Design and Implementation of Physical Experiments
for Evaluation of the AlphaGarden: an Autonomous
Polyculture Garden

Mark Presten
Ken Goldberg, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-95
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-95.html

May 13, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Design and Implementation of Physical Experiments for Evaluation of
the AlphaGarden: an Autonomous Polyculture Garden

by Mark Presten

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

o r
Professor Ken Goldberg
Research Advisor

11 May 2022

sk sk sk sk sk ok ok

i

Professor Lisa Yan
Second Reader

13 May 2022

Lisa Yan
13 May 2022

Abstract

Design and Implementation of Physical Experiments for Evaluation of the AlphaGarden:
an Autonomous Polyculture Garden

by
Mark Presten
Masters of Science in Electrical Engineering and Computer Sciences
University of California, Berkeley

Ken Goldberg

Polyculture farming — where multiple crop species are grown simultaneously — has po-
tential to reduce pesticide and water usage while improving the utilization of soil nutrients.
However, it is much harder to automate polyculture than monoculture. This report presents
two contributions to the research and development of polyculture farming, with the first be-
ing AlphaGardenSim [6, 4, 5]: a fast, first order, open-access polyculture farming simulator
with single plant growth and irrigation models tuned using real world measurements. Alpha-
GardenSim can be used for policy learning as it simulates inter-plant dynamics, including
light and water competition between plants in close proximity and approximates growth in a
real greenhouse garden at 25,000 the speed of natural growth. We discuss the development
of the simulator, the models used for growth, light, and irrigation, real-to-sim model tuning
methods, policies trained in simulator, and metrics and results for simulated garden cycles.

The latter half of this report presents AlphaGarden: an automated system for pruning and
irrigating living plants in a physical testbed that uses policies in AlphaGardenSim to decide
real-time actions. This system utilizes novel hardware and algorithms for automated pruning.
Using an overhead camera to collect data from a physical garden testbed, the autonomous
system utilizes a learned Plant Phenotyping convolutional neural network and a Bounding
Disk Tracking algorithm to evaluate the individual plant distribution and estimate the state
of the garden each day. From this garden state, AlphaGardenSim selects plants to prune. A
trained neural network detects and targets specific prune points on the plant. Two custom-
designed pruning tools, compatible with a FarmBot [19] gantry system, are experimentally
evaluated and execute autonomous cuts through controlled algorithms. We show results
for four 60-day garden cycles. Results suggest the system can autonomously achieve 0.94
normalized plant diversity with pruning shears while maintaining an average canopy coverage
of 0.84 by the end of the cycles. In ongoing work, we optimize water usage and also compare
the AlphaGarden system to a human gardener.

Contents

Contents

List of Figures

List of Tables

1

2

Introduction

Related Work

2.1 Plant Simulators and Growth Modeling
2.2 Plant Monitoring
2.3 Agricultural Automation

The Polyculture Growing Problem

AlphaGardenSim

4.1 OVerview
4.2 Modeling
4.3 Pruning, Irrigation, and Planting Policies

Simulator Experiments

5.1 Experimental Overview and Setup
5.2 Evaluation
5.3 Adaptive Sector Sampling Experiments
5.4 Pruning and Irrigation Experiments
5.5 Dynamic Planting Experiments

AlphaGarden Autonomous Pipeline

6.1 Overview e
6.2 Phenotyping
6.3 Bounding Disk Tracking L oL
6.4 Pruning Planner
6.5 Pruning Hardware L

iii

vi

=) Uk W W =

O ©

20
20
21
21
24

7 Real World Experiments
7.1 Isolated Pruning Experiments

7.2 Four Garden Cycles
8 Limitations
9 Conclusion

Bibliography

i

36
36
36

40

42

44

List of Figures

1.1

4.1

4.2

4.3

4.4

AlphaGarden. Top: Physical testbed with the FarmBot gantry system. AlphaGarden in-
cludes a custom Rotary Pruner, custom Pruning Shears, a depth sensor, an on-board snake
inspection camera, an overhead camera, and soil moisture sensors. Bottom: Overhead image

of growth based on two mirrored seed placements for Garden Cycles 2L and 2R (See 7.2).

Light and Irrigation Models. Each plant receives light based on the size of its unoccluded
leaf area in the grid, i.e., the number of grid points visible overhead, while occluded points
allocate light in an exponentially decaying fashion. The plant’s water uptake is then drawn
from its neighboring grid points, to fulfill its growth potential. The plant is limited by the
amount of light it intercepts and the amount of water available in its zone-of-influence.

Plant Life Stages. Each plant is modeled with a life cycle trajectory, consisting of five stages
(from top to bottom image): germination, vegetative, reproductive, senescence, and death.
When plants get underwatered or overwatered, their radius decays exponentially and their
color turns brown, and after a short period they move to the death stage. However, if they
receive their desired water amount prior to that, they can return to their original stage.

Soil moisture curve generated from TEROS-10 soil moisture sensors connected to a data logger
to determine water loss and gain rates. Irrigation was applied every 24 hours. Soil moisture
readings were recorded every 30 minutes. The five blue curves represent five different sensors
that were each watered independently. The red curve is the average of the readings of all five
SENSOTS. + o v v o e e e e e e e e e e e e e e e e e
Learned Pruning network architecture. A deep convolutional neural network with with 18,244
parameters. The network takes three inputs: 1) an RGB image of the full garden; 2) a matrix of
h(z,y,t), w(z,y,t) and d(z,y,t) for all (z,y) in the garden; 3) the global population distribution
P(k,t) including soil coverage. The network predicts a prune level for each observation using

demonstrations from Variable Pruning. 000000000

il

10

14

16

18

5.1

5.2

6.1

6.2

6.3

Simulation results on gardens between days 20 and 50 with the fast and slow growing plant
types from Table 5.3. Metrics are shown between days 20 and 50 as the faster growing plant
types begin to die after day 50. Left: Simulation results for Fixed Pruning with fixed prune
levels of 1%. With a 1% fixed prune level, Fixed Pruning achieves high coverage but struggles
to maintain diversity. As a result multi-modal entropy is low. Middle: With a 15% prune
level, Fixed Pruning achieves high diversity but low coverage as a result of pruning the fast
growing plants to match the size of the slower plants. Right: Variable Pruning simulation
results. By optimizing for multi-modal entropy, the policy is able to manage both coverage and
diversity through variable prune levels and achieve the highest multi-modal entropy. During
earlier days, Variable Pruning uses smaller prune rates to allow the faster growing plants the
grow. As the fast plants begin to die, to maintain high multi-modal entropy, Variable Pruning
prunes more frequently. L L L. oL L oL L s e e
Dynamic Planting Policy. The policy seeds up to 5 new plants every day after day 20.
During periods where coverage is high in the garden, there is little vacant space to seed new
plants. As a result, the number of plants selected to be dynamically planted drops during days
35 to 61 and days 128 to 146. After these high coverage periods, up to 5 new plants are seeded

every day resulting in a resurgence in coverage after the new plants germinate and mature. . .

Automated Pruning Pipeline: The overhead Sony camera takes photos on an hourly basis.
The images are processed by a Plant Phenotyping Network followed by Bounding Disk Tracking
algorithm to identify the garden’s state. AlphaGardenSim determines which plants to prune
in real time. Given the simulator’s decisions, a Prune Point Identification network identifies
specific leaves to prune. This is followed by visual servoing to arrive at the leaf location in the
physical garden and then execution of the prune using a custom pruning tool.
Learned Plant Segmentation Model. The figures above (from top to bottom) show an
overhead image from October 6, 2020, and the classifier output from the network with aug-
mented data. The overhead image is split in half as shown by the blue line. The top half is for
training while the bottom half is for testing. Below, the table shows how much of the garden is
covered by each plant and its respective IoU score based on the bottom half only. By adding
augmented data, the model was able to more accurately classify unseen leaves when compared
to the baseline with no augmented data. Low IoU for radicchio and red lettuce is consistent
with a low percent of coverage.o L Lo
Phenotyping and Bounding Disk Tracking. 3 images from days 20, 30, and 40 of garden
cycle 4. Top row: overhead images overlayed with the estimated bounding disks from the
Bounding Disk Tracking algorithm. Bottom row: the masks created by the Plant Phenotyping

network as well as the estimated bounding disks (same as above).

v

24

25

26

27

29

6.4 Garden Metrics of Garden Cycle 2R for Kale and Cilantro. Kale demonstrates the

6.5

6.6

7.1

statistics for larger plants, while Cilantro demonstrates them for smaller plants. We evaluate
average circle utility (ACU) and percentage of pixels included (PPT) of the Breadth-First-Search
(BFS) versus the K-Means bounding disk algorithms for both plant types. Kale: BFS tends to
have higher ACU, but lower PPI. For the days which ground truth circles exist, they are closer
to the K-Means algorithm in both metrics. Cilantro: Similarly, BFS has a higher ACU and
K-Means has a higher PPI. However, Cilantro generally benefits from the more conservative
BFS. We adopt a mixed approach: the K-Means approach for larger plants and less occluded
timesteps, and the BFS approach for denser, smaller plants.
Prune Point Identification. Example of all plant leaf centers that were identified by the
baseline algorithm (left) and the model (right) applied to an overhead image. Each prune point
color corresponds to a different plant type. The learned model identifies more usable points
with fewer misclassifications. When looking at the Swiss Chard plant highlighted (zoomed in),
we see that the learned model finds 3 more prune points than the baseline approach and also
does not missclassify the red prune point, which is meant for a neighboring plant type.
Pruning tools. Left: CAD and physical model of Rotary Pruner with a high speed motor
and trimming blades. Right: CAD and physical model of Pruning Shears with three servos to
control closing, tilt, and orientation. Lo

Garden Cycle Comparison. Data points were recorded for days 20, 30, 40, 50, and 60
through hand labeled phenotyping masks. Left: Comparison of the coverage of the 4 Garden
Cycles. Note that the non-pruned garden has the highest value by day 60, with Cycle 2L
(pruning shears) not far behind. Right: Comparison of the diversity squared of the 4 Garden
Cycles. The non-pruned garden had lowest diversity by day 60, and Cycles 1R (rotary pruner)
and 2R (pruning shears) achieved the highest diversity.

31

33

34

39

List of Tables

4.1

4.2

5.1

5.2

5.3

5.4

Simulator state, action and reward variables. Dimensionality is shown in the second row of
each variable section. . .

Growth Analysis: Where gg (days) is original germination time, g1 (days) is tuned germination
time, mg (days) is original maturation time, m; (days) is tuned maturation time, r1 is growth
potential, ¢; is the biomass accumulation parameter, ¢(35) (cm?) is the simulated canopy cov-
erage on day 35, and e(35) (cm) is the mean absolute error on day 35 between simulated and
average real world radius. Original values were taken from published plant tables [46]. Growth

time is found by subtracting g; from m;.

Policy evaluations of Fixed Pruning averaged across 20 test gardens during days 20 to 70 with
and without adaptive sector sampling. We observe germinating plants within 8cm of each other
in the same observation sector and experiment with 2cm and 8cm cluster radii for growing
plants. Both a 2cm and 8cm cluster radii for growing plants are able to achieve comparable
coverage, diversity and multi-modal entropy to the sector observation approach from [6]. While
Cd,grow = 2cm uses over 35% less water, irrigation actions and pruning actions than without
adaptive sectoring, cq gronw = 8cm uses over 50% less water and actions.

Policy evaluations of Uniform Policy, Fixed Pruning, Variable Pruning, and Learned Pruning
averaged across 20 test gardens each with 100 plants. Top 4 rows: experiments use the 10
plant types from Table 4.2. Metrics are averaged between days 20 to 70 as policies do not prune
prior to day 20 and plants begin to die after day 70. Bottom 5 rows: experiments use the 10
plant types from Table 5.3. The faster growing plants begin to die after day 50, so we instead
average metrics for these gardens between days 20 to 50. The computation time represents
the time it takes a policy to compute an action given an observation. The Variable Pruning is
computational intensive as it evaluates different pruning levels, while Learned Pruning performs
similarly but has a significantly lower computation time.

Fast and Slow Plant Types. Average germination time, maturation time, and max radii
of 5 fast and 5 slow growing plant types. We experimented with varying germination times,
maturation times and max radii to create the plant set above where Uniform Policy achieves
low multi-modal entropy mme, as illustrated in Fig. 5.1. .
Dynamic Planting policy averaged across 10 test gardens with 100 initial plants and the ablhty
to seed up to 5 new plants every day after day 20. Evaluation metrics are averaged across all
200 days of garden simulation. Results show that replanting seeds can lead to sustained growth

and diversity across indefinite periods of time.

vi

12

22

23

24

25

7.1

7.2

Isolated Pruning Experiments for the Rotary Pruner and Pruning Shears. Key: Com-
pleteness- 3: complete cut, 2: partial cut, 1: missed cut. Precision- 1: no damage to other
leaves, 0: damage to other leaves. Error Type- A: No error, B: location, C: depth, D: Other.

Plant Type Metrics for Garden Cycles 1L & 1R. This table shows diversity and coverage
for plant types on day 60. The values for Cycle 1L (not pruned) and Cycle 1R (pruned with
Rotary Pruner) are calculated via [¢;(60) - (R/R;)?] for each plant type (Section IIT). The goal
of pruning is to foster a diverse garden while maintaining a high coverage.

vil

37

viil

Acknowledgments

I would like to thank first and foremost my research advisor Professor Ken Goldberg for
his guidance, support, and for giving me the opportunity and resources to research the
AlphaGarden project within UC Berkeley’s AUTOLAB. I would also like to thank Yahav
Avigal for his mentorship within the AlphaGarden project. To my co-authors and research
colleagues within AUTOLAB, thank you for making this work possible.

The work presented in this paper comes from multiple publications, a paper under review,
and on-going research projects. Namely, this paper combines contributions from [6, 4, 5]
alongside the paper under review for IEEE International Conference on Automation Science
and Engineering (CASE) 2022 titled “Automated Pruning of Polyculture Plants” by Presten
et al. Ongoing projects are discussed at the end of the report. I worked directly on the growth
and irrigation models in the simulator, the tuning of said models, and the experimentation
and evaluation of several policies. I led the effort in implementing the autonomous system
and carrying out real-world experiments.

Chapter 1

Introduction

For over 10,000 years, the practice of plant cultivation has been integral to human civilization.
Many factors influence the quality and quantity of plant growth, such as irrigation, pesticide
use, weather conditions, and plant disease. Industrial agriculture aims to maximize yield by
growing a single plant species in isolation, also known as monoculture farming. Polyculture
farming, on the other hand, imitates the diversity of natural ecosystems by simultaneously
growing different crops, and is a sustainable alternative that uses biodiversity to reduce
pesticides, disease, and weeds [21, 33, 11]. Polyculture is also more practical for confined
urban spaces and essential for aesthetic gardens.

However, polyculture farming is more laborious than monoculture, requiring maintenance
to ensure that larger, more dominant plant types do not overwhelm smaller, slow-growing
plants. Furthermore, the inherent layout of polyculture farming makes non-invasive au-
tonomous cultivation difficult due to the close proximity of each plant. A robot with a
reliable and sustainable control policy has the potential to increase yield and diversity and
reduce water consumption.

Finding an optimal policy is a challenging task. First, the long time constants for real-
world experiments motivates the use of a simulated environment. Second, it is difficult to
simulate inter-plant dynamics, including competition for light, water and nutrients. Third,
in order to enact a learned policy in a real world environment, an autonomous robotic system
must be created that is able to recognize and parse the state of a garden as well as accurately
complete pruning and irrigation actions.

This thesis presents the research conducted for the AlphaGarden project out of AUTO-
LAB [3]. It presents the methods and results that were showcased in the publications [6,
4, 5] centered around AlphaGardenSim: a fast, first order, open-access polyculture garden
simulator. To the best of our knowledge, this is the first polyculture garden simulator that
simulates inter-plant dynamics and competition for resources for policy learning. Chapters 4
and 5 explore the development of the simulator, the tuning of growth and irrigation models
using real world measurements, modeling companionship relationships that affect inter-plant
dynamics, and learning automation policies.

This report also presents the work described in the paper titled “Automated Pruning of

CHAPTER 1. INTRODUCTION 2

Figure 1.1: AlphaGarden. Top: Physical testbed with the FarmBot gantry system. AlphaGarden
includes a custom Rotary Pruner, custom Pruning Shears, a depth sensor, an on-board snake inspection
camera, an overhead camera, and soil moisture sensors. Bottom: Overhead image of growth based on two
mirrored seed placements for Garden Cycles 2L and 2R (See 7.2).

Polyculture Plants” by Presten et al., which is currently under review for IEEE CASE 2022.
In Chapters 6 and 7, we describe a physically and algorithmically implemented autonomous
system that is capable of interpreting the state of the garden and enacting actions chosen
by AlphaGardenSim, thus bridging the gap between the real world and simulation.

The AlphaGarden system predicts individual plant centers and radii over time using a
Plant Phenotyping network and a Bounding Disk Tracking algorithm [4, 5]. A pruning policy
trained in AlphaGardenSim [6, 4, 5] identifies pruning actions to optimize plant diversity and
coverage using the corresponding center and radii data. Two novel, custom-designed pruning
tools and algorithms autonomously prune plants while a learned Prune Point Identification
network identifies and selects specific leaves to prune. Real world experiments, as seen in
Figure 1.1, suggest that the autonomous system is capable of pruning plants to facilitate
plant diversity while maintaining high canopy coverage. To the best of our knowledge,
this is the first system in a polyculture farming setting capable of autonomously deciding
and pruning plants. We present results for four 60-day autonomous garden cycles where
AlphaGarden decides and executes all actions.

Finally, Chapter 8 gives a discussion on the limitations of the overall system and how
this research may be translated to other applications. In Chapter 9, we discuss future work
and ongoing projects. We plan to focus on comparing AlphaGarden to a human gardener,
creating irrigation policies to limit total water usage, improving pruning capabilities, and
implementing a robust seed placement algorithm that is adaptable to different environments.

Chapter 2

Related Work

2.1 Plant Simulators and Growth Modeling

Past work in plant growth simulation has predominantly focused on monoculture agricul-
ture, with the exception of a few simulators that include the option to model growth of
multiple species in a garden [50]. The most widely used simulation models, DSSAT [30] and
AquaCrop [49], are intended for simulating large scale, monoculture agricultural operations.
Furthermore, these point-based models make the assumption that plants are grown homoge-
neously. Therefore, these models are not well-suited for a polyculture setting, where gardens
are heterogeneous.

There exist individual plant models that model inter-plant competition, but to the best
of our knowledge, there does not exist one (other than ours) for a polyculture setting. For
example, Damgaard et al. [14] proposed modeling competition between individual plants
based on density and size differences, but their work does not explicitly model resource com-
petition, which is important for tuning a policy that affects the distribution of resources in
a garden. Price et al. [44] introduced a simulator for individual plant growth and com-
petition with promising results, but their work only modeled plant radii and did not take
into account competition for resources other than water. According to Berger et al. [§], a
review on individual-based approaches for modeling plant competition, existing models lack
consideration for the effect of plants on resource levels in an environment. Thus, we were
motivated to develop our own first order simulator for tuning a polyculture gardening policy
as seen in [6, 4, 5].

Czaran and Bartha [13] proposed a broad classification of individual-based plant compe-
tition models as either grid-based models or individual-based neighborhood models. Grid-
based models discretize a region into a grid of cells that may be occupied by plants, while
individual-based neighborhood models represent plants in a continuous space. Further-
more, grid-based models typically use empirical rules to define plant competition, whereas
individual-based neighborhood models define explicit mechanisms that regulate competition.
One such individual-based neighborhood model is the zone-of-influence model [8], where a

CHAPTER 2. RELATED WORK 4

plant acquires resources from a circular zone proportional to the plant’s size. Plants with
overlapping zones are in competition with each other, and the growth rate of a plant decreases
as overlaps increase. While these models allow for greater modeling complexity, grid-based
models make simplifying assumptions and reduce computational cost.

Gou et al. [23] propose a model to simulate the growth of two species in a strip-relay
intercropping system by calibrating the plant-specific parameters given observed field data.
However, this model only takes into account light competition, assuming that irrigation
is sufficient. The model allows for analysis of different seed placements on plant growth
but restricts to the strip intercropping environment. Tan et al. [52] builds on Gou et
al. and include the effects of water acquisition suggesting that plants use land and water
more efficiently in intercropping. However, their model does not allow for exploring spatial
patterns beyond the strip-relay setting and limits to two species.

Both Gou et al. [23] and Tan et al.[52] do not make explicit use of plant characteristics to
define plant inter-relations. On the other hand, Yu [60] uses a simulated functional-structural
plant model to investigate which plant traits contribute to complementary relationships and
the effects of different plant placements, assuming irrigation provides sufficient water for all
plants.

CoppeliaSim [45] comes closer to simulating a polyculture garden, as plants are able to
be controlled separately. This simulator was used to train a crop monitoring green house
robot to navigate a greenhouse and identify diseased crops [2]. Even though each plant had
unique parameters, they did not model inter-plant interactions.

While these simulators consider the polycultural setting, they either do not model the
light and water competition simultaneously and/or are limited by the placement geometry
that they consider. In Chapters 4 and 5, we present extensions to AlphaGardenSim to
incorporate plant relationships and consider inter-plant cooperation.

2.2 Plant Monitoring

GeoSim [53] is a tool that adds spatial functionality to point-based agricultural models by
leveraging data from a geographic information system (GIS) to run independent simulations
at different geospatial points, allowing for heterogeneous simulation. However, tuning a
policy for managing a small-scale polyculture garden necessitates simulation at the individual
plant level. Fernando et al. [20] use a greenhouse to evaluate mobile robot monitoring of plant
health and soil moisture. Recently, Chebrolu et al. [9] developed a point cloud registration
algorithm that enables plant monitoring to analyze growth at the single-plant level. It can
be used to tune a single-plant growth model, but does not reveal inter-plant interactions,
which are required to provide higher granularity data for polyculture modeling.
Phenotyping is an important task for monitoring plants, similar to object tracking and
identification. Ayalew et al. [7] present a method to use an unsupervised domain adaptation
network to adapt the meticulously pre-labeled Computer Vision Problems in Plant Pheno-
typing (CVPPP) dataset [37, 36] to other plant and image domains. The data consists of

CHAPTER 2. RELATED WORK d

single plants, their leaves, and a point map of leaf centers. This reduces the human effort re-
quired to track, count, and identify leaf centers. Our work builds on this by transferring the
results to a polyculture setting, as discussed in Chapter 6. We extend phenotyping further
by converting segmentation masks to plant specific formats characterized by the plants’ size
and type (see 6).

2.3 Agricultural Automation

Humans have continuously improved farming techniques, and in recent years, have intro-
duced methods for agricultural automation. In 1995, the Telegarden, an art installation
by Goldberg et al. [32, 22], allowed internet visitors to interact with a remote garden by
planting and watering plants. Wiggert et al. [57] developed a testbed that enables real-time
data collection of plant water stress to automate and optimize plant-level irrigation. Our
most recent work differs from these as we focus on autonomously pruning a diverse garden
bed. Correll et al. [10] designed a distributed autonomous gardening system with mobile
manipulators that detect plants, irrigate, and grasp fruits. While related, our work focuses
on tools that would enable a fully automated polyculture pruning system.

Pruning is a necessary capability to tend a polyculture garden. Prior work in autonomous
pruning includes rose and bush trimming with a robot arm [12, 51]. Habibie et al. [24]
trained a Simultaneous Localization and Mapping (SLAM) algorithm to enable automated
fruit harvesting in a red apple tree field. Cuevas-Velasquez et al. [12] demonstrated success
using visual servoing to account for changes in stem poses to determine cutting points. In
a controlled greenhouse, Van Henten et al. [55] used a robot with a thermal cutting tool to
harvest cucumbers. We extend prior work by developing an autonomous pruning pipeline
for trimming leaves in a controlled environment. To the best of our knowledge, this is the
first case of autonomously pruning a polyculture garden.

FarmBot is an open source gantry robot commercially available since 2016 that is used in
our autonomous system. Prior work with this system has examined kinematic modeling to
enhance FarmBot trajectory planning [17]. A team from Telkom University used FarmBot
to create a web application to help human users with seed planting, watering, and plant
monitoring routines [39]. More recently, researchers have proposed a FarmBot simulator “to
support the development of a control software able to implement different [precision agricul-
ture] strategies” [38]. We use the FarmBot together with custom pruning and irrigation tools
to tend a polyculture garden from planting, through germination, growth, reproduction and
decay.

Chapter 3

The Polyculture Growing Problem

The goal of AlphaGarden is to use policies learned in simulation to autonomously and phys-
ically tend to real-world plants over a Garden Cycle period. A Garden Cycle consists of
planting an arrangement of selected plant types, then completing growth through two ac-
tions: irrigating and pruning. Pruning, in particular, is required to ensure all plants reach
their potential because growth tendencies vary by type. Garden quality is a function of cov-
erage, plant diversity, and water usage. An optimal autonomous system aims to maximize
coverage and diversity through pruning actions, while minimizing water usage.

Each garden has a total of N plants, placed within a planter bed of size (H,W) in
centimeters (cm). For each plant i € [0,n), the plant has its center coordinates (cx;, cy;)
and current radius r;, both in cm. Each plant ¢ also has a corresponding plant type k
(equivalent to p;), which dictates the estimated germination time gy, maturation time my,
and maximum radius Rj. The lifecycle of each plant ¢ is defined by the duration of its
five stages of growth: germination, vegetative, reproductive, and senescence, as explained in
Chapter 4. An interpreted garden state includes all information described above for every
plant k& € [0,n) on day ¢, and is a simplified version of the simulator garden state s(t) to be
defined in 4. Thus, an interpreted garden state is defined as follows:

s(t) = {pi : ((cxi,cy;),ri),...},i € [0, N)

Given an interpreted garden state, a policy trained in a simulation that is tuned with
real world data can accurately decide which, if any, actions to take on each plant, as seen in
Chapter 5. These actions must then be transferred into the real world and properly executed
on the physical plants as seen in Chapter 6.

For this project, the physical plants are grown in a 3.0mx1.5m raised planter bed lo-
cated in the UC Berkeley greenhouse. For autonomous cycles, we split the planter bed into
two halves and grow identical seed placements (1.5mx1.5m) in each with different pruning
regiments (see 7.2). The cycles last 60 days. In Chapter 7, we showcase the results for these
Garden Cycles by analyzing coverage and diversity metrics correlated to pruning actions.

Chapter 4
AlphaGardenSim

4.1 Overview

In AlphaGardenSim [6, 4, 5] the goal is to grow a lush and diverse polyculture garden,
represented as a discrete H x W grid containing N plants uniformly sampled from a set of k
plant types, as well as types soil and unknown, within a growing period 7" while minimizing
irrigation. We can frame the general problem as a Partially Observable Markov Decision
Process (POMDP) defined by the tuple (S,.A4,7T,R,O), as shown in Table 4.1.

States (S). A state s(t) includes the following quantities at timestep ¢ for every point
(x,y) in the garden: the seed locations c(z,y), the health of each plant h(z,y,t) and the
soil moisture levels w(x,y,t) in the garden. The timestep ¢ is in days for AlphaGardenSim.
We also introduce a vacancy score e(x,y,t) as the minimum distance from point (z,y) to
any plant. We define d(z,y,t) be a vector of length k£ + 1 representing one of the k& plant
types (or soil) type that is visible overhead at point (z,y). With full state knowledge this is
a 1-hot vector, however in a physical garden this induces a distribution over the plant types.

Actions (A). The agent can execute any combination of the following actions, or none,
per observation:

e Watering, a,(z,y,t), applies a fixed amount of water to a circle of radius 9 centered
at the center point of the observation (z,y), following the irrigation model described
in Section 4.2. The amount of water applied to each grid cell decays exponentially as
it approaches the edges of the watering circle.

e Pruning, a,(z,y,t) reduces the radius of a plant. We define a pruning window of size
5 x 5, centered at the center point of the observation (x,y). A pruning action will
reduce the radii of all plants visible within the pruning window by a pruning level p,
which is set by default to p = 5%. This is to simulate the inaccuracy of an automated
pruner that is likely to prune plants in the neighborhood of the target leaf.

e Planting, as(x,y,t). We extend the action space presented in [6] with a new planting
action that seeds a plant at point (x,y) at timestep ¢. A plant can be planted only in

CHAPTER 4. ALPHAGARDENSIM

State Variables
d(z,y,t) Wz, y,t) w(z,y,t) e(x,y,t) c(z,y)
[H,W, k+1] [H, W] [H, W] [H, W] [H, W, k]
Plant e | g | ot | VY| Locatons
Action Variables
ap(z, y, t) aw(z,y,t) as(z, y, t)
(2, N] [2, N] [H, W, k]
Pruning Watering Planting
Reward Variables
ra(t) ru(t) re(t)
[1,] [1,] (1]
Plant Diversity Water Efficiency (gjo T;?Ege

Table 4.1: Simulator state, action and reward variables. Dimensionality is shown in the second row of each
variable section.

locations labeled as soil.

Transitions (7). At each timestep ¢, AlphaGardenSim executes a sequence of updates
across the garden: irrigation, lighting, water use and plant growth according to the models
described in 4.2.

Rewards (R). As the objective is to achieve a diverse garden with maximal yield and
water efficiency, we define P(k,), the global population in the garden as a distribution over
the k plant types, and the following rewards:

e 74(t), the garden diversity at timestep ¢ is defined as the normalized entropy of the
global population in the garden:

H(P (k,1))

ra(t) = log k -

log k

e 7.(t), the garden canopy coverage is defined as the total percent coverage at timestep
t, taking into account only the coverage of the plants, ignoring the uncovered space

labeled as soil: i .
=1 P(Za t)

H-W
e 7,(t), the garden water efficiency is defined as the negative water use at day t:

Tw(t) - = Zw(:c, Y, t)

x?y

re(t) =

CHAPTER 4. ALPHAGARDENSIM 9

Observations (). To simulate sensor precision limitations, we define o(z, y, t), a sector
of size 1% X % centered at point (x,y) representing the area observable at timestep t.

4.2 Modeling

Plant Representation

We extend the model proposed by Price et al. [44] which represents a plant using a seed
location and a radius by adding the height attribute, allowing competition for light in addi-
tion to water competition. This abstraction is both efficient and expressive, as it allows to
simulate inter-plant occlusions, implicitly leading to competition for resources and complex
interactions.

Garden Dynamics

Our process-based crop model [6] simulates plant growth according to endogenous plant
parameters and environmental conditions. AlphaGardenSim executes a sequence of updates
at each timestep: lighting, water use and plant growth.

Lighting Update

We assume a fixed light source directly above the garden. To simulate photosynthesis [58]
as a part of the plant growth model, plants allocate light based on the size of their leaf area.
When a plant is occluded by taller plants, light is distributed in an exponentially decaying
fashion, where the ¢ tallest plant at point (z,y) in the grid receives ()" amount of light
from point (z,y), where ¢ € {0,...,n,} and n,, defines the number of plants for which
the distance between their seed location and point (x,y) is smaller than their radius r, as
demonstrated in Figure 4.1. For plant j with radius r;, AlphaGardenSim estimates the total
amount of light the plant accumulates [, by a summation over the light allocated from all

garden points that are less than distance r; from the plant’s seed location.

Water Use

Water uptake is defined by a zone-of-influence model [8], allowing access to soil moisture
concurrent to the plant’s circular size. In general, allocation of water depends on a plant’s
allocated light, [,, and water competition in intersecting coordinates. The allocated light
defines the maximal amount of water required by a plant

Co I
Wmaz = — \V bus
1

where ¢; and ¢, are plant-specific parameters that control a plant’s resource efficiency - ¢;
corresponds to water use efficiency and ¢y corresponds to light use efficiency. Larger values

CHAPTER 4. ALPHAGARDENSIM 10

Allocation

\1 00%
| \ 50% Light

| — 25%

Zoneof
Influence

Figure 4.1: Light and Irrigation Models. Each plant receives light based on the size of its unoccluded
leaf area in the grid, i.e., the number of grid points visible overhead, while occluded points allocate light in
an exponentially decaying fashion. The plant’s water uptake is then drawn from its neighboring grid points,
to fulfill its growth potential. The plant is limited by the amount of light it intercepts and the amount of
water available in its zone-of-influence.

for ¢; or ¢, represent higher biomass accumulation per unit of resource at each timestep [27].
In AlphaGardenSim, cs is held constant for all plants, thus ¢; can be seen as the biomass
accumulation parameter.

Competition for resources occur for each coordinate in the overlapping zones of influence
of plants. Available water is randomly distributed among the plants present in the over-
lapping regions. For each such plant, we allow it to use the maximum amount of water it
desires from this coordinate. In intermediate growth stages, this value is defined on a per

plant basis as
wmaz

lo ’

where wy is a plant’s desired water amount and [, is a plant’s total leaf area. This approach
causes a plant to grow slower in expectation as more of its zone overlaps with the zones
of other plants, in accordance with the zone-of-influence model. Furthermore, the water
uptake is limited by a soil-specific permanent wilting point that represents a lower bound
from which a plant can extract soil moisture [31].

Wqg =

Plant Growth

In AlphaGardenSim, we assign each plant the following growth parameters: germination
time, maturation time, growth rate, and growth potential. These values were tuned by

CHAPTER 4. ALPHAGARDENSIM 11

monitoring and analyzing the growth of one hundred and twenty real world plants, and
averaging the growth of a plant with others of its same species. Growth parameters from our
experiments can be found in Table 4.2. Germination time and maturation time determine a
plant’s growth stage, and are sampled from a normal distribution with a calculated variance.
Growth rate, which is defined as the biomass accumulation variable ¢;, and growth potential
are parameters that directly determine a plant’s size.

The amount of allocated light and water resources impact the biomass pool that is avail-
able for growth. A plant’s growth is modeled as a logistic curve [15]

g = c1-min (W, Wpay) - (1 — :115),

where w is the actual amount of water this plant was able to adsorb, 7, is the plant’s current
radius and r; is the plant’s growth potential, which controls how large the plant will grow.

For each plant, g is then strategically distributed to vertical and radial growth to ensure
maximum unoccluded leaf area. Therefore, we define [, ; and [, ;, the number of points where
plant 7 is occluded and unoccluded respectively, and model this dynamic as follows: Here, k;
and ko are plant-specific parameters that control the ratio of g a plant apportions to radial
growth - &k is the lower bound and k5 is the upper bound. This is reflective of the genetically
ingrained habit and morphology of the individual species [28].

After executing the three update steps, the radius and height are incremented according
to the computed ratio.

Inter-Plant Dynamics

Originally, plants were treated independently of one another in AlphaGardenSim and rela-
tionships between different plant types were not accounted for [6]. To address this, we add
companionship relationships between plant types which dictate growth patterns of individual
plants dependent on their placement relative to others.

Both above and below ground interactions influence the companionship relationship fac-
tor between two plant types, which can be positive or negative [1, 42, 29]. Example of above
ground interactions include changes to the physical environment such as providing shade,
protecting against weather damage, and supplying structural support. Below ground inter-
actions include providing nitrogen which fertilizes the soil, root-root activity and allelopathy,
which occurs when a plant releases toxic chemicals that inhibit growth of other plants [4].

In AlphaGardenSim, we use the model described in [4] to account for companionship
relations. Plant interrelationships are defined within the relationship matrix C € RFXF,
where k is the number of plant types in the garden. Here, C; ; stores a value that describes
the companionship between plants of type ¢ and j.

The C matrix was populated by analyzing the growth curves of individual plants in the
physical test bed relative to neighboring plants. One-hundred and twenty growth curves
were created by annotating daily images of the garden with a plant’s center and outermost
radius. By comparing a plant’s growth curve to the average growth curve of its type, we

CHAPTER 4. ALPHAGARDENSIM 12

Plant Type go| g1 |mo | mi| m c1 | ¢(35) | e(35)
Borage 71 71491 55160 0.09 | 3107 | 6.61
Kale 3| 7| 62| 55(65|0.10 | 7450 | 5.41
Swiss Chard 71 7] 53| 50 |47]0.11 | 5536 | 9.93
Turnip 3| 7| 42| 47|53 |0.11 | 3961 | 10.04
Green Lettuce T 9] 43| 52|27 |008| 232 | 7.46
Arugula 5| 8] 45| 52 (40| 0.10 | 1133 | 5.50
Sorrel 7115] 53| 70| 8| 0.08 59 | 9.58
Cilantro 7110] 53| 65|20 | 0.09 23 | 10.76
Red Lettuce 5|12 | 45| 50 | 28 | 0.09 10 | 11.61
Radicchio 5| 91 8| 55|53 | 0.09 53 | 9.28

Table 4.2: Growth Analysis: Where gy (days) is original germination time, g; (days) is tuned germination
time, mg (days) is original maturation time, my (days) is tuned maturation time, r; is growth potential, ¢;
is the biomass accumulation parameter, ¢(35) (cm?) is the simulated canopy coverage on day 35, and e(35)
(cm) is the mean absolute error on day 35 between simulated and average real world radius. Original values
were taken from published plant tables [46]. Growth time is found by subtracting g; from m;.

can discover if neighboring plants promote or hinder growth. Positive and negative scalar
values were assigned and then tuned to minimize the MAE between simulated and real world
individual plants.
The relationship matrix C is then used to calculate the companionship factor ¢. For a
given plant i,
D D11
J€[l,+,N],j#i ”l(l) l(])l|2
where p(i) is the plant type of seed i and [(i) = (x;,y;) as the location of seed i. The
companionship factor is used to update the daily growth parameter, g, which is determined
by water and light resource allocation. The new daily radial growth parameter is defined to

beg=g-c.

Plant Life Cycle

The plant life cycle consists of five non-overlapping stages: germination, vegetative, repro-
ductive, senescence and death [61, 26]. The number of timesteps between consecutive stages
is a random variable sampled from a plant-specific discritized Gaussian distribution, assum-
ing that plants of the same type share transition times between stages [34].

CHAPTER 4. ALPHAGARDENSIM 13

Germination. Germination starts when the seed is planted. In this stage the plant oc-
cupies a single point in the garden and has 0 radius and height. It allocates resources
according to the model described previously, however it does not grow, maintaining 0 radius
and height until it transitions to the next stage. The initial non-zero radius and height are
random variables sampled from a plant-specific Gaussian distribution.

Vegetative. During the vegetative stage, the plant allocates resources and grows according
to the model specified previously, unless it experiences stress from over or underwatering.

Reproductive. During the reproductive stage, the plant behaves similarly to the vegeta-
tive stage, except it does not change in radius or height, unless it experiences stress from
over or underwatering.

Senescence. During the senescence stage, the plant does not change in height, however
it allocates less water than before and its radius decays exponentially as it is wilting. If wy
is the plant’s desired water amount, throughout the senescence stage it is multiplied by a
coefficient, so that the adjusted desired water amount w, decreases linearly to 0 over time:

1—-t
ts

Wqg =

Wq

where ¢ is the amount of time the plant has spent in the senescence stage, and t, is the total
duration of the senescence stage.

Death. When the plant dies, it stops allocating resources and does not change in radius
or height. However, it continues to occupy space in the garden, potentially occluding plants.

Water Stress

AlphaGardenSim models the response of plants to suboptimal irrigation, namely over and
underwatering, during the two life stages in which the plant accumulates biomass: the
vegetative and the reproductive stages. A plant receives sufficient irrigation if the following
conditions are met:

w(t) > T, - wy

’lIJ(t) S Tu * Wy,

where w(t) and w(t) are the total amount of soil moisture within the plant’s radius and its
water uptake, respectively, T, and T, are over and underwatering plant-specific threshold
parameters, and w,y is the plant’s desired water amount.

Otherwise, the plant enters into water stress, and its radius decays exponentially until
it reaches a fraction of its radius and transitions to the death stage or it receives sufficient
irrigation. In addition, the effects of water stress are visualized via the plant’s color, becoming
progressively more brown as it continues to be stressed.

CHAPTER 4. ALPHAGARDENSIM

e o
L]
o o o
. L
.
0 ‘e e 4 o
o.o.'. xe
°
° .
. .

. o:. ..
» .‘.”..,..?‘...
° :' ‘e
3 oo

14

Figure 4.2: Plant Life Stages. Each plant is modeled with a life cycle trajectory, consisting of five stages
(from top to bottom image): germination, vegetative, reproductive, senescence, and death. When plants
get underwatered or overwatered, their radius decays exponentially and their color turns brown, and after
a short period they move to the death stage. However, if they receive their desired water amount prior to

that, they can return to their original stage.

CHAPTER 4. ALPHAGARDENSIM 15

Irrigation

AlphaGardenSim uses a discrete-time linear approximation of Richards equation proposed
by Tseng et al. [54] to model irrigation actions and soil moisture dynamics. As described
in [6, 5, 4], the soil moisture model is defined as follows:

w(z,y,t) = max(w(x,y,t — 1) — f + ay(z,y,t) — u(x,y,t),0).

AlphaGardenSim uses the previous soil moisture content w(z,y,t — 1), the amount of
irrigation applied a,(z,y,t), plant water uptake u(z,y,t), and local water loss f to calculate
the current soil moisture value for each discrete grid point p(x,y) at time t.

To more accurately model water dynamics in AlphaGardenSim, we conducted physical
test bed experiments using six TEROS-10 [35] volumetric water content soil moisture sensors
connected to a ZL6 Data Logger [35]. These experiments were used to refine the parameters
ay(z,y,t), w(z,y,t — 1), and f in the soil moisture model. We intend to tune plant uptake,
u(z,y,t), in future real world experiments.

We first made modifications to the irrigation application parameter, a,(z,y,t), by carry-
ing out experiments with the FarmBot watering nozzle. Using a compartmentalized container
placed beneath the nozzle, we discovered the area of influence of a watering action to be con-
centrated within a circle of 0.04m radius. Furthermore, we identified the FarmBot nozzle to
have a flow rate of 0.083 L/s. In AlphaGardenSim, a,(z,y,t) is set to 0.200 L.

Through the use of the TEROS-10 moisture sensors, we were then able to determine a
model for radial flow, or spread, of water once in the soil. To discover this radial flow model,
we conducted a set of experiments in which the FarmBot watered at incremental distances
from the center of a soil moisture sensor, beginning directly overhead, and ending at 0.10m
away. Once outside of the 0.04m radius in which water is applied, the moisture gain is roughly
halved at each subsequent 0.01m when compared to the water gain within the radius. Beyond
0.09m, we found no substantial gain. Thus, we found Aw(z,,y,) = (1/2)" * gain where r is
distance measured in 0.01lm outside of the 0.04m radius, (z,,y.) is a point 7 4+ 0.04m away
from (z,y), w(z,y) is the soil moisture at point (z,y), and gain is the moisture gain for soil
directly under the nozzle.

Next, we used the moisture sensors to tune the local water loss parameter, f, and build
upon our findings in [4]. By watering at varying frequencies over the TEROS-10 sensors and
with a set volume, we were able to plot water loss over time curves. One such water loss
curve can be seen in Figure 4.3. As the simulator operates on a day to day time-scale, the
water loss we care to discover is that over one or more days after watering. In an experiment
conducted in the physical garden bed, we directly watered 0.200L over five independent
sensors at the same time every day. We model water loss and gain over each square grid
point, with side length of 0.01m, in AlphaGardenSim by sampling from a univariate Gaussian
calculated from experimental data.

We calculated the daily loss by averaging the loss of all five sensors. For each sensor, the
daily loss was the difference between the highest value recorded by the sensor within three
hours after watering, in which soil moisture gain occurred, and the lowest value recorded

CHAPTER 4. ALPHAGARDENSIM 16

Soil Moisture Loss and Gain from Irrigation

Soil Moisture Content (VMC)

& § & § &S T
& & ¢ &
A & F & ¢ ¢ ¢
& F S &S A

Figure 4.3: Soil moisture curve generated from TEROS-10 soil moisture sensors connected to a data logger
to determine water loss and gain rates. Irrigation was applied every 24 hours. Soil moisture readings were
recorded every 30 minutes. The five blue curves represent five different sensors that were each watered
independently. The red curve is the average of the readings of all five sensors.

directly before the next watering action. The Gaussian for water loss over a single day has
a mean of 0.042 m*®/m? and a standard deviation of 0.0048 m?/m?, and f is sampled from
such in AlphaGardenSim. For more than one day after watering, the Gaussian for loss has a
mean of 0.01 m?/m? and a standard deviation of 0.0001 m?/m?. Similarly, we modeled the
gain as a univariate Gaussian calculated from daily gains over a two week span, where the
daily gain was calculated by taking the difference between the value right before and within
three hours after watering on the same day. The Gaussian for gain has a mean of 0.046
m?/m? and a standard deviation of 0.0054 m®/m? and was set accordingly in simulation.

Moreover, we tuned the prior soil moisture content parameter, w(z,y,t — 1), using an-
other set of experiments with the TEROS-10 sensors. To do so, we identified the maximal
volumetric water content of our specific soil, which indicates the water storage capacity of
the medium. In the experiments, we saturated five different samples of soil using varying
watering techniques and discovered the max volumetric water content to be around 0.3.
Thus, we capped both w(z,y,t — 1) and w(z,y,t) at this value.

Through the execution of physical test bed experiments and the utilization of soil mois-
ture sensors and the FarmBot watering nozzle, we were able to tune parameters of the
AlphaGardenSim irrigation model to more realistically simulate the characteristics of the
real world garden.

4.3 Pruning, Irrigation, and Planting Policies

We evaluate the performance of different polyculture pruning, irrigation and planting policies
by assessing their robustness in varying garden settings to achieve high plant yield and reduce
water use in AlphaGardenSim.

CHAPTER 4. ALPHAGARDENSIM 17

Policies
We implement five policies:

1. Uniform Policy, a policy that irrigates according to a fixed schedule and prunes all
plants uniformly.

2. Fixed Pruning, a policy that irrigates and prunes plants with a fixed pruning level
based on water availability, plant health and garden diversity.

3. Variable Pruning, a policy that selects a pruning level p € P for each day ¢ from a
discrete set of pruning levels P.

4. Learned Pruning, a deep supervised learned policy that learns from Variable Pruning
prune level demonstrations to predict prune levels over 1500X faster than Variable
Pruning.

5. Dynamic Planting, a policy that seeds plants throughout the lifespan of the garden to
achieve indefinite garden growth.

Uniform Policy. Introduced in [6], Uniform Policy irrigates all plants every other day
similar to an array of drippers or sprinklers in farms and greenhouses. To limit overcrowding,
every 5 days, the policy prunes all plants that grew beyond a threshold with p = 5%.

Fixed Pruning. In [6], we presented Fixed Pruning, which utilizes soil moisture, plant
health and global diversity to dynamically prune and irrigate each sector it observes. For
every o(z,y,t), Fixed Pruning applies one of four actions: irrigate, prune, irrigate and prune,
or none.

If any of the plant health values h(z,y,t) in o(x,y,t) within the radial distribution of the
water nozzle indicates underwatered, the policy irrigates the sector. If the sector does not
contain any plants or only dead plants, Fixed Pruning does not irrigate. To avoid irrigating
plants that are overwatered, the policy sums all w(z,y,t) in the sector and doubles w(x, y,t)
wherever h(z,y,t) contains an overwatered plant. If the total sum is less than a threshold,
the sector is irrigated.

Fixed Pruning selects a pruning action if the proportion of any plant type, calculated by
r4(t), in the pruning window is greater than a uniform threshold.

Variable Pruning. Experiments in prior work [4] and those in Section 5.4 suggest that,
due to a fixed pruning level, Fixed Pruning struggles to manage plants with significant
differences in germination times, maturation times and max radii. To address this limitation,
we introduced Variable Pruning, a policy that selects a pruning level p € P for each day
t from a discrete set of six pruning levels P. Every timestep, Variable Pruning takes a 1-
step lookahead to simulate the potential multi-modal entropy mme (see Section 5.2) that

CHAPTER 4. ALPHAGARDENSIM 18

< < —
373x373x3
Batch Norm Batch Norm
ReLU ReLU
Max Pool Max Pool
. L 2x2 L 2x2 _—
Garden Overhead Observation Conv 555 Conv 3x3 Fully Connected -
8 Filters 16 Filters 4 Outputs
d < < —
10 Plant Types d(x,y,t) T
> Soil Element d(x,y,t)
Plant Health h(x,y,t . [
. - 150x150x13 Prune Level
. < ReLU
acd Batch Norm Batch Norm
» ReLU ReLU
Max Pool Max Pool L
Level R L 2x2 L~ 2x2 _ .
ater Level w(x,y,t) Conv 555 Conv 3x3 Fully Connected Fully Connected
™ 16 Filters 32 Filters 4 Outputs 1 Output
Concatenated
Global Population P(k,t) Fully Connected

Figure 4.4: Learned Pruning network architecture. A deep convolutional neural network with with 18,244
parameters. The network takes three inputs: 1) an RGB image of the full garden; 2) a matrix of h(x,y,t),
w(z,y,t) and d(z,y,t) for all (z,y) in the garden; 3) the global population distribution P(k,t) including
soil coverage. The network predicts a prune level for each observation using demonstrations from Variable
Pruning.

would result from choosing pruning level p; € P on the current garden state. After selecting
p, Variable Pruning uses Fixed Pruning to collect pruning and irrigation actions for every

o(z,y,t).

Learned Pruning. We introduced Learned Pruning in [4], as a way to speed-up 1-step
lookahead with Variable Pruning by over 1500X. We train a deep supervised learned policy,
mapping prune level p demonstrations from Variable Pruning to full garden states as illus-
trated in Figure 4.4. A deep CNN with 18,244 parameters takes in an RGB garden overhead
observation, a matrix of plant health, plant types, and water availability, and the global
population distribution to determine a prune level for a plant.

Dynamic Planting. Dynamic Planting is an extension of Variable Pruning that uses a
planting action to obtain continuous coverage over longer garden periods, past the days of
when plants seeded on day 0 live. We wish to seed plants in locations that minimize inter-
plant competition for light and water so we provide the policy vacancy scores e(z,y, t) for all
(x,y) in each o(z,y,t). If any e(z,y,t) in o(x,y,t) is above a threshold, and the maximum

CHAPTER 4. ALPHAGARDENSIM 19

number of plants the policy can seed each day has not been reached, the policy seeds a plant
at that location.

Dynamic Planting has several benefits over other policies that use stagnant seed place-
ments. Dynamic Planting has potential to limit plant competition and achieve higher di-
versity due to the fact that smaller, slow growing plants can be seeded prior to larger, fast
growing plants when the garden period begins. Furthermore, a garden period is no longer
constrained by constant companionship relations; new plants that are seeded can be chosen
through a combination of optimizing local companionship relations and to improve global
diversity and coverage.

Adaptive Sector Sampling

In prior work [6], we introduced a sector sampling method which, at every timestep, samples
m sectors centered at each s(z,y) and an additional {§ sectors centered at non-seed points.
However, sectors can overlap due to plants seeded close to each other. During irrigation,
both sectors may be watered, resulting in extra water usage. Additionally, multiple pruning
actions may be used instead of one to prune all plants in the overlapping area. To address
this, we create clusters of seed locations s(z,y) that are within a distance ¢y of each other.
We center observations at the centers of these clusters to encompass all plants within that
cluster. We create two sets of clusters: the seed locations of germinating plants that are
within ¢g germ 0f each other, and the seed locations of growing plants that are within cg grow
of each other. To further reduce the number of actions, we do not cluster, and consequently
do not irrigate or prune, the seed locations of plants in Senescence or Death as these two
stages are irreversible.

20

Chapter 5

Simulator Experiments

5.1 Experimental Overview and Setup

To evaluate the functionality and policies within AlphaGardenSim as described in Chapter 4,
we conduct experiments on 150cmx 150cm simulated gardens with 100 plants sampled with
replacement from k plant types. Plants are seeded at random locations s(z,y) = d(z,y,0).
To promote plant germination and early growth, we set the overwatering threshold to 7T, =
100 as it represents the maximum amount of water in a 10 x 10cm square around a plant.
The underwatering threshold is set to 7T;, = 0.1.

5.2 Evaluation

We evaluate the policies described in Section 4.3 on randomly seeded experiments, using the
following metrics:

1. Average Total Plant Coverage - We average the total percent coverage in a single
experiment over days 20 to 70 of the growing period, taking into account only the
coverage of the plants, ignoring the uncovered space labeled as soil:

> 7e(t)

2. Average Diversity - We average the diversity in a single experiment between days
20 and 70 of the growing period, T" = 50:
> ralt)
AD = ———=.
T
During the beginning and end of the growing period, the diversity is always high, since
all plants are very small (germinating or dying). Therefore, these diversity measure-
ments are not reflective of the policy’s performance.

CHAPTER 5. SIMULATOR EXPERIMENTS 21

3. Water Usage (liters) - We sum the water used in a single experiment over the entire
growing period (100 days):
WU =) —ru(t).
¢

4. Multi-Modal Entropy - We model diversity as the normalized entropy of P(k,t) for
all k£ plant types. Maximum diversity, hence, equates to a uniform distribution within
P(k,t). However, prior work [4] and Section 5.4 suggests that high diversity can be
achieved with low plant coverage and consequently, high soil exposure. Thus, we define
k be the union of the & plant types and an additional type representing the amount
of unoccluded soil, so that P(k,t) will include soil coverage. We define multi-modal
entropy (mme) as:

wme(t) — LR (1) =S Pl loxPli1)
log k log k

5.3 Adaptive Sector Sampling Experiments

We compare the evaluation metrics achieved with adaptive sector sampling versus the sector
observation approach from [6]. Gardens contain 100 plants, 10 of each plant type from
Table 4.2. As described in Section 4.2, the amount of water a plant receives while growing
after germination corresponds to how much it grows. A smaller cq 40, results in more
sectors observed for growing plants as less plants are within the threshold for clustering. A
Cdgrow = lcm resembles the sector sampling approach from [6]. We experiment with two
Cd,grow clustering thresholds: 2cm and 8cm. We fix ¢4 germ to 8cm as germination duration
does not depend on the amount of water provided. Results averaged across 20 gardens over
100 days are summarized in Table 5.1. With a cg grow = 2cm, Fixed Pruning observes more
sectors and provides more water to each plant than cg 4y, = 8cm. However, both thresholds
achieve comparable coverage, diversity and mme to the sector observation approach from [6].
By clustering germinating and growing plants that are cggerm = S8cm and cggrow = 2cm of
each other, Fixed Pruning uses 37% less water over the entire garden simulation period, 38%
less irrigation actions, and 35% less pruning actions. With a ¢4g40, = 8cm threshold, Fixed
Pruning is able to use 50% less water, irrigation actions and pruning actions.

5.4 Pruning and Irrigation Experiments

Plant Types from Table 4.2

We evaluate Uniform Policy, Fixed Pruning, and Variable Pruning on gardens with 100 edible
plants, 10 plants from each of the 10 plant types with growth parameters in Table 4.2. Ob-
servations to policies are determined through adaptive sector sampling described in Section
4.3 with cg germ = S8cm and c¢g grow = 8cm.

CHAPTER 5. SIMULATOR EXPERIMENTS
Metric Without | ¢4 grow = 2¢m | g grow = 8cm
Avg coverage 0.71 0.74 0.71
Avg diversity 0.91 0.91 0.91
Avg multi-modal entropy 0.83 0.84 0.82
Avg water use (liters) 15.73 9.80 7.36
Num. of irrigation actions 7862.6 4900.5 3680.9
Num. of pruning actions 732.3 474.0 292.5

Table 5.1: Policy evaluations of Fixed Pruning averaged across 20 test gardens during days 20 to 70 with
and without adaptive sector sampling. We observe germinating plants within 8cm of each other in the same
observation sector and experiment with 2cm and 8cm cluster radii for growing plants. Both a 2cm and 8cm
cluster radii for growing plants are able to achieve comparable coverage, diversity and multi-modal entropy
to the sector observation approach from [6]. While Cd,grow = 2CIN USES over 35% less water, irrigation actions
and pruning actions than without adaptive sectoring, cq,grow = 8cm uses over 50% less water and actions.

Through experiments, we found that a fixed prune level of 15% for Fixed Pruning and the
set of pruning levels P € (5%, 10%, 16%, 20%, 30%, 40%) for Variable Pruning, leads to high
coverage, diversity and mme on the plant set. Results averaged across 20 different random
garden seed placements over 100 garden days are summarized in Table 5.2. Compared to a
baseline no pruning policy which irrigates every other day, Uniform Policy achieves higher
diversity but overprunes plants due to only being able to prune every 5 days. Both Variable
Pruning and Fixed Pruning achieve higher coverage, diversity, multi-modal entropy than
Uniform Policy by dynamically selecting which plants to irrigate and prune each day based
on plant health, garden diversity, and multi-modal entropy for Variable Pruning.

Plant Types from Table 5.3

As suggested in prior work [6, 4], Fixed Pruning struggles to achieve both high coverage and
diversity, and consequently high mme on plants with different germination times, maturation
times and max radii. To illustrate this, we conduct experiments on gardens with 100 plants,
10 plants from each of the 10 plant types in Table 5.3 where faster growing plants grow five
to eight times faster than slower ones. We use the observation sampling method described
in prior work [6], sampling m sectors centered at each s(z,y) and § sectors centered at
non-seed points.

We simulate Fixed Pruning with 15% and 1% pruning levels, and Variable Pruning with
prune levels P € (5%, 10%, 16%, 20%, 30%, 40%). To achieve higher plant diversity, Fixed
Pruning with a 15% prune level aggressively prunes the faster growing plants during their
growing period to match the size of the slower growing plants. The policy achieves high

CHAPTER 5. SIMULATOR EXPERIMENTS 23

Metric Uniform | Fixed | Variable | Learned
Avg coverage 0.59 0.71 0.74 -
Avg diversity 0.88 | 0.91 0.88 -
Avg multi-modal entropy 0.75 0.82 0.82 -
Avg water use (liters) 7.53 | 7.36 7.34 -
Avg coverage - 0.23 0.46 0.42
Avg diversity -| 0.76 0.67 0.67
Avg multi-modal entropy - 0.37 0.55 0.53
Avg water use (liters) - | 18.67 19.81 19.80
Computation time (seconds) - - | 336.18 0.22

Table 5.2: Policy evaluations of Uniform Policy, Fixed Pruning, Variable Pruning, and Learned Pruning
averaged across 20 test gardens each with 100 plants. Top 4 rows: experiments use the 10 plant types
from Table 4.2. Metrics are averaged between days 20 to 70 as policies do not prune prior to day 20 and
plants begin to die after day 70. Bottom 5 rows: experiments use the 10 plant types from Table 5.3. The
faster growing plants begin to die after day 50, so we instead average metrics for these gardens between
days 20 to 50. The computation time represents the time it takes a policy to compute an action given an
observation. The Variable Pruning is computational intensive as it evaluates different pruning levels, while
Learned Pruning performs similarly but has a significantly lower computation time.

diversity at the cost of low coverage, resulting in low multi-modal entropy. Fixed Pruning
with a 1% prune level prunes the fast-growing plants less, but fails to prune enough to achieve
uniform plant diversity. Thus, a 1% prune level also results in low multi-modal entropy.

We compare Fixed Pruning with a 15% prune level against Variable Pruning on 20
randomly seeded gardens. Results are averaged in Table 5.2. The faster growing plants
from Table 5.3 begin to die after day 50 so results are averaged between days 20 and 50.
Variable Pruning selects a prune levels that would result in the highest mme 1-day into the
future and initially uses a small prune level of 5% to allow faster growing plants to grow. As
the faster growing plants begin to die, Variable Pruning uses higher prune levels to increase
diversity and maintain high multi-modal entropy. As a result, Variable Pruning achieves
high coverage, diversity and multi-modal entropy.

Due to the long runtime of simulating 1-step lookahead with Variable Pruning, we train
Learned Pruning to learn prune levels for each day given full garden states of gardens with
slow and fast growing plants from Table 5.3. We simulate Variable Pruning on 6,500 gardens
with randomized seed locations to collect prune level demonstrations between days 20 to 100
as policies do not prune before day 20. Variable Pruning selects a 5% prune level 95% of
the time and levels 10% and greater 5% of the time to maximize multi-modal entropy for
the slow and fast plant types. We increase the number of demonstrations for prune levels
10% and greater by 8x by rotating and flipping observations. The network is trained with

CHAPTER 5. SIMULATOR EXPERIMENTS

24

Plant Type Germination (days) | Maturation (days) | Max Radius (cm)
Fast growing 9.8 20.2 93.3
Slow growing 25.6 90.4 31.95

Table 5.3: Fast and Slow Plant Types. Average germination time, maturation time, and max radii of
5 fast and 5 slow growing plant types. We experimented with varying germination times, maturation times
and max radii to create the plant set above where Uniform Policy achieves low multi-modal entropy mme,
as illustrated in Fig. 5.1.
1% Fixed Pruning Policy

15% Fixed Pruning Policy Variable Pruning Policy

10 10 10
w w w
= 08 S o8 S os —
= = =
< < < ey
2 S 2 2 S ~
9 o6 _— ~— @ o, 9 06 = ~—
i - - = = e -
(] [Q ~ ~—
2 2 ¢ M]
3 ~_ 8 a
g 0.4 N ~ / E\ . g 04
s) ~_/ s o
g g g
Che — coverage Che §* — Coverage

—— Diversit ity —— Diversity
—— MME —— MME
0.0 0.0
20 25 30 35 40 45 50 20 25 30 35 40 45 50 20 25 30 35 40 45 50
Time (days) Time (days) Time (days)

Figure 5.1: Simulation results on gardens between days 20 and 50 with the fast and slow growing plant
types from Table 5.3. Metrics are shown between days 20 and 50 as the faster growing plant types begin to
die after day 50. Left: Simulation results for Fixed Pruning with fixed prune levels of 1%. With a 1% fixed
prune level, Fixed Pruning achieves high coverage but struggles to maintain diversity. As a result multi-modal
entropy is low. Middle: With a 15% prune level, Fixed Pruning achieves high diversity but low coverage as
a result of pruning the fast growing plants to match the size of the slower plants. Right: Variable Pruning
simulation results. By optimizing for multi-modal entropy, the policy is able to manage both coverage and
diversity through variable prune levels and achieve the highest multi-modal entropy. During earlier days,
Variable Pruning uses smaller prune rates to allow the faster growing plants the grow. As the fast plants
begin to die, to maintain high multi-modal entropy, Variable Pruning prunes more frequently.

520K demonstrations for 55 epochs with the Adadelta [62] optimizer and mean squared
error loss using 4 hardware threads and 4 Tesla V100 GPUs. The network architecture
and optimization framework is written in Python using PyTorch. Table 5.2 summarizes
results averaged across 20 test gardens withheld from the training dataset. Learned Pruning
achieves comparable coverage, diversity, mme and water usgae to Variable Pruning but is
over 1500x faster predicting p for days 20 to 50.

5.5 Dynamic Planting Experiments

We conduct Dynamic Planting experiments on a general setting initially consisting of 100
plants from 10 types. To evaluate how well dynamic planting can sustain garden growth, we

CHAPTER 5. SIMULATOR EXPERIMENTS

Dynamic Planting Policy

25

Num. of Plants To Dynamically Plant Each Day

10 5
N =
w T\ ~ ©

= 081 s \ \ a4
= | \ \ >
s [\ - \ =

2 [\\ / \ 9
5% | \ 7/ \ E
2 ,‘ \ / A [8

a ‘ \ N2

@ 044 ’ 8 /A /

o \/W o
o | e

g | L1
8 021 /‘/ —— Coverage E
/ —— Diversity o

/ —— MME 0 —— Potential Plants.
0.0 T T T T T T T T T T T T T
] 25 50 75 100 125 150 175 200 [25 50 75 100 125 150 175 200
Time (days) Time (days)

Figure 5.2: Dynamic Planting Policy. The policy seeds up to 5 new plants every day after day 20.
During periods where coverage is high in the garden, there is little vacant space to seed new plants. As a
result, the number of plants selected to be dynamically planted drops during days 35 to 61 and days 128 to
146. After these high coverage periods, up to 5 new plants are seeded every day resulting in a resurgence in
coverage after the new plants germinate and mature.

Policy Coverage | Diversity | MME | Water Use (liters)

0.50 0.82] 0.63 158.98

Table 5.4: Dynamic Planting policy averaged across 10 test gardens with 100 initial plants and the ability
to seed up to 5 new plants every day after day 20. Evaluation metrics are averaged across all 200 days of
garden simulation. Results show that replanting seeds can lead to sustained growth and diversity across
indefinite periods of time.

simulate a growing period of 200 days. We follow the observation method from [6] to allow
the policy to observe locations away from seed points s(x,y). Dynamic Planting begins
seeding plants after day 20, which is when most of the original plants have reached the
vegetative stage. The policy uses a vacancy threshold of e(z,y,f) = 8cm and can seed a
maximum of 5 plants every day. We average results across 10 test gardens with random
seed placements, as seen in Table 5.4 and Figure 5.2. Since Dynamic Planting only seeds
new plants in locations that are sufficiently vacant, during periods where coverage is high
in the garden, the number of plants seeded every day drops below 5. Once plants begin
to die and coverage decreases, the garden becomes sparser, allowing Dynamic Planting to
find locations where vacancy e(x,y,t) > 8cm. After the new plants germinate and mature,
coverage rebounds.

26

Chapter 6

AlphaGarden Autonomous Pipeline

6.1 Overview

This chapter will discuss the implementation of the fully autonomous pipeline. To execute
an AlphaGardenSim policy physically, we need to interpret the real-world garden state s(t)
(Chapter 3), pass it into AlphaGardenSim (Chapter 4), extract the plant specific actions,
and then enact these actions in the real-world garden. Figure 6.1 shows this pipeline. For
state estimation, a trained phenotyping network identifies plant types (see Section 6.2) and
a Bounding Disk Tracking algorithm transforms the segmentation masks into a simulator
readable format (Section 6.3). Subsequently, the Fixed Pruning Policy decides irrigation
and pruning actions based on the garden state. The actions are then executed using a

(Sensor State Estimation)
e
: Sony Overhead : : Phenotyping Bounding Disk :
0 Camera Vo Network Tracking '
1 | 1
: [I e 3 T g ®(O)g | :
1 1
: (] 2% . g é?O Q. 8 :
1 1 1
O L === ====== -/

A A
| AGSim Policy: n(als) |
1

Action Planning Exccution)
Prune Point Visual Pruning
Identification Servoing Action

1 1
1 1
1 1

|) S 7 LJ[!E- 1
1 i e o 1
1 : J B 1
1 = 1

Figure 6.1: Automated Pruning Pipeline: The overhead Sony camera takes photos on an hourly basis.
The images are processed by a Plant Phenotyping Network followed by Bounding Disk Tracking algorithm
to identify the garden’s state. AlphaGardenSim determines which plants to prune in real time. Given the
simulator’s decisions, a Prune Point Identification network identifies specific leaves to prune. This is followed
by visual servoing to arrive at the leaf location in the physical garden and then execution of the prune using
a custom pruning tool.

CHAPTER 6. ALPHAGARDEN AUTONOMOUS PIPELINE 27

unknown /| ez | SWISS | yumip | aruguia | borage
Name soil chard P 9 9
% Coverage | 484 | 118 | 104 | 97 | 74 | 70 | 17 | 10 | 03 | 02 | o4
Baseline loU 0.88 0.78 0.81 0.55 0.40 0.82 0.72 0.46 0.70 0.13 0.39

loU with

reen . e red
g cilantro | sorrel | radicchio
lettuce lettuce

0.92 092 | 093 | 081 072 | 095 0.87 0.71 | 0.76 0.57 0.65

Figure 6.2: Learned Plant Segmentation Model. The figures above (from top to bottom) show an
overhead image from October 6, 2020, and the classifier output from the network with augmented data. The
overhead image is split in half as shown by the blue line. The top half is for training while the bottom half
is for testing. Below, the table shows how much of the garden is covered by each plant and its respective
ToU score based on the bottom half only. By adding augmented data, the model was able to more accurately
classify unseen leaves when compared to the baseline with no augmented data. Low IoU for radicchio and
red lettuce is consistent with a low percent of coverage.

Prune Point Identification network (Section 6.4), visual servoing algorithms (Section 6.4),
and custom hardware (Section 6.5).

6.2 Phenotyping

To estimate the garden state, we use a learned semantic segmentation neural network to label
plant types from an overhead image. Plant phenotyping directly influences the success of
Bounding Disk Tracking, and provides information on plant growth, diversity, and coverage.

We mounted a Sony SNC-VB770 digital camera [48] with a 20mm Sony lens [47] 2m
above the garden bed to monitor the garden. The VB770 satisfies our major requirements
that include (1) resolution, (2) image distortion, (3) FOV, (4) power delivery, and (5) remote

CHAPTER 6. ALPHAGARDEN AUTONOMOUS PIPELINE 28

data accessibility. It has a DSLM 35mm sensor with a maximum 4240x 2832 resolution, and
the camera publishes photos every hour. We trained a model using UNet architecture [41]
and ResNet34 [25] backbone to output a 1630 x 3478 X (i;51q; + 1) array L of plant likelihood
per pixel per label type, where iy, is the total number of plant types. The network is
trained on six hand-labeled overhead images from garden cycles. Training uses categorical
cross-entropy loss over 100 epochs and utilizes a 75-25 train-validation split. Each image is
split into 512 x 512 RGB patches and augmented via shifting and rotating. This additional
augmented data improves network robustness as shown in Fig. 6.2. We extract leaf masks
from various stages in the garden and overlay these leaves on top of the existing patches to
augment the data set [4]. Figure 6.2 shows the network’s prediction on the bottom half of
an overhead image, which is unseen to the network. When evaluated, the model has a mean
IoU of 0.80. The model performs well in identifying plant types with high coverage, but has
lower accuracy in plants that are not common in the overhead image.

Hand labeling accurate ground truth masks is a tedious process. We developed a data
aggregation based approach, allowing a human to make corrections to a predicted mask
when the algorithm fails. This approach identifies plant sub regions using the contours
of the prediction mask, and queries a human to generate the correct label. This method
allowed us to quickly generate training data from multiple garden cycles to improve overall
performance.

Accurate segmentation for plants after day 30 becomes increasingly important in order
to determine canopy coverage and pruning actions. However, a plant may look very different
at germination compared to its mature state due to the distribution shift of a plant over its
lifespan (as well as due to occlusions), which causes a drop in performance starting on day
40.

To address this, we introduce a prior probability distribution based on seed placement
and plant maximum radius given from our tuned simulator [6]. We define a variable R, and
cF as the maximum radius and center of plant k at timestep ¢, and a 1630 x 3478 X (i¢otar + 1)
occupancy grid, O defined as

O(z,y,i) = ax* (2 —r/Ry),

if r < Ry and ¢ is of plant type i, where a = 5, and r is the distance from ¢, to (z,y), and
1 otherwise.

We use this location based occupancy grid as a prior probability, and compute a new
likelihood grid L’ as an element-wise multiplication of the original segmentation output, L,
and occupancy grid, O, L'(x,y,1) = L(x,y,i) - O(x,y,1), and output max; L'(x,y,7) as the
predicted label for (z,y).

We define mean IoU as Zztz"tﬂ“’ IoU(label;)/(itota1 +1). The baseline model [4] had a mean
IoU of 0.71 when compared to the ground truth at day 30. The new network, with data
aggregation techniques and location based segmentation added, had a mean IoU 0.83 across
the 9 labels on day 30. We saw the highest IoU of 0.97 in borage, which is one of the larger
plants. Radicchio, which previously had the lowest IoU, had the largest increase from 0.23 to

CHAPTER 6. ALPHAGARDEN AUTONOMOUS PIPELINE 29

Figure 6.3: Phenotyping and Bounding Disk Tracking. 3 images from days 20, 30, and 40 of garden
cycle 4. Top row: overhead images overlayed with the estimated bounding disks from the Bounding Disk
Tracking algorithm. Bottom row: the masks created by the Plant Phenotyping network as well as the
estimated bounding disks (same as above).

0.59. Adding location priors offers more robustness to the distribution shift in plants towards
the end of the garden cycle and marginal improvements in the early stages of the garden.
On day 50 and 60, mean IoU improved from 0.38 and 0.33 to 0.42 and 0.36 respectively with
location based segmentation. The largest jump in IoU was for green lettuce, from 0.31 to
0.40 on day 60, while plants like kale saw little change with an IoU of 0.54 on both networks.

6.3 Bounding Disk Tracking

While visual occlusions present challenges to tracking plant shapes over their lifespan, the
estimated bounding disk of the plant should remain relatively consistent.

We define a plant’s bounding disk (see Figure 6.3) as the circle with the smallest radius
such that all pixels corresponding to that plant are enclosed. This definition helps account for
plants moving over time due to phototrophy [56] and irrigation [16]. We present two methods
for finding circular representations of the garden’s state and two metrics for comparison, and
evaluate each method against a hand-labeled benchmark for selected days using a circle IoU
loss [59].

To estimate the garden state, defined by plant centers and radii ((cxy, cyg),) indexed
by plant type pr = i, we convert the plant segmentation mask into estimates of each plant’s
center and radius. It is necessary to phenotype the overhead image before converting from
real-life (real) to simulation (sim) to ensure pixels with the highest likelihood for that plant
type affect its bounding disk representation.

We use a breadth-first-search (BFS) algorithm and K-Means clustering to track each
plant’s center and radius. Both algorithms help address the issues with tracking plants
over the duration of the garden lifecycle. BFS helps with irregular plant shapes and slight
occlusions by continually searching outwards using a radial search heuristic, and K-Means

CHAPTER 6. ALPHAGARDEN AUTONOMOUS PIPELINE 30

helps address occlusion because it clusters non-contingent groups of pixels into a single
bounding disk.

The BFS algorithm is initialized with seed locations and all plant radii at Ocm. At each
timestep, we use AlphaGardenSim [6] and the prior plant radius to calculate a maximum
possible radius by simulating a day of plant growth. Given the prior radius, maximum
radius, and minimum radius, the algorithm traverses outwards from the minimum radius.
The algorithm stops when less than 10% of the newly traversed pixels are of the correct
type or the maximum radius has been achieved. This process repeats each day for each
plant. Even when a plant becomes fully occluded, the algorithm handles radial decrease
using AlphaGardenSim’s tuned wilting parameters.

The second method, K-Means clustering, has two main assumptions: (1) the clusters
have roughly the same number of points and (2) the clusters are circularly distributed.
The first assumption is true near the beginning of the garden, because plants of the same
type grow similarly. However, this assumption complicates later in the cycle as competitive
relationships in the garden and occlusion start to create asymmetries. The second assumption
follows from the circular model we use to track plants.

In order to benchmark model performance, we introduce two metrics: average circle
utility (ACU) and percentage of pixels included (PPI). Let P; be the number of pixels in the
segmentation mask of the inputted plant type that fall within at least one bounding disk, P;
be the number of pixels of the given plant type present in the segmentation mask, and P, be
the area of the union of the given bounding disks. We then define the average circle utility
as ACU = % and percentage of pixels included as PPI = %. Each metric is computed per
plant type per timestep.

We want to maximize both ACU and PPI to compute the optimal bounding disks. At
the extremes, these algorithms are adversarially related — smaller bounding disks tend to
have higher ACUs because they will likely be centered around denser, less occluded portions
of the plants. However, larger bounding disks will tend to have higher PPIs because a larger
bounding disk will naturally have a larger portion of a plant k’s pixels.

To judge the efficacy of these methods we compare them to hand-labeled bounding disks
at various time steps. As Figure 6.4 (left) shows, initial K-Means clustering performs well as
its assumptions are easily met and the segmentation is highly effective. It also performs well
on larger, less occluded plants. However, later in the cycle, this method’s efficacy decreases
as it overfits to segmentation errors and irregular plant shapes. As Figure 6.4 (right) shows,
BF'S lags early on, but then becomes increasingly effective as plants are occluded mid-garden
cycle.

6.4 Pruning Planner

Once a garden state on day t is estimated with the Bounding Disk Tracking algorithm, the
analytic policy within AlphaGardenSim decides which plants to prune. For autonomous
pruning, the system must identify and select specific target leaves to prune, be able to

CHAPTER 6. ALPHAGARDEN AUTONOMOUS PIPELINE

ACU

0.2

0.0

ACU: K-Means vs. BFS Kale

—— KMeans

BFS
Ground Truth

10 20 30 40 50 60
Garden Day

10
08
0.6
0.4
0.2

0.0

PPI: K-Means vs. BFS Kale

WW“‘\W*

—— KMeans
BFS
[Ground Truth

0 10 20 30 40 50 60

Garden Day

ACU

06

05

04

01

0.0

ACU: K-Means vs. BFS Cilantro

—— KMeans
BFS
Ground Truth

PPI

10 20 30 40 50 60
Garden Day

10

0.8

0.6

0.4

02

0.0

PPI: K-Means vs. BFS Cilantro

PN

—— KMeans
BFS
Ground Truth

0 10 20 30 40 50 60

Garden Day

31

Figure 6.4: Garden Metrics of Garden Cycle 2R for Kale and Cilantro. Kale demonstrates the
statistics for larger plants, while Cilantro demonstrates them for smaller plants. We evaluate average circle
utility (ACU) and percentage of pixels included (PPI) of the Breadth-First-Search (BFS) versus the K-Means
bounding disk algorithms for both plant types. Kale: BFS tends to have higher ACU, but lower PPI. For the
days which ground truth circles exist, they are closer to the K-Means algorithm in both metrics. Cilantro:
Similarly, BF'S has a higher ACU and K-Means has a higher PPI. However, Cilantro generally benefits from
the more conservative BFS. We adopt a mixed approach: the K-Means approach for larger plants and less
occluded timesteps, and the BFS approach for denser, smaller plants.

navigate and position the FarmBot above the chosen leaf using visual servoing, and execute
the pruning action with custom hardware.

Prune Point Identification

The system must identify the best leaf to cut after a plant is chosen to be pruned by
AlphaGardenSim. Our baseline approach found the average point between an extrema of
the plant, a point near the tip of a leaf as dictated by the bounding disk, and the plant
center to find a theoretical leaf center. However, this was constrained by the reality of
plants’ physical makeup which often includes bending, occlusion, or oddly shaped leaves.
The algorithm would frequently return points which were not on a plant or too close to an
edge. We therefore explore a learned approach.

We trained a Prune Point Identification neural network based on the unsupervised domain
adaptation network for plant organ counting by Ayalew et al. [7]. In the training process,
our images are transformed to match the input network characteristics, allowing for a more

CHAPTER 6. ALPHAGARDEN AUTONOMOUS PIPELINE 32

seamless domain adaptation. The architecture consists of a Domain Adversarial Neural
Network with a Gradient Reversal Layer to backpropagate between the source and target
domains and classification is performed using a U-Net [7].

To evaluate this network’s success in a polyculture setting, rather than its original mono-
culture domain, we trained it on all plant types, different sets of plant types that appeared
to have distinct leaves, and on individual plant types from our domain. We found that
training on all plant types led to the worst overall performance. Borage, a plant that has
high success in being identified by our phenotyping network along with distinct, well-shaped
round leaves, led to a network that was best able to predict leaf centers for all plant types.
The final model was trained for 150 epochs with a 80/20 train/validation split for the source
(CVPPP) and target datasets, 201 overhead images and masks of the Borage plant type,
and evaluated visually on a random sampling of overhead images of all plant types.

The model generates a heatmap with all possible plant leaf centers. A clustering and
thresholding technique is used to identify leaf centers with the highest model confidence.
These points are then removed and the heatmap is re-normalized to identify less certain
points. The algorithm is able to recover lower confidence leaf centers, compared to the
initial normalized threshold of 0.3, while accounting for over-classification. The algorithm
ensures that prune points do not land on other plants or the soil through the use of the
phenotyping mask. Together, the model and recursive algorithm identify 32% more leaf
centers than the baseline methodology (see Figure 6.5). The center of mass for the identified
points is an average of 38% closer to the center compared to the baseline. Pruning closer to
the center of the plant is beneficial because it allows for pruning actions to cut off a greater
portion of the leaf. Furthermore, as seen in Figure 6.5, the learned method has far fewer
points that lie on different plants.

For prune point selection, the network first identifies all possible prune points. The algo-
rithm then eliminates all points within 3cm of the edge of the bounding disk, and calculates
the rate of change of the radii of all neighboring plants over the last five days. The prune
point that is closest to the neighboring plant that has the largest rate of decay of radii is
selected in order to foster growth of the struggling neighboring plant.

Visual Servoing for Pruning Tool

The autonomous system must then physically arrive at the chosen prune point by translating
from overhead image pixel coordinates to FarmBot (x,y) coordinates. Due to the variable
height of plants, it is not possible to create a 1-to-1 mapping of pixel coordinates to FarmBot
coordinates.

The visual servoing algorithm works using an on-board snake inspection camera located
adjacent to the tool end effector on the FarmBot Z-axis [18]. It allows for close-up images of
plants and soil. Given plant £ was chosen to be pruned, the FarmBot moves to its original
seed location and takes a photo using the on-board camera. This image is then localized
within the overhead ‘global’ image by calculating a normalized correlation coefficient between
the images. Instead of exhaustively searching the entire garden bed to localize the image,

CHAPTER 6. ALPHAGARDEN AUTONOMOUS PIPELINE 33

Baseline Approach

Prune Point NN

Figure 6.5: Prune Point Identification. Example of all plant leaf centers that were identified by
the baseline algorithm (left) and the model (right) applied to an overhead image. Each prune point color
corresponds to a different plant type. The learned model identifies more usable points with fewer misclas-
sifications. When looking at the Swiss Chard plant highlighted (zoomed in), we see that the learned model
finds 3 more prune points than the baseline approach and also does not missclassify the red prune point,
which is meant for a neighboring plant type.

the servoing algorithm constrains the search to a max area around the prune plant’s center
within the global image, dictated by the FOV of the on-board camera. The algorithm also
iteratively tests different scales of the on-board image, which accounts for the variable height
of the canopy, and finds the scale and position that has the highest coefficient.

After finding the best match in the overhead global image, the FarmBot is instructed
to move along the vector from the current location to the prune point. Then an iterative
process begins, in which a ‘local’ image is taken at the new point and is localized within the
global image. Once localized, the FarmBot moves in the vector direction a max distance
of 4cm to prevent erroneous movement if a local image is miss-classified within the global
image. The iterative cycle continues until the FarmBot reaches within lcm of the prune
point or reaches an iteration limit of six.

Although the visual servoing algorithm is quite robust, when plants grew too high and
close to the on-board camera (approximately 0.4m above the soil surface), it was not able to
take a clear image of the garden, which led to failed localization and servoing to the prune
point location. To remedy this, we moved the on-board camera to approximately 0.7m above
the soil surface, away from plants’ reach, allowing it to capture unobstructed images of the
garden and better localize them within the global image.

6.5 Pruning Hardware

The goal of pruning is to reduce the coverage of plant k centered at a point (zy, y) with radius
rr. To tend to and prune plants, the autonomous system uses a commercial FarmBot [19]
installed over the 3.0mx1.5m planter bed frame. This CNC robot can travel to any location
in the garden from the soil level to 0.4m above. The FarmBot also features a magnetic
universal tool mount (UTM) on its Z-axis that can automatically swap between tools stored
on the west side of the bed. The tools we designed are operated through the FarmBot system

CHAPTER 6. ALPHAGARDEN AUTONOMOUS PIPELINE 34

Figure 6.6: Pruning tools. Left: CAD and physical model of Rotary Pruner with a high speed motor
and trimming blades. Right: CAD and physical model of Pruning Shears with three servos to control
closing, tilt, and orientation.

with no human intervention. Once the FarmBot moves to a prune location, the pruning tool
then aims to remove all or part of the leaf structure in that neighborhood to reduce coverage.
We designed, implemented, and studied two options: Rotary Pruner and Pruning Shears.

Rotary Pruner

We built a custom pruning tool, dubbed the Rotary Pruner, that is lightweight, integrates
with the FarmBot universal tool mount, and mounts automatically. Inspired by the tradi-
tional ‘weed whacker,‘ our first generation model utilizes thin, flexible blades rotating at high
speeds to cut plants. We selected an SM Tech 775 Brushed 24V DC motor capable of 12000
rpm to achieve this. The motor’s high power needs (>5V) mandated an external voltage
source separate from the Farmbot’s power rail. Thus, we designed a spring pin mechanism
that allows the external power rail to automatically connect to the tool. We also designed a
motor housing that inter-operates with the FarmBot UTM. The electrical control includes
a relay circuit that governs motor power and uses GPIO to integrate with the FarmBot OS.
The FarmBot does not rotate along the Z-axis, so we designed two such rotary pruning tools
with different orientations: one that cuts along the X-axis and another that cuts along the
Y-axis.

The Rotary Pruner that is chosen has a cutting direction that is closest to being orthog-
onal to the vector from the plant’s center to the prune point, and is autonomously mounted
using the tool rack and FarmBot UTM. To estimate the height of the plant and find the

CHAPTER 6. ALPHAGARDEN AUTONOMOUS PIPELINE 35

distance to the target leaf d, we mounted a Sharp infrared distance sensor [43] adjacent to
the FarmBot UTM pointing towards the soil surface. After arriving at the prune coordi-
nates and measuring d, the Rotary Pruner is then toggled on, and the FarmBot is lowered
to (d 4 5)cm; the system overestimates the depth of the leaf in order to ensure a cut. The
Rotary Pruner is then toggled off and returned to its home position.

The Rotary Pruner faced fundamental limitations, primarily with its aggressive method
of operation (the high speed blades would cause debris to fly), which could pose a danger to
objects and people around the garden.

Pruning Shears

Although the Rotary Pruner proved useful for many of the initial pruning actions, it spot-
lights a few shortcomings that we wished to fix with a redesigned pruning attachment.
Firstly, since the Rotary Pruner uses two separate attachments, the autonomous system had
to regularly switch these attachments, adding unwanted power consumption and increasing
the likelihood of mechanical failure. Secondly, due to the Rotary Pruner’s relatively aggres-
sive method of operation, it would frequently damage the target leaf (as well as surrounding
plants) when attempting a prune action. This caused a reduction in plant health and an
increase in water consumption.

For a quieter, more precise and delicate pruning tool, we motorized a pair of Japanese
topiary shears. A pair of Niwaki Topiary Shears [40] were fastened directly to the FarmBot’s
gantry rails. A YANSHON Digital 360° servo motor closes the shears by winding a high
strength steel cable attached to one handle of the shears onto a spool; the shears reopen
with a spring mechanism when the cable is unwound. This assembly is mounted to a 2-axis
servo gimbal (using BETU Digital 270° servo motors). The gimbal is able to position the
shears vertically, horizontally, or at any intermediate angle as well as rotate the shears a full
180° to account for any leaf direction, allowing the FarmBot to trim with greater precision
as well as reach the tops of plants. The servos connect to the FarmBot PWM header and
integrate seamlessly with the FarmBot OS.

Control of the shears is executed through the three servos: one for tilt, one for cut angle,
and one for shear closure. The Pruning Shears are at default open and stored horizontally to
avoid collisions with plants below. The shears require calculating the orthogonal vector to
the vector spanning from the center of the plant to the prune point. The servo that controls
cut angle is then activated to position the shears along the orthogonal vector. The tilt servo
then swivels the shears to a vertical position. The shears are then lowered to (d 4 5)cm and
activated. Once a cut is complete, the shears return to their default positioning.

36

Chapter 7

Real World Experiments

7.1 Isolated Pruning Experiments

To evaluate the two pruning tools, we ran isolated pruning experiments on eggplant and
bell pepper. We chose eggplant for its large leaves comparable to kale, borage, and turnip,
and we chose bell pepper for its smaller abundant leaves similar to cilantro and lettuce. We
placed a grown potted plant near the midline of the garden bed, took an overhead image,
and then passed a manually annotated plant center and prune point into our visual servoing
and pruning algorithms.

For each tool, we made 5-6 prunings on both plant types, observing completeness of the
cut, precision of the cut (if any neighboring leaves were harmed in the process), and any
error that may have occurred. Our results are in Table 7.1. We found the Rotary Pruner
was more likely to complete a cut, but it also tended to over prune. Furthermore, due to
the nature of the Rotary Pruner, the final cuts were not ’clean’ and showcased tears and
fragments. The Shears, on the other hand, generally caused little secondary damage and
debris and made clean cuts, but were more prone to incompletely cut or miss a leaf. The
main reasons for failure to execute a prune were due to bad prune point selection or the
pruning tool pushing a leaf out of the way.

7.2 Four Garden Cycles

To evaluate the entire system holistically, we ran four autonomous cycles over two 60 day peri-
ods. We split the garden into two halves and planted identical seed placements (1.5mx1.5m)
on each. Each half was treated as an independent garden cycle. Irrigation took place at 9:00
AM daily and every plant was watered 200mL. After day 30, and every five days after, the
autonomous system executed pruning actions. An overhead image taken at 7:00 PM was
processed through the Plant Phenotyping and Bounding Disk tracking algorithm to deter-
mine the garden state. AlphaGardenSim would use this garden state to decide which plants

CHAPTER 7. REAL WORLD EXPERIMENTS 37

Plant Type | Cut | Pruning Shears Results Rotary Pruner Results
Compl. | Precision | Err. | Compl. | Precision | Err.

Eggplant 1 2 0 B 2 0 B

2 3 0 A 2 1 A

3 2 0 B 3 1 A

4 3 1 A 3 1 A

5a 2 0 C,D 2 0 B

5b 3 0 C,D 2 0 B

6a 2 1 D 2 1 B

6b - - 2 1 B

BellPepper 1 1 0 B 1 1 D

2 2 0 C 1 1 B

3 3 0 A 1 1 B

4 1 0 B 3 0 A

5a 1 0 C,D 3 0 A

5b-c 1 0 CD - - -

5d 3 1 C,D - - -

6 - - - 2 1 B

Table 7.1: Isolated Pruning Experiments for the Rotary Pruner and Pruning Shears. Key: Complete-
ness- 3: complete cut, 2: partial cut, 1: missed cut. Precision- 1: no damage to other leaves, 0: damage to
other leaves. Error Type- A: No error, B: location, C: depth, D: Other.

to prune. The image was subsequently used for prune point identification and selection.
Visual servoing and pruning algorithms were then executed on the chosen leaves.

Human Intervention

Although the goal is a fully automated polyculture garden pruning system, some human
intervention was required during the Garden Cycles. Seed planting was performed with
human labor. The author of this work was present during all pruning actions, which were
executed in batches. While all decisions were made autonomously, human intervention was
used to correct robot position when the FarmBot gantry failed to servo to the correct target
location, which occurred on 45% of pruning operations. However, by moving the on-board
camera higher up on the gantry system, we were able to reduce the rate of fail of visual
servoing for future Garden Cycles. No other human intervention was performed in terms of
weeding or irrigation.

CHAPTER 7. REAL WORLD EXPERIMENTS 38

Plant Type Tmaz | Cycle 1L | Cycle 1R | % Change
Kale 37 0.158 0.102 -35.44%
Turnip 33 0.085 0.043 -49.41%
Borage 32 0.122 0.076 -37.70%
Swiss Chard 28 0.105 0.102 -2.86%
Arugula 25 0.098 0.121 23.47%
Radichhio 23 0.034 0.059 73.53%
Red Lettuce 20 0.000 0.057 N/A
Cilantro 19 0.062 0.078 25.81%
Green Lettuce 16 0.028 0.095 | 239.29%
Sorrel 10 0.002 0.031 1450%
DIVERSITY 0.856 0.970 13.32%
COVERAGE 0.924 0.784 -15.15%

Table 7.2: Plant Type Metrics for Garden Cycles 1L & 1R. This table shows diversity and coverage
for plant types on day 60. The values for Cycle 1L (not pruned) and Cycle 1R (pruned with Rotary Pruner)
are calculated via [c;(60) - (R/R;)?] for each plant type (Section III). The goal of pruning is to foster a diverse
garden while maintaining a high coverage.

Garden Cycles 1L and 1R

In Cycles 1L and 1R, the identical seed placements (1.5mx1.5m) included 20 plants from 10
different plant types (two of each type). In Cycle 1L (the left half of the garden bed) there
were no pruning actions and the garden was allowed to grow freely. In Cycle 1R (the right
half) pruning actions were executed with the Rotary Pruner.

Over 6 pruning sessions for Cycle 1R, 42 plants were chosen to be pruned across 6 plant
types. The system autonomously selected the turnip and kale plants on all pruning occasions,
most likely due to the fact that they grew much faster than the other plants and have large
radii. Due to the numerous prunings and the Rotary Pruner’s nature of completing a cut
and leaving a leaf vulnerable, we see both turnip plants approach their wilting stage by day
60. This could also be a sign of overpruning.

In Table 7.2 we report the final canopy coverage and diversity for each individual plant
type. The compared both metrics by manually labeling a ground truth mask on day 60 of the
garden cycle. It is clear that pruning increases diversity by creating space for smaller plants
to develop. The larger plants coverage decreased while the smaller plants coverage increased,
leading to a more diverse garden overall (13.32% increase). This increase in diversity came
at the cost of losing some overall coverage (15.15% decrease).

CHAPTER 7. REAL WORLD EXPERIMENTS 39

Garden Cycles Canopy Coverage Garden Cycles Diversity Squared
1 1

0.9

&
2 08 2 0.
B g
3o
SR .
> £
£os y
g 2
S os .
B
£ 04 £y
3
E 03
5
Z
02 .
01 .
o H=lH 0
20 30 40 50 60 20 30 40 50 60

Timestep (days) Timesteps (days)

Normalized Diversity Squared
o © 2 © 2 © o ©
S 0% 4833 %%

o

. Cycle 1L - No Pruning Cycle 1R - Rotary Pruner Cycle 2L - Pruning Shears . Cycle 2R - Pruning Shears

Figure 7.1: Garden Cycle Comparison. Data points were recorded for days 20, 30, 40, 50, and 60
through hand labeled phenotyping masks. Left: Comparison of the coverage of the 4 Garden Cycles. Note
that the non-pruned garden has the highest value by day 60, with Cycle 2L (pruning shears) not far behind.
Right: Comparison of the diversity squared of the 4 Garden Cycles. The non-pruned garden had lowest
diversity by day 60, and Cycles 1R (rotary pruner) and 2R (pruning shears) achieved the highest diversity.

Garden Cycles 2L and 2R

For Garden Cycles 2L, and 2R, we planted two identical seed placements (1.5mx1.5m).
Cycles 2L and 2R included only 16 total plants from 8 plant types. Sorrel and arugula were
omitted as sorrel was relatively much smaller than other plants in the garden and arugula
had the tendency to grow too tall, impeding movement of the FarmBot gantry system.

For Cycles 2L and 2R, all pruning actions were performed using the Pruning Shears, and,
as before, the two halves were treated independently. During Cycle 2L, 35 plants were chosen
for pruning across 6 plant types, while during Cycle 2R, 38 plants were chosen across 7 plant
types. We see a decline in the total number of prunings compared to Cycle 1R because of
the fewer number of plants in the garden. Kale and borage (two of the largest plants in the
garden) were most commonly selected in both garden cycles. No plants exhibited signs of
wilting or overpruning by day 60.

To evaluate Garden Cycles 2L and 2R relative to Cycles 1L and 1R, we manually created
segmentation masks for days 20, 30, 40, 50, and 60. Figure 7.1 shows coverage and diversity
graphs for all four garden cycles. We found the autonomous system to achieve an average
of 0.94 normalized diversity with the Pruning Shears for Cycles 2L and 2R on day 60, and
an average canopy coverage of 0.84. While the Rotary Pruner exhibited a higher diversity
metric (0.97), the Pruning Shears outperformed the non-pruned garden, Cycle 1L, in terms
of diversity (0.85) while sacrificing much less coverage than the Rotary Pruner, which had
a final coverage of 0.78. Cycle 2L achieved significantly more coverage (10.7% more) on day
50 than Cycle 2R, which could be in part due to the greater number of prunes of Cycle 2R.

In general, the Pruning Shears executed much cleaner cuts than the Rotary Pruner and
sacrificed less total canopy coverage. To try to match the effectiveness of the Rotary Pruner
in terms of diversity for future gardens, the Pruning Shears could make multiple cuts per
plant or could prune more frequently than every five days.

40

Chapter 8

Limitations

The task of creating a fully autonomous garden is a daunting one. In many cases we had
to simplify the problem statement and abstract away many complex natural phenomena. In
this section, I will discuss a few of these simplifications as well as the shortcomings of current
implementations.

In AlphaGardenSim, we found it extremely difficult to model both growth and water
dynamics. While we implemented models that fit well in most scenarios and match the
conditions we observed in our experimental testbed. In practice, the randomness of nature
renders perfect prediction of growth and water dynamics impossible. For growth in particu-
lar, the seasons drastically impact the growth of plants (germination rates, growing periods,
and the size of the plants themselves). However, we did not model variables like time of
year, weather, temperature, or humidity in AlphaGardenSim; thus it is difficult to predict
how plants will grow year-round. For consistency, we grew all cycles between the months of
April and September. Because of this constraint on growing periods, the limited size of the
physical testbed, and the long time constants of growing real-world plants, we were limited
in our ability to run growth cycles, whether it be for tuning models in AlphaGardenSim, for
testing pruning actions, or for carrying out autonomous runs.

The work presented in this report, particularly the physical AlphaGarden implementa-
tion, is largely centered around pruning and not irrigation. The motivation was that for
a polyculture garden, the most essential cultivating action is pruning. For all growth and
autonomous cycles presented in this work, all plants were watered with a fixed amount and
thus we were not minimizing water usage. In current work, we address this issue by (1)
using drip emitters to more precisely apply irrigation and (2) implementing a new plant wa-
ter uptake model so we can more accurately predict how much water each plant consumes.
Even with these implementations, it is still difficult to find a irrigation regiment that uses
the least water and still enables plant growth — if the irrigation policy is too strict, we risk
inhibiting the growth of the plants.

One key constraint of the AlphaGarden autonomous implementation is the top-down
perspective. We monitor plants from above and consequently lack information regarding
the internal density and the complete height map of the canopy. This abstraction was

CHAPTER 8. LIMITATIONS 41

created based on the metrics derived in our simulator (coverage and diversity) which use
the overhead canopy coverage. While we are able to derive a state of the garden using this
overhead perspective, the state is not fully complete. It is possible that height information
and plant density would help the simulator choose more optimal pruning and irrigation
actions.

Finally, the physical system is constrained by the FarmBot gantry system itself. The
FarmBot allows us to execute pruning and irrigation actions by being able to travel to a set
of (x,y, z) coordinates above the testbed. However, the pruning system we created was only
feasible using servos. The system itself does not have the same versatility as a 6 degree of
freedom (DOF) robotic manipulator, and thus cannot reach the inners of plants or have the
capabilities to move branches out of the way to execute cuts. Thus, the pruning tools we
created have a sole purpose of eliminating canopy coverage at the top layer.

As mentioned in Section 7.2, the Garden Cycles were not completely autonomous. All
seeds had to be planted by hand and if multiple plants sprouted from one location, the excess
ones were removed manually. When it came time to prune, the human bystander (myself)
would upload the latest overhead photo and pass it through the pipeline. I would then
monitor all pruning sequences and would reset /stop the FarmBot if it failed during motion
or was in danger of colliding the pruning tool with the gantry system - a rare motion failure.
If a leaf was fully cut, I would remove it from the testbed by hand. For partial or incomplete
cuts, I would leave the leaf be.

42

Chapter 9

Conclusion

Despite recent advances in robotics and automation, automating a garden remains challeng-
ing. This report discusses the methods and results of the AlphaGarden project - a project
with the goal of creating a fully autonomous polyculture garden. The development, tuning,
and evaluation of AlphaGardenSim were first presented in the following publications [6, 4,
5]. We explored various automation policies that included irrigation and pruning actions
and evaluated them using custom metrics. In Chapters 6 and 7, we translate the simulator
to a real-world environment and explain the autonomous pipeline. The autonomous sys-
tem is able to estimate the state of the garden using an overhead camera alongside a plant
phenotyping and Bounding Disk Tracking algorithm. Once receiving actions from Alpha-
GardenSim, the FarmBot uses custom pruning tools to and pruning planners to execute the
cuts. We present results for 4 60-day garden cycles in which AlphaGarden tends to a polycul-
ture garden. The work involving the implementation and experiments of the AlphaGarden
system is part of a paper that is under review for CASE 2022, by Presten et al.

As discussed in Chapter 8, creating a fully autonomous polyculture garden requires that
some information be abstracted away and that methods be streamlined in order to achieve
viable results. Stepping back, there are several key lessons that I learned while working
on this project. The first being that this problem is solvable when executed in controlled
environments; if these environments are highly controlled (weather, soil nutrients, humidity,
plant species, growing area, etc.) then I anticipate the success of such an autonomous system
will be even greater. With that being said, I believe that creating a versatile system that can
translated to many different plant types and environments is difficult. For example, if a new
plant type were to be used in the polyculture garden, its parameters in the simulator would
have to be updated, which would require monitoring growth of this plant in test cycles, and
the plant phenotyping network would need collected data for training. Another observation is
that the system for pruning and irrigation has to be non-invasive and comprehensive enough
to be able to reach all plants in an extremely compact environment. In sum, I believe systems
like these are possible and have the potential to reduce water usage while increasing yield
but are difficult to generalize and translate to unregulated environments.

The AlphaGarden project will continue in future work. We are currently in the process

CHAPTER 9. CONCLUSION 43

of running a Garden Cycle in which a human gardener tends to one half the testbed, and
the AlphaGarden system tends to the other half. Here, we plan to analyze water usage,
canopy coverage, diversity, and overall plant health and record observations that are not
included in the aforementioned metrics. We are actively working on integrating policies
to optimize water usage using drip irrigation systems instead of hose irrigation. We also
plan to explore closed-loop visual servoing for the Pruning Shears in order to improve the
pruning success rate. The project has the potential to extend into further areas regarding
seed placement algorithms that create planting arrangements to optimize water usage, plant
symbiotic relationships, and yield, which could be used around the world in manual and
autonomous systems alike. For code, videos, and datasets for the AlphaGarden project, see
https://github.com/Berkeley Automation/AlphaGarden.

44

Bibliography

Katarzyna Adamczewska-Sowiniska and Jozef Sowinski. “Polyculture Management: A
Crucial System for Sustainable Agriculture Development”. In: Soil Health Restoration
and Management. Springer, 2020, pp. 279-319.

K. R. Aravind and P. Raja. “Design and Simulation of Crop Monitoring Robot for
Green House”. In: (2016).

AUTOLAB. UC Berkeley Automation Laboratory. 2022. URL: https : //autolab.
berkeley.edu/ (visited on 05/09/2022).

Yahav Avigal et al. “Learning Seed Placements and Automation Policies for Poly-
culture Farming with Companion Plants”. In: 2021 IEEE International Conference
on Robotics and Automation (ICRA). 2021, pp. 902-908. DOI: 10.1109/ICRA48506.
2021.9561431.

Yahav Avigal et al. “Simulating Polyculture Farming to Learn Automation Policies
for Plant Diversity and Precision Irrigation”. In: IEFEE Transactions on Automation
Science and Engineering (2022), pp. 1-13. bor: 10.1109/TASE.2021.3138995.

Yahav Avigal et al. “Simulating Polyculture Farming to Tune Automation Policies for
Plant Diversity and Precision Irrigation”. In: 2020 IEEFE 16th International Conference
on Automation Science and Engineering (CASE). IEEE. 2020, pp. 238-245.

Tewodros W. Ayalew, Jordan R. Ubbens, and Ian Stavness. “Unsupervised Domain
Adaptation For Plant Organ Counting”. In: CoRR abs/2009.01081 (2020). arXiv:
2009.01081. URL: https://arxiv.org/abs/2009.01081.

Uta Berger et al. “Competition among plants: concepts, individual-based modelling
approaches, and a proposal for a future research strategy”. In: Perspectives in Plant
FEcology, Evolution and Systematics 9.3-4 (2008), pp. 121-135.

Nived Chebrolu, Thomas Léabe, and Cyrill Stachniss. “Spatio-Temporal Non-Rigid Reg-
istration of 3D Point Clouds of Plants”. In: ().

Nikolaus Correll et al. “Building a distributed robot garden”. In: 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2009, pp. 1509—
1516.

BIBLIOGRAPHY 45

[11]

[12]

Timothy E Crews, Wim Carton, and Lennart Olsson. “Is the future of agriculture
perennial? Imperatives and opportunities to reinvent agriculture by shifting from an-
nual monocultures to perennial polycultures”. In: Global Sustainability 1 (2018).

Hanz Cuevas Velasquez et al. “Real-time Stereo Visual Servoing for Rose Pruning
with Robotic Arm”. In: May 2020, pp. 7050-7056. DOI: 10.1109/ICRA40945.2020.
9197272.

T Czaran and S Bartha. “The effect of spatial pattern on community dynamics; a
comparison of simulated and field data”. In: Progress in theoretical vegetation science.
Springer, 1990, pp. 229-239.

Christian Damgaard, Jacob Weiner, and Hisae Nagashima. “Modelling individual growth
and competition in plant populations: growth curves of Chenopodium album at two
densities”. In: Journal of Ecology 90.4 (2002), pp. 666-671.

Babette Dellen, Hanno Scharr, and Carme Torras. “Growth signatures of rosette plants
from time-lapse video”. In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics 12.6 (2015), pp. 1470-1478.

Daniela Dietrich. “Hydrotropism: how roots search for water”. In: Journal of experi-
mental botany 69.11 (2018), pp. 2759-2771.

M. Erick et al. “Modeling and Simulation of Kinematics and Trajectory Planning of a
Farmbot Cartesian Robot”. In: INTERCON 1 (2018).

FarmBot. Electronics and Wiring. 2021. URL: https://genesis.farm.bot/v1.5/
Extras/bom (visited on 09/03/2021).

FarmBot. FarmBot. 2021. URL: https://farm.bot/ (visited on 09/03/2021).

Sandunika Fernando et al. “Al Based Greenhouse Farming Support System with
Robotic Monitoring”. In: 2020 IEEE REGION 10 CONFERENCE (TENCON). IEEE.
2020, pp. 1368-1373.

S Gliessman, M Altieri, et al. “Polyculture cropping has advantages”. In: California
Agriculture 36.7 (1982), pp. 14-16.

Ken Goldberg. The Robot in the Garden: Telerobotics and Telepistemology in the Age
of the Internet. Mit Press, 2001.

Fang Gou, Martin K van Ittersum, and Wopke van der Werf. “Simulating potential
growth in a relay-strip intercropping system: model description, calibration and test-
ing”. In: Field Crops Research 200 (2017), pp. 122-142.

Novian Habibie et al. “Fruit mapping mobile robot on simulated agricultural area in
Gazebo simulator using simultaneous localization and mapping (SLAM)”. In: (2017).

Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: arXiv preprint
arXiv:1512.03585 (2015).

BIBLIOGRAPHY 46

[26]

[27]

28]

[29]

Tadaki Hirose, Toshihiko Kinugasa, and Yukinori Shitaka. “Time of flowering, costs
of reproduction, and reproductive output in annuals”. In: Reproductive allocation in
plants. Elsevier, 2005, pp. 159-188.

Theodore C Hsiao. “Effects of drought and elevated CO 2 on plant water use efficiency
and productivity”. In: Interacting stresses on plants in a changing climate. Springer,
1993, pp. 435-465.

Moritoshi Iino, Chen Long, and Xiaojing Wang. “Auxin-and abscisic acid-dependent
osmoregulation in protoplasts of Phaseolus vulgaris pulvini”. In: Plant and Cell Phys-
iology 42.11 (2001), pp. 1219-1227.

Aaron L. Iverson et al. “REVIEW: Do polycultures promote win-wins or trade-offs
in agricultural ecosystem services? A meta-analysis”. In: Journal of Applied Ecology
51.6 (2014), pp. 1593-1602. pOI: 10 . 1111 /1365~ 2664 . 12334. eprint: https://
besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2664.12334.
URL: https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-
2664 .12334.

James W Jones et al. “The DSSAT cropping system model”. In: Furopean journal of
agronomy 18.3-4 (2003), pp. 235-265.

Andrew Keller. “Evapotranspiration and crop water productivity: making sense of the
yield-ET relationship”. In: Impacts of Global Climate Change. 2005, pp. 1-11.

Joseph Santarromana Ken Goldberg. The Telegarden. 1995. URL: https://goldberg.
berkeley.edu/garden/Ars/ (visited on 12/11/2019).

Matt Liebman. “Polyculture cropping systems”. In: Agroecology. CRC Press, 2018,
pp. 205-218.

Peter John Lumsden and Andrew J Millar. Biological rhythms and photoperiodism in
plants. Bios Scientific Publishers, 1998.

METER Environment. METER. URL: https://www.metergroup.com/environment/
(visited on 10/29/2020).

M. Minervini et al. Plant Phenotyping Datasets. 2015. URL: http://www . plant -
phenotyping.org/datasets.

Massimo Minervini et al. “Finely-grained annotated datasets for image-based plant
phenotyping”. In: Pattern Recognition Letters (2015), pp. -. 1SSN: 0167-8655. DOI:
http://dx.doi.org/10.1016/j . patrec.2015.10.013. URL: http: //www .
sciencedirect.com/science/article/pii/S0167865515003645.

V A Murcia, J F Palacios, and G BarbieriEmail author. “FarmBot Simulator: Towards
a Virtual Environment for Scaled Precision Agriculture”. In: SOHOMA 987 (2021).

B Murdyantoro, D Sukma Eka Atmaja, and H Rachmat. “Application Design of Farm-
bot based on Internet of Things (IoT)”. In: IJASEIT 9 (2019).

BIBLIOGRAPHY 47

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Niwaki. Senter Topiary Clippers. 2021. URL: https://www.niwaki . com/sentei -
topiary-clippers (visited on 09/08/2021).

Thomas Brox Olaf Ronneberger Philipp Fischer. “U-Net: Convolutional Networks for
Biomedical Image Segmentation”. In: arXiv preprint arXiv:1505.04597 (2015).

J.E. Parker et al. “Companion planting and insect pest control”. In: Weed and Pest
Control - Conventional and New Challenges (Jan. 2013), pp. 1-30.

Pololu. Pololu Carrier with Sharp GP2Y0A60SZLF. 2021. URL: https://www.pololu.
com/product/2474 (visited on 09/03/2021).

William J Price, Bahman Shafii, and Donald C Thill. “An individual-plant growth
simulation model for quantifying plant competition”. In: (1994).

Eric Rohmer, Surya PN Singh, and Marc Freese. “CoppeliaSim (formerly V-REP): a
Versatile and Scalable Robot Simulation Framework”. In: Proc. of The International
Conference on Intelligent Robots and Systems (IROS). 2013.

Pinetree Garden Seeds. Pinetree Garden Seeds - Vegetable Collections. 2020. URL:
https://www.superseeds.com/ (visited on 10/15/2020).

Sony. FE 20mm F1.8 G Full-frame Large-aperture Ultra-wide Angle G Lens. 2021. URL:
https://electronics. sony.com/imaging/lenses/all-e-mount/p/sel20f18g
(visited on 09/03/2021).

Sony. SNC-VB770 Ultra High Sensitivity 4K Network Camera. 2021. URL: https://
pro.sony/enEE/products/specialised-cameras/snc-vb770 (visited on 09/03/2021).

Pasquale Steduto et al. “AquaCrop—The FAO crop model to simulate yield response
to water: I. Concepts and underlying principles”. In: Agronomy Journal 101.3 (2009),
pp- 426-437.

TjeerdJan Stomph et al. “Designing intercrops for high yield, yield stability and effi-
cient use of resources: Are there principles?” In: Advances in Agronomy. Vol. 160. 1.
Elsevier, 2020, pp. 1-50.

Nicola Strisciuglio et al. “TrimBot2020: an outdoor robot for automatic gardening”.
In: (Apr. 2018).

Meixiu Tan et al. “Dynamic process-based modelling of crop growth and competitive
water extraction in relay strip intercropping: Model development and application to
wheat-maize intercropping”. In: Field Crops Research 246 (2020), p. 107613.

Kelly R Thorp and Kevin F Bronson. “A model-independent open-source geospatial
tool for managing point-based environmental model simulations at multiple spatial
locations”. In: Environmental modelling € software 50 (2013), pp. 25-36.

David Tseng et al. “Towards automating precision irrigation: Deep learning to infer
local soil moisture conditions from synthetic aerial agricultural images”. In: 2018 IEEFE
14th International Conference on Automation Science and Engineering (CASE). IEEE.
2018, pp. 284-291.

BIBLIOGRAPHY 48

[55] E.J. Van Henten et al. “An Autonomous Robot for Harvesting Cucumbers in Green-
houses.” In: Auton. Robots 13 (Nov. 2002), pp. 241-258. DOI: 10.1023/A:1020568125418.

[56] Craig W Whippo and Roger P Hangarter. “Phototropism: bending towards enlighten-
ment”. In: The Plant Cell 18.5 (2006), pp. 1110-1119.

[57] Marius Wiggert et al. “RAPID-MOLT: A Meso-scale, Open-source, Low-cost Testbed
for Robot Assisted Precision Irrigation and Delivery”. In: 2019 IEEE 15th International
Conference on Automation Science and Engineering (CASE). IEEE. 2019, pp. 1489—
1496.

[58] Cornelis Teunis de Wit. Photosynthesis of leaf canopies. Tech. rep. Pudoc, 1965.

[59] Haichun Yang et al. “CircleNet: Anchor-free Detection with Circle Representation”.
In: CoRR abs/2006.02474 (2020). arXiv: 2006.02474. URL: https://arxiv.org/abs/
2006.02474.

[60] Yang Yu. “Crop yields in intercropping: meta-analysis and virtual plant modelling”.
PhD thesis. Wageningen University, 2016.

[61] Argyris Zardilis, Alastair Hume, and Andrew J Millar. “A multi-model framework for
the Arabidopsis life cycle”. In: Journal of experimental botany 70.9 (2019), pp. 2463—
2477.

[62] Matthew D Zeiler. “Adadelta: an adaptive learning rate method”. In: arXiv preprint
arXiv:1212.5701 (2012).

	presten-thesis-final-signed-kg
	presten-thesis-signature-page

	presten-thesis-final-v2

