Conversation Regression Testing: A Design
Technique for Prototyping Generalizable Prompt
Strategies for Pre-trained Language Models

J.D. Zamfirescu-Pereira
Bjorn Hartmann
Qian Yang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-16
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-16.html

February 7, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Conversation Regression Testing:
A Design Technique for Prototyping Generalizable Prompt
Strategies for Pre-trained Language Models

J.D. Zamfirescu-Pereira
UC Berkeley
Berkeley, CA, USA
zamfi@berkeley.edu

STEP 2

Bjoern Hartmann
UC Berkeley
Berkeley, CA, USA
bjoern@eecs.berkeley.edu

STEP 3

Qian Yang
Cornell University
Ithaca, NY, USA
qianyang@cornell.ed

STEP 4

Inspect and catalog LM errors
and successes in conversational contexts;

Collect user-LM

conversations

Identify an archetypical error
based on frequency and UX costs

Prototype and identify
a locally-effective prompt strateqy

Curate a regression test suite; that can fix the error in its original contexts Tight
A, T STEP &l iterative
loop

Regression test it
for robustness and generalizability

STEP 6 (ITERATE)

B

Figure 1: We propose Conversation Regression Testing, a workflow for chatbot designers to systematically experiment and
evaluate various prompt strategies’ impact on pre-trained-language-model-powered conversational interactions. We also
present BOTDESIGNER, a prompt prototyping tool that operationalizes this workflow.

ABSTRACT

Pre-trained language models (LLMs) such as GPT-3 can carry flu-
ent, multi-turn conversations out-of-the-box, making them attrac-
tive materials for chatbot design. Further, designers can improve
LLM chatbot utterances by prepending textual prompts — instruc-
tions and examples of desired interactions - to its inputs. However,
prompt-based improvements can be brittle; designers face chal-
lenges systematically understanding how a prompt strategy might
impact the unfolding of subsequent conversations across users. To
address this challenge, we introduce the concept of Conversation
Regression Testing. Based on sample conversations with a baseline
chatbot, Conversation Regression Testing tracks how conversa-
tional errors persist or are resolved by applying different prompt
strategies. We embody this technique in an interactive design tool,
BotDesigner, that lets designers identify archetypal errors across
multiple conversations; shows common threads of conversation
using a graph visualization; and highlights the effects of prompt
changes across bot design iterations. A pilot evaluation demon-
strates the usefulness of both the concept of regression testing and
the functionalities of BotDesigner for chatbot designers.

1 INTRODUCTION

The combination of pre-trained large language models (LLM) and
prompts offers exciting new opportunities for chatbot design. Re-
cent pre-trained LLMs (GPT-3 [9], GPT-J [39], Jurassic-1 [24], and
TO [35]) can engage in fluent, multi-turn conversations out-of-
the-box. Removing the costs and data requirements for training
supervised models, these models substantially lower the barrier
of entry for creating a passable conversational user experience
(UX) [7]. Further, chatbot designers can improve LLM outputs by
prepending prompts—textual instructions and examples of design-
ers’ desired interactions—to LLM inputs (Table 1.) Prompts directly

bias the model towards generating the desired outputs, raising
the ceiling of what conversational UX is achievable with little or
no labeled data. In the past two years, the promises of this new
pretrain-and-prompt paradigm have been propelling a rapidly grow-
ing set of prompt design tools [3, 17, 27], research across HCI/UIST
(e.g., [18, 23, 26, 40, 41]) and NLP (e.g., [22, 25, 31, 35, 36]), and even
end-user-facing applications [18]. Some scholars even argued that
this paradigm represents a “sea change” in NLP and will “replace”
the fully-supervised and pre-train-and-fine-tune paradigms [25].

Prompt Strategy Resulting Conversation
No prompt ®: Ok hang on while I get a chair
(baseline)

@ Scoot to the front of your chair/...]

£2 If the user asks you to wait, explain
that this is not a problem [...]

Explicit instruction
to wait

¥ Ok hang on while I get a chair

@ Once you have your chair, scoot to
the front of it[...]

Table 1: An example of how designers can directly improve
chatbot interactions by modifying prompt strategies ().

Note the change in the bot’s (&) response to the user’s (%)
statement.

The pre-train-and-prompt paradigm also brings a series of new
challenges to chatbot design, namely, the challenges of designing
robust prompt strategies. To leverage prompts for production-level
chatbots, designers need to first systematically assess (1) in what
conversational contexts the pre-trained LLM is likely to fail and (2)

how frequent or damaging each failure or failure mode is, in order
to identify the right problems to solve with prompts. Next, design-
ers need to (3) identify a prompt strategy that can fix the target
failure in its original conversational context, and finally, to assess
its generalizability and robustness systematically, that is, assessing
(4) whether it can fix similar failures in other conversational con-
texts, and whether it might cause new errors across the numerous
ways the conversations can unfold subsequently for different users.
These are challenging tasks [7, 25, 35].

A few HCI researchers have started to create workflows and
tools that aid prompt strategy design, for example, for human-LLM
collaborative writing [40]. However, such workflows and tools for
chatbots are extremely rare. Instead, chatbot designers often experi-
mented prompts ad-hoc using tools such as GPT-3 Playground [30];
Some even treated prompt strategy design as “rolling the dice” [41].
It remains unclear how designers can holistically analyze the highly-
contextual errors LLMs make across conversations (challenges 1, 2),
or how they can resolve the errors without unknowingly causing
new errors in preceding or subsequent conversations (challenges 3,
4).

As a step toward more systematic and rigorous prompt strategy
prototyping, we introduce the concept of Conversation Regression
Testing. Taking inspiration from software regression testing, Con-
versation Regression Testing uses the conversational contexts where
a baseline LLM has failed (or notably succeeded) as reusable test
cases and helps designers track the effects of prompt strategy up-
dates on these test cases. This approach allows designers to freely
experiment with many prompt strategies to address a particular
error in context, while ensuring the system’s overall stability and a
trajectory of continuous improvements.

Operationalizing this concept, we then present BOTDESIGNER,
a prompt strategy prototyping tool that integrates the Conversa-
tion Regression Testing workflow into an interactive machine learn-
ing analysis tool (one that tracks model performance across itera-
tions and provides insights into what changes yield what perfor-
mance improvements.) Such tools have shown remarkable traction
with designers and developers in non-conversational domains (e.g.,
Weights and Biases [5]). BOTDESIGNER consists of four components:

e Conversation Collector, an interface for collecting sample
conversations between a baseline LLM-based chatbot and real-
world users (or crowd workers);

e Annotator, an interface for inspecting and cataloging the prob-
lematic (or successful) utterances made by the baseline bot, across
many conversations with multiple users. These errors are oppor-
tunities for prompts to help, as well as test cases for Conversation
Regression Testing;

e Visualizer, a graphic visualization that aids designers to iden-
tify archetypal errors by showing the baseline bot’s failures and
successes against the backdrop of common end-user-LLM con-
versation patterns. These archetypal errors help designers to
prioritize their prompt design efforts;

o Regression Tester, features that embody Conversation Regres-
sion Testing. When designers experiment with a new prompt
strategy, these features enable them to track whether the target
error persists or gets resolved, or if new errors have appeared,
as a result of the new strategy.

J.D. Zamfirescu-Pereira, Bjoern Hartmann, and Qian Yang

This paper presents the concept of Conversation Regression Test-
ing, the implementation of BOTDESIGNER, and a small user evalua-
tion study that preliminarily demonstrates the usefulness of both
for chatbot designers when designing instructional chatbots.

This paper makes two contributions, one conceptual and one
technical. The primary contribution is the concept of Conversation
Regression Testing for prompt strategy design. While most prior
work focused on exploration-and-ad-hoc-testing stage of prompt
design, Conversation Regression Testing offers an initial workflow
to for assessing prompt strategies’ robustness and generalizabil-
ity. Secondly, the technical contribution of this paper lies in the
techniques for implementing BOTDESIGNER. It presents a novel
conversation visualization technique that visualizes common con-
versation patterns across many discrete conversations between an
LLM and various users. It can be useful for developing many other
human-LLM interaction analysis or design tools. BOTDESIGNER
also implements an interface for Conversation Regression Testing, a
technique that can be valuable for prototyping prompts for many
other LLM applications beyond conversational interactions.

2 RELATED WORK

We briefly review three threads of related work: 1) workflows and
tools for interactively improving NLP model performance and 2)
for improving conversational UX, and finally 3) prior conversation
visualization techniques and analytical tools.

2.1 NLP Modeling Workflows and Tools

NLP modeling workflows and tools roughly fall under three cat-
egories [25]. Fully supervised learning, where a task-specific
model is trained on a dataset of input-output examples for the task,
has long played a central role in machine learning (ML) and natural
language processing (NLP). Because fully labeled datasets are often
insufficient for learning high-quality models, interactive NLP tools
for improving model performance focused heavily on assisting fea-
ture engineering; providing models with the appropriate inductive
bias to learn from this limited data. Towards this goal, supervised
NLP tools most often embodied one of the two workflows:

e Tools such as LightSIDE [28] assist NLP modelers to define and
extract salient features from raw data. These tools adopted a
five-step workflow that many seminal interactive ML tools (e.g.,
Crayons [16], ModelTracker [2], Gestalt [32], and Weights and
Biases [6]) have pioneered: Modelers (i) inspect raw data; (ii) label
data or extract features from the data, sometimes with the assist
of ML; (iii) train an initial model, (iv) classify, view, and correct
the model’s outputs, and (v) iterate on this process while the
tools track the model’s performance improvements and provide
insight into what changes yield the improvements.

o The second workflow emerged in response to the criticism that
the above workflow left out considerations of ML amateurs[1].
Researchers created “human-centered ML tools” that added end-
users to every step of the first workflow (e.g., allowing them to
provide traces of their natural interaction with the model for
model training [43] and transfer learning [29], nominate features
[11], demonstrate desired model behaviors [42], etc.) These tools
demonstrated that integrating an understanding and natural

Conversation Regression Testing

interaction data of end-users into ML workflow can improve
both UX and model performance [1].

In 2017-2019, the standard way of NLP modeling shifted to “pre-
train and fine-tune”, with fully supervised learning playing an
ever-shrinking role [25]. This paradigm embodies a two-step-only,
no-longer-task-specific ML workflow.

Step i Modelers pre-train a model with a fixed architecture on
large, unlabeled textual data. In this process, the pre-trained
LLM learns general-purpose language features that can be
used for a wide range of tasks (e.g., predicting the next
line of code or prose, document summarization, biomedical
question answering, translation, and more.) GPT [9, 39] and
BERT [13] exemplify families of pre-trained LLMs.

Step ii Modelers adapt the pre-trained LLM to the particular inter-
action task at hand through fine-tuning.

In this paradigm, the main focus of model tuning turned from
feature to objective engineering, designing the training objectives
for both pre-training and fine-tuning. As a result, most aforemen-
tioned interactive ML tools no longer apply. While a few commercial
general-purpose ML tools (e.g., Azure [45]) can support this new
workflow, we did not find interactive NLP tools tailored for this
workflow in our literature search.

The past two years have been witnessing another paradigm
shift in NLP: the rise of the “pre-train, prompt, and predict’
paradigm [25]. This paradigm follows roughly the 2-step workflow
above. However, instead of adapting pre-trained LLMs to particular
tasks via objective engineering, modelers reformulate the tasks to
look more like those solved during the original LLM training with
the help of a textual prompt. For example, GPT-3 can automatically
translate users’ natural language requests to html code using the
prompt template/strategy “web code description: <natural
language request> html:<html> css: <css> javascript:
<js>” [18]. Modelers curate a large set of such prompts using a
template and retrain the LLM with them [3, 14].

In this paradigm, the main focus of model tuning turned to
prompt engineering, designing the appropriate prompts and prompt
strategies that yield the desired model behaviors. Further, because
many prompts are human-readable, prompts also present renewed
opportunities to engage end-users in the modeling process. Tools
have emerged to enable crowd workers or end-users to contribute
queries and prompt strategies [3, 14].

Noteworthily, even for experts, identifying robust and general-
izable prompt strategies requires extensive trial and error, where
modelers iteratively experiment and assess the effects of various
prompt strategies on concrete input-output pairs, before assess-
ing them more systematically on large conversation datasets. A
well-established prompt design workflow does not yet exist. How a
prompt or a prompt strategy may directly impact model outputs,
or how it modifies pre-trained LLM’s billions of parameters during
re-training, are both active areas of NLP research [25, 35].

2.2 Prototyping Chatbot UX

A well-established workflow exists for designing and prototyping
multi-turn conversational interactions and experiences (“chatbot
UX”, for short) [10, 12, 19, 20, 34, 37]). Following this workflow,

chatbot designers first (i) identify the chatbot’s functionality or per-
sona and draft ideal user-bot conversations, for example, through
Wizard-of-Oz or having experts drafting scripts; (ii) create a di-
alogue flow template (e.g., “greeting message, questions to collect
user intention, ...”); and finally (iii) fill the template with supervised
NLP models (e.g., user intention classifier, response generator, etc.)
Many tools that support this process exist supporting this process,
for example, Google Dialogflow and Facebook Messenger tools for
step (ii) and (iii).

While highly valuable, these conversation-template-oriented
tools are ill-fitted for pre-trained LLMs. However, chatbot design
tools for the pre-train-and-prompt paradigm are extremely rare.
The closest related work is AI Chains[41], a tool for exploring
human-LLM collaborative writing interactions. It allows designers
to construct a chain of LLMs where the output of one LLM becomes
the input for the next, and to test the resulting interactions them-
selves. The tool successfully enabled designers to explore prompt
and chaining strategies more efficiently and strategically [40]. How-
ever, it is unclear whether the resulting strategies were effective
or robust beyond the few interactions contexts that the designers
experimented with.

2.3 Conversation Visualization and Analysis

Prior work on visualizing conversations has either focused on visu-
alizing the structure of a dyadic (email) [38] or multi-party conver-
sation [15, 44] over time (newsgroups, etc); or, they’ve sought to
create a more abstract, higher-level picture of the topics covered
in a conversation [4]. Our needs here are different, since we’re
considering the unique settings of multiple independent conver-
sations about the same topic—visualizing which pieces are shared
and which are unique to each conversation. Some related work
does also touch on the adjacent task of visualizing the structure
of multiple tutorials (rather than conversations) covering a single
topic, exploring which pieces are shared and which are unique to
each tutorial [21, 33].

3 CONVERSATION REGRESSION TESTING

We wanted to help chatbot designers to freely prototype and sys-
tematically evaluate prompt strategies, thereby empowering them
to leverage pre-trained LLMs and prompts in their design. To this
end, we introduce the concept of Conversation Regression Testing.

3.1 Definition and Benefits

Conversation Regression Testing is an iterative workflow for proto-
typing and evaluating prompt strategies. Following this workflow,
chatbot designers start by identifying a baseline prompt strategy (or
an off-the-shelf pre-trained LLM, i.e. with no prompt strategy). They
then carry out the following complementary activities (Figure 2):

(1) Collect human-LLM conversations: Collect a diverse set of con-
versations between the baseline LLM and end-users through
crowdsourcing or in-person user studies;

(2) Inspect and catalog LLM errors and successes in context: Inspect
the errors and successes both in the contexts where they oc-
curred and in aggregate, across the myriad ways the baseline
user-LLM conversations have unfolded; add noteworthy user-
LLM conversation turns to a suite of regression test cases;

(3) Identify an archetypical error based on how frequent or damag-
ing each error or error pattern is; develop intuitions of possible
new prompt strategies for addressing the error;

(4) Identify a locally-effective prompt strategy: Experiment with new
prompt strategies to fix a particular archetypical error in the
conversational context where it originally occurred; Identify
one locally effective prompt strategy;

(5) Regression test for robustness and generalizability: Apply the
locally effective prompt strategy to the entire regression test
suite, inspecting its robustness (whether it has fixed similar
failures in other conversational contexts) and generalizability
(whether it has caused new errors across the numerous ways
the conversations can unfold subsequently for different users).
If not, iterate on step 4-5 or even collect more conversations
(step 1-5) before proceeding. If positive for both, continue;

(6) Iterate while tracking: Consider the robust and generalizable
prompt strategy as a new baseline, iterate on the whole process
(step 1-6) while tracking which errors have been resolved versus
persisted.

Central to this workflow are the concepts of conversation regres-
sion testing and prompt prototyping in human-LLM conversational
contexts. They highlight the benefits of Conversation Regression
Testing over existing common practices.

Benefits over current chatbot UX prototyping workflow. Sim-
ilar to software regression test suites [8], conversation regression
test suites enable chatbot designers to track the effects of prompt
strategy updates on many discrete conversations with different
users. This approach is particular valuable for prompt strategy de-
sign, because UX improvements and breakdowns caused by prompts
are often brittle. In comparison to the current UX practice where
designers tend to test their prompt strategies on the utterances they
themselves authored in an ad-hoc manner [26, 40], conversation
regression test cases enable designers to freely experiment with
many prompt strategies, without unknowingly causing new errors
in preceding or subsequent conversations.

Importantly, Conversation Regression Testing is not merely Re-
gression Testing applied to prompt design. Conversation Regression
Testing is a rapid and iterative prototyping process. Each iteration
resolves an error or an error mode without regression. This is dif-
ferent from software regression tests, whose use is typically limited
to when new program updates reintroduces old errors (hence the
name regression.)

Benefits over current NLP practice. Conversation Regression
Testing highlights the importance of the use of user-LLM conver-
sation texts throughout the prompt strategy prototyping process.
Designers inspect errors and test new strategies, both in the origi-
nal user-LLM conversational contexts where errors (or successes)
occurred. This is a departure from current common NLP prac-
tice, where modelers typically evaluated prompt strategies on pre-
curated human-human conversation datasets. Taking a lesson from
human-centered ML work, end-user interactions with a model -
particularly their reactions to its errors — should not be an after-
thought.

J.D. Zamfirescu-Pereira, Bjoern Hartmann, and Qian Yang

3.2 Conversation Regression Testing In Practice:
An Example Design Process

Let us ground the concepts and workflow of Conversation Regression
Testing and their benefits in a concrete example. Consider ourselves
chatbot designers who are creating an ExerciseBot, a voice-based
conversational agent that walks users through a set of physical
exercises that they can perform at their desk. Following the Con-
versation Regression Testing workflow, we can rapidly prototype
various prompt strategies in-context and systematically evaluate
their robustness and generalizability:

We start by identifying a baseline prompt strategy. Here we
use GPT-3’s text-davinci-001 model (setting TEMPERATURE = 0)
out-of-the-box. We use the simple combination of a set of publicly
available exercise instructions and a request to “instruct the user in
completing each exercise step-by-step” as our baseline (Table 2);

(1) Collect human-LLM conversations: We collect 30 conversations
between the baseline bot and 10 Mechanical Turk workers,
which yields many creative yet realistic utterances that we
could hardly anticipate (At my age I'm going to have to break
them up.” “Is it more effective to do all [exercises] at once?”).

(2) Inspect and catalog errors and successes in context: We found that
the baseline prompt strategy is sufficient to create a passable
chatbot that, most often, naturally walked users through the
exercise step-by-step (e.g., User: “At my age I'm going to have to
break them up.” Bot: “That’s ok, just try to complete all 5 reps.”)
We also identified a number of error patterns. For example, the
“skip a step” error is that the bot skips a step when walking
users through the exercises. The “unsympathetic” error is where
the bot routinely ignores user requests for help (“Can we try an
easier exercise?”) or expressions of distress (“Ow, that hurt!”.) We
collected these conversations as substrates for our Conversation
Regression Testing test suite.

Baseline prompt

Consider the following set of exercises:

1. Tricep Dips. Scoot to the front of your chair, with
both hands facing forward, [...]

2. Seated Leg Lifts. Grab the sides of your chair [...]
[...]

Instruct the wuser in completing each
step-by-step.

exercise

New prompt (fixing the “skip a step error”)

Consider the following set of exercises:

1. Tricep Dips. Scoot to the front of your chair, with
both hands facing forward, [...]

2. Seated Leg Lifts. Grab the sides of your chair [...]
[...]

Instruct the user in completing each
step-by-step.

Don’t skip any steps.

exercise

Table 2: The baseline and improved prompts in the Exercise-
Bot design example.

Conversation Regression Testing

CHATBOT
TEMPLATE]

8 ’QUser & LM
@ CONVERSATIONS|

Conversation
Pa W TASKS

INVETRE T ICONVERSATIONS
(with annotations and metadata)

CONVERSATIONK:EIE]

As regression test cases

Individual user/LM
u Metadata Error/sudcess
m type Utterances
p = ANNOTATIONS]
STEP 1 STEP 2 STEP 3 STEP 4

Inspect and catalog LM errors and

successes in conversational contexts;
Curate aregression test suite;

Collect user-LM
conversations

Identify an archetypical error
based on frequency and UX costs

Prototype and identify
a locally-effective prompt strategy
that can fix the error in its original contexts Tight

STEP 5 iterative
Regression test it |00P
for robustness and generalizability

|

Data flow <
é of BotDesigner crowd workers

-
'i Data generated by Data generated by
LM/chatbot

STEP 6 (ITERATE)

h New

3 ,fl PROMPT
strategy

m Data generated by
%\ Bot Designers

Chatbot Designer
Workflow

Figure 2: Conversation Regression Testing workflow and BoTDESIGNER data flow.

(3) Identify an archetypical error. We chose to focus on the “skip a
step” error, since it causes confusion if not physical danger dur-
ing the exercises. It also has frequently caused breakdowns in
subsequent conversations when users requested clarifications.

(4) Identify a locally-effective prompt strategy: After extensive ex-

perimentation, we resolved the “skip a step” error by simply

appending the explicit instruction “Don’t skip any steps.”
to the end of the baseline prompt, before the user-bot conversa-
tions begin. Another locally-effective strategy is to number the
sub-steps within each step of the exercises in the initial prompt

(Table 2.)

Regression test for robustness and generalizability: Applying the

two new strategies to the previously curated test cases, we

noticed that the explicit instruction strategy consistent resolves
the “skip a step” error, while the numbering-the-steps strategy
only worked for some exercises. However, in some contexts, the
explicit instruction strategy caused a side effect: It makes the
bot’s stubbornly stick to the step-by-step exercise instructions,
even when users said this step is too hard. It could worsen the

“unsympathetic” error.

With this trade-off in mind, we iterate on step 4-5, exploring ad-

ditional prompt strategies that may work even better. We could

also choose to collect additional conversations (for example, on

a different set of exercises), thereby identifying new patterns of

errors and success (steps 1 and 2). This approach allows us to

fully understand the extent to which the new prompt strategy
is robust and generalizable before adopting it.

Iterate on this process to tackle additional errors while tracking

ExerciseBot’s behavior changes using the Conversation Regres-

sion Testing test suite.

—
&)
=

—~
=)
=~

4 BOTDESIGNER: A TOOL THAT
OPERATIONALIZES CONVERSATION
REGRESSION TESTING

We present BOTDESIGNER, a chatbot prompt strategy prototyping
tool that operationalizes the Conversation Regression Testing work-
flow described in §3.2.

4.1 System Overview

BoTDESIGNER enables Conversation Regression Testing with the
following functionality:

(1) A conversation collection interface that enables the crowd-
sourcing of a set of baseline conversations with a baseline GPT-3
based chatbot; this interface enables step (1) described in §3.2.

(2) A conversation visualization and annotation interface
that shows conversation flow across multiple users’ conversations
(for a single task, defined in §4.2) using a graph interface, high-
lighting which utterances are common across conversations, and
aiding in the categorization and tagging (annotation) of individual
problematic or particular successful bot-provided utterances for
targeted improvement or maintenance. This interface enables steps
(2)-(3) from §3.2.

(3) A utterance testing interface that situates individual prob-
lematic utterances in context and highlights changes to those ut-
terances caused by updates to the bot. This interface enables steps
(4)-(5) from §3.2.

In conjunction with a built-in code editor, these interfaces sup-
port iteration over chatbot prompt designs.

4.2 Inputs

BoTDESIGNER relies on three types of input data: conversations,
tasks, and templates, representing, respectively, individual multi-
turn user interactions with a specific bot (conversation), a set of
structured instructions that make up the user’s task (task), and
a set of prompts comprising a specific point design for a chatbot
(chatbot template). Although we believe Conversation Regression
Testing can be usefully applied to any type of chatbot, we chose
to focus on task-oriented instructional interactions because of the
opportunities for aggregation offered by similarities across multiple
conversations by multiple users focused on the same task.

Conversations are specific multi-turn interactions collected by
BoTDESIGNER, consisting of a dialog data structure that includes
each conversation partner’s utterances as well as any error annota-
tions provided post facto by the designer or human conversation
partner. Each conversation is attached to the specific template and
recipe used to generate the bot’s utterances.

Tasks are specific structured task descriptions comprised of a
name, description, and set of steps the user is expected to complete.
Some tasks may also include metadata such as a list of the items
required to complete the task.

Chatbot templates describe the set of prompts that are sent as
a prefix to the backing LLM (GPT-3 in the case described here). Each
template contains instructions for (1) how to convert a structured
task of the appropriate type into plain text, suitable for inclusion
into the LLM text prompt, and (2) code describing how to lay out,
in the prompted text, the turn-by-turn dialog-in-progress that is
stored in the conversation. Templates also describe how the LLM
output should be parsed and the bot’s response utterance extracted.
See Fig. 3 for an example.

4.3 Using BOTDESIGNER

BoTDESIGNER supports each of the four steps of Conversation Re-
gression Testing:

In conversation collection mode, BOTDESIGNER requests utter-
ances from the user, generates a full prompt, sends it to GPT-3’s API
requesting a prediction for the following tokens, receives GPT-3’s
response, extracts the predicted bot utterance, and displays it to
the user. See Figure 4 for an example of this interface.

Supporting utterance annotation and conversation discov-
ery, BOoTDESIGNER allows designers to identify problematic and
successful utterances and then attach single-word tags to those
utterances for easier aggregation of errors by type (see Fig. 5). A
separate view, the conversation visualizer, shows all collected con-
versations (optionally filtered by data source and the presence of
specific errors), making use of a graph data structure and visual-
ization. This graph structure shows which utterances and tagged
error types are common to many conversations—typically these are
specific steps within the instructions, but they can also be common
questions asked by users.

Figure 6 shows an example of the conversation visualizer aggre-
gating the conversation flows of 12 conversations collected from
AMT workers using a baseline version of ExerciseBot. The red
border and edge coloring highlights the flow of a single conver-
sation embedded within the full set of conversations. Nodes that
have been tagged or identified as problematic or especially strong

J.D. Zamfirescu-Pereira, Bjoern Hartmann, and Qian Yang

1 template = {

2

3 id: "exercise-1",

4

5 ctype: "exercise",

6

7 preamble: exercise => ‘Consider this set of exercises:
8

9 ==Exercises==

10 ${exercise.name}

12 ${exercise.exercises.map((e,i) => "=${i+1}: ${e.name}=

13 ${e.description}

14 “).join('\n")}

15 Next, walk the user through these exercises one at a time, in conversation. For
each exercise, break the steps down into individual sentences and walk the user
through each step.

18 firstTurns: exercise => [

19 {who: 'bot', said: "Hi, today I'm going to help you with "+exercise.name},
20 {who: 'user', said: "Great, let's get started. What's the first exercise?"}
21 1,

22

23 formatTurn: (exercise, turn) => "${

24 { bot: 'Bot', user: 'User' }[turn.whol}: ${turn.said}",

25

26 dialogPrompt: function dialogPrompt() {

27 return this.turnSeparator + "Bot:";},

28

29 extractResponse: (response, prompt) => response.data.choices[0].text.substr

(prompt.length).trim(),

31 turnSeparator: "\n",

32

33 generationStop: "\nUser:",
34

35}

Figure 3: The various properties of this chatbot template
describe the prompt preamble (the text prepended to the con-
versation dialog), instructions for formatting prior conversa-
tional turns into the LLM prompt, instructions for prompting
and extracting the chatbot utterance from the LLM’s predic-
tion, and other assorted parameters.

have orange backgrounds and are overlaid with CATEGORY tags

for easy identification. This particular example illustrates how the

conversation visualizer shows a few useful properties of this set of
conversations:

o The different ways this set of conversations arrives at the “Step
forward until your butt clears the chair and your knees..” utter-
ance, labeled with error tags skIp and LANGUAGE.

o The context-sensitivity of errors, like the aforementioned sk1p
tag, which indeed indicates that the first step was skipped in the
rightmost 5 of the 6 conversation threads (shown in the top half
of Fig. 6), but not to the leftmost thread, which includes the only
utterance with the correct first step, “Scoot to the front of the
chair..”

o The different utterances that different users use to push the
conversation forward from step to step, as well as the requests
they make, such as “Ok hang on while I get a chair”, that go
heeded or unheeded by the chatbot.

In prompt strategy development and testing mode, BoTDE-
SIGNER shows all problematic utterances (again optionally filtered
by source and the presence of specific error tags) in context and
allows the user to test a new template on any specific (or on all)
utterances and see how the template changes affect problematic
conversational turns.

Conversation Regression Testing

'j Not Secure — testbot.

ExerciseBot Conversation

ExerciseBot is programmed to walk you through an office-based exercise routine. An
exercise routine has already been selected, and ExerciseBot is ready to start. Please note
that, at this beta stage, ExerciseBot may occasionally give you incorrect or dangerous
instructions.

Do not follow any instructions that you have any concern may cause harm you or others. You
will not be judged by your completion of any physical tasks.

Instructions:

e Continue the dialog below to engage with ExerciseBot.

* ExerciseBot may give incorrect, misleading, dangerous, or frustrating responses. If you
encounter this, please click the & icon next to the problematic response.

* Please engage in conversation for at least 10 minutes to complete this task
successfully. After 10 minutes, a completion code will appear here: . (10 min
remaining.)

Bot: Hi, today I'm going to help you with Lean In: The Ultimate 10-Minute Office
Workout

User: Great, let's get started. What's the first exercise?

Bot: The first exercise is Tricep Dips. To do this exercise, you'll need a
stationary (non-wheeled) chair

User: Send

Figure 4: The conversation collection interface, used to collect
sample conversations with a baseline chatbot from AMT
workers.

Figure 7 shows a screenshot of BOTDESIGNER’s prompt testing
interface being used to evaluate a new prompt template. This view
groups all tagged utterances (by tag) and displays the utterances in
each group with two lines of context before and after each tagged
utterance. Utterances with multiple tags are duplicated in each
group. In the specific screenshot in Fig. 7, a new prompt template is
being applied to baseline conversations for utterances bearing the
skIP tag. In this example, every utterance now includes the correct
first step; additionally, the second conversation snippet’s utterance
has also changed to explicitly address the user’s prior utterance
requesting that the bot “[...]Jhang on while I get a chair”.

The ability to quickly see the effects of prompt changes allows de-
signers to rapidly iterate on ideas and quickly eliminate approaches
that don’t work for a specific utterance, or don’t work across a
whole class of utterances, to converge on approaches that offer the
most “bang for the buck” in terms of improved outcomes while
avoiding regressions.

4.4 Implementation Details

BoTDESIGNER is implemented as a React-based web application
with a node.js-based backend, relying on OpenAI’s GPT-3 API as
the underlying pre-trained language model. For consistency across
tests, BOTDESIGNER always uses GPT-3’s test-davinci-001 model
with TEMPERATURE! set to 0.

!When used to predict subsequent tokens given a specified prefix (which we call a
“prompt” in this paper), language models typically assign a probability to every possible
subsequent token, and then select among the most likely contenders. The TEMPERATURE
parameter affects how the next prediction is selected among the probability-ranked
tokens. At TEMPERATURE = 0, the most likely next token is always selected, preventing
any random variation in response to a given prefix.

Single Convo | Browse Convos Error Browser

=10: Incline Lunge With Foot Tap=

This exercise requires a desk or a chair. 1. Stand holding the edge of a desk or table
for support, and step one leg back into a lunge. 2. With your weight on your front
leg, tap the back leg in next to the front foot, then back out into a lunge 5 to 10
times. 3. Repeat on the other side.

Next, walk the user through these exercises one at a time, in conversation. For each
exercise, break the steps down into individual sentences and walk the user through
each step.

Bot: Hi, today I'm going to help you with Lean In: The Ultimate 10-Minute Office
Workout &

User: Great, let's get started. What's the first exercise? x

Bot: The first exercise is Tricep Dips. To do this exercise, you'll need a stationary
(non-wheeled) chair. &

User: I don't have one. Can I use my sofa? x

Bot: You can use any kind of chair. [ix context X

User: What about one with wheels? x
Bot: You can use any kind of chair, as long as it doesn't move. T7x

reasoning X

User: Ok, I have a chair. What's next? x
Bot: Step forward until your butt clears the chair and your knees are at right angles.

skip X

User: What are the right angles x

Bot: 90 degrees. @&

User: Great, what's next? x

Bot: Bend your elbows straight back and lower yourself straight down several inches,
then straighten your arms without locking your elbows. &

User: What happens when I lock my elbows? x

Bot: Locking your elbows can damage your joints. @&

Figure 5: The annotation interface, supporting tagging of
any chatbot utterance for later aggregation, examination,
and prompt effect testing. This annotator view also supports
extending any recorded conversation with new utterances,
or forking a conversation: creating a new conversation from
an existing one, but rolled back to an earlier user utterance
in the conversation, and then continued with a new user
utterance.

Much of the implementation of the application consists of stan-
dard CRUD-style techniques, but a few specific implementation
details bear mentioning:

Conversation Visualizer. To aid users in discovering common pat-
terns across multiple discrete conversations between a bot and
different users, BOTDESIGNER includes a conversation visualizer.
We take inspiration from visualizing shared structure in written
step-by-step tutorials [21, 33] and apply similar techniques to dia-
logues. Our visualization models a full set of conversations for a
given recipe as individual paths through a Directed Acyclic Graph
(DAG). Each conversational turn is modeled as a single node; where
multiple conversations have identical utterances, those utterances
are merged together into a single DAG node. (Short utterances of
fewer than 20 characters, such as "OK" or "What’s next?" are not
merged; these do not typically indicate any kind of useful similarity
across conversations, as they too often occur in different contexts.)

Merging nodes in this manner, however, has the downside of
introducing cycles into the conversation graph, if multiple con-
versations yield two merged nodes which appear in the opposite
order across the conversations. For example, if in conversation 1
utterance A follows utterance B, but in conversation 2 it is B that
follows A, then the merging algorithm will create a cycle: a path
from A to B exists in conversation 1, while a path from B to A exists

W Hi, today

Ultimate o

£ creat, let's

get started.

What's the

first exercise?

N The first

exercise is

Tricep Dips. To

do this

exercise, [}
£ 1 don't nave
one. can T use
ny sofa?

(7}
W You can use
any kind of
chair.

(7}
£ wnat about
one with
vheels?

(7}
W You can use
any kind of
chair, as long
as it doesn't

ve.
£ ok, T have a
chair. what's
next?

(7}

£ row do T do
them?
a
W First, scoot
to the front of
the chair, with
both hands
facing
2L ox, tne
uhat?
a
' Then, step
forward until
your putt.
clears the
L oxay
(7]
4 okay, what
next?
a
2 arignt,
what is next?
(7]
L 0k hang on
while I get a
chair
a
£ 1've got one
[~}
W scoot to the
front of the
chair, with
both hands
facin (7]
L okay r'm
Teady
(%]
w Step forward
uneil your bute
clears the
chair and your
kneas o
CEHETETD
£ what are the
Tight angles
[*]
W 90 degrees.
(7]
£ creat,
“hat's next?
[#]
L snow 1 be
facing the
a
W@ ves, you'll
be facing the
chair with your
the
g (7]

Figure 6: A sample of the conversation visualizer reflecting
the first few turns of 12 conversations, half of which were
“forked” and thus share a substantial prefix of turns.

J.D. Zamfirescu-Pereira, Bjoern Hartmann, and Qian Yang

in conversation 2. To resolve these, a “decycling” operation splits
one of the two merged nodes back into separate nodes and updates
the graph edges to preserve the original conversational flows.

The resulting conversational DAG is laid out and displayed using
the d3-dag extension to d3. js.

Regression Testing. To evaluate whether a particular template
change affects any of the identified problematic utterances, BoTDE-
SIGNER replays conversations containing errors and displays any
modified responses. Two implementation approaches are possible
for this task: a system could either perform an “individual replay”
by assuming all conversational turns prior to the error will occur
as in the original conversation, and test only whether the error
utterance is changed; or, it could perform a “total replay” in which
every conversational turn is replayed and any changed utterances
are flagged for user review.

Both approaches have merit; the “total replay” approach is more
consistent with the “regression testing” concept—certainly, a de-
signer would not want to inadvertently introduce problematic utter-
ances where none previously existed—but providing clear feedback
requires identifying which conversational turns have changed in
trivial ways, itself a nontrivial task.

For BOTDESIGNER, we default to the “individual replay” in an at-
tempt to reduce noise, and accept the resulting short-term trade-off
in accuracy that allows more rapid iteration—but leaving designers
with the need to perform more extensive testing before deployment.

5 EVALUATION

To evaluate the effectiveness of BOTDESIGNER in aiding conversa-
tional agent design, and to understand the value of Conversation
Regression Testing, we ran a small (N = 3 participants) qualitative
pilot study with a design researcher (P1), a conversational agent
designer (P2), and an NLP researcher (P3).

We ran this study primarily looking at two outcomes: how ef-
fectively could participants identify common or particular severe
bugs or errors in a baseline chatbot, and how effectively could
participants evaluate a new template for improvements.

5.1 Method

Participants. Since prompt-based chatbot design is not yet a
common practice in industry, we recruited academic researchers
with an interest in and experience with conversational agent design.

Tasks. We asked participants to perform two parts of the Con-
versation Regression Testing pipeline. We collected conversations
in advance from AMT workers, and then asked participants to (1)
browse the collected conversations to find errors and annotate them
with categorization tags; (2) evaluate a “new” template, provided by
us, with modified prompts, and report whether this new template
resolved any of the errors participants had previously identified.

Participants were introduced to the tool and its basic use for
about 10 minutes, asked to create some baseline conversations, and
then asked to spend 10-15 minutes on each of the tasks above.

We recorded participants’ responses to using the tool and mea-
sured whether they detected a set of 5 error categories we previously
identified in this dataset: (1) skipped steps, (2) ignorance of user ex-
pressions of pain, (3) ignorance of user expressions to wait until the

Conversation Regression Testing

Type

{SIW Lean In: The Ultimate 10-Minute Office Workout Using template

Single Convo Browse Convos | Error Browser

Template Editor

Prefix: B —show tags Select... Run Template Save Template
1 template = {
2
3 id: "exercise-3",
(SKIP) :
5 ctype: "exercise",
6
& The first exercise is Tricep Dips 7 preamble: exercise => 'Consider this set of
: exercises:
L Ok, what's next? 8
9 ==Exercises==
@ Step forward until your butt clears the chair and @ Next, you'll need to scoot to the front of the chair, 10 ${exercise.name}
your knees are at right angles. Bend your elbows with both hands facing forward, palms near chair edge 1 X i o
straight back and lower yourself straight down with fingers grasping the edge. 12 ${exercise.exercises.map((e,i) => "=${i+1}: ${e.name}=

several inches, then straighten your arms without
locking your elbows.
=D

& The first exercise is Tricep Dips. To do this
exercise, you'll need a stationary (non-wheeled)
chair.

3L Ok hang on while | get a chair

13 1. ${e.requirements}

14 ${e.steps.map((step, i) => "${i+2}. ${step}).join
'\n")}

15 Y).join("\n")}

16 Next, walk the user through these exercises one at a
time, in conversation. For each exercise, start by
stating what is needed. Then, walk the user through
one step at a time.

18 If the user asks you to wait, explain that this is
not a problem, and wait for the user to prompt again.

@ Step forward until your butt clears the chair and @ Once you have a chair, scoot to the front of it, with 19 ,
your knees are at right angles. both hands facing forward, palms near chair edge with 20
=3 fingers grasping the edge. 2| firstTums: exercise => [
22 {who: 'bot', said: "Hi, today I'm going to help
2 OK you with "+exercise.name},
R 23 | {who: 'user', said: “Great, let's get started.
@ Bend your elbows straight back and lower What's the first exercise?"}
yourself straight down several inches, then 24 1,
straighten your arms without locking your elbows. 25
26 formatTurn: (exercise, turn) => "${
@ The first exercise is Tricep Dips. To do this 27 'd(‘bOt: 'Bot', user: 'User' }[turn.whol}: ${turn.
exercise, you'll need a stationary (non-wheeled) . saidh,
chair. 29 dialogPrompt: function dialogPrompt() {
9 alright, what is next? 30 return this.turnSeparator + "sNote: remember to
be patient, stay friendly, and only give one
@ Step forward until your butt clears the chair and @ Next, you'll scoot to the front of the chair, with instruction at a time. If the user expresses pain,
your knees are at right angles. both hands facing forward, palms near chair edge with stop and ask if they're ok.#\nBot:";},
(skip] [Test » | fingers grasping the edge. 31) -
32 extractResponse: (response, prompt) => response.
x okay then what data.choices[0].text.substr(prompt.length).trim(),
33
& Bend your elbows straight back and lower 34 turnSeparator: "\n",
yourself straight down several inches, then 35)
straighten your arms without locking your elbows. i? generationStop: "\nUser:",
38 ¥ r

@ The first exercise is Tricep Dips. To do this
exercise, you'll need a stationary (non-wheeled)
chair.

3L Okay, what next?

@@ Step forward until your butt clears the chair and
your knees are at right angles.

[skip | [Test » | with fingers grasping the edge.

@ Next, you'll need to scoot to the front of the chair,
with both hands facing forward, palms near chair edge

Figure 7: An example of the Conversation Regression Testing panel of BorDESIGNER. The left column shows individual original
tagged chatbot utterances with individual TEsT buttons, while the highlighted utterances in the center column show the results
of applying the modified chatbot template (right-hand side code panel) to the corresponding “baseline” utterance (left column).

user had completed some task (i.e., “hang on, let me get a chair”),
(4) factually incorrect responses to questions, and (5) otherwise
unhelpful responses. We also measured whether participants could
identify which particular error categories were improved by the
new template.

It bears noting that we did not ask users to engage in the task
of prompt engineering; despite recent work exploring its potential,
and our confidence in the value of large pre-trained LLMs as a
design material, the pool of designers making use of prompt en-
gineering and large pre-trained LLMs in the design of chatbots is
small. Further, we did not want to spend time training participants
in prompt engineering or depend on participants’ intuitions about

prompt changes to understand whether the technique of Conversa-
tion Regression Testing is effective at helping designers understand
the impacts of particular prompt changes.

5.2 Findings

Overall, we found that each of our participants could effectively (1)
find errors across conversations using BOTDESIGNER, and (2) evalu-
ate whether a new prompt template improved outcomes across the
identified errors. Here, we report some of the insights we gathered
from our participants.

5.2.1 ldentifying Errors. From our first participant (P1), we learned
of an interest in tagging effective conversational turns in addition

to errors; this motivated the “regression testing” we use, and we
subsequently found that all our participants were interested in
tagging strong responses in addition to errors.

Two of our participants found all 5 categories of error (P1, P2),
while one participant (P3) did not understand that tag names were
for human use (not used as descriptions in some training process),
and thus found only 3 of the 5 categories of error. All 3 participants
found the tagging process straightforward, and P1 in particular
appreciated the ways in which the conversations could be modified
and rolled back: “oh, that’s useful!” (P1).

P1 also noted that determining whether some utterances were
logically sound sometimes required substantial understanding of
the underlying instructional task, which made catching errors a
function of the willingness to manually scroll between the exercise
template and the conversation.

Regarding the specific functionality used to understand the flow
of conversations, P2 noted that the “I think this diagram [Ed: the
conversation visualizer] has a real potential to help me understand
what’s going on in the conversation [...] having a graph of all the
conversations is really something valuable that I would appreciate.”
5.2.2 Testing New Prompts. All 3 participants were able to identify
which classes of error were improved by the new bot template.

Our chatbot designer participant in particular (P2) interrupted
the study halfway through to ask whether we could instead load
up conversations they had collected and import a bot template
they had constructed and to continue the study with their template
and data: “You know I do have real life data, and we can use this
[to improve my prompts.]” (P2) Though of course anecdotal, we
consider this request to be a strong endorsement of the effectiveness
of Conversation Regression Testing as a technique and BOTDESIGNER
as a method for applying it.

After using the testing interface shown in Fig. 7 for the evaluation
task, P2 notes:

I think you found out very interesting things. I
didn’t think really about how I can control all the
interactions...you know I use a high temperature for
the chatbot, and I really like it because the conversa-
tions are becoming awesome with the new models,
just fantastic, but I don’t have control. I don’t know
what is produces, you know. This kind of tool,
as a plug-in for an AI system, that shows you
a log of what happened on the system, and
then you can this data to fine tune the user
experience.

Our observations of participants using BOTDESIGNER hint at
the substantial value of systematizing the typical trial-and-error
approach that makes it very challenging to assess prompt changes
across multiple conversations rather than single turns at a time.

6 LIMITATIONS & FUTURE WORK

One fundamental assumption of the approach described here is that
there is common structure across multiple dialogs. In step-by-step
instructions, this is straightforward. In other conversation domains,
how to align different conversations to common structure might
be a research topic in itself.

J.D. Zamfirescu-Pereira, Bjoern Hartmann, and Qian Yang

Though probably helpful, the tested implementation of BoTDE-
SIGNER does not present an aggregate picture of what classes of
annotated utterances are improved or get worse, nor whether the
changes in the produced utterances are meaningfully different or
merely textually distinct.

We don’t yet offer tools for tracking evolution of utterances
over time - if the interactive loop is about changing prompts, some
changes will make things better, others will make things worse,
and maybe some changes are modular, some aren’t. This probably
requires tracking prompt state and responses over time

Future improvements to BOTDESIGNER could also include the
use of large pre-trained LLMs to automate some tasks the designer
currently performs, such as comparing baseline utterances with
new utterances produced by an updated bot, or finding utterances
with identical content but distinct text across conversations.

7 CONCLUSION

The combination of pre-trained large language models (LLM) and
prompts offers exciting new opportunities for chatbot design. How-
ever, identifying robust and generalizable prompt strategies that
can effectively improve conversational interactions has so far been
challenging. Designers face challenges in both holistically analyz-
ing the highly-contextual errors LLMs make across conversations,
and in resolving the errors without unknowingly causing new er-
rors in preceding or subsequent conversations. This paper advances
on these critical challenges.

The primary contribution of this paper is the concept of Con-
versation Regression Testing for prompt strategy design. Without
model retraining, UX improvements from prompts tend to be brittle.
Identifying truly effective prompt strategies requires systematic
methods for assessing their robustness and generalizability. Such
methods have been missing in prompt-related HCI research. Con-
versation Regression Testing offers a first step in filling this critical
gap.

The technical contribution of this paper lies in the techniques for
implementing BOTDESIGNER. It presents a novel conversation visu-
alization technique that visualizes common conversation patterns
across many discrete conversations between an LLM and various
users. This technique not only enabled BOTDESIGNER to aggregate
LLM errors without losing error contexts, it can be useful for devel-
oping many other human-LLM interaction analysis or design tools.
BoTDESIGNER ultimately implements an interface for Conversation
Regression Testing, a technique that can be valuable for prototyp-
ing prompts for many other pre-trained LLM applications beyond
conversational interactions.

REFERENCES

[1] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.
Power to the People: The Role of Humans in Interactive Machine Learning. Al
Magazine 35, 4 (2014), 105-120. https://doi.org/10.1609/aimag.v35i4.2513

[2] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. Modeltracker: Redesigning performance analysis
tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. 337-346.

[3] Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel,
Nihal V. Nayak, Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry,
Zaid Alyafeai, Manan Dey, Andrea Santilli, Zhiging Sun, Srulik Ben-David, Can-
wen Xu, Gunjan Chhablani, Han Wang, Jason Alan Fries, Maged S. Al-shaibani,
Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Dragomir
Radev, Mike Tian-Jian Jiang, and Alexander M. Rush. 2022. PromptSource: An

https://doi.org/10.1609/aimag.v35i4.2513

Conversation Regression Testing

[4

fla

8

=

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Integrated Development Environment and Repository for Natural Language
Prompts. https://doi.org/10.48550/ARXIV.2202.01279

Tony Bergstrom and Karrie Karahalios. 2009. Conversation Clusters: Grouping
Conversation Topics through Human-Computer Dialog. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA)
(CHI "09). Association for Computing Machinery, New York, NY, USA, 2349-2352.
https://doi.org/10.1145/1518701.1519060

Lukas Biewald. 2020. Experiment Tracking with Weights and Biases.
//www.wandb.com/ Software available from wandb.com.

Lukas Biewald. 2020. Experiment tracking with weights and biases. Software
available from wandb.ai 2 (2020).

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong,
Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Ro-
han Taori, Armin W. Thomas, Florian Trameér, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Ji-
axuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui
Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the Opportunities
and Risks of Foundation Models. arXiv:2108.07258 [cs.LG]

Frederick P Brooks Jr. 1995. The mythical man-month: essays on software engi-
neering. Pearson Education.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Zhifa Chen, Yichen Lu, Mika P. Nieminen, and Andrés Lucero. 2020. Creating a
Chatbot for and with Migrants: Chatbot Personality Drives Co-Design Activities.
Association for Computing Machinery, New York, NY, USA, 219-230. https:
//doi.org/10.1145/3357236.3395495

Justin Cheng and Michael S. Bernstein. 2015. Flock: Hybrid Crowd-Machine
Learning Classifiers. In Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing - CSCW °15. ACM Press, New
York, New York, USA, 600-611. https://doi.org/10.1145/2675133.2675214
Justin Cranshaw, Emad Elwany, Todd Newman, Rafal Kocielnik, Bowen Yu,
Sandeep Soni, Jaime Teevan, and Andrés Monroy-Hernandez. 2017. Calendar.
help: Designing a workflow-based scheduling agent with humans in the loop. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
ACM, 2382-2393.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computational Linguistics, Minneapolis,
Minnesota, 4171-4186. https://doi.org/10.18653/v1/N19-1423

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng,
and Maosong Sun. 2021. Openprompt: An open-source framework for prompt-
learning. arXiv preprint arXiv:2111.01998 (2021).

Judith Donath. 2002. A Semantic Approach to Visualizing Online Conversations.
Commun. ACM 45, 4 (apr 2002), 45-49. https://doi.org/10.1145/505248.505271
Jerry Alan Fails and Dan R Olsen Jr. 2003. Interactive machine learning. In
Proceedings of the 8th international conference on Intelligent user interfaces. 39—
45.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A.
Smith. 2020. RealToxicityPrompts: Evaluating Neural Toxic Degeneration in
Language Models. In Findings of the Association for Computational Linguistics:
EMNLP 2020. Association for Computational Linguistics, Online, 3356-3369.
Ellen Jiang, Edwin Toh, Alejandra Molina, Aaron Donsbach, Carrie J Cai, and
Michael Terry. 2021. GenLine and GenForm: Two Tools for Interacting with
Generative Language Models in a Code Editor. In The Adjunct Publication of the
34th Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST "21). Association for Computing Machinery, New York, NY,
USA, 145-147. https://doi.org/10.1145/3474349.3480209

https:

[19

[20

[21

&
=)

(32

(33]

[34

[35

[36

S
=

[38

(39]

Bogyeong Kim, Jaehoon Pyun, and Woohun Lee. 2018. Enhancing Storytelling
Experience with Story-Aware Interactive Puppet. In Extended Abstracts of the
2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI EA ’18). ACM, New York, NY, USA, Article LBWO076, 6 pages.
https://doi.org/10.1145/3170427.3188515

Scott R. Klemmer, Anoop K. Sinha, Jack Chen, James A. Landay, Nadeem
Aboobaker, and Annie Wang. 2000. Suede: A Wizard of Oz Prototyping Tool for
Speech User Interfaces. In Proceedings of the 13th Annual ACM Symposium on
User Interface Software and Technology (San Diego, California, USA) (UIST "00).
ACM, New York, NY, USA, 1-10. https://doi.org/10.1145/354401.354406
Nicholas Kong, Tovi Grossman, Bjérn Hartmann, Maneesh Agrawala, and George
Fitzmaurice. 2012. Delta: A Tool for Representing and Comparing Workflows. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Austin, Texas, USA) (CHI ’12). Association for Computing Machinery, New York,
NY, USA, 1027-1036. https://doi.org/10.1145/2207676.2208549

Hunter Lang, Monica Agrawal, Yoon Kim, and David Sontag. 2022. Co-
training Improves Prompt-based Learning for Large Language Models.
arXiv:2202.00828 [cs.CL]

Mina Lee, Percy Liang, and Qian Yang. 2022. CoAuthor: Designing a Human-AI
Collaborative Writing Dataset for Exploring Language Model Capabilities. In
Proceedings of the 2022 CHI conference on human factors in computing systems.
Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. 2021. Jurassic-1: Technical
Details and Evaluation.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. arXiv:2107.13586 [cs.CL]
Vivian Liu and Lydia B. Chilton. 2021. Design Guidelines for Prompt Engineering
Text-to-Image Generative Models. https://doi.org/10.48550/ARXIV.2109.06977
Robert L Logan IV, Ivana Balazevi¢, Eric Wallace, Fabio Petroni, Sameer Singh,
and Sebastian Riedel. 2021. Cutting down on prompts and parameters: Simple
few-shot learning with language models. arXiv preprint arXiv:2106.13353 (2021).
Elijah Mayfield and Carolyn Penstein Rosé. 2013. Lightside: Open source machine
learning for text accessible to nonexperts. invited chapter in the handbook of
automated essay grading.

Swati Mishra and Jeffrey M Rzeszotarski. 2021. Designing Interactive Transfer
Learning Tools for ML Non-Experts. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1-15.

OpenAlL 2020. OpenAl GPT-3 playground: GPT-3 demo. https://gpt3demo.com/
apps/openai-gpt-3-playground

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Preprint
(2022).

Kayur Patel, Naomi Bancroft, Steven M. Drucker, James Fogarty, Andrew]J. Ko,
and James Landay. 2010. Gestalt: Integrated Support for Implementation and
Analysis in Machine Learning. In Proceedings of the 23nd annual ACM symposium
on User interface software and technology - UIST "10. ACM Press, New York, New
York, USA, 37. https://doi.org/10.1145/1866029.1866038

Amy Pavel, Floraine Berthouzoz, Bjérn Hartmann, and Maneesh Agrawala. 2013.
Browsing and Analyzing the Command-Level Structure of Large Collections of
Image Manipulation Tutorials. EECS Technical Report (2013).

Catherine Pricilla, Dessi Puji Lestari, and Dody Dharma. 2018. Designing inter-
action for chatbot-based conversational commerce with user-centered design. In
2018 5th International Conference on Advanced Informatics: Concept Theory and
Applications (ICAICTA). IEEE, 244-249.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika,
Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma,
Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta,
Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M.
Rush. 2021. Multitask Prompted Training Enables Zero-Shot Task Generalization.
https://doi.org/10.48550/ARXIV.2110.08207

Timo Schick and Hinrich Schiitze. 2021. True Few-Shot Learning with Prompts—-A
Real-World Perspective. arXiv preprint arXiv:2111.13440 (2021).

Lisa Stifelman, Adam Elman, and Anne Sullivan. 2013. Designing Natural Speech
Interactions for the Living Room. In CHI ’13 Extended Abstracts on Human Factors
in Computing Systems (Paris, France) (CHI EA ’13). ACM, New York, NY, USA,
1215-1220. https://doi.org/10.1145/2468356.2468574

Gina Danielle Venolia and Carman Neustaedter. 2003. Understanding sequence
and reply relationships within email conversations: a mixed-model visualization.
In Proceedings of the SIGCHI conference on Human factors in computing systems.
361-368.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autore-
gressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax.

https://doi.org/10.48550/ARXIV.2202.01279
https://doi.org/10.1145/1518701.1519060
https://www.wandb.com/
https://www.wandb.com/
https://arxiv.org/abs/2108.07258
https://doi.org/10.1145/3357236.3395495
https://doi.org/10.1145/3357236.3395495
https://doi.org/10.1145/2675133.2675214
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/505248.505271
https://doi.org/10.1145/3474349.3480209
https://doi.org/10.1145/3170427.3188515
https://doi.org/10.1145/354401.354406
https://doi.org/10.1145/2207676.2208549
https://arxiv.org/abs/2202.00828
https://arxiv.org/abs/2107.13586
https://doi.org/10.48550/ARXIV.2109.06977
https://gpt3demo.com/apps/openai-gpt-3-playground
https://gpt3demo.com/apps/openai-gpt-3-playground
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.48550/ARXIV.2110.08207
https://doi.org/10.1145/2468356.2468574
https://github.com/kingoflolz/mesh-transformer-jax

[40]

[41]

[42]

Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J Cai. 2022. PromptChainer: Chaining Large Language
Model Prompts through Visual Programming. In Extended Abstracts of the 2022
CHI Conference on Human Factors in Computing Systems.

Tongshuang Wu, Michael Terry, and Carrie J Cai. 2022. Al Chains: Transparent
and Controllable Human-AlI Interaction by Chaining Large Language Model
Prompts. In Proceedings of the 2022 CHI conference on human factors in computing
systems.

Qian Yang, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. 2018. Grounding
Interactive Machine Learning Tool Design in How Non-Experts Actually Build
Models. In Proceedings of the 2018 Designing Interactive Systems Conference (Hong
Kong, China) (DIS ’18). Association for Computing Machinery, New York, NY,

[43]

[44]

[45]

J.D. Zamfirescu-Pereira, Bjoern Hartmann, and Qian Yang

USA, 573-584. https://doi.org/10.1145/3196709.3196729

Qian Yang, John Zimmerman, Aaron Steinfeld, and Anthony Tomasic. 2016.
Planning Adaptive Mobile Experiences When Wireframing. In Proceedings of the
2016 ACM Conference on Designing Interactive Systems (Brisbane, QLD, Australia)
(DIS ’16). Association for Computing Machinery, New York, NY, USA, 565-576.
https://doi.org/10.1145/2901790.2901858

Ou Jie Zhao, Tiffany Ng, and Dan Cosley. 2012. No forests without trees: Partic-
ulars and patterns in visualizing personal communication. In Proceedings of the
2012 iConference. 25-32.

Xiaoyong Zhu. 2018. Fine-tune natural language processing models using Azure
Machine Learning service. https://azure.microsoft.com/en-us/blog/fine-tune-
natural-language-processing-models-using-azure-machine-learning-service/

https://doi.org/10.1145/3196709.3196729
https://doi.org/10.1145/2901790.2901858
https://azure.microsoft.com/en-us/blog/fine-tune-natural-language-processing-models-using-azure-machine-learning-service/
https://azure.microsoft.com/en-us/blog/fine-tune-natural-language-processing-models-using-azure-machine-learning-service/

	Abstract
	1 Introduction
	2 Related Work
	2.1 NLP Modeling Workflows and Tools
	2.2 Prototyping Chatbot UX
	2.3 Conversation Visualization and Analysis

	3 Conversation Regression Testing
	3.1 Definition and Benefits
	3.2 Conversation Regression Testing In Practice: An Example Design Process

	4 BotDesigner: A Tool that Operationalizes Conversation Regression Testing
	4.1 System Overview
	4.2 Inputs
	4.3 Using BotDesigner
	4.4 Implementation Details

	5 Evaluation
	5.1 Method
	5.2 Findings

	6 Limitations & Future Work
	7 Conclusion
	References

