense matrix multiply (GEMM) calls.

We first build a regular local roofline model to characterize the performance of our local
matrix multiply operations. For distributed matrix multiply, we can calculate the arithmetic
intensity as the number of flops that need to be performed (O(n3), based on the three tile
dimensions) divided by the amount of data that needs to be read from memory (O(n2),
based on the sum of the dimensions of A, B, and C). We use the variable w to represent the
number of bytes in an element. This allows us to compute the arithmetic intensity (AI) for
a local GEMM operation.

local GEMM AI =
2mkn
p
√

p
+ mn

p

w mk+kn+mn
p

To calculate the local roofline peak, which in our inter-node roofline model is the new
“roof” on performance, we multiply this arithmetic intensity by the memory bandwidth of
each local processing unit Bl, followed by a max operation with the arithmetic peak of the
machine. This gives us the maximum possible performance that each individual processor
could achieve for a particular problem size, assuming all network communication can be
overlapped.

Now, for our inter-node roofline model, to compute the inter-node arithmetic intensity, we
divide the number of flops performed, which is the same expression from the numerator of the
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local GEMM arithmetic intensity, by the total number of bytes that must be communicated
over the network, which in the Stationary C algorithm is equal to the number of bytes in
the tiles of A and B. Note that the formula for the inter-node arithmetic intensity is similar
to the local arithmetic intensity, except that the denominator does not include the output
C matrix, which need not be communicated over the network in this algorithm variant.

inter-node GEMM AI =
2mkn
p
√

p
+ mn

p

w mk+kn
p

To calculate the inter-node roofline peak, we multiply this inter-node arithmetic intensity
with the inter-node bandwidth Bi, which will give us a flop rate, and then max this output
with the local roofline peak calculated above. We can use this roofline to characterize the
performance of distributed dense matrix multiply on the Cori supercomputer.

Network Balance

The theoretical calculation using the injection bandwidth above assumes a balanced network,
by which we mean a network in which the network switches have enough bandwidth that
they will not be overly congested, resulting in lower achieved bandwidth than the injection
bandwidth. With modern high radix, low diameter HPC networks such as the Cray Aries
and Mellanox EDR Infiniband networks, this is often a fair assumption: some systems like
Summit are built with full global bandwidth, meaning they can always sustain the injection
bandwidth no matter the distribution of nodes given to a running job. On some systems,
however, this is not the case. For example, on Cori Phase I, the global bandwidth per node
is 2.41 GB/s, while the injection bandwidth is 9.25 GB/s. This means that smaller jobs that
are locally clustered will operate at the injection bandwidth; however, as the number of nodes
in a job increases, bandwidth achieved per node will decay to the global bandwidth per node
as messages are forced to travel or more congested global links, meaning that performance
will be somewhat degraded. On fully-connected Fat Tree networks like on Summit, this
effect is not present.

Alternate Work Distributions

The Stationary C algorithm, which we have outlined above and analyzed using our inter-
node roofline modes, provides one possible way of dividing work amongst processors, namely
by scheduling the process which owns a given block of C to perform all computation that
goes into that output block. Conveniently, this schedule simplifies data movement, since the
output blocks are all accumulated locally, instead of needing to be accumulated to a remote
process. This is a side effect of the fact that, with the Stationary C algorithm, the needed
block of C is local, and can be obtained with no communication cost.

While this algorithm lends itself to a straightforward implementation, since it does not
require updates to be applied remotely over the network, it is not always the most optimal
algorithm. Problems where A or B are of much larger sizes, may benefit from distributing
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work such that the A or B matrix remains stationary, while updates to C are applied over
the network. In the Stationary A algorithm, each process iterates through each tile of A, and,
for each tile that the process owns, iterates through the corresponding tiles of the B matrix
which need to be multiplied with that tile. For each component matrix multiplication, the
process retrieves a local copy of the tile of the B matrix, computes a local matrix product,
then writes the component update to one layer of k copies of the C matrix, where k is the
number of rows in the tile grid of A. Algorithm 5 shows pseudocode for the Stationary
A algorithm. Here, we use a remote queue on each process to allow tiles to be remotely
accumulated. When an updated is produced that needs to be applied to a tile of the C
matrix, the process that produces it performs an insert operation on the remote queue on
the process where it needs to be applied. At some point, the remote process will pull the
update off of the queue and apply it.

This algorithm, in exchange for the overhead associated with queue insertions, has the
advantage of reading tiles from B and sending updates to C instead of reading from the A
and B. In the case that A is much larger than C, this can greatly increase the inter-node
arithmetic intensity by avoiding the need to read large tiles of A. Instead of the equation
from earlier, this algorithm now transfers

w
kn + mn

p

bytes. We can compare the amount of data transfer necessary with the Stationary A,
B, and C algorithms in order to select the optimal version at runtime based on the matrix
dimensions involved.

Algorithm 5 RDMA-based 2D A-Stationary SpMM. M, N, and K represent tile dimensions.
for i in 0..M-1:

for k in 0..K-1:
if A.owner(i, k) == rank():

for j in 0..N-1:
local_a = A.tile_ref(i, k)
local_b = B.get_tile(k, j)
local_c = local_a*local_b
queue[C.owner(i, j)].push(get_ptr(local_c))

while local_c_ptr = queue[rank()].pop():
C.my_tile() += get_tile(local_c_ptr)

barrier()

7.4 Sparse Matrix Multiplication
Sparse matrix multiplication is an important computational primitive that arises in simu-
lation, data analysis, and machine learning applications. Typically limited by memory and
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Algorithm 6 Matrix multiplication using our distributed matrix data structure and the
Stationary C algorithm.

1 template <typename T>
2 void multiply(BCL::DMatrix<T>& a, BCL::DMatrix<T>& b,
3 BCL::DMatrix<T>& c) {
4 for (size_t i = 0; i < c.grid_shape()[0]; i++) {
5 for (size_t j = 0; j < c.grid_shape()[1]; j++) {
6 if (c.tile_ptr(i, j).is_local()) {
7 for (size_t k = 0; k < a.grid_shape()[1]; k++) {
8 auto local_a = a.get_tile(i, k);
9 auto local_b = b.get_tile(k, j);

10 T* local_c = c.tile_ptr(i, j);
11
12 cblas_gemm_wrapper_(local_a, local_b, local_c,
13 ...);
14 }
15 }
16 }
17 }
18 }

network performance, these computations are especially challenging for unstructured ma-
trices, such as those occurring in graph neural networks, genomics, graph analytics, and
other data intensive problems. Sparse matrix primitives provide a convenient and impor-
tant set of operations for performance tuning that will impact a wide array of applications,
and there is a large body of prior work optimizing sparse matrix kernels for multicore [88],
manycore [96], GPU [115], and distributed memory environments [97, 2, 64, 101, 55]. Two
of the most important kernels are sparse times dense matrix multiplication (SpMM), where
the dense matrix is tall and skinny, i.e., representing a set of vectors, and sparse times sparse
matrix multiplication (SpGEMM). Sparse matrix-vector multiplication is also an important
kernel in many applications, and has been studied even more extensively, although our focus
here is on the matrix-matrix operations.

The large majority of prior work on distributed-memory sparse matrix kernels focuses
on bulk synchronous implementations based on SUMMA [108], using collective operations,
typically broadcast and/or reduce, in the inner loop of the algorithm to move data to the
processes that need it for their local matrix multiplications. While SUMMA-like algorithms
have the advantages of being straightforward to implement and generally scaling well, for
sparse problems, they have the disadvantage of forcing processes to proceed in lockstep in
the inner loop of the algorithm. When there is load imbalance, either in the amount of
computation that must be performed locally by each process, the amount of data that must
be transferred to each process, or both, this can potentially result in decreased performance.
This can occur even when the total amount of work performed by each process is the same,
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Algorithm 7 Matrix multiplication using our distributed matrix data structure and the
Stationary A algorithm.

1 template <typename T>
2 void multiply(BCL::DMatrix<T>& a, BCL::DMatrix<T>& b,
3 BCL::DMatrix<T>& c) {
4 std::vector<BCL::DMatrix<T>> acc_c;
5 for (size_t i = 0; i < a.grid_shape()[1]; i++) {
6 acc_c.push_back(c.copy());
7 }
8 for (size_t i = 0; i < a.grid_shape()[0]; i++) {
9 for (size_t k = 0; k < a.grid_shape()[1]; k++) {

10 if (a.tile_ptr(i, k).is_local()) {
11 for (size_t j = 0; j < c.grid_dim()[1]; j++) {
12 T* local_a = a.get_tile(i, k);
13 auto local_b = b.get_tile(k, j);
14 std::vector<T> local_c(c.tile_size(i, j));
15
16 cblas_gemm_wrapper_(local_a, local_b, local_c,
17 ...);
18 acc_c[k].put_tile(i, k, local_c);
19 }
20 }
21 }
22 }
23 BCL::barrier();
24
25 for (size_t i = 0; i < c.grid_shape()[0]; i++) {
26 for (size_t j = 0; j < c.grid_shape()[1]; j++) {
27 if (c.tile_ptr(i, j).is_local()) {
28 for (size_t k = 0; k < acc_c.size(); k++) {
29 c.tile_view(i, j) += acc_c[k].tile(i, j);
30 }
31 }
32 }
33 }
34 }
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since processes may have differing amounts of work in each iteration. To illustrate, Figure 7.3
shows two kinds of load balance for squaring a randomized sparse matrix generated by the R-
MAT model [30], with parameters a = 0.6, b = c = d = 0.4/3, edgefactor 8, and scale 17. The
total (end-to-end) computation has only 20% load imbalance whereas the synchronization
points in between stages amplify the load imbalance to≈ 2.3×. The load imbalance is defined
as the max/avg ratio, the ratio of maximum number of flops performed by any processor to
the average number of flops per processor.

Load imbalance is often addressed by randomly permuting the rows and/or columns of
the sparse matrices, but this has disadvantages, the foremost being that the required permu-
tation of the inputs, followed by permutation of the outputs, can be expensive. Furthermore,
permuting the matrix may possibly remove structural locality, resulting in decreased perfor-
mance of local matrix multiply operations. For example, Slota et al. [99] showed that the
loss of locality due to random permutations can hurt the performance of graph algorithms
significantly where parallel PageRank performs 2−5× slower on a randomly permuted graph
compared to other orderings. Even if we ignore the loss of locality or try to recover it by
local reordering after a global random permutation, there are theoretical limits on how much
load balance random permutations can achieve. For matrices with dense rows or columns,
the load balance can deteriorate with √p for large p in the worst case, where p is the number
of processors, per Theorem 5.4 of Azad et al. [11].

Asynchronous algorithms, which do not require synchronization or coordination between
processes as in bulk synchronous algorithms, are an approach to dealing with this load
imbalance in distributed sparse matrix multiplication. In this chapter, we develop dense
and sparse matrix data structures that use RDMA, meaning that a process can manipulate
remote parts of the matrix using one-sided remote put and get operations, without requiring
synchronization or coordination with the remote process. Using these dense and sparse
matrix data structures, we then design and implement a number of different RDMA-based,
asynchronous matrix multiply algorithms, which remove synchronization from the inner loop,
allowing each process to proceed independently. In addition, we develop and implement an
RDMA-based workstealing algorithm, which allows processes that have finished early to steal
work from processes that are overburdened using a lightweight reservation scheme.

Furthermore, we examine the performance of these different sparse matrix multiply al-
gorithms running across multiple GPUs in a distributed memory environment. We examine
the challenges presented by the highly compute dense nodes of modern GPU-based super-
computers, as well as the benefits of direct GPU-to-GPU transfers offered by new network
technologies like NVIDIA GPUDirect RDMA and NVLink.

The main contributions of this chapter are:

1. Design and implementation of RDMA-based distributed dense and sparse matrix data
structures for GPUs.

2. New asynchronous, RDMA-based algorithms for SpMM and SpGEMM, including work-
stealing algorithms.
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(a) End-to-end load imbalance when processors
do not synchronize across 16 stages. The heat
plot has 256 = 16×16 boxes, which demonstrate
the max/avg load imbalance is ≈ 1.2.
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Figure 7.3: Total (end-to-end) vs. per-stage load balance multiplying a R-MAT model-
generated sparse matrix with a sparse 2D algorithm. Simulated on a 16× 16 process grid.

3. A roofline-based performance model, to characterize the performance of our RDMA-
based implementations.

4. An in-depth performance analysis of our RDMA-based implementations, along with a
comparison to traditional bulk synchronous methods.

7.5 Background
Sparse times dense matrix multiply (SpMM) and sparse times sparse matrix multiply (SpGEMM)
are two important sparse linear algebra primitives. SpMM is used in a variety of blocked
iterative methods, graph algorithms, as well as graph neural networks (GNNs) [66, 107, 65].
In these contexts, SpMM typically involves multiplication of a sparse matrix with a tall
and skinny dense matrix, where the number of columns of the sparse matrix varies between
32 and 1024. SpGEMM is also used in graph algorithms, including betweenness centrality,
triangle counting, cycle detection, and Markov clustering, as well as in applications such as
in genomics [28, 10, 45, 29, 42].
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Distributed Matrix Algorithms
Distributed matrix algorithms allow multiple processes to work together to execute a single
matrix multiply operation. Let’s first consider a distributed matrix multiply computing the
product C = AB. Here, each of the matrices C, A, and B is split up into tiles which live
on different processes. The matrix tiles will be sparse or dense, depending on what kind
of matrix multiplication is being performed. Let’s assume that C is distributed among a
grid of M × N tiles, A is distributed among a grid of M × K tiles, and B is distributed
among a grid of K × N tiles. The algorithms we consider here rely on a tiling scheme
that is regular on the indices. In other words, each tile has the same dimensions, modulo
differences due to the tile size not dividing the matrix size evenly. A different, more irregular
tiling mechanism might be more appropriate for matrices from certain applications such as
those involving linear-scaling quantum-chemical calculations [25], where the near-sightedness
creates natural block-sparse structure. However, the vast majority of application targets
(GNNs, graph algorithms, eigenvector computations, and tensor decompositions) do not
have this natural block-sparse structure, so the added complexity of irregular tiling is not
justified for us.

Bulk Synchronous SUMMA
In bulk-synchronous SUMMA, collective broadcast operations are used to communicate tiles
of the matrix. In SUMMA, communicators are created for each tile row of the A matrix
and each tile column of the B matrix. In each iteration of the algorithm, a block of the
A matrix is broadcast in each row communicator and a block of the B matrix is broadcast
in each column communicator. Each process will compute its corresponding local matrix
multiplication, accumulating into its local block of C. Stationary A (or B) algorithms are
also possible with SUMMA, by replacing one of the broadcasts with a collective reduction
operation to accumulate each block of C into the correct place. Pseudocode for SUMMA is
shown in Algorithm 2.

As discussed in Section 7.4, variation in the number of nonzeros, as well as the sparsity
patterns, of individual tiles of sparse input matrices can create load imbalance in computation
due to the differing numbers of flops that must be performed in each local matrix multiply,
as well as load imbalance in communication, due to the different amounts of data that must
be transferred by each process. Bulk synchronous SUMMA-like algorithms can suffer due to
these load imbalances.

Modifying Remote Tiles

Modifying a local tile is straightforward, since we can use local pointers which point to a
local tile of the matrix to directly modify the data. Modifying a remote tile, which is only
required for some of the RDMA algorithms, is somewhat more complex, particularly when
the remote tile happens to be sparse. To deal with this, we use a system of remote queues
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to issue asynchronous updates to the remote tiles. Each process has a globally visible queue,
and other processes can push updates to this queue in order to send updates that the remote
process needs to apply to tiles that it owns. During algorithms that require accumulations
to remote tiles, each process will periodically check to see if there are elements waiting in
the queue, and if so, dequeue the elements and accumulate the tile. The element inserted
into the queue is a lightweight pointer to the submatrix that needs to be accumulated, so
the dequeueing process will issue get operations to retrieve the data before accumulating.
Push and pop operations are performed atomically to ensure no updates are lost.

Algorithms
RDMA Stationary C Algorithm

The most straightforward RDMA-based algorithm is the stationary C algorithm, in which
each processor iterates through its tiles of the C matrix, and, for each tile, iterates through
the corresponding row block of A and column block of B, retrieving each of the remote
tiles via get tile and multiplying them together using a local matrix multiply operation.
Pseudocode for a basic implementation of this algorithm is shown in Algorithm 3. Since the
method get tile does not require any coordination with remote processors, each process
can execute its work independently, and does not need to wait on or synchronize with other
processors. While the pseudocode includes a barrier statement at the end, unless the entire
result is required immediately, processes are actually free to exit the distributed matrix
multiply without synchronization and immediately proceed to do other work. In our actual
matrix multiply implementations, matrix multiplications are performed lazily, and users can
force a materialization if needed using a barrier statement.

In order to achieve good performance, a few optimizations are required, including prefetch-
ing tiles for the next iteration, which allows overlap of computation and communication, and
an iteration offset in the inner loop, which balances which tile is requested within each row
and column and generally ensures the first remote get is to a local tile. These optimizations
are discussed in detail in Section 7.3.

RDMA Stationary A and B Algorithms

The RDMA-based stationary A algorithm is similar to the stationary C algorithm, except
we assign work based on which processor owns which tile of A. Each process iterates through
its tiles of A, and, for each tile, iterates through the corresponding tile row of B, pulling
in each tile and performing a local matrix multiply. Each of these partial results must
be accumulated into different tiles of C, each of which is potentially owned by a different
process. In order to accumulate these partial results into their individual tiles of C, a global
pointer to the local result is pushed to a queue on the remote process where it needs to be
accumulated. At some point, the remote process will pop the pointer off of its queue, retrieve
the remote partial result tile, and accumulate it into the correct local tile. Pseudocode for
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the RDMA-based stationary A algorithm is shown in Alg 5. The stationary B algorithm is
very similar, except work is assigned based on which processes own which tile of B.

The stationary B algorithm is very similar, except work is assigned based on which
processes own which tile of B. Each process will iterate through its tiles of B, and for each tile
of B, iterate through the corresponding tile column of A, retrieving the tiles of A, performing
a local matrix multiply, and pushing a pointer to the partial result onto the remote queue
of the process that owns the tile of C to which the partial result must be accumulated.

Workstealing Algorithms
In addition to supporting generally asynchronous implementations of distributed matrix
multiply, RDMA also allows for more straightforward implementations of workstealing algo-
rithms, in which processes that have finished their work can steal work from processes that
are overburdened. In our workstealing algorithms, we use lightweight 2D and 3D reservation
schemes to allow processors to claim work. First, processors attempt to perform their work
as normal, iterating through each of the tiles that they own. However, before performing any
work, they first issue a remote fetch-and-add operation, executed using RDMA, to reserve
the work. If some of a process’ work is stolen, it will move on to the next piece of work
available. After it has completed all of its normal work, each process will iterate through a
number of other processes, checking to see if they have work available to be stolen.

Random workstealing The simplest workstealing strategy is random workstealing, where
work is stolen randomly without regard to locality. This has the advantage that many
blocks are available to be stolen, with the disadvantage that performing stolen work will
usually be more expensive than performing regular work, since the tiles of A, B, and C must
all be communicated, as opposed to just two. Random workstealing uses a 2D work grid
corresponding to the tiles of the stationary matrix. Each element in the work grid contains
an integer that is initialized to zero. To claim a piece of work involving a tile, processes
perform a fetch-and-add operation on the corresponding element of the work grid. The
integer value returned corresponds to the piece of work that has been claimed. Pseudocode
for this workstealing algorithm is shown in Alg 8 using the stationary A method.

Locality-Aware workstealing In locality-aware workstealing, instead of stealing ran-
domly, each process will only steal pieces of work where it owns one of the components,
ensuring that the cost of performing stolen work will be similar to if it had been performed
by the origin process. Locality-aware workstealing requires a 3D work grid, where element
i, j, k corresponds to the component matrix multiply C[i, j]+ = A[i, k] ∗ B[k, j]. Processes
will first perform work associated with the original stationary distribution, and then attempt
to steal work items for which they have one of the three components.
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Algorithm 8 Stationary A SpMM with random workstealing.
def attempt_work(i, k):

# Remote atomic fetch-and-add to reserve work
my_j = reserve_grid[i, k]++
while my_j < N:

local_a = A.get_tile(i, k)
local_b = B.get_tile(k, j)
local_c = local_a*local_b

queue[C.owner(i, j)].push(get_ptr(local_c))
my_j = reserve_grid[i, k]++

# Do work for my tiles
for i in 0..M-1:

for k in 0..K-1:
if A.owner(i, k) == rank():

attempt_work(i, k)

# Attempt to steal work
for idx in 0..M-1:

i = (rank()+idx) / M
k = (rank()+idx) % M
attempt_work(i, k)

while local_c_ptr = queue[rank()].pop():
C.my_tile() += get_tile(local_c_ptr)

barrier()

7.6 Performance Model
In this section, we build a performance model to characterize and predict the performance
of our RDMA-based matrix multiply algorithms, first computing the expected cost of com-
munication before using this communication analysis to build an inter-node roofline model,
which characterizes performance in terms of the ratio of network traffic to local work.

As in our performance model for distributed dense matrix multiply, assume a two-
dimensional grid of matrix tiles, where the matrices A (m× k), B (k× n) B, and C (m× n)
are distributed amongst p processors laid out in √p×√p tile grids. Tile dimensions for A,
B, and C are then m√

p
× k√

p
, k√

p
× n√

p
, and m√

p
× n√

p
respectively, with √p tile columns and

√
p tile rows in each matrix. For a dense matrix, the total number of elements in each tile

is the product of its dimensions, while for a sparse matrix we approximate the number of
nonzeros per tile as the matrix density d multiplied by the product of the tile dimensions.

For our stationary C RDMA-based algorithm for SpMM, in each iteration, each process
will issue two remote get operations, one to retrieve a sparse tile of A, and one to retrieve
a dense tile of B. Therefore, in each iteration, each process will retrieve exactly kn

p
ele-

ments in the dense tile of B, along with dmk
p

elements in a CSR data structure, for a total



CHAPTER 7. MATRIX DATA STRUCTURES 79

communication cost of kn
p

+ 2dmk
p

+ m√
p

+ 1 elements.
As in the dense case, we also must apply an iteration offset of i + j to the k loop,

as demonstrated in Section 7.3. This ensures that in an evenly distributed matrix the
communication does not suffer from imbalance due to processes within a tile row or tile
column requesting tiles of the matrix using the same iteration order.

Next, we present an inter-node roofline model that predicts the performance of each
iteration of the distributed matrix multiplication. The roofline model predicts the maximum
possible performance of a computational kernel depending on its arithmetic intensity, or
number of operations performed per byte that must be fetched from memory. Typically,
the roofline model is used to characterize serial or multi-threaded compute kernels in terms
of how compute or bandwidth intensive they are, where the limit on “compute” is defined
by the processor’s arithmetic peak, and “bandwidth” is determined by memory bandwidth.
Here, we develop an inter-node roofline model to characterize performance of our distributed
memory, RDMA-based matrix multiply algorithms. In this instance, the bandwidth involved
is network communication, and the roofline peak of local operations serves as our “arithmetic
peak.” In our inter-node roofline model, we compute the inter-node arithmetic intensity of
each iteration as the number of flops performed divided by the number of bytes that must
be communicated over the network. The flat portion, providing the “roof” on performance
of our inter-node roofline, is the local roofline peak for our local SpMM or SpGEMM calls.

We first build a regular local roofline model to characterize the performance of our local
matrix multiplies. For local SpMM and SpGEMMs, precise roofline models can be difficult
to compute, often requiring analysis of the actual matrices themselves, since they depend not
only on the size of the matrices and the number of nonzeros, but also the sparsity patterns
of the matrices involved. For SpMM, we can calculate an approximate upper bound on
arithmetic intensity as the number of flops to be performed in the SpMM divided by the
total size of the sparse and dense matrices in bytes. This upper bound assumes perfect
cache performance for B and C, and depending on the nonzero pattern, values may have
to be reloaded from memory, resulting in lower performance. For a local SpMM operation
multiplying a tile of A times B, with the tile sizes derived above, and adding the variable
w, which is the number of bytes per word, we compute the arithmetic intensity of our local
SpMM operations.

local SpMM AI =
2(dmk

p
)( n√

p
)

w(2dmk
p

+ m√
p

+ 1 + mn
p

+ kn
p

)

That is, the number of flops to be performed, divided by the total number of bytes in A,
B, and C. To calculate the local roofline peak, which is the “roof” on our inter-node roofline
model, we multiply this arithmetic intensity by the memory bandwidth of the local processor
B, followed by a max operation with the arithmetic peak.

To compute the arithmetic intensity of an iteration of our distributed SpMM algorithm
using the inter-node roofline model, we divide the number of flops performed, which is the
same expression from the numerator of the local SpMM arithmetic intensity, by the total
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Figure 7.4: Inter-node roofline plots for SpMM and SpGEMM with a 2D distribution. SpMM
plot models performance for different widths of the dense B matrix at a fixed scale (24 GPUs),
while SpGEMM models performance at different scales. Dashed horizontal lines represent
local roofline peaks for SpMM and SpGEMM operations, while vertical lines represent inter-
node roofline peaks for particular problems.

number of bytes to be communicated over the network, equal to the total number of bytes
in the tiles of A and B.

inter-node SpMM AI =
2(dmk

p
)( n√

p
)

w(2dmk
p

+ m√
p

+ 1 + kn
p

)

We can then use this roofline to characterize the performance of SpMM on the Summit
supercomputer. Figure 7.4 shows the roofline plot for our inter-node SpMM roofline model,
using the isolates subgraph2 sparse matrix, and evaluating performance for various numbers
of columns in the dense matrix. In the plot, the blue sloping portion represents the region
that is bound by network communication, and as such the bandwidth-bound portion has a
slope of 3.83 GB/s, which is each GPU’s share of injection bandwidth on Summit. The brown
roofline at the top is the 32-bit floating point arithmetic peak, 16 TFlops/s for an Nvidia
Tesla V100 GPU. Each of the other dotted horizontal lines represents a local roofline peak,
which in the inter-node roofline model replaces the arithmetic peak. The vertical solid lines
represent the roofline peak for a particular problem size, while the dots indicate achieved
performance of our RDMA algorithm. Since all three of the problem sizes plotted are well
into the bandwidth-bound portion of the inter-node roofline plot, we expect them to be bound
by network communication. The SpMM roofline model was across 24 GPUs. Note that the
achieved performance slightly exceeds the roofline bound based on network bandwidth. This
is because of the high-speed NVLink interconnect providing higher bandwidth for intra-node
transfers.
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While we can also construct an inter-node roofline model for SpGEMM, it is not possible
to write a general formula for FLOPs performed for a particular matrix size and density.
This is because in SpGEMM, the number of FLOPs performed depends on the particular
sparsity patterns of the matrices, and as such the number of FLOPs can vary significantly
for matrices with the same dimensions and number of nonzeros. In light of this, we use
the function FLOPS(A, B) to represent FLOPs performed, and in our roofline plot we use
average FLOP values calculated experimentally. As such, we can represent the inter-node
roofline model’s arithmetic intensity as the number of flops performed divided by the size of
A and B.

inter-node SpGEMM AI = FLOPS(A, B)
w(2dmk

p
+ m√

p
+ 1 + 2dkn

p
+ k√

p
+ 1)

For our local roofline model, we use the bound on local SpGEMM arithmetic intensity by
Gu, et al., which is representative of modern SpGEMM algorithms and expresses arithmetic
intensity in terms of the compression factor cf, the number of flops performed per nonzero
output, and the number of bytes to express each nonzero b.

local SpGEMM AI = cf

(3 + 2cf) ∗ b

Note that the roofline model is dependent on the sparsity structure, since cf depends on
the particular sparse matrices being multiplied. Our inter-node SpGEMM roofline model is
plotted in Figure 7.4. To obtain realistic values for cf and the number of flops performed
FLOPS(A, B), we performed each of the component local SpGEMM operations in the dis-
tributed SpGEMM operation for the isolates subgraph4 matrix, recording their values for
cf and FLOPS(A, B) to compute average values for different numbers of GPUs P . In the
SPGEMM plot, inter-node roofline peaks are much closer to their local roofline peaks than
in the SpMM plot. Thus, our roofline model suggests SpGEMM is significantly less network
communication-bound than SpMM, although still communication bound. We discuss more
conclusions from our roofline model in Section 7.8.

7.7 Implementation

Communication Layer
As discussed earlier, the current generation of GPU-based supercomputers offers GPUDirect
RDMA over Infiniband networks [91], which ensures that issuing one-sided operations will
be efficiently executed in hardware. In GPUDirect RDMA, the CPU prepares an Infiniband
request, which it sends to the local network interface card (NIC). When the NIC receives the
request, it will copy the data directly over the network from GPU to GPU, without staging
data through the CPU. When copies take place between GPUs within the same node, the
high-bandwidth NVLink fabric is used.



CHAPTER 7. MATRIX DATA STRUCTURES 82

All of our RDMA-based implementations use NVSHMEM for communicating data be-
tween GPUs. NVSHMEM uses GPUDirect RDMA over Infiniband to transfer data when
the GPUs involved are on separate nodes, and NVLink to transfer data when the GPUs
involved are within the same node [90].

Data Structures
We implement sparse and dense distributed matrix data structures using BCL, whose ar-
chitecture is described in detail in Chapter 3. an RDMA-based distributed data structures
library in written in C++. As discussed in Section 7.2, both dense and sparse matrix data
structures split the distributed matrix up into evenly sized tiles, which are then assigned to
processors using a processor grid, as in ScaLAPACK [39]. As discussed earlier, each process
has a copy of a directory of remote pointers, which point to the matrix tiles stored in pinned
memory, directly accessible through RDMA operations using NVSHMEM. In the dense case,
a single remote pointer points to a dense tile data structure, and in the sparse case three
remote pointers point to the values, row pointer, and column index arrays of a compressed
sparse row (CSR) data structure. All data is stored directly on GPUs, and can be copied
directly from GPU to GPU over the network using BCL’s NVSHMEM backend.

Data Access Primitives
In terms of data access primitives, all direct manipulation of data is performed using put
and get RDMA operations. To retrieve a tile of the dense matrix, a process will issue a
remote get operation to retrieve all or part of a remote tile. Similarly, to write to the tile,
a process can issue a remote put operation. In the sparse case, reading from a tile involves
issuing remote get operations to retrieve each of the value, row pointer, and column index
arrays in a CSR data structure. Due to the complexities involved in modifying a CSR data
structure in place, only the process that owns a sparse tile is permitted to modify it. This is
done by calling a function replace tile() to replace the old tile with a new one, followed
by a collective function renew tiles() that will make all sparse tile modifications visible to
other processes. As discussed in Section 7.5, when a process needs to send an update to a
remote tile, as in the A and B stationary algorithms, we use a distributed queue to send a
pointer to the update to the process that owns a particular tile, who will then perform an
accumulation at the destination tile. For the update queue, we use BCL’s CheckSumQueue,
which enqueues a pointer using a single fetch-and-add operation and a remote put, while
allowing simultaneous enqueues and dequeues.

As discussed earlier, the primary primitive for accessing remote tiles of the matrix is
get tile(), which fetches a remote tile of the matrix, and has the same API for both dense
and sparse matrices. In the asynchronous version, we return a future object, which will
return the local object when the method get() is called. In order to ensure the best possible
performance and simplify memory management, we allocate most of each GPU’s memory as
shared memory that can be addressed remotely by NVSHMEM, and use our own memory



CHAPTER 7. MATRIX DATA STRUCTURES 83

allocator to allocate memory when necessary. This (1) ensures that the local destination
buffers in remote get operations are allocated in the shared memory segment, which is
a requirement for NVSHMEM transfers over Infiniband, and (2) reduces the overhead of
memory allocation during the algorithm, since cudaMalloc tends to be much less efficient
than using a custom memory allocator.

MPI SUMMA Implementations
For one comparison benchmark, we also implement the bulk synchronous SUMMA algorithm
using CUDA-aware MPI. In the MPI implementations, we use MPI Bcast to broadcast tiles
of the matrix using row and column communicators. We use the CUDA-aware API in
IBM Spectrum MPI to perform our broadcasts directly on data that sits on the GPU,
and IBM Spectrum MPI is configured to take advantage of GPUDirect RDMA to copy
data directly from GPU-to-GPU over the Infiniband network. Note that the MPI SUMMA
implementation only runs on square processor grids, so we run this implementation on perfect
square numbers of processors.

7.8 Evaluation
We evaluated our RDMA-based sparse matrix multiply implementations in both single-node
and multi-node environments. Multi-node experiments are run on the Summit supercom-
puter at the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National
Laboratory. A Summit node has 6 Nvidia Tesla V100 GPUs, each with 16 GB of mem-
ory, and the nodes are connected with dual-rail EDR InfiniBand with a link bandwidth
of 23 GB/s. Within a node, the GPUs are connected with Nvidia’s NVLink interconnect.
Single-node experiments are run on a DGX-2 system that is part of the Bridges-2 system
at the Pittsburgh Supercomputing Center. The DGX-2 has 16 Nvidia Tesla V100 GPUs
with 32 GB of memory, which are fully connected by Nvidia’s NVLink interconnect. Both
systems use NVLink 3.0, which provides 50 GB/s of link bandwidth. We ran experiments
for matrices whose single-GPU runtime took less than a second in the single-node DGX-2
environment, while we used the multi-node environment for matrices which took longer.

On Summit, all codes were compiled with GCC 8.1.1, CUDA 11.2.0, and IBM Spectrum
MPI 10.3.1.2. On the single-node DGX-2 system, codes were compiled with GCC 10.2.0,
CUDA 11.1.0, and Open MPI 4.0.5. Our RDMA-based implementations use NVSHMEM
2.0.2. All performance experiments use CuSPARSE for local matrix computation. In addi-
tion to our own SpMM and SpGEMM implementations, we also benchmark CombBLAS’s
GPU SpMM and PETSc’s GPU SpGEMM [28, 18]. We corresponded with CombBLAS’s
authors on how to build and execute the gpu branch of CombBLAS on Summit, and with
OLCF staff for how to properly build PETSc with GPU support.

The sparse matrices in our experiments are detailed in Table 7.4. Load imbalance is
defined as maxi,j(nnz(Ai,j))/avei,j(nnz(Ai,j)) where Ai,j is the matrix assigned to a single
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Sparse matrix (A) kind m = k nnz(A) load imb.
Mouse Gene Biology 45.1K 29.0M 2.13
ldoor Structural 952K 46.5M 8.23
reddit GNN 233K 115M 1.08
nlpkkt160 NLP 8.3M 230M 9.46
Amazon Large GNN 14.3M 230M 3.78
com-Orkut NMF 3.1M 234M 8.15
Nm7 Eigen 5.0M 648M 6.38
Nm8 Eigen 7.6M 592M 6.48
Isolates, Subgraph4 Biology 4.4M 327M 1.00
Isolates, Subgraph2 Biology 17.5M 5.2B 1.00
Friendster Graph 62.5M 3.4B 7.68

Table 7.4: Matrices used in our experiments. “load imb.” lists the imbalance in number of
nonzeros when split amongst 100 processes on a 10× 10 2D process grid.

processor P (i, j). We multiply these matrices against dense matrices with 128 and 512
columns. All matrices use 32-bit floating point values, and for indices, we use 32-bit integers
except on ”Isolates, Subgraph2” and ”Friendster,” which require 64-bit indices due to their
size.

SpMM Experiments
To evaluate our RDMA-based algorithms for sparse times dense matrix multiplication (SpMM),
we performed strong scaling experiments using a number of different sparse matrices multi-
plied by dense matrices of different widths.

Figures 7.5 and 7.6 show the results for a variety of different algorithms. The RDMA-
based algorithms include a stationary C algorithm (“S-C RDMA”), a stationary A algorithm
(“S-A RDMA”), stationary A algorithm with random workstealing (“R WS S-A RDMA”),
and locality-aware workstealing with stationary A and C distributions (“LA WS S-C RDMA”
and “LA WS S-A RDMA”). Bulk synchronous benchmarks include our own CUDA-aware
MPI SUMMA implementation (“BS SUMMA MPI”), and CombBLAS’s GPU SpMM kernel
(“CombBLAS GPU”). We use matrix sizes representing typical workloads used in a range
of real-world applications, such as Graph Neural Networks (GNNs), iterative methods, and
graph algorithms[66, 107, 65].

The implementations generally scale well up to at least 8 GPUs on the single-node DGX-
2 system in Figure 7.5, where each GPU has 50 GB/s of bandwidth. Some versions suffer
a slowdown at 16 GPUs, especially on the smaller Nm7 and Nm8 matrices, where at 128
columns of B there is insufficient work to keep the GPUs fully occupied and still amortize
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Figure 7.5: Single-node runtimes for SpMM, with different numbers of columns N in the
dense matrix B.
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data movement. This is particularly true for the stationary A algorithms because of an
increase in the number of accumulation operations that become necessary as the number of
tiles, and thus the number of local matrix multiply operations, increases.

For the larger matrices run on distributed memory in Figure 7.6, the shared links give
each GPU only 3.8 GB/s on average. This significantly limits scalability, especially for
the communication-bound case with a smaller dense B matrix. However the RDMA-based
implementations outperform the bulk synchronous implementations for most of these config-
urations, and that benefit is greatest when the number of columns in the dense matrix B is
lowest. This is likely because these problems have less computation and are therefore more
sensitive to communication cost, both message latency and load imbalance from communi-
cating unequal size blocks of A. A larger B matrix increases the both computation time and
time for well-balanced communication of B. The stationary A algorithms have the same issue
of increased accumulation cost as on the single node system, but due to the communication-
bound nature of the multi-node problems, the overall effect is not as pronounced.

The multi-node scaling results are also influenced by the fact that some transfers happen
over the local NVLink fabric, which is much faster than Infiniband. As the number of GPUs
increases, the number of transfers that occur over local NVLink fabric decreases, and the
lower bandwidth between nodes plays a larger role.

Scaling performance is best on larger matrices, such as isolates, and scaling is also better
with wider B matrices. The reasons for this are twofold: (1) there is simply more work
to be done with a larger dense matrix, and so scaling performance is better, and (2), as
demonstrated by our inter-node roofline performance model in Figure 7.4, the wider the
B matrix, the more arithmetically intense the operation becomes, and the less bound by
network communication.

The relative performance of the RDMA SpMM algorithms generally depends on the
relative sizes of the A, B, and C matrices. If one of the matrices is particularly large,
then it is most efficient to keep that matrix stationary while communicating the two other,
smaller matrices. When the sparse matrix is not too large in relation to the sizes of the
dense matrices, stationary C performs best, which follows from the fact that it performs
accumulations locally, removing the need for remote queues, which add some additional
overhead. For problems where the sparse matrix is sufficiently larger than the dense matrices,
the stationary A algorithm performs best. This trend can be seen in the multi-node plots
for the matrix friendster, where stationary A performs better for N = 128 (meaning the
dense B matrix is small), but that is reversed for N = 512 (meaning the dense B becomes
bigger). As with most real-world graph applications, all of our sparse matrices are square,
which means that the B and C matrices are the same size. This means there is no benefit in
terms of communication volume to leaving B stationary instead of C, even while stationary
B adds additional overhead due to remote queues. As such, we do not explore a stationary
B implementation for SpMM.

Our RDMA-based workstealing algorithms are able to achieve performance improvements
for some of the less load balanced matrices, such as com-Orkut and friendster, particularly at
higher node counts, where the smaller amount of work per node is more likely to lead to some
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nodes being left with uneven amounts of work. The locality-aware workstealing algorithms
tend to perform much better than the random workstealing algorithm, which often incurs a
high cost when performing workstealing, since it is not guaranteed that any of the involved
matrix tiles will be local. In Table 7.5a, we can see that the locality-aware workstealing
algorithm is able to reduce the amount of time lost due to load imbalance compared to
the other RDMA implementations. It should be noted that load imbalance numbers for
the RDMA implementations cannot be directly compared to the bulk synchronous MPI
implementation, since time lost to load imbalance is tied up in MPI’s broadcast operations,
which perform communication, but also enforce synchronization.

SpGEMM Experiments
To evaluate our RDMA-based SpGEMM algorithm, we perform the computation C = AA
for a number of different sparse matrices, representative of a number of different graph
algorithms, such as Markov clustering [45], triangle counting [10], and transitive reduc-
tion [56]. We again benchmark RDMA-based stationary C and A algorithms, along with
a work-stealing version, a SUMMA implementation in MPI, and PETSc’s SpGEMM using
cuSPARSE.

Strong scaling performance results are shown in Figure 7.7. Unlike SpMM, both the
single- and multi-node environments are more likely to be compute bound. As a result, all
the implementations have similar performance, because they are all performing the same
computations. The only exception is PETSc, which is significantly slower, probably because
it is not utilizing GPUDirect RDMA. On the large isolates matrix, our bulk synchronous
CUDA-aware MPI implementation matches that of the RDMA implementation. On mouse
gene, which is somewhat smaller and less load-balanced, we observe good scaling until very
high concurrencies, but the RDMA-based implementations achieve higher overall perfor-
mance as well as somewhat better scaling. On nlpkkt160, which has an uneven distribution
of nonzeros, we observe poor performance in the multi-node experiments due to imbalance
in both communication and computation. However, the RDMA implementations still per-
form better than the bulk synchronous implementations. Unlike SpMM, we do not meet our
SpGEMM model’s roofline bound on Summit, as shown in Figure 7.4. This is because the
local cuSPARSE operations are not meeting the local roofline bound, evidenced by SpGEMM
being compute bound in Table 7.5b. This likely indicates that there are opportunities for
optimization in the local cuSPARSE SpGEMM operations.

For single-node experiments, we achieve better scaling on the highly load imbalanced
matrices nlpkkt160 and ldoor, likely because communication imbalance is eliminated due to
the significant increase in bandwidth, along with the fact that at lower concurrencies each
GPU is left with a larger portion of the matrix, reducing the likelihood of load imbalance.
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Env. Matrix Alg. #GPUs Comp. Comm. Acc. Load Imb.
Summit Amazon S-C 24 0.02 1.3 - 0.4

192 ˜0 0.5 - 0.2
S-A 24 0.02 1.1 0.4 0.3

192 ˜0 0.6 0.2 0.2
S-C LW 24 0.01 1.2 0.03 0.3

192 ˜0 0.6 0.01 0.1
MPI 16 0.02 2.1 - -

256 0 1.0 - -
DGX-2 Nm-7 S-C 4 0.44 0.01 0.02 0.14

S-C 16 0.19 ˜0 0.09 0.10
S-A 4 0.42 ˜0 0.07 0.12
S-A 16 0.09 0.00 0.02 0.10
MPI 16 0.64 0.51 0.01 0.15

256 0.08 0.15 0.01 0.08

(a) Component breakdown for SpMM, N = 256 columns.
Env. Matrix Alg. #GPUs Comp. Comm. Acc. Load Imb.
Summit Mouse Gene S-C 24 0.02 1.3 - 0.4

192 ˜0 0.5 - 0.2
S-A 24 0.02 1.1 0.4 0.3

192 ˜0 0.6 0.2 0.2
S-C LW 24 0.01 1.2 0.03 0.3

192 ˜0 0.6 0.01 0.1
MPI 16 0.02 2.1 - -

256 0 1.0 - -
DGX-2 Mouse Gene S-C 4 2.14 ˜0 0.02 0.72

16 0.55 ˜0 0.01 0.21
S-A 4 2.14 ˜0 0.38 0.49

16 0.55 ˜0 0.11 0.13

(b) Component breakdown for SpGEMM.

Table 7.5: Component breakdown for selected matrices.

7.9 Related Work and Conclusions
The C++ PGAS library DASH, which uses RDMA through MPI’s one-sided communication
API, includes dense matrix and vector data structures as well as an implementation of
stationary C dense matrix multiplication [48, 82]. However, DASH does not include any
support for sparse matrices or GPUs.

The Combinatorial BLAS library (CombBLAS) [12] is an MPI-based library that pro-
vides distributed data structures for dense and sparse matrices, also implementing a number
of distributed sparse matrix multiply algorithms. While focusing more on tensor computa-
tions, Cyclops Tensor Framework (CTF) [102] also supports several distributed sparse matrix
multiplication algorithms.
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Distributed matrix-matrix multiplication has seen a sustained interest among the HPC
community. One of the most popular developments has been communication-avoiding (CA)
algorithms [19] that replicate input, output, or intermediate data to asymptotically reduce
communication. CA algorithms have been applied to SpGEMM [13] and SpMM within the
context of graph neural network training [107]. Both CombBLAS and CTF implement CA
algorithms for sparse matrices. Our work on asynchronous, RDMA-based implementations is
orthogonal to CA algorithms, and we leave RDMA-based implementations of communication
avoiding algorithms to future work.

This work explores a large space of possible communication and load balancing opti-
mization for two sparse matrix operations, which are key to many simulation, analysis, and
learning applications. We demonstrate that RDMA based communication can have a signifi-
cant advantage over global collectives for some problems, and that dynamic work stealing can
also contribute to improved scaling. Our extensive set of experiments on multiple matrices
and two different machine configurations also highlight the importance of having high speed
networking hardware that is balanced with the computational capabilities for this class of
algorithms. Our inter-node roofline model provides a useful tool for evaluating performance
and identifying opportunities for optimization.



CHAPTER 7. MATRIX DATA STRUCTURES 91

1 2 4 8 16
Number of GPUs

0.025

0.1

0.4

1.6

6.4

25.6

Ru
nt

im
e 

(s
)

ldoor
S-C RDMA
S-A RDMA
R WS S-A RDMA
LA WS S-C RDMA
LA WS S-A RDMA
Perfect Scaling

1 2 4 8 16
Number of GPUs

0.025

0.1

0.4

1.6

6.4

25.6

Ru
nt

im
e 

(s
)

Mouse Gene

1 2 4 8 16
Number of GPUs

0.025

0.1

0.4

1.6

6.4

25.6

Ru
nt

im
e 

(s
)

nlpkkt160

(a) Single-node experiments.

6 12 24 48 96 192 384
Number of GPUs

0.025

0.1

0.4

1.6

6.4

25.6

Ru
nt

im
e 

(s
)

Mouse Gene

6 12 24 48 96 192 384
Number of GPUs

0.025

0.1

0.4

1.6

6.4

25.6
Ru

nt
im

e 
(s

)
nlpkkt160

6 12 24 48 96 192 384
Number of GPUs

0.025

0.1

0.4

1.6

6.4

25.6

Ru
nt

im
e 

(s
)

Isolates, Subgraph 4

PETSc GPU
SUMMA MPI
S-C RDMA
S-A RDMA
R WS S-A RDMA
LA WS S-C RDMA
LA WS S-A RDMA
Perfect Scaling

(b) Multi-node experiments.

Figure 7.7: SpGEMM strong scaling experiments.
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Chapter 8

Comparing RDMA and RPC-Based
Distributed Data Structures

8.1 Introduction
As discussed in Chapter 1, many complex programs need to perform operations on abstract
data structures, such as hash tables, queues, and arrays. While many mature, high qual-
ity libraries exist that provide implementations of abstract data structures for serial and
multi-threaded programs, the development of techniques for high-level data structures for
distributed programs is still an active area of research [3, 26, 48]. Of particular interest
are distributed data structures for irregular applications, where data access patterns and
volumes are not known in advance. These applications commonly use data structures which
may be complex to implement using traditional message passing methods in a distributed
memory setting, including graphs, trees, hash tables, and distributed queues. The primary
focus of this work has been to develop distributed data structures for irregular applications
using remote direct memory access (RDMA) primitives, which allow processes to directly
manipulate regions of the memory of other processes over the network.

As discussed in detail in Chapter 3, RDMA operations include basic operations to read,
write, or otherwise manipulate remote memory, including remote put, get, and atomic op-
erations. These primitives can be executed directly by the network interface card (NIC) on
most modern supercomputer and datacenter systems, which allows them to be executed in
a very low latency and efficient manner. As discussed throughout this work, it is possible
to implement distributed data structures using only these primitives for all essential data
structure operations [26, 48]. This work uses the Partitioned Global Address Space (PGAS)
model to build distributed data structures, which augments these one-sided remote mem-
ory access primitives with a model for how shared memory segments will be allocated and
exposed, as a collection of partitioned, globally addressable address spaces [5].

However, there are other parallel programming models, discussed in detail in Chapter 2,
that could potentially be used to implement distributed data structures. One such example
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includes programming models based on remote procedure call (RPC) primitives [17]. Unlike
the PGAS programming model, which exposes low-level memory access primitives like re-
mote put, remote get, and remote atomics, RPC allows users to invoke functions on remote
processes. Individual RPC invocations generally come at a higher latency cost than individ-
ual remote memory operations do in a PGAS environment, since RPCs require interrupting
a remote CPU to handle the request. RDMA operations, on the other hand, can be executed
directly by the NIC, which allows them to be executed with only a couple of microseconds
latency. However, since it can execute an arbitrary function, a single RPC can capture
complex control flow, such as searching through a hash table for an empty spot, that would
require multiple round trips over the network to complete with only RDMA operations.

RDMA primitives can be (and often are) used to implement RPC runtimes. In fact, the
buffering technique presented in Chapter 6.1, whereby hash table insertions are pushed onto
queues, where they will later be locally inserted by the remote process, could be considered
a type of specialized RPC runtime. In this chapter, we are concerned with a restricted set of
latency-bound RDMA data structure operations in which the process manipulating the data
structure does so solely using RDMA operations, without relying on the help of a remote
process.

In this chapter, we evaluate some of the RDMA-based distributed data structure oper-
ations presented in this work and compare them with RPC-based implementations written
using GASNet-EX. First, we build a performance model to analyze the cost of our RDMA-
based data structure operations in terms of their component RDMA primitives, as well as
the cost of the RPC-based implementations based on the cost of a GASNet-EX active mes-
sage. We run microbenchmarks to experimentally determine these component costs. Next,
we benchmark the actual costs of remote queue and hash table insertions, using different
levels of coordination in the RDMA-based implementation. We then compare these results
with those of our cost model to evaluate the costs of using our pure RDMA-based methods
versus our RPC-based implementation.

By breaking down the cost of RDMA-based data structure operations in terms of an
analytical cost model can help us determine why RDMA-based operations are expensive,
when they are expensive. In particular, we identify locking operations that can require
multiple retries over the network in the presence of contention as a particular pain point for
RDMA. We then briefly discuss ways of addressing this, which could include avoiding this
level of coordination when possible, using an RPC-based implementation, which can perform
this coordination using cheaper local atomics, or investigating new types of hardware that
could support more expressive RDMA operations. In summary, this chapter has three main
goals:

• Evaluate the cost of various component operations for RDMA-based distributed data
structures on a modern supercomputer network using a collection of microbenchmarks.

• To develop cost model that can be used to estimate the cost of RDMA-based distributed
data structure operations, based on these component costs.
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• To compare RDMA- and RPC-based distributed data structure performance for queue
and hash table data structures at variable levels of concurrency requirements.

8.2 Background

Remote Direct Memory Access
As discussed in more detail in Chapters 1, 2, and 3, remote direct memory access (RDMA)
provides an interface to manipulate remote data in a one-sided manner, meaning that an
origin process can perform operations on the remote memory of a target process without
any explicit coordination with the target. This is commonly executed by having the target’s
network interface card (NIC) directly communicate with its on-node memory, resulting in
very low round-trip latency on the order of a microsecond. Low-latency RDMA primitives
are now available on a number of supercomputer interconnects, including Cray Aries and
Infiniband. RDMA is also increasingly available on datacenter commodity hardware through
RDMA over converged Ethernet (RoCE).

As discussed in detail in Chapter 3, we consider a common set of RDMA operations
available in most modern supercomputer and datacenter systems. This set includes remote
put and remote get, which can be of variable size, along with the fixed-size 32 and 64-
bit atomic memory operations (AMOs) compare-and-swap and fetch-and-op. Some have
proposed an expanded set of RDMA operations to support various types of remote and
distributed data structures, such as the Infiniband extended atomics API [68]. In addition,
there are recently proposed API extensions to RDMA which would allow for more expressive
RDMA operations [3]. These APIs are outside the scope of this chapter.

RDMA-Based Data Structures As discussed throughout this work, distributed data
structures can be directly built on top of one-sided RDMA operations, so that all major
data structure operations will be executed with RDMA. Examples of such partitioned global
address space (PGAS) distributed data structure libraries include BCL, DASH, and Multi-
pol [26, 48, 31]. Similar to shared memory concurrent data structures, these libraries are
built to use a shared global memory space, with synchronization using atomics when nec-
essary, to operate upon shared data. However, unlike shared memory data structures, the
component costs and synchronization models of distributed programming frameworks can
be quite different, so care must be taken to design data structures accordingly. As shown
in Figure 8.1, libraries can use RDMA operations, which will be directly executed by the
target process’ NIC, to operate on remote data. There are two remote memory operations
in this code example, CAS, which is a remote compare-and-swap operation, and RPUT, which
is a remote put operation. In the best case, our inserting process will perform a remote
compare-and-swap, succeed in reserving the first hash table slot, and then perform a remote
put operation. This would have a cost of ACAS + W , that is the cost of a compare-and-swap
operation and a write. However, in the case of hash table collision, the algorithm will move
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void insert(key, val) {

slot = hash(key);
while (!success) {

rval = CAS(flags + slot,
free_flag, taken_flag);

success = (rval == free_flag);
if (!success) {

slot++;
}

}
if (success) {

RPUT(data + slot, {key, val});
}

}

Figure 8.1: Modifying a hash table using one-sided RDMA operations.

on to the next available slot, and multiple round trips may be required to perform the insert
operation. The particular hash table shown here is a hash table with open addressing and
linear probing. Observant readers of Figure 8.1 will also notice that the listed code is not
fully atomic. While the code is atomic with respect to concurrent insert operations, there
is no guarantee that the remote put operation will finish before a remote find operation
reads the half-written value. If we wish for our insert operation to be atomic with respect
to concurrent find operations, we will require a second fetch-and-op operation to mark the
slot as ready for reading after the remote put operation has finalized. This would increase
the best case cost of the remote insert operation to ACAS + W + AFAO. So, depending on
an application’s atomicity requirements, data structure operations over RDMA may have
different best-case costs. Also, depending on a particular execution of the application, the
observed cost of a method may vary due to the number of round trips caused by contention.

Remote Procedure Calls
Remote procedure calls (RPCs), in contrast to RDMA operations, allow an origin process to
remotely trigger the execution of a procedure on a target process. RPCs have the advantage
of being more expressive than RDMA. While control flow in individual RDMA operations
is limited to single-instruction atomics like compare-and-swap and fetch-and-op, RPCs can
include complex control flow and arbitrary computation. This allows more complex data
structure operations, such as inserting into a hash table, pushing a value onto a queue, or even
modifying a dynamically sized data structure, to be performed with a single communication
event. However, this added expressivity comes at a greater latency cost, since an RPC
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void insert_handler(key, val) {

local_hash.insert({key, val});
}

void insert(key, val) {
node = hash(key) % nprocs();
rpc(node, insert_handler, key, val);

}

Figure 8.2: Modifying a hash table using an RPC.

operation must wait for the target process to enter a progress function or interrupt the
processor and make a function call to execute the procedure. It also changes load balancing
across processors, moving away from the clearly defined SPMD model of execution in ways
that can shift computational workload, intentionally or not.

In this chapter, we consider a restricted type of RPC called an active message (AM) [47].
AMs have the following restrictions: (1) active message handlers may not send additional
active messages, except for a single response to the origin process and (2) active message
handlers may not perform network communication. These restrictions allow for a high-
performance, low-latency implementation of active messages with bounded buffer space [23,
24].

RPC Data Structures An implementation of a distributed data structure operation with
RPCs requires two parts: (1) a handler function, which is the procedure that will be executed
on the target process, and (2) a wrapper function, which is the function directly called by the
user on the origin process and the code that will issue the RPC request. RPC data structure
implementations can be quite simple, as shown in Figure 8.2. The wrapper function insert
uses a hash function to map data to the appropriate nodes, then issues an RPC with the
handler function insert handler. The handler function in this case simply inserts the
key and value into a local hash table. In contrast to the hash table implementation based
on RDMA communication, this implementation will typically only require a single round
trip over the network, since the origin node can push the RPC request onto the target
node’s RPC queue in a single network operation, then the target node can execute the
necessary control flow to unpack and store the data. However, crucially, the number of
network operations is unrelated to the control flow logic inside the data structure operation,
which takes place on the target side inside the RPC function. Depending on the specific
manner in which the handler function will be called (either serially or simultaneously with
other threads), the handler function may require local atomic operations or other mechanisms
for synchronization. However, these local mechanisms are significantly cheaper than remote
memory operations.
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Name Notation Latency (us)
put W 3.0
get R 3.7
compare-and-swap ACAS 3.8
fetch-and-op AFAO 3.9

Table 8.1: Latency of various RDMA operations, measured on Cori with 64 nodes.

One important detail not directly illustrated by the above code listing is that the execu-
tion of the handler function is dependent on the attentiveness of the target process, which
must enter a progress function in order for its RPC queue to be serviced. While the liveness
of RDMA operations is guaranteed by the network interface card, which will be constantly
servicing instructions regardless of CPU state, RPC-based systems must either dedicate spe-
cific resources, such as a progress thread, to ensure attentiveness, or else pay the possible
latency cost associated with waiting until the target process finishes its computation and
enters a call to the RPC progress function.

The Berkeley Container Library
In this chapter, we compare the performance of RDMA-based implementations of distributed
data structures to RPC-based implementations. For the RDMA-based implementations, we
will benchmark data structures provided in the Berkeley Container Library (BCL), discussed
throughout this work. We benchmark the queue and hash table data structures discussed in
Chapters 5 and 6, respectively.

Performance Model Data structure operations in BCL can be characterized in terms of
an analytical cost model, which characterizes the best-case costs of data structure operations
in terms of the component RDMA operations. The component costs include remote get,
remote put, compare-and-swap, and fetch-and-op operations. We do not distinguish different
fetch-and-op operations in this performance model, since the operations involved are typically
simple binary functions such as fetch-and-add or fetch-and-XOR, which have very low cost
compared to the inherent network latency. A summary of these operations and the associated
notation are shown in Table 8.1.

Alternate Implementations As discussed in Section 8.2, there are different levels of
concurrency requirements with which RDMA-based data structure operations can be im-
plemented, depending on the specific needs of an application. BCL exposes multiple im-
plementations of data structure operations using a mechanism called concurrency promises,
which allows users to optionally specify the operations that could occur concurrently with
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Method Concurrency Level Description Cost
insert

(a) Concurrent Read/Write (CRW ) Fully Atomic Insert ACAS + W + AFAO
(b) Concurrent Write (CW) Phasal Insertions ACAS + W

find
(c) Concurrent Read/Write (CRW ) Fully Atomic Find AFAO + R + AFAO
(d) Concurrent Read (CR) Phasal Finds R

Table 8.2: RDMA-based hash table method implementations considered in this paper.

the operation being issued. To illustrate the different levels of concurrency requirements
with which a data structure operation could be implemented, consider the case of a hash
table insertion with arbitrarily large keys and values. Inserting an element into such a hash
table will, in the general case, require at least two atomic memory operations and a write.
The first atomic memory operation requests a lock on the bucket into which the element will
be inserted, the write actually writes the value into the distributed hash table, and a final
unlock operation signals that the bucket is ready to be read after the write hash completed.
In this hash table implementation, without the final atomic memory operation, concurrent
find operations might read halfway written data, resulting in an incorrect program execution.
However, in the guaranteed absence of concurrent find operations within a barrier region,
we can elide the final atomic memory operation, since the following barrier will ensure that
the write completes before any find operations may be issued.

Similar levels of concurrency requirements exist for both hash table insert and find oper-
ations, as well as operations on queues. Tables 8.2 and 8.3 show some of the data structure
implementations available in BCL’s hash table and queue implementations, along with the
associated best case costs. In the notation used in this paper, CW indicates that an op-
eration is allowable with concurrent writes (pushes or inserts), while CR indicates that an
operation is allowable with concurrent reads (pops or finds) and CRW indicates the operation
is allowable with either.

GASNet Active Messages
GASNet is a communication library that offers remote procedure call functionality in the
form of active messages. Active messages are a restricted form of RPC, in that (1) active
message handlers cannot require network communication, and (2) active message handlers
cannot send additional active messages except for request handlers, which may send a single
reply to the host. Since neither of these are necessary for the class data structure operations
we consider in this paper and GASNet is known for having a high-quality, fast implementa-
tion of active messages, we use GASNet to implement a set of RPC-based distributed data
structure implementations to compare against BCL’s RDMA-based data structures.
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Method Concurrency Level Description Cost
push

(a) Concurrent Read/Write (CRW ) Fully Atomic AFAO + W + ACAS-P
(b) Concurrent Write (CR) Only Pushes AFAO + W
(c) Concurrent Local (C`) Local Push `

pop
(d) Concurrent Read/Write (CRW ) Fully Atomic AFAO + RACAS-P
(e) Concurrent Read (CR) Only Pops AFAO + R
(f) Concurrent Local (C`) Local Pop `

Table 8.3: Implementations for circular queue methods.

GASNet-EX active messages consist of a fixed-size header, which includes an index refer-
encing the desired handler function, and up to 64 bytes of arguments, along with an optional
variable length payload. Active message handlers must be registered with the GASNet run-
time before they can be used. When an origin process wishes to invoke an active message
on a remote target process, it issues an active message request. A target process, inside the
context of an active message handler, can optionally issue an active message reply to the
origin process, which will result in the corresponding reply handler running on the origin
process. To wait for the completion of an individual active message, an origin process must
wait until a reply handler issued by the target process has finished running locally, writing
some reply data or otherwise indicating that it has completed.

In order to service active messages, each process must enter the GASNet AM poll func-
tion, which can be called by the main process or from a progress thread that constantly
checks the queue in order to provide attentiveness.

8.3 Experimental Design
In this section, we examine the performance of RDMA- and RPC-based designs for re-
mote operations on distributed data structures. Our expectation is that there are some
data structures, applications, and workloads for which RPC, with its greater expressiveness,
will achieve higher performance, and some situations where RDMA, with its lower round
trip latency and hardware-accelerated execution in the network interface card, will achieve
higher performance. First, we perform microbenchmarks to measure the component costs
for RDMA- and RPC-based distributed data structure implementations. That is, the cost
of a remote put, remote get, compare-and-swap, and fetch-and-op operations, as well as the
round trip cost of sending a GASNet active message request and receiving a reply.
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Component Benchmarks
For the component benchmarks, we measure the cost of small-size remote put and remote
get operations, along with the cost of performing the atomic compare-and-swap and fetch-
and-op operations. In each of these microbenchmarks, we begin with a globally visible array
located in the shared segment of each process in the program. To perform the benchmark,
each process will continuously perform a remote memory operation to a random location in
a random process’ globally visible array. After the benchmark completes, we divide the total
amount of time taken by the number of operations completed per process to arrive at the
latency of the individual operations.

We also measure the cost of sending an active message. In this case, each process con-
tinually sends an active message to another random process and then waits for a reply to
complete before proceeding.

The purpose of collecting these benchmarks is not only to evaluate the relative costs of
the operations that make up RDMA-based distributed data structure methods, but also to
evaluate BCL’s analytical performance model. By plugging in the component method costs
into the formulas for different data structure operations, we can evaluate to what extent
observed performance deviates from theoretical best case performance. Performance could
deviate for a number of reasons, including higher than optimal latency due to specific appli-
cation workloads stressing the network hardware and high contention leading to many more
round trips than would be necessary in the best case. This analysis will allow us to evaluate
what makes up the cost of RDMA-based remote data structure operations, which can both
allow data structure developers to better design data structure operations, prioritizing use
of cheaper component operations, and allow hardware designers to identify which RDMA
operations to optimize in order to increase RDMA-based data structure performance.

Data Structure Benchmarks
After collecting microbenchmark results, we ran a series of experiments where we bench-
marked different distributed data structure operations in BCL and compared them with
equivalent active message implementations. Full descriptions of these distributed data struc-
ture implementations can be found in the original BCL paper [26].

Hash Table

Distributed hash tables are an important data structure for many applications, including
various data analysis problems such as genomics. In BCL, hash tables are implemented as a
distributed array of buckets, where each bucket contains room for a key, a value, and a flag
that will be used for synchronization.

CRW Insert As discussed earlier, to achieve fully concurrent safety, a hash table insertion
requires, in the best case, two atomic memory operations and a remote put operation. In
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the BCL implementation, this is a compare-and-swap operation to request the hash table
bucket, a remote put, and an atomic fetch-and-AND operation to mark the bucket as ready
to read.

CW Insert An insert operation without find concurrently occurring can be preformed using
using only one atomic memory operation, setting the bucket’s flag to ready, then performing
a remote put. The collective barrier that must separate the inserts from any find operations
will guarantee that the remote put has completed before any find operations can read the
value.

CRW Find To perform a fully concurrently safe find operation, the reading process must
first obtain a read lock on a bucket before reading what is inside it. This is to prevent other
processes from modifying the bucket while the process is reading it. In BCL’s implementa-
tion, this is done with an atomic fetch-and-OR operation to set one of a number of read bits
in the flag. After the lock is obtained, the process will read the bucket with a remote get
operation, then unset the read bit with an atomic fetch-and-AND.

CR Find A find without inserts concurrently occurring can be performed with a single
remote get operation, since it is able to retrieve both the flag and the key and value in a
single remote memory operation.

Queue

Queues are widely used data structures in many applications such as data redistribution
and asynchronous all-to-all operations, producer-consumer problems, frontier based graph
algorithms, and others. The most crucial operations for queues are pushing and popping.
Since these operations are symmetric, we only consider push operations here for reasons of
brevity. Queues in BCL are implemented as remote data structures, meaning they live on
a single host process, but are visible to all processes. Applications may either require a
single queue to be manipulated by all or a subset of processes, or, commonly, a queue on
each process. Queues are implemented as a ring buffer, with sets of head and tail pointers
marking the beginning and end of data stored within the queue.

CRW Push Similar to the hash table insertion example, with this queue implementation,
a fully concurrently safe push requires two atomic memory operations and a remote put
operation. The first operation is a fetch-and-add operation, which requests space in the
queue by advancing the tail pointer, followed by a remote put to the reserved space. Finally, a
remote compare-and-swap operation is necessary to advance the ready tail pointer to indicate
that the written segment of the queue is ready to be read. A fetch-and-add operation is not
correct here, since it could advance the ready tail pointer past previous insertions which are
not yet finished writing.
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CW Push A push without pops concurrently occurring can be completed with a single
atomic fetch-and-add, to reserve space, followed by a remote put to write to the reserved
spot in the queue. This is because a barrier will separate all the push operations from any
pop operations, thus guaranteeing that the written data is ready to be read.

RPC Implementations
Our RPC implementations, based on GASNet-EX active messages, consist of a handler
function, which performs the relevant operation on a local data structure then sends a reply.
If the operation has no return value, the reply will simply increment a counter on the origin
side, which can be used to ensure fine-grained completion of data structure operations. If
the operation has a return value, it will also write the return value to a memory location
passed in by the request AM.

8.4 Results
First we measured our set of component costs, which include individual operations that make
up remote data structure operations. Measured operations include 32-bit remote get, remote
put, atomic fetch-and-add, atomic compare-and-swap, and a round-trip active message with
a payload of 64-bits. Each process picks a random process for each operation, and, for the
case of the RDMA operations, a random memory location. The active message experiment
measures the cost of a round trip with a 64-bit payload, with the inner operation being an
insertion into a remote hash table.

Experimental Setup We measured the component costs on Cori Phase I, which is a
Cray XC40 supercomputer with a Cray Aries interconnect and 32 cores per node. All
benchmarks were run with one process per core. Experiments were run with 100,000 local
elements per process, unless noted otherwise. In each experiment, the target operation is
executed a million times inside a loop, then the total time spent inside the loop is divided
by the number of issued operations to calculate the operation’s latency. In order to avoid
systematic errors due to variations in network performance, which may be caused by varying
job placement within a cluster as well as contention with other jobs, each dot on each graph
was submitted as a separate job submission, averaged over at least four jobs. More details
about the system used in these experiments is given in Chapter 4.

Component Benchmarks Our component benchmark results are shown in Figure 8.3.
This figure includes the benchmarks discussed above, along with two extra versions for the
two measured atomic operations.

Compare-And-Swap We show two benchmarks for compare-and-swap, “Single CAS,”
which measures the cost of a single compare-and-swap operation and “Persistent CAS,”
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which measures the cost of a compare-and-swap which continually polls until it succeeds
in changing the value from the previous value to a new value. The Single CAS experiment
measures the cost of the CAS AMO operation, while the Persistent CAS experiment provides
some measure of the cost of a persistent CAS that repeatedly polls until it succeeds in
modifying the target value.

Fetch-And-Add We include two versions of the fetch-and-add operation, “FAD,” which
measures the cost of a fetch-and-add operation issued to a random value on another process,
and “FAD, Single Variable,” which measures the cost of a fetch-and-add operation issued
when there is only a single target variable per process.

In general, there is a large jump in latency for RDMA operations when moving from a
single node to two nodes, which is to be expected when switching from shared memory to
distributed memory. From there, each operation increases in cost gradually, which can be
explained by (1) the decreasing percentage of operations that will be operating on local, fast
memory and (2) an increase in the distance that messages must travel across the network as
the allocation size increases.

We find that the Put operation has the lowest cost, followed by a cluster of operations
of similar cost, including Get, FAD, and Single CAS. As one might expect, the “Persistent
CAS” operations are much more expensive, since they may require multiple round trips to
succeed in swapping the target value. More surprisingly, we also find that the “Single FAD”
benchmark, which operates on a single target value per process, has a much higher cost than
the “FAD” benchmark, which operates on a range of values per process. This indicates that,
for this operation, the target memory locations, not just the number of incoming operations
on the target NIC, can impact the amount of time that a fetch-and-add operation will
take (at least on the Cray Aries NIC). While this might be expected for a shared memory
environment, where a directory or snooping protocol must be used to ensure cache coherence,
NIC-accelerated atomic memory operations are not atomic with respect to CPU atomics, and
the authors expected the speed of NIC-accelerated fetch-and-add atomics to be unaffected
by the target address. Indeed, experiments on the Summit supercomputer, which has an
Infiniband FDR interconnect, did not reveal any difference between the two benchmarks.

Queue Benchmarks Next, we measured the cost of a set of queue data structure mi-
crobenchmarks, and compared our empirical data structure benchmark results with our
performance model’s prediction using the component microbenchmark results. These results
are shown in Figure 8.4. Pushing and popping are the primary queue operations, and since
they are symmetric, we only show queue push results here. We compare four different queue
results: (1) an “AM Push” benchmark, which uses an active message to insert into a local
queue on each process, (2) a “RDMA Push CW” benchmark, which is a phasal queue that
allows either concurrent pushing or popping, but not simultaneously, (3) an “RDMA Push
CRW” benchmark, which uses an additional atomic operation to signal the completion of the
write of data onto the queue, and (4) a “RDMA Checksum Push CRW” benchmark, which
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Figure 8.3: The component latencies for RDMA operations and AMs on Cori.

is a separate design of queue that in addition to writing the data values into the queue also
writes a checksum value that can be used to verify whether the write has finished.

After accounting for the increased cost of the “Single FAD” experimental result and plug-
ging that in as the parameters for our analytical performance model in Table 8.1, we found
that the performance model generally predicted the behavior of the queue data structure
benchmarks. The one exception is the RDMA Push (CRW) benchmark, which is consistently
more expensive than the performance model would predict. This appears to be due to the
fact that the second atomic memory operation in the CRW push operation requires more
round trip attempts than the Persistent CAS microbenchmark would suggest. While our
Persistent CAS microbenchmark attempts to change the target value from the previously
seen value to the desired value, the persistent CAS involved in the queue benchmark at-
tempts to increase a “tail ready” pointer that marks the frontier of values written into the
queue. It may only proceed after any other insertions have finished writing, which leads to
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Figure 8.4: Latencies for RDMA- and RPC-based queue push operations.

some inherent serialization that is not represented in the performance model.

Hash Table Benchmarks We also measured the cost of several hash table data structure
operations, which are displayed in Figure 8.5. The less expensive RDMA Find (CR) operation
is the cheapest operation, followed by the active message implementations of AM Find
(CRW) and AM Insert (CRW), with find possibly having a slightly higher cost, due to the
fact that the return trip message is slightly larger, containing a return value. The more
expensive RDMA Find (CRW) is initially slightly more expensive than the active message
implementations, but appears to scale better, ending up at a similar cost at 128 nodes. The
insert implementations, both CRW and CW, are more expensive. Both RDMA operations
seem to roughly match their associated performance models, with some increase in the
real benchmark runtime perhaps due to hash table collisions, which are not included in
the performance model. Surprisingly, both hash table insertion methods vary significantly
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Figure 8.5: Latencies for RDMA- and RPC-based hash table operations.

from their associated cost models’ prediction. However, except for RDMA Insert CW , the
predicted order of implementations in terms of performance is correct.

Attentiveness Benchmarks Each of the above active message benchmarks could be con-
sidered a close to optimal case in terms of attentiveness, by which we mean the availability
of remote processes to service active message requests. This is because, without an inde-
pendent progress thread to ensure attentiveness, which is the model assumed in the above
benchmarks, a process must enter a progress function in order to ensure that inbound re-
quests are serviced. In each of the above benchmarks, each process issues a single active
message request, then polls on a progress function, servicing incoming active messages, until
a reply is received for the active message request. In a more realistic scenario, remote data
structure operations will be interspersed with computation, which may impact the atten-
tiveness of remote processes, resulting in longer latencies for active messages. Figure 8.6
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Figure 8.6: Measuring the cost of a queue insertion as remote processes become less attentive
due to intermixed computation.

shows the impact of adding interspersed computation on the latency of a queue insertion.
We arrived at this plot by inserting a small function to perform a given number of microsec-
onds of computation inside a loop of queue insertions. To calculate only the time spent
performing queue insertions, we subtract the compute time from the total time taken in the
calculation. As shown in the plot, the active message version, while initially faster than the
RDMA-based implementation, quickly becomes more expensive as the interspersed compu-
tation time exceeds 2 microseconds. From there, the increase in queue insert time grows
roughly linearly with the compute time, as the average time an active message must wait
to be serviced is half the compute time. We observe that the latency for the RDMA queue
insertion actually goes down, which we attribute to lower latency across a quieter network
as queue insertions are spaced out among a greater quantity of computation. It is important
to note that RPC-based implementations can attain better attentiveness by explicitly using
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a progress thread, which will continually poll for new RPC operations to execute. In the
figure, “AM Queue Insertion (PT)” demonstrates this. When using a progress thread, active
messages are not subject to the same pathological behavior due to lack of attentiveness,
but do receive a performance hit, likely due to contention between the progress and main
compute thread.

8.5 Conclusions
In this chapter, we compared implementing distributed data structures using RDMA and
RPC. We developed an analytical performance model which predicts the performance of
the distributed data structures based on their components, then compared this to real-
world performance. In most of the cases, our model’s predictions matched the real-world
results. We observed the impact of system-specific hardware behavior, namely the increased
cost of a fetch-and-add performed on a single memory location on Cray Aries; and also
observed the impact of increased contention due to multiple round trips, as in the case of a
concurrent read/write queue insertion. We also examined the impact of attentiveness on RPC
performance, observing that RDMA may have advantages when it comes to communication
interspersed with computation.
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Chapter 9

Conclusion

In this dissertation we presented a model for building high-level, cross-platform distributed
data structures using one-sided RDMA primitives. We showed how, using remote point-
ers, we can create globally visible data structures where each process has its own view of
the entire data structure. This allows for low latency access, since processors can access or
manipulate parts of the data structure with only a handful of RDMA operations. Using
the remote pointer and ObjectContainer abstractions, we can develop high-level, generic
abstractions that support a wide array of types, including complex user-defined types. By
carefully designing our types and APIs, we can ensure that we pay little cost for this ab-
straction at runtime. Modern C++ compilers’ aggressive inlining results in efficient code
generation, with each of our data structure methods compiling down to a function that
makes a few invocations to the backend communication library. By using a modular design
to support multiple backends, distributed data structures can be used natively inside paral-
lel programs written using multiple communication libraries. Indeed, we demonstrated that
we can configure supplementary backends to support additional memory spaces, including
memory that lives on GPUs. This enables us to support GPU-centric communication, which
enables GPU applications to achieve higher performance with both CPU and GPU-initiated
communication.

We explored a number of different distributed data structures, including several different
queue designs. Our generic, RDMA-based queues enabled a high degree of overlap between
computation and communication by exposing an asynchronous push operation, allowing for
greater performance on sorting benchmarks. We explored different remote queue implemen-
tations, exposing multiple levels of consistency guarantees for each using user input about
the context in which the queue methods are invoked.

We also developed an RDMA-based hash table. This data structure is also designed for
minimum latency, with a locking scheme designed to allow processes to perform insert and
find operations in only a few remote memory operations. Similar to our queue design, the
hash table allows users to provide information about the context in which hash table opera-
tion is being issued, which allows the hash table operations to sometimes elide unnecessary
synchronization operations. We introduce a high-level buffering data structure that allows
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users to transparently aggregate insertions into the hash table, converting latency-bound,
fine-grained insert operations into bulk bandwidth-bound operations. We also develop a
novel distributed Bloom filter data structure, using a blocked Bloom filter design to ensure
all operations can be completed in a single remote atomic operation.

We designed RDMA-based distributed dense and sparse matrix data structures, which
allow processes to asynchronously retrieve and modify any part of the matrix data structure.
This allows for the implementation of new RDMA-based asynchronous matrix multiplication
algorithms, which are particularly useful for sparse matrix multiplication.

Finally, we built an analytical performance model to breakdown and evaluate the cost
of some of our RDMA-based data structure operations in terms of their component remote
memory operations. We also evaluated our RDMA-based data structure operations against
RPC-based implementations, demonstrating that RDMA-based operations offer competitive
performance with RPC-based implementations, matching or exceeding their performance,
while not being susceptible to the attentiveness issues that can arise when processes are not
constantly entering the RPC progress function.

Overall, we have demonstrated that RDMA-based distributed data structures offer an
excellent path toward easing the burden on parallel programmers. They allow for program-
mers to implement parallel programs at a higher level of abstraction by providing a global
data model. The costs paid for this higher level of abstraction are generally low compared
to hand-tuned, application specific data structures, and allow for code reuse.
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