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Abstract
Object and Scene Reconstruction using Neural Radiance Fields
by
Matthew Tancik
Doctor of Philosophy in Electrical Engineering and Computer Science
University of California, Berkeley
Assistant Professor Angjoo Kanazawa, Co-chair

Associate Professor Ren Ng, Co-chair

This dissertation explores the synthesis of novel views of complex scenes through the optimization
of a volumetric scene function using a sparse set of input views. Our approach represents the
scene as a neural radiance field (NeRF), a field of densities and emitted radiance based on 5D
coordinates encompassing spatial location (z, y, z) and viewing direction (0, ¢). NeRF enables
the rendering of photorealistic novel views that surpass previous techniques, leading to numerous
follow-ups and extensions in the computer vision and graphics communities. To enhance the
representation of high-frequency details in NeRFs, we introduce a Fourier feature mapping technique
that effectively learns high-frequency functions within low-dimensional problem domains, including
NeRF. We demonstrate the benefits of leveraging learned initial weight parameters through standard
meta-learning algorithms, resulting in accelerated convergence, stronger priors, and improved
generalization for coordinate-based networks. In addition, we improve the scalability of NeRFs with
a proposed method capable of representing arbitrarily large scenes. This method enables city-scale
reconstructions using data captured under diverse environmental conditions. Finally, we present
the Nerfstudio framework, a comprehensive suite of modular components and tools designed for
the development and deployment of NeRF-based methods. This framework empowers researchers
and practitioners with real-time visualization, streamlined data pipelines, and export capabilities,
facilitating the democratization of NeRFs and extending their impact beyond research settings. With
their potential to transform computer graphics, virtual reality, augmented reality, and other domains,
NeRFs hold promise for revolutionizing the way we perceive and interact with digital worlds.
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Chapter 1

Introduction

The ability to replicate the world around us in three dimensions has been a longstanding pursuit of
humanity. Throughout history, humans have employed various artistic techniques, from the earliest
cave paintings to intricate Renaissance masterpieces, to capture and represent the world in visual
form. However, this endeavor has always been time-consuming and required immense skill and
craftsmanship.

The invention of the camera revolutionized the way we perceive and document the world. With
the ability to capture and freeze moments in time onto a two-dimensional plane, photography
brought about a new era of visual representation. However, despite the remarkable advancements in
two-dimensional imaging technology, we are still faced with the challenge of faithfully reproducing
the full three-dimensional complexity of the world around us.

Currently, the generation of three-dimensional content requires a significant amount of manual
work. While there are technologies such as photogrammetry that can convert images into 3D models,
the quality of the reconstructions often falls short of the desired level of realism. These methods
still require substantial manual cleanup and refinement to achieve accurate representations.

The aim of this dissertation is to develop techniques that enables the replication of the three-
dimensional world around us. By leveraging advancements in computer vision, graphics, and
machine learning, we seek to overcome the limitations of current approaches and create novel
methodologies for generating highly realistic and accurate 3D representations.

1.1 Representing the Plenoptic Fuction

The ultimate goal of this dissertation is to develop a representation for the plenoptic function, which,
if achieved, would enable novel view synthesis. The plenoptic function encapsulates the complete
information about the distribution of light rays passing through every point in a scene. In our context,
we aim to represent a 5D version of the plenoptic function, considering both spatial location and
viewing direction as dimensions.

To accomplish this, there are a few crucial aspects that need to be addressed: the representation
of non-Lambertian effects, the representation of high-resolution details, and the ability to reconstruct
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NeRF Nerfstudio

Figure 1.1: This dissertation introduces neural radiance fields (NeRF) as a technique for reconstruct-
ing 3D scenes from a collection of posed images. Through subsequent research efforts, we have
further enhanced and expanded upon the NeRF framework to improve its functionality and accessi-
bility. The culmination of these advancements is the development of Nerfstudio, a comprehensive
framework that enables the reconstruction of real-world unbounded scenes.

from sparse views. These factors pose significant challenges in the field of 3D representation.

Firstly, representing non-Lambertian effects requires the ability to capture and represent different
colors and intensities of light as they vary with viewing angles. Lambertian surfaces, which exhibit
uniform reflectance regardless of the viewing angle, fail to capture the intricate interplay of light and
materials, resulting in less realistic reconstructions. Traditional photogrammetry methods typically
make a Lambertain assumption leading to less photorealistic reconstructions, particularly for shiny
or transparent objects. Our objective is to develop methods that can accurately model and represent
these non-Lambertian effects, enabling us to achieve more faithful and visually compelling 3D
reconstructions.

Secondly, achieving high-resolution representations is crucial for capturing fine-grained details
and preserving the complexity of real-world scenes. However, handling high-resolution data poses
significant memory and computational challenges. Storing data for every viewing direction of every
spatial location in a naive implementation would quickly become memory-intensive, imposing a
significant burden on memory resources.

Finally, the task of wide baseline reconstruction from a sparse set of viewpoints presents a
formidable challenge. The Nyquist theorem guides us on the necessary sampling rate for signal
reconstruction, but achieving such a rate is infeasible in our scenario. To be practically applicable,
it becomes imperative to devise methods capable of generating these scenes from tens to hundreds
of photos.

To address these challenges, in Chapter 2, we propose a solution that mitigates the memory issue
by employing a neural network trained to map a 5D coordinate to both color and density values.
This approach enables us to represent a “cloud” of densities and view-dependent colors, which
can then be rendered into an image using established volumetric rendering techniques. We refer
to this representation as a neural radiance field (NeRF). By representing the scene as a continuous
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volume, NeRF allows for more efficient optimization compared to surface-based representations.
By leveraging volumetric supervision, NeRF exhibits surprising effectiveness in reconstructing
scenes from sparse view sets. The incorporation of loss gradients across multiple regions along
each camera ray contributes to improved accuracy and convergence during the rendering process.
This stands in contrast to surface-based representations, which primarily focus on gradient updates
near an object’s surface.

By leveraging the power of NeRFs, we aim to overcome the limitations of previous approaches,
capturing the richness of non-Lambertian effects, preserving high-resolution details, and wide
baseline reconstruction from sparse viewpoints.

Leveraging Technologies

An often overlooked aspect is the ability to leverage accessible technologies and advancements in
the field. In the case of this research, we harnessed the power of deep learning and neural networks
when developing our representation. By framing our problem within the context of machine learning,
we were able to tap into the capabilities offered by modern auto-differentiation libraries. This
familiar setup played a crucial role in the widespread adoption of NeRFs within the computer vision
community.

Throughout this dissertation, we keep this lesson in mind, emphasizing the importance of
abstraction. We recognize that providing accessible and user-friendly frameworks is key to enabling
the wider adoption and development of these methods. It is with this motivation that we introduce
the Nerfstudio framework in Chapter 6. The goal of Nerfstudio is to streamline and simplify the
process of developing NeRF-related methods, making them more accessible to computer vision
practitioners. By abstracting away implementation complexities, researchers can focus on pushing
the boundaries of the field and exploring novel applications of NeRFs without being hindered by
technical barriers.

1.2 Dissertation Overview

This dissertation delves into the development and applications of neural radiance fields (NeRFs),
tracing its journey from motivation and development to the creation of Nerfstudio, a comprehensive
framework crafted to streamline NeRF usage. In addition to these key contributions, this work
delves into the theoretical aspects of NeRFs, providing a deeper understanding, and explores
various advancements aimed at extending the functionality and capabilities of NeRFs. Through
these endeavors, this dissertation presents a holistic approach to NeRF research, encompassing
theory, development, and advancements, with the overarching goal of advancing the field of neural
rendering and view synthesis. It is important to emphasize that the full appreciation of many results
requires experiencing them through videos. For videos and supplementary results, please visit .
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Chapter 2

This chapter the key novel method of this dissertation, NeRFs, for synthesizing new views of
complex scenes. The approach involves optimizing a volumetric scene function using a sparse set
of input views. The scene is represented by a fully-connected deep network that takes a single SD
coordinate (including spatial location and viewing direction) as input and produces the volume
density and view-dependent emitted radiance at that location. To synthesize new views, the method
queries 5D coordinates along camera rays and uses classic volume rendering techniques to project
the output colors and densities into an image. Because volume rendering is inherently differentiable,
the method requires only a set of images with known camera poses as input to optimize the
representation. We explain how to effectively optimize neural radiance fields to render photorealistic
novel views of scenes with complex geometry and appearance, and demonstrate results that surpass
previous work in the field of neural rendering and view synthesis.

Chapter 3

This chapter explores the application of a simple Fourier feature mapping to enhance the representa-
tion of high-frequency details in NeRFs. Specifically, the aim is to enable multilayer perceptrons
(MLPs) to effectively learn high-frequency functions in low-dimensional problem domains, which
are referred to as coordinate-based neural networks. Through insights drawn from the neural tangent
kernel (NTK) literature, the chapter highlights the inherent slow convergence of standard MLPs
when it comes to high-frequency signal components, owing to their spectral bias. To overcome this
limitation, the chapter proposes the utilization of a Fourier feature mapping, which transforms the
effective NTK into a stationary kernel with an adjustable bandwidth. Furthermore, an approach
for selecting problem-specific Fourier features is suggested, greatly improving the performance of
MLPs in low-dimensional regression tasks that are relevant to the fields of computer vision and
graphics.

Chapter 4

In the context of optimizing coordinate-based networks, the traditional approach of initializing
weights randomly for each new signal proves to be inefficient. To address this challenge, this
chapter proposes a solution that involves applying standard meta-learning algorithms to learn
the initial weight parameters of fully-connected networks based on the specific class of signals
being represented. For instance, this approach can be tailored for signals such as images of faces
or 3D models of chairs. By incorporating minor modifications into the implementation process,
utilizing learned initial weights offers several advantages. It facilitates faster convergence during
optimization, acts as a strong prior over the signal class being modeled, and enhances generalization
even when only partial observations of a given signal are available. The chapter investigates the
benefits of this technique across various tasks, encompassing 2D image representation, CT scan
reconstruction, and the recovery of 3D shapes and scenes from 2D image observations.
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Chapter 5

This chapter details the exploration of scaling NeRFs for large environments. The proposed Block-
NeRF method decomposes city-scale scenes into multiple NeRFs that are individually trained. This
decomposition allows for scaling rendering to arbitrarily large environments while decoupling
rendering time from scene size. To ensure robustness to data captured over long periods and under
varying environmental conditions, several architectural changes are adopted, such as incorporating
appearance embeddings, learned pose refinement, and controllable exposure to each individual
NeRF. The chapter also introduces a process for aligning the appearance between adjacent NeRFs,
enabling seamless combination. The research resulted in the creation of a grid of Block-NeRFs
using 2.8 million images representing a neighborhood in San Francisco.

Chapter 6

This chapter introduces Nerfstudio, a modular PyTorch framework designed to facilitate the develop-
ment and deployment of NeRF-based methods. Nerfstudio provides plug-and-play components that
make it easy for researchers and practitioners to integrate NeRF into their projects. Its modular de-
sign supports real-time visualization tools, streamlined pipelines for importing captured in-the-wild
data, and tools for exporting to video, point cloud, and mesh representations. Nerfstudio’s modular-
ity also allows the development of Nerfacto, a method that balances speed and quality by combining
components from recent papers while remaining flexible for future modifications. All associated
code and data are publicly available with open-source licensing, encouraging community-driven
development.

Chapter 7

In this concluding chapter, we delve into the insights gleaned from the preceding chapters. We
examine the remaining limitations in scene reconstructions and offer perspectives on the future
directions that this research can be taken.



Chapter 2

Neural Radiance Fields

In this chapter, we address the long-standing problem of novel view synthesis given a set of captured
images. We introduce a novel approach that directly optimizes the parameters of a continuous
5D volumetric scene representation to minimize the error between rendered images and captured
images of the scene.

We represent a static scene as a continuous 5D function that outputs the radiance emitted in
each direction (6, ¢) at each point (x, y, z) in space, and a density at each point which acts like a
differential opacity controlling how much radiance is accumulated by a ray passing through (x, y, 2).
Our method optimizes a deep fully-connected neural network without any convolutional layers
(often referred to as a multilayer perceptron or MLP) to represent this function by regressing from a
single 5D coordinate (z, v, z, 0, ¢) to a single volume density and view-dependent RGB color. To
render this neural radiance field (NeRF) from a particular viewpoint we: 1) march camera rays
through the scene to generate a sampled set of 3D points, 2) use those points and their corresponding
2D viewing directions as input to the neural network to produce an output set of colors and densities,
and 3) use classical volume rendering techniques to accumulate those colors and densities into a 2D
image. Because this process is naturally differentiable, we can use gradient descent to optimize this
model by minimizing the error between each observed image and the corresponding views rendered
from our representation. Minimizing this error across multiple views encourages the network to
predict a coherent model of the scene by assigning high volume densities and accurate colors to the
locations that contain the true underlying scene content. Figure 2.2 visualizes this overall pipeline.

We find that the basic implementation of optimizing a neural radiance field representation for a
complex scene does not converge to a sufficiently high-resolution representation and is inefficient in
the required number of samples per camera ray. We address these issues by transforming input 5D
coordinates with a positional encoding that enables the MLP to represent higher frequency functions,
and we propose a hierarchical sampling procedure to reduce the number of queries required to
adequately sample this high-frequency scene representation.

Our approach inherits the benefits of volumetric representations: both can represent complex
real-world geometry and appearance and are well suited for gradient-based optimization using

This chapter is based on joint work published at ECCV 2020 [123]
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Figure 2.1: We present a method that optimizes a continuous 5D neural radiance field representation
(volume density and view-dependent color at any continuous location) of a scene from a set of
input images. We use techniques from volume rendering to accumulate samples of this scene
representation along rays to render the scene from any viewpoint. Here, we visualize the set of 100
input views of the synthetic Drums scene randomly captured on a surrounding hemisphere, and we
show two novel views rendered from our optimized NeRF representation.

projected images. Crucially, our method overcomes the prohibitive storage costs of discretized voxel
grids when modeling complex scenes at high-resolutions by utilizing a compact neural network
representation, requiring only a few megabytes of memory instead of gigabytes. In summary, our
technical contributions are:

* An approach for representing continuous scenes with complex geometry and materials as SD
neural radiance fields, parameterized as basic MLP networks.

* A differentiable rendering procedure based on classical volume rendering techniques, which
we use to optimize these representations from standard RGB images. This includes a hier-
archical sampling strategy to allocate the MLLP’s capacity towards space with visible scene
content.

* A positional encoding to map each input 5D coordinate into a higher dimensional space,
which enables us to successfully optimize neural radiance fields to represent high-frequency
scene content.

We demonstrate that our resulting neural radiance field method quantitatively and qualitatively
outperforms state-of-the-art view synthesis methods, including works that fit neural 3D repre-
sentations to scenes as well as works that train deep convolutional networks to predict sampled
volumetric representations. As far as we know, this paper presents the first continuous neural scene
representation that is able to render high-resolution photorealistic novel views of real objects and
scenes from RGB images captured in natural settings.
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2.1 Related Work

A promising recent direction in computer vision is encoding objects and scenes in the weights of
an MLP that directly maps from a 3D spatial location to an implicit representation of the shape,
such as the signed distance [31] at that location. However, these methods have so far been unable to
reproduce realistic scenes with complex geometry with the same fidelity as techniques that represent
scenes using discrete representations such as triangle meshes or voxel grids. In this section, we
review these two lines of work and contrast them with our approach, which enhances the capabilities
of neural scene representations to produce state-of-the-art results for rendering complex realistic
scenes.

A similar approach of using MLPs to map from low-dimensional coordinates to colors has also
been used for representing other graphics functions such as images [184], textured materials [65,
135, 152, 151], and indirect illumination values [159].

Neural 3D shape representations Recent work has investigated the implicit representation of
continuous 3D shapes as level sets by optimizing deep networks that map zyz coordinates to signed
distance functions [76, 137] or occupancy fields [54, 115]. However, these models are limited by
their requirement of access to ground truth 3D geometry, typically obtained from synthetic 3D
shape datasets such as ShapeNet [21]. Subsequent work has relaxed this requirement of ground
truth 3D shapes by formulating differentiable rendering functions that allow neural implicit shape
representations to be optimized using only 2D images. Niemeyer ef al. [130] represent surfaces as
3D occupancy fields and use a numerical method to find the surface intersection for each ray, then
calculate an exact derivative using implicit differentiation. Each ray intersection location is provided
as the input to a neural 3D texture field that predicts a diffuse color for that point. Sitzmann et al.
[177] use a less direct neural 3D representation that simply outputs a feature vector and RGB color
at each continuous 3D coordinate, and propose a differentiable rendering function consisting of a
recurrent neural network that marches along each ray to decide where the surface is located.

Though these techniques can potentially represent complicated and high-resolution geometry,
they have so far been limited to simple shapes with low geometric complexity, resulting in over-
smoothed renderings. We show that an alternate strategy of optimizing networks to encode 5D
radiance fields (3D volumes with 2D view-dependent appearance) can represent higher-resolution
geometry and appearance to render photorealistic novel views of complex scenes.

View synthesis and image-based rendering Given a dense sampling of views, photorealistic
novel views can be reconstructed by simple light field sample interpolation techniques [93, 28, 32].
For novel view synthesis with sparser view sampling, the computer vision and graphics communities
have made significant progress by predicting traditional geometry and appearance representations
from observed images. One popular class of approaches uses mesh-based representations of scenes
with either diffuse [201] or view-dependent [17, 33, 209] appearance. Differentiable rasterizers [24,
56, 106, 109] or pathtracers [95, 132] can directly optimize mesh representations to reproduce a
set of input images using gradient descent. However, gradient-based mesh optimization based on
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Figure 2.2: An overview of our neural radiance field scene representation and differentiable
rendering procedure. We synthesize images by sampling 5D coordinates (location and viewing
direction) along camera rays (a), feeding those locations into an MLP to produce a color and volume
density (b), and using volume rendering techniques to composite these values into an image (c).
This rendering function is differentiable, so we can optimize our scene representation by minimizing
the residual between synthesized and ground truth observed images (d).

image reprojection is often difficult, likely because of local minima or poor conditioning of the loss
landscape. Furthermore, this strategy requires a template mesh with fixed topology to be provided as
an initialization before optimization [95], which is typically unavailable for unconstrained real-world
scenes.

Another class of methods use volumetric representations to address the task of high-quality
photorealistic view synthesis from a set of input RGB images. Volumetric approaches are able to
realistically represent complex shapes and materials, are well-suited for gradient-based optimization,
and tend to produce less visually distracting artifacts than mesh-based methods. Early volumetric
approaches used observed images to directly color voxel grids [90, 173, 189]. More recently, several
methods [44, 66, 79, 119, 141, 183, 198, 230] have used large datasets of multiple scenes to train
deep networks that predict a sampled volumetric representation from a set of input images, and then
use either alpha-compositing [144] or learned compositing along rays to render novel views at test
time. Other works have optimized a combination of convolutional networks (CNNs) and sampled
voxel grids for each specific scene, such that the CNN can compensate for discretization artifacts
from low resolution voxel grids [178] or allow the predicted voxel grids to vary based on input time
or animation controls [108]. While these volumetric techniques have achieved impressive results
for novel view synthesis, their ability to scale to higher resolution imagery is fundamentally limited
by poor time and space complexity due to their discrete sampling — rendering higher resolution
images requires a finer sampling of 3D space. We circumvent this problem by instead encoding a
continuous volume within the parameters of a deep fully-connected neural network, which not only
produces significantly higher quality renderings than prior volumetric approaches, but also requires
just a fraction of the storage cost of those sampled volumetric representations.



CHAPTER 2. NEURAL RADIANCE FIELDS 10

(b) View 2 (c¢) Radiance Distributions

Figure 2.3: A visualization of view-dependent emitted radiance. Our neural radiance field repre-
sentation outputs RGB color as a 5D function of both spatial position x and viewing direction d.
Here, we visualize example directional color distributions for two spatial locations in our neural
representation of the Ship scene. In (a) and (b), we show the appearance of two fixed 3D points
from two different camera positions: one on the side of the ship (orange insets) and one on the
surface of the water (blue insets). Our method predicts the changing specular appearance of these
two 3D points, and in (c) we show how this behavior generalizes continuously across the whole
hemisphere of viewing directions.

2.2 Neural Radiance Field Scene Representation

We represent a continuous scene as a 5D vector-valued function whose input is a 3D location
x = (z,y, z) and 2D viewing direction (6, ¢), and whose output is an emitted color ¢ = (r, g, b)
and volume density o. In practice, we express direction as a 3D Cartesian unit vector d. We
approximate this continuous 5D scene representation with an MLP network Fpg : (x,d) — (c, o)
and optimize its weights © to map from each input 5D coordinate to its corresponding volume
density and directional emitted color.

We encourage the representation to be multiview consistent by restricting the network to predict
the volume density ¢ as a function of only the location x, while allowing the RGB color c to be
predicted as a function of both location and viewing direction. To accomplish this, the MLP Fg first
processes the input 3D coordinate x with 8 fully-connected layers (using ReLU activations and 256
channels per layer), and outputs o and a 256-dimensional feature vector. This feature vector is then
concatenated with the camera ray’s viewing direction and passed to one additional fully-connected
layer (using a ReLLU activation and 128 channels) that output the view-dependent RGB color.

See Fig. 2.3 for an example of how our method uses the input viewing direction to represent
non-Lambertian effects. As shown in Fig. 2.4, a model trained without view dependence (only x as
input) has difficulty representing specularities.
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2.3 Volume Rendering with Radiance Fields

Our 5D neural radiance field represents a scene as the volume density and directional emitted
radiance at any point in space. We render the color of any ray passing through the scene using
principles from classical volume rendering [78]. The volume density o(x) can be interpreted as the
differential probability of a ray terminating at an infinitesimal particle at location x. The expected
color C(r) of camera ray r(¢) = o + td with near and far bounds ¢,, and ¢ is:

C(r) = /t:f T(t)o(r(t))c(r(t),d)dt, where T'(t) = exp (— /t: a(r(s))ds> : (2.1)

The function 7'(t) denotes the accumulated transmittance along the ray from ¢, to t, i.e., the
probability that the ray travels from ¢,, to ¢ without hitting any other particle. Rendering a view
from our continuous neural radiance field requires estimating this integral C'(r) for a camera ray
traced through each pixel of the desired virtual camera.

We numerically estimate this continuous integral using quadrature. Deterministic quadrature,
which is typically used for rendering discretized voxel grids, would effectively limit our representa-
tion’s resolution because the MLP would only be queried at a fixed discrete set of locations. Instead,
we use a stratified sampling approach where we partition [¢,,,t;| into N evenly-spaced bins and
then draw one sample uniformly at random from within each bin:

1 —1 ?
ti~U tn+T(tf—tn), tn+N(tf—tn)] . (2.2)
Although we use a discrete set of samples to estimate the integral, stratified sampling enables us
to represent a continuous scene representation because it results in the MLP being evaluated at
continuous positions over the course of optimization. We use these samples to estimate C'(r) with
the quadrature rule discussed in the volume rendering review by Max [113]:

N i1
C(r)= ZTZ(l — exp(—0;d;))c; , where T; = exp (— Z 0j6j> , (2.3)
j=1

i=1

where 0; = ;.1 — t; is the distance between adjacent samples. This function for calculating C (r)
from the set of (c;, ;) values is trivially differentiable and reduces to traditional alpha compositing
with alpha values o; = 1 — exp(—0;6;).

2.4 Optimizing a Neural Radiance Field

In the previous section we have described the core components necessary for modeling a scene as
a neural radiance field and rendering novel views from this representation. However, we observe
that these components are not sufficient for achieving state-of-the-art quality, as demonstrated
in Section 2.5). We introduce two improvements to enable representing high-resolution complex
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No View Dependence No Positional Encoding

Figure 2.4: Here we visualize how our full model benefits from representing view-dependent emitted
radiance and from passing our input coordinates through a high-frequency positional encoding.
Removing view dependence prevents the model from recreating the specular reflection on the
bulldozer tread. Removing the positional encoding drastically decreases the model’s ability to
represent high frequency geometry and texture, resulting in an oversmoothed appearance.

scenes. The first is a positional encoding of the input coordinates that assists the MLP in representing
high-frequency functions, and the second is a hierarchical sampling procedure that allows us to
efficiently sample this high-frequency representation.

Positional encoding

Despite the fact that neural networks are universal function approximators [67], we found that having
the network Fg directly operate on xyzf#¢ input coordinates results in renderings that perform
poorly at representing high-frequency variation in color and geometry. This is consistent with recent
work by Rahaman et al. [148], which shows that deep networks are biased towards learning lower
frequency functions. They additionally show that mapping the inputs to a higher dimensional space
using high frequency functions before passing them to the network enables better fitting of data that
contains high frequency variation.

We leverage these findings in the context of neural scene representations, and show that refor-
mulating Fg as a composition of two functions Fig = F{; o -y, one learned and one not, significantly
improves performance (see Fig. 2.4 and Table 2.2). Here v is a mapping from R into a higher
dimensional space R?Y, and F}, is still simply a regular MLP. Formally, the encoding function we
use is:

v(p) = ( sin(2°7p), cos(2’wp), ---, sin(2E7'7wp), cos(2twp) ). (2.4)

This function 7(-) is applied separately to each of the three coordinate values in x (which are
normalized to lie in [—1, 1]) and to the three components of the Cartesian viewing direction unit
vector d (which by construction lie in [—1, 1]). In our experiments, we set L = 10 for v(x) and
L = 4 for v(d).

A similar mapping is used in the popular Transformer architecture [199], where it is referred to
as a positional encoding. However, Transformers use it for a different goal of providing the discrete
positions of tokens in a sequence as input to an architecture that does not contain any notion of order.
In contrast, we use these functions to map continuous input coordinates into a higher dimensional
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space to enable our MLP to more easily approximate a higher frequency function. Concurrent work
on a related problem of modeling 3D protein structure from projections [229] also utilizes a similar
input coordinate mapping.

We investigate positional encoding further in chapter 3.

Hierarchical volume sampling

Our rendering strategy of densely evaluating the neural radiance field network at N query points
along each camera ray is inefficient: free space and occluded regions that do not contribute to
the rendered image are still sampled repeatedly. We draw inspiration from early work in volume
rendering [92] and propose a hierarchical representation that increases rendering efficiency by
allocating samples proportionally to their expected effect on the final rendering.

Instead of just using a single network to represent the scene, we simultaneously optimize two
networks: one “coarse” and one “fine”. We first sample a set of N, locations using stratified
sampling, and evaluate the “coarse” network at these locations as described in Eqns. 2.2 and 2.3.
Given the output of this “coarse” network, we then produce a more informed sampling of points
along each ray where samples are biased towards the relevant parts of the volume. To do this, we
first rewrite the alpha composited color from the coarse network C’c(r) in Eqn. 2.3 as a weighted
sum of all sampled colors ¢; along the ray:

Nc
Co(r) =Y wic;,  w; =Ty(1 — exp(—0,0;)). (2.5)
=1

Normalizing these weights as 10; = wi/>>"e w; produces a piecewise-constant PDF along the ray.
We sample a second set of /N locations from this distribution using inverse transform sampling,
evaluate our “fine” network at the union of the first and second set of samples, and compute the
final rendered color of the ray C #(r) using Eqn. 2.3 but using all N. + Ny samples. This procedure
allocates more samples to regions we expect to contain visible content. This addresses a similar
goal as importance sampling, but we use the sampled values as a nonuniform discretization of the
whole integration domain rather than treating each sample as an independent probabilistic estimate
of the entire integral.

Implementation details

We optimize a separate neural continuous volume representation network for each scene. This
requires only a dataset of captured RGB images of the scene, the corresponding camera poses and
intrinsic parameters, and scene bounds (we use ground truth camera poses, intrinsics, and bounds
for synthetic data, and use the COLMAP structure-from-motion package [170] to estimate these
parameters for real data). At each optimization iteration, we randomly sample a batch of camera
rays from the set of all pixels in the dataset, and then follow the hierarchical sampling described in
Sec. 2.4 to query N, samples from the coarse network and N, + N, samples from the fine network.
We then use the volume rendering procedure described in Sec. 2.3 to render the color of each ray



CHAPTER 2. NEURAL RADIANCE FIELDS 14

from both sets of samples. Our loss is simply the total squared error between the rendered and true
pixel colors for both the coarse and fine renderings:

ﬁ:é[

Cu(r) — C’(r)Hz +

Cy(r) — C(r) Hj 2.6)

where R is the set of rays in each batch, and C(r), C.(r), and C(r) are the ground truth, coarse
volume predicted, and fine volume predicted RGB colors for ray r respectively. Note that even
though the final rendering comes from C'4(r), we also minimize the loss of C,(r) so that the weight
distribution from the coarse network can be used to allocate samples in the fine network.

In our experiments, we use a batch size of 4096 rays, each sampled at N, = 64 coordinates
in the coarse volume and Ny = 128 additional coordinates in the fine volume. We use the Adam
optimizer [86] with a learning rate that begins at 5 x 10~* and decays exponentially to 5 x 107>
over the course of optimization (other Adam hyperparameters are left at default values of 3; = 0.9,
B2 = 0.999, and € = 10~ 7). The optimization for a single scene typically take around 100-300k
iterations to converge on a single NVIDIA V100 GPU (about 1-2 days).

2.5 Results

We quantitatively (Tables 2.1) and qualitatively (Figs. 2.5 and 2.6) show that our method outperforms
prior work, and provide extensive ablation studies to validate our design choices (Table 2.2).

Datasets

Synthetic renderings of objects We first show experimental results on two datasets of synthetic
renderings of objects (Table 2.1, “Diffuse Synthetic 360°” and “Realistic Synthetic 360°”). The
DeepVoxels [178] dataset contains four Lambertian objects with simple geometry. Each object is
rendered at 512 x 512 pixels from viewpoints sampled on the upper hemisphere (479 as input and
1000 for testing). We additionally generate our own dataset containing pathtraced images of eight
objects that exhibit complicated geometry and realistic non-Lambertian materials. Six are rendered
from viewpoints sampled on the upper hemisphere, and two are rendered from viewpoints sampled
on a full sphere. We render 100 views of each scene as input and 200 for testing, all at 800 x 800
pixels.

Real images of complex scenes We show results on complex real-world scenes captured with
roughly forward-facing images (Table 2.1, “Real Forward-Facing”). This dataset consists of 8
scenes captured with a handheld cellphone (5 taken from the LLFF paper and 3 that we capture),
captured with 20 to 62 images, and hold out 1/g of these for the test set. All images are 1008 x 756
pixels.
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Diffuse Synthetic 360° [178] | Realistic Synthetic 360° | Real Forward-Facing [119]
Method PSNR? SSIMT LPIPS] |PSNRf SSIM?t LPIPS||PSNRt SSIM? LPIPS|
SRN [177] | 33.20 0.963 0.073 22.26  0.846 0.170 | 22.84 0.668 0.378
NV [108] 29.62  0.929 0.099 26.05 0.893 0.160 - - -
LLFF[119]| 34.38 0.985 0.048 24.8% 0911 0.114 | 24.13 0.798 0.212
Ours 40.15 0.991 0.023 31.01 0.947 0.081 | 26.50 0.811 0.250

Table 2.1: Our method quantitatively outperforms prior work on datasets of both synthetic and
real images. We report PSNR/SSIM (higher is better) and LPIPS [228] (lower is better). The
DeepVoxels [178] dataset consists of 4 diffuse objects with simple geometry. Our realistic synthetic
dataset consists of pathtraced renderings of 8 geometrically complex objects with complex non-
Lambertian materials. The real dataset consists of handheld forward-facing captures of 8 real-world
scenes (NV cannot be evaluated on this data because it only reconstructs objects inside a bounded
volume). Though LLFF achieves slightly better LPIPS, we urge readers to view our supplementary
video where our method achieves better multiview consistency and produces fewer artifacts than all
baselines.
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Materials

Ground Truth NeRF (ours) LLFF[119] SRN[177] NV [108]

Figure 2.5: Comparisons on test-set views for scenes from our new synthetic dataset generated
with a physically-based renderer. Our method is able to recover fine details in both geometry
and appearance, such as Ship’s rigging, Lego’s gear and treads, Microphone’s shiny stand and
mesh grille, and Material’s non-Lambertian reflectance. LLFF exhibits banding artifacts on the
Microphone stand and Material’s object edges and ghosting artifacts in Ship’s mast and inside the
Lego object. SRN produces blurry and distorted renderings in every case. Neural Volumes cannot
capture the details on the Microphone’s grille or Lego’s gears, and it completely fails to recover the
geometry of Ship’s rigging.
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Ground Truth NeRF (ours) LLFF [119] SRN [177]

Figure 2.6: Comparisons on test-set views of real world scenes. LLFF is specifically designed for
this use case (forward-facing captures of real scenes). Our method is able to represent fine geometry
more consistently across rendered views than LLFF, as shown in Fern’s leaves and the skeleton
ribs and railing in 7-rex. Our method also correctly reconstructs partially occluded regions that
LLFF struggles to render cleanly, such as the yellow shelves behind the leaves in the bottom Fern
crop and green leaves in the background of the bottom Orchid crop. Blending between multiples
renderings can also cause repeated edges in LLFF, as seen in the top Orchid crop. SRN captures the
low-frequency geometry and color variation in each scene but is unable to reproduce any fine detail.
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Comparisons

To evaluate our model we compare against current top-performing techniques for view synthesis,
detailed below. All methods use the same set of input views to train a separate network for each
scene except Local Light Field Fusion [119], which trains a single 3D convolutional network on a
large dataset, then uses the same trained network to process input images of new scenes at test time.

Neural Volumes (NV) [108] synthesizes novel views of objects that lie entirely within a bounded
volume in front of a distinct background (which must be separately captured without the object of
interest). It optimizes a deep 3D convolutional network to predict a discretized RGB« voxel grid
with 1283 samples as well as a 3D warp grid with 323 samples. The algorithm renders novel views
by marching camera rays through the warped voxel grid.

Scene Representation Networks (SRN) [177] represent a continuous scene as an opaque surface,
implicitly defined by a MLP that maps each (x,y, z) coordinate to a feature vector. They train
a recurrent neural network to march along a ray through the scene representation by using the
feature vector at any 3D coordinate to predict the next step size along the ray. The feature vector
from the final step is decoded into a single color for that point on the surface. Note that SRN is
a better-performing followup to DeepVoxels [178] by the same authors, which is why we do not
include comparisons to DeepVoxels.

Local Light Field Fusion (LLFF) [119] LLFF is designed for producing photorealistic novel
views for well-sampled forward facing scenes. It uses a trained 3D convolutional network to directly
predict a discretized frustum-sampled RGB« grid (multiplane image or MPI [230]) for each input
view, then renders novel views by alpha compositing and blending nearby MPIs into the novel
viewpoint.

Discussion

We thoroughly outperform both baselines that also optimize a separate network per scene (NV and
SRN) in all scenarios. Furthermore, we produce qualitatively and quantitatively superior renderings
compared to LLFF (across all except one metric) while using only their input images as our entire
training set.

The SRN method produces heavily smoothed geometry and texture, and its representational
power for view synthesis is limited by selecting only a single depth and color per camera ray. The
NV baseline is able to capture reasonably detailed volumetric geometry and appearance, but its use
of an underlying explicit 128% voxel grid prevents it from scaling to represent fine details at high
resolutions. LLFF specifically provides a “sampling guideline” to not exceed 64 pixels of disparity
between input views, so it frequently fails to estimate correct geometry in the synthetic datasets
which contain up to 400-500 pixels of disparity between views. Additionally, LLFF blends between
different scene representations for rendering different views, resulting in perceptually-distracting
inconsistency.
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Input #Im. L (N,, N;)|PSNRT SSIMt LPIPS|

1) No PE, VD, H rxyz 100 - (256, -) | 26.67 0.906 0.136
2) No Pos. Encoding xyz0p 100 - (64,128) | 28.77 0.924 0.108
3) No View Dependence | zyz 100 10 (64, 128) | 27.66 0.925 0.117
4) No Hierarchical xyzf¢p 100 10 (256, -) | 30.06 0.938 0.109
5) Far Fewer Images xyz0¢p 25 10 (64,128) | 27.78 0.925 0.107
6) Fewer Images xyzp 50 10 (64,128) | 29.79 0.940 0.096

7) Fewer Frequencies xyz0p 100 5 (64,128) | 30.59 0.944 0.088
8) More Frequencies xyzp 100 15 (64,128) | 30.81 0.946 0.096
9) Complete Model xyz0p 100 10 (64,128) | 31.01 0.947 0.081

Table 2.2: An ablation study of our model. Metrics are averaged over the 8 scenes from our realistic
synthetic dataset. See Sec. 2.5 for detailed descriptions.

The biggest practical tradeoffs between these methods are time versus space. All compared
single scene methods take at least 12 hours to train per scene. In contrast, LLFF can process a
small input dataset in under 10 minutes. However, LLFF produces a large 3D voxel grid for every
input image, resulting in enormous storage requirements (over 15GB for one “Realistic Synthetic”
scene). Our method requires only 5 MB for the network weights (a relative compression of 3000 x
compared to LLFF), which is even less memory than the input images alone for a single scene from
any of our datasets.

Ablation studies

We validate our algorithm’s design choices and parameters with an extensive ablation study in
Table 2.2. We present results on our “Realistic Synthetic 360°” scenes. Row 9 shows our complete
model as a point of reference. Row 1 shows a minimalist version of our model without positional
encoding (PE), view-dependence (VD), or hierarchical sampling (H). In rows 2—4 we remove these
three components one at a time from the full model, observing that positional encoding (row 2) and
view-dependence (row 3) provide the largest quantitative benefit followed by hierarchical sampling
(row 4). Rows 5-6 show how our performance decreases as the number of input images is reduced.
Note that our method’s performance using only 25 input images still exceeds NV, SRN, and LLFF
across all metrics when they are provided with 100 images. In rows 7-8 we validate our choice of
the maximum frequency L used in our positional encoding for x (the maximum frequency used
for d is scaled proportionally). Only using 5 frequencies reduces performance, but increasing
the number of frequencies from 10 to 15 does not improve performance. We believe the benefit
of increasing L is limited once 2” exceeds the maximum frequency present in the sampled input
images (roughly 1024 in our data).
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2.6 Discussion

This chapter addresses deficiencies of prior work that uses MLPs to represent objects and scenes
as continuous functions. We demonstrate that representing scenes as 5D neural radiance fields (an
MLP that outputs volume density and view-dependent emitted radiance as a function of 3D location
and 2D viewing direction) produces better renderings than the previously-dominant approach of
training deep convolutional networks to output discretized voxel representations.

Although we have proposed a hierarchical sampling strategy to make rendering more sample-
efficient (for both training and testing), there is still much more progress to be made in investigating
techniques to efficiently optimize and render neural radiance fields. Another direction for future
work is interpretability: sampled representations such as voxel grids and meshes admit reasoning
about the expected quality of rendered views and failure modes, but it is unclear how to analyze
these issues when we encode scenes in the weights of a deep neural network. We believe that this
work makes progress towards a graphics pipeline based on real world imagery, where complex
scenes could be composed of neural radiance fields optimized from images of actual objects and
scenes.
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Chapter 3

Representing High Frequencies in
Coordinate-Based Networks

One of the fundamental aspects that facilitated NeRF’s ability to capture high-frequency details,
as elaborated in Chapter 2, was the positional encoding of network inputs. This technique is
not exclusive to NeRF and can be extended to any “coordinate-based” MLP which takes low-
dimensional coordinates as inputs (typically points in R?) and are trained to output a representation
of shape, density, and/or color at each input location (see Figure 3.1). This strategy is compelling
since coordinate-based MLPs are amenable to gradient-based optimization and machine learning,
and can be orders of magnitude more compact than grid-sampled representations. Coordinate-
based MLPs have been used to represent images [128, 184] (referred to as “compositional pattern
producing networks™), volume density [123], occupancy [115], and signed distance [137], and have
achieved state-of-the-art results across a variety of tasks such as shape representation [26, 34, 53,
55,76, 118, 137], texture synthesis [64, 135], shape inference from images [104, 105], and novel
view synthesis [123, 130, 169, 177].

We leverage recent progress in modeling the behavior of deep networks using kernel regression
with a neural tangent kernel (NTK) [71] to theoretically and experimentally show that standard
MLPs are poorly suited for these low-dimensional coordinate-based vision and graphics tasks.
In particular, MLPs have difficulty learning high frequency functions, a phenomenon referred to
in the literature as “spectral bias” [10, 148]. NTK theory suggests that this is because standard
coordinate-based MLPs correspond to kernels with a rapid frequency falloff, which effectively
prevents them from being able to represent the high-frequency content present in natural images
and scenes.

A few recent works [123, 229] have experimentally found that a heuristic sinusoidal mapping
of input coordinates (called a “positional encoding’) allows MLPs to represent higher frequency
content. We observe that this is a special case of Fourier features [150]: mapping input coordinates v
t0y(v) = [a1 cos(2rb{v), ar sin(2rbi'v), ..., am, cos(2rbLv), an, sin(27b} v)] * before passing
them into an MLP. We show that this mapping transforms the NTK into a stationary (shift-invariant)

This chapter is based on joint work published at NeurIPS 2020 [193]
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(a) Coordinate-based MLP (b) Image regression (c) 3D shape regression (d) MRI reconstruction (e) Inverse rendering

(z,y)— RGB (2,y,2) — occupancy (z,y,2) — density  (z,y,2z) —RGB, density

Figure 3.1: Fourier features improve the results of coordinate-based MLPs for a variety of high-
frequency low-dimensional regression tasks, both with direct (b, c) and indirect (d, e) supervision.
We visualize an example MLP (a) for an image regression task (b), where the input to the network is
a pixel coordinate and the output is that pixel’s color. Passing coordinates directly into the network
(top) produces blurry images, whereas preprocessing the input with a Fourier feature mapping
(bottom) enables the MLP to represent higher frequency details.

kernel and enables tuning the NTK’s spectrum by modifying the frequency vectors b;, thereby
controlling the range of frequencies that can be learned by the corresponding MLP. We show that the
simple strategy of setting a; = 1 and randomly sampling b; from an isotropic distribution achieves
good performance, and that the scale (standard deviation) of this distribution matters much more
than its specific shape. We train MLPs with this Fourier feature input mapping across a range of
tasks relevant to the computer vision and graphics communities. As highlighted in Figure 3.1, our
proposed mapping dramatically improves the performance of coordinate-based MLPs. In summary,
we make the following contributions:

* We leverage NTK theory and simple experiments to show that a Fourier feature mapping can
be used to overcome the spectral bias of coordinate-based MLPs towards low frequencies by
allowing them to learn much higher frequencies (Section 3.3).

* We demonstrate that a random Fourier feature mapping with an appropriately chosen scale can
dramatically improve the performance of coordinate-based MLPs across many low-dimensional
tasks in computer vision and graphics (Section 3.5).
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3.1 Related Work

Our work is motivated by the widespread use of coordinate-based MLPs to represent a variety of
visual signals, including images [184] and 3D scenes [115, 123, 137]. In particular, our analysis
is intended to clarify experimental results demonstrating that an input mapping of coordinates
(which they called a “positional encoding”) using sinusoids with logarithmically-spaced axis-
aligned frequencies improves the performance of coordinate-based MLPs on the tasks of novel view
synthesis from 2D images [123] and protein structure modeling from cryo-electron microscopy [229].
We analyze this technique to show that it corresponds to a modification of the MLP’s NTK, and we
show that other non-axis-aligned frequency distributions can outperform this positional encoding.

Prior works in natural language processing and time series analysis [81, 199, 211] have used
a similar positional encoding to represent time or 1D position. In particular, Xu ef al. [211] use
random Fourier features (RFF) [150] to approximate stationary kernels with a sinusoidal input
mapping and propose techniques to tune the mapping parameters. Our work extends this by directly
explaining such mappings as a modification of the resulting network’s NTK. Additionally, we
address the embedding of multidimensional coordinates, which is necessary for vision and graphics
tasks.

To analyze the effects of applying a Fourier feature mapping to input coordinates before passing
them through an MLP, we rely on recent theoretical work that models neural networks in the limits
of infinite width and infinitesimal learning rate as kernel regression using the NTK [7, 12, 39, 71,
91]. In particular, we use the analyses from Lee ef al. [91] and Arora et al. [7], which show that
the outputs of a network throughout gradient descent remain close to those of a linear dynamical
system whose convergence rate is governed by the eigenvalues of the NTK matrix [7, 10, 12, 91,
213]. Analysis of the NTK’s eigendecomposition shows that its eigenvalue spectrum decays rapidly
as a function of frequency, which explains the widely-observed ‘“spectral bias” of deep networks
towards learning low-frequency functions [10, 11, 148].

We leverage this analysis to consider the implications of adding a Fourier feature mapping
before the network, and we show that this mapping has a significant effect on the NTK’s eigenvalue
spectrum and on the corresponding network’s convergence properties in practice.

3.2 Background and Notation

To lay the foundation for our theoretical analysis, we first review classic kernel regression and its
connection to recent results that analyze the training dynamics and generalization behavior of deep
fully-connected networks. In later sections, we use these tools to analyze the effects of training
coordinate-based MLPs with Fourier feature mappings.

Kernel regression. Kernel regression is a classic nonlinear regression algorithm [202]. Given
a training dataset (X,y) = {(x;, )}, where x; are input points and y; = f(x;) are the
corresponding scalar output labels, kernel regression constructs an estimate f of the underlying
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function at any point x as:
n

fx)=> (K 'y) k(xi,x), (3.1)
i=1
where K is an n x n kernel (Gram) matrix with entries K;; = k(x;,x;) and £ is a symmetric
positive semidefinite (PSD) kernel function which represents the “similarity” between two input
vectors. Intuitively, the kernel regression estimate at any point X can be thought of as a weighted
sum of training labels y; using the similarity between the corresponding x; and x.

Approximating deep networks with kernel regression. Let f be a fully-connected deep network
with weights 6 initialized from a Gaussian distribution . Theory proposed by Jacot er al. [71]
and extended by others [7, 10, 91] shows that when the width of the layers in f tends to infinity and
the learning rate for SGD tends to zero, the function f(x;6) converges over the course of training
to the kernel regression solution using the neural tangent kernel (NTK), defined as:

o0 7 00 3-2)
When the inputs are restricted to a hypersphere, the NTK for an MLP can be written as a dot product
kernel (a kernel in the form Ayt (x} x;) for a scalar function Ayt : R — R).

Prior work [7, 10, 71, 91] shows that an NTK linear system model can be used to approximate
the dynamics of a deep network during training. We consider a network trained with an L2 loss and
a learning rate 7, where the network’s weights are initialized such that the output of the network at
initialization is close to zero. Under asymptotic conditions stated in Lee et al. [91], the network’s
output for any data X after ¢ training iterations can be approximated as:

v~ Kot K (I — ey, (3.3)

kNTK(Xi> Xj) = E9~N<

where ¥ y = f(Xiest; 0) are the network’s predictions on input points Xi.g at training iteration t,
K is the NTK matrix between all pairs of training points in X, and K. is the NTK matrix between
all points in Xy and all points in the training dataset X.

Spectral bias when training neural networks. Let us consider the training error ¥
yffgm are the network’s predictions on the training dataset at iteration ¢. Since the NTK matrix K
must be PSD, we can take its eigendecomposition K = QAQT, where Q is orthogonal and A is a

diagonal matrix whose entries are the eigenvalues )\; > 0 of K. Then, since e %! = Qe "AQT:

QT HY, —y) = QT ((I— e ™)y —y) = —e"MQTy . (3.4)

This means that if we consider training convergence in the eigenbasis of the NTK, the ™ component
of the absolute error ]QT(ygm —y)|; will decay approximately exponentially at the rate ;. In
other words, components of the target function that correspond to kernel eigenvectors with larger
eigenvalues will be learned faster. For a conventional MLP, the eigenvalues of the NTK decay rapidly
[11, 12, 61]. This results in extremely slow convergence to the high frequency components of the
target function, to the point where standard MLPs are effectively unable to learn these components,
as visualized in Figure 3.1. Next, we describe a technique to address this slow convergence by using

a Fourier feature mapping of input coordinates before passing them to the MLP.

(t)

wain — Y, Where
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3.3 Fourier Features for a Tunable Stationary Neural Tangent
Kernel

Machine learning analysis typically addresses the case in which inputs are high dimensional points
(e.g. the pixels of an image reshaped into a vector) and training examples are sparsely distributed.
In contrast, in this work we consider low-dimensional regression tasks, wherein inputs are assumed
to be dense coordinates in a subset of R? for small values of d (e.g. pixel coordinates). This setting
has two significant implications when viewing deep networks through the lens of kernel regression:

1. We would like the composed NTK to be shift-invariant over the input domain, since the training
points are distributed with uniform density. In problems where the inputs are normalized to
the surface of a hypersphere (common in machine learning), a dot product kernel (such as the
regular NTK) corresponds to spherical convolution. However, inputs in our setting are dense
in Euclidean space. A Fourier feature mapping of input coordinates makes the composed NTK
stationary (shift-invariant), acting as a convolution kernel over the input domain (see Section 3.4
for additional discussion on stationary kernels).

2. We would like to control the bandwidth of the NTK to improve training speed and generalization.
As we see from Eqn. 3.4, a “wider” kernel with a slower spectral falloff achieves faster training
convergence for high frequency components. However, we know from signal processing that
reconstructing a signal using a kernel whose spectrum is foo wide causes high frequency aliasing
artifacts. We show in Section 3.5 that a Fourier feature input mapping can be tuned to lie between
these “underfitting’ and “overfitting” extremes, enabling both fast convergence and low test error.

Fourier features and the composed neural tangent kernel. Fourier feature mappings have been
used in many applications since their introduction in the seminal work of Rahimi and Recht [150],
which used random Fourier features to approximate an arbitrary stationary kernel function by
applying Bochner’s theorem. Extending this technique, we use a Fourier feature mapping v to
featurize input coordinates before passing them through a coordinate-based MLP, and investigate
the theoretical and practical effect this has on convergence speed and generalization. The function
+ maps input points v € [0, 1)? to the surface of a higher dimensional hypersphere with a set of
sinusoids:

v(v) = [a; cos(2mb} V), a1 sin(27by V), .. ., ay, cos(27b,, V), an, sin(27rbTTnV)}T . (3.5)
Because cos(a — 3) = cos a cos 5 + sin asin 3, the kernel function induced by this mapping is:
ky(vi,va) = 7( vi)t Z cos 27rb (vi — VQ)) = hy(v1 —Vva), (3.6)
j=1

where h.(va) £ Z a? cos(27rbijA) . (3.7)

j=1
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Note that this kernel is stationary (a function of only the difference between points). We can think
of the mapping as a Fourier approximation of a kernel function: b; are the Fourier basis frequencies
used to approximate the kernel, and a? are the corresponding Fourier series coefficients.

After computing the Fourier features for our input points, we pass them through an MLP to get
f(v(v);0). As discussed previously, the result of training a network can be approximated by kernel
regression using the kernel hntx (x; x;). In our case, x; = 7(v;) so the composed kernel becomes:

hntk (%) X;) = hnrk (7(Vz‘)T7(Vj)> = It (hy (Vi — ;). (3.8)

Thus, training a network on these embedded input points corresponds to kernel regression with the
stationary composed NTK function hntk o h., . The MLP function approximates a convolution of
the composed NTK with a weighted Dirac delta at each input training point v;:

f = (hxrk o hy) Z w;dy, (3.9)

where w = K™y (from Eqn. 3.1). This allows us to draw analogies to signal processing, where
the composed NTK acts similarly to a reconstruction filter. In the next section, we show that the
frequency decay of the composed NTK determines the behavior of the reconstructed signal.

3.4 Stationary kernels

One of the primary benefits of our Fourier feature mapping is that it results in a stationary composed
NTK function. In this section, we offer some intuition for why stationarity is desirable for our
low-dimensional graphics and imaging problems.

First, let us consider the implications of using an MLP applied directly to a low-dimensional
input (without any Fourier feature mapping). In this setting, the NTK is a function of the dot product
between its inputs and of their norms [10, 12, 14, 71]. This makes the NTK rotation-invariant, but
not translation-invariant. For our graphics and imaging applications, we want to be able to model
an object or scene equally well regardless of its location, so translation-invariance or stationarity
is a crucial property. We can then add approximate rotation invariance back by using an isotropic
frequency sampling distribution.

This aligns with standard practice in signal processing, in which k(u, v) = h(u—v) = h(v—u)
(e.g. the Gaussian or radial basis function kernel, or the sinc reconstruction filter kernel). This
Euclidean notion of similarity based on difference vectors is better suited to the low-dimensional
regime, in which we expect (and can afford) dense and nearly uniform sampling. Regression with a
stationary kernel corresponds to reconstruction with a convolution filter: new predictions are sums
of training points, weighted by a function of Euclidean distance.

One of the most important features of our sinusoidal input mapping is that it translates between
these two regimes. If u, v € R? for small d, v is our Fourier feature embedding function, and %k
is a dot product kernel function, then k(y(u),~v(v)) = h(y(u)"y(v)) = h(u — v). In words, our
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sinusoidal input mapping transforms a dot product kernel into a stationary one, making it better
suited to the low-dimensional regime.

This effect is illustrated in a simple 1D example in Figure 3.2, which shows that the benefits of a
stationary composed NTK indeed appear in the MLP setting with a basic Fourier featurization (using
a single frequency). We train MLPs with and without this basic Fourier embedding to learn a set of
shifted 1D Gaussian probability density functions. The plain MLP successfully fits a zero-centered
function but struggles to fit shifted functions, while the MLP with basic Fourier embedding exhibits
stationary behavior, with good performance regardless of shifts.

1 q
= 1072
e
5}
'-Cj .
% == No Mapping

=

%10'3 == Basic Mapping
g
<
¥}
=

01 104

-7 —7/2 0 /2 ™ - —7/2 0 /2 ™
x Center of Gaussian
(a) Example target signals (b) Reconstruction accuracy

Figure 3.2: A plain coordinate-based MLP can learn a centered function (in this case a Gaussian
density) but struggles to model shifts of the same function. Adding a basic Fourier embedding
(with a single frequency) enables the MLP to fit the target function equally well regardless of shifts.
The NTK corresponding to the plain MLP is based on dot products between inputs, whereas the
NTK corresponding to the NTK with Fourier embedding is based on Euclidean distances between
inputs, making it shift-invariant. In this experiment we train an MLP (4 layers, 256 channels, ReLU
activation) for 500 iterations using the Adam [86] optimizer with a learning rate of 10~*. We report
mean and standard deviation performance over 20 random network initializations.

3.5 Manipulating the Fourier Feature Mapping

Preprocessing the inputs to a coordinate-based MLP with a Fourier feature mapping creates a
composed NTK that is not only stationary but also funable. By manipulating the settings of the a;
and b; parameters in Eqn. 3.5, it is possible to dramatically change both the rate of convergence
and the generalization behavior of the resulting network. In this section, we investigate the effects
of the Fourier feature mapping in the setting of 1D function regression.

We train MLPs to learn signals f defined on the interval [0, 1). We sample cn linearly spaced
points on the interval, using every ¢ point as the training set and the remaining points as the test set.
Since our composed kernel function is stationary, evaluating it at linearly spaced points on a periodic
domain makes the resulting kernel matrix circulant: it represents a convolution and is diagonalizable
by the Fourier transform. Thus, we can compute the eigenvalues of the composed NTK matrix by
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Figure 3.3: Adding a Fourier feature mapping can improve the poor conditioning of a coordinate-
based MLP’s neural tangent kernel (NTK). (a) We visualize the NTK function kntk(z;, ;)
(Eqn. 3.2) for a 4-layer ReLU MLP with one scalar input. This kernel is not shift-invariant and
does not have a strong diagonal, making it poorly suited for kernel regression in low-dimensional
problems. (b) A basic input mapping v(v) = [cos27v,sin 27v]" makes the composed NTK
kxti (7v(vi), v(v;)) shift-invariant (stationary). (c) A Fourier feature input mapping (Eqn. 3.5) can
be used to tune the composed kernel’s width, where we set a; = 1/77 and b; = jforj =1,...,n/2.
(d) Higher frequency mappings (lower p) result in composed kernels with wider spectra, which
enables faster convergence for high-frequency components (see Figure 3.4).

simply taking the Fourier transform of a single row. All experiments are implemented in JAX [15]
and the NTK functions are calculated automatically using the Neural Tangents library [133].

Visualizing the composed NTK. We first visualize how modifying the Fourier feature mapping
changes the composed NTK. We set b; = j (full Fourier basis in 1D) and a; = 1/;? for j =
1,...,n/2. We use p = oo to denote the mapping v(v) = [cos 27v, sin 27v]" that simply wraps
[0,1) around the unit circle (this is referred to as the “basic” mapping in later experiments).
Figure 3.3 demonstrates the effect of varying p on the composed NTK. By construction, lower p
values result in a slower falloff in the frequency domain and a correspondingly narrower kernel in
the spatial domain.

Effects of Fourier features on network convergence. We generate ground truth 1D functions by
sampling cn values from a family with parameter « as follows: we sample a standard i.1.d. Gaussian
vector of length cn, scale its i entry by 1/, then return the real component of its inverse Fourier
transform. We will refer to this as a “1/ f* noise” signal.

In Figure 3.4, we train MLPs (4 layers, 1024 channels, ReLLU activations) to fit a bandlimited
1/f! noise signal (c = 8,n = 32) using Fourier feature mappings with different p values. Fig-
ures 3.4b and 3.4d show that the NTK linear dynamics model accurately predict the effects of
modifying the Fourier feature mapping parameters. Separating different frequency components of
the training error in Figure 3.4c reveals that networks with narrower NTK spectra converge faster for
low frequency components but essentially never converge for high frequency components, whereas
networks with wider NTK spectra successfully converge across all components. The Fourier feature
mapping p = 1 has adequate power across frequencies present in the target signal (so the network
converges rapidly during training) but limited power in higher frequencies (preventing overfitting or
aliasing).

Tuning Fourier features in practice. Eqn. 3.3 allows us to estimate a trained network’s theoretical
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Figure 3.4: Combining a network with a Fourier feature mapping has dramatic effects on conver-
gence and generalization. Here we train a network on 32 sampled points from a 1D function (a)
using mappings shown in Fig. 3.3. A mapping with a smaller p value yields a composed NTK
with more power in higher frequencies, enabling the corresponding network to learn a higher
frequency function. The theoretical and experimental training loss improves monotonically with
higher frequency kernels (d), but the test-set loss is lowest at p = 1 and falls as the network starts to
overfit (b). As predicted by Eqn. 3.4, we see roughly log-linear convergence of the training loss
frequency components (c). Higher frequency kernels result in faster convergence for high frequency
loss components, thereby overcoming the “spectral bias” observed when training networks with no
input mapping.

loss on a validation set using the composed kernel. For small 1D problems, we can minimize this
loss with gradient-based optimization to choose mapping parameters a; (given a dense sampling of
b;). In this carefully controlled setting (1D signals, small training dataset, gradient descent with
small learning rate, very wide networks), we find that this optimized mapping also achieves the best
performance when training networks. Please refer to section 3.6 for details and experiments.

In real-world problems, especially in multiple dimensions, it is not feasible to use a feature
mapping that densely samples Fourier basis functions; the number of Fourier basis functions scales
with the number of training data points, which grows exponentially with dimension. Instead, we
sample a set of random Fourier features [150] from a parametric distribution. We find that the
exact sampling distribution family is much less important than the distribution’s scale (standard
deviation).

Figure 3.5 demonstrates this point using hyperparameter sweeps for a variety of sampling
distributions. In each subfigure, we draw 1D target signals (¢ = 2,n = 1024) from a fixed 1/
distribution and train networks to learn them. We use random Fourier feature mappings (of length
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Figure 3.5: We find that a sparse random sampling of Fourier features can perform as well as a
dense set of features and that the width of the distribution matters more than the shape. Here, we
generate random 1D signals from 1/ f® noise and report the test-set accuracy of different trained
models that use a sparse set (16 out of 1024) of random Fourier features sampled from different
distributions. Each subplot represents a different family of 1D signals. Each dot represents a trained
network, where the color indicates which Fourier feature sampling distribution is used. We plot the
test error of each model versus the empirical standard deviation of its sampled frequencies. The
best models using sparsely sampled features are able to match the performance of a model trained
with dense Fourier features (dashed lines with error bars). All sampling distributions trace out the
same curve, exhibiting underfitting (slow convergence) when the standard deviation of sampled
frequencies is too low and overfitting when it is too high. This implies that the precise shape of the
distribution used to sample frequencies does not have a significant impact on performance.

16) sampled from different distribution families (Gaussian, uniform, uniform in log space, and
Laplacian) and sweep over each distribution’s scale. Perhaps surprisingly, the standard deviation of
the sampled frequencies alone is enough to predict test set performance, regardless of the underlying
distribution’s shape. We also observe that passing this sparse sampling of Fourier features through
an MLP matches the performance of using a dense set of Fourier features with the same MLP,
suggesting a strategy for scaling to higher dimensions. We proceed with a Gaussian distribution for
our higher-dimensional experiments in Section 3.6 and treat the scale as a hyperparameter to tune
on a validation dataset.

3.6 Experiments

We validate the benefits of using Fourier feature mappings for coordinate-based MLPs with experi-
ments on a variety of regression tasks relevant to the computer vision and graphics communities.

Compared mappings

We compare the performance of coordinate-based MLPs with no input mapping and with the
following Fourier feature mappings (cos, sin are applied elementwise):
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Basic: (V) = [cos(2mvv), sin(27v)]". Simply wraps input coordinates around the circle.
Positional encoding: y(v) = [...,cos(2ra?/™v), sin(2rc?/™v), . . .}T forj=0,...,m— 1.
Uses log-linear spaced frequencies for each dimension, where the scale o is chosen for each task
and dataset by a hyperparameter sweep. This is a generalization of the “positional encoding” used
by prior work [123, 199, 229]. Note that this mapping is deterministic and only contains on-axis
frequencies, making it naturally biased towards data that has more frequency content along the axes.
Gaussian: 7(v) = [cos(2rBv), sin(2rBv)]", where each entry in B € R"™*4 is sampled from
N(0,0?), and o is chosen for each task and dataset with a hyperparameter sweep. In the absence of
any strong prior on the frequency spectrum of the signal, we use an isotropic Gaussian distribution.
Our experiments show that all of the Fourier feature mappings improve the performance of
coordinate-based MLPs over using no mapping and that the Gaussian RFF mapping performs best.

Tasks

We conduct experiments with direct regression, where supervision labels are in the same space as
the network outputs, as well as indirect regression, where the network outputs are passed through a
forward model to produce observations in the same space as the supervision labels. For each task
and dataset, we tune Fourier feature scales on a held-out set of signals. For each target signal, we
train an MLP on a training subset of the signal and compute error over the remaining test subset.
All tasks (except 3D shape regression) use L2 loss and a ReLU MLP with 4 layers and 256 channels.
The 3D shape regression task uses cross-entropy loss and a ReLU MLP with 8 layers and 256
channels. We apply a sigmoid activation to the output for each task (except the view synthesis
density prediction). We use 256 frequencies for the feature mapping in all experiments.

2D image

The 2D image regression tasks presented in the main text all use 512 x 512 resolution images. A
subsampled grid of 256 x 256 pixels is used as training data, and an offset grid of 256 x 256 pixels
is used for testing. We use two image datasets: Natural and Text, each consisting of 32 images. The
Natural images are generated by taking center crops of randomly sampled images from the Div2K
dataset [4]. The Text images are generated by placing random strings of text with random sizes and
colors on a white background (examples can be seen in Figure 3.6). For each dataset we perform a
hyperparameter sweep over feature mapping scales on 16 images. We find that scales o0, = 10 and
o, = 6 work best for the Natural dataset and o, = 14 and 0, = 5 work best for the Text dataset.
In Table 3.1, we report model performance using the optimal mapping scale on the remaining 16
images.

Each model (MLP with 4 layers, 256 channels, ReLLU activation, sigmoid output) is trained
for 2000 iterations using the Adam [86] optimizer with default settings (5; = 0.9, 55 = 0.999,
¢ = 1078). Learning rates are manually tuned for each dataset and method. For Natural images a
learning rate of 1073 is used for the Gaussian RFF and the positional encoding, and a learning rate
of 1072 is used for the basic mapping and “no mapping” methods. For the Text images a learning
rate of 1072 is used for all methods.
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Figure 3.6: Results for the 2D image regression task, for three images from our Natural dataset
(top) and two images from our 7ext dataset (bottom).

3D shape

We evaluate the 3D shape regression task (similar to Occupancy Networks [115]) on four complex
triangle meshes commonly used in computer graphics applications (Dragon, Armadillo, Buddha,
and Lucy, shown in Figure 3.7), each containing hundreds of thousands of vertices. We train one
coordinate-based MLP network to represent a single mesh rather than trying to generalize one
network to encode multiple objects, since our goal is to demonstrate that a network with no mapping
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Natural Text
No mapping | 19.32 +2.48 18.40 +2.23
Basic 21.71 £2.71 20.48 £1.96

Positional enc.| 24.95 £+ 3.72 27.57 &+ 3.07
Gaussian 2557 +4.193047 +£2.11

Table 3.1: 2D image results (mean =+ standard deviation of PSNR)

or the low frequency “basic” mapping cannot accurately represent even a single shape, let alone a
whole class of objects.

We use a network with 8 layers of 256 channels each and a ReLU nonlinearity between each
layer. We apply a sigmoid activation to the output. Our batch size is 323 points, and we use the
Adam optimizer [86] with a learning rate starting at 5 x 10~* and exponentially decaying by a factor
of 0.01 over the course of 10000 total training iterations. At each training iteration, we sample a
batch of 3D points uniformly at random from the bounding box of the mesh, and then calculate
ground truth labels (using the point-in-mesh method implemented in the Trimesh library [117],
which relies on the Embree kernel for acceleration [203]). We use cross-entropy loss to train the
network to match these classification labels (0 for points outside the mesh, 1 for points inside).

The meshes are scaled to fit inside the unit cube [0, 1]* such that the centroid of the mesh is
(0.5,0.5,0.5). We use the Lucy statue mesh as a validation object to find optimal scale values for
the positional encoding and Gaussian feature mapping. As described in the caption for Table 3.2,
we calculate error on both a uniformly random test set and a test set that is close to the mesh
surface (randomly chosen mesh vertices that have been perturbed by a random Gaussian vector with
standard deviation 0.01) in order to illustrate that Fourier feature mappings provide a large benefit
in resolving fine surface details. Both test sets have 643 points.

Uniform points Boundary points
No mapping | 0.959 +0.006 0.864 + 0.014
Basic 0.966 £ 0.007 0.892 + 0.017
Positional enc.| 0.987 £ 0.005 0.960 4+ 0.011
Gaussian 0.988 + 0.007 0.973 £ 0.010

Table 3.2: 3D shape results (mean + standard deviation of intersection-over-union). Uniform points
is an “easy” test set where points are sampled uniformly at random from the bounding box of the
ground truth mesh, while Boundary points is a “hard” test set where points are sampled near the
boundary of the ground truth mesh.

In Figure 3.7, we visualize additional results on all four meshes mentioned above (including the
validation mesh Lucy). We render normal maps, which are computed by taking the cross product
of the numerical horizontal and vertical derivatives of the depth map. The original depth map is
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(a) Ground Truth  (b) No mapping (c) Basic (d) Positional enc.  (e) Gaussian

Figure 3.7: Results for the 3D shape occupancy task [115].

generated by intersecting camera rays with the first 0.5 isosurface of the network. We select the
Fourier feature scales for (d) and (e) by doing a hyperparameter search based on validation loss for
the Lucy mesh in the last row and report test loss over the other three meshes (Table 3.2). Note that
the weights for each trained MLP are only 2MB, while the triangle mesh files for the objects shown
are 61MB, 7MB, 79MB, and 32MB respectively.

2D CT

In computed tomography (CT), we observe measurements that are integral projections (integrals
along parallel lines) of a density field. We construct a 2D CT task by using ground truth 512 x 512
resolution images, and computing 20 synthetic integral projections at evenly-spaced angles. For
each of these images, the supervision data is the set of integral projections, and the test PSNR is
evaluated over the original image.

We use two datasets for our 2D CT task: randomized Shepp-Logan phantoms [175], and the
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(a) Ground Truth  (b) No mapping (c) Basic (d) Positional enc.  (e) Gaussian

Figure 3.8: Results for the 2D CT task.

ATLAS brain dataset [99]. For each dataset, we perform a hyperparameter sweep over mapping
scales on 8 examples. We found that scales 0, = 4 and 0, = 3 work best for the Shepp dataset and
o, = 5 and 0, = 5 work best for the ATLAS dataset. In Table 3.3, we report model performance
using the optimal mapping scale on a distinct set of 8 images.

Shepp ATLAS
No mapping | 16.75 £+ 3.64 15.44 + 1.28
Basic 23.31 £4.66 16.95£0.72

Positional enc.| 26.89 = 1.46 19.55 +1.09
Gaussian 2833 +21.1519.88 +1.23

Table 3.3: 2D CT results (mean + standard deviation of PSNR).

Each model (MLP with 4 layers, 256 channels, ReLLU activation, sigmoid output) is trained
for 1000 iterations using the Adam [86] optimizer with default settings (5; = 0.9, 55 = 0.999,
¢ = 107®). The learning rate is manually tuned for each method. Gaussian RFF and positional
encoding use a learning rate of 1073, and the basic and “no mapping” method use a learning rate of
1072,

3D MRI

In magnetic resonance imaging (MRI), we observe measurements that are Fourier coefficients of
the atomic response to radio waves under a magnetic field. We construct a toy 3D MRI task by
using ground truth 96 x 96 x 96 resolution volumes and randomly sampling ~ 13% of the Fourier
coefficients for each volume from an isotropic Gaussian. For each of these volumes, the supervision
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(a) Ground Truth  (b) No mapping (c) Basic (d) Positional enc.  (e) Gaussian
Figure 3.9: Results for the 3D MRI task.

data is the set of sampled Fourier coefficients, and the test PSNR is evaluated over the original
volume.

We use the ATLAS brain dataset [99] for our 3D MRI experiments. We perform a hyperparameter
sweep over mapping scales on 6 examples. We find that scales o, = 5 and 0, = 4 perform best.
In Table 3.4, we report model performance using the optimal mapping scale on a distinct set of 6
images. Each model (MLP with 4 layers, 256 channels, ReLLU activation, sigmoid output) is trained
for 1000 iterations using the Adam [86] optimizer with default settings (5; = 0.9, 5o = 0.999,
¢ = 107®). We use a manually-tuned learning rate of 2 x 102 for each method. Results are
visualized in Figure 3.9.

ATLAS
No mapping | 26.14 £ 1.45
Basic 28.58 +2.45

Positional enc.| 32.23 &+ 3.08
Gaussian 34.51 +£2.72

Table 3.4: 3D MRI results (mean =+ standard deviation of PSNR).

3D inverse rendering for view synthesis

In this task we use the “tiny NeRF” simplified version of the view synthesis method NeRF [123]
where hierarchical sampling and view dependence have been removed. The model is trained to
predict the color and volume density at an input 3D point. Volumetric rendering is used to render
novel viewpoints of the object. The loss is calculated between the rendered views and ground
truth renders. In our experiments we use the NeRF Lego dataset of 120 images downsampled to
400 x 400 pixel resolution. The dataset is split into 100 training images, 7 validation images, and
13 test images. The reconstruction quality on the validation images is used to determine the best
mapping scale; for this scene we find o, = 6.05 and o, = 1.27 perform best.

The model (MLP with 4 layers, 256 channels, ReLLU activation, sigmoid on RGB output)
is trained for 5 x 10° iterations using the Adam [86] optimizer with default settings (3; = 0.9,
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(a) Ground Truth  (b) No mapping (c) Basic (d) Positional enc.  (e) Gaussian

Figure 3.10: Results for the inverse rendering task [123].

B2 = 0.999, e = 10~®). The learning rate is manually tuned for each mapping: 10~2 for no mapping,
5 x 1073 for basic, 5 x 10~ for positional encoding, and 5 x 10~* for Gaussian. During training
we use batches of 1024 rays.

The original NeRF method [123] uses an input mapping similar to the Positional encoding we
compare against. The original NeRF mapping is smaller than our mappings (8 vs. 256 frequencies).
We include metrics for this mapping in Table 3.5 under Original pos. enc. The positional encoding
mappings only contain frequencies on the axes, and are therefore biased towards signals with on-axis
frequency content. In our experiments we rotate the Lego scene, which was manually axis-aligned
in the original dataset, for a more equitable comparison. Table 3.5 also reports metrics for positional
encodings on the original axis-aligned scene. Results are visualized in Figure 3.10.

Optimizing validation error through the NTK linear dynamics

Using Eqn. 3.3, we can predict what error a trained network will achieve on a set of testing points.
Since this equation depends on the composed NTK, we can directly relate predicted test set loss to
the Fourier feature mapping parameters a and b for a validation set of signals y,;:

2
Eopt = Hu(t) - YVale ~ HI<vaLlI{_1 (I - e—nKt)y ~ Yval

(3.10)

)
2
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3D NeRF
No mapping 2241 +£0.92
Basic 23.16 £0.90
Original pos. enc. 24.81 £ 0.88
Positional enc. 25.28 £0.83
Gaussian 25.48 £ 0.89
Original pos. enc. (axis-aligned)| 25.60 £ 0.76
Positional enc. (axis-aligned) 26.27 £ 0.91

Table 3.5: 3D NeRF results (mean + standard deviation of PSNR). Error is calculated based on
held-out images of the scene since the ground truth radiance field is not known.

where K., is the composed NTK evaluated between points in a validation dataset X, and training
dataset X, and 7 and ¢ are the learning rate and number of iterations that will be used when training
the actual network.

In Figure 3.11, we show the results of minimizing Eqn. 3.10 by gradient descent on a; values
(with fixed corresponding “densely sampled” b; = j) for validation sets sampled from three different
1/ f“ noise families. Note that gradient descent on this theoretical loss approximation produces
a; values which are able to perform as well as the best “power law” a; values for each respective
signal class (compared dashed lines versus x markers in Figure 3.11b). As mentioned in the main
text, we find that this optimization strategy is only viable for small 1D regression problems. In our
multidimensional tasks, using densely sampled b; values is not tractable due to memory constraints.
In addition, the theoretical approximation only holds when training the network using SGD, and in
practice we train using the Adam optimizer [86].

Feature sparsity and network depth

In our experiments, we observe that deeper networks need fewer Fourier features than shallow
networks. As the depth of the MLP increases, we observe that a sparser set of frequencies can
achieve similar performance; Figure 3.12 illustrates this effect in the context of 2D image regression.

Again drawing on NTK theory, we understand this tradeoff as an effect of frequency “spreading,”
as illustrated in Figure 3.13. A Fourier featurization consists of only discrete frequencies, but
when composed with the NTK, the influence of each discrete frequency “spreads” over its local
neighborhood in the final spectrum. We find that the “spread” around each frequency feature
increases for deeper networks. For an MLP to learn all of the frequency components in the target
signal, its corresponding composed NTK must contain adequate power across the frequency support
of the target signal. This is accomplished either by including more frequencies in the Fourier
features or by spreading those frequencies through sufficient NTK depth.
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Figure 3.11: The Fourier feature mappings can be optimized for better performance on a class
of target signals by using the linearized network approximation. Here we consider target signals
sampled from three different power law distributions. In (a) we show the spectrum for composed
kernels corresponding to different optimized feature mappings, where the feature mappings are
initialized to match the “Power oo™ distribution. In (b) we take an alternative approach where
we sweep over "power law" settings for our Fourier features. We find that tuning this simple
parameterization is able to perform on par with the optimized feature maps.

Figure 3.12: In a 2D image regression task (ex-
plained in Section 3.6) we find that shallower
networks require more Fourier features than

deeper networks. This is explained by the fre-
= / quency spreading effect shown in Figure 3.13.
2 In this experiment we use the Natural image

= 2 layers

4 layers dataset and a Gaussian mapping. All of the
—— 8 layers network layers have 256 channels, and the net-
i 5 58 ST works are trained using an Adam [86] optimizer
Embedding length with a learning rate of 1073,

3.7 Discussion

We leverage NTK theory to show that a Fourier feature mapping can make coordinate-based MLPs
better suited for modeling functions in low dimensions, thereby overcoming the spectral bias inherent
in coordinate-based MLPs. We experimentally show that tuning the Fourier feature parameters offers
control over the frequency falloff of the combined NTK and significantly improves performance
across a range of graphics and imaging tasks. These findings shed light on the burgeoning technique
of using coordinate-based MLPs to represent 3D shapes in computer vision and graphics pipelines,
and provide a simple strategy for practitioners to improve results in these domains. This technique
is leveraged utilized in all of the remaining projects in this dissertation.
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Figure 3.13: Each frequency included in a Fourier embedding is “spread” by the NTK, with deeper
NTKs causing more frequency spreading. We posit that this frequency spreading is what enables an
MLP with a sparse set of Fourier features to faithfully reconstruct a complex signal, which would
be poorly reconstructed by either sparse Fourier feature regression or a plain coordinate-based MLP.
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Chapter 4

Initializing Coordinate-Based Networks

In the previous chapters we explored the potential of representing complex low-dimensional signals
using deep fully-connected neural networks. However, one limitation of these neural representations
is that computing network weights 6 that reproduce a given signal typically requires solving an
optimization problem by running many steps of gradient descent. This can take between seconds
(when encoding a small image) and hours (when solving an inverse problem to recover a high
resolution radiance field, as in NeRF [123]). Common approaches to address this issue include
concatenating a latent vector to the input coordinate and supervising a single neural network to
represent an entire class of signals [115, 137], or training a hypernetwork to map from signal
observations (or a latent code) to MLP weights [179, 177]. However, each of these strategies is
restricted to representing only signals within its learned latent space, potentially limiting its ability
to express previously unseen target signals.

Recent work [180] has shown that optimization-based meta-learning can dramatically reduce
the number of gradient descent steps required to optimize a neural representation to encode a new
signal in the case of signed distance fields of 2D and 3D shapes. In this work, we propose learning
the weight initialization for neural representations across a wide variety of underlying signal types,
such as images, volumetric data, and 3D scenes. We show that compared to a standard random
initialization, using fixed, learned values for the initial network weights acts as a strong prior that
enables both faster convergence during optimization and better generalization when only partial
observations of the target signal are available. In the context of using neural representations for
3D reconstruction from images, a learned initialization specialized to a particular ShapeNet [21]
class allows the network to recover 3D shape from a single image over the course of optimization,
whereas a standard randomly initialized network fails unless provided with multiple input views.
Given a meta-training set consisting of observations of different signals sampled from a fixed
underlying class, our setup applies an optimization-based meta-learning algorithm (MAML [41] or
Reptile [129]) in order to produce initial weights better suited for representing that specific signal
class (e.g., face images from CelebA [107] or 3D chairs from ShapeNet [21]).

The biggest advantage of our approach is its simplicity. Given an existing framework for test-

This chapter is based on joint work published at CVPR 2021 [194]
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Figure 4.1: A coordinate-based MLP, illustrated on the left, takes a coordinate as input and outputs
a value at that location. For example, the network could take in a pixel coordinate (x, y) and emit
the (R, G, B) color at that pixel as output, thereby representing a 2D image. The network weights ¢
are typically optimized via gradient descent to produce the desired image, as depicted on the right.
However, finding good parameters can be computationally expensive, and the full optimization
process must be repeated for each new target. We propose using meta-learning to find initial network
weights 6 that allow for faster convergence and better generalization.

time optimization of a neural representation, implementing an outer loop with MAML or Reptile
update steps only requires a few extra lines of code and a dataset of training examples. Once the
meta-learning phase is complete, the learned initial weights can be stored and later reloaded in
place of a standard network initialization whenever a new signal needs to be encoded. This minor
implementation change can significantly alter the behavior of the network during optimization.

4.1 Related Work

Neural Representations Neural representations have recently risen to prominence as compact
representations for 3D shapes. These methods represent shapes as implicit surfaces defined as a
level set of an MLP network and enable full object reconstruction from incomplete 3D point cloud
data or depth scans [26, 34, 53, 55, 76, 115, 118, 137]. Later work combined this idea with various
formulations of differentiable rendering to recover neural representations of 3D shape using only
2D image observations [105, 104, 123, 131, 177, 215].

Coordinate-based neural networks have also been used to represent other low-dimensional
signals, such as 2D images, where such networks (when trained via genetic algorithms) have been
referred to as compositional pattern—producing networks [185]. Recent works have shown that
standard ReLU MLPs fail to adequately represent fine details in these complex low-dimensional
signals due to a spectral bias [149] and address this issue by either replacing the ReLLU activations
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with sine functions [179] or by lifting the input coordinates into a Fourier feature space [193]. Our
work makes use of these observations and presents a technique that enables a coordinate-based MLP
to learn from the process of fitting many signals within a category so that it can quickly optimize to
fit any new signal using fewer steps and fewer observations.

Meta-learning Meta-learning typically addresses the problem of few-shot learning, where some
examples of a given task (including training and test data) are used to learn an algorithm that
achieves better performance on new, previously unseen instances of the same task. A prototypical
example from computer vision is few-shot image classification, where a network must learn to
differentiate between new classes at test time based on only a small number of labeled instances of
each class.

Most relevant to this work are optimization-based meta-learning algorithms such as Model-
Agnostic Meta Learning (MAML) [41] and Reptile [129], as well as various extensions [6, 40, 42,
98, 153]. Given a network architecture for performing a task, these methods use an outer loop of
gradient-based learning to find a weight initialization that allows the network to more efficiently
optimize for new instances of the underlying task at test time. These methods assume the use of
a standard gradient-based optimization method such as stochastic gradient descent or Adam [86]
at test time, making them easy to layer on top of existing implementations, as opposed to more
complex methods such as Ravi er al. [156], which trains a “meta-learner” LSTM network to
perform gradient updates for the underlying task. An exhaustive review of meta-learning algorithms
is provided in the survey paper by Hospedales et al. [68].

MetaSDF [180] specifically applies this idea of learning a weight initialization to the task of
fitting neural representations to represent signed distance fields, and shows that this strategy achieves
much more rapid convergence than standard approaches such as DeepSDF [137]. Our work applies
meta-learning to neural representations for a wider variety of underlying signal types and further
explores the power of using initial weight settings as a prior.

4.2 Overview

We define a finite signal 7" as a function mapping from a bounded set C' € R? to R", where we
refer to elements x € C' as d-dimensional coordinates. Examples include images (mapping from
2D pixel coordinates to 3D color values) or volumetric representations for 3D shapes (mapping
from 3D locations to 4D tuples of color and density). A coordinate-based neural representation fy
for T is a fully connected neural network with d input and n output channels whose weights 6 are
optimized such that fy matches 7" as closely as possible for all coordinates in x € C.

If direct pointwise observations {(x;, 7(x;) }; of the signal 7" are available, fy can be supervised
by gradient descent using a simple L2 loss:

L(0) = Z I.fo(x:) — T(xs)|3. (4.1)
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Let 6, denote the initial network weights before any gradient steps are taken, and let 6; denote the
weights after ¢ steps of optimization. Basic gradient descent applies the rule:

0it1=0; — OéveL(eﬂezei ) 4.2)

with a learning rate parameter o, whereas more sophisticated optimizers such as Adam [86] keep
track of gradient moments over time to redirect the optimization trajectory. Given a fixed budget
of m optimization steps, different initial weight values 6, will result in different final weights 6,),
and signal approximation error L(6,,). When emphasizing the functional dependence of 6,, on the
initial weights and a particular signal, we will write 6,,(0y, T').

It is often the case that only indirect observations of 7" are available, taken through some forward
measurement model M (T, p). For example, if 7" is a 3D object, M (T, p) could be a 2D image
captured of the object from camera pose p. In this case, recovering a neural representation for 7'
from observations {p;, M (T, p;) }; requires solving an inverse problem by taking gradient steps on
a loss that incorporates the forward model M:

Lyr(9) = IM(fo,p:) — M(T,p3)13. 4.3)

If M discards too much information about 7’ or the set of provided observations is too small, the
resulting network fy may not match 7" closely. For example, accurately recovering a 3D object from
a single 2D view may not be possible without strong a priori knowledge of the object’s shape.

Optimizing initial weights

We assume that we are given a dataset of observations of signals 7' from a particular distribution
T (e.g., 2D face images or 3D chairs) and our goal is to find initial weights 6 that will result in
the lowest possible final loss L(6,,) when optimizing a network fj to represent a new, previously
unseen signal from the same distribution:

0y = argming Ep7[L(0,(600, T))] 4.4)

This problem of trying to learn the initial weights of a network to serve as a good starting point
for gradient descent across a distribution of tasks is addressed by a variety of optimization-based
meta-learning algorithms, such as MAML [41] and Reptile [129].

MAML [41] Given a task 7', calculating the weight values 6,,,(0y, T') requires taking m optimiza-
tion steps, which are collectively referred to as the inner loop. MAML wraps an outer loop of
meta-learning around this inner loop in order to learn the initial weights 6,. Each outer loop samples
a signal 7} from 7 and applies the update rule:

05" = 05 — BVoL(0m(9,T))) gy (4.5)

with meta-learning step size (3. This update rule applies gradient descent to the loss on the weights
0,,,(0%, T;) resulting from the inner loop optimization.
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Reptile [129] Reptile uses the same meta-learning setup as MAML but applies a simpler update
rule that does not require calculating second-order gradients:

O = 00 — B(0,,(0,T;) — 03) . (4.6)

This rule moves the previous weight initialization 08 in the direction of the task-optimized weights
O (65, T;).

Experimental setup

The meta-learning algorithms described previously are conceptually simple, requiring no changes to
the architecture or optimization procedure of a coordinate-based neural representation when given a
new signal to encode at “test time” (after meta-learning is complete). These algorithms produce
only a set of initial network weights ¢; that are then used as a starting point for gradient descent.
Test-time optimization on new signals is not limited to the same number of steps m as were used in
the inner loop during meta-learning; indeed, at test time we often observe benefits from optimizing
for significantly more iterations than were used during the inner loop of the meta-learning algorithm.

MAML is typically able to produce a better initialization than Reptile given a fixed number

of inner loop steps m, but Reptile can be unrolled for more inner loop steps because it is less
memory-intensive than MAML. For some tasks, MAML’s limited number of inner loop steps means
that it can only observe a small percentage of the observations of a target signal. In these cases, we
use Reptile to maximize the number of different observations seen over the course of the inner loop.
Experimentally we find it beneficial to unroll more steps for more complex tasks.

Each of our experiments involves two phases:

1. Meta-learning, where we use MAML or Reptile in combination with a training dataset of
example tasks (observations of different signal instances) to optimize initial network weights
for that class of signals, and

2. Test-time optimization, where we use standard gradient-based optimization to fit the weights
of a network to observations of a previously unseen signal from the same class.

We aim to answer the following question: how do different initial network weight settings influence
the ability of a neural representation to fit to a new signal during test-time optimization?

4.3 Implementation details

We found that modifying the weight initialization for these coordinate-based networks drastically
changed their convergence behavior during test-time optimization. As a result, we tuned the opti-
mization method and hyperparameters for each part of each experiment (using held-out validation
sets) in order to provide the fairest possible comparison and to not bias the results against the
non-meta-learned initializations. For example, we often found that SGD outperformed Adam when
doing test-time optimization using meta-learned initializations, but that Adam was significantly
better than SGD with a standard random initialization.
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All experiments are implemented in JAX [15]. Each experiment is trained on either a single
NVIDIA V100, 2080 Ti, or 3080 Ti. In all cases where the Adam optimizer [86] is used, we keep
the standard parameter choices for 3; = 0.9, £, = 0.999, e = 1078,

Image regression

For this task we use a SIREN [179] architecture (wy = 200) with 5 layers of 256 channels each. For
the randomly initialized Standard baseline, we use the specific initialization procedure as proposed
in the SIREN paper.

MAML [41] is trained for 150K iterations. Each iteration has an outer batch size of 3 target
images. The inner batch contains all pixels of the target image. The outer loop uses the Adam
optimizer with learning rate of 10~°. The inner loop performs two steps of gradient descent with a
learning rate of 1072,

During test-time optimization, we use gradient descent with learning rate of 10~2 when starting
from the MAML initial weights. For the baseline methods (Standard, Mean, Matched, Shuffled)
we used Adam with learning rate of 10~*, which performed significantly better than than gradient
descent.

CT reconstruction

For this task we use an MLP with 5 layers of 256 channels each. The network uses a ReLU
activation after each layer with the exception of the last layer, which has a sigmoid activation.
Prior to inputting the coordinates into the network, we encode them using random Fourier features
sampled from a normal distribution with o = 30, as was done in Tancik et al. [193].

Reptile [129] is trained for 100K iterations. Each iteration has an outer batch size of 1. The inner
batch contains 20 CT projections, each with 256 measurements, taken from a randomly sampled
direction. The outer loop uses the Adam optimizer with learning rate of 5 x 107°. The inner loop
performs 12 inner loop steps of gradient descent with a learning rate of 10

ShapeNet [21] view synthesis

We use a simplified NeRF [123] model for our view synthesis tasks. This model uses a single
network rather than two networks (coarse and fine), and we do not provide view directions as
input. The network is an MLP with 6 layers, each with 256 channels and ReL.U activations. As in
NeRF [123], we apply a positional encoding to each input coordinate with the form

N
U{cos(2fi/N$) ,sin (in/Nx) } , “4.7)
i=0

with N = 20 encodings and log-max frequency f = 8. We accumulate 128 samples per ray for

rendering.
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Reptile is trained for 100K iterations with an outer batch size of 1. The inner loop step optimizes
over a batch of 128 rays. We perform 32 inner loop steps for every outer loop step. The outer loop
uses the Adam optimizer with learning rate 5 x 10~ for the Chairs scenes and 5 x 1075 for the
Lamps and Cars scenes.

The test-time optimization parameters vary depending on the scene and the number of views
available during meta-learning. Each experiment uses an inner batch of 64 rays. The Shuffled
and Matched initializations are computed based on the MV Meta weights. For the 25 view chair
reconstruction, we use stochastic gradient descent with a learning rate of 10~! for the Reptile
initialization; for the standard initialization, we use Adam with a learning rate of 10~

Phototourism [77] view synthesis

We use the same architecture as described in §4.3. Reptile is trained for 150K iterations with an
outer batch size of 1. The inner loop step optimizes over a batch of 64 rays, with 128 volume
rendering samples per ray. The outer loop uses the Adam optimizer with a learning rate of 5%, We
train with 64 inner loop steps using gradient descent with a learning rate of 10. We compare to
Basic NeRF which has the same setup, but only one inner step. For Basic NeRF we train Trevi for
60K iterations, Brandenburg for 100K iterations, and Sacre Coeur for 200K iterations. To transfer
the appearance of a new photo during test-time optimization, we take 150 gradient steps with a
learning rate of 10.

4.4 Results

We present results on 2D image regression, 2D computed tomography (CT) reconstruction, 3D
object reconstruction, and 3D scene reconstruction. For each task, we demonstrate the benefits of
using meta-learned initial weights optimized to reconstruct a specific class of signals.

For 2D image regression, a meta-learned weight initialization leads to faster convergence
and better performance during test-time optimization. For CT reconstruction, it allows for better
reconstruction quality from fewer supervision views during test-time optimization. For 3D shape
reconstruction from images, it allows for faster convergence at test time and makes single view
reconstruction possible. For Phototourism landmark reconstruction, it can be optimized at test time
to transfer the appearance of a single input image onto the whole landmark, which can then be
rendered from novel camera views.

Tasks

Image regression A prototypical example of a coordinate-based neural representation is an MLP
optimized to represent a 2D image [179, 193] by taking in 2D pixel coordinates and outputting RGB
color values. We consider four different distributions 7 : images of faces (CelebA [107]), natural
images (Imagenette [69]), images of text (7Text), and 2D signed distance fields of simple curves
(SDF). Each category contains around ten thousand examples. Given a sampled image 7' ~ T, we
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provide all 178 x 178 pixels as observations for optimizing the network weights ¢ in the inner loop.
Since this task is not memory constrained, we use MAML to meta-learn the weights over 2 unrolled
gradient steps (separately for each category 7). In each of these inner loop steps, the entire image
is reconstructed and used to calculate the loss. For the MLP f,, we use 5 layers with 256 channels
each and sine function nonlinearities, as in SIREN [177].

CT reconstruction Computed tomography (CT) is a widely used medical imaging technique that
captures projective measurements of the volumetric density of a target object. Tancik ef al. [193]
use a coordinate-based neural representation to reconstruct a 2D signal from 1D integral projections;
the underlying MLP f, takes in a 2D coordinate and outputs a scalar volume density at that location.
Here 7 is a dataset of 2048 randomly generated 256 x 256 pixel Shepp-Logan phantoms [175],
where we provide 2D integral projections of a bundle of 256 parallel rays from a random angle as
the measurement for each sampled signal 7" during meta-learning. We use Reptile to meta-learn
the initial weights over 12 unrolled gradient steps. We found this to outperform MAML, which
was limited to 3 unrolled steps due to memory constraints. For the MLP fy, we use 5 layers with
256 channels each and ReLLU nonlinearities, and we apply random Fourier features to the input
coordinates [193].

View synthesis for ShapeNet [21] objects The goal of view synthesis is to generate a novel view
of a scene from a set of reference images. We use NeRF described in chapter 2 for this task. The
NeRF network is optimized to minimize the residual of re-rendering each of the input reference
images from their respective camera poses. In our view synthesis experiments, we use a simplified
NeRF model (simple-NeRF) that maintains the same image supervision and volume rendering
context. Unlike the original NeRF model, we do not feed in the viewing direction and we use a
single model instead of the two “coarse” and “fine” models used by NeRF.

For view synthesis on objects from the ShapeNet [21] dataset, we consider three categories 7 :
Chairs, Cars, and Lamps. We provide 25 128 x 128 pixel reference images during meta-learning for
each 3D object T'. The reference viewpoints are randomly distributed on a sphere and are oriented
towards the target object, and each object is oriented in the canonical coordinate frame. The scenes
are lit by a randomly selected environment map [51] and rendered using ray tracing. We use Reptile
to meta-learn the initial weights (for each shape category) over 32 unrolled gradient steps. For the
MLP fy, we use 6 layers with 256 channels each and ReLLU nonlinearities, and apply a positional
encoding to the input coordinates [123].

View synthesis for Phototourism [77] scenes This dataset consists of thousands of posed tourist
photographs of famous landmarks. Our objective is to use these images to create an underlying
representation that can be explored and rendered from novel viewpoints with varying lighting
conditions. The primary challenge is the diversity of the capture conditions: the photos are taken
with different lighting conditions, camera hardware, camera viewpoint, and varying transient objects
like people and cars. Each underlying dataset 7 for meta-learning ¢, consists of images of a single
landmark (Trevi, Sacre Couer, or Brandenburg); the category is the overall 3D structure of the
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Figure 4.2: Faster convergence: Examples of optimizing a network to represent a 2D image
from different initial weight settings. The meta-learned initialization (Meta) is specialized for the
class of human face images but still helps speed up convergence on other natural images (right).
Non-meta-initialized networks take 10 to 20 times as many iterations to reach the same quality as
the meta-initialized network does after only 2 gradient steps (see Table 4.1).

landmark itself, and the signal is its particular appearance (resulting from the time of day, lighting,
weather conditions, etc) within a single photo. If a standard NeRF model is trained directly on
this data, it learns a blurry representation of the scene that roughly corresponds to the mean of
the environmental conditions. NeRF in the Wild [112] explores these shortcomings and proposes
extensive architectural modifications to account for the variations. We find that these shortcomings
can be addressed to some degree solely with a better initialization and no architectural changes.
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Init. Method|2 Step PSNR 7|# of iters to match |
Standard 10.88 37.92 £6.31
Mean 14.48 25.59 + 4.57
Matched 13.73 26.32 +£4.17
Shuffled 16.29 25.80 £ 4.02
Meta 30.37 -

Table 4.1: Comparison of different initialization methods on an image regression task using the
CelebA dataset. We report reconstruction PSNR after two steps of test-time optimization. The
meta-learned initialization (Meta) significantly outperforms all other initializations. We also report
the average number of iterations necessary to match the accuracy of Meta after two steps.

Task
CelebA Imagenette Text SDF
CelebA 3037 2644 21.5336.45
Imagenette| 28.51  27.07 22.63 34.80
Text 14.65 15.83 27.8523.14
SDF 19.80  20.05 17.2351.73

Init.

Table 4.2: PSNR comparison of four different learned initializations for image regression. Each
row corresponds to an initialization meta-learned over a different underlying image dataset. The
columns indicate which dataset images are sampled from during testing. The best initialization
for each task (bolded) is the one specifically optimized on training images drawn from the same
dataset. We observe that initializations transfer better between more similar datasets (CelebA and
Imagenette, both natural images) and poorly between less similar datasets (the frequency spectrum
of Text images is unlike that of the other categories).

We apply meta-learning to the same simple-NeRF model from the ShapeNet experiment. The
meta-training dataset for each landmark consists of thousands of images with varying resolution
and intrinsic/extrinsic camera parameters. We use Reptile to meta-learn the initial weights (for each
landmark) over 64 unrolled gradient steps. At test time, we optimize the simple-NeRF (starting from
the initial weights 6 for that landmark) to reproduce the appearance of a new image, and then render
that simple-NeRF from other viewpoints. For the underlying MLP fy, we use 6 layers with 256
channels each and ReLU nonlinearities, and apply positional encoding to the input coordinates [123].

Baselines

As well as a Standard randomly initialized network (Glorot et al. [57]), we compare to various
other initialization schemes in several of our experimental settings:
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Init. PSNR
Method |1 Views 2 Views 4 Views 8 View
Standard| 13.63 14.15 16.31 21.49
Mean 14.72 15.39 1743 25.19
Matched| 14.07 15.51 20.25 24.77
Shuffled | 13.64 14.17 16.69 22.09
Meta 15.09 18.70 22.00 27.34

Table 4.3: Comparison of initialization methods on a CT reconstruction task. Each “view” consists of
256 parallel rays. The data-dependent prior acquired during meta-learning improves reconstruction
quality when fewer views are observed.

* Mean: we optimize a network from scratch such that its output matches the mean signal
Er7|T] from the current class 7 .
* Matched: we optimize a network from scratch such that its output matches the output of a
network using the meta-learned initialization for the current class 7.
* Shuffled: we randomly permute the weights (within each network layer) of the meta-learned
initialization ¢ for the current class 7.
Both the Mean and Matched baselines demonstrate the difference between having a good ini-
tialization in signal space versus weight space—despite Mean and Matched being initialized so
that the loss against a randomly sampled signal will be low, they are a worse starting point for
gradient descent than the actual meta-learned initial weights. The Shuffled baseline demonstrates
that matching the statistical distribution of the meta-learned initial weights is not sufficient for
better convergence or generalization. We find that using the Adam [86] optimizer performs best for
all of the baseline initializations, but that standard stochastic gradient descent works best for the
meta-learned initializations (we choose the best optimizer and hyperparameters for each task and
initialization using a held-out validation set).

Faster convergence

Image regression In Figure 4.2, we visualize the network output for a variety of initial weight
settings, showing the output images after O, 1, and 2 gradient steps of test-time optimization. The
meta-learned initial weights are optimized to represent face images (CelebA [107]). When using
the learned initial weights 0, (Meta), the target image is already clearly visible after the very first
step. In contrast, the baseline initialization methods take an order of magnitude more iterations to
represent the target image to the same accuracy (see Table 4.1). The Mean, Matched, and Shuffled
baselines perform better than the completely random Standard initialization, but still take over ten
times as many iterations to reach the same quality as the meta-initialized network can after 2 steps.
In particular, this demonstrates that neither matching the image space output nor the statistical
distribution of the meta-learned weights is sufficient for achieving a similar speedup.
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Figure 4.3: Sparse Recovery: Examples of CT reconstructions of a Shepp-Logan phantom from a
sparse set of views. The meta-learned initial weights encode a data-dependent prior that improves
reconstruction in the limited data regime.

View synthesis for ShapeNet [21] objects In Figure 4.5, we plot the image reconstruction
accuracy for a held-out test set of objects from the Chair category. During test-time optimization,
25 views are observed. We find that starting from the optimized weights 6 allows the network to
recover the chair more quickly compared to the Standard weight initialization. We note that after
many steps, both methods end up at a similar quality.

Generalizing from partial observations

Image regression within a category We perform meta-learning experiments across multiple
datasets to determine the extent that the optimized weight initialization acts as a class-specific prior.
We compare initializations trained on four different image datasets (CelebA, Imagenette, Text, and
SDF). Table 4.2 presents a confusion matrix demonstrating that optimizing the network initialization
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Figure 4.4: Single view reconstructions of ShapeNet [21] objects. The simple-NeRF formulation
relies on multi-view consistency for supervision and therefore fails if naively applied to the task of
single view reconstruction, as seen in the Standard column. However, if the model is trained starting
from meta-learned initial weights, it is able to recover 3D geometry. The MV Meta initialization has
access to multiple views per object during meta-learning, whereas the SV Meta initialization only
has access to a single view per object during meta-learning. All methods only receive a single input
view during test-time optimization.
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does in fact induce a dataset-dependent prior, with each learned initialization generalizing best to
the same dataset distribution it was trained on.

CT reconstruction from sparse views We report the reconstruction quality over a test set of
phantoms given varying numbers of views at test time in Table 4.3 and visualize one test example in
Figure 4.3. We observe poor reconstructions from the Standard initialization when few views are
provided. The meta-learned initializations are consistently able to match the PSNR of Standard with
half as many views. The Mean initialization is generated by training a network to reconstruct the
mean of the training phantoms. It is better able to preserve the structure of the phantom compared
to Standard but still performs worse than the meta-learned initializations.

Single image view synthesis for ShapeNet [21] A simple-NeRF model with a Standard random
initialization relies on multi-view consistency to reconstruct the appearance of a 3D object. With
only a single view, this naive model is unable to recover any meaningful shape. We find that
a learned initialization “bakes in” a class-specific shape prior that enables the recovery of 3D
geometry (Figure 4.4, Table 4.4). We can meta-learn an effective weight initialization for single-
view reconstruction by optimizing over a dataset with 25 training views of each object (MV Meta).
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Figure 4.5: Reconstruction quality over the course of training for models optimized to reconstruct
ShapeNet chairs from a set of 25 reference images. The model starting from the meta-learned initial
weights outperforms the network using a standard random initialization throughout training.

PSNR
Chairs Cars Lamps
Standard 12.49 11.45 15.47
MYV Matched| 16.40 22.39 20.79
MYV Shuffled | 10.76 11.30 13.88
MV Meta  |18.85 22.80 22.35
SV Meta 16.54 22.10 20.95

Table 4.4: Metrics for single image ShapeNet reconstructions using a simple-NeRF model. See
Figure 4.4 for image examples and §4.4 for experimental details.

We find that this prior persists even if the meta-training dataset only contains a single reference
image per scene (SV Meta), meaning that the meta-learning phase has no access to multiview
information for any particular object.

View synthesis with appearance transfer for Phototourism [77] As described in §4.4, these
images have different camera poses and visual appearance (lighting, sky, etc.) as they are taken by
tourists at different times. Our goal at test time is to explore the landmark from varying camera
viewpoints but rendered with the same appearance as in a target photograph. In every step of
the meta-learning outer loop, we supervise the simple-NeRF model to match the appearance of
a random photo of the landmark (with varying pose and appearance). We find that performing
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Figure 4.6: Reconstructions of the Trevi Fountain and Sacre Coeur landmarks from the Phototourism
dataset [77]. The meta-learning algorithm is run over tourist images taken at different locations
and times. During the test-time optimization, the neural representation is trained to recover the
input view on the left. The strong prior from the initialization captures the underlying geometry,
allowing us to render views from the camera positions of the images in the top row while retaining
the appearance of the input view.

PSNR
Trevi Sacre Coeur Brandenburg
Basic NeRF|17.14 17.59 17.77
Meta 19.35 19.33 19.11

Table 4.5: Reconstruction results on Phototourism data. Multi-view data with consistent appearance
is not available in this dataset, so we optimize on one half of an image and report image metrics
on the other half. We compare our Reptile setup (Meta) with a standard NeRF network trained on
all images of the landmark and then test-time optimized to fit each held-out target image. This is
equivalent to training Reptile with one inner loop gradient step.

test-time optimization using a single new photograph allows us to render convincing unobserved
viewpoints of the scene with the same environmental conditions.

In Figure 4.6, we show results for two landmarks. We test-time optimize the meta-learned
weights for five target images (shown on the left side of the grid), taking 150 gradient steps for
each image. We then render each of the resulting simple-NeRF networks from the five different
viewpoints (shown in the row above the grid). The result is an image from the camera position of
the corresponding top row image and matching the appearance of the left column image.
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Quantitative evaluation on the Phototourism dataset is difficult as multiple views with the same
environmental conditions do not exist. To overcome this, for Table 4.5 we optimize and evaluate on
the same image, by optimizing to match the appearance of the left half of the image and subsequently
evaluating metrics on the right half. For comparison, we train a simple-NeRF model with a standard
random initialization from scratch on each landmark, then test-time optimize it to match the left
half of each new view before evaluating it on the right half. This is algorithmically equivalent to
Reptile with one inner optimization step. We find that unrolling Reptile for 64 inner steps performs
better, producing significantly clearer renderings of the landmark.

4.5 Discussion

Our results show that simply modifying a coordinate-based neural representation’s initial weight
values can guide the network along a significantly better optimization trajectory, without changing
the underlying architecture or test-time optimization procedure. These meta-learned initial weights
can result in faster convergence or act as a strong prior for representing signals from a given
distribution. This partially ameliorates a major shortcoming of neural representations (separately
optimizing a network for each new signal) without limiting their representational power.

There are many additional directions to explore, such as applying more sophisticated meta-
learning algorithms or more precisely characterizing the geometry of weight space for these
networks. One limitation of our current approach is that it requires a sizable dataset of example
signals from a target distribution in order to derive beneficial initial weights. Another shortcoming
is that our method still requires some amount of test-time optimization.

As the number of use cases for neural representations continues to rapidly expand, we believe
this work takes an important step toward understanding the importance of their initial weights
and optimization behavior. In the following chapters we will explore new use cases for neural
representations.



57

Chapter 5

Scaling Neural Radiance Fields

In this chapter we investigate scaling up NeRFs to arbitrarily large scenes. In the previous chapters,
we focused on small-scale and object-centric reconstructions. Though some methods address scenes
the size of a single room or building [8], these are generally still limited and do not naively scale
up to city-scale environments. Applying these methods to large environments typically leads to
significant artifacts and low visual fidelity due to limited model capacity.

Reconstructing large-scale environments enables several important use-cases in domains such as
autonomous driving [136, 96, 214] and aerial surveying [38, 101]. One example is mapping, where
a high-fidelity map of the entire operating domain is created to act as a powerful prior for a variety of
problems, including robot localization, navigation, and collision avoidance. Furthermore, large-scale
scene reconstructions can be used for closed-loop robotic simulations [36]. Autonomous driving
systems are commonly evaluated by re-simulating previously encountered scenarios; however, any
deviation from the recorded encounter may change the vehicle’s trajectory, requiring high-fidelity
novel view renderings along the altered path. Beyond basic view synthesis, scene conditioned
NeRFs are also capable of changing environmental lighting conditions such as camera exposure,
weather, or time of day, which can be used to further augment simulation scenarios.

Reconstructing such large-scale environments introduces additional challenges, including the
presence of transient objects (cars and pedestrians), limitations in model capacity, along with
memory and compute constraints. Furthermore, training data for such large environments is highly
unlikely to be collected in a single capture under consistent conditions. Rather, data for different
parts of the environment may need to be sourced from different data collection efforts, introducing
variance in both scene geometry (e.g. , construction work and parked cars), as well as appearance
(e.g. , weather conditions and time of day).

We extend NeRF with appearance embeddings and learned pose refinement to address the envi-
ronmental changes and pose errors in the collected data. We additionally add exposure conditioning
to provide the ability to modify the exposure during inference. We refer to this modified model
as a Block-NeRF. Scaling up the network capacity of Block-NeRF enables the ability to represent
increasingly large scenes. However this approach comes with a number of limitations; rendering

This chapter is based on work completed when the author was an intern at Waymo LLC, published at CVPR
2022 [192] (U.S. Patent Pending App. No. 18/074,371).
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Figure 5.1: Block-NeRF is a method that enables large-scale scene reconstruction by representing
the environment using multiple compact NeRFs that each fit into memory. At inference time,
Block-NeRF seamlessly combines renderings of the relevant NeRFs for the given area. In this
example, we reconstruct the Alamo Square neighborhood in San Francisco using data collected
over 3 months. Block-NeRF can update individual blocks of the environment without retraining on

the entire scene, as demonstrated by the construction on the right. Video results can be found on the
project website waymo.com/research/block-nerf.

time scales with the size of the network, networks can no longer fit on a single compute device, and
updating or expanding the environment requires retraining the entire network.

To address these challenges, we propose dividing up large environments into individually
trained Block-NeRFs, which are then rendered and combined dynamically at inference time.
Modeling these Block-NeRFs independently allows for maximum flexibility, scales up to arbitrarily
large environments and provides the ability to update or introduce new regions in a piecewise
manner without retraining the entire environment as demonstrated in Figure 5.1. To compute a
target view, only a subset of the Block-NeRFs are rendered and then composited based on their
geographic location compared to the camera. To allow for more seamless compositing, we propose

an appearance matching technique which brings different Block-NeRFs into visual alignment by
optimizing their appearance embeddings.

5.1 Related Work

Large Scale 3D Reconstruction

Researchers have been developing and refining techniques for 3D reconstruction from large image
collections for decades [46, 181, 142, 97, 3, 233], and much current work relies on mature and
robust software implementations such as COLMAP to perform this task [170]. Nearly all of these
reconstruction methods share a common pipeline: extract 2D image features (such as SIFT [111]),
match these features across different images, and jointly optimize a set of 3D points and camera
poses to be consistent with these matches (the well-explored problem of bundle adjustment [60,
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197]). Extending this pipeline to city-scale data is largely a matter of implementing highly robust
and parallelized versions of these algorithms, as explored in work such as Photo Tourism [181] and
Building Rome in a Day [3]. Core graphics research has also explored breaking up scenes for fast
high quality rendering [110].

These approaches typically output a camera pose for each input image and a sparse 3D point
cloud. To get a complete 3D scene model, these outputs must be further processed by a dense
multi-view stereo algorithm (e.g. , PMVS [47]) to produce a dense point cloud or triangle mesh.
This process presents its own scaling difficulties [48]. The resulting 3D models often contain
artifacts or holes in areas with limited texture or specular reflections as they are challenging to
triangulate across images. As such, they frequently require further postprocessing to create models
that can be used to render convincing imagery [174]. However, this task is mainly the domain of
novel view synthesis, and 3D reconstruction techniques primarily focus on geometric accuracy.

In contrast, our approach does not rely on large-scale SfM to produce camera poses, instead
performing odometry using various sensors on the vehicle as the images are collected [196].

Novel View Synthesis

Given a set of input images of a given scene and their camera poses, novel view synthesis seeks to
render observed scene content from previously unobserved viewpoints, allowing a user to navigate
through a recreated environment with high visual fidelity.

Geometry-based Image Reprojection. Many approaches to view synthesis start by applying
traditional 3D reconstruction techniques to build a point cloud or triangle mesh representing the
scene. This geometric “proxy” is then used to reproject pixels from the input images into new
camera views, where they are blended by heuristic [18] or learning-based methods [63, 163, 164].
This approach has been scaled to long trajectories of first-person video [88], panoramas collected
along a city street [89], and single landmarks from the Photo Tourism dataset [116]. Methods reliant
on geometry proxies are limited by the quality of the initial 3D reconstruction, which hurts their
performance in scenes with complex geometry or reflectance effects.

Volumetric Scene Representations. Recent view synthesis work has focused on unifying recon-
struction and rendering and learning this pipeline end-to-end, typically using a volumetric scene
representation. Methods for rendering small baseline view interpolation often use feed-forward
networks to learn a mapping directly from input images to an output volume [43, 231], while
methods such as Neural Volumes [108] that target larger-baseline view synthesis run a global
optimization over all input images to reconstruct every new scene, similar to traditional bundle
adjustment.

Neural Radiance Fields (NeRF) [123] combines this single-scene optimization setting with a
neural scene representation capable of representing complex scenes much more efficiently than a
discrete 3D voxel grid; however, its rendering model scales very poorly to large-scale scenes in
terms of compute. Followup work has proposed making NeRF more efficient by partitioning space
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into smaller regions, each containing its own lightweight NeRF network [157, 158]. Unlike our
method, these network ensembles must be trained jointly, limiting their flexibility. Another approach
is to provide extra capacity in the form of a coarse 3D grid of latent codes [102]. This approach has
also been applied to compress detailed 3D shapes into neural signed distance functions [191] and to
represent large scenes using occupancy networks [140].

We build our Block-NeRF implementation on top of mip-NeRF [9], which improves aliasing
issues that hurt NeRF’s performance in scenes where the input images observe the scene from many
different distances. We incorporate techniques from NeRF in the Wild (NeRF-W) [112], which
adds a latent code per training image to handle inconsistent scene appearance when applying NeRF
to landmarks from the Photo Tourism dataset. NeRF-W creates a separate NeRF for each landmark
from thousands of images, whereas our approach combines many NeRFs to reconstruct a coherent
large environment from millions of images. Our model also incorporates a learned camera pose
refinement which has been explored in previous works [216, 186, 100, 207, 219].

Some NeRF-based methods use segmentation data to isolate and reconstruct static [212] or
moving objects (such as people or cars) [224, 136] across video sequences. As we focus primarily
on reconstructing the environment itself, we choose to simply mask out dynamic objects during
training.

Urban Scene Camera Simulation

Camera simulation has become a popular data source for training and validating autonomous
driving systems on interactive platforms [5, 85]. Early works [49, 162, 166, 36] synthesized data
from scripted scenarios and manually created 3D assets. These methods suffered from domain
mismatch and limited scene-level diversity. Several recent works tackle the simulation-to-reality
gaps by minimizing the distribution shifts in the simulation and rendering pipeline. Kar et al. [80]
and Devaranjan et al. [35] proposed to minimize the scene-level distribution shift from rendered
outputs to real camera sensor data through a learned scenario generation framework. Richter et al.
[161] leveraged intermediate rendering buffers in the graphics pipeline to improve photorealism of
synthetically generated camera images.

Towards the goal of building photo-realistic and scalable camera simulation, prior methods [96,
214, 25] leverage rich multi-sensor driving data collected during a single drive to reconstruct 3D
scenes for object injection [25] and novel view synthesis [214] using modern machine learning
techniques, including image GANs for 2D neural rendering. Relying on a sophisticated surfel
reconstruction pipeline, Surfel GAN [214] is still susceptible to errors in graphical reconstruction
and can suffer from the limited range and vertical field-of-view of LiDAR scans. In contrast to
existing efforts, our work tackles the 3D rendering problem and is capable of modeling the real
camera data captured from multiple drives under varying environmental conditions, such as weather
and time of day, which is a prerequisite for reconstructing large-scale areas.



CHAPTER 5. SCALING NEURAL RADIANCE FIELDS 61

5.2 Background

We build upon NeRF [123] described in Chapter 2 and its extension mip-NeRF [9]. Here, we
summarize relevant parts of mip-NeRF. For details, please refer to the original papers.

mip-NeRF Preliminaries

Recall that to enable the NeRF MLPs to represent higher frequency detail [193], the inputs x and d
are each preprocessed by a componentwise sinusoidal positional encoding Vpg:

e (2) = [sin(2°2), cos(2%2), . . ., sin(28712), cos(28712)] (5.1)

where L is the number of levels of positional encoding.

NeRF’s MLP f, takes a single 3D point as input. However, this ignores both the relative
footprint of the corresponding image pixel and the length of the interval [t;_;,¢;] along the ray
r containing the point, resulting in aliasing artifacts when rendering novel camera trajectories.
Mip-NeRF [9] remedies this issue by using the projected pixel footprint to sample conical frustums
along the ray rather than intervals. To feed these frustums into the MLP, mip-NeRF approximates
each of them as Gaussian distributions with parameters p;, 3J; and replaces the positional encoding
~pg With its expectation over the input Gaussian

Yee(p, ) = Exon (s (X)), (5.2)

referred to as an integrated positional encoding.

5.3 Method

Training a single NeRF does not scale when trying to represent scenes as large as cities. We
instead propose splitting the environment into a set of Block-NeRFs that can be independently
trained in parallel and composited during inference. This independence enables the ability to
expand the environment with additional Block-NeRFs or update blocks without retraining the entire
environment (see Figure 5.1). We dynamically select relevant Block-NeRFs for rendering, which
are then composited in a smooth manner when traversing the scene. To aid with this compositing,
we optimize the appearances codes to match lighting conditions and use interpolation weights
computed based on each Block-NeRF’s distance to the novel view.

Block Size and Placement

The individual Block-NeRFs should be arranged to collectively ensure full coverage of the target
environment. We typically place one Block-NeRF at each intersection, covering the intersection
itself and any connected street 75% of the way until it converges into the next intersection (see
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Figure 5.2: The scene is split into m