
Pretrained Representations for Embodied AI

Sasha Sax

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-176

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-176.html

May 15, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Pretrained Representations for Embodied AI

By

Alexander Sax

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Arthur J. Chick Professor Jitendra Malik, Co-chair

Assistant Professor (EPFL) Amir Zamir, Co-chair

Professor Alexei Efros

Professor Bruno Olshausen

Spring 2023

Pretrained Representations for Embodied AI

Copyright 2023

by

Alexander Sax

1

Abstract

Pretrained Representations for Embodied AI

By

Alexander Sax

Doctor of Philosophy in Computer Science

University of California, Berkeley

Arthur J. Chick Professor Jitendra Malik, Co-chair

Assistant Professor (EPFL) Amir Zamir, Co-chair

The world is messy and imperfect, unstructured and complex, and nonetheless we must still

accomplish the basic behaviors necessary for survival. It is for this purpose, ecologically relevant

behavior, that vision evolved 500-600 million years ago.

This thesis is about how learn representations of the visual world that are useful for the types

of behaviors we might want an embodied AI system to do. In the first part of this thesis, we

systematically study how bottlenecking visual inputs through different pretrained representations

affects the ability of a robot to learn different atomic navigation skills (Chapter 2) and manipulation

skills (Chapter 3) through trial-and-error. The main finding is that the appropriate pretrained

representation greatly improves the sample efficiency for skill acquisition, and greatly improves

the generalization of the learned skill. In the second part of the thesis, we use the lessons learned

in order to improve the accuracy of the representations in a larger variety of contexts (indoors,

outdoors, tabletop settings, and so on). In Chapter 4 we do this through adding cross-prediction

consistency objectives. In Chapter 5 we do this by leveraging vast amounts of 3D data available on

the internet and from a robot’s prior experience.

The methods are primarily developed for the purpose of vision and action, but many of the ideas are

general and could work for other sensory modalities and behaviors.

i

To my family: my parents, Barbara and Jon, and my sisters, Amelia and Addie.

ii

Contents

Contents ii

1 Introduction 1

2 Visual Representations for Navigation 5

2.1 Introduction . 5

2.2 Related Work . 6

2.3 Methodology . 7

2.4 Case Study: Vision-Based Navigation . 9

2.5 Experimental Results . 12

2.6 Conclusion . 17

3 Representations for Manipulation and Real-World Navigation 18

3.1 Introduction . 18

3.2 Related Works . 20

3.3 Methodology . 21

3.4 Results . 26

3.5 Conclusion . 29

4 Cross-Task Consistency 31

4.1 Introduction . 31

4.2 Related Work . 33

4.3 Method . 35

4.4 Consistency Energy . 40

4.5 Experiments . 40

4.6 Conclusion and Limitations . 47

5 Scaling Datasets to Train Robust Representations 48

5.1 Introduction . 49

5.2 Related Work . 50

5.3 Pipeline Overview . 52

5.4 Starter Dataset Overview . 56

iii

5.5 Illustrative Data-Focused Analyses . 61

5.6 Conclusion and Limitations . 63

6 Conclusion 65

Bibliography 67

A Chapter 2 Supplementary Material 86

A.1 Detailed Methodology . 87

A.2 Additional Experiments and Analysis . 95

B Chapter 3 Supplementary Material 103

B.1 Overview Video Clip . 103

B.2 Videos of sim-to-real test episodes from physical onboard cameras 104

B.3 Code . 104

B.4 Experiments with Shaped Rewards . 104

B.5 Complete sim-to-real episode-level results . 105

B.6 Descriptions of Manipulation Tasks . 105

B.7 Description of Navigation Tasks . 105

B.8 Train and Test Splits . 106

B.9 Mid-Level Vision Objectives . 107

B.10 Sim-to-Real Setup . 109

B.11 Policy Learning Setup . 110

B.12 Full Descriptions of Baselines . 113

B.13 Train and Test Curves . 114

C Chapter 4 Supplementary Material 118

C.1 Video Evaluation . 119

C.2 Live Demo . 119

C.3 Consistency with Unsupervised Tasks . 119

C.4 Handling of Ill-Posed Tasks . 120

C.5 Balancing Different Loss Terms . 123

C.6 Optimizing the standard direct loss does not lead to optimizing cross-task losses . . 124

C.7 Derivation of Generic Consistency Criterion . 124

C.8 Sensitivity Analysis: Edge Selection . 125

C.9 Sensitivity Analysis: Path Lengths . 126

C.10 Standard Error Over Multiple Seeds . 126

C.11 Results on NYUv2 Dataset . 127

C.12 More Metrics . 128

C.13 More Qualitative Results . 131

C.14 Blind Guess (Statistically Informed Guesses) . 133

C.15 Code, Examples, and Docker . 133

iv

D Chapter 5 Supplementary Material 139

D.1 Online Demos . 139

D.2 Dockerized Pipeline, Tools, and Documentation 140

D.3 Mid-level Cues Provided . 140

D.4 Surface Normal Estimation with Refocusing Augmentation 142

D.5 GSO+Replica Dataset Generation Process . 144

D.6 Dataset Ablation Analysis of the Starter Set . 145

D.7 Blind Guesses (Statistically Informed Guesses) for the Starter Set 146

D.8 Surface Normal Estimation on OASIS Dataset . 146

D.9 Multi-Task Learning Rank Reversal Experimental Setup 149

v

Acknowledgments

I would like to express my sincere gratitude to both of my advisors, Jitendra Malik and Amir Zamir,

for providing me the freedom to explore and the guidance to do so productively.

Thank you Jitendra Malik for teaching me to be a scientist. You showed me how to think about

computer vision as an interdisciplinary scientific pursuit, and encouraged me to incorporate ideas

from fields such as psychology, physiology, robotics, and more. Thanks for sharing with me your

philosophies, and for helping me to develop my own. Like the time you sent me to the Lund sensory

ecology bootcamp. You taught me that computer vision is not proof-based, and of the importance

of reading both deeply and widely. Thank you for teaching me what makes a problem worthwhile

and that research is the ªart of the solubleº. Your guidance in navigating the research community

has been invaluable.

Thank you Amir Zamir for teaching me how to do research. You demonstrated how to break

down complex problems into manageable pieces, and how to attack a manageable piece problem

until it surrenders. You guided me in crafting clever experiments to test hypotheses, writing papers,

preparing presentations, and much more. Thank you for our many discussions, brainstorming

sessions, and collaborations±it is great fun to generate and analyze crazy ideas with you. And you

showed me how to bring a machine learning skillset to ecological vision. You also have excellent

pointers to historical papers. I have greatly benefited from (and been inspired by) your intense

enthusiasm and creativity in everything you do.

Thank you Alyosha Efros for your phenomenal avuncular advising on all matters professional

to personal to peripatetic (e.g. what cafes to visit while in Paris). I am grateful for your service

on both my thesis and qualifying committees. Thank you to Angjoo Kanazawa for your advice

throughout the years, for bringing such joy to whatever space you are in, and for serving on my

thesis talk committee. And thank you also to Bruno Olshausen for serving on my qualifying and

thesis committees. And thank you also to Michael Costello. Your mentorship throughout my years

in high school helped to rekindle my love of learning. Your AP (and post-AP) stats classes first got

me interested in statistical modeling and I draw a direct line from there to statistical modeling of

behavior.

My heartfelt thanks to my incredible collaborators. Collaborating with you all has been a

highlight of my PhD journey, and I look forward future collaborations and watching your careers

flourish. Expressing my gratitude for everything you’ve taught me could fill several theses, but I

would like to give special thanks to Jeffrey Zhang, Bryan Chen, and Ainaz Eftekhar. You each have

remarkable research ability and have such a knack for implementing things quickly and correctly.

Rediscovering research and Embodied AI alongside you has been an absolute pleasure. Thank you

also to Bradley Emi, Francis (Gene) Lewis, Lerrel Pinto, Teresa Yeo, Oğuzhan Kar, Nikhil Cheerla,

Rohan Suri, Zhangjie Cao, Iro Armeni, Nikhil Cheerla, Rohan Suri, Silvio Savarese, and Leonidas

Guibas.

Thank you everyone at Berkeley, especially members of Jitendra’s, Alyosha’s, and Trevor’s

groups over the years: Anastasios, Andrea, Andrew, Antonio, Ashish, Ashvin, Daniel, Dave,

Deepak, Devin, George, Georgia, Hang, Haozhi, Jasmine, Jathushan, Ilija, Kartik, Ke, Medhini,

Neerja, Panna, Richard, Shiry, Shubham, Tete, Toru, Weicheng, Vickie, Vongani, Yossi, Young,

vi

Zhe and others, for your guidance, support, discussions, and friendship. It has been a exciting and

humbling experience learning to do research with such a kind and brilliant bunch.

Thank you the BAIR admin team: Angie, Ami, Roxana and Lena. For shielding me from

Berkeley bureaucracy, providing us an excellent lab space in which to do research, for enabling

BAIRs collaborations with industry, and for helping make many holidays feel festive with cards,

crafting, and conversation.

Thank you to my friends. Especially, Hayley and Tobin. Hayley, our Dominion games over

Zoom during the pandemic kept me sane. Tobin, thank you for encouraging me to even do a PhD in

the first place.

Thank you to my family and friends for your kind support and encouragement over the years.

1

Chapter 1

Introduction

Every animal must perform certain tasks to survive and reproduce. These tasks generally fall into

the "Four F’s": feeding, fleeing, fighting, and mating. Natural selection targets these fundamental

behaviors and favors effective behavioral rules.

A major breakthrough in the past half-century has been casting such selection as an optimization

problem. It has been especially effective in machine learning and artificial intelligence, where

advances in algorithms, computing power, and available data now enable the optimization of

behavioral rules to achieve specific behaviors in given environments, using techniques like rein-

forcement learning [207], evolutionary algorithms [60], or "supervised learning" (learning from

demonstrations [10]).

Early on in the study of behavior, Niko Tinbergen noted that the goals and methods of ethology

(the study of behavior) and of cybernetics [220] (later "AI"1) were deeply intertwined [208]. AI

could provide ethology with valuable models of behavior that allow researchers to probe how

the behavior is connected to sensing and stimuli, underlying learning processes, morphology and

environment. In AI, such behavioral rules that map sensory inputs to motor outputs are often called

sensorimotor policies.

For example, a neural-network-based sensorimotor policy could be trained for navigation

behavior (like foraging). AI’s contribution here lies in the development of mechanistic models

of behavior through selection, allowing researchers to interrogate the training setup and resulting

sensorimotor policy: how do success rate and speed change if the policy has additional senses, like

vision? What if the policy is forced to attend only to specific types of visual cues (like surface

shapes, rather than color)? The idea is that sensing and learning are primarily valuable because they

facilitate ecologically relevant behaviors.

This thesis systematically investigates the role of pretrained visual representations for some

behaviors important to embodied AI, straddling the gap between computer vision and embodied

behavior research. The research is divided into two main parts: (1) examining the types of

1Thank you, Amir, for pointing out that historically there were two camps: Norbert and Rosenblatt et al. in

cybernetics and McCarthy and Minski et al. in AI, each with their own preferred terminology. Most of our methods

today come from the first camp and most of our terminology from the second.

CHAPTER 1. INTRODUCTION 2

visual pretraining objectives and their impact on behavior, and (2) developing more robust visual

representations that provide accurate and behaviorally-relevant perception.

What are ªPretrained Representaitonsº

Over the past five decades, computer vision has aimed to estimate relevant aspects of the envi-

ronment, such as surfaces, their properties, object recognition, detection, tracking, and camera

localization (odometry). Initially, this estimation relied on hand-crafted algorithms that extracted

short numerical descriptions of inputs (hand-crafted features [134, 199] of camera images, camera

poses and intrinsics, etc.) before using those descriptions directly or with a small amount of machine

learning (e.g., a small SVM or part-based model) learned on top of those hand-crafted features.

Nowadays, these features (also called representations) are learned from data using deep neural

networks. And when these representations are trained on large and diverse data sets, the data-driven

representations prove to be surprisingly general. For example, the representations learned for image

classification on ImageNet can be adapted to do related tasks on different data (e.g. PASCAL object

detection) [71, 189].

This technique, transfer learning, has become widespread in virtually every machine learning

application. The use of such pretrained representations can substantially reduce the data needed

to learn the downstream task while yielding a model that trains faster, achieves greater accuracy,

and generalizes better to unseen data than would be possible by training the model from scratch

using only the downstream data. Transfer learning has led to enormous successes in domains like

visual recognition [71], speech recognition and synthesis [183], natural language processing [28],

and protein folding [106].

Transfer learning depends on high-quality learned representations that result from large-scale

training data, high-capacity network architectures, effective learning rules, and appropriate pretrain-

ing objectives. Success also depends powerfully on the match of the pretraining objective to the

downstream application. As a result, transfer learning has been slower to take off in Embodied AI

because it is difficult to find appropriate pretraining data, and researchers work with a variety of

robot morphologies, sensor configurations and downstream tasks.

This thesis seeks to understand when transfer learning works for the types of tasks (skills)

required of embodied agents. In particular, the thesis aims to identify what types of "pretrain-

ing" (objective, architecture, data, and learning algorithm) transfer well to different downstream

embodied behaviors, like navigation and manipulation.

I. Pretrained Visual Representations and Embodied Behavior

The first part of the thesis presents a large-scale study of the types of visual pretraining objectives,

and their utility for various atomic navigation and manipulation skills (learned with reinforcement

learning and transfer learning, Chapters 2 and 3). One motivation for this study is practical: starting

with an appropriate pretraining objective allows rapid skill acquisition. When starting from a

pretrained representation, new behaviors like obstacle avoidance or object picking can be learned

CHAPTER 1. INTRODUCTION 3

from orders of magnitude less data than training from scratch. The final result is also a policy that

generalizes much better to new environments and objects.

We find that no single pretrained representation is best for all navigation or manipulation skills,

and the best pretrained representation depends on the desired skill. For example, when learning to

pick up an object, it helps to begin with a visual system that already perceives surfaces and distances.

But when searching for an object, it helps to have a visual system that can detect and recognize

objects. Ideally, the pretrained representation provides the policy with a starting understanding of

the world that simplifies the learning problem. However, the representation should be "aligned"

with the intended behavior.

This research connects to a biological principle: animals should not sense more than they need

to, since sensing comes with a cost. There is an firstly energetic cost because the neuronal tissue

required to process the sensory input is expensive to maintain. The human brain, for example,

accounts for about 20% of our overall energy expenditure, and about half of the human brain is

devoted, directly or indirectly, to processing visual inputs. Then there is a developmental cost, as

learning to process sensory inputs requires complex attentional patterns that are usually not innate.

These patterns take time to develop, during which the animal is vulnerable. Such energetic and data

constraints provide strong selection pressure for animals to devise minimal sufficient perception

to accomplish a given behavior. Surprisingly, there has been little work on understanding sensory

modalities and representations in terms of their ability to enable different behaviors with minimal

learning time and minimal energy2.

The tools of machine learning, simulation, and optimization are well-suited to uncover such

relationships ± to study and model the coupling between behavior, environment, morphology, and

optimal perception under different functional constraints. This thesis demonstrates one way to do

so, and in Chapters 2 and 3 we find results that match our biological understanding. In particular,

we find distinct representations useful for different navigation skills: recognition for object-finding

skills and geometry for obstacle-avoidance skills. This echoes the distinct "what" and "where"

pathways in the primate visual system (the "dorsal" and "ventral" streams). We also find that for

manipulation, representations of surface normals are much better than representations of depth,

which matches findings that the human visual system is attuned to surfaces and shapes.

II. Pretraining Robust Visual Representations

One lesson from ethology is that even complex behaviors tend to be composed of responses that

are highly-stereotyped and modulated by specific contextual stimuli. Problems like this±those that

are narrowly-scoped, repeated, and dependent on a limited context±are an excellent fit for deep

representation learning.

The second part of the thesis then focuses on developing better representations for Embodied AI,

by defining appropriate objectives (scoping) and developing larger and more diverse datasets. The

2There is a small and vibrant field called "sensory ecology" that studies exactly this. Every two years, Lund

University hosts a 2-week seminar for about 40 PhD students, mostly from that field. I was fortunate enough to get to

attend, and I highly recommend it.

https://www.biology.lu.se/phd-studies/phd-courses/sensory-ecology

CHAPTER 1. INTRODUCTION 4

resulting representations provide accurate and useful information in a variety of contexts (indoors,

outdoors, object close-ups, and scene-level views).

Chapter 4 develops methods to enforce consistency between different objectives by incorporating

cross-prediction consistency constraints. Adding these constraints aids in generalization to out-of-

distribution data and offers a natural way to estimate domain shift and perform adaptation. Chapter 5

outlines a pipeline to utilize new sources of 3D data (assets from the internet and 3D reconstructions

from a robot’s past experience) and to parametrically resample that data into large vision datasets

capable of training accurate and robust visual representations. These improved vision models can

then be used to enhance 3D reconstructions, leading to better resampled data, better vision models,

and so on. Some follow-up works use the improved monocular estimators trained in Chapter 5 to

achieve better 3D reconstruction [233, 251], closing the loop.

In summary, this thesis concentrates on identifying how visual representations enable down-

stream behavior and on developing more robust visual representations that provide accurate,

behaviorally-relevant perception in various contexts. The focus on vision, rather than other senses,

stems from my interest in vision and our relatively good understanding of visual perception, thanks

to decades of computer vision research and centuries of research in optics and biology. Although

vision is relatively well-understood, we are only beginning to comprehend other types of sensory

inputs, such as touch, magnetoreception, or Wi-Fi sensing. The methods in this thesis are developed

and validated for vision, but are not specific to it and similar approaches could be applied to

understand how other representations of the environment and internal state of the agent affect the

success and failure, as well as acquisition speeds, of downstream behavior.

5

Chapter 2

Visual Representations for Navigation

If the primary purpose of visual representations is to describe relevant aspects of visual inputs in

ways that enable behavior, how well do different types of representations actually accomplish that

goal? In this chapter, we examine various types of representations (estimating surface normals,

depth, object masks, etc.) in terms of how well they support different types of navigation behaviors

in indoor scenes (finding objects in a house, avoiding obstacles, exploring an unknown building).

To achieve this, we use reinforcement learning (trial and error) to train policies that map these

different representations to actions. With enough training data, the agents typically learn something

reasonable in the training buildings. We find that some representations are better than others, in the

sense that they enable agents to learn faster and generalize more effectively to new environments.

The purpose of this chapter is to understand the connection between pretraining objectives and

downstream behaviors, and one of our main findings is that the optimal type of perception depends

on the specific behavior the agent needs to accomplish.

2.1 Introduction

The resurgence of deep reinforcement learning (RL) began with a number of nominal works, e.g.

the Atari DQN paper [146] or pixel-to-torque [127], which collectively showed that RL could be

used to train policies directly on raw images.

Although deep-RL-from-pixels can learn arbitrary policies in an elegant and end-to-end fashion,

there are two phenomena endemic to this paradigm: I. learning requires massive amounts of data

(large sample complexity), and II. the resulting policies do not transfer well across environments

with even modest visual differences (generalization difficulties).

These two phenomena are characteristic of a type of learning that is too general|in that it does

not make use of available priors. In the context of visual perception (the focus of this paper), an

example of such priors is that the world is spatially 3D; or there exist certain useful groupings,

This chapter is based on joint work with Jeffrey Zhang, Bradley Emi, Amir Zamir, Silvio Savarese, Leonidas

Guibas, and Jitendra Malik [182], and is presented much as it appeared in the CoRL 2019 proceedings.

https://arxiv.org/abs/1812.11971

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 6

i.e. ªobjectsº. These priors are basically facts of the world and incorporating them in learning is

notably advantageous [68, 21]. That is because the assumption-free style of learning may recover

the proper policy but at the expense of massive amounts of data to rediscover such facts (issue I); or

may resort to shortcuts spawned by spurious biases in the data to superficially learn faster, which

leads to generalization difficulties (issue II) [5].

Policy

A
c

tio
n

s

Visual Observation

VisionMid-Level

WorldAgent in the

2D Edges

Normals

Occlusion

Layout

Figure 2.1: Mid-level vision in an end-to-end frame-

work for learning active robotic tasks. We report

significant advantages in final performance, generaliza-

tion, and sample efficiency when using mid-level vision,

especially compared to learning directly from raw pixels

(i.e. bypassing the beige box).

One of the goals of computer vision is formulat-

ing useful visual priors about the world and devel-

oping methods for extracting them. Conventionally,

this is done by defining a set of problems (e.g. ob-

ject detection, depth estimation, etc.) and solving

them independently of any ultimate downstream

active task (e.g. navigation, manipulation) [43, 6].

In this paper, we study how such standard vision

objectives can be used within RL frameworks as

mid-level visual representations [160], in order to

train effective visuomotor policies.

We show that incorporating mid-level vision

can alleviate the aforementioned issues I & II, re-

sulting in improved final performance, generaliza-

tion, and sample efficiency. We demonstrate that

mid-level vision performs significantly better than

SotA state representation learning methods and learning from raw images ± which we find to

perform no better than a blind agent when tested on unseen test data. Finally, we observe that

policies trained using mid-level vision exhibit desirable properties for which they were not explicitly

trained, without having to do reward shaping.

Our study is done using 24 different mid-level visual representations to perform various nav-

igation based downstream tasks in 3 different environments (Gibson [223], Habitat [181], ViZ-

Doom [107]). Our mid-level vision comes from neural networks trained by existing vision tech-

niques [238, 246, 49] using real images. We use their internal representations as the observation

provided to the RL policy. We do not use synthetic data to train the visual estimators nor do we

assume they are perfect.

An interactive tool for comparing various trained policies accompanied with videos and reward

curves, as well as the trained models and code is available on our website.

2.2 Related Work

This study has connections to a range of topics, including transfer learning, un/self supervised

learning, lifelong learning, reinforcement and imitation learning, control theory, active vision and

several others. We overview the most relevant ones within constraints of space.

Computer Vision encompasses approaches that are conventionally designed to solve various

stand-alone vision objectives, e.g. depth estimation [61], object classification [119], detection [72],

http://perceptual.actor/policy_explorer/
http://perceptual.actor/generalization_curves/
http://perceptual.actor/generalization_curves/
https://github.com/alexsax/midlevel-reps
http://perceptual.actor/policy_explorer/
http://perception.actor

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 7

segmentation [193], pose estimation [245, 31], etc. The approaches use various levels of supervi-

sion [119, 154, 52, 24], but the characteristic shared across these methods is that they are offline,

i.e. trained and tested on prerecorded datasets and evaluated as a fixed pattern recognition problem.

In contrast, the perception of an active agent is fundamentally used in an online manner, i.e. the

perceptual skill is in service to a downstream goal and the current perceptual decision impacts

what the next perceptual observation will follow. Here we study how conventional computer vision

objectives can be plugged into such frameworks used for solving downstream active tasks, e.g.

navigation.

Representation/Feature Learning shares a goal with our study: to understand how to encode

images in a way that provides benefits over using just raw pixels. Many of the most popular

representation learning techniques like Variational Autoencoders (VAE) [108] or alternatives [89,

215, 140] are based on Minimum Description Length (MDL) which roughly suggests that ªthe best

representation is the one that leads to the best compression of the data.º We show this assumption is

not valid, as the most compressive representations are not found to support downstream tasks well.

Other techniques model the dynamics of the environment (e.g. by predicting the next state [105,

155] or by other related objectives [53, 159, 250, 169, 2]). One advantage of modeling the dynamics

is that the representations could useful for planning. These dynamics are not necessarily visual and

they may be specialized to the particular morphology or action space of the agent.

A compendium of several concurrent and recent works have offered supporting evidence that

mid-level visual representations could be useful for realistic downstream active tasks: e.g. a specific

semantic representation for semantic driving ([150, 149, 227]) or dense object descriptors for

manipulation ([63]). Independently of our work, [247] also studied the role of visual abstractions for

learning to act. That work focused on learning policies for synthetic driving and first-person shooter

environments; showing that agents equipped with intermediate representations (optical flow, depth,

semantic segmentation, and albedo), train faster, achieve higher task performance, and generalize

better. While the details of the environments, tasks, and representations differ, the findings are

broadly aligned and appear to support each other.

Robotics has long used intermediate visual abstractions such as depth (e.g. SLAM [100]),

optical flow [153], or ground-plane estimation [56]. However, these usually use the output of the

vision solutions in some analytic fashion [192] which requires the representations to be easy to

analyze analytically. When the presesentation is not analytically well understood or in presence

of noise (e.g. the latent features from a VAE, noisy depth information) such methods cannot be

used. The end-to-end approach has no such constraint, but most end-to-end methods learn with

simplistic visual features or tabula rasa. This paper studies the utility of incorporating mid-level

visual features in a learning-based end-to-end frameworks.

2.3 Methodology

Our goal is to study the role of mid-level representations of raw visual data toward performing

downstream robotic tasks better. More concretely, the goal is to maximize an agent’s performance

in a test setting (Q) that is similar but not identical to the training distribution, P . Our setup

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 8

Pixel Space Representation Space

Train

Test

Representations

Transform Raw Inputs

(e.g. Surface Normals)

Identity Texture Edges Reshading

3D Keypts.

NormalsAutoencoding

Van. Pts. Room Layout2.5D Segment.Denoising

2D Segment.

DepthScene Cls. Sem. Segment.

Obj. Cls.2D KeypointsCurvature

OcclusionsIn-painting

Colorizing

Representation Dictionary

Mid-Level Visual Representations

Space of All

Representations Feature ReadoutFrozen

Feature Encoder
(e.g. surface normal estimation)

Using a Mid-Level

Representation in RL

Policy

Network

Figure 2.2: Illustration of our approach. Left: The job of a feature is to warp the input distribution, potentially

making the train and test distributions look more similar to the agent. Middle: Visualizations for 19 of 24 mid-level

vision objectives in our dictionary Φ̃. The dictionary is a sample of all possible transforms (Φ), and the best function for

a given task must have the proper ªinvarianceº, i.e. ignore irrelevant parts of the input while retaining the information

required for solving the downstream task. Right: Representations from fixed encoder networks are used as the

observation for training policies in RL.

assumes access to a set of functions Φ = {ϕ1, . . . , ϕm} that can be used to transform raw sensory

data into some (possibly useful) representation. We define Pϕ ≜ ϕ(P) as image of the the training

distribution under ϕ as and Qϕ ≜ ϕ(Q) analogously. This shown in Fig. 2.2, left). In this paper we

show that when this dictionary is a set of mid-level visual representations, agents can achieve better

final performance, generalization, and sample efficiency.

Using Mid-Level Vision for Active Tasks: The Role of Representations

Why could a visual feature, e.g. image → surface normals, improve test-time performance on a

downstream task, compared to simply using the image raw? A good representation ϕ transforms the

inputs in a way that preserves the task-relevant information while eliding task-irrelevant differences

between the train and test distributions. Roughly speaking, a good representation makes Pϕ ≈ Qϕ

without affecting the training reward (RPφ
), as illustrated in Fig. 2.2-left. In this way, using RL to

maximize the training reward also improves the test-time performance, RPφ→Qφ
.

Our mid-level representations come from a set of neural networks that were each trained, offline,

for a specific vision objective [238] (see Fig. 2.2-middle). We freeze each encoder’s weights and

use the network (ϕ) to transform each observed image ot into a summary statistic ϕ(ot) that we feed

to the agent. During training, only the agent policy is updated (as shown in Fig. 2.2-right). Freezing

the encoder networks has the advantage that we can reuse the same features for new active tasks

without degrading the performance of already-learned policies. This approach is almost certainly

not ideal, but agents trained using mid-level representations in this way still outperform the current

SotA.

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 9

Core Analysis: Final Performance, Generalization, and Rank Reversal

Final Performance: We evaluate agents in a test space distinct from where the agents were trained.

Maintaining a train/test split is crucial, and we found that training performance was not necessarily

predictive of test performance.
Generalization: We provide a detailed analysis of how different agents generalize|reporting

both the common metric of generalization (the gap between train and test buildings) and alternatives

(e.g. performance of test episodes significantly longer or harder than the training episodes).
Sample Complexity: We examine whether an agent equipped with mid-level vision can learn

faster than a comparable agent that learns tabula rasa (i.e. with vision, but no priors about the

world). We report sample complexity both in terms of the number of training updates/frames (the

usual metric), and also as a function of how many buildings (sampling clusters) are in the training

set.

Rank Reversal: Which Mid-Level Feature to Use?

Can a single feature support all downstream tasks? Or is a set of features required for gaining

these feature benefits in arbitrary tasks? We demonstrate that no feature is universally useful for all

downstream tasks (Sec. 2.5). We show this by demonstrating cases of rank-reversal|when the ideal

features for one task are non-ideal for another task (and vice-versa). Formally, for tasks T0 and T1

with best features ϕ0 and ϕ1 respectively, where the test reward for each task is denoted Ri≜RPi→Qi

we show that R0(ϕ0) > R0(ϕ1) and R1(ϕ0) < R1(ϕ1). For instance, we find that depth estimation

features perform well for visual exploration and object classification for target-driven navigation,

but neither do well vice-versa.

Max-Coverage Feature Set for Arbitrary Tasks

As a consequence of the rank-reversal phenomenon, one needs to select the mid-level feature based

on the current downstream task of interest, and keep updating it every time that task changes. In

this section we ask: when the downstream task is unknown or changes, could a predetermined

set of features provide better worst-case (generic) perception than using any single feature? We

give an example of such a set: the Max-Coverage Feature Set, which is a minimal covering set of

the space of useful visual abstractions. In Sec. 2.5, we demonstrate that this set can capture the

benefits of mid-level vision, comparable to if we had known the best feature a priori. Finding the

Max-Coverage (M-C) feature set can be formulated as a sequence of O(log |Φ̃|) Boolean Integer

Programs and solved efficiently in < 4 seconds. Since the main goal of our study is to examine

the utility of mid-level vision and to demonstrate that no single feature is universal, we provide the

detailed formulation and analysis of the Max-Coverage feature set in Appendix A.1.

2.4 Case Study: Vision-Based Navigation

We adopt a class of active tasks (navigation) and apply the described methodology to perform our

study. The study examines representations driven by 24 different mid-level objectives, compared

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 10

against 8 state-of-the-art baselines and 3 separate controls, all on 3 distinct navigation tasks. The

remainder of this section describes our experimental setup, and complete details are in the appendix.

Environments: Our experimental setup is the same as in the CVPR 19 Habitat Challenge [137];

we use the Habitat platform [181] with the Gibson [223] dataset. The dataset captures the intrinsic

visual and semantic complexity of real-world scenes by scanning 572 actual buildings. See our

website for videos of the trained policies generalizing to real robots (with no finetuning).

To establish the universality of the results, besides Habitat, we also perform the study using

two other environments: Gibson Environments [223] (a visually realistic simulator integrated with

PyBullet dynamics and operating on Gibson dataset) and ViZDoom [107] (a 3D first-person game).

Corder

Sweatman

Ancor

MartinvilleKemblesville Vails Wiconisco

GlobeEagan2D-3D-SDuarteAloha

Hanson Hatfield

Figure 2.3: Sample of 14 buildings from the Gibson [223] dataset. One floor is shown from each space. Boxed

images indicate sample observations from the Gibson [223] environment, while observations in Habitat [181] come

directly from the (shown) mesh textures. We use 72 buildings for training and 14 for testing.

Train/Test Split: We train and test our agents in two disjoint sets of buildings (Fig. 2.3); test

buildings are completely unseen during training. We use up to 72 building for training and 14 test

buildings for testing. The train and test spaces comprise 15678.4m2 (square meters) and 1752.4m2,

respectively.

Downstream Navigation Tasks
We present our case study using three common and useful navigation-type tasks: local planning,

visual exploration, and navigation to a visual target (see videos here); described below (detailed in

Appendix A.1).

Local Planning (aka Point Goal [7, 181]): The agent must direct itself to a given nonvisual target

destination (specified using coordinates), avoiding obstacles and walls as it navigates. This skill might be

useful for traversing sparse waypoints along a desired path. During training, the agent receives a large

one-time reward for reaching the goal, and in the dense-reward variant, also receives positive reward

proportional to the progress it makes (in Euclidean distance) toward the goal. There is also a small negative

reward for living. The maximum episode length is 500 timesteps, and the target location is 1.4 to 15 meters

from the start.

Visual Exploration: The agent must visit as many new parts of the space as quickly as possible. The space

is partitioned into small occupancy cells that the agent ªunlocksº by scanning with a myopic laser range

http://perceptual.actor
http://perceptual.actor/policy_explorer/

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 11

scanner. This scanner reveals cells directly in front of the agent for up to 1.5 meters. The reward at each

timestep is proportional to the number of newly revealed cells. The episode ends after 1000 timesteps.

Navigation to a Visual Target: In this scenario the agent must locate a specific target object (a wooden

crate) as fast as possible with only sparse rewards. Upon touching the target there is a large one-time

positive reward and the episode ends. Otherwise there is a small penalty for living. The target (wooden

crate) is fixed between episodes although the agent must learn to identify it. The location and orientation of

both the agent and target are randomized. The maximum episode length is 400 timesteps, and the shortest

path is usually over 30.

Sensory Input: For each task, the sensory observation space contains RGB images of the

onboard camera. In addition, the minimum amount of side information needed to feasibly solve

the downstream task are appended; that is the target direction/location for local planning, unlocked

occupancy cells for exploration, and nothing for Visual Target Navigation. Unlike the common

practice, we do not include proprioception information such as the agent’s joint positions, velocities,

or any other unessential side information in order to strictly test the perceptual skills of the agents.
Action Space: We assume a low-level controller for robot actuation, enabling a high-level

action space of A = {turn_left(10◦), turn_right(10◦), move_forward(0.25m)}.

Reinforcement Learning Algorithm

We use an off-policy variant of Proximal Policy Optimization [186] (PPO, details in Appendix A.1),

with a small controller network. For each task and each environment we conduct hyperparameter

searches optimized for scratch and all the state-of-the-art baselines (see section 2.4). For our

mid-level agents, we use the same hyperparameters that were optimized for scratch.

Mid-Level Representations

For our experiments, we used representations derived from one of 24 different computer vision

objectives (Fig. 2.2). This set covers various common modes of computer vision objectives: from

texture-based (e.g. denoising), to 3D pixel-level (e.g. depth estimation), to low-dimensional

geometry (e.g. room layout), to semantic (e.g. object classification). For these objectives we used

the networks of [238] trained on a dataset of 4 million static images of indoor scenes [238]. All

networks were trained with identical hyperparameters and using a ResNet-50 [82] encoder. For

a full list of vision objectives and samples of the networks evaluated in our environments, see

Appendix A.1.

State-Representation Baselines

We include multiple control groups in order to address possible confounding factors, and we

compare against several state-of-the-art baselines. We describe the most important ones here and

defer remaining descriptions to Appendix A.1.

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 12

Tabula Rasa (Scratch) Learning: The most common approach, tabula rasa learning trains the agent from

scratch. In this condition, the agent receives the raw RGB image as input and uses a randomly initialized

AtariNet [146] tower that is trained with the policy.

Blind Intelligent Actor: The blind baseline is the same as tabula rasa except that the visual input is a fixed

image and does not depend on the state of the environment. The blind agent is a particularly informative

and crucial baseline since it indicates how much performance can be squeezed out of the nonvisual biases,

correlations, and overall structure of the environment. For instance, in a narrow straight corridor which

leads the agent to the target, there should be a small performance gap between sighted and blind.

State-of-the-Art Representation Learning: We compare against several state-of-the-art representation-

learning methods, including dynamics-modeling [152, 190, 105], curiosity [159], DARLA [88], and

ImageNet pretraining [119], enumerated in Figure 2.4.

Non-Learning: Methods such as SLAM [100] have long used intermediate representations such as depth,

but inside a specialized non-learning framework. SLAM may not always be applicable, but when it is it

shows how much of the problem can solved with hand-engineered systems.

2.5 Experimental Results

This section presents results from a case study of agents trained with mid-level representations. In

the main paper we primarily focus on the Local Planning task performed in Habitat [181]. The

supplementary material provides the results of the experiments in other environments (Gibson,

Doom) and with other downstream tasks (exploration, visual target navigation), which show the

same trends.

Final Performance: Mid-Level Features Exhibit Better Performance

Higher reward on the test set: Agents using mid-level visual representations achieve performance

significantly higher than agents trained from scratch (Fig. 2.4, left). This was tested in both

Gibson [223] environment and Habitat [181], as shown in Fig 2.4. The Spearman’s ρ between

performance in Habitat and Gibson was 0.87, indicating a high degree of agreement between

rankings in the two environments. Notably, scratch and several of the SotA features do not perform

much better than a blind agent in the test space, which suggests they heavily overfitted to the

training set (Appendix A.2).

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 13

R
e
l.
 R

e
w

.
to

 B
li
n
d

Mid-Level

Scratch

Curiosity

VAE

Inverse

Forward

Forward Inverse

ImageNet

DARLA

Blind

Local Planning

Habitat Gibson Gibson Gibson

0

1

2

Visual-Target Navigation

0.0

0.5

1.0

Visual Exploration

0.8

1.0

Local Planning

Figure 2.4: Agents using mid-level vision had higher reward on the test set. Each bar plot compares average

test-set reward on a different task. On every task, agents using mid-level vision outperformed those learning from

scratch or using alternative SotA representation-learning methods. Significance tests in Appendix A.2.

Desirable emergent behavior without reward engineering: Although agents were trained only to

maximize training reward, we found that mid-level-vision-based agents exhibited other desirable

properties such as fewer collisions, less acceleration and jerk, and better performance on alternative

task metrics, as shown in Fig. 2.5 (a,b)1. Other papers [18] have specifically built in this desirable

behavior, but we find that simply adding in appropriate perception goes a long way towards fixing

the issue without having to hand engineer the reward.
When using mid-level vision, agents performed equally well with sparse or dense rewards (0.74

vs 0.76 SPL)2, see the project appendix and significantly outperformed SotA methods±even when

the SotA methods used dense reward and/or were explicitly engineered to handle sparse reward

(e.g. [159]: 0.56 SPL).

Nav. with Noisy Localization

Higher Success Rate and Shorter Paths Fewer Collisions and Less Jerk

Curio
sity

 [3
1]

VAE [2
4]

Inverse [4
9]

Forw
ard [4

8]

Fwd. +
 In

v.
[28]

Im
ageNet [1

6]

DARLA [5
0]

(c)(b)(a)

Curio
sity

 [3
1]

VAE [2
4]

Inverse [4
9]

Forw
ard [4

8]

Fwd. +
 In

v.
[28]

Im
ageNet [1

6]

DARLA [5
0]

B
e
tt

e
r

B
e
tt

e
r

No GT LocalizationGround-Truth Location

Scratch

Scratch

B
e
tt

e
r

S
P

L

Mid-Level Blind Scratch SLAM

0.0

0.7

Robust to Noisy Sensors

Mid-LevelMid-Level

I II IIII II III

Figure 2.5: Desirable emergent behavior and robustness under uncertainty. (a),(b): The colorful bar charts

show that agents using mid-level vision learn desirable behavior that is not explicitly coded for in the reward: they

experience fewer collisions, less jerk 3, and achieve a higher success rate and shorter average path length. (c): Removing

ground-truth agent localization (gap between the blue and brown rectangles) harms localization and hurts classical

methods and scratch more than mid-level agents.

More robust agents: Fig. 2.5 (c) demonstrates that mid-level vision-based agents robustly handle

noisy inputs. We removed agents’ access to ground-truth agent localization (via an inertial mea-

surement unit) and found that (1) the gains from using mid-level priors were much larger than the

1The top mid-level features (I, II, and III) were chosen based on reward (see Sec. 2.5). Error bars = 1 SE.
2SPL = Success Weighted by Path Length (as in [7]

https://perceptual.actor/

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 14

re Scratchre Scratch BlindCurvature

R
e
w

a
rd

 R
e
l.
 t

o
 B

lin
d

Generalization (Train/Test) Generalization (More Distant Goals)

[16]

[31]

50

[28]

[48]

[49]

[24][50]

Figure 2.6: Agents using mid-level vision generalize to new buildings and more distant goals. Left: While both

curvature and scratch achieve the same reward on the training set (4 buildings), agents using mid-level vision generalize

far better than scratch, which performs worse than a blind agent (gray line). Right: Agents using curvature features

retain performance on episodes longer than anything seen during training (right of black line); outperforming alternative

approaches.

gains from using a (ground-truth) map (+0.23 SPL and +0.05 SPL vs. scratch), (2) mid-level agents

without GT localization still outperformed other approaches even when those used a map (0.73

vs. 0.55 SPL). (3) classical approaches such as SLAM exhibited poor performance with estimated

(instead of ground-truth) localization (0.05 SPL) or depth (0.23 SPL).

Generalization: Mid-Level Features Generalize Better to New Domains and

Distant Goals

In the previous section we examined test-set reward, which is a determined by how well the agent

learns on the training set how well that generalizes to the test set. We find that agents using mid-

level features generalize well: both when the training and test buildings are drawn from the same

distribution, and also when the test episodes are much longer than anything seen during training.

Train/Test in Different Buildings: To analyze generalization in more detail, we performed a

study with a notably smaller training set (4 training buildings), as a smaller training set provides

a larger opportunity for overfitting and makes it more obvious which methods are prone to it. As

Fig. 2.6 (left) shows, both scratch and mid-level agents achieve similar reward on the training data,

but agents using mid-level visual representations generalize better to new buildings (SPL of 0.65 vs.

0.46).

Generalizing to Longer Episodes: Another common definition of generalization rests on

whether agents can extrapolate to novel situations unseen in the training set. Fig. 2.6 (right) shows

that agents using mid-level vision are better able to extrapolate to episodes longer than those seen

during training (under 5m → over 5m), as compared to agents trained from scratch (scratch: 0.70

SPL → 0.33 SPL vs. curvature: 0.84 SPL → 0.56 SPL). Agents using mid-level vision even

significantly outperformed agents that explicitly model the environment dynamics (0.68 → 0.37

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 15

S
P

L

Train Frames (x 10M) # Train Buildings

Increasing # Clusters

More Clusters

Increasing # Frames

Denser Samples

S
P

L

(10M frames, varied buildings)(72 buildings, varied frames)

Figure 2.7: Mid-level vision-based agents learn with fewer frames and fewer buildings. Left: They achieve the

final reward of agents trained tabula rasa in 15% of number of frames. Right: Agents with mid-level vision use fewer

buildings (11%) to reach same performance as scratch.

SPL), whereas a dynamics representation is expected to help with this type of generalization.

Sample Complexity: Mid-Level Visual Representations Result in Learning

Faster

We find that agents using mid-level visual representations need less data. In our case, about an order

of magnitude less. We report two different quantities to support this claim.

Performance by Number of Training Frames: We report the performance vs. number of

training frames that the agent receives from the environment. Mid-level-vision-based agents achieve

the final maximum reward of agents trained tabula rasa in 15% of the time (Fig. 2.7-left).

Performance by Number of Sample Clusters (Buildings): One rarely noted but critical factor

when measuring the number of training frames is that the frames are highly correlated. In our case,

this implies two frames coming from the same building supply less diversity/visual learning value

compared to two frames coming from two different buildings. Therefore, we also measure the

performance as the number of sample clusters (buildings) increases, as opposed to just the frame

count (Fig. 2.7, right). With only 11% (8/72) of the training buildings, agents using mid-level priors

achieve the same (or better) reward as scratch does when trained on the 100% dataset .

No Universal Feature: Rank Reversal in Navigation and Exploration

Our results suggest there are not one or two canonical representations that consistently outperform

all else. Instead, we find that the choice of representation depends upon the downstream task

(Tab. 2.1, top). For example, the top-performing exploration agent used representations for Distance

Estimation, perhaps because an effective explorer needs to identify large open spaces. In contrast, the

top navigation agent used representations for Object ClassificationÐostensibly because the agent

needs to identify the target crate. Despite being top of their class on their preferred tasks, neither

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 16

representation performed particularly well on the other task. Using 10 seeds per representation per

task, this result was statistically significant (in both directions) at the α = 0.0005 level.

Per-Task Top Feature (Reward)

Navigation Exploration Local Planning

1. Obj. Class. (5.90) 1. Distance (5.90) 1. 3D Keypts. (15.5)
2. Sem. Segm. (5.86) 2. Reshading (5.79) 2. Normals (15.1)
3. Curvature (4.74) 3. 2.5D Segm. (5.60) 3. Curvature (14.8)

Correlation (Spearman’s ρ)

Nav. Exp. Plan.

Nav. - -0.09 0.15
Exp. -0.09 - 0.07
Plan. 0.15 0.07 -

Table 2.1: Feature ranks are uncorrelated between

tasks. Top: Top 3 features per task (Gibson). Note that

no feature is consistently on top. Bottom: Cells show

Spearman’s ρ between feature ranks on different tasks;

no correlation was statistically significant.

The above pair is an example of rank

reversal, which is actually a common phe-

nomenon. It is so common that the fea-

ture rankings were effectively uncorre-

lated among our three tasks (Table 2.1, bot-

tom), even though the three tasks seem su-

perficially similar (all locomotion-based).

Since the within-task ranks were consis-

tent (ρ = 0.87 between environments), the

choice of task was the primary determin-

ing factor for feature rank. Moreover, that

choice determined whether whole families

of related features would perform well. We

found that semantic features were useful

for navigation while geometric features were useful for exploration; and the semantic/geometric

characterization was extremely predictive of final performance. We quantify the strong statistical

significance in both Gibson and Doom using 120 pairwise significance tests in Appendix A.2.

When the Downstream Task is Unknown or Changing: Use a Set of Features

1 2 3 4

Best

Task-Specific
Feature

Scratch
2D Seg.

2.5D Seg.

2D Edges

Reshade

Curvature

Surface Normals

2D Keypoints

2D Seg.

Semantic Seg.

Autoencoder

Visual-Target
Navigation

Visual

Exploration

Local

Planning

Feature Set Progression

Relative Rew
ard vs. Blind

Figure 2.8: Evaluation of max-coverage feature

sets. Each cell denotes the reward (relative to blind).

The left 4 columns show agents trained with progres-

sively larger max-coverage feature sets. The 4-feature

set performs about as well as the best task-specific

single featureÐmuch better than the alternative ap-

proaches.

Since no single-objective representation could sup-

port all downstream tasks, we examined whether a

set of single-objective representations could do bet-

ter. We evaluated the Max-Coverage feature set for

this purpose. Though it was derived in a way agnos-

tic to the choice of task, we found that it performed

nearly as well as the best feature for each task±as

if we had known which feature to select (Fig. 2.8).

Training agents for Local Planning in Habitat and us-

ing M-C features sets with 2, 3, or 4 features yielded

SPLs of 0.730, 0.733, 0.749, respectively, while the

best mid-level feature yielded 0.76 SPL. Using a set

of features was crucial, as choosing the best task-

agnostic single feature (autoencoder) dropped SPL

to 0.58. Scratch and the SotA representation learning

methods all scored under 0.57 SPL. We found similar behavior on when training agents for other

tasks in the Gibson environment 2.8. The M-C feature set (with multiple features) also conferred the

desirable emergent behaviors discussed in Sec. 2.5, and agents using this set exhibited some of the

lowest rates of collision, acceleration, and jerk. We include the full discussion and formulation of the

M-C feature set and detailed experiments (e.g. M-C vs. alternative feature sets) in Appendix A.2.

CHAPTER 2. VISUAL REPRESENTATIONS FOR NAVIGATION 17

2.6 Conclusion

In this paper we showed that one of the primary challenges with learning visuomotor policies is

how to represent the visual input. We showed raw pixels are unprocessed, high dimensional, noisy,

and difficult to work with. We presented an approach for representing pixels using mid-level visual

representations and demonstrated its utility in terms of improving final performance, boosting

generalization, reducing sample complexityÐsignificantly pushing the state-of-the-art. We also

showed that the choice of representation generally depends on the final task. To this end we proposed

a principled, task-robust method for computationally selecting a set of features, showing that the

solver-selected sets outperformed state-of-the-art representationsÐsimultaneously using an order

of magnitude less data while achieving higher final performance.

Acknowledgements: This material is based upon work supported by ONR MURI (N00014-

14-1-0671), Google Cloud, NSF (IIS-1763268), NVIDIA NGC beta, and TRI. Toyota Research

Institute (ªTRIº) provided funds to assist the authors with their research but this article solely

reflects the opinions and conclusions of its authors and not TRI or any other Toyota entity.

18

Chapter 3

Representations for Manipulation and

Real-World Navigation

In the previous chapter, we discovered that pretrained visual representations can significantly

enhance both the sample efficiency and generalization of policies trained using RL for navigation

in indoor environments. This served as a proof-of-concept. In this chapter, we expand on those

findings in two ways:

1. Do the same representations that aided navigation in simulations also help navigation in

real-world environments? (yes)

2. Do pretrained visual representations assist in manipulation skills, which require a deeper

understanding of contacts? (yes)

The results in this chapter provide further breadth to the findings in Chapter 2. For navigation, we

experiment with varying the amount of training data, the simulator’s appearance and physics, the

robot morphology, and the learning algorithm. Despite these modifications, the ranking of which

representations work best for each skill remains largely consistent.

We then repeat the basic analysis for manipulation skills and find that pretrained visual represen-

tations are helpful here as well, once again improving sample efficiency and generalization.

3.1 Introduction

Over the past few years, impressive success stories such as [147, 128] have helped deep reinforce-

ment learning (deep RL) make inroads into various fields. Deep RL from pixels, in particular, has

drawn attention [132, 125, 195] as a unified method for training agents, but it requires that agents

can access virtually unlimited data covering every possible input.

This chapter is based on joint work with Bryan Chen, Francis (Gene) E. Lewis, Iro Armeni, Silvio Savarese,

Jitendra Malik, Amir Zamir, and Lerrel Pinto [40], and is presented much as it appeared in the CoRL 2020 proceedings.

https://arxiv.org/abs/2011.06698

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 19

Frozen

Policy

Network

Feature Encoder

Mid-Level

Representation

Mid-Level Vision Performance on Complex Tasks

T
es

t
E

n
v

 S
u

cc
es

s
R

a
te

 (
%

)

Mid-Level

Scratch
Representation

Reach Push Pick & Place Point Nav.

(Sim-to-Real)Task

4%

100% 100% 100%

70%

40%

0% 0%

Figure 3.1: Mid-level visual representations used for RL. Left: A feature encoder trained for some mid-level

objective provides representations to the agent. Right: Agents trained using these mid-level representations were able

to generalize, without additional adaptation, to distribution shifts and deployment on physical robots.

In scenarios where agents can access large, but still finite amounts of data, the deep-RL-from-

pixels approach proves hard to train, however, and the resulting policies are brittle in the real

world [78]. Agents trained this way fail, sometimes spectacularly, under mild visual shifts relative to

the training environment. For example, simply placing a water bottle in view of the robot [128], or

operating in morning light instead of midday sun [206, 81] can be sufficient to completely degrade

performance.

This brittleness reflects the fact that the policies have not captured the invariances (and equiv-

ariances) necessary to generalize and operate in the real world. The policies do not learn these

invariances because there is usually no reason for them to do so. Biased or insufficient training data

might permit spurious ªcheatingº shortcuts or make it easier to memorize features of the training

environment rather than learn how to extract those features from the vast space of possible inputs.

In any case, agents end up without the right priors about the world.

Computer vision provides us with tools that parse complex visual scenes and extract usable

perceptual representations. In this paper, we study some of those representations used as a form

of mid-level vision. That is, instead of training directly on raw pixels, we first extract representa-

tions driven by traditional computer vision objectives and use those as the input observations to

RL instead (see Fig. 3.2-left). The networks which extract the mid-level visual representations

are asynchronously trained, meaning that they can be trained independently and on a schedule

different from the RL training. This approach has shown promise [182, 247, 229], especially in

navigation contexts where agents using mid-level vision are able to generalize to unseen (simulated)

buildings [182].

The main contribution of our study is experimental. We show that this approach scales to harder

tasks than previously shown, even when control is nontrivial (e.g. manipulation with continuous

control), or there are drastic domain shifts such as training in simulation and then deploying on

physical robots with no additional training. Specifically, we test the following hypotheses:

a Do mid-level visual representations provide a useful way to incorporate invariances for ªhard"

tasks, when compared to training from scratch? (Answer: Yes)

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 20

b Do the representations simplify the learning problem (opening up the possibility to successfully

train on harder problems that fail otherwise)? (Answer: Yes)

c Do the representations improve robustness to distribution shifts? (Answer: Yes: both sim-to-real

and within simulation)

d How does the mid-level approach compare to other approaches for incorporating invariances?

(Answer: It scales significantly better)

In summary, we present a large-scale study evaluating the effect of using invariances learned

from computer vision objectives plugged into active RL frameworks. We find that the mid-level

approach actually performs even better in the harder contexts, relative to alternatives, and provides

an avenue for solving harder problems. We analyze this behavior in terms of training performance,

generalization performance, and sample complexity. The mid-level approach was able to achieve a

100% success rate in certain test environments when alternatives approaches like learning-from-

scratch, using ground-truth low-dimensional state, and domain randomization do not learn at all

(0% train and 0% test, even after multiple hyperparameter sweeps).The mid-level approach trains

faster than the alternatives, almost as fast as using ground truth low-dimensional state (when state

succeeds). Further, we compare mid-level representations to other methods of learning invariances

(domain randomization), and show that as the tasks become more difficult, domain randomization

makes learning the task harder (100% train success → 70% with domain randomization, 4% → 20%
test) while mid-level simplifies it (near-perfect performance on the both train and test domains).

3.2 Related Works

Our study is connected to a range of relevant fields and we review the most important ones, within

space constraints.

Computer Vision. Computer vision approaches are typically designed to solve stand-alone

vision objectives such as depth estimation [61], object classification [119], detection [72], segmenta-

tion [193], pose estimation [245, 31]. While approaches may use various levels of supervision [119,

154, 52, 24, 162], the common characteristic across conventional computer vision methods is

that they are trained and evaluated on static datasets collected for that stand-alone objective. In

contrast, the perception of active agents is fundamentally in service of some downstream goal,

and agents are evaluated on that goal in an online manner so that a single decision early on in an

episode impacts the observations that will follow. In this paper we study how conventional computer

vision objectives impact these downstream tasks, especially when the downstream tasks have strong

temporal dependencies and domains different than those used for training the conventional vision

approaches.

Representation/Feature Learning. The goal of representation learning is to encode obser-

vations in a way that provides benefits over using raw sensor data. One of the most popular

approaches is based on Minimum Description Length (MDL) which suggests good representations

are those which most compactly describe the data. This includes variational autoencoders [108]

and alternatives [89, 215, 140] and has been applied to robotics (e.g. [62]). However, MDL

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 21

representations tend to be exceedingly sensitive to tiny domain shifts [182], an obervation that we

also make. Likelihood-based approaches often try to predict the probability that two patches come

from the same image±e.g. Constrastive Predictive Coding (CPC) [155] and variants [84, 36, 83,

75]. Dynamics-based approaches model the environment (e.g. by predicting the next state [105]

or related objectives [53, 159, 250, 169, 2, 226]). Dynamics models have the possible advantage

that they could be reused for planning. Dynamics are not necessarily visual and are sometimes

specialized to the morphology or action space of the agent.

Mid-Level Vision in Other Contexts. Recent works have shown that mid-level visual represen-

tations can offer advantages in terms of generalization and sample complexity for downstream active

tasks. Many works show one or a couple objectives for single tasks±e.g. a specific semantic repre-

sentation for semantic driving ([150, 149, 227]) or dense object descriptors for manipulation ([63]).

Outside of RL, [229] uses mid-level vision in conjunction with hard-coded grasping policies.

Recently, [182, 247] presented comprehensive studies in simulated navigation contexts using

multiple objectives and multiple tasks. This many tasks/many objectives setup allows them to

conclude that which objectives perform well depends on the task, which we also find. [182] then

computationally derives a generic subset of mid-level representations that should perform as well as

the best one in the whole set, but does not show when that best-possible feature is useful. Unlike

previous studies, we demonstrate mid-level vision’s ability to scale to harder tasks, to handle sim-

to-real transfer, and we compare it to other approaches for incorporating invariances (e.g. domain

randomization). By examining more complex domains, we find that we are able to train agents

using mid-level features even in cases where other approaches fail.

Domain Randomization. One way of building agents with useful invariances is to make

them learn it directly from data. [209, 180, 161, 221, 9] suggests using simulators to augment

training with all the variation likely to be present at testing. However, training then takes longer

and, in practice, varying more than one or two factors complicates the learning problem to the

point that learning completely fails. Most importantly, domain randomization involves making

the unrealistic assumption that we can enumerate all the invariances that are needed. We cannot,

and for those which we can define, the corresponding variation is often difficult to build into a

simulator (as evidenced by the numerous open problems in computer graphics). Our study shows

that incorporating invariances via mid-level representations has multiple critical advantages over

doing so via domain randomization. In particular, the mid-level representations can be trained

asynchronously on large static datasets, making RL training simpler and more scalable. In contrast,

domain randomization (unnecessarily) delays learning the invariances to be done in conjunction

with RL training.

3.3 Methodology

Our goal is to study the utility of mid-level visual representations for performing downstream motor

tasks. Concretely, motor tasks require mapping observation histories to actions. Agents are trained

in a scenario P but evaluated on a test scenario Q. The goal is to maximize agent’s performance in a

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 22

...in Pixel Space ...in Representation Space

Hypothesis I: Simpler Partitioning of Input Space, Based on Optimal Action Hypothesis II: Reducing Test Time Distribution Shift

...in Pixel Space ...in Representation Space

Train
Train

Test

Test

Figure 3.2: Mid-level representations transform pixel inputs. There are two major ways that invariances from

mid-level representations could be useful for downstream tasks. (I) Left: The invariances simplify the decision

boundaries for downstream tasks. In this case, we would expect (i) training on representations to be faster than training

on pixels and (ii) to allow us to train agents for more difficult tasks. (II) Right: The invariances in representation space

align the train and test distributions. In this case we would expect generalization performance to improve relative to

training on pixels. In practice, we see behavior consistent with both hypotheses.

test setting (Q) that it is related, but not identical, to the training distribution. For example, Q might

be a physical robot in scenes contain unseen objects, while training on P took place in a simulator.

We assume access to a set of ‘mid-level’ functions, Φ = {ϕ1, . . . , ϕm}, that transform raw

sensory data into potentially useful mid-level representations. The goal is to determine whether

agents using Φ could perform better in the test setting Q than if they never had access to Φ. In

this paper, we show that when Φ is a set of mid-level functions, agents access to Φ improves

generalization and generalize better final perfomance.

Using Mid-Level Representations in Active Contexts

Why might a mid-level feature (e.g. image → surface normals) aid in downstream tasks, compared

to end-to-end learning? This is an important question as preprocessing observations with ϕ might

potentially discard information (e.g. color information in surface normals). Good representations

preserve important information while discarding spurious details, providing ªinvariances" that make

the train and test set more similar (ϕ(P) ≈ ϕ(Q)). When the train and test set become similar,

improving performance on the train set generally improves test-time performance, too.

Really good representations also simplify training by using ϕ(P) instead of P . By throwing

away unimportant information and providing easily decodable outputs (e.g. linearly separable),

great representations can reduce sample complexity and boost performance even on the training set,

relative to learning tabula rasa. These ideas are illustrated in Figure 3.2.

We use representations derived from neural networks trained, offline, for computer vision

objectives. Figure 3.1 shows how we use these networks in our active framework. While training

agents from mid-level representations we freeze the mid-level network (ϕ) and use it to transform

each observed image ot into a summary statistic ϕ(ot) that is then provided to the agent instead

of pixels. Only the policy network is updated during agent training. This has the advantage that

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 23

Z-Buffer Depth

Query Image Texture Edges

Surface Normals

Image Segmentation

Autoencoding

Occlusion Edges

Mid-Level Visual Objectives (Labels)

Denoising

Figure 3.3: Sample labels for mid-level visual objectives in the RLBench environment. The objectives cover

various modes of computer vision tasks including 2D, 3D, and semantic tasks.

we can reuse the same mid-level features for new tasks without degrading the performance of

already-learned policies. Freezing the representations is a naïve approach and the features could be

updated (e.g. via [173, 239]), but even with the naïve approach the representations yield notable

benefits.

Studied Mid-Level Representations In this paper, we study representations from neural

networks that were trained, offline, each for a specific vision objective from [238]. 7 of them are

visualized in (Figure 3.3) and they cover various common modes of computer vision objectives:

from texture-based (e.g. denoising), to 3D pixel-level (e.g. depth estimation), to semantic (e.g.

image segmentation). As the networks were trained on data from indoor scenes significantly

different than our manipulation setting, we fine-tune the networks, offline, with images from our

simulator. We study the effects of domain shift and feature robustness in Section 3.4. All networks

were trained with identical hyperparameters and using a ResNet-50 [82] encoder. For a full list of

vision objectives and samples of the networks evaluated in our environments, see the supplementary.

Metrics

Final performance: We report train and test performance at the end of training. That not all

agents converge to the same training reward may be due to the limitations of current learning

approaches, data and compute; an agent might still fail to learn anything even when it is given every

available resource. We find this occurs regularly for complex tasks, even when agents can access

the true low-dimensional environment state (see Section 3.4). Specific mid-level features might

also be ill-suited to particular tasks; discarding necessary information and further limiting final

performance.

Generalization: We break down final performance in terms of generalization from train to

various test sets. We report both test-set performance with no shift (evaluated in the same simulator

as training), under mild domain shift (with various colors swapped out at test-time), and under more

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 24

RLBench Train Randomized Texture/Colors

Figure 3.4: Train vs. test observations

in RLBench. Left: The default environment

for the Pick + Place task. The goal is col-

ored green, object in red. Right: Sample

observation from the test environment show-

ing held-out randomized textures.

Building #1

B
u

ild
in

g
 #

2

Train

(Gibson Simulation)

Test

(Real World)

Start Location Target Location

Beechwood ModelBuilding #2Building #1

Agent

Turtlebot

Figure 3.5: Zero-Shot Visual Sim-to-Real. Right: We train poli-

cies in a single building in simulation. Middle: We then directly test

them in novel real world buildings, where agents have no prior knowl-

edge of the building and no adaption period. Left: The TurtleBot

uses only an RGB camera for vision and an IMU for localization, No

depth/LiDAR sensors are used.

drastic domain shift (unseen objects or under zero-shot sim-to-real transfer).

Sample efficiency: We examine whether agents equipped with mid-level vision can learn faster

than a comparable agent learning tabula rasa (i.e. with raw vision, but no priors about the world).

We report this in terms of the number of interactions with the environment.

Manipulation with Continuous Control

To study mid-level vision on harder tasks, we test the mid-level representations against baselines in

three different manipulation tasks requiring continuous control from vision. This section describes

the setup at a high level, and complete details for each subsection can be found in the supplementary.

Tasks: We use three common manipulation tasks: Reach, Push, and Pick + Place with sparse

rewards (0 if within ϵ of the target, -1 otherwise). All tasks terminate episodes after 50 timesteps.

Brief descriptions of each task are below, and full details for each of the the tasks are in the

supplementary.

Reach: The agent must move the end effector to a random target position marked by a sphere.

Push: The agent must push a cube to a random target position marked by a sphere.

Pick and Place: The agent must pick up a cube and move it to a target position marked by a sphere. Both

object and target locations are randomized.

Observation Space: For each task agents receive visual input from a single camera. Agents

trained from pixels receive 64×64×3 RGB images while mid-level approaches receive 16×16×8
latent features. Except for the state baselines, no other information (including proprioception) is

supplied.

Action Space: For all tasks, actions are XYZ+gripper values in [-1, 1] specifying end-effector

deltas for a position controller. Gripper open/close is calculated via thresholding.

Environment: We adopt the RLBench environment [98] which is built on PyRep [97] and

CoppeliaSim [177]. RLBench is suited for vision-based manipulation and offers more visually

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 25

realistic observations compared to popular environments such as OpenAI Gym [163]. We use the

Franka Emika Panda arm in our experiments.

Train/Test Split Agents are trained in the default RLBench tabletop environment shown in

Figure 3.4. All policies are tested on a test set of held-out flat color textures that replace the table,

floor, and/or background (Fig 3.4, right). We also show experiments with domain randomization

during training (no texture overlap with the test set) or with held-out objects during testing.

Learning Algorithm. We train all agents using TD3 [65] and HER [8] using hyperparameters

optimized for the tabula rasa baseline. Mid-level agents used the learning rate optimized for scratch

in [182], but we ran additional hyperparameters sweeps for agents trained from scratch on the

Reach and Pick+Place tasks. Because all hyperparameter searches were done using the from-scratch

approach and the settings then applied everywhere, this setup should be biased against mid-level

vision.

We followed the guidelines for training laid out in [8]. For some tasks we could not get the

from-scratch approach to train using sparse rewards and we had to add additional reward shaping.

The shaped dense rewards often help the mid-level approach too (see supplementary). While

in the main paper we present the best approach for the pixel-based methods, we only show the

sparse-trained policies for mid-level based agents since sparse rewards are usually easier to define

in practice.

Generalization to the Real World

In cases where collecting real-world data makes training policies prohibitively expensive, the

plentiful and cheap data from simulation provides a path to train policies that can then be deployed

in the real world. However, the domain shift between simulators and the real world means that

policies trained this way usually fail to generalize. We study this sim-to-real capability for agents

trained with mid-level representations via RL.

As we are primarily focused on perception, we focus on navigation contexts where the visual

gap is responsible for the primary domain shift. Manipulation is usually non-quasistatic and, in

practice, simulators will trade off accuracy (simulating all contact forces) for simulation throughput,

resulting in a large sim-to-real gap for environment dynamics. Simulators can more accurately

model the simpler dynamics of navigation environments and physical robots have good low-level

locomotion controllers that can handle any discrepancies. Even so, navigation-based sim-to-real

is highly non-trivial from a vision perspective. Any number of discrepancies between simulated

images and real images could cause the agent to fail to generalize; potential discrepancies include

lighting variations, stitching artifacts and semantic distribution complexity.

We test sim-to-real generalization for the point navigation task from the CVPR19 Habitat

Challenge. The task requires an agent to navigate to a target position (specified by coordinates)

using visual observations and the agent’s onboard odometry. Actions are discrete {forward,

pivot right, pivot left} and episodes cap at 400 timesteps. We use policies from [182]

trained with the same architecture as our manipulation tasks but using PPO [186] in a single building

in the Gibson environment [223] and are tested in different (unseen) real-world buildings. We

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 26

evaluate the mid-level vision based policies trained in [182] on a Turtlebot with Kobuki base and a

Microsoft Kinect camera. Full details are provided in the supplementary.

State Representation Baselines

To address confounding factors, we compare against several controls. We describe the most

important ones here and defer remaining descriptions to the supplementary.

Tabula Rasa Learning (aka from scratch): This is the most common approach for end-to-end learning.

The agent receives the raw RGB image as input and uses a randomly initialized AtariNet [147] architecture

that is updated during training, along with the policy architecture.

Blind: The blind agent is the same as scratch but instead of an RGB image, receives a constant zero tensor.

This shows how much can be learned by just exploiting the biases of the task.

State: In this setting the agent has access to the complete environment state: joint positions, the goal

centroid and, if applicable, the object center. Since objects are always the same, this should be sufficient.

3.4 Results

Given that no two setups outside of simulation will be exactly the same, building in invariances into

visuomotor policies could be helpful for bridging the gap. The rest of this section covers experiments

that dissect whether such invariances are necessary, finding that incorporating them offers notable

advantages in terms of final performance, generalization, and sample complexity. We then compare

two main methods of building in invariances: either co-learning them during training (via domain

randomization) or asyncronously learning them in different stages (via mid-level representations).

As the agent needs to learn more invariances, we show that the co-learning becomes complicated

and learning can collapse. We find that the mid-level approach scales and performs better.

Final Performance

We find that agents trained using mid-level representations achieve significantly higher success

rates than agents learning from pixels, especially in harder tasks such as Pick + Place. The mid-

level agents performed much better than scratch in the test environment, as shown in Fig. 3.6.

Consistent with Hypothesis II (mid-level representations simplify training) they performed better

during training, too, especially for harder tasks.1

1The mid-level policies in Fig. 3.6 used vision networks fine-tuned from [238]. When they were retrained for longer

(and from scratch), performance for the mid-level agents improved further and they roughly matched the performance

of the state oracle (Section 3.4). Results shown in Table 3.1.

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 27

0.0

0.5

1.0

S
u
c
c
e
s
s
R
a
te

Reach

0.0

0.5

1.0

Push

0.0

0.5

1.0

Pick and Place

Surface Normals

Image Seg

3D Edges

Depth

Denoising

Autoencoding

2D Edges

Random Actions

Pixels

Blind

Random Features

State

Figure 3.6: Final performance on manipulation tasks. Translucent bars indicate training performance; opaque bars

show performance on the test set. Hatched bars indicate agents are trained with mid-level representations.

We found the above results despite the fact that the hyperparameters were optimized for the

scratch baseline. In general, we found that the mid-level agents were less sensitive to choices of

hyperparameters, and that the same or similar hyperparameters worked across multiple architectures,

downstream learning algorithms, and simulators. They also did not require reward shaping.

Generalization

Comparison to generic state for unseen objects. In order to test whether mid-level representations

could provide an easily decodable representation that enables both learning and generalization

to unseen objects, we train agents for Pick+Place with 10 red, procedurally generated objects of

different shapes. In contrast to the standard environment which only used a red cube, encoding the

salient parts of the environment is now more complicated; we represent the object shape by its mesh

vertex positions centered by the object centroid. In the more complex training environment, the

state-based agent gets a 2% success rate during training (0% on unseen test), shown in Fig. 3.7. In

contrast, using mid-level representations (normals), the agent has a 96% success rate on the training

objects (90% on the unseen objects, 96% training objects colored green, and 88% on unseen green

objects).

Mid-level:

0.0

0.5

1.0

S
u
c
c
e
s
s
R
a
te

Pick and Place with Complex Objects

Mid-level: Training env (10 Objects)

Mid-level: 10 GREEN objects

Mid-level: 10 UNSEEN objects

Mid-level: 10 UNSEEN GREEN objects

True state:

state: Training env (10 red objects)

Pick + Place with Varied Objects

Figure 3.7: Generalization to unseen ob-

jects. In all tested environments, the mid-level

policy trained to pick+place varied objects out-

performed an agent using true state.

Invariance Method Success Rate
Mid-Level

Domain Rand.
Reach Pick + Place

Representation Train Test Train Test

None (Scratch)
No

100% 4% 0% 0%
Image Segmentation 100% 88% 100% 92%
Surface Normals 100% 100% 100% 100%

None (Scratch)
Yes

70% 20% 0% 0%
Image Segmentation 100% 100% 98% 98%
Surface Normals 100% 100% 100% 100%

Table 3.1: Policies trained via different invariance-learning

approaches. The mid-level approach scales better to harder tasks,

compared to tabula rasa or domain randomization.

Learning invariances with mid-level representations vs. domain randomization. Table 3.1

compares the performance of agents trained with different methods of incorporating invariances.

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 28

Agents using the asyncronous (mid-level) approach perform better across train and all test environ-

ments. In particular, when tested on colors not seen in the training, mid-level vision has a success

rate of 100% versus 20% when using pixels with domain randomization. The domain randomization

approach trained from scratch also showed signs of learning collapse (100% → 70% success rate)

as the randomization made the learning problem more difficult, a problem also found in [99, 4].

Sim-to-real transfer. Agents using mid-level vision generalize to new axes of variation not

present during training and across large gaps of the simulator vs. physical world. After training

in a single simulated building, we test in 24 scenarios in two unseen buildings in the real world.

Scenarios vary significantly in length, complexity, and visual characteristics (mean length 5.24m;

variance 3.65m2). In 594 evaluation runs and over 13 hours of execution time, we found that

agents trained from scratch achieved an SPL [7] of 0.319 and a completion rate of 0.4 in the test

environment, which was not significantly different than blind agents, as shown in Figure 3.9. Agents

using mid-level features achieved a significantly higher SPL of 0.608 and a completion rate of

0.7. The use of the best features therefore provides a 90.6% increase in SPL and 75.3% increase

in completion rate over scratch. Because we did no fine-tuning here, we could evaluate a slightly

larger set of features here than for the simulation experiments. A full description of the experiment

is available in the supplementary, and we provide videos from the agents’ onboard cameras during

the sim-to-real test episodes on our website.

Sample Efficiency

Training agents with mid-level representations dramatically increases sample efficiency, allowing

for policies to be trained on difficult tasks using sparse rewards. Across all tasks, agents using

mid-level representations converge within 2x the number of steps required to train from state (e.g.

450k steps vs 250k in Pick + Place). This is several times faster than learning from scratch (when

it is even possible for scratch to learn anythingÐeven with reward engineering, the from-scratch

approach never succeeds on the test set). We provide train/test curves in the supplementary.

Analysis of Features for Downstream Tasks

Relationship between mid-level objectives and downstream tasks.

Epoch 0 Epoch 1 Epoch 20 Best

0.0

0.5

1.0

T
e
s
t
S
u
c
c
e
s
s
R
a
te

Reach

Epoch 0 Epoch 1 Epoch 20 Best

0.0

0.5

1.0

Pick and Place

Surface Normals Image Segmentation

Figure 3.8: Performance on mid-level vs. downstream tasks. If a

feature initially performed well on the downstream task, a better version

further improved downstream performance.

Given that mid-level objectives

are typically defined irrespective of

any downstream task, we ask whether

representations that perform better

on their objective also perform bet-

ter on downstream tasks. Figure 3.8

shows the downstream performance

of agents trained using surface nor-

mal and image segmentations features

when those features are from vari-

ous checkpoints during training. We

http://midlevel.berkeley.edu

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 29

found that generally, when the feature

is useful for the task, the two performances are correlated (both features on pick+place).

Feature rank stability in different environments.

3D Keyp
oints

Surfa
ce

 Norm
als

Curva
ture

Z-D
epth

Sem. S
egm.

Sce
ne Classi

fica
tio

n

Object
Cls.

Jig
sa

w

Autoenco
der

Scra
tch Blind

Random Projectio
n

Random Actio
ns

0.0

0.5

S
P

L

Zero-Shot Performance in Real Buildings

Figure 3.9: Performance in simulation vs. zero-shot transfer to the

real world. Agents using mid-level representations (red) significantly

outperform agents trained from scratch. Agents are ordered on the

x-axis by descending performance in simulation. Those trained from

scratch do not significantly outperform blind agents in the real environ-

ment (standard error shown in chart). Performance for top-performing

features (e.g. curvature) was about the same in simulation as the on a

physical robot [182].

We found that within each task,

feature order was notably stable, even

across large sim-to-real domain gaps:

the Spearman’s rank correlation be-

tween the feature rankings found by

testing in the real world vs. testing

in simulation (Gibson) was ρ=0.77.

[182] compares across simulators, but

not in a zero-shot manner, finding that

feature rank correlation was ρ=0.88
between Habitat [137] and Gibson

when mid-level agents were trained

in the respective environments. This

inter-environment correlation is not

simply because some features are

more useful than others (i.e. the same features are always useful): feature ranking in [182]

was uncorrelated across tasks.

3.5 Conclusion

We presented a comprehensive experimental study on using mid-level visual representations with

RL to train agents to complete complex tasks over varying levels of distribution shifts.

High-level takeaway: Mid-level representations simplify training, improve generalization, and aid

training speed. Mid-level representations should be the preferred input to policies, especially

for harder tasks, where they are more viable than alternative methods of invariance learning.

Lessons learned: First, we found that agents trained using mid-level vision could be successfully

trained for harder tasks than possible when training from scratch or using domain randomization.

Training was less sensitive to the choice of hyperparameters, and training speed improved. Overall,

these results ere consistent with the hypothesis that mid-level representations can simplify the input

space and make the learning problem easier.

Second, we found the agents trained using mid-level representations were significantly more

robust to domain shifts than agents trained from scratch (and also those trained using domain

randomization). We showed this in simulation on multiple manipulation tasks under multiple types

of domain shift (new objects, textures). We also showed this in the sim-to-real setting, successfully

deploying mid-level-based simulator trained policies in unseen real-world buildings. The robust

generalization is consistent with our second hypothesis, that mid-level representations also align

training and test distributions to improve test-time performance. While approaches for solving

mid-level objectives are generally less sensitive than methods trained for robotics using RL, they

CHAPTER 3. REPRESENTATIONS FOR MANIPULATION AND REAL-WORLD

NAVIGATION 30

are still susceptible to domain shift. Improvements to methods for approximating these individual

objectives would probably carry good knock-on effects for agents trained using mid-level vision.

Third, which features performed well depended on the choice of task, but not so much on the

environment used for training. The advantage of picking a good feature (vs. training from scratch)

grew as tasks became more difficult, underscoring the importance of picking a good feature. While

we did not explore how to pick a generic set of features, this would be an important avenue and

an [182] has proposed an initial (computationally-derived example). Without the dependence on

task, these features would be expected to work well in most environments.

Future work: That mid-level features work well in harder contexts suggests that we are ready to

ªclose the loopº between features and downstream tasks. Features are currently defined irrespective

of any downstream task. Choosing a representative set of benchmark tasks that ªcoverº downstream

robotic tasks would make it possible to choose new computer vision objectives that better benefit

downstream motor tasks. This same strategy of a defining of benchmark tasks has made it possible

to design ever-better architectures (e.g. ResNets in computer vision and Transformers in language)

that work well for most perception tasks in that domain.

31

Chapter 4

Cross-Task Consistency

In earlier chapters, we utilized representations that were trained independently, leading to the

discovery that no single representation was optimal for all downstream behaviors. This is a common

scenario in most machine learning systems, which often involve several intermediate predictions

used for a subsequent task. For instance, segmentation masks are typically used as inputs for another

system responsible for image editing or decision-making based on the mask input. Self-driving cars

frequently estimate numerous quantities that are eventually employed for downstream control. So,

how can we train these systems to ensure consistency among different predictions and maximize

their usefulness for downstream applications? This chapter explores one approach to achieving

this goal, particularly by employing a clever technique to model the joint predicted distribution

conditioned on the inputs using pairwise consistency between predictions.

4.1 Introduction

What is consistency: suppose an object detector detects a ball in a particular region of an image,

while a depth estimator returns a flat surface for the same region. This presents an issue ± at least

one of them has to be wrong, because they are inconsistent. More concretely, the first prediction

domain (objects) and the second prediction domain (depth) are not independent and consequently

enforce some constraints on each other, often referred to as consistency constraints.

Why is it important to incorporate consistency in learning: first, desired learning tasks are

usually predictions of different aspects of one underlying reality (the scene that underlies an image).

Hence inconsistency among predictions implies contradiction and is inherently undesirable. Second,

consistency constraints are informative and can be used to better fit the data or lower the sample

complexity. Also, they may reduce the tendency of neural networks to learn ªsurface statisticsº

(superficial cues) [102], by enforcing constraints rooted in different physical or geometric rules. This

This chapter is based on joint work with Amir Zamir, Teresa Yeo, Oğuzhan Kar, Nikhil Cheerla, Rohan Suri,

Zhangjie Cao, Jitendra Malik, and Leonidas Guibas [236], and is presented much as it appeared in the CVPR 2020

proceedings.

https://arxiv.org/abs/2006.04096
https://arxiv.org/abs/2006.04096

CHAPTER 4. CROSS-TASK CONSISTENCY 32

X

Y1

Y2

Input Image

Cross-Task Consistent

Learning

Baseline

Learning

Predicted Normals Predicted DepthPredicted (re)Shading Predicted Curvature

X Y1

Figure 4.1: Cross-Task Consistent Learning. The predictions made for different tasks out of one image are expected

to be consistent, as the underlying scene is the same. This is exemplified by a challenging query and four sample

predictions out of it. We propose a general method for learning utilizing data-driven cross-task consistency constraints.

The lower and upper rows show the results of the baseline (independent learning) and learning with consistency, which

yields higher quality and more consistent predictions. Red boxes provide magnifications. [Best seen on screen]

is empirically supported by the improved generalization of models when trained with consistency

constraints (Sec. 4.5).

How can we design a learning system that makes consistent predictions: this paper proposes a

method which, given an arbitrary dictionary of tasks, augments the learning objective with explicit

constraints for cross-task consistency. The constraints are learned from data rather than apriori

given relationships.1 This makes the method applicable to any pairs of tasks as long as they are

not statistically independent; even if their analytical relationship is unknown, hard to program, or

non-differentiable. The primary concept behind the method is ‘inference-path invariance’. That is,

the result of inferring an output domain from an input domain should be the same, regardless of

the intermediate domains mediating the inference (e.g., RGB�normals and RGB�depth�normals

and RGB�shading�normals are expected to yield the same normals result). When inference paths

with the same endpoints, but different intermediate domains, yield similar results, this implies the

intermediate domain predictions did not conflict as far as the output was concerned. We apply

this concept over paths in a graph of tasks, where the nodes and edges are prediction domains

1For instance, it is not necessary to encode that surface normals are the 3D derivative of depth or occlusion edges

are discontinuities in depth.

CHAPTER 4. CROSS-TASK CONSISTENCY 33

RGB Image
Sensor ground truth

normals
RGB→3D curvature
→normals

RGB→Texture edges
(Sobel) →normals

RGB→depth
→normals

RGB→shading
→normals

RGB→occlusion
edges→normals

RGB→3D keypoints
(NARF)→normals

RGB→2D keypoints
(SURF)→normals

RGB Image

W
it
h
o
u
t

en
fo

rc
in

g
Cr

os
s-T

as
k

Co
ns

ist
en

cy
W
it
h

 e
nf

or
cin

g

Cr
os

s-T
as

k
Co

ns
ist

en
cy

Figure 4.2: Impact of disregarding cross-task consistency in learning, illustrated using surface normals domain.

Each subfigure shows the results of predicting surface normals out of the prediction of an intermediate domain; using the

notation X�Y1�Y2, here X is RGB image, Y2 is surface normals, and each column represents a different Y1. The upper

row demonstrates the normals are noisy and dissimilar when cross-task consistency is not incorporated in learning of

X�Y1 networks. Whereas enforcing consistency when learning X�Y1 results in more consistent and better normals

(the lower row). We will show this causes the predictions for the intermediate domains themselves to be more accurate

and consistent. More examples available in supplementary material. The Consistency Energy (Sec. 4.4) captures the

variance among predictions in each row.

and neural network mappings between them, respectively (Fig. 4.3(d)). Satisfying this invariance

constraint over all paths in the graph ensures the predictions for all domains are in global cross-task

agreement.2

To make the associated large optimization job manageable, we reduce the problem to a ‘separa-

ble’ one, devise a tractable training schedule, and use a ‘perceptual loss’ based formulation. The

last enables mitigating residual errors in networks and potential ill-posed/one-to-many mappings

between domains; this is crucial as one may not be able to always infer one domain from another

with certainty (Sec. 4.3).

Interactive visualizations, trained models, code, and a live demo are available at:

http://consistency.epfl.ch/.

4.2 Related Work

The concept of consistency and methods for enforcing it are related to various topics, including

structured prediction, graphical models [117], functional maps [157], and certain topics in vector

calculus and differential topology [76]. We review the most relevant ones in context of computer

vision.

Utilizing consistency: Various consistency constraints have been commonly found beneficial

across different fields, e.g., in language as ‘back-translation’ [26, 15, 124, 58] or in vision over the

2inference-path invariance was inspired by Conservative Vector Fields in vector calculus and physics that are (at a

high level) fields in which integration along different paths yield the same results, as long as their endpoints are the

same [76]. Many key concepts in physics are ‘conservative’, e.g., gravitational force: the work done against gravity

when moving between two points is independent of the path taken.

http://consistency.epfl.ch/supplementary_material
https://consistency.epfl.ch/visuals
https://consistency.epfl.ch/#models
https://consistency.epfl.ch/#models
https://consistency.epfl.ch/demo
http://consistency.epfl.ch/

CHAPTER 4. CROSS-TASK CONSISTENCY 34

f

Y
1
Y

2

f
X

Y
2

f X
 Y 1

X

Y1

Y2

X

Y1

Y2
(a) (b) (c) (d)

X

Y1

Y2

X

Y2

Y1

Figure 4.3: Enforcing Cross-Task Consistency: (a) shows the typical multitask setup where predictions X�Y1

and X�Y2 are trained without a notation of consistency. (b) depicts the elementary triangle consistency constraint

where the prediction X�Y1 is enforced to be consistent with X�Y2 using a function that relates Y1 to Y2 (i.e. Y1�Y2).

(c) shows how the triangle unit from (b) can be an element of a larger system of domains. Finally, (d) illustrates the

generalized case where in the larger system of domains, consistency can be enforced using invariance along arbitrary

paths, as long as their endpoints are the same (here the blue and green paths). This is the general concept behind

inference-path invariance. The triangle in (b) is the smallest unit of such paths.

temporal domain [217, 57], 3D geometry [73, 166, 66, 87, 248, 242, 92, 230, 252, 244, 120, 47],

and in recognition and (conditional/unconditional) image translation [86, 144, 96, 249, 91, 41]. In

computer vision, consistency has been extensively utilized in the cycle form and often between two

or few domains [249, 91]. In contrast, we consider consistency in the more general form of arbitrary

paths with varied-lengths over a large task set, rather than the special cases of short cyclic paths.

Also, the proposed approach needs no prior explicit knowledge about task relationships [166, 120,

230, 252].

Multi-task learning: In the most conventional form, multi-task learning predicts multiple

output domains out of a shared encoder/representation for an input. It has been speculated that the

predictions of a multi-task network may be automatically cross-task consistent as the representation

from which the predictions are made are shared. This has been observed to not be necessarily true

in several works [116, 243, 225, 198], as consistency is not directly enforced during training. We

also make the same observation (see visuals here) and quantify it (see Fig. 4.8a), which signifies the

need for explicit augmentation of consistency in learning.

Transfer learning predicts the output of a target task given another task’s solution as a source.

The predictions made using transfer learning are sometimes assumed to be cross-task consistent,

which is often found to not be the case [237, 189], as transfer learning does not have a specific

mechanism to impose consistency by default. Unlike basic multi-task learning and transfer learning,

the proposed method includes explicit mechanisms for learning with general data-driven consistency

constraints.

Uncertainty metrics: Among the existing approaches to measuring prediction uncertainty,

the proposed Consistency Energy (Sec. 4.4) is most related to Ensemble Averaging [122], with

the key difference that the estimations in our ensemble are from different cues/paths, rather than

retraining/reevaluating the same network with different random initializations or parameters. Using

multiple cues is expected to make the ensemble more effective at capturing uncertainty.

http://consistency.epfl.ch/visuals/

CHAPTER 4. CROSS-TASK CONSISTENCY 35

(a) (b) (c) (d)

f

Y1Y2
(y 1) f

Y1Y3
(y 1)

f

Y1Y2
(y 1)

f

Y1Yn
(y 1)

…

x

y 1

y 2

x y 1 y 2 x y 1x y 1

Figure 4.4: Schematic summary of derived losses for fXY1
.(a): Ltriangle

XY1Y2
(Eq.4.1). (b): Lseparate

XY1Y2
(Eq.4.4). (c):

Lperceptual
XY1Y2

(Eq.4.7). (d): Lperceptual
XY1Y

(Eq.4.8).

4.3 Method

We define the problem as follows: suppose X denotes the query domain (e.g., RGB images) and

Y={Y1,..., Yn} is the set of n desired prediction domains (e.g., normals, depth, objects, etc). An

individual datapoint from domains (X , Y1,..., Yn) is denoted by (x, y1,..., yn). The goal is to learn

functions that map the query domain onto the prediction domains, i.e. FX={fXYj
|Yj∈Y} where

fXYj
(x) outputs yj given x. We also define FY={fYiYj

|Yi, Yj∈Y, i̸=j}, which is the set of ‘cross-

task’ functions that map the prediction domains onto each other; we use them in the consistency

constraints. For now assume FY is given apriori and frozen; in Sec. 4.3 we discuss all functions fs

are neural networks in this paper, and we learn FY just like FX .

Triangle: The Elementary Consistency Unit

The typical supervised way of training the neural networks in FX , e.g., fXY1
(x), is to find parameters

of fXY1
that minimize a loss with the general form |fXY1

(x)-y1| using a distance function as |.|, e.g.,

ℓ1 norm.

This standard independent learning of fXYi
s satisfies various desirable properties, including

cross-task consistency, if given infinite amount of data, but not under the practical finite data regime.

This is qualitatively illustrated in Fig. 4.2 (upper). Thus we introduce additional constraints to guide

the training toward cross-task consistency. We define the loss for predicting domain Y1 from X while

enforcing consistency with domain Y2 as a directed triangle depicted in Fig. 4.3(b):

Ltriangle
XY1Y2

≜ |fXY1
(x)− y1|+ |fY1Y2

◦fXY1
(x)− fXY2

(x)|+ |fXY2
(x)− y2|. (4.1)

The first and last terms are the standard direct losses for training fXY1
and fXY2

. The middle term is

the consistency term which enforces that predicting Y2 out of the predicted Y1 yields the same result

as directly predicting Y2 out of X (done via the given cross-task function fY1Y2
).3 Thus learning to

predict Y1 and Y2 are not independent anymore.

The triangle loss 4.1 is the smallest unit of enforcing cross-task consistency. Below we make

two improving modifications on it via function ‘separability’ and ‘perceptual losses’.

3Operator ◦ denotes function composition: g◦h(x)≜g(h(x)).

CHAPTER 4. CROSS-TASK CONSISTENCY 36

Separability of Optimization Parameters

The loss Ltriangle
XY1Y2

involves simultaneous training of two networks fXY1
and fXY2

, thus it is resource

demanding. We show Ltriangle
XY1Y2

can be reduced to a ‘separable’ function [201] resulting in two terms

that can be optimized independently. From the triangle inequality we can derive:

|fY1Y2
◦fXY1

(x)− fXY2
(x)| ≤ |fY1Y2

◦fXY1
(x)− y2|+ |fXY2

(x)− y2|, (4.2)

which after substitution in Eq. 4.1 yields:

Ltriangle
XY1Y2

≤ |fXY1
(x)− y1|+ |fY1Y2

◦fXY1
(x)− y2|+ 2|fXY2

(x)− y2|. (4.3)

The upper bound for Ltriangle
XY1Y2

in inequality 4.3 can be optimized in lieu of Ltriangle
XY1Y2

itself, as they

both have the same minimizer.4 The terms of this bound include either fXY1
or fXY2

, but not both,

hence we now have a loss separable into functions of fXY1
or fXY2

, and they can be optimized

independently. The part pertinent to the network fXY1
is:

Lseparate
XY1Y2

≜ |fXY1
(x)− y1|+ |fY1Y2

◦fXY1
(x)− y2|, (4.4)

named separate, as we reduced the closed triangle objective X

Y1

△Y2
in Eq. 4.1 to two separate path

objectives X�Y1�Y2 and X�Y2. The first term of Eq. 4.4 enforces the general correctness of

predicting Y1, and the second term enforces its consistency with Y2 domain.

Reconfiguration into a ªPerceptual Lossº

Training fXY1
using the loss Lseparate

XY1Y2
requires a training dataset with multi domain annotations for

one input: (x, y1, y2). It also relies on availability of a perfect function fY1Y2
for mapping Y1 onto

Y2; i.e. it demands y2=fY1Y2
(y1). We show how these two requirements can be reduced.

Again, from triangle inequality we can derive:

|fY1Y2
◦fXY1

(x)− y2| ≤ |fY1Y2
◦fXY1

(x)− fY1Y2
(y1)|+ |fY1Y2

(y1)− y2| (4.5)

which after substitution in Eq. 4.4 yields:

Lseparate
XY1Y2

≤ |fXY1
(x)− y1|+ |fY1Y2

◦fXY1
(x)− fY1Y2

(y1)|+ |fY1Y2
(y1)− y2|. (4.6)

Similar to the discussion for inequality 4.3, the upper bound in inequality 4.6 can be optimized

in lieu of Lseparate
XY1Y2

as both have the same minimizer.5 As the last term is a constant w.r.t. fXY1
, the

final loss for training fXY1
subject to consistency with domain Y2 is:

Lperceptual
XY1Y2

≜ |fXY1
(x)− y1|+ |fY1Y2

◦fXY1
(x)− fY1Y2

(y1)|. (4.7)

4Both sides of inequality 4.3 are ≥0 and =0 for the minimizer fXY1
(x)=y1 & fXY2

(x)=y2.
5Both sides of inequality 4.6 are ≥0 and =0 for the minimizer fXY1

(x)=y1. The term |fY1Y2
(y1)− y2| is a constant

and ∼0, as it is exactly the training objective of fY1Y2
. The non-zero residual should be ignored and assumed 0 as the

non-zero part is irrelevant to fXY1
, but imperfections of fY1Y2

.

CHAPTER 4. CROSS-TASK CONSISTENCY 37

The loss Lperceptual
XY1Y2

no longer includes y2, hence it admits pair training data (x, y1) rather than triplet

(x, y1, y2).
6 Comparing Lperceptual

XY1Y2
and Lseparate

XY1Y2
shows the modification boiled down to replacing y2

with fY1Y2
(y1). This makes intuitive sense too, as y2 is the match of y1 in the Y2 domain.

Why ªperceptualº loss? The process that led to Eq. 4.7 can be generally seen as using the

loss |g◦f(x)−g(y)| instead of |f(x)−y|. The latter compares f(x) and y in their explicit space,

while the former compares them via the lens of function g. This is often referred to as ªperceptual

lossº in super-resolution and style transfer literature [103]±where two images are compared in the

representation space of a network pretrained on ImageNet, rather than in pixel space. Similarly, the

consistency constraint between the domains Y1 and Y2 in Eq. 4.7 (second term) can be viewed as

judging the prediction fXY1
(x) against y1 via the lens of the network fY1Y2

; here fY1Y2
is a ªperceptual

lossº for training fXY1
. However, unlike the ImageNet-based perceptual loss [103], this function has

the specific and interpretable job of enforcing consistency with another task. We also use multiple

fY1Yi
s simultaneously which enforces consistency of predicting Y1 against multiple other domains

(Sections 4.3 and 4.3).

Ill-posed tasks and imperfect networks

If fY1Y2
is a noisy estimator, then fY1Y2

(y1)=y2+noise rather than fY1Y2
(y1)=y2. Using a noisy

fY1Y2
in Lseparate

XY1Y2
corrupts the training of fXY1

since the second loss term does not reach 0 if fXY1
(x)

correctly outputs y1. That is in contrast to Lperceptual
XY1Y2

where both terms have the same global minimum

and are always 0 if fXY1
(x) outputs y1 ± even when fY1Y2

(y1)=y2+noise. Thus Lperceptual
XY1Y2

enables a

robust training of fXY1
(x) w.r.t. imperfections in fY1Y2

. This is crucial since neural networks are

almost never perfect estimators, e.g., due to lacking an optimal training process for them or potential

ill-posedness of the task y1�y2. Further discussion and experiments are available in supplementary

material.

Extending Consistency to Multiple Output Domains

The derived Lperceptual
XY1Y2

loss augments learning of fXY1
with a consistency constraint against one

domain Y2. Straightforward extension of the same derivation to enforcing consistency of fXY1

against multiple other domains (i.e. when fXY1
is part of multiple simultaneous triangles) yields:

Lperceptual
XY1Y ≜ |Y | · |fXY1

(x)− y1|+
∑

Yi∈Y

|fY1Yi
◦fXY1

(x)− fY1Yi
(y1)| (4.8)

where Y is the set of domains with which fXY1
must be consistent, and |Y | is the cardinality of

Y . Notice that Lperceptual
XY1Y2

is a special case of Lperceptual
XY1Y

where Y={Y2}. Fig. 4.4 summarizes the

derivation of losses for fXY1
.

Fig. 4.5 shows qualitative results of learning fXY1
with and without cross-task consistency for a

sample query.

6Generally for n domains, this formulation allows using datasets of pairs among n domains, rather than one n-tuple

multi annotated dataset.

http://consistency.epfl.ch/supplementary_material
http://consistency.epfl.ch/supplementary_material

CHAPTER 4. CROSS-TASK CONSISTENCY 38

X Y1

Normals 3D Curvature Texture Edges (Sobel) Depth(re)Shading Occlusion EdgesRGB Image

Sensor Ground Truth

Learning with
Cross-Task Consistency

Learning without
Cross-Task Consistency

Y

Figure 4.5: Learning with and without cross-task consistency shown for a sample query. Using the notation

X�Y1�Y , here X is RGB image, Y1 is surface normals, and five domains in Y are reshading, 3D curvature, texture

edges (Sobel filter), depth, and occlusion edges.

Top row shows the results of standard training of X�Y1. After convergence of training, the predicted normals (Y1) are

projected onto other domains (Y) which reveal various inaccuracies. This demonstrates such cross-task projections

Y1�Y can provide additional cues to training X�Y1.

Middle row shows the results of consistent training of X�Y1 by leveraging Y1�Y in the loss. The predicted normals

are notably improved, especially in hard to predict fine-grained details (zoom into the yellow markers. Best seen on

screen).

Bottom row provides the ground truth. See video examples at visualizations webpage.

Beyond Triangles: Globally Consistent Graphs

The discussion so far provided the loss for the cross-task consistent training of one function fXY1

using elementary triangle based units. We also assumed the functions FY were given apriori. The

more general multi-task setup is: given a large set of domains, we are interested in learning functions

that map the domains onto each other in a globally cross-task consistent manner. This objective can

be formulated over a graph G=(D,F) with nodes representing all of the domains D=(X ∪ Y) and

edges being neural networks between them F=(FX ∪ FY); see Fig.4.3(c).

Extension to Arbitrary Paths: The transition from three domains to a large graph G enables

forming more general consistency constraints using arbitrary-paths. That is, two paths with same

endpoint should yield the same results ± an example is shown in Fig.4.3(d). The triangle constraint

in Fig.4.3(b,c) is a special case of the more general constraint in Fig.4.3(d), if paths with lengths

1 and 2 are picked for the green and blue paths. Extending the derivations done for a triangle in

Sec. 4.3 to paths yields:

Lperceptual
XY1Y2...Yk

= |fXY1
(x)−y1|+ |fYk−1Yk

◦...◦fY1Y2
◦fXY1

(x)−fYk−1Yk
◦...◦fY1Y2

(y1)|, (4.9)

which is the loss for training fXY1
using the arbitrary consistency path X�Y1�Y2...�Yk with length

k (full derivation provided in supplementary material). Notice that Eq. 4.7 is a special case of

https://consistency.epfl.ch/visuals
http://consistency.epfl.ch/supplementary_material

CHAPTER 4. CROSS-TASK CONSISTENCY 39

Eq. 4.9 if k=2. Equation 4.9 is particularly useful for incomplete graphs; if the function Y1�Yk is

missing, consistency between domains Y1 and Yk can still be enforced via transitivity through other

domains using Eq. 4.9.

Also, extending Eq. 4.9 to multiple simultaneous paths (as in Eq. 4.8) by summing the path

constraints is straightforward.

Global Consistency Objective: We define reaching global cross-task consistency for graph

G as satisfying the consistency constraint for all feasible paths in G. We can write the global

consistency objective for G as LG =
∑

p∈P Lperceptual
p , where p represents a path and P is the set of

all feasible paths in G.

Optimizing the objective LG directly is intractable as it would require simultaneous training of

all networks in F with a massive number of consistency paths7. In Alg.1 we devise a straightforward

training schedule for an approximate optimization of LG . This problem is similar to inference in

graphical models, where one is interested in marginal distribution of unobserved nodes given some

observed nodes by passing ªmessagesº between them through the graph until convergence. As exact

inference is usually intractable for unconstrained graphs, often an approximate message passing

algorithm with various heuristics is used.

Algorithm 1: Globally Cross-Task Consistent Learning of Networks F

Result: Trained edges F of graph G
1 Train each f∈F independently. ▷ initialization by standard direct training.
2 for k ← 2 to L do
3 while LossConvergence(F) not met do
4 fij←SelectNetwork(F) ▷ selects target network to be trained.
5 p←SelectPath(fij , k,P) ▷ selects a feasible consistency path for fij with maximum length k from P .

6 optimize L
perceptual
ijp ▷ trainsfij using path constraint p in loss 4.9.

7 end

8 end

Instead of optimizing all terms in LG , Alg.1 selects one network fij∈F to be trained, selects

consistency path(s) p∈P for it, and trains fij with p for a fixed number of steps using loss 4.9 (or

its multi path version if multiple paths selected). This is repeated until all networks in F satisfy a

convergence criterion.

A number of choices for the selection criterion in SelectNetwork and SelectPath is possible,

including round-robin and random selection. While we did not observe a significant difference in

the final results, we achieved the best results using maximal violation criterion: at each step select

the network and path with the largest loss8. Also, Alg.1 starts from shorter paths and progressively

opens up to longer ones (up to length L) only after shorter paths have converged. This is based on

the observation that the benefit of short and long paths in terms of enforcing cross-task consistency

overlap, while shorter paths are computationally cheaper8. For the same reason, all of the networks

are initialized by training using the standard direct loss (Op.1 in Alg.1) before progressively adding

consistency terms.

7For example, a complete G with n nodes includes n(n − 1) networks and
∑L

k=2

(
n

k+1

)
(k + 1)! feasible paths,

with path length capped at L.
8See supplementary material for an experimental comparison.

http://consistency.epfl.ch/supplementary_material

CHAPTER 4. CROSS-TASK CONSISTENCY 40

Finally, Alg.1 does not distinguish between Fx and Fx and can be used to train them all in the

same pool. This means the selected path p may include networks not fully converged yet. This

is not an issue in practice, because, first, all networks are pre-trained with their direct loss (Op.1

in Alg.1) thus they are not wildly far from their convergence point. Second, the perceptual loss

formulation makes training fij robust to imperfections in functions in p (Sec. 4.3). However, as

practical applications primarily care about Fx, rather than Fy, one can first train Fy to convergence

using Alg.1, then start the training of Fx with well trained and converged networks Fy. We do the

latter in our experiments.9 Please see supplementary material for how to normalize and balance

the direct and consistency loss terms, as they belong to different domains with distinct numerical

properties.

4.4 Consistency Energy

We quantify the amount of cross-task consistency in the system using an energy-based quantity [126]

called Consistency Energy. For a single query x and domain Yk, the consistency energy is defined to

be the standardized average of pairwise inconsistencies:

Energy
Yk
(x) ≜ 1

|Y|−1

∑

Yi∈Y,i ̸=k

|fYiYk
◦fXYi

(x)−fXYk
(x)|−µi

σi
, (4.10)

where µi and σi are the average and standard deviation of |fYiYk
◦fXYi

(x)−fXYk
(x)| over the dataset.

Eq. 4.10 can be computed per-pixel or per-image by average over its pixels. Intuitively, the energy

can be thought of as the amount of variance in predictions in the lower row of Fig. 4.2 ± the higher

the variance, the higher the inconsistency, and the higher the energy. The consistency energy is an

intrinsic quantity of the system and needs no ground truth or supervision.

In Sec. 4.5, we show this quantity turns out to be quite informative as it can indicate the reliability

of predictions (useful as a confidence/uncertainty metric) or a shift in the input domain (useful for

domain adaptation). This is based on the fact that if the query is from the same data distribution

as the training and is unchallenging, all inference paths of a system trained with consistency path

constraints work well and yield similar results (as they were trained to); whereas under a distribution

shift or for a challenging query, different paths break in different ways resulting in dissimilar

predictions, and therefore, creating a higher variance. In other words, usually correct predictions

are consistent while mistakes are inconsistent. (Plots 4.8b, 4.8c, 4.8d.)

4.5 Experiments

The evaluations are organized to demonstrate the proposed approach yields predictions that are

I. more consistent (Sec.4.5), II. more accurate (Sec.4.5), and III. more generalizable to out-of-

training-distribution data (Sec.4.5). We also IV. quantitatively analyze the Consistency Energy and

report its utilities (Sec.4.5).

9A further cheaper alternative is applying cross-task consistent learning only on Fx and training Fy using standard

independent training. This is significantly cheaper and more convenient, but still improves Fx notably.

http://consistency.epfl.ch/supplementary_material

CHAPTER 4. CROSS-TASK CONSISTENCY 41

Query Normals (re)Shading Depth 2D Texture Edges

Gr
ou

nd
 Tr

ut
h

(S
en

so
r)

Ba
se

lin
e

Pr
ed

ict
io

ns
X-

Ta
sk

 C
on

si
st

en
cy

Pr

ed
ict

io
ns

3D Curvature

X-
Ta

sk
 C

on
si

st
en

cy

Pr
ed

ict
io

ns
 (e

xt
er

na
l q

ue
rie

s)

Occlusion Edges Energy (uncertainty)Query Normals (re)Shading Depth 2D Texture Edges 3D Curvature Occlusion Edges Energy (uncertainty)

Figure 4.6: Qualitative results of predicting multiple domains along with the pixel-wise Consistency Energy.

The top queries are from the Taskonomy dataset’s test set. The results of networks trained with consistency are more

accurate, especially in fine-grained regions (zoom into the yellow markers), and more correlated across different tasks.

The bottom images are external queries (no ground truth available) demonstrating the generalization and robustness of

consistency networks to external data. Comparing the energy against a prediction domain (e.g., normals) shows that

energy often correlates with error. More examples are provided on the project page, and a live demo for user uploaded

images is available at the demo page. External Queries: Bedroom in Arles, Van Gogh (1888); Cotton Mill Girl, Lewis

Hine (1908); Chernobyl Pripyat Abandoned School (c. 2009). [best seen on screen]

Query Sensor Ground Truth Multi-Task Network Cycle-Based Consistency Baseline Perceptual Loss Baseline (L1 UNet) GeoNet X-Task ConsistencyTaskonomy

Figure 4.7: Learning with cross-task consistency vs various baselines compared over surface normals. Queries are

from Taskonomy dataset (top) or external data (bottom). Similar comparison for other domains and more images are

provided on the project page, and a live demo for user uploaded images is available at the demo page. [best seen on

screen]

https://consistency.epfl.ch/
https://consistency.epfl.ch/demo
https://www.vangoghmuseum.nl/en/collection/s0047V1962?v=1
http://100photos.time.com/photos/lewis-hine-cotton-mill-worker
http://100photos.time.com/photos/lewis-hine-cotton-mill-worker
https://web.archive.org/web/20120428011323/http://www.boredpanda.com/chernobyl-20-years-after-the-accident/
https://consistency.epfl.ch/
https://consistency.epfl.ch/demo

CHAPTER 4. CROSS-TASK CONSISTENCY 42

Datasets: We used the following datasets in the evaluations:

Taskonomy [237]: We adopted Taskonomy as our main training dataset. It includes 4 million real images

of indoor scenes with multi-task annotations for each image. The experiments were performed using

the following 10 domains from the dataset: RGB images, surface normals, principal curvature, depth

(zbuffer), reshading, 3D (occlusion) edges, 2D (Sobel) texture edges, 3D keypoints, 2D keypoints, and

semantic segmentation. The tasks were selected to cover 2D, 3D, and semantic domains and have sensor-

based/semantic ground truth. We report results on the test set. Also, as one of the out-of-domain tests, we

use a version of Taskonomy images where they undergo distortions (e.g., blurring).

Replica[203] has high resolution 3D ground truth and enables more reliable evaluations of fine-grained

details. We test on 1227 images from Replica (no training), besides Taskonomy test data.

CocoDoom [135] contains synthetic images from the Doom video game. We use it as one of the out-of-

training-distribution datasets.

ApolloScape [93] contains real images of outdoor driving scenes. We use it as another out-of-training-

distribution dataset.

NYU [193]: We also evaluated on NYUv2. The findings are similar to those on Taskonomy and Replica (in

supplementary material).

Architecture & Training Details: We used a UNet [178] backbone architecture. We benchmarked

alternatives, e.g., ResNet [82], and found UNets to yield superior pixel-wise predictions. All

networks in FX and FY have a similar architecture. The networks have 6 down and 6 up sampling

blocks and were trained using AMSGrad [174] and Group Norm [222] with learning rate 3×10−5,

weight decay 2×10−6, and batch size 32. Input and output images were linearly scaled to the range

[0, 1] and resized down to 256 × 256. We used ℓ1 as the norm in all losses and set the max path

length L=3. We experimented with different loss normalization methods and achieved the best

results when the loss terms are weighted negative proportional to their respective gradient magnitude

(details in supplementary material).

Baselines: The main baseline categories are described below. To prevent confounding factors, our

method and all baselines were implemented using the same UNet network when feasible and were

re-trained on Taskonomy dataset.

Baseline UNet (standard independent learning) is the main baseline. It is identical to consistency models

in all senses, except being trained with only the direct loss and no consistency terms.

Multi-task learning: A network with one shared encoder and multiple decoders each dedicated to a task,

similar to [116]. This baseline shows if consistency across tasks would emerge by sharing a representation

without explicit consistency constraints.

Cycle-based consistency, e.g.[249], is a way of enforcing consistency between two domains assuming a

bijection between them. This assumption is violated between many domains (e.g. RGB↔3D, as texture

cannot be recovered from 3D). This baseline is a special case of the triangle in Fig.4.3(b) by setting Y2=X .

Baseline perceptual loss network uses frozen random (Gaussian weight) networks as FY , rather than

training them to be cross-task functions. This baseline would show if the improvements were owed to

the priors in the architecture of constraint networks, rather than them executing cross-task consistency

constraints.

GAN-based image translation: We used Pix2Pix [96], which is conditional GAN based framework [144].

http://consistency.epfl.ch/supplementary_material
http://consistency.epfl.ch/supplementary_material

CHAPTER 4. CROSS-TASK CONSISTENCY 43

Method

Setup
Replica Dataset Taskonomy Dataset

Normals Depth reShading Normals Depth reShading Semantic Segm.

Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Perceptual Err. Direct Direct

Depth reShade ℓ1 Err. Norm. reShade ℓ1 Err. Norm. Depth ℓ1 Err. Depth reShade Curv. Edge(2D) ℓ1 Err. Norm. reShade Curv. Edge(2D) ℓ1 Err. Norm. Depth Curv. Edge(2D) ℓ1 Err. X-Entropy (↓)

Blind Guess 4.75 33.31 16.02 22.23 19.94 4.81 15.74 5.14 16.45 7.39 38.11 3.91 12.05 17.77 22.37 27.27 7.96 12.77 7.07 19.96 7.14 3.53 12.62 24.85

Taskonomy Networks 3.73 11.07 6.55 18.06 15.39 3.72 8.70 3.85 11.43 7.19 22.68 3.68 10.70 7.54 18.82 20.83 6.65 14.10 4.55 11.72 4.69 3.54 11.19 16.58

Multi-Task 5.58 22.11 6.03 15.30 16.14 2.44 7.24 3.36 10.32 8.78 27.32 3.65 10.16 7.07 17.18 19.55 7.54 13.67 2.81 9.19 3.54 3.56 10.75 11.61

GeoNet (original) 6.23 19.34 7.48 13.88 14.03 4.01 × × × 7.71 27.35 3.32 9.09 9.58 15.44 18.73 4.03 10.78 4.07 × × × × × ×
Cycle Consistency 5.65 22.39 7.13 8.81 30.33 3.84 10.26 8.68

Baseline Perceptual Loss 4.88 15.34 4.99 8.59 23.98 3.41 10.01 6.17

Pix2Pix 4.52 19.03 7.70 8.12 26.23 3.83 10.33 9.40

Baseline UNet (ℓ1) 4.69 13.15 4.96 10.47 12.99 1.99 6.90 2.74 9.55 8.17 20.94 3.41 9.98 5.95 13.62 15.68 7.31 12.61 2.27 9.58 3.38 3.78 10.85 10.45 0.246

GeoNet (updated) 4.62 12.79 4.70 10.47 12.75 1.83 × × × 8.18 20.84 3.40 9.99 5.91 13.77 15.76 7.52 12.67 2.26 × × × × × ×
X-Task Consistency 2.07 9.99 4.80 7.01 11.21 1.63 5.50 1.96 9.22 4.32 12.15 3.29 9.50 6.08 9.46 12.66 3.61 9.82 2.29 7.13 2.51 3.28 9.38 10.52 0.237

0.25% Data: Baseline 5.65 21.76 7.61 8.86 26.91 3.78 10.31 8.17

0.25% Data: Consistency 2.41 12.26 7.28 5.07 15.96 3.74 9.93 9.19

Table 4.1: Quantitative Evaluation of Cross-Task Consistent Learning vs Baselines. Results are reported on

Replica and Taskonomy Datasets for four prediction tasks (normals, depth, reshading, pixel-wise semantic labeling)

using ‘Direct’ and ‘Perceptual’ error metrics. The Perceptual metrics evaluate the target prediction in another domain

(e.g., the leftmost column evaluates the depth inferred out of the predicted normals). Bold marks the best-performing

method. If more than one value is bold, their performances were statistically indistinguishable from the best, according

to 2-sample paired t-test α = 0.01. Learning with consistency led to improvements with large margins in most columns.

(In all tables, ℓ norm values are multiplied by 100 for readability. Methods that cannot be run for a given target are

denoted by ‘×’.)

Blind guess: A query-agnostic statistically informed guess computed from data for each domain (visuals in

supplementary). It shows what can be learned from general dataset regularities. [237]

GeoNet [166] is a task-specific consistency method analytically curated for depth and normals. This baseline

shows how closely the task-specific consistency methods based on known analytical relationships perform vs

the proposed generic data-driven method. The ªoriginalº and ªupdatedº variants represent original authors’

released networks and our re-implemented and re-trained version.

Consistency of Predictions

Fig. 4.8a (blue) shows the amount of inconsistency in test set predictions (Consistency Energy)

successfully decreases over the course of training. The convergence point of the network trained with

consistency constraints is well below baseline independent learning (orange) and multi-task learning

(green)±which shows consistency among predictions does not naturally emerge in either case

without explicit constraining. Plots of individual loss terms similarly show minimizing the direct

term does not lead to automatic minimization of consistency terms (provided in supplementary).

Accuracy of Predictions

Figures 4.6 and 4.7 compare the prediction results of networks trained with cross-task consistency

against the baselines in different domains. The improvements are considerable particularly around

the difficult fine-grained details.

Quantitative evaluations are provided in Tab. 4.1 for Replica dataset and Taskonomy datasets

on depth, normal, reshading, and pixel-wise semantic prediction tasks. Learning with consistency

led to large improvements in most of the setups. As most of the pixels in an image belong to easy

to predict regions governed by the room layout (e.g., ceiling, walls), the standard pixel-wise error

metrics (e.g., ℓ1) are dominated by them and consequently insensitive to fine-grained changes. Thus,

http://consistency.epfl.ch/supplementary_material
http://consistency.epfl.ch/supplementary_material

CHAPTER 4. CROSS-TASK CONSISTENCY 44

0 2 4 6 8
Domain Shift Magnitude (blur sigma)

0.00

0.02

0.04

0.06

0.08

E
rr

or

Consistency Model
Baseline Model

Figure 4.9: Error with Increasing (Smooth)

Domain Shift. The network trained with con-

sistency is more robust to the shift.

Error (Post-Adaption) Error (Pre-Adaptation)
Novel Domain # images Consistency Baseline Consistency Baseline

Gaussian
blur

(Taskonomy)

128 17.4 (+14.7%) 20.4
46.2 (+12.8%) 53.0

16 22.3 (+8.6%) 24.4

CocoDoom
128 18.5 (+19.2%) 22.9

54.3 (+15.8%) 64.5
16 27.1 (+24.5%) 35.9

ApolloScape 8 40.5 (+11.9%) 46.0 55.8 (+5.5%) 59.1

Table 4.2: Domain generalization and adaptation on CocoDoom,

ApolloScape, and Taskonomy blur data. Networks trained with con-

sistency show better generalization to new domains and a faster adap-

tation with little data. (relative improvement in parentheses)

besides standard Direct metrics, we report Perceptual error metric (e.g., normal�curvature) that

evaluate the same prediction, but with a non-uniform attention to pixel properties.10 Each perceptual

error provides a different angle, and the optimal results would have a low error for all metrics.

The corresponding Standard Error for the reported numbers are provided in supplementary

material, which show the trends are statistically significant. Tab. 4.1 also includes evaluation of

the networks when trained with little data (0.25% subset of Taskonomy dataset), which shows the

consistency constraints are useful under low-data regime as well.

We adopted normals as the canonical task for more extensive evaluations, due to its practical

value and abundance of baselines. The conclusions remained the same regardless.

Using Consistency with Unsupervised Tasks: Unsupervised tasks can provide consistency

constraints, too. Examples of such tasks are 2D Edges and 2D Keypoints (SURF[22]), which are

included in our dictionary. Such tasks have fixed operators that can be applied on any image to pro-

duce their respective domains without any additional supervision. Interestingly, we found enforcing

consistency with these domains is still useful for gaining better results (see supplementary material

for the experiment). The ability to utilize unsupervised tasks further extends the applicability of our

method to single/few task datasets.

Utilities of Consistency Energy

Below we quantitatively analyze the Consistency Energy. The energy is shown (per-pixel) for

sample queries in Fig. 4.6.

Consistency Energy as a Confidence Metric (Energy vs Error): Plot 4.8b shows the energy

of predictions has a strong positive correlation with the error computed using ground truth (Pearson

corr. 0.67). This suggests the energy can be adopted for confidence quantification and handling

uncertainty. This experiment was done on Taskonomy test set thus images had no domain shift from

the training data.

Consistency Energy as a Domain Shift Detector: Plot 4.8c shows the energy distribution

of in-distribution (Taskonomy) and out-of-distribution datasets (ApolloScape, CocoDoom). Out-

10For example, evaluation of normals via the normal�curvature metric is akin to paying more attention to where

normals change, hence reducing the domination of flat regions, such as walls, in the numbers.

http://consistency.epfl.ch/supplementary_material
http://consistency.epfl.ch/supplementary_material
http://consistency.epfl.ch/supplementary_material

CHAPTER 4. CROSS-TASK CONSISTENCY 45

�����������������

��������������

���������
������

(a) Energy During Training

2 1 0 1 2 3 4
Error (z-score)

3

2

1

0

1

2

3

E
ne

rg
y

(z
-s

co
re

)

r = 0.673

(b) Energy vs. Error

(c) Energy vs. Discrete Domain Shift (d) Energy vs. Continuous Domain Shift

Figure 4.8: Analyses of Consistency Energy. The energy goes down during training (a), and on each image is

correlated with actual prediciton error (b). It can be used to estimate when the network is failing due to domain shift:

both discrete shifts (c) and continuous shifts (d).

of-distribution datapoints have notably higher energy values, which suggests that energy can be

used to detect anomalous samples or domain shifts. Using the per-image energy value to detect

out-of-distribution images achieved ROC-AUC=0.95; the out-of-distribution detection method

OC-NN [33] scored 0.51.

Plot 4.8d shows the same concept as 4.8c (energy vs domain shift), but when the shift away

from the training data is smooth. The shift was done by applying a progressively stronger Gaussian

blur with kernel size 6 on Taskonomy test images. The plot also shows the error computed using

ground truth which has a pattern similar to the energy.

We find the reported utilities noteworthy as handling uncertainty, domains shifts, and measuring

prediction confidence in neutral networks are open topics of research [156, 77] with critical values

in, e.g., active learning [188], real-world decision making [115], and robotics [164].

CHAPTER 4. CROSS-TASK CONSISTENCY 46

Figure 4.10: Domain adaptation results shown for three target domains (ApolloScape [93], CocoDoom [135],

Gaussian-blur Taskonomy [237]). Networks trained with consistency show better adaptation with little data.

Generalization & Adaptation to New Domains

To study: I. how well the networks generalize to new domains without any adaptation and quantify

their resilience, and II. how efficiently they can adapt to a new domain given a few training examples

by fine-tuning, we test the networks trained on Taskonomy dataset on various new domains. The

experiment were conducted on smooth (blurring [102]) and discrete (Doom [135], ApolloScape [93])

shifts. For (II), we use a small number (16-128) of images from the new domain to fine-tune the

networks with and without consistency constraints. The original training data (Taskonomy) is

retained during fine-tuning so prevent the networks from forgetting the original domain [129].

Models trained with consistency constraints generally show more robustness against domain

shifts (see Fig. 4.9 and pre-adaptation numbers in Table 4.2) and a better adaptation with little data

(see post-adaptation numbers in Table 4.2 and Fig. 4.10). The challenging external queries shown in

Figures 4.6&4.7&4.1 similarly denote a good generalization.

Supplementary Material: We defer additional discussions and experiments, particularly analyzing

different aspects of the optimization, stability analysis of the experimental trends, and proving

qualitative results at scale to the supplementary material and the project page.

http://consistency.epfl.ch/supplementary_material
http://consistency.epfl.ch/

CHAPTER 4. CROSS-TASK CONSISTENCY 47

4.6 Conclusion and Limitations

We presented a general and data-driven framework for augmenting standard supervised learning

with cross-task consistency. The evaluations showed learning with cross-task consistency fits the

data better yielding more accurate predictions and leads to models with improved generalization.

The Consistency Energy was found to be an informative intrinsic quantity with utilities toward

confidence estimation and domain shift detection. Below we briefly discuss some of the limitations

and assumptions:

Path Ensembles: We used the various inference paths only as a way of enforcing consistency.

Aggregation of multiple (comparably weak) inference paths into a single strong estimator (e.g., in a

manner similar to boosting) is a promising direction that this paper did not address. Performing the

aggregation in a probabilistic manner seems viable, as we found the errors of different paths are

sufficiently uncorrelated, suggesting possibility of assembling a strong estimator.

Unlabeled/Unpaired Data: The current framework requires paired training data. Extending the

concept to unlabeled/unpaired data, e.g., as in [249], appears feasible and remains open for future

work.

Categorical/Low-Dimensional Tasks: We primarily experimented with pixel-wise tasks. Clas-

sification tasks, and generally tasks with low-dimensional outputs, will be interesting to experiment

with, especially given the more severely ill-posed cross-task relationships they induce.

Optimization Limits: The improvements gained by incorporating consistency are bounded

by the success of available optimization techniques, as addition of consistency constrains at times

makes the optimization job harder. Also, implementing cross-task functions as neural networks

makes them subject to certain output artifacts similar to those seen in image synthesis with neural

networks.

Adversarial Robustness: Lastly, if learning with cross-task consistency indeed reduces the

tendency of neural networks to learn surface statistics [102] (Sec. 4.1), studying its implications in

defence against adversarial attacks will be worthwhile.

Energy Analyses: We performed post-hoc analyses on the Consistency Energy. More con-

crete understanding of the properties of the energy and potentially using it actively for network

modification, e.g, in unsupervised domain adaptation, requires further focused studies.

48

Chapter 5

Scaling Datasets to Train Robust

Representations

In previous chapters, our focus was primarily on indoor spaces, as we had access to both comprehen-

sive multi-task datasets and effective simulators in that context. The multi-task datasets allowed us

to train different representation models using the same input pixels, and thereby isolate the effects

of pretraining objectives on subsequent transfer learning for downstream behaviors. This approach

worked for the studies we conducted, as the behaviors were also assessed in indoor spaces, ensuring

in-domain evaluation. Our research led to intriguing discoveries about the relationship between

representations and downstream behavior, with results remaining robust across variations in data

size, simulator, robot morphology, and learning algorithms.

One key finding was the significant utility of surface normals for manipulation tasks, where

contact points are crucial. Surprisingly, there are few image datasets with surface normal labels, and

the best monocular surface normal estimators currently available demonstrate limited robustness

and accuracy when applied to inputs other than indoor scenes.

In this chapter, we build upon our findings regarding the usefulness of certain pretraining

objectives (e.g., surface normals) and shift our focus to developing robust and accurate models

trained for those objectives. Specifically, this chapter concentrates on creating large-scale and

diverse vision datasets by leveraging 3D assets constructed from robot experience or available on

the internet. As more 3D data is uploaded to the web and simulators improve, we can utilize this 3D

data to generate new image-based datasets for tasks like surface normals. We develop a pipeline for

generating such datasets, parametrically creating views and labels that can be used to train robust

models for surface normals and other applications.

The resulting surface normal models are highly effective, and since this pipeline parametrically

generates data, it also offers a way to experiment with the settings crucial for creating robust models.

For instance, we discovered that randomizing the field-of-view in the training data was essential.

This chapter is based on joint work with Ainaz Eftekhar, Roman Bachmann, Jitendra Malik, Amir Zamir [59], and

is presented much as it appeared in the ICCV 2021 proceedings.

https://arxiv.org/abs/2110.04994

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 49

5.1 Introduction

This paper introduces a pipeline to bridge the gap between comprehensive 3D scans and static

vision datasets. Specifically, we implement and provide a platform that takes as input one of the

following:

• a textured mesh,
• a mesh with images from an actual camera/sensor,
• a 3D pointcloud and aligned RGB images,

and generates a multi-task dataset with as many cameras and images as desired to densely cover the

space. For each image, there are 21 different default mid-level cues, shown in Fig. 3.1. The software

makes use of Blender [44], a powerful physics-based 3D rendering engine to create the labels,

and exposes complete control over the sampling and generation process. With the proliferation of

reasonably-priced 3D sensors (e.g. Kinect, Matterport, and the newest iPhone), we anticipate an

increase in such 3D-annotated data.

In order to establish the soundness for training computer vision models, we used our pipeline

to annotate several existing 3D scans and produce a medium-size starter dataset of mid-level cues.

Samples of the data and different cues are shown in Fig. 5.4. Standard models trained on this starter

dataset achieve state-of-the-art performance for several standard computer vision tasks. For surface

normal estimation, a standard UNet [179] model trained on this starter dataset yields human-level

surface normal estimation performance on the in-the-wild dataset OASIS [38], even though the

model never saw OASIS data during training. For depth estimation, our DPT-Hybrid [171] is

comparable to or outperforms state-of-the-art models such as MiDaS DPT-Hybrid [172, 171]. The

qualitative performance of these networks (shown in Figs. 5.5, 5.6) is often better than the numbers

suggest, especially for fine-grained details.

We further provide an ecosystem of tools and documentation around this platform. Our project

website contains links to a Docker containing the annotator and all necessary libraries, PyTorch [158]

dataloaders to efficiently load the generated data, pretrained models, scripts to generate videos in

addition to images, and other utilities.

We argue that these results should not be interpreted narrowly. The core idea of the platform is

that the ªsectors of the ambient [light-field] array are not to be confused with temporary samples of

the array" (J. J. Gibson [70]). That is, static images only represent single samples of the entire 360-

degree panoramic light-field environment surrounding an agent. How an agent or model samples

and represents this environment will affect its performance on downstream tasks. The proposed

platform in this paper is designed to reduce the technological barriers for research into the effect of

data sampling practices and into the interrelationships between data distribution, data representation,

models, and training algorithms. We discuss directions here and analyze a few illustrative examples

in the final section of the paper.

First, the pipeline proposed in this paper provides a possible pathway to understand such

sampling effects. That is, the rendering pipeline offers complete control over (heretofore) fixed

design choices such as camera intrinsics, scene lighting, object-centeredness [165], the level of

ªphotographer’s biasº [16], data domain, and so on. This makes it possible to run intervention

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 50

studies (e.g. A/B tests), without collecting and validating a new dataset or relying on a post-hoc

analysis. As a consequence, this provides an avenue for a computer vision ªdataset design guideº.

Second, vision is about much more than semantic recognition, but our datasets are biased

towards that as the core problem. The best-studied, most diverse and largest dataset (>10M images)

generally contains some form of textual/class labels [49, 204] and only RGB images. On the other

hand, datasets for most non-classification tasks remain tiny by modern standards. For example,

the indoor scene dataset NYU [194], still used for training some state-of-the-art depth estimation

models [231], contains only 795 training imagesÐall taken with a single camera. The pipeline

presents a way to generate datasets of comparable quality for non-recognition tasks.

Third, the generated data allows ªmatched-pair experimental design" that simplifies study

into the interrelationships of different tasks, since the pipeline produces labels for every sample.

In particular, it helps to avoid issues like the following: suppose a model trained for object

classification on ImageNet transfers to COCO [130] better than a model trained for depth estimation

on NYU [194]±is that due to the data domain, the training task, the diversity of camera intrinsics, or

something else?

Existing matched-pair datasets usually focus on a single domain (indoor scenes [238, 194, 14,

202], driving [55, 46], block-worlds [104], etc.) and contain few cues [46, 194, 14, 202]. The

provided starter dataset may be a better candidate for this research than these existing datasets, since

it contains over 14.5 million images from different domains (more than the full ImageNet database),

contains many different cues (e.g. for depth, surface normals, curvature, panoptic segmentation,

and so on), and models trained on this dataset reach excellent performance for several tasks and

existing benchmarks. We demonstrate the value of such matched-pairs data in Sec. 5.5,

Though our pipeline is designed to facilitate understanding the principles of dataset design,

vision beyond recognition, the interrelationships between data, tasks, and models, this paper does

not extensively pursue those questions themselves. It provides a few analyses, but these are merely

intended as illustrative examples. Instead, the paper introduces tooling designed to facilitate such

research as 3D data becomes more widely available and the capture technology improves. On

our website, we provide a documented, open-sourced, and Dockerized annotator pipeline with a

convenient CLI, runnable examples, a live demo, the starter dataset, pretrained models, PyTorch

dataloaders, and code for the paper (including annotator and models).

5.2 Related Work

In this section we examine related datasets and other approaches. A thorough review would take

more space than we have, so we restrict our attention to only the most relevant groupings.

Static 3D Datasets. The past few years have witnessed an uptick in the number of mesh-based

datasets, thanks largely to the availability of reasonably-priced 3D scanners. Each dataset in the cur-

rent crop, though, usually consists of scenes in a restricted domain. Prominent examples of indoor

building datasets include Stanford Building Dataset (S3DIS) [12], Matterport3D [34], Taskon-

omy [238], Replica [202], 2D-3D-Semantic [13], Habitat-Matterport [137], and Hypersim [176].

Other datasets contain primarily outdoor scenes, usually driving±such as CARLA [55], GTA5 [175]±

http://omnidata.vision
http://omnidata.vision

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 51

II. Poisson Disc
Camera () Sampling

III. Point-of-Interest ()
Sampling IV. Per-Image Cue Generation

3D Keypts.

Curvature

Tex. EdgesNormals

RGB Image

2D Segm.

…

…

…

Cue Generation Pipeline

I. Input Mesh
(w/ Texture or RGB)

Figure 5.1: Overview of the generation pipeline. (I) Given a textured mesh (or other options discussed in Sec. 5.3),

our pipeline (II) generates dense camera locations, (III) generates points-of-interest subject to multi-view constraints

and (IV) produces 21 different mid-level cues for each (shown in Fig. 3.1).

or other narrow domains such as the aptly-named Tanks and Temples [112] dataset. Models trained

on such scene-level views often do not generalize to object-centric views (see Fig. 5.6), but existing

datasets with high-resolution object meshes do not include 2D images samples [95, 29].

Other recent datasets aim to link diverse monocular 2D images and corresponding 3D meshes,

but take the reverse approach of this paper by using hand-annotation to create meshes from single-

view in-the-wild RGB samples [38, 37]. This labeling process is expensive and time-consuming,

and crucially does not allow regenerating the image dataset. In Sec. 5.4, we consider our pipeline

vs. OASIS, one of the largest and most diverse of these benchmarks, and demonstrate that models

trained on our starter dataset already match human-level performance on OASISÐoutperforming

the same architectures models trained on OASIS itself.

Vision-Focused Simulators. Like our platform, simulators typically take a textured mesh

as the representation of the scene and aim to produce realistic sensory inputs [137, 223]. While

spiritually similar to the pipeline proposed in this paper, the current generation of simulators is

designed first and foremost to train embodied agents. They prioritize rendering speed and real-time

mechanics at the cost of photorealism and cue diversity [107, 146]. Extending such simulators to

handle additional cues or to parametrically render out vision datasets often requires writing new

components of the simulator codebase (usually in C++, CUDA, or OpenGL), a surmountable but

unpleasant barrier to entry. In contrast, our platform extends Blender which ªsupports the entirety of

the 3D pipelineº [45] and provides Python bindings that will be intuitive to most vision researchers,

and we implement many of these cues and sampling methods out-of-the-box. In short, we provide a

bridge between simulators and static vision datasets.

Multi-Task Datasets. Vision-based multi-task learning (MTL), like computer vision in general,

shows a general bias towards recognition. MTL datasets often take different shades of classification

as the core problem of interest [121, 216, 136]. In particular, MTL literature often focuses on binary

attribute classification in specialized domains, such as Caltech-UCSD Birds [218] or CelebA [133].

Visual MTL datasets that contain non-recognition tasks often contain only a single domain or a

few tasks (NYU [194], CityScapes [46] or Taskonomy [238]). Sometimes, MTL papers take mix

datasets for a ªsingleº task and consider each dataset as a different task [131, 172, 123, 171].

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 52

In general, the multi-task learning literature has not converged on a standardized definition of

the setting or dataset. Recent work has demonstrated that MTL methods developed on existing

datasets seem to specialize to their respective developement set and do not perform well on large,

realistic datasets, or on other tasks [212, 213, 239]. This underscores the importance of developing

realistic training setting and datasets that generalizes to real-world scenarios.

Data Augmentation + Domain Randomization. Data augmentation is a way to modify the

data or training regimen so that the trained model exhibits desirable invariances (or equivariances).

During training, any transformation of sensor inputs that determines a unique (possibly identity)

transformation on the label can be used as ªaugmentedº data. For example, simple 2D augmentations

such as 2D affine transformations, crops, and color changes that leave the labels unchanged are the

common in computer vision [36, 75], since they can be used even when datasets lack 3D geometry

information. In robotics and reinforcement learning where 3D simulators are more standard,

data augmentation was introduced as ªdomain randomizationº [209], and common augmentations

include texture and background randomization on the scene mesh. Recently, [51] introduced a

Blender-based approach for doing domain randomization and creating static datasets of RGB, depth,

and surface normals from SunCG [205].

Our pipeline makes all these augmentations available for static computer vision datasets: not

just flips/crops/texture randomization, but also dense viewpoints, multi-view consistency, Euclidean

transforms, lens flare, etc.). We implement and examine depth-of-field augmentation in Sec. 5.5.

Auto Labeling is an umbrella term for a group of data labeling procedures that harness structure

in the data as constraints in order to prune or propagate labels and save annotation labor. This is

accomplished primarily by I) pre-trained models as noisy annotator (e.g. [11, 90, 187]), and/or II)

aggregating and filtering annotations based on known constraints (e.g. backprojection error, bundle

adjustment, temporal smoothness, or [94, 101, 14]). Our pipeline has connections to auto labeling

in the sense that we make use of the strong structure present in 3D scanned data to compute and

propagate labels across images and reduce the load of (automatically or manually) labeling each

image.

5.3 Pipeline Overview

We call our pipeline Omnidata as it aspires to encapsulate comprehensive scene information

(ªomniº) in the generated ªdataº. Try a live example here to get acquainted with the pipeline. The

example uses the CLI and a YAML-like config file to generate images from a textured mesh in

Replica [202].

Inputs: The annotator operates upon the following inputs:

• Untextured Mesh (.obj or .ply)

• Either: Mesh Texture or Aligned RGB Images

• Optional: Pre-Generated Camera Pose File

A 3D pointcloud can be used as well: simply mesh the pointcloud using a standard mesher like

COLMAP [184]. An example of meshing and using a 3D pointcloud with the annotator, as well as

a more complete description of inputs are available in the supplementary.

https://omnidata.vision
http://omnidata.vision/supplementary_material/

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 53

Outputs: The pipeline generates 21 mid-level cues in the initial release. All labels are available

for all generated images (or videos). Fig. 3.1 provides a visual summary of the different types of

outputs. A detailed description of the default mid-level cues and additional outputs provided by the

Omnidata annotator is included in the supplementary.

Sampling and Generation

In this section we provide a high-level outline of the generation and rendering process (see Fig. 5.1),

deferring full details to the supplementary.

First, the annotator generates camera locations (Fig. 5.1 II) and points-of-interest (Fig. 5.1 III)

along the mesh.

Second, for each camera and each point-of-interest, it creates a view from that camera fixated on

the point (three fixated views are depicted in the lower part of Fig. 5.2).

Third, for each space-point-view triplet, the annotator renders (Fig. 5.3) all the mid-level cues

(Fig. 5.1 IV).

Each step is elaborated next.

Smooth trajectory sampling

Wide-baseline multi-view

3D Mesh

Figure 5.2: Wide- and narrow-baseline dense view sampling. Each point-of-interest can be viewed by a guaranteed

minimum number of cameras. We also provide an option for creating denser views with narrower baselines (e.g. similar

to consecutive video frames) that is crucial for inverse rendering methods..

http://omnidata.vision/supplementary_material/
http://omnidata.vision/supplementary_material/

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 54

Mesh

Principal
CurvatureReshading

Depth
Euclidean

Depth
Z-Buffer

3D Keypoints

Occlusion
Edges

2.5D Segm.

Surface
Normals

RGB

Panoptic
Segm.

2D Keypoints

2D Segm.
Texture
 Edges

Fragments
(Optical Flow)

Figure 5.3: DAG of processing pipeline. The pipeline uses some of the mid-level cues to produce others. The

ordering of this process (for image-like cues) is shown by the DAG.

Camera and Point Sampling: Camera locations can be provided (if the mesh comes with aligned

RGB), or as in Fig. 5.1 II, the annotator generates cameras in each space so that cameras are not

inside or overlapping with the mesh (default: cameras generated via Poisson-disc sampling to

cover the space). Points-of-interest are then sampled from the mesh with a user-specified sampling

strategy (default: uniform sampling of each mesh face and then uniform sampling on that face).

Cameras and points are then filtered so that each camera sees at least one point and each point is

seen by at least some user-specified minimum number of cameras (default: 3).

View Sampling: The annotator provides two default methods for generating views of each point.

The first method (wide-baseline) generates images while the second, (smooth-trajectory mode)

generates videos.

• Wide-baseline multi-view: A view is saved for each space-camera-point combination where there

is an unobstructed line-of-sight between the camera center and the point-of-interest. The camera

is fixated on the point-of-interest, as shown in Fig. 5.2, bottom.

• Smooth trajectory sampling: For each point of interest, a subset of cameras with a fixated view of

the point are selected, and a smooth cubic-spline trajectory is interpolated between the cameras.

Views of the point are generated for cameras at regular intervals along this trajectory (see Fig. 5.2,

top).

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 55

RGB

R
ep

lic
a

C
L

E
V

R
H

yp
er

si
m

G
SO

+R
ep

lic
a

Ta
sk

on
om

y

Semantics Normals Reshading Z-Depth 2D Keypoint 3D Keypoint 2D Edges 3D Edges 2D Segm. 2.5D Segm. Cam. Pose Euclidean Depth

Figure 5.4: Mid-level cues provided for the starter set. 12 out of 21 mid-level cues visualized for each component

dataset in the starter set, which contains both scenes and objects. Images with red borders indicate cues that were not

included in the original data. Fig. 3.1 visualizes all 21 cues.

Rendering mid-level cues: Since no single piece of software was able to provide all mid-level

cues, we created an interconnected pipeline connecting several different pieces of software that are

all freely available and open-source. We tried to primarily use Blender (a 3D creation suite), since it

has an active user and maintenance community, excellent documentation, and python bindings for

almost everything. Used by professional animators and artists, it is is generally well-optimized. The

overall pipeline is fairly complex, so we defer a full description to the supplementary. The order of

cue generation is shown in Fig. 5.3. The full code is available on our website.

Performance: The annotator generates labels in any resolution. Each space+point+view+cue label

in the starter dataset (512× 512) typically takes 1-4 seconds on server or desktop CPUs and can be

parallelized over many machines.

Ecosystem Tools

To simplify adoption, the following tools are available on our website and the associated GitHub

repository:

Pipeline code and documentation.

Docker containing the annotator and properly linked software (Blender [45], compatible Python

versions, MeshLab [42], etc.).

Dataloaders in PyTorch for correctly and efficiently loading the resulting dataset

Starter dataset of 14.5 million images with associated labels for each task

Convenience utilities for downloading and manipulating data and automatically filtering misaligned

meshes (description and sensitivity analysis in the supplementary).

Pretrained models and code, including the first publicly available implementation of MiDaS [172]

training code.

https://omnidata.vision
http://omnidata.vision
http://omnidata.vision/supplementary_material/

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 56
In
pu
t

O
ur
s

R
an

ft
l e

t a
l.

TP
A

M
I 2

02
0

(M
iD

aS
)

O
ur
s

Better detailsMore accurate depth Better curvature

R
an

ft
l e

t a
l.

TP
A

M
I 2

02
0

(M
iD

aS
)

Figure 5.5: Qualitative comparison with MiDaS on zero-shot OASIS depth estimation. The last 2 rows show

the surface normals extracted from the depth predictions. Our model predicts more accurate depth (left), and also

outperforms in recovering the fine-grained details (middle). As shown by the extracted surface normal in the last 3

columns (right), our depth predictions better reflect the curvature and true shape of the objects, while the same regions

appear flat in the predictions by the MiDaS model. The red rectangles highlight the regions useful for comparison [best

viewed zoomed in].

5.4 Starter Dataset Overview

We provide a relatively large starter dataset of data annotated with the Omnidata annotator. The

dataset comprises roughly 14.5 million images from scenes that are both scene- and object-centric.

Fig. 5.4 shows sample images from the starter dataset along with 12 of the 21 mid-level cues

provided. Cues that are not present in the original dataset are indicated with a red border. We

evaluate this starter dataset on existing benchmarks in Sec. 5.4. Note that the dataset could be

straightforwardly extended to other existing outdoor and driving datasets such as GTA5 [175],

CARLA [55], or Tanks and Temples [113].

Datasets Included

The starter data was created from 7 mesh-based datasets:

Indoor scene datasets: Replica [202], HyperSim [176], Taskonomy [238], Habitat-Matterport

(HM3D)

Aerial/outdoor datasets: BlendedMVG [228]

Diagnostic/Structured datasets: CLEVR [104]

Object-centric datsets: To provide object-centric views in addition to scene-centric ones, we

create a dataset of Google Scanned Objects [95] scattered around buildings from the Replica [202]

dataset (similar to how ObjectNet [19] diversified images for image classification). We used the

Habitat [137] environment to generate physically plausible scenes, and generated different densities

of objects. Examples of images are shown in Fig. 5.4, and a full description of the generation

process is available in the supplementary.

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 57

Dataset Statistics

The starter dataset contains 14,601,449 images from 2,414 spaces. Views are both scene- and

object-centric, and they are labeled with each modality listed in Fig.3.1. Camera field-of-view is

sampled from a truncated normal distribution between 30◦ and 125◦ with mean 77.5◦, and camera

roll is uniform in [−10◦, 10◦]. Tab. 5.1 contains data broken down to sub-datasets.

Images Spaces Points

Dataset Train Val Test Train Val Test

CLEVR 60,000 6,000 6,000 1 0 0 72,000

Replica 56,783 23,725 23,889 10 4 4 4,150

Replica + GSO 107,404 43,450 42,665 10 4 4 31,167

Hypersim 59,543 7,386 7,690 365 46 46 74,619

Taskonomy 3,416,314 538,567 629,581 379 75 79 684,052

BlendedMVG 79,023 16,787 16,766 341 74 73 112,576

Habitat-Matterport 8,470,855 1,061,021 - 800 100 - 564,328

Total (no CLEVR) 12,189,922 1,690,936 720,591 1,905 303 206 1,434,892

Table 5.1: Component dataset statistics. Breakdown of train/val/test split sizes in each of the components of the

starter datset.

Soundness for Existing Computer Vision

We demonstrate that the generated dataset is capable of training standard, modern vision systems to

state-of-the-art performance on existing benchmarks. Once we have established that the models

can be trusted, we further provide a few transfer experiments to quantify how related the different

component datasets are.

We show that the models trained on a 5-dataset portion of the starter dataset (4M images) for

depth and surface normal estimation have state-of-the-art performance on the in-the-wild OASIS

benchmark. To demonstrate the effectiveness of the pipeline for semantic tasks, we show that the

predictions from a network trained for panoptic segmentation on a smaller 3-dataset portion (1M

images) are of similar quality to models trained on COCO [130]. Full experimental details and

more results are available in the supplementary.

http://omnidata.vision/supplementary_material/

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 58

Method Test Data L1 Error (↓) δ > 1.25 (↓) δ > 1.252 (↓) δ > 1.253 (↓)

XTC [236] 1.180 85.28 71.86 60.22

MiDaSv3 [171] OASIS [38] 0.8057 82.03 67.25 55.35

Omnidata 0.7901 81.00 65.22 52.93

XTC [236] 0.5279 70.41 49.90 36.28

MiDaSv3 [171] NYU [194] 0.3838 63.84 41.65 28.97

Omnidata 0.2878 51.73 30.98 20.86

Table 5.2: Zero-shot depth estimation. On NYU and OASIS, a DPT-Hybrid trained on the Omnidata starter

dataset is comparable or better then the same model trained on existing depth datasets.

Anglular Error◦ % Within t◦ Relative Normal

Method Training Data Mean Median 11.25◦ 22.5◦ 30◦ AUCo AUCp

Hourglass [39] OASIS [38] 23.91 18.16 31.23 59.45 71.77 0.5913 0.5786

Hourglass [39] SNOW [37] 31.35 26.97 13.98 40.20 56.03 0.5329 0.5016

Hourglass [39] NYU [193] 35.32 29.21 14.23 37.72 51.31 0.5467 0.5132

PBRS [241] NYU [193] 38.29 33.16 11.59 32.14 45.00 0.5669 0.5253

UNet [179] SunCG [196] 35.42 28.70 12.31 38.51 52.15 0.5871 0.5318

UNet [179] Omnidata 24.87 18.04 31.02 59.53 71.37 0.6692 0.6758

Human (Approx.) - 17.27 12.92 44.36 76.16 85.24 0.8826 0.6514

Table 5.3: Zero-shot surface normal estimation on OASIS. A UNet trained on the Omnidata starter dataset

matched or outperformed models trained on OASIS itself, and it matched human-level AUCp. Notice that the first row

is not zero-shot since it’s trained on OASIS.

Monocular depth estimation: The current best approach for depth estimation is to aggregate

multiple smaller datasets and train with scale- and shift-invariant losses [172, 171] to handle the

different unknown depth ranges and scales. As of this writing, the DPT-based [171] models from

ªMiDaS v3.0º [171] define the state-of-the-art, especially on NYU [194]. We adopt a similar setting

to MiDaS v3.0, but train on a 5-dataset portion of our starter dataset instead of their 10-dataset mix1.

As in [171], we evaluate zero-shot cross-dataset transfer with test predictions and GT aligned in

scale and shift in inverse-depth space. Tab. 5.2 shows that the DPT-Hybrid trained on our starter

dataset outperforms MiDaS DPT-Hybrid on both the test set of NYU [194] and the validation split

of OASIS (the test GT is not available). The error metrics use δ = max(d
d∗
, d

∗

d
) where d and d∗ are

aligned depth and ground truth. Our model better recovers the fine-grained details and true shape of

the objectsÐthis is especially clear in the surface normals extracted from the predictions (last 2

rows of Fig. 5.5). Full details, code, and more qualitative results are available on our website.

1MiDaS v3.0 also uses MTAN [131] for dataset balancing, and though in Sec. 5.5 we examine MTAN (it indeed

helped on our dataset), we used here a naive sampling strategy in order to be consistent with the majority of the other

models in this paper.

https://omnidata.vision

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 59
In

pu
t

G
T

C
he

n
et

 a
l.

C
VP

R
20

20
(O

A
SI

S)
O
ur
s

OASIS Taskonomy GSO+Replica External Queries

Za
m

ir
et

 a
l.

C
VP

R
20

20
(T

as
ko

no
m

y)

Figure 5.6: Qualitative results of zero-shot surface normal estimation. The 3 models are trained on OASIS[38],

Full Taskonomy[236, 238], and our starter set. Queries are from 3 different datasets (OASIS, Taskonomy, GSO+Replica)

in addition to some external queries in the last 2 columns (no ground truth available) which show the generalization of

the models to external data [best viewed zoomed in].

Surface normal estimation: Similar to the existing models on the surface normal track of OASIS,

we train a vanilla UNet [179] architecture (6 down/6 up, similar to [236]) with angular & L1 losses,

light 2D data augmentation, and input resolutions between 256 and 512. We use Adam [109]

with LR 10−4 & weight decay 2× 10−6. The results in Tab. 5.3 indicate that our model matched

human-level performance on OASIS AUCp. On most of the remaining metrics, it outperformed

related models trained on other datasets (including OASIS itself) and models with architectures

specifically designed for normals estimation (PBRS). Fig. 5.6 shows that our model qualitatively

performs much better on selected images than is indicated by the numbers, which may be because

the standard metrics do not align with perceptual quality as ªuninterestingº areas (walls, floors)

dominate the score [38]. Further details and results are available in the supplementary.

Panoptic segmentation: To demonstrate the pipeline’s ability to train models for non-geometric

tasks, we train a PanopticFPN [110] on a 3-dataset subset of our starter dataset. Fig. 5.7 shows that

on in-the-wild images of indoor buildings, the resulting model is of similar quality to one trained on

COCO [130] (an extensive manually labeled dataset). Quantitative results, full experimental details,

and code are available on our website.

http://omnidata.vision/supplementary_material/
https://omnidata.vision

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 60
O
ur
s

(T
as
ko
no
m
y,

R
ep
lic
a,
H
yp
er
si
m
)

In
pu
t

K
ir
ill
ov
et
al
.'
19

(C
O
C
O
)

Figure 5.7: Qualitative results of panoptic segmentation with PanopticFPNs [110] trained on COCO [130]

and Omnidata . The Omnidata model trained jointly on Taskonomy, Replica, and Hypersim shows good out-of-

distribution performance on indoor scenes without people.

Dataset Relatedness

To estimate how the components of the starter dataset are related, we use zero-shot cross-dataset

transfer performance for surface normal and panoptic segmentation models trained on different

components. Tab. 5.4 shows that each single model performs well on its corresponding test set,

but typically generalizes poorly. The models trained on larger splits perform better overall (see

supplementary). The model trained on the largest set achieved the best average performance

(harmonic mean 25.8% and 30.3% better than best single-dataset models for surface normal

estimation and panoptic segmentation). The ranking of transfers depended on the task, which might

be due to the sparse panoptic labels on Taskonomy (from the followup paper [11]), but we believe

the dependency is true in general.

Surface normal estimation: L1 Error (↓) Panoptic Quality (PQ) (↑)

Train/Test Taskonomy Replica Hypersim Replica+GSO BlendedMVG h. mean Taskonomy* Replica Hypersim h. mean

Taskonomy* 4.85 7.76 8.69 13.89 15.55 8.53 8.39 3.95 11.67 6.55

Replica 9.36 3.98 11.78 10.28 15.02 8.24 1.01 41.97 4.50 2.43

Hypersim 7.28 7.57 6.72 11.34 12.94 8.56 9.35 14.08 25.39 13.80

Replica+GSO 13.88 4.94 15.05 5.17 14.03 8.26 - - - -

BlendedMVG 17.1 14.23 16.93 14.87 8.85 13.58 - - - -

Omnidata 5.32 4.24 6.53 6.45 11.53 6.11 9.14 41.24 30.16 17.98

Table 5.4: Inter-dataset domain transfer performance for surface normal estimation and panoptic segmentation.

Models trained on each individual dataset and Omnidata are evaluated on test splits of the starter set. The harmonic

mean across datasets is shown in the last column. (* PQ on things classes only, as Taskonomy does not feature stuff

labels.)

http://omnidata.vision/supplementary_material/

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 61

5.5 Illustrative Data-Focused Analyses

Now that we have established that the annotator produces datasets capable of training reliable

models, what analyses can we do with such datasets? We survey a few examples here, but they are

not intended to be comprehensive (Sec. 5.1).

New 3D Data Augmentations

Data augmentation is used to address shortcomings in model performance and robustness. For

example, models trained only on images captured with narrow apertures (e.g. NYU or Taskonomy)

tend to perform poorly on images taken with a wide aperture (i.e. strong depth-of-field), and

augmenting with 2D Gaussian blur is used to improve model performance on unfocused portions of

images. The approach is common enough that 2D blur was included in the Common Corruptions

benchmark [85]. Because the full scene geometry is available for our starter dataset, it is possible

to do the data augmentation in 3D (image refocusing) instead of 2D (flat blurring). Fig. 5.8

shows an example of what 3D ªimage refocusingº augmentation on our dataset looks like. In

the supplementary, we show that models trained for surface normal estimation using only 3D

augmentation were more robust to both 2D blurring and 3D refocusing than those trained with 2D

augmentation.

Query Image Shallow Focus Mid Focus Far Focus

Figure 5.8: Image refocusing augmentation on Taskonomy. Portions of the image that are in focus are highlighted

in red [best viewed zoomed in].

Mid-Level Cues as Inputs: Are They Useful?

Is there an advantage in using multiple sensors or non-RGB representations of the environment?

Instead of predicting mid-level cues as the downstream task (i.e. multi-task learning), multiple

http://omnidata.vision/supplementary_material/

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 62

cues could also be used as inputs (if relevant sensors are available) or specified as intermediate

representation (with the labels being used as supervision only during training, i.e. PADNet [225]).

Tab. 5.5 demonstrates that using these additional cues in the latter 2 ways can improve perfor-

mance on the original test set and also on unseen data. In this experiment, we train HRNet-18 [205]

backbones for semantic segmentation using a single component dataset (10 spaces from Replica)

and evaluate them on Replica, Hypersim and Taskonomy (tiny split). Relative to using only RGB

inputs and the semantic segmentation labels, cross-entropy performance improves across the board

when treating the cues as sensors (23%, 34% and 30%) or using them as intermediate representa-

tions (13%, 17%, and 19%). Adding more cues seems to help. Full experimental settings in the

supplementary.

Future work could further analyze how the effectiveness of these different methods change with

dataset size, which cues to use, how many additional images a mid-level cue is worth, and on the

relative importance of getting more data from the same scene vs. adding data from new scenes.

GT Mid-Level Predicted Mid-Level

Input/Supervised Domains Cross-Entropy (↓) Cross-Entropy (↓)

Repl. H.Sim Task. Repl. H.Sim Task.

RGB 0.61 5.87 7.55 0.61 5.87 7.55

(All Above) + Normals 0.47 4.47 6.12 0.61 5.44 7.12

(All Above) + 3D Edges 0.46 4.47 6.75 0.54 5.06 6.49

(All Above) + (2D Edges, Z-Depth, 3D Keypts) 0.46 3.86 6.04 0.53 4.9 6.13

Table 5.5: Utility of mid-level cues. The table shows

semantic segmentation results using models trained on

Replica. The models (except for ªRGB") received (either

predicted or GT) mid-level cues in their input in addition

to the RGB. The results show they notably benefited from

the mid-level cues.

Systematic Evaluation of Multi-Task Learning

Recent work [212] shows that existing MTL techniques for computer vision appear to be specialized

to their development setting, and in general they do not outperform single-task or shared-encoder

approaches on novel datasets or tasks. We extend those results for additional tasks (3D Keypoints)

and add numbers on our dataset as a comparison point. Specifically, we follow [212] and train

models for a fixed set of tasks (semantic segmentation, 3D keypoints, depth z-buffer, and occlusion

edges) using different MTL methods (Tab. 5.6). On a 3-dataset split of the starter dataset, some

methods naturally perform better and others do worse. One might hope that the ordering of these

methods would be the same on different tasks (semantic segmentation vs 3D Keypoints), or at

least when training for those same tasks on a different dataset (NYU [194], CityScapes [46], or

Taskonomy [238]). Yet, Tab. 5.6 shows that MTL methods display no clear ranking in either

case (i.e. Spearman’s ρ was always indistinguishable from 0). Ignoring the lack of significance,

the cross-dataset correlation was still weak (ρ < 0.45), and methods performance was actually

anti-correlated across tasks (ρ=-0.4), suggesting that the models are indeed specialized to specific

tasks. This anti-correlation was true even when controlling for dataset.

http://omnidata.vision/supplementary_material/

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 63

Given that current MTL approaches do not outperform single-task baselines, predicting different

mid-level cues poses a challenging setting for MTL. The Omnidata pipeline provides an avenue

to create large and diverse multi-task mid-level benchmarks that could more systematically and

reliably evaluate progress in multi-task learning.

Semantic Segmentation 3D Keypoints

Method Ours NYU [194] CityScapes. [211] Taskonomy [211] Ours Taskonomy [211]

IoU (↑) Rank IoU (↑) Rank IoU (↑) Rank IoU (↑) Rank L1 (↓) Rank L1 (↓) Rank

Single task 85.12 1 90.69 2 65.2 1 43.5 4 0.0439 4 0.23 1

MTL baseline 81.82 3 90.63 3 61.5 4 47.8 1 0.0429 3 0.34 2

MTAN [131] 83.00 2 91.11 1 62.8 3 43.8 3 0.0426 1 0.4 3

Cross-stitch [145] 80.69 4 90.33 4 65.1 2 44.0 2 0.0427 2 0.50 4

Spearman’s ρ Within task.: ρ=0.43. Between segm.-3D keypts.: ρ=-0.4 Within task: ρ=0.2.

Table 5.6: Multi-task training methods do not show a clear ordering. Within-task, rankings between different

methods were indistinguishable from random orderings (i.e. ρ=0). Between tasks, rankings on Sem. Seg. were

anti-correlated with rank on the 3D Keypts (ρ=-0.4). Both conclusions were strengthened after controlling for training

setups.

5.6 Conclusion and Limitations

This paper introduces a pipeline to create steerable datasets from comprehensive scans of the

environment. The resulting multi-task datasets can be large and diverse, and realistic enough that

models trained on the data perform well in the real world. To demonstrate this, we annotated an

example dataset and used it to train a few standard vision methods to state-of-the-art performance

on multiple computer vision tasks. We believe this is capability is useful on its own, especially

since it acts as a bridge between real-world 3D scans, simulators, and static vision datasets.

Our main intention for this tool is to better study properties of vision datasets, and their

interaction with models and tasks. Crucially, the fact that the pipeline can be used to train strong

models in real-world settings gives us hope that findings stemming from this pipeline here might

hold true more generally. In particular, we believe that this ªsteerable datasetº method could bear

fruit in fundamental lines of research such as how data sampling strategies and choice of cue/sensor

impact representations and model reliability.

To close, we discuss some of important limitations of this pipeline and possibilities for future

lines of work.

1. Studying steerability. The Omnidata pipeline provides a method to create steerable datasets,

but we did not present any analysis of the effects of tuning the different steering ‘knobs’. I.e.

our starter dataset used a fixed choice of generation settings and we did no tuning on that initial

choice. Clearly, such choices do have important effects on the dataset (e.g. see our online demo)

and on the resulting models [211, 210, 17, 224]). We believe rich insights lie in this direction,

which is why we created this pipeline. This paper only provides a few sporadic experiments to

illustrate the general idea, it does not represent a systematic study.

https://omnidata.vision/designer

CHAPTER 5. SCALING DATASETS TO TRAIN ROBUST REPRESENTATIONS 64

2. Limited capture information. The 3D scans used in this paper come from the output of standard

structure-from-motion methods that stitch together many overlapping images from RGB and

depth sensors. These scans are represented as meshes (with textures or aligned RGB images),

but this representation leaves out important information about the scene. For example, the

materials lack reflectance models (e.g. BRDF) and there is no information about scene lighting.

Moreover, scans usually have limited reconstruction accuracy (e.g. commonly up to 2cm error

in Taskonomy), which affects both the texture quality and the quality of the generated labels.

Better sensing technology (e.g. light-field cameras, higher-resolution depth sensors), as well as

algorithmic improvements (e.g. NeRF, below) can add more dimensions of control and reduce

the gap between the resampled and real cues/images.

3. How to represent the ’complete capture’. The Omnidata pipeline uses 3D meshes to represent

the scene, and samples images using that representation. Other representations, such as using

light-field cameras and NeRF [143] could be used as implicit representations of the scene and

similarly used for resampling the scene. The surprising effectiveness of NeRF makes this direction

quite compelling.

4. Limited number of mid-level cues. The initial release of the Omnidata annotator provides

21 mid-level cues. Like most tasks in computer vision, the current mid-level cues are based

more on human intuition than on demonstrably predictive theories of vision. As computer vision

and vision science make new advancements, these can be integrated to the sampling pipeline

as long as the required information is present in the capture information (e.g. new cues and

augmentations).

65

Chapter 6

Conclusion

This thesis has made several original contributions towards the development and application of

pretrained visual representations for Embodied AI. By addressing the challenges of learning

efficiency, skill generalization, and robustness to new settings, the work presented in Chapters 2,

3, and 4 offers valuable insights into the types of pretraining objectives that are most effective in

this domain. Additionally, the method for leveraging 3D data from the internet and prior robot

experiences presented in Chapter 5 contributes to the creation of large, diverse datasets necessary

for producing accurate and robust models.

Despite these advances, there are important challenges that must still be addressed before

robots are capable of autonomous behavior in home robotics settings. These challenges include the

development of multi-view representations, multisensory representations, action trajectory datasets,

and long-horizon planning.

Multi-view representations: Our world is inherently 3D (or even 4D), yet the majority of

representations in this thesis are "monocular" and process each image independently. The training

objectives are primarily 2D (image space) or 2.5D (depth images). How can we represent multiple

views of the same scene, either captured simultaneously by multiple cameras or over time by the

same camera? In the coming years, significant progress is anticipated as both algorithms and

datasets improve.

Chapter 5 introduces a large-scale multi-view dataset suitable for training these enhanced

architectures. Given the ongoing development of wearable AR/VR headsets, it is expected that

many more extensive multi-view datasets will emerge. On the algorithmic front, two promising

developments include the transformer [214, 54] architecture, which flexibly parses inputs into

variable-length sets of tokens for inference, and Neural Radiance Fields (NeRF)[143], which

combines scene-specific memory (e.g., spherical harmonic position embeddings or a multiresolution

hash table[151]) with a decoder shareable across scenes [232]. These innovations offer a powerful

way to combine generalizable multi-view learning with short-term 3D memory.

Multisensory representations: The representations in this paper are predominantly visual.

However, animals possess multiple senses, and many lack vision entirely. Some species, like

cave-dwelling Mexican tetras, lose their vision within a few generations. Yet, I’m not aware of any

animals that have lost their sense of touch. Developing touch representations and integrating multiple

CHAPTER 6. CONCLUSION 66

senses (e.g., touch, vision, and proprioception) is crucial, as animals often use multiple senses to

perform behaviors [148]. Recent self-supervised techniques and transformer architectures provide

an elegant way to integrate multiple modalities and views [168, 167]. However, comprehensive

multimodal datasets are still needed.

Action trajectory datasets: Sensing is always in service of downstream decisions, but current

representation learning seldom considers downstream goals or actions. How can we learn represen-

tations better suited for decision-making and action execution? Large "trajectory" datasets of agents

acting in environments are likely necessary for successful large-scale pretraining in Embodied AI.

Few such datasets exist, but they typically fall into three categories:

1. Collecting numerous on-robot demonstrations (e.g., [27])Ðoften expert trajectories from

human teleoperation.

2. Gathering extensive data of humans in real-world situations (e.g., Ego4D [74]) and mapping

those actions to robot actions in a common space.

3. Simulating vast amounts of data using a world model and computing "expert" trajectories

optimal for that model.

A robust solution likely requires all three. In particular, human trajectories seem a natural and

easy way to demonstrate desired robot behaviors.

However, one big lesson from the successes of deep learning has been in the importance

of diverse and broad pretraining data. Though there have been several high-profile attempts to

create such large-scale trajectory datasets, from multiple groups±all existing trajectory datasets

are exceedingly narrow. They use either a handful of objects (on the order of 5-100), in a handful

of settings (usually 2-10 buildings), and the robot placement and work surface is usually flat and

tightly controlled. As a result, most pretraining in robotics fails to generalize to new scenes.

So the near future, I expect that we will see great progress from combining large-scale scene

datasets with large-scale object datasets and generating expert trajectories in simulation. Then using

that as pretraining (either with behavior cloning or subsequent fine-tuning). This could also be

combined with human-guided expert trajectories in simulation, which might also be easier to collect

than similar data from the real-world.

Long-horizon planning: This thesis focuses more on low-level "atomic" skills than long-term

planning. Low-level control is often challenging, while long-term planning can be surprisingly

straightforward (Moravec’s paradox). Remarkable progress in large language models (LLMs) [28]

and their application to robot planning [3] makes me optimistic about the ability for robots to do

medium- and long-term planning in the near future. And since most current work in this area

does not leverage pretrained sensory representations, improving sensory representations and low-

level skills could provide significant advancements in the ability to successfully execute long-term

behavior.

67

Bibliography

[1] E. H. Adelson and A. P. Pentland. ªThe perception of shading and reflectanceº. In: Percep-

tion as Baysian Inference (1996), pp. 409±423.

[2] Pulkit Agrawal et al. ªLearning to Poke by Poking: Experiential Learning of Intuitive

Physicsº. In: CoRR abs/1606.07419 (2016). arXiv: 1606.07419. URL: http://arxiv.

org/abs/1606.07419.

[3] Michael Ahn et al. ªDo as i can, not as i say: Grounding language in robotic affordancesº.

In: arXiv preprint arXiv:2204.01691 (2022).

[4] Ilge Akkaya et al. ªSolving rubik’s cube with a robot handº. In: arXiv preprint arXiv:1910.07113

(2019).

[5] Dario Amodei et al. ªConcrete Problems in AI Safetyº. In: CoRR abs/1606.06565 (2016).

arXiv: 1606.06565. URL: http://arxiv.org/abs/1606.06565.

[6] Peter Anderson et al. ªOn Evaluation of Embodied Navigation Agentsº. In: CoRR abs/1807.06757

(2018). arXiv: 1807.06757. URL: http://arxiv.org/abs/1807.06757.

[7] Peter Anderson et al. ªOn evaluation of embodied navigation agentsº. In: arXiv preprint

arXiv:1807.06757 (2018).

[8] Marcin Andrychowicz et al. ªHindsight Experience Replayº. In: CoRR abs/1707.01495

(2017). arXiv: 1707.01495. URL: http://arxiv.org/abs/1707.01495.

[9] OpenAI: Marcin Andrychowicz et al. ªLearning dexterous in-hand manipulationº. In: The

International Journal of Robotics Research 39.1 (2020), pp. 3±20.

[10] Brenna D. Argall et al. ªA survey of robot learning from demonstrationº. In: Robotics

and Autonomous Systems 57.5 (2009), pp. 469±483. ISSN: 0921-8890. DOI: https:

//doi.org/10.1016/j.robot.2008.10.024. URL: https://www.

sciencedirect.com/science/article/pii/S0921889008001772.

[11] Iro Armeni et al. ª3D Scene Graph: A Structure for Unified Semantics, 3D Space, and

Cameraº. In: Proceedings of the IEEE International Conference on Computer Vision. 2019.

[12] Iro Armeni et al. ª3d semantic parsing of large-scale indoor spacesº. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 1534±1543.

[13] Iro Armeni et al. ªJoint 2D-3D-Semantic Data for Indoor Scene Understandingº. In: arXiv

preprint arXiv:1702.01105 (2017).

https://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1606.07419
https://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1807.06757
http://arxiv.org/abs/1807.06757
https://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
https://doi.org/https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/https://doi.org/10.1016/j.robot.2008.10.024
https://www.sciencedirect.com/science/article/pii/S0921889008001772
https://www.sciencedirect.com/science/article/pii/S0921889008001772

BIBLIOGRAPHY 68

[14] Iro Armeni et al. ªJoint 2D-3D-Semantic Data for Indoor Scene Understandingº. In: CoRR

abs/1702.01105 (2017). arXiv: 1702.01105. URL: http://arxiv.org/abs/

1702.01105.

[15] Mikel Artetxe and Holger Schwenk. ªMassively Multilingual Sentence Embeddings for

Zero-Shot Cross-Lingual Transfer and Beyondº. In: CoRR abs/1812.10464 (2018). arXiv:

1812.10464. URL: http://arxiv.org/abs/1812.10464.

[16] Aharon Azulay and Yair Weiss. ªWhy do deep convolutional networks generalize so poorly

to small image transformations?º In: arXiv preprint arXiv:1805.12177 (2018).

[17] Aharon Azulay and Yair Weiss. ªWhy do deep convolutional networks generalize so poorly

to small image transformations?º In: CoRR abs/1805.12177 (2018). arXiv: 1805.12177.

URL: http://arxiv.org/abs/1805.12177.

[18] Somil Bansal et al. ªCombining Optimal Control and Learning for Visual Navigation

in Novel Environmentsº. In: CoRR abs/1903.02531 (2019). arXiv: 1903.02531. URL:

http://arxiv.org/abs/1903.02531.

[19] Andrei Barbu et al. ªObjectnet: A large-scale bias-controlled dataset for pushing the limits

of object recognition modelsº. In: (2019).

[20] J. T. Barron and J. Malik. ªShape, Illumination, and Reflectance from Shadingº. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 37.8 (Aug. 2015), pp. 1670±

1687. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2014.2377712.

[21] Jonathan Baxter. ªA model of inductive bias learningº. In: Journal of artificial intelligence

research 12 (2000), pp. 149±198.

[22] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. ªSurf: Speeded up robust featuresº. In:

European conference on computer vision. Springer. 2006, pp. 404±417.

[23] J. C. Bazin et al. ªGlobally optimal line clustering and vanishing point estimation in

Manhattan worldº. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition.

June 2012, pp. 638±645. DOI: 10.1109/CVPR.2012.6247731.

[24] Yoshua Bengio, Aaron Courville, and Pascal Vincent. ªRepresentation learning: A review

and new perspectivesº. In: IEEE transactions on pattern analysis and machine intelligence

35.8 (2013), pp. 1798±1828.

[25] Yoav Benjamini and Yosef Hochberg. ªControlling the False Discovery Rate: A Practical

and Powerful Approach to Multiple Testingº. In: Journal of the Royal Statistical Society.

Series B (Methodological) 57.1 (1995), pp. 289±300. ISSN: 00359246. URL: http://

www.jstor.org/stable/2346101.

[26] Richard W. Brislin. ªBack-Translation for Cross-Cultural Researchº. In: Journal of Cross-

Cultural Psychology 1.3 (1970), pp. 185±216. DOI: 10.1177/135910457000100301.

eprint: https://doi.org/10.1177/135910457000100301. URL: https:

//doi.org/10.1177/135910457000100301.

https://arxiv.org/abs/1702.01105
http://arxiv.org/abs/1702.01105
http://arxiv.org/abs/1702.01105
https://arxiv.org/abs/1812.10464
http://arxiv.org/abs/1812.10464
https://arxiv.org/abs/1805.12177
http://arxiv.org/abs/1805.12177
https://arxiv.org/abs/1903.02531
http://arxiv.org/abs/1903.02531
https://doi.org/10.1109/TPAMI.2014.2377712
https://doi.org/10.1109/CVPR.2012.6247731
http://www.jstor.org/stable/2346101
http://www.jstor.org/stable/2346101
https://doi.org/10.1177/135910457000100301
https://doi.org/10.1177/135910457000100301
https://doi.org/10.1177/135910457000100301
https://doi.org/10.1177/135910457000100301

BIBLIOGRAPHY 69

[27] Anthony Brohan et al. ªRt-1: Robotics transformer for real-world control at scaleº. In: arXiv

preprint arXiv:2212.06817 (2022).

[28] Tom Brown et al. ªLanguage Models are Few-Shot Learnersº. In: Advances in Neural Infor-

mation Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020,

pp. 1877±1901. URL: https://proceedings.neurips.cc/paper_files/

paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[29] Berk Calli et al. ªBenchmarking in manipulation research: The YCB object and model set

and benchmarking protocolsº. In: arXiv preprint arXiv:1502.03143 (2015).

[30] John Canny. ªA computational approach to edge detectionº. In: IEEE Transactions on

pattern analysis and machine intelligence 6 (1986), pp. 679±698.

[31] Zhe Cao et al. ªOpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity

Fieldsº. In: arXiv preprint arXiv:1812.08008 (2018).

[32] Marcela Carvalho et al. ªDeep Depth from Defocus: how can defocus blur improve 3D

estimation using dense neural networks?º In: Proceedings of the European Conference on

Computer Vision (ECCV) Workshops. 2018, pp. 0±0.

[33] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. ªAnomaly detection

using one-class neural networksº. In: arXiv preprint arXiv:1802.06360 (2018).

[34] Angel Chang et al. ªMatterport3D: Learning from RGB-D Data in Indoor Environmentsº.

In: International Conference on 3D Vision (3DV) (2017).

[35] Liang-Chieh Chen et al. ªDeeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfsº. In: IEEE transactions on pattern analysis

and machine intelligence 40.4 (2017), pp. 834±848.

[36] Ting Chen et al. A Simple Framework for Contrastive Learning of Visual Representations.

2020. arXiv: 2002.05709 [cs.LG].

[37] Weifeng Chen, Donglai Xiang, and Jia Deng. ªSurface Normals in the Wildº. In: CoRR

abs/1704.02956 (2017). arXiv: 1704.02956. URL: http://arxiv.org/abs/

1704.02956.

[38] Weifeng Chen et al. OASIS: A Large-Scale Dataset for Single Image 3D in the Wild. 2020.

arXiv: 2007.13215 [cs.CV].

[39] Weifeng Chen et al. ªSingle-Image Depth Perception in the Wildº. In: CoRR abs/1604.03901

(2016). arXiv: 1604.03901. URL: http://arxiv.org/abs/1604.03901.

[40] Bryan Chen* et al. ªRobust Policies via Mid-Level Visual Representations: An Experimental

Study in Manipulation and Navigationº. In: 4th Annual Conference on Robot Learning,

CoRL 2020. Proceedings of Machine Learning Research. PMLR, 2020. URL: https:

//arxiv.org/abs/2011.06698.

[41] Yunjey Choi et al. ªStargan: Unified generative adversarial networks for multi-domain

image-to-image translationº. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018, pp. 8789±8797.

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/1704.02956
http://arxiv.org/abs/1704.02956
http://arxiv.org/abs/1704.02956
https://arxiv.org/abs/2007.13215
https://arxiv.org/abs/1604.03901
http://arxiv.org/abs/1604.03901
https://arxiv.org/abs/2011.06698
https://arxiv.org/abs/2011.06698

BIBLIOGRAPHY 70

[42] Paolo Cignoni et al. ªMeshlab: an open-source mesh processing tool.º In: Eurographics

Italian chapter conference. Vol. 2008. Salerno, Italy. 2008, pp. 129±136.

[43] Felipe Codevilla et al. ªOn Offline Evaluation of Vision-based Driving Modelsº. In: CoRR

abs/1809.04843 (2018). arXiv: 1809.04843. URL: http://arxiv.org/abs/

1809.04843.

[44] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foun-

dation. Stichting Blender Foundation, Amsterdam, 2018. URL: http://www.blender.

org.

[45] BO Community. ªBlender±a 3D modelling and rendering package.º In: (2018).

[46] Marius Cordts et al. ªThe cityscapes dataset for semantic urban scene understandingº. In:

Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,

pp. 3213±3223.

[47] Luca Cosmo et al. ªConsistent partial matching of shape collections via sparse modelingº.

In: Computer Graphics Forum. Vol. 36. 1. Wiley Online Library. 2017, pp. 209±221.

[48] James M. Coughlan and Alan L Yuille. ªThe Manhattan World Assumption: Regulari-

ties in Scene Statistics which Enable Bayesian Inferenceº. In: Advances in Neural Infor-

mation Processing Systems 13. Ed. by T. K. Leen, T. G. Dietterich, and V. Tresp. MIT

Press, 2001, pp. 845±851. URL: http://papers.nips.cc/paper/1804-the-

manhattan-world-assumption-regularities-in-scene-statistics-

which-enable-bayesian-inference.pdf.

[49] J. Deng et al. ªImageNet: A Large-Scale Hierarchical Image Databaseº. In: CVPR09. 2009.

[50] Jia Deng et al. ªImagenet: A large-scale hierarchical image databaseº. In: 2009 IEEE

conference on computer vision and pattern recognition. Ieee. 2009, pp. 248±255.

[51] Maximilian Denninger et al. ªBlenderProcº. In: arXiv preprint arXiv:1911.01911 (2019).

[52] Carl Doersch, Abhinav Gupta, and Alexei A Efros. ªUnsupervised visual representation

learning by context predictionº. In: Proceedings of the IEEE International Conference on

Computer Vision. 2015, pp. 1422±1430.

[53] Alexey Dosovitskiy and Vladlen Koltun. ªLearning to Act by Predicting the Futureº. In:

CoRR abs/1611.01779 (2016). arXiv: 1611.01779. URL: http://arxiv.org/abs/

1611.01779.

[54] Alexey Dosovitskiy et al. ªAn Image is Worth 16x16 Words: Transformers for Image

Recognition at Scaleº. In: ICLR (2021).

[55] Alexey Dosovitskiy et al. ªCARLA: An Open Urban Driving Simulatorº. In: Proceedings

of the 1st Annual Conference on Robot Learning. 2017, pp. 1±16.

[56] Ralf Dragon and Luc Van Gool. ªGround plane estimation using a hidden markov modelº.

In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 2014,

pp. 4026±4033.

https://arxiv.org/abs/1809.04843
http://arxiv.org/abs/1809.04843
http://arxiv.org/abs/1809.04843
http://www.blender.org
http://www.blender.org
http://papers.nips.cc/paper/1804-the-manhattan-world-assumption-regularities-in-scene-statistics-which-enable-bayesian-inference.pdf
http://papers.nips.cc/paper/1804-the-manhattan-world-assumption-regularities-in-scene-statistics-which-enable-bayesian-inference.pdf
http://papers.nips.cc/paper/1804-the-manhattan-world-assumption-regularities-in-scene-statistics-which-enable-bayesian-inference.pdf
https://arxiv.org/abs/1611.01779
http://arxiv.org/abs/1611.01779
http://arxiv.org/abs/1611.01779

BIBLIOGRAPHY 71

[57] Debidatta Dwibedi et al. ªTemporal Cycle-Consistency Learningº. In: CoRR abs/1904.07846

(2019). arXiv: 1904.07846. URL: http://arxiv.org/abs/1904.07846.

[58] Sergey Edunov et al. ªUnderstanding Back-Translation at Scaleº. In: CoRR abs/1808.09381

(2018). arXiv: 1808.09381. URL: http://arxiv.org/abs/1808.09381.

[59] Ainaz Eftekhar et al. ªOmnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vi-

sion Datasets From 3D Scansº. In: Proceedings of the IEEE/CVF International Conference

on Computer Vision. 2021, pp. 10786±10796.

[60] A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing. 2nd. Springer

Publishing Company, Incorporated, 2015. ISBN: 3662448734.

[61] David Eigen, Christian Puhrsch, and Rob Fergus. ªDepth Map Prediction from a Single

Image using a Multi-Scale Deep Networkº. In: CoRR abs/1406.2283 (2014). arXiv: 1406.

2283. URL: http://arxiv.org/abs/1406.2283.

[62] Chelsea Finn et al. ªDeep spatial autoencoders for visuomotor learningº. In: Robotics and

Automation (ICRA), 2016 IEEE International Conference on. IEEE. 2016, pp. 512±519.

[63] Peter R. Florence, Lucas Manuelli, and Russ Tedrake. ªDense Object Nets: Learning

Dense Visual Object Descriptors By and For Robotic Manipulationº. In: arXiv preprint

arXiv:1806.08756 (2018).

[64] Michel. Foucault and Alan Sheridan. Discipline and punish : the birth of the prison / Michel

Foucault ; translated from the French by Alan Sheridan. English. Penguin Harmondsworth,

1979, [xi], 333 p., 8 p. of plates : ISBN: 0140551972.

[65] Scott Fujimoto, Herke van Hoof, and David Meger. ªAddressing Function Approximation

Error in Actor-Critic Methodsº. In: CoRR abs/1802.09477 (2018). arXiv: 1802.09477.

URL: http://arxiv.org/abs/1802.09477.

[66] Ravi Garg et al. ªUnsupervised cnn for single view depth estimation: Geometry to the

rescueº. In: European Conference on Computer Vision. Springer. 2016, pp. 740±756.

[67] Andreas Geiger et al. ªVision meets Robotics: The KITTI Datasetº. In: International Journal

of Robotics Research (IJRR) (2013).

[68] S. Geman, E. Bienenstock, and R. Doursat. ªNeural Networks and the Bias/Variance

Dilemmaº. In: Neural Computation 4.1 (Jan. 1992), pp. 1±58. ISSN: 0899-7667. DOI:

10.1162/neco.1992.4.1.1.

[69] Georgios Georgakis et al. ªEnd-to-end learning of keypoint detector and descriptor for pose

invariant 3D matchingº. In: CoRR abs/1802.07869 (2018). arXiv: 1802.07869. URL:

http://arxiv.org/abs/1802.07869.

[70] J. Gibson. ªThe Senses Considered As Perceptual Systemsº. In: 1966.

https://arxiv.org/abs/1904.07846
http://arxiv.org/abs/1904.07846
https://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1808.09381
https://arxiv.org/abs/1406.2283
https://arxiv.org/abs/1406.2283
http://arxiv.org/abs/1406.2283
https://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://doi.org/10.1162/neco.1992.4.1.1
https://arxiv.org/abs/1802.07869
http://arxiv.org/abs/1802.07869

BIBLIOGRAPHY 72

[71] R. Girshick et al. ªRich Feature Hierarchies for Accurate Object Detection and Semantic

Segmentationº. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, June 2014, pp. 580±587. DOI:

10.1109/CVPR.2014.81. URL: https://doi.ieeecomputersociety.

org/10.1109/CVPR.2014.81.

[72] Ross B. Girshick. ªFast R-CNNº. In: CoRR abs/1504.08083 (2015). arXiv: 1504.08083.

URL: http://arxiv.org/abs/1504.08083.

[73] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. ªUnsupervised monocular

depth estimation with left-right consistencyº. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2017, pp. 270±279.

[74] Kristen Grauman et al. ªEgo4D: Around the World in 3,000 Hours of Egocentric Videoº.

In: IEEE/CVF Computer Vision and Pattern Recognition (CVPR). 2022.

[75] Jean-Bastien Grill et al. Bootstrap Your Own Latent: A New Approach to Self-Supervised

Learning. 2020. arXiv: 2006.07733 [cs.LG].

[76] V. Guillemin and A. Pollack. Differential Topology. Mathematics Series. Prentice-Hall,

1974. ISBN: 9780132126052. URL: https://books.google.com/books?id=

CmbwAAAAMAAJ.

[77] Chuan Guo et al. On Calibration of Modern Neural Networks. 2017. arXiv: 1706.04599

[cs.LG].

[78] Abhinav Gupta et al. ªRobot learning in homes: Improving generalization and reducing

dataset biasº. In: Advances in Neural Information Processing Systems. 2018, pp. 9094±9104.

[79] Shir Gur and Lior Wolf. ªSingle image depth estimation trained via depth from defocus

cuesº. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2019, pp. 7683±7692.

[80] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2016. URL: http://www.

gurobi.com.

[81] Nicklas Hansen et al. ªSelf-Supervised Policy Adaptation during Deploymentº. In: arXiv

preprint arXiv:2007.04309 (2020).

[82] Kaiming He et al. ªDeep Residual Learning for Image Recognitionº. In: CoRR abs/1512.03385

(2015). arXiv: 1512.03385. URL: http://arxiv.org/abs/1512.03385.

[83] Kaiming He et al. Momentum Contrast for Unsupervised Visual Representation Learning.

2019. arXiv: 1911.05722 [cs.CV].

[84] Olivier J. Hénaff et al. ªData-Efficient Image Recognition with Contrastive Predictive

Codingº. In: CoRR abs/1905.09272 (2019). arXiv: 1905.09272. URL: http://arxiv.

org/abs/1905.09272.

[85] Dan Hendrycks and Thomas Dietterich. ªBenchmarking neural network robustness to

common corruptions and perturbationsº. In: arXiv preprint arXiv:1903.12261 (2019).

https://doi.org/10.1109/CVPR.2014.81
https://doi.ieeecomputersociety.org/10.1109/CVPR.2014.81
https://doi.ieeecomputersociety.org/10.1109/CVPR.2014.81
https://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
https://arxiv.org/abs/2006.07733
https://books.google.com/books?id=CmbwAAAAMAAJ
https://books.google.com/books?id=CmbwAAAAMAAJ
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1706.04599
http://www.gurobi.com
http://www.gurobi.com
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1905.09272
http://arxiv.org/abs/1905.09272
http://arxiv.org/abs/1905.09272

BIBLIOGRAPHY 73

[86] Aaron Hertzmann et al. ªImage analogiesº. In: Proceedings of the 28th annual conference

on Computer graphics and interactive techniques. ACM. 2001, pp. 327±340.

[87] Steven Hickson et al. ªFloors are Flat: Leveraging Semantics for Real-Time Surface Normal

Predictionº. In: Proceedings of the IEEE International Conference on Computer Vision

Workshops. 2019, pp. 0±0.

[88] Irina Higgins et al. ªDARLA: Improving Zero-Shot Transfer in Reinforcement Learningº.

In: arXiv e-prints, arXiv:1707.08475 (July 2017), arXiv:1707.08475. arXiv: 1707.08475

[stat.ML].

[89] G. E. Hinton and R. R. Salakhutdinov. ªReducing the Dimensionality of Data with Neural

Networksº. In: Science 313.5786 (2006), pp. 504±507. ISSN: 0036-8075. DOI: 10.1126/

science.1127647. eprint: http://science.sciencemag.org/content/

313/5786/504.full.pdf. URL: http://science.sciencemag.org/

content/313/5786/504.

[90] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. ªDistilling the knowledge in a neural

networkº. In: arXiv preprint arXiv:1503.02531 (2015).

[91] Judy Hoffman et al. ªCyCADA: Cycle-Consistent Adversarial Domain Adaptationº. In:

CoRR abs/1711.03213 (2017). arXiv: 1711.03213. URL: http://arxiv.org/abs/

1711.03213.

[92] Qi-Xing Huang and Leonidas Guibas. ªConsistent Shape Maps via Semidefinite Program-

mingº. In: Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on

Geometry Processing. SGP ’13. Genova, Italy: Eurographics Association, 2013, pp. 177±

186. DOI: 10.1111/cgf.12184. URL: http://dx.doi.org/10.1111/cgf.

12184.

[93] Xinyu Huang et al. ªThe ApolloScape Dataset for Autonomous Drivingº. In: CoRR

abs/1803.06184 (2018). arXiv: 1803.06184. URL: http://arxiv.org/abs/

1803.06184.

[94] Junhwa Hur and Stefan Roth. ªMirrorFlow: Exploiting Symmetries in Joint Optical Flow

and Occlusion Estimationº. In: CoRR abs/1708.05355 (2017). arXiv: 1708.05355. URL:

http://arxiv.org/abs/1708.05355.

[95] Ignition App. URL: https://app.ignitionrobotics.org/GoogleResearch/

fuel/collections/Google%20Scanned%20Objects.

[96] Phillip Isola et al. ªImage-to-Image Translation with Conditional Adversarial Networksº.

In: CoRR abs/1611.07004 (2016). arXiv: 1611.07004. URL: http://arxiv.org/

abs/1611.07004.

[97] Stephen James, Marc Freese, and Andrew J. Davison. ªPyRep: Bringing V-REP to Deep

Robot Learningº. In: CoRR abs/1906.11176 (2019). arXiv: 1906.11176. URL: http:

//arxiv.org/abs/1906.11176.

https://arxiv.org/abs/1707.08475
https://arxiv.org/abs/1707.08475
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
http://science.sciencemag.org/content/313/5786/504.full.pdf
http://science.sciencemag.org/content/313/5786/504.full.pdf
http://science.sciencemag.org/content/313/5786/504
http://science.sciencemag.org/content/313/5786/504
https://arxiv.org/abs/1711.03213
http://arxiv.org/abs/1711.03213
http://arxiv.org/abs/1711.03213
https://doi.org/10.1111/cgf.12184
http://dx.doi.org/10.1111/cgf.12184
http://dx.doi.org/10.1111/cgf.12184
https://arxiv.org/abs/1803.06184
http://arxiv.org/abs/1803.06184
http://arxiv.org/abs/1803.06184
https://arxiv.org/abs/1708.05355
http://arxiv.org/abs/1708.05355
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects
https://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1906.11176
http://arxiv.org/abs/1906.11176
http://arxiv.org/abs/1906.11176

BIBLIOGRAPHY 74

[98] Stephen James et al. ªRLBench: The Robot Learning Benchmark & Learning Environmentº.

In: (Sept. 26, 2019). URL: https://arxiv.org/abs/1909.12271v1 (visited on

07/21/2020).

[99] Stephen James et al. ªSim-to-real via sim-to-sim: Data-efficient robotic grasping via

randomized-to-canonical adaptation networksº. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2019, pp. 12627±12637.

[100] Redhwan Jamiruddin et al. ªRGB-Depth SLAM Reviewº. In: CoRR abs/1805.07696 (2018).

arXiv: 1805.07696. URL: http://arxiv.org/abs/1805.07696.

[101] Zequn Jie et al. ªLeft-Right Comparative Recurrent Model for Stereo Matchingº. In: CoRR

abs/1804.00796 (2018). arXiv: 1804.00796. URL: http://arxiv.org/abs/

1804.00796.

[102] Jason Jo and Yoshua Bengio. ªMeasuring the tendency of CNNs to learn surface statistical

regularitiesº. In: arXiv preprint arXiv:1711.11561 (2017).

[103] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. ªPerceptual Losses for Real-Time Style

Transfer and Super-Resolutionº. In: CoRR abs/1603.08155 (2016). arXiv: 1603.08155.

URL: http://arxiv.org/abs/1603.08155.

[104] Justin Johnson et al. ªClevr: A diagnostic dataset for compositional language and elementary

visual reasoningº. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017, pp. 2901±2910.

[105] Michael I. Jordan and David E. Rumelhart. ªForward Models: Supervised Learning with a

Distal Teacherº. In: Cognitive Science 16 (1992), pp. 307±354.

[106] John Jumper et al. ªHighly accurate protein structure prediction with AlphaFoldº. In:

Nature 596.7873 (2021), pp. 583±589. ISSN: 1476-4687. DOI: 10.1038/s41586-021-

03819-2. URL: https://doi.org/10.1038/s41586-021-03819-2.

[107] Michal Kempka et al. ªViZDoom: A Doom-based AI Research Platform for Visual Rein-

forcement Learningº. In: arXiv preprint arXiv:1605.02097 (2016).

[108] Diederik P Kingma and Max Welling. ªAuto-encoding variational bayesº. In: arXiv preprint

arXiv:1312.6114 (2013).

[109] Diederik P. Kingma and Jimmy Ba. ªAdam: A Method for Stochastic Optimizationº. In:

CoRR abs/1412.6980 (2014). arXiv: 1412.6980. URL: http://arxiv.org/abs/

1412.6980.

[110] Alexander Kirillov et al. ªPanoptic Feature Pyramid Networksº. In: 2019 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 6392±6401.

[111] Alexander Kirillov et al. ªPanoptic Segmentationº. In: CoRR abs/1801.00868 (2018). arXiv:

1801.00868. URL: http://arxiv.org/abs/1801.00868.

[112] Arno Knapitsch et al. ªTanks and Temples: Benchmarking Large-Scale Scene Reconstruc-

tionº. In: ACM Transactions on Graphics 36.4 (2017).

https://arxiv.org/abs/1909.12271v1
https://arxiv.org/abs/1805.07696
http://arxiv.org/abs/1805.07696
https://arxiv.org/abs/1804.00796
http://arxiv.org/abs/1804.00796
http://arxiv.org/abs/1804.00796
https://arxiv.org/abs/1603.08155
http://arxiv.org/abs/1603.08155
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1801.00868
http://arxiv.org/abs/1801.00868

BIBLIOGRAPHY 75

[113] Arno Knapitsch et al. ªTanks and temples: Benchmarking large-scale scene reconstructionº.

In: ACM Transactions on Graphics (ToG) 36.4 (2017), pp. 1±13.

[114] Jan Knopp et al. ªHough Transform and 3D SURF for Robust Three Dimensional Clas-

sificationº. In: Computer Vision ± ECCV 2010: 11th European Conference on Computer

Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part VI. Ed. by

Kostas Daniilidis, Petros Maragos, and Nikos Paragios. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2010, pp. 589±602. ISBN: 978-3-642-15567-3. DOI: 10.1007/978-3-642-

15567-3_43. URL: https://doi.org/10.1007/978-3-642-15567-3_43.

[115] Mykel J. Kochenderfer et al. Decision Making Under Uncertainty: Theory and Application.

1st. The MIT Press, 2015. ISBN: 0262029251, 9780262029254.

[116] Iasonas Kokkinos. ªUberNet: Training a ’Universal’ Convolutional Neural Network for

Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memoryº. In:

CoRR abs/1609.02132 (2016). arXiv: 1609.02132. URL: http://arxiv.org/abs/

1609.02132.

[117] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Tech-

niques - Adaptive Computation and Machine Learning. The MIT Press, 2009. ISBN:

0262013193, 9780262013192.

[118] Hui Kong, J. Y. Audibert, and J. Ponce. ªVanishing point detection for road detectionº. In:

2009 IEEE Conference on Computer Vision and Pattern Recognition. June 2009, pp. 96±103.

DOI: 10.1109/CVPR.2009.5206787.

[119] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ªImageNet Classification with

Deep Convolutional Neural Networksº. In: Advances in Neural Information Processing Sys-

tems 25. Ed. by F. Pereira et al. 2012, pp. 1097±1105. URL: http://papers.nips.cc/

paper/4824-imagenet-classification-with-deep-convolutional-

neural-networks.pdf.

[120] Uday Kusupati et al. ªNormal Assisted Stereo Depth Estimationº. In: arXiv preprint

arXiv:1911.10444 (2019).

[121] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. ªThe Omniglot chal-

lenge: a 3-year progress reportº. In: Current Opinion in Behavioral Sciences 29 (2019),

pp. 97±104.

[122] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. ªSimple and scalable

predictive uncertainty estimation using deep ensemblesº. In: Advances in Neural Informa-

tion Processing Systems. 2017, pp. 6402±6413.

[123] John Lambert et al. ªMSeg: a composite dataset for multi-domain semantic segmentationº.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

2020, pp. 2879±2888.

[124] Guillaume Lample and Alexis Conneau. ªCross-lingual Language Model Pretrainingº. In:

CoRR abs/1901.07291 (2019). arXiv: 1901.07291. URL: http://arxiv.org/abs/

1901.07291.

https://doi.org/10.1007/978-3-642-15567-3_43
https://doi.org/10.1007/978-3-642-15567-3_43
https://doi.org/10.1007/978-3-642-15567-3_43
https://arxiv.org/abs/1609.02132
http://arxiv.org/abs/1609.02132
http://arxiv.org/abs/1609.02132
https://doi.org/10.1109/CVPR.2009.5206787
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291

BIBLIOGRAPHY 76

[125] Nevena Lazic et al. ªData center cooling using model-predictive controlº. In: Advances in

Neural Information Processing Systems. 2018, pp. 3814±3823.

[126] Yann LeCun, Sumit Chopra, and Raia Hadsell. ªA tutorial on energy-based learningº. In:

(2006).

[127] Sergey Levine et al. ªEnd-to-End Training of Deep Visuomotor Policiesº. In: CoRR

abs/1504.00702 (2015). arXiv: 1504.00702. URL: http://arxiv.org/abs/

1504.00702.

[128] Sergey Levine et al. ªEnd-to-End Training of Deep Visuomotor Policiesº. In: CoRR

abs/1504.00702 (2015). arXiv: 1504.00702. URL: http://arxiv.org/abs/

1504.00702.

[129] Zhizhong Li and Derek Hoiem. ªLearning without Forgettingº. In: CoRR abs/1606.09282

(2016). arXiv: 1606.09282. URL: http://arxiv.org/abs/1606.09282.

[130] Tsung-Yi Lin et al. ªMicrosoft COCO: Common Objects in Contextº. In: CoRR abs/1405.0312

(2014). arXiv: 1405.0312. URL: http://arxiv.org/abs/1405.0312.

[131] Shikun Liu, Edward Johns, and Andrew J Davison. ªEnd-to-End Multi-task Learning

with Attentionº. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2019, pp. 1871±1880.

[132] Ying Liu et al. ªDeep reinforcement learning for dynamic treatment regimes on medical

registry dataº. In: 2017 IEEE International Conference on Healthcare Informatics (ICHI).

IEEE. 2017, pp. 380±385.

[133] Ziwei Liu et al. ªDeep Learning Face Attributes in the Wildº. In: Proceedings of Interna-

tional Conference on Computer Vision (ICCV). Dec. 2015.

[134] David G. Lowe. ªDistinctive Image Features from Scale-Invariant Keypointsº. In: Int. J.

Comput. Vision 60.2 (Nov. 2004), pp. 91±110. ISSN: 0920-5691. DOI: 10.1023/B:

VISI.0000029664.99615.94. URL: https://doi.org/10.1023/B:VISI.

0000029664.99615.94.

[135] Aravindh Mahendran et al. ªResearchDoom and CocoDoom: Learning Computer Vision

with Gamesº. In: CoRR abs/1610.02431 (2016). arXiv: 1610.02431. URL: http:

//arxiv.org/abs/1610.02431.

[136] Davide Maltoni and Vincenzo Lomonaco. ªContinuous Learning in Single-Incremental-

Task Scenariosº. In: CoRR abs/1806.08568 (2018). arXiv: 1806.08568. URL: http:

//arxiv.org/abs/1806.08568.

[137] Manolis Savva* et al. ªHabitat: A Platform for Embodied AI Researchº. In: Proceedings of

the IEEE/CVF International Conference on Computer Vision (ICCV). 2019.

[138] Lucas Manuelli et al. Keypoints into the Future: Self-Supervised Correspondence in Model-

Based Reinforcement Learning. 2020. arXiv: 2009.05085 [cs.RO].

https://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1606.09282
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://arxiv.org/abs/1610.02431
http://arxiv.org/abs/1610.02431
http://arxiv.org/abs/1610.02431
https://arxiv.org/abs/1806.08568
http://arxiv.org/abs/1806.08568
http://arxiv.org/abs/1806.08568
https://arxiv.org/abs/2009.05085

BIBLIOGRAPHY 77

[139] Lucas Manuelli et al. ªkPAM: KeyPoint Affordances for Category-Level Robotic Manipula-

tionº. In: CoRR abs/1903.06684 (2019). arXiv: 1903.06684. URL: http://arxiv.

org/abs/1903.06684.

[140] Loic Matthey et al. ªbeta-VAE: Learning Basic Visual Concepts with a Constrained Varia-

tional Frameworkº. In: ICLR 2017. 2017.

[141] A. Mian, M. Bennamoun, and R. Owens. ªOn the Repeatability and Quality of Keypoints

for Local Feature-based 3D Object Retrieval from Cluttered Scenesº. In: International

Journal of Computer Vision 89.2 (Sept. 2010), pp. 348±361. ISSN: 1573-1405. DOI: 10.

1007/s11263-009-0296-z. URL: https://doi.org/10.1007/s11263-

009-0296-z.

[142] O. Miksik. ªRapid vanishing point estimation for general road detectionº. In: 2012 IEEE

International Conference on Robotics and Automation. May 2012, pp. 4844±4849. DOI:

10.1109/ICRA.2012.6225206.

[143] Ben Mildenhall et al. ªNerf: Representing scenes as neural radiance fields for view synthe-

sisº. In: European Conference on Computer Vision. Springer. 2020, pp. 405±421.

[144] Mehdi Mirza and Simon Osindero. ªConditional generative adversarial netsº. In: arXiv

preprint arXiv:1411.1784 (2014).

[145] Ishan Misra et al. ªCross-stitch networks for multi-task learningº. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 3994±4003.

[146] Volodymyr Mnih et al. ªHuman-level control through deep reinforcement learningº. In:

Nature 518.7540 (Feb. 2015), pp. 529±533. URL: http://dx.doi.org/10.1038/

nature14236.

[147] Volodymyr Mnih et al. ªPlaying Atari with Deep Reinforcement Learningº. In: CoRR

abs/1312.5602 (2013). arXiv: 1312.5602. URL: http://arxiv.org/abs/1312.

5602.

[148] Henrik Mouritsen. ªLong-distance navigation and magnetoreception in migratory animalsº.

In: Nature 558.7708 (2018), pp. 50±59. ISSN: 1476-4687. DOI: 10.1038/s41586-018-

0176-1. URL: https://doi.org/10.1038/s41586-018-0176-1.

[149] Arsalan Mousavian et al. ªVisual Representations for Semantic Target Driven Navigationº.

In: CoRR abs/1805.06066 (2018). arXiv: 1805.06066. URL: http://arxiv.org/

abs/1805.06066.

[150] Matthias Müller et al. ªDriving Policy Transfer via Modularity and Abstractionº. In: CoRR

abs/1804.09364 (2018). arXiv: 1804.09364. URL: http://arxiv.org/abs/

1804.09364.

[151] Thomas Müller et al. ªInstant Neural Graphics Primitives with a Multiresolution Hash

Encodingº. In: ACM Trans. Graph. 41.4 (July 2022), 102:1±102:15. DOI: 10.1145/

3528223.3530127. URL: https://doi.org/10.1145/3528223.3530127.

https://arxiv.org/abs/1903.06684
http://arxiv.org/abs/1903.06684
http://arxiv.org/abs/1903.06684
https://doi.org/10.1007/s11263-009-0296-z
https://doi.org/10.1007/s11263-009-0296-z
https://doi.org/10.1007/s11263-009-0296-z
https://doi.org/10.1007/s11263-009-0296-z
https://doi.org/10.1109/ICRA.2012.6225206
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/s41586-018-0176-1
https://doi.org/10.1038/s41586-018-0176-1
https://doi.org/10.1038/s41586-018-0176-1
https://arxiv.org/abs/1805.06066
http://arxiv.org/abs/1805.06066
http://arxiv.org/abs/1805.06066
https://arxiv.org/abs/1804.09364
http://arxiv.org/abs/1804.09364
http://arxiv.org/abs/1804.09364
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

BIBLIOGRAPHY 78

[152] J. Munk, J. Kober, and R. Babuška. ªLearning state representation for deep actor-critic

controlº. In: 2016 IEEE 55th Conference on Decision and Control (CDC). Dec. 2016,

pp. 4667±4673. DOI: 10.1109/CDC.2016.7798980.

[153] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ªORB-SLAM: a Versatile and

Accurate Monocular SLAM Systemº. In: IEEE Transactions on Robotics 31.5 (2015),

pp. 1147±1163. DOI: 10.1109/TRO.2015.2463671.

[154] Mehdi Noroozi and Paolo Favaro. ªUnsupervised learning of visual representations by

solving jigsaw puzzlesº. In: European Conference on Computer Vision. Springer. 2016,

pp. 69±84.

[155] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. ªRepresentation Learning with Con-

trastive Predictive Codingº. In: CoRR abs/1807.03748 (2018). arXiv: 1807.03748. URL:

http://arxiv.org/abs/1807.03748.

[156] Yaniv Ovadia et al. Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncer-

tainty Under Dataset Shift. 2019. arXiv: 1906.02530 [stat.ML].

[157] Maks Ovsjanikov et al. ªFunctional Maps: A Flexible Representation of Maps Between

Shapesº. In: ACM Trans. Graph. 31.4 (July 2012), 30:1±30:11. ISSN: 0730-0301. DOI:

10.1145/2185520.2185526. URL: http://doi.acm.org/10.1145/

2185520.2185526.

[158] Adam Paszke et al. ªPyTorch: An Imperative Style, High-Performance Deep Learning

Libraryº. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach

et al. Curran Associates, Inc., 2019, pp. 8024±8035. URL: http://papers.neurips.

cc/paper/9015-pytorch-an-imperative-style-high-performance-

deep-learning-library.pdf.

[159] Deepak Pathak et al. ªCuriosity-driven Exploration by Self-supervised Predictionº. In:

CoRR abs/1705.05363 (2017). arXiv: 1705.05363. URL: http://arxiv.org/abs/

1705.05363.

[160] Jonathan W. Peirce. ªUnderstanding mid-level representations in visual processingº. In:

Journal of Vision 15.7 (June 2015), pp. 5±5. ISSN: 1534-7362. DOI: 10.1167/15.7.

5. eprint: https://jov.arvojournals.org/arvo/content_public/

journal/jov/934215/i1534-7362-15-7-5.pdf. URL: https://dx.doi.

org/10.1167/15.7.5.

[161] Lerrel Pinto et al. ªAsymmetric actor critic for image-based robot learningº. In: arXiv

preprint arXiv:1710.06542 (2017).

[162] Lerrel Pinto et al. ªThe curious robot: Learning visual representations via physical interac-

tionsº. In: European Conference on Computer Vision. Springer. 2016, pp. 3±18.

[163] Matthias Plappert et al. ªMulti-Goal Reinforcement Learning: Challenging Robotics En-

vironments and Request for Researchº. In: CoRR abs/1802.09464 (2018). arXiv: 1802.

09464. URL: http://arxiv.org/abs/1802.09464.

https://doi.org/10.1109/CDC.2016.7798980
https://doi.org/10.1109/TRO.2015.2463671
https://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1906.02530
https://doi.org/10.1145/2185520.2185526
http://doi.acm.org/10.1145/2185520.2185526
http://doi.acm.org/10.1145/2185520.2185526
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1705.05363
https://doi.org/10.1167/15.7.5
https://doi.org/10.1167/15.7.5
https://jov.arvojournals.org/arvo/content_public/journal/jov/934215/i1534-7362-15-7-5.pdf
https://jov.arvojournals.org/arvo/content_public/journal/jov/934215/i1534-7362-15-7-5.pdf
https://dx.doi.org/10.1167/15.7.5
https://dx.doi.org/10.1167/15.7.5
https://arxiv.org/abs/1802.09464
https://arxiv.org/abs/1802.09464
http://arxiv.org/abs/1802.09464

BIBLIOGRAPHY 79

[164] F Proctor, Marek Franaszek, and J Michaloski. ªTolerances and uncertainty in robotic

systemsº. In: ASME 2017 International Mechanical Engineering Congress and Exposition.

American Society of Mechanical Engineers Digital Collection. 2017.

[165] Senthil Purushwalkam Shiva Prakash and Abhinav Gupta. ªDemystifying Contrastive Self-

Supervised Learning: Invariances, Augmentations and Dataset Biasesº. In: Advances in

Neural Information Processing Systems 33 (2020).

[166] Xiaojuan Qi et al. ªGeonet: Geometric neural network for joint depth and surface normal

estimationº. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2018, pp. 283±291.

[167] Alec Radford et al. ªLearning Transferable Visual Models From Natural Language Supervi-

sionº. In: Proceedings of the 38th International Conference on Machine Learning, ICML

2021, 18-24 July 2021, Virtual Event. Ed. by Marina Meila and Tong Zhang. Vol. 139.

Proceedings of Machine Learning Research. PMLR, 2021, pp. 8748±8763. URL: http:

//proceedings.mlr.press/v139/radford21a.html.

[168] Ilija Radosavovic et al. ªReal-World Robot Learning with Masked Visual Pre-trainingº. In:

CoRL (2022).

[169] Antonin Raffin et al. ªS-RL Toolbox: Environments, Datasets and Evaluation Metrics for

State Representation Learningº. In: arXiv preprint arXiv:1809.09369 (2018).

[170] Antonin Raffin et al. ªS-RL Toolbox: Environments, Datasets and Evaluation Metrics for

State Representation Learningº. In: arXiv preprint arXiv:1809.09369 (2018).

[171] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. ªVision Transformers for Dense

Predictionº. In: ArXiv preprint (2021).

[172] René Ranftl et al. ªTowards robust monocular depth estimation: Mixing datasets for zero-

shot cross-dataset transferº. In: arXiv preprint arXiv:1907.01341 (2019).

[173] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual

domains with residual adapters. 2017. arXiv: 1705.08045 [cs.CV].

[174] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. ªOn the convergence of adam and

beyondº. In: arXiv preprint arXiv:1904.09237 (2019).

[175] Stephan R. Richter et al. ªPlaying for Data: Ground Truth from Computer Gamesº. In:

European Conference on Computer Vision (ECCV). Ed. by Bastian Leibe et al. Vol. 9906.

LNCS. Springer International Publishing, 2016, pp. 102±118.

[176] Mike Roberts and Nathan Paczan. Hypersim: A Photorealistic Synthetic Dataset for Holistic

Indoor Scene Understanding. arXiv 2020.

[177] E. Rohmer, S. P. N. Singh, and M. Freese. ªCoppeliaSim (formerly V-REP): a Versatile

and Scalable Robot Simulation Frameworkº. In: Proc. of The International Conference on

Intelligent Robots and Systems (IROS). www.coppeliarobotics.com. 2013.

http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://arxiv.org/abs/1705.08045

BIBLIOGRAPHY 80

[178] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. ªU-Net: Convolutional Networks for

Biomedical Image Segmentationº. In: CoRR abs/1505.04597 (2015). arXiv: 1505.04597.

URL: http://arxiv.org/abs/1505.04597.

[179] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. ªU-Net: Convolutional Networks for

Biomedical Image Segmentationº. In: CoRR abs/1505.04597 (2015). arXiv: 1505.04597.

URL: http://arxiv.org/abs/1505.04597.

[180] Fereshteh Sadeghi and Sergey Levine. ªCad2rl: Real single-image flight without a single

real imageº. In: arXiv preprint arXiv:1611.04201 (2016).

[181] Manolis Savva* et al. ªHabitat: A Platform for Embodied AI Researchº. In: arXiv preprint

arXiv:1904.01201 (2019).

[182] Alexander Sax et al. Learning to Navigate Using Mid-Level Visual Priors. 2019. arXiv:

1912.11121 [cs.CV].

[183] Steffen Schneider et al. ªwav2vec: Unsupervised Pre-Training for Speech Recognitionº.

In: Interspeech 2019, 20th Annual Conference of the International Speech Communication

Association, Graz, Austria, 15-19 September 2019. Ed. by Gernot Kubin and Zdravko Kacic.

ISCA, 2019, pp. 3465±3469. DOI: 10.21437/Interspeech.2019-1873. URL:

https://doi.org/10.21437/Interspeech.2019-1873.

[184] Johannes Lutz Schönberger and Jan-Michael Frahm. ªStructure-from-Motion Revisitedº.

In: Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[185] John Schulman et al. ªHigh-Dimensional Continuous Control Using Generalized Advantage

Estimationº. In: arXiv preprint arXiv:1506.02438 (2015).

[186] John Schulman et al. ªProximal Policy Optimization Algorithmsº. In: CoRR abs/1707.06347

(2017). arXiv: 1707.06347. URL: http://arxiv.org/abs/1707.06347.

[187] H. Scudder. ªProbability of error of some adaptive pattern-recognition machinesº. In: IEEE

Transactions on Information Theory 11.3 (1965), pp. 363±371. DOI: 10.1109/TIT.

1965.1053799.

[188] Ozan Sener and Silvio Savarese. ªActive learning for convolutional neural networks: A

core-set approachº. In: arXiv preprint arXiv:1708.00489 (2017).

[189] Ali Sharif Razavian et al. ªCNN features off-the-shelf: an astounding baseline for recogni-

tionº. In: Proceedings of the IEEE conference on computer vision and pattern recognition

workshops. 2014, pp. 806±813.

[190] Evan Shelhamer et al. ªLoss is its own Reward: Self-Supervision for Reinforcement Learn-

ingº. In: CoRR abs/1612.07307 (2016). arXiv: 1612.07307. URL: http://arxiv.

org/abs/1612.07307.

[191] Jianbo Shi and Jitendra Malik. ªNormalized Cuts and Image Segmentationº. In: IEEE

Trans. Pattern Anal. Mach. Intell. 22.8 (Aug. 2000), pp. 888±905. ISSN: 0162-8828. DOI:

10.1109/34.868688. URL: http://dx.doi.org/10.1109/34.868688.

https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1912.11121
https://doi.org/10.21437/Interspeech.2019-1873
https://doi.org/10.21437/Interspeech.2019-1873
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1109/TIT.1965.1053799
https://doi.org/10.1109/TIT.1965.1053799
https://arxiv.org/abs/1612.07307
http://arxiv.org/abs/1612.07307
http://arxiv.org/abs/1612.07307
https://doi.org/10.1109/34.868688
http://dx.doi.org/10.1109/34.868688

BIBLIOGRAPHY 81

[192] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. Berlin, Heidelberg:

Springer-Verlag, 2007. ISBN: 354023957X.

[193] Nathan Silberman et al. ªIndoor Segmentation and Support Inference from RGBD Imagesº.

In: Computer Vision ± ECCV 2012: 12th European Conference on Computer Vision, Flo-

rence, Italy, October 7-13, 2012, Proceedings, Part V. Ed. by Andrew Fitzgibbon et al.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 746±760. ISBN: 978-3-642-33715-

4. DOI: 10.1007/978-3-642-33715-4_54. URL: https://doi.org/10.

1007/978-3-642-33715-4_54.

[194] Nathan Silberman et al. ªIndoor segmentation and support inference from rgbd imagesº. In:

European conference on computer vision. Springer. 2012, pp. 746±760.

[195] David Silver et al. ªMastering the game of Go with deep neural networks and tree searchº.

In: nature 529.7587 (2016), pp. 484±489.

[196] Shuran Song et al. ªSemantic Scene Completion from a Single Depth Imageº. In: Proceed-

ings of 30th IEEE Conference on Computer Vision and Pattern Recognition (2017).

[197] Pratul P Srinivasan et al. ªAperture supervision for monocular depth estimationº. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,

pp. 6393±6401.

[198] Trevor Standley et al. ªWhich Tasks Should Be Learned Together in Multi-task Learning?º

In: arXiv e-prints, arXiv:1905.07553 (May 2019), arXiv:1905.07553. arXiv: 1905.07553

[cs.CV].

[199] Bastian Steder et al. ªNARF: 3D Range Image Features for Object Recognitionº. In: ().

[200] Bastian Steder et al. ªNARF: 3D range image features for object recognitionº. In: Workshop

on Defining and Solving Realistic Perception Problems in Personal Robotics at the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS). Vol. 44. 2010.

[201] James Stewart. Essential calculus: Early transcendentals. Cengage Learning, 2012.

[202] Julian Straub et al. ªThe Replica Dataset: A Digital Replica of Indoor Spacesº. In: arXiv

preprint arXiv:1906.05797 (2019).

[203] Julian Straub et al. ªThe Replica dataset: A digital replica of indoor spacesº. In: arXiv

preprint arXiv:1906.05797 (2019).

[204] Chen Sun et al. ªRevisiting Unreasonable Effectiveness of Data in Deep Learning Eraº. In:

2017 IEEE International Conference on Computer Vision (ICCV) (2017), pp. 843±852.

[205] Ke Sun et al. ªDeep high-resolution representation learning for human pose estimationº. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

2019, pp. 5693±5703.

[206] Yu Sun et al. ªTest-time training for out-of-distribution generalizationº. In: arXiv preprint

arXiv:1909.13231 (2019).

https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.1007/978-3-642-33715-4_54
https://arxiv.org/abs/1905.07553
https://arxiv.org/abs/1905.07553

BIBLIOGRAPHY 82

[207] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. 1st.

Cambridge, MA, USA: MIT Press, 1998. ISBN: 0262193981.

[208] N Tinbergen. The study of instinct. New York, NY, US, 1951.

[209] Josh Tobin et al. ªDomain randomization for transferring deep neural networks from

simulation to the real worldº. In: 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE. 2017, pp. 23±30.

[210] Antonio Torralba and Alexei A. Efros. ªUnbiased look at dataset biasº. In: CVPR 2011.

2011, pp. 1521±1528. DOI: 10.1109/CVPR.2011.5995347.

[211] Simon Vandenhende, Bert De Brabandere, and Luc Van Gool. ªBranched Multi-Task

Networks: Deciding What Layers To Shareº. In: CoRR abs/1904.02920 (2019). arXiv:

1904.02920. URL: http://arxiv.org/abs/1904.02920.

[212] Simon Vandenhende et al. ªBranched multi-task networks: deciding what layers to shareº.

In: arXiv preprint arXiv:1904.02920 (2019).

[213] Simon Vandenhende et al. ªMulti-task learning for dense prediction tasks: A surveyº. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

[214] Ashish Vaswani et al. ªAttention is All you Needº. In: Advances in Neural Information

Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. URL:

https://proceedings.neurips.cc/paper_files/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[215] Pascal Vincent et al. ªExtracting and Composing Robust Features with Denoising Au-

toencodersº. In: Proceedings of the 25th International Conference on Machine Learning.

ICML ’08. Helsinki, Finland: ACM, 2008, pp. 1096±1103. ISBN: 978-1-60558-205-4.

DOI: 10.1145/1390156.1390294. URL: http://doi.acm.org/10.1145/

1390156.1390294.

[216] Oriol Vinyals et al. ªMatching Networks for One Shot Learningº. In: CoRR abs/1606.04080

(2016). arXiv: 1606.04080. URL: http://arxiv.org/abs/1606.04080.

[217] Xiaolong Wang, Allan Jabri, and Alexei A. Efros. ªLearning Correspondence from the

Cycle-Consistency of Timeº. In: CoRR abs/1903.07593 (2019). arXiv: 1903.07593. URL:

http://arxiv.org/abs/1903.07593.

[218] P. Welinder et al. Caltech-UCSD Birds 200. Tech. rep. CNS-TR-2010-001. California

Institute of Technology, 2010.

[219] Max Wertheimer. ªLaws of Organization in Perceptual Formsº. In: Psycologische Forschung

4 (1923), pp. 301±350.

[220] Norbert Wiener. Cybernetics; or control and communication in the animal and the machine.

Oxford, England: John Wiley, 1948, p. 194.

[221] Yilin Wu et al. ªLearning to manipulate deformable objects without demonstrationsº. In:

arXiv preprint arXiv:1910.13439 (2019).

https://doi.org/10.1109/CVPR.2011.5995347
https://arxiv.org/abs/1904.02920
http://arxiv.org/abs/1904.02920
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294
https://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
https://arxiv.org/abs/1903.07593
http://arxiv.org/abs/1903.07593

BIBLIOGRAPHY 83

[222] Yuxin Wu and Kaiming He. ªGroup normalizationº. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2018, pp. 3±19.

[223] Fei Xia et al. ªGibson Env: Real-World Perception for Embodied Agentsº. In: 2018 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 2018.

[224] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. ªBeyond PASCAL: A benchmark for

3D object detection in the wildº. In: IEEE Winter Conference on Applications of Computer

Vision. 2014, pp. 75±82. DOI: 10.1109/WACV.2014.6836101.

[225] Dan Xu et al. ªPad-net: Multi-tasks guided prediction-and-distillation network for simul-

taneous depth estimation and scene parsingº. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2018, pp. 675±684.

[226] Wilson Yan et al. ªLearning Predictive Representations for Deformable Objects Using

Contrastive Estimationº. In: arXiv preprint arXiv:2003.05436 (2020).

[227] Wei Yang et al. ªVisual Semantic Navigation using Scene Priorsº. In: CoRR abs/1810.06543

(2018). arXiv: 1810.06543. URL: http://arxiv.org/abs/1810.06543.

[228] Yao Yao et al. ªBlendedMVS: A Large-scale Dataset for Generalized Multi-view Stereo

Networksº. In: Computer Vision and Pattern Recognition (CVPR) (2020).

[229] Lin Yen-Chen et al. ªLearning to See before Learning to Act: Visual Pre-training for

Manipulationº. In: IEEE International Conference on Robotics and Automation (ICRA).

2020. URL: https://yenchenlin.me/vision2action/.

[230] Wei Yin et al. ªEnforcing geometric constraints of virtual normal for depth predictionº. In:

Proceedings of the IEEE International Conference on Computer Vision. 2019, pp. 5684±

5693.

[231] Zhichao Yin and Jianping Shi. ªGeonet: Unsupervised learning of dense depth, optical flow

and camera poseº. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2018, pp. 1983±1992.

[232] Alex Yu et al. ªpixelNeRF: Neural Radiance Fields from One or Few Imagesº. In: CVPR.

2021.

[233] Zehao Yu et al. ªMonoSDF: Exploring Monocular Geometric Cues for Neural Implicit

Surface Reconstructionº. In: Advances in Neural Information Processing Systems (NeurIPS)

(2022).

[234] Xiaomin Yue et al. ªCurvature-processing network in macaque visual cortexº. In: Pro-

ceedings of the National Academy of Sciences 111.33 (2014), E3467±E3475. DOI: 10.

1073/pnas.1412616111. eprint: http://www.pnas.org/content/111/

33/E3467.full.pdf. URL: http://www.pnas.org/content/111/33/

E3467.abstract.

[235] A. Zaharescu et al. ªSurface feature detection and description with applications to mesh

matchingº. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. June

2009, pp. 373±380. DOI: 10.1109/CVPR.2009.5206748.

https://doi.org/10.1109/WACV.2014.6836101
https://arxiv.org/abs/1810.06543
http://arxiv.org/abs/1810.06543
https://yenchenlin.me/vision2action/
https://doi.org/10.1073/pnas.1412616111
https://doi.org/10.1073/pnas.1412616111
http://www.pnas.org/content/111/33/E3467.full.pdf
http://www.pnas.org/content/111/33/E3467.full.pdf
http://www.pnas.org/content/111/33/E3467.abstract
http://www.pnas.org/content/111/33/E3467.abstract
https://doi.org/10.1109/CVPR.2009.5206748

BIBLIOGRAPHY 84

[236] Amir Zamir et al. ªRobust Learning Through Cross-Task Consistencyº. In: arXiv (2020).

[237] Amir R Zamir et al. ªTaskonomy: Disentangling task transfer learningº. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 3712±3722.

[238] Amir R. Zamir et al. ªTaskonomy: Disentangling Task Transfer Learningº. In: IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). IEEE. 2018.

[239] Jeffrey O Zhang et al. Side-Tuning: A Baseline for Network Adaptation via Additive Side

Networks. 2019. arXiv: 1912.13503 [cs.LG].

[240] Lilian Zhang et al. ªVanishing Point Estimation and Line Classification in a Manhattan

World with a Unifying Camera Modelº. In: International Journal of Computer Vision 117.2

(Apr. 2016), pp. 111±130. ISSN: 1573-1405. DOI: 10.1007/s11263-015-0854-5.

URL: https://doi.org/10.1007/s11263-015-0854-5.

[241] Yinda Zhang et al. ªPhysically-Based Rendering for Indoor Scene Understanding Using

Convolutional Neural Networksº. In: CoRR abs/1612.07429 (2016). arXiv: 1612.07429.

URL: http://arxiv.org/abs/1612.07429.

[242] Yinda Zhang et al. ªPhysically-based rendering for indoor scene understanding using

convolutional neural networksº. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2017, pp. 5287±5295.

[243] Yu Zhang and Qiang Yang. ªA Survey on Multi-Task Learningº. In: CoRR abs/1707.08114

(2017). arXiv: 1707.08114. URL: http://arxiv.org/abs/1707.08114.

[244] Zaiwei Zhang et al. ªPath-Invariant Map Networksº. In: CoRR abs/1812.11647 (2018).

arXiv: 1812.11647. URL: http://arxiv.org/abs/1812.11647.

[245] Y. Zhong. ªIntrinsic shape signatures: A shape descriptor for 3D object recognitionº. In:

2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

Sept. 2009, pp. 689±696. DOI: 10.1109/ICCVW.2009.5457637.

[246] Bolei Zhou et al. ªLearning Deep Features for Scene Recognition using Places Databaseº. In:

Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani et al. Curran

Associates, Inc., 2014, pp. 487±495. URL: http://papers.nips.cc/paper/5349-

learning-deep-features-for-scene-recognition-using-places-

database.pdf.

[247] Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun. ªDoes computer vision matter

for action?º In: arXiv e-prints, arXiv:1905.12887 (May 2019), arXiv:1905.12887. arXiv:

1905.12887 [cs.CV].

[248] Tinghui Zhou et al. ªLearning Dense Correspondence via 3D-guided Cycle Consistencyº.

In: CoRR abs/1604.05383 (2016). arXiv: 1604.05383. URL: http://arxiv.org/

abs/1604.05383.

[249] Jun-Yan Zhu et al. ªUnpaired Image-to-Image Translation using Cycle-Consistent Adver-

sarial Networksº. In: CoRR abs/1703.10593 (2017). arXiv: 1703.10593. URL: http:

//arxiv.org/abs/1703.10593.

https://arxiv.org/abs/1912.13503
https://doi.org/10.1007/s11263-015-0854-5
https://doi.org/10.1007/s11263-015-0854-5
https://arxiv.org/abs/1612.07429
http://arxiv.org/abs/1612.07429
https://arxiv.org/abs/1707.08114
http://arxiv.org/abs/1707.08114
https://arxiv.org/abs/1812.11647
http://arxiv.org/abs/1812.11647
https://doi.org/10.1109/ICCVW.2009.5457637
http://papers.nips.cc/paper/5349-learning-deep-features-for-scene-recognition-using-places-database.pdf
http://papers.nips.cc/paper/5349-learning-deep-features-for-scene-recognition-using-places-database.pdf
http://papers.nips.cc/paper/5349-learning-deep-features-for-scene-recognition-using-places-database.pdf
https://arxiv.org/abs/1905.12887
https://arxiv.org/abs/1604.05383
http://arxiv.org/abs/1604.05383
http://arxiv.org/abs/1604.05383
https://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593

BIBLIOGRAPHY 85

[250] Z. Zhu et al. ªTen-fold Improvement in Visual Odometry Using Landmark Matchingº. In:

2007 IEEE 11th International Conference on Computer Vision. Oct. 2007, pp. 1±8. DOI:

10.1109/ICCV.2007.4409062.

[251] Zihan Zhu et al. NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM. 2023.

arXiv: 2302.03594 [cs.CV].

[252] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. ªDf-net: Unsupervised joint learning of depth

and flow using cross-task consistencyº. In: Proceedings of the European Conference on

Computer Vision (ECCV). 2018, pp. 36±53.

https://doi.org/10.1109/ICCV.2007.4409062
https://arxiv.org/abs/2302.03594

86

Appendix A

Chapter 2 Supplementary Material

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 87

A.1 Detailed Methodology

Baseline Description

In the main paper we described the only the most crucial baselines. We now provide descriptions

for all baselines:

Tabula Rasa (Scratch) Learning: The most common approach, tabula rasa learning trains the agent from

scratch. In this condition (sometimes called scratch), the agent receives the raw RGB image as input and

uses a randomly initialized AtariNet [146] network (described in supplementary material).

Blind Intelligent Actor: The blind baseline is the same as tabula rasa except that the visual input is a fixed

image and does not depend on the state of the environment. The blind agent is a particularly informative

and crucial baseline since it indicates how much performance can be squeezed out of the nonvisual biases,

correlations, and overall structure of the environment. For instance, in a narrow straight corridor which

leads the agent to the target, there should be a small performance gap between sighted and blind.

Random Nonlinear Projections: this is identical to using mid-level features, except that the feature encoder

is not pretrained but rather randomly initialized and then frozen. The policy then learns on top of this fixed

nonlinear projection. This addresses the possibility that the ResNet architecture, not the offline perception

task, is responsible the representations’ success.

Pixels as Features: this is identical to using mid-level features, except that we downsample the input image

to the same size as the features (16× 16), apply a convolutional layer to match output sizes, and use it as the

feature. This addresses whether the feature readout network could be an improvement over AtariNet [146].

Random Actions: this uniformly randomly samples from the action space. It calibrates how difficult the

task is without any specialized method and determines how much can be obtained just from random chance.

Non-Learning Methods: For local planning, we compare against Simultaneous Localization and Mapping

(SLAM) [100], a popular approach that is highly effective when depth information is accurate. However, a

depth sensor is not available and we estimate depth using the same network that our mid-level representation

uses for distance.

State-of-the-Art Representation Learning: We compare against several state-of-the-art representation-

learning methods. They are not necessarily vision-centric, and they include dynamics-modeling [152, 190,

105], curiosity [159], DARLA [88], and ImageNet pretraining [119].

Max-Coverage Feature Set: Formulation

As we showed in the main paper, no single representation could be universal, necessitating the

use of a set of representations. Employing a larger set maximizes the chance of having the correct

representation for the downstream task available and in the set. However, a compact set is desirable

since agents using larger sets need more data to train (for the same reason that training from raw

pixels requires many samples). Therefore, we use a Max-Coverage Feature Selector that curates a

compact subset of representations in order to ensure the ideal representation (encoder choice) is

never too far away from one in the set.

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 88

Ideal for Local Planning

Space of Useful Perception Abstractions

Ideal for Navigation

Figure A.1: Geometry of the feature set. We select a covering set of features that minimizes the worst-case distance

between the subset and the ideal task feature. By Hypothesis III, no single feature will suffice and a set is required.

okay.

The question now becomes how to find the best compact set, shown in Figure A.1. With a

measure of distance between features, we can explicitly minimize the worst-case distance between

the best feature and our selected subset (the perceptual risk by finding a subset Xδ ⊆ Φ =
{ϕ1, ..., ϕm} of size |Xδ| ≤ k that is a δ-cover of Φ with the smallest possible δ. This is illustrated

with a set of size 7 in Figure A.1.

The task taxonomy method [238] defines exactly such a distance: a measure between perceptual

tasks. Moreover, this measure is predictive of (indeed, derived from) transfer performance. Using

this distance, minimizing worst-case transfer (perceptual risk) can be formulated as a sequence of

Boolean Integer Programs (BIPs), parameterized by a boolean vector x indicating which features

should be included in the set.

This section describes the full sequence Boolean Integer Program that yields, as its solution,

the Max-Coverage Min-Distance Feature Set. It accounts for interactions between feeatures. For

example, what if the combination of two features is much stronger than either feature separately?

This section details a variant of the main BIP that handles these interactions. It selects a set of

transfers which may have one or more sources.

The set of all transfers (edges), E, is indexed by i and each edge has the form ({si1, . . . , s
i
mi
}, ti)

(for {si1, . . . , s
i
mi
} ⊂ S and ti ∈ T). We shall also index the target features ⊕ by j so that in this

section, i indexes edges and j indexes target features. As in [238], we define operators returning

target and sources of an edge:

(
{si1, . . . , s

i
mi
}, ti
) sources

7−−−−→ {si1, . . . , s
i
mi
}

(
{si1, . . . , s

i
mi
}, ti
) target

7−−−→ ti.

We encode selecting a feature t to include in the set as including the transfer
(
{t}, t

)
.

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 89

The arguments of the problem are

1. δ, a given maximum covering distance

2. pi, a measure of performance on a target from each of its transfers (i.e. the affinities

from [238])

3. x ∈ R
|E|+|Φ|, a boolean variable indicating whether each transfer and each feature in our set

The BIP is parameterized by a vector x where each transfer and each feature in our set is

represented by a binary variable; x indicates which nodes are selected for the covering set and a

satisfying minimum-distance transfer from each unselected feature to one in the set. The canonical

form for a BIP is:

minimize: ✶Tx ,

subject to: Ax ⪯ b and x ∈ {0, 1}|E|+|Φ| .

Each element ci for a transfer is the product of the importance of its target task and its transfer

performance:

ci := rtarget(i) · pi . (A.1)

Hence, the collective performance on all targets is the summation of their individual AHP perfor-

mance, pi, weighted by the user specified importance, ri.
Now we add three types of constraints via matrix A to enforce each feasible solution of the BIP

instance corresponds to a valid subgraph for our transfer learning problem: Constraint I: no feature

is too far away from the covering set, Constraint II: if a transfer is included in the subgraph, all of

its source nodes/tasks must be included too, Constraint III: each target task has exactly one transfer

in.

Constraint I: No feature is too far. We ensure that this by disallowing edges whose ªdistanceº is

too large. In our case, we use affinities (so that higher values indicate a better transfer). Therefore,

we filter out edges with small affinities by redefining

E ≜ { e ∈ E | affinity(e) ≤ δ }.

Constraint II: All necessary sources are present. For each row ai in A we require ai · x ≤ bi,
where

ai,k≜





|sources(i)| if k = i

−1 if (k − |E|) ∈ sources(i)

0 otherwise

(A.2)

bi = 0. (A.3)

Constraint II: One transfer per feature. Via two rows a|E|+j and a|E|+j+1, we enforce that target

j has exactly one transfer:

a|E|+j,i ≜ ✶{target(i)=j}, b|E|+j ≜+ 1,
a|E|+j+1,i≜− ✶{target(i)=j}, b|E|+j+1≜− 1.

(A.4)

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 90

Those elements of A not explicitly defined above are set to 0. The problem is now a valid BIP

and can be optimally solved in a fraction of a second [80].

The above program finds a (not necessarily unique) minimum-size covering set with a covering

distance at most δ. Given that our feature set has only a finite number of distances, we can find the

smallest δ by solving a sequence of these BIPs (e.g. with binary search). Since there are only m2

distances, we can find the minimum δ with binary search, by solving O(log(m)) BIPs. This takes

under 5 seconds and the final boolean vector x specifies the feature set of size k that minimizes

perceptual risk.

Downstream Active Tasks

This section contains detailed descriptions of our 3 locomotion-based active tasks. Visual depictions

are shown in Fig. A.2, and (environment-specific numbers are provided in supplementary material).

Environment

Diagram

Observation

Visual-Target

Navigation

Visual

Exploration

Local

Planning

Agent

Start

Target

Occupancy  

Grid

Target 

Heading

Figure A.2: Visual descriptions of the selected active tasks. For each task, an example state of the environment

is shown in the bottom row. The agent is shown as a pink dot, and its field of view is shown in light blue. Starting

locaitons are shown with the red marker and a target, if it exists for the task, is shown with the green marker. The top

row shows the corresponding sensory inputs, which always include some frame from the onboard RGB camera. Some

tasks (local planning, visual exploration) include a additional nonvisual inputs, and these are shown in the bottom left

corner of the RGB input (e.g. occupancy grid, target heading). Note that exploration uses only the revealed occupancy

grid and no actual mesh boundaries.

Local Planning:

The agent must navigate to some target destination which is specified completely nonvisually (e.g.

as a coordinate). This task is sometimes called ªpointnavº or ªpoint navigationº.

http://perceptual.actor/#paper

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 91

The reward function is dense with several terms: a single positive value when the goal is reached

(which also terminates the episode), a small positive value per timestep for progress towards the

goal (scaled change in distance to goal), a small negative value per timestep as a penalty for living

and, for some environments, a larger negative value for obstacle collision. The reward function

reflects desirable behavior of a local planner, which should skillfully maneuver its environment

while taking the most efficient path to the goal. We implement a sparsified variant which only

contains the one-time bonus and the living penalty (see the main paper for experiments)

At each timestep, the agent observed both the RGB camera images and a target vector [r, cos θ, sin θ] ∈
R

3 where (r, θ) is the polar coordinates of the target in the agent coordinate system. In Habitat, we

sometimes also provide a bitmap of past agent locations (to obviate the need for recurrence). The

episode terminates either when the goal is reached or after a certain number of steps (usually 500).

Sample frames are shown below and in the supplementary material.

Visual Exploration:

The agent is equipped with a myopic laser scanner and must use it to explore as much of the space

as possible in a limited amount of time (usually 1000 timesteps). The environment is partitioned

into 1m× 1m occupancy cells and the reward at every timestep is the number of occupancy cells

newly uncovered by the laser scanner.

The cells that the agent sees are calculated via a ªmyopic laser scannerº in the following way:

first forming a point cloud using a narrow strip of the depth image from the midpoint of the image

to the bottom, and then projecting this point cloud onto the ground plane. To determine what cells

are newly uncovered, we compare this against previously unlocked cells.

At each timestep, the agent observed only the input frame from an onboard RGB camera and

also the occupancy cells unlocked so far (provided as a bitmap image). The episode terminates

automatically after a fixed number of agent steps.

Visual-Target Navigation:

In this task the agent must navigate to some object, specified visually. The agent must learn to both

identify the target object as well as figure out how to navigate to it. The object (e.g. a wooden crate)

remains fixed over training, but the agent and target locations are randomized.

The reward is sparse, with a large one-time positive bonus for reaching the object and a otherwise

small negative penalty of living. At each timestep, the agent received the RGB input frame from the

onboard RGB camera and nothing else. The episode terminates when the target is reached or after a

certain number of steps (usually 500). A sample frame is shown below, and more frames are shown

in the supplementary material.

Dictionary of Mid-Level Vision Objectives

Figure A.3 contains a complete list of our studied vision objectives. A detailed description of each

vision task can be found the Taskonomy [238] supplementary material (Section 14). We visualize

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 92

some tasks in Figure A.3 as well.

Mid-Level Vision Objectives (Φ̃)

Autoencoding

Classification, Semantic (1000-class)

Classification, Scene

Context Encoding (In-painting)

Content Prediction (Jigsaw)

Depth Estimation, Euclidean

Edge Detection, 2D

Edge Detection, 3D

Keypoint Detection, 2D

Keypoint Detection, 3D

Reshading

Room Layout Estimation

Segmentation, Unsupervised 2D

Segmentation, Unsupervised 2.5D

Segmentation, Semantic

Surface Normal Estimation

Vanishing Point Estimation

Figure A.3: Feature Bank with Sample Frames. [Left] The mid-level features we used for all experiments. [Right]

Frames and their respective mid-level features for Habitat, Gibson, and Doom for the top, middle, bottom frames

respectively.

Metrics

Reward Relative to Blind RL results are typically communicated in terms of absolute reward.

However, absolute reward values are uncalibrated and a high value for one task is not necessarily

impressive in another. One way to calibrate rewards according to task difficulty is by comparing to

a control that cannot access the state of the environment. Therefore, we propose the reward relative

to blind:

RRblind =
rtreatment − rmin

rblind − rmin

(A.5)

as a calibrated quantification. A blind agent always achieves a relative reward of 1, while a score

> 1 indicates a relative improvement and score < 1 indicates this agent performs worse than a

blind agent. We find this quantification particularly meaningful since we found agents trained from

scratch often memorize the training buldings, performing no better than blind in the test setting

(see Section 2.5 in main paper). For completeness, we provide the raw reward curves below in

supplementary material.

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 93

Success Weighted by Path Length For local planning, we also use the metric of Success

weighted by (normalized inverse) Path Length (SPL) introduced by [7]. The measure is defined as

follows:

We conduct N test episodes. In each episode, the agent is tasked with navigating to a

goal. Let li be the shortest path distance from the agent’s starting position to the goal in

episode i and let pi bet he length of the path actually taken by the agent. Let Si be a

binary indicator of success in episode i. We define a summary measure of the agent’s

navigation performance across the test set as follows:

1

N

N∑

i=1

Si

li
max(pi, li)

.

PPO with Experience Replay

In this section we describe our off-policy PPO variant which decorrelates the samples within each

batch and provides more stable, sample-efficient learning.

Off-Policy Policy Gradient

In the most general policy gradient setup, we attempt to maximize the objective function:

Eτ∼πθ(τ)

[
log πθ(at|st)Ât

]
(A.6)

where Ât is the advantage function at timestep t (some sufficient statistic for the value of a

policy at timestep t, in our experiments we choose the generalized advantage estimator [185]) and τ
is a trajectory drawn from the current policy. The right side of the equation is our estimate of the

objective using data sampled from the environment under the policy. Using importance sampling,

we can approximate this objective by sampling from a different distribution over trajectories, and

instead optimize:

Eτ∼πθold
(τ)

[πθ(at|st)

πθold
(at|st)

Ât

]
(A.7)

Off-Policy PPO

In practice, if we were to directly optimize the objective in equation (2), this would lead to

dramatically unstable gradient updates due to both the high variance of both the importance

sampling ratio and Ât (in our actor-critic framework, we are learning Â as the critic as training

progresses, so in the beginning of training Â is especially unstable).

Proximal policy optimization decreases variance by clipping the policy ratio, minimizing the

surrogate objective:

Eτ∼πθold
(τ) min

[
rt(θ)Ât, clip(1− ϵ, 1 + ϵ, rt(θ))Ât

]
(A.8)

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 94

rt(θ) =
πθ(at|st)

πθold
(at|st)

(A.9)

This objective acts as a first-order trust region, preventing large policy updates that drastically

change the policy. For detailed theoretical justification of this objective, see the PPO paper [186]. In

the original PPO paper, πθold
is only the distribution of on-policy trajectories from parallel workers.

Since we are constrained to only one worker, sampling from on-policy trajectories only would lead

to batches with highly correlated samples, leading to overfitting. Instead, we maintain a replay

buffer, and draw multiple trajectories from the replay buffer at every update, treating the policy at

the time when the trajectories were executed as πθold
. To calculate the advantage, we reevaluate the

advantage function during the update using the current critic on the states on the sampled trajectories

from the replay buffer. The number of on-policy and off-policy trajectories that we sample under

this formulation is a hyperparameter which we tune and report.

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 95

A.2 Additional Experiments and Analysis

We include more results on the desired properties of midlevel representation, namely better per-

formance and stronger generalization. We look at experiments across multiple environments and

multiple downstream tasks.

Performance

Scratch

(no Φ)
Object Classification

Feature

Distance

Feature

Learned Policy Trajectories

Ancor

Wiconosco

Hanson

V
is

u
a

l-
T
a

rg
e

t

N
a

v
ig

a
ti

o
n

V
is

u
a

l

E
x
p

lo
ra

ti
o

n

L
o

c
a

l

P
la

n
n

in
g

Percentage of Episode Remaining

100% 0%80% 60% 40% 20%

Figure A.4: Visualizations of the agents’ trajectory. While all approaches have reasonable trajectories for local

planning, only certain features have desired trajectories for visual-target navigation and visual exploration.

Are the differences in the reward values meaningful? Do they leed to different behaviors? In

Figure A.4, we superimpose 100 evaluation trajectories in the three Gibson tasks of scratch and two

different features, namely object classification and distance estimation. The scratch policy (left)

completely fails to perform visual exploration or visual-target navigation with desirable trajectories,

inefficiently wandering around the test space. The policy trained with object classification (middle)

recognizes and converges on the navigation target (boxed), but fails to cover the entire space in

exploration. This is perhaps due to the fact that semantic information is not as useful for exploration.

Distance estimation features (right) help the agent cover nearly the entire space in exploration

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 96

(boxed), but fail in navigation unless the agent is nearly on top of the target. This is perhaps due to

the fact that geometric tasks fail to understand the semantics of the target.

Figure A.5 shows features that achieve a higher reward than scratch on a held-out set of validation

buildings. Those features that do so with high confidence are highlighted in red For each task,

some features outperform tabula rasa learning. We measure significance using the nonparametric

Mann-Whitney U test, correcting for multiple comparisons by controlling the False Discovery Rate

(Q = 20%) with Benjamini-Hochberg [25]. These significance tests reveal that the probability of

so many results being due to noise is < 0.002 per task (< 10−6 after adding the seeds from the

analysis in Section A.2).

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 97

Generalization

We investigate the generalization further in Gibson and Doom and show that our method generalizes

better to new domains.

Generalization to Gibson Test Buildings

We find that for each of our tasks, several feature-based agent not only achieved higher final test

performance than policies trained tabula rasa but also exhibited a smaller gap between training and

testing performance. All agents exhibited some gap between training and test performance, but

agents trained from scratch seem to overfit completelyÐrarely doing better than blind agents in

the test environment. The plots in Figure A.6 show representative examples of this disparity over

the course of training. Similarly, some common features like Autoencoders and VAEs have strong

training curves that belie exceptionally weak test-time performance.

Generalization to Texture Variation in Doom

R
a

n
d

o
m

 T
e

x
.

Obj. Class Scene ClassScratch

S
in

g
le

 T
e

x
.

Figure A.7: Generalization in Doom Tex-

tures In ViZDoom, feature-based agents (right

two columns) generalize to new textures even

when not exposed to texture variation in train-

ing (top row), while agents trained from scratch

suffer a significant drop in performance (left,

top).

We also found that mid-level features were more robust

than learning from scratch to changes in texture. While

scratch achieves the highest final performance when the

agent learns in a video game environment where there are

many train textures that emulate the test textures, scratch

fails to generalize when there is little or no variation in

texture during training. On the other hand, feature-based

agents were able to generalize even without texture ran-

domization, as shown in Figure A.7.

Rank Reversal

In the main paper, we showed that geometric features

were superior to semantic ones on exploration, but the

opposite was true for visual navigation. We refer to this phenomenon as ªrank reversalº - given any

downstream task, the ranking of a feature is reversed on a different enough task. Here, we provide

additional evidence of the ubiquity of rank reversal and offer evidence that there is no ªuniversalº

feature which maximizes performance for all active tasks. We start by looking at the rankings of

features across tasks and follow with rigorous significance testing.

Feature Rankings in different tasks Gibson Feature Rank TradeoffDoom Feature Rank Tradeoff

12%

10%

36%

Semantic

43%

Semantic 3D/Geometric 2D/Texture Other

DOOM Feature rank tradeoff Feature Rank Tradeoff

Figure A.8: Feature Ranks on Exploration

and Navigation Scatterplots of the rank of fea-

ture performance on navigation (x-axis) and ex-

In Figure A.8, we plot the rankings of all the mid-level

features at exploration and navigation. The lack of any

feature existing in the bottom left corner of the plots shows

that there is no feature which ranks the very highly for

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 98

both tasks. The performance of the mid-level visual fea-

tures is highly dependent on the properties of the down-

stream task. These results, reproduced both in Gibson and

in Doom, substantiates the idea that no mid-level feature

will maximize reward a priori and thus there is no univer-

sal feature. We verify this observation using significance

testing in the following section.

Analysis

of Geometric and Semantic Features across tasks

Feature Rew. p-val. i/m

Sem. Segm. 6.553 0.0000 0.04

Scene Cls. 5.969 0.0001 0.08

Obj. Cls. 4.212 0.0004 0.12

Reshading 0.525 0.7824 0.16

3D Keypts. -0.196 0.9460 0.20

Distance 1.015 - -

Feature Rew. p-val. i/m

Distance 5.265 0.001 0.04

3D Keypts. 5.269 0.002 0.08

Reshading 5.072 0.011 0.12

Sem. Segm. 4.132 0.502 0.16

Scene Cls. 3.996 0.702 0.20

Obj. Cls. 4.151 - -

Figure A.9: Rank-reversal (Gibson). [Left] We test whether features are significantly better than distance estimation

(the best feature for exploration) in navigation. [Right] We test whether features are significantly better than object

classification (the best feature for navigation) in exploration. While within families (semantic, geometric), the differences

are not significant, across families, the differences are significant.

We compare the top performing exploration feature (dis-

tance) to other features in navigation and visa-versa (top performing navigation feature to other

features in exploration). For each feature and for each task, we train 10 agents from 10 random seeds

and evaluate them at the end of training (420 updates for navigation, 480 updates for exploration).

We evaluate the performance of each agent/seed combination by running the agent in the test

environment for 100 random episodes. We then use a cluster-effect-adjusted Wilcoxon rank-sum

test to test whether there is a significant difference in the reward-per-episode between features and

show the results in Figure A.9.

Superior Navigation Superior Exploration

Obj. Cls. 3D Keypoints

Sem. Segm.

Reshading

Scene

Cls.

Distance

Obj. Cls. 3D Keypoints

Sem. Segm.

Reshading

Scene

Cls.

Distance

Significance

Figure A.10: Rank Reversal Significance Graphs

Results from pairwise tests evaluating 3 semantic and 3

geometric features on each task. For each task graph, ar-

rows point towards the better-performing feature. Lack

of an arrow indicates the performance difference was

not statistically significant. Heavier arrowheads denote

more significant results (lower α-level). The essentially

complete bipartite structure in the graphs shows that

navigation is characteristically semantic while explo-

We find that within each family of tasks (e.g.

semantic, geometric), there is no significant differ-

ence. However, a family performing well on one

active task always has a significantly lower reward-

per-episode compared to the other family on the

other active task. For example, distance is statisti-

cally worse than any semantic task at navigation,

cementing the rank reversal hypothesis.

In Figure A.10, we perform pairwise signifi-

cance tests between 3 well-performing mid-level

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 99

features from each family. We find that the statis-

tically different pairs come from different families.

Additionally, we observe that while for navigation,

arrows point heavily from geometric towards se-

mantic tasks indicating significantly higher reward

in the latter, the reverse is true for exploration (ar-

rows point from semantic towards geometric tasks).

Thus, there is no single task (or even family of tasks!) that consistently obtains significantly higher

reward. We show results from Gibson but we came to the same conclusion in Doom.

Analysis of Max-Coverage Feature Set

This section contains additional analysis of the Max-Coverage Feature Set.

Max-Coverage Feature Set vs. Other Methods Figure A.11 shows the findings (Success, SPL,

Collisions, Acceleration, Jerk) for max-coverage feature set. The max-coverage feature set has

similar performance with the best performing features while being task agnostic.

Features
Navigation Exploration Planning

Ours Rand. Ours Rand. Ours Rand.

2 1.7 1.5 1.2 1.4 1.2 1.2

3 2.1 1.8 1.2 1.3 1.2 1.2

4 2.4 1.9 1.4 1.3 1.2 1.2

Table A.1: Max Coverage Feature Set outperforms random feature set (Gibson). We compared the Max-Coverage

feature set to random feature sets, and the M-C feature set performs better than random feature sets. Each cell shows

reward relative to blind.

Max-Coverage Representation Set vs. Random Feature Set:How useful is the feature set

proposed by the perception module? Will any feature set work? We randomly uniformly selected

five feature sets and evaluated their performance on our active tasks. Table A.1 shows that the

solver-suggested feature set performs much better than the randomly selected sets on navigation, and

comparably on the other two tasks. We hypothesize that the high performance of random features

on exploration is due to a larger number of geometric-based tasks in our task dictionary, which tend

to excel at the exploration task, while the relatively worse performance on navigation is due to the

small number of semantic features in our dictionary. Our perception module ensures coverage of

both kinds of features, which leads to good performance on both navigation and exploration.

It is notable that both our perception module and random sets of features outperform tabula rasa

learning (and our other baselines) by a wide margin.

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 100

3D
Ke
yp
oi
nt
s

S
ur
fa
ce

N
or
m
al
s

Cu
rv
at
ur
e

D
ist
an
ce

2.
5D

Se
gm
en
ta
tio
n

Se
m
.
Se
gm
.

Sc
en
e.
Cl
s.

O
cc
.
Ed
ge
s

Ro
om

La
yo
ut

Re
sh
ad
in
g

O
bj
ec
t C

ls.

2D
Se
gm
en
ta
tio
n

D
en
oi
sin
g

In
-p
ai
nt
in
g

Jig
sa
w

2D
Ed
ge
s

Va
ni
sh
in
g
Po
in
ts

2D
Ke
yp
oi
nt
s

A
ut
o
en
co
de
r

S
cr
at
ch

Pi
xe
ls-
as
-st
at
e
Bl
in
d

Ra
nd
om

Pr
oj
ec
tio
n

0.9

1.0

1.1

1.2

R
e
l.

R
e
w
.
v
s
.
B
li
n
d

O
bj
ec
t
Cl
s.

Se
m
.
Se
gm
.

Cu
rv
at
ur
e

Sc
en
e.
Cl
s.

2.
5D

Se
gm
en
ta
tio
n

2D
Se
gm
en
ta
tio
n

D
ist
an
ce

Va
ni
sh
in
g
Po
in
ts

O
cc
.
Ed
ge
s

Re
sh
ad
in
g

2D
Ed
ge
s

Su
rfa
ce
No
rm
al
s

Jig
sa
w

3D
Ke
yp
oi
nt
s

Ro
om

La
yo
ut

A
ut
oe
nc
od
er

Ra
nd
om

Pr
oj
ec
tio
n

Sc
ra
tc
h
Bl
in
d

Pi
xe
ls-
as
-st
at
e

2D
Ke
yp
oi
nt
s

D
en
oi
sin
g

In
-p
ai
nt
in
g

0

1

2

R
e
l.

R
e
w
.
v
s
.
B
li
n
d

D
ist
an
ce

Re
sh
ad
in
g

2.
5D

Se
gm
en
ta
tio
n

3D
Ke
yp
oi
nt
s

Su
rfa
ce
No
rm
al
s

Cu
rv
at
ur
e

2D
Ed
ge
s

O
bj
ec
t C

ls.

Ro
om

La
yo
ut

Sc
en
e.
Cl
s.

Jig
sa
w

2D
Se
gm
en
ta
tio
n

Sc
ra
tc
h

Ra
nd
om

Pr
oj
ec
tio
n

In
-p
ai
nt
in
g

Va
ni
sh
in
g
Po
in
ts

2D
Ke
yp
oi
nt
s
Bl
in
d

Pi
xe
ls-
as
-st
at
e

A
ut
oe
nc
od
er

O
cc
.
Ed
ge
s

Se
m
.
Se
gm
.

D
en
oi
sin
g

0.0

0.5

1.0

R
e
l.

R
e
w
.
v
s
.
B
li
n
d

G
ib

s
o

n

(E
x
p

lo
ra

ti
o

n
)

G
ib

s
o

n

(P
la

n
n

in
g

)

G
ib

s
o

n

(N
a

v
ig

a
ti

o
n

)

H
a

b
it

a
t

(E
x
p

lo
ra

ti
o

n
)

Test-Set Reward

H
a

b
it

a
t

(P
la

n
n

in
g

)

Figure A.5: Performance. The reward relative to blind for all methods. Agents significantly better than scratch are

shown in red.

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 101

0 5 10 15 20 25 30

Training Frames (x10000)

0.5

1.0

1.5

R
el
at
iv
e
R
ew

ar
d
vs
.
B
lin
d

Reshading
Train Rew.

Test Rew.

Blind (Test)

0 5 10 15 20 25 30

Training Frames (x10000)

0.5

1.0

1.5

Autoencoder

0 5 10 15 20 25 30

Training Frames (x10000)

0.5

1.0

1.5

Scratch

0 5 10 15 20 25

Training Frames (x10000)

0

1

2

R
el
at
iv
e
R
ew

ar
d
vs
.
B
lin
d

Object Cls.
Train Rew.

Test Rew.

Blind (Test)

0 5 10 15 20 25

Training Frames (x10000)

0

1

2

Autoencoder

0 5 10 15 20 25

Training Frames (x10000)

0

1

2

Scratch

0 10 20 30

Training Frames (x10000)

0.75

1.00

1.25

R
el
at
iv
e
R
ew

ar
d
vs
.
B
lin
d

Surface Normals

Train Rew.

Test Rew.

Blind (Test)

0 10 20 30

Training Frames (x10000)

0.75

1.00

1.25

Autoencoder

0 10 20 30

Training Frames (x10000)

0.75

1.00

1.25

Scratch

Visual Exploration Local PlanningVisual-Target Navigation

S
e
le

c
te

d
 P

o
lic

ie
s

Object Cls. Autoencoder Scratch Reshading Autoencoder Scratch Surface Normals Autoencoder Scratch

Figure A.6: Mid-level feature generalization. The plots above show training and test performance of scratch vs.

some selected features throughout training. For all tasks there is a significant gap between train/test performance for

scratch, and a much smaller one for the best feature. This underscores the importance of separating the train and test

environment in RL.

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 102

Figure A.11: Max-coverage feature sets exhibit strong performance and desirable behavior on Local Planning

in Habitat. The shows performance on the Habitat/Local Planning test set along a variety of dimensions. Features

are ordered according to test-set reward. Max-coverage policies exhibit a strong combination of desirable properties,

suggesting that they confer the benefits of mid-level vision.

103

Appendix B

Chapter 3 Supplementary Material

Supplementary Material

The supplementary material provides additional materials that support the main paper. Specifi-

cally we include:

I. An overview video of the project (Section B.1)

II. Videos of sim-to-real test episodes from physical onboard cameras (Section B.2)

III. Code (Section B.3)

IV. Additional experiments with shaped rewards (Section B.4)

V. Complete sim-to-real episode-level results (Section B.5)

VI. Complete descriptions of manipulation tasks (Section B.6)

VII. Complete descriptions of navigation tasks (Section B.7)

VIII. Complete description of train/test splits (Section B.8)

IX. Full list of vision objectives and samples of networks evaluated in our environments (Sec-
tion B.9)

X. Complete descriptions of sim-to-real setup (Section B.10)

XI. Policy training setup (architectures, hyperparams, etc.) (Section B.11)

XII. Complete description of baselines (Section B.12)

XIII. Train/Test curves for experiments in the main paper (Section B.13)

B.1 Overview Video Clip

The supplementary material includes an overview video clip which provides various results from

the proposed study including a description of the main hypotheses and comparisons to controls.The

clip also shows some sample episode of the sim-to-real generalization experiments, which we find

insightful. We strongly recommend watching the video clip.

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 104
K

ey
p

o
in

t3
D

S
cr

a
tc

h

Frame Sequence of a sample test. Target location 5.1 meters away
(showing every 18 frames)

Trajectories

frame #1 frame #19 frame #37 frame #55 frame #73 frame #75

frame #1 frame #19 frame #37 frame #55 frame #73 frame #91 frame #98

Success

Fail

Figure B.1: Frame sequence of a sample test episode. Selected frames from keypoint3D (top)

and scratch (bottom) experiments. Mid-level versus no features: Even when the target is far away

and occluded from the agent, mid-level features are able to successfully complete the task - here is

an example of using 3D keypoints. The absence of such features leads most of the cases to failed

attempts. We include more than 100 execution videos in the supplementary main video and in

the folder sim_to_real/test_episode_videos.

B.2 Videos of sim-to-real test episodes from physical onboard

cameras

We ran 594 evaluation episodes in the sin-to-real experiments comprising 13 hours of runtime.

In the folder sim_to_real/test_episode_videos, we’ve included videos from onboard

RGB cameras during a representative sample of the test episodes. These videos include a dashboard

showing useful metrics at each point in time such as distance to goal, and episode success. Frames

sequences from two videos videos are shown in Figure B.1.

B.3 Code

We provide all of our code through a Github repository available https://github.com/

alexsax/robust-policies-via-midlevel-vision

B.4 Experiments with Shaped Rewards

Using sparse rewards and HER, we were unable to get the agent trained from scratch to learn useful

behaviors in our environments, even after running multiple hyperparameter searches. HER [8]

required using shaped rewards to train from pixels, and we were also able to train an agent only by

using a dense, shaped reward. Agents trained using mid-level vision outperformed agents trained

from scratch even when the pixel-based agents were trained using a dense reward, but dense reward

also improved performance for mid-level based agents, shown in Figure B.8.

https://github.com/alexsax/robust-policies-via-midlevel-vision
https://github.com/alexsax/robust-policies-via-midlevel-vision

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 105

B.5 Complete sim-to-real episode-level results

These are provided in the file sim_to_real/test_episodes.csv.

B.6 Descriptions of Manipulation Tasks

We provide full descriptions of the task setups within RLBench.

Reward: Sparse reward is given by 0 when the cube is within an ϵ = 4cm distance of the target,

and -1 otherwise. Dense/shaped reward is given by the negative euclidean distance between the

target and the end effector / object, with a positive reward bonus of 0.1 when within the ϵ distance.

In total, we tried rewards of the form −|g − sobject|
p
2,−|g − sobject|

p
1, p ∈ {1, 2} and a brief search

over reward bonuses. [8] finds that more advanced shaped rewards considering future states does

not help in learning tasks.

Gripper: For Reach and Push, the gripper is in a fixed position. For Pick and Place, it is

controlled by the agent’s actions. A positive value is considered a close action if not already closed,

and vice versa a negative value an open action.

Extra Task Details:

Reach: The target sphere location is randomized in a cube. The agent begins in a fixed position

within the cube.

Push: The cube starts in a fixed location on the table. The target sphere location is randomized in

a square around the cube. The agent begins in a fixed position above the cube.

Pick and Place: The cube location is randomized in a square on the table. The target sphere

location is randomized in a square at a fixed z position above the table. To aid exploration

as in [8], the agent begins half of the episodes gripping the cube. We were also able to train

mid-level policies by starting half of the episodes with the target sphere on the table, but

present the results using the aforementioned setup.

B.7 Description of Navigation Tasks

The task under consideration is PointGoal [7] (referred to as Local Planning in [182]). In the

PointGoal task, the agent must navigate to a specified (fixed) target location coordinate. The target

location is specified as a vector from the agent to the target. The agent receives positive reward for

Euclidean distance to goal at each timestep, and receives negative reward for collisions and time

spent. During training, the episode terminates successfully when the agent comes within 0.5m of

the goal location and fails if the agent doesn’t reach the goal in 400 actions. In real-world testing,

the episode additionally terminates if the agent collides with a wall or obstacle.

Action space Discretized to A = {forward 0.25m, pivot right 10◦, pivot left 10◦}. To abstract

away difficulties and imperfections in simulating physical dynamics, Gibson assumes no lag

dynamics in either the controller or camera; thus, the sense-action loop for the agent consists of 1)

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 106

policy receives RGB image from Gibson; 2) policy produces an action; 3) embodied agent teleports

to resulting pose; 4) policy receives a new RGB image. We refer the reader to [223] for a detailed

discussion of collision handling.

Observation space of the agent consists of Taskonomy [238] encoder representations (with

shape 16× 16× 8) which output the mid-level features as well as the vector to target location. The

vector to target location is encoded as cos and sin of the relative heading of the agent to the target,

and the magnitude of the distance. To match the shape of the Taskonomy encoders, the target vector

is tiled to have shape 16× 16× 3.

B.8 Train and Test Splits

Manipulation

Figure B.2: Train/test split of textures for domain randomization. Left: Colors used for textures in the domain

randomization treatment group. Replaced table, floor, and background textures. Right: Textures used in the testing

environment for all policies.

We create our train/test set through applying color textures to the floor, walls, and table. To generate

colors, we generate HSV tuples with equally spaced values across each dimension, throwing

away values for visibility. We take 90% of these values along each dimension for train, and hold

out the remaining 10% for test. This formed the train and test for policies trained with domain

randomization, whereas for policies trained with the regular environment, the test set was given by

the domain randomized train set.

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 107

Sim-to-real

The sim-to-real policies are trained in simulation in a single building and tested in two unseen

physical buildings. For complete information, please see Section B.10.

B.9 Mid-Level Vision Objectives

We trained our agents using the following mid-level objectives:

All mid-level vision objectives:

Mid-Level Vision Objectives (Φ̃)

Autoencoding

Denoising

Depth Estimation, Z buffer

Edge Detection, 2D

Edge Detection, 3D

Image Segmentation

Surface Normal Estimation

Except for Image Segmentation we used the tasks as defined in [238]. Image segmentation is

similar to instance segmentation, but in our case each instance of an item floor, table, arm,

gripper, object are sorted into their own label. The object class includes target spheres

as well as cubes.

For denoising, we use inputs with added Gaussian noise independent per pixel sampled from

N (0, 0.05).
Dataset Generation: We generate a dataset to train the mid-level vision objectives by taking

random actions in various environment setups. The environments we train on are Reach and Push

as above, as well as Pick + Place with agent starting above and near the block. For each of these

setups, we generate with and without domain randomization as well as with 2 camera angles. We

take uniformly random actions for 25 resets and 150 steps per reset. For the procedural objects, we

train another dataset which is comprised of 45 objects each with 50 resets and 2 camera angels. We

adapted the code from [170].

Training / Fine Tuning: For final performance figures, we initialize from Taskonomy [238], and

for the checkpointing figure we initialize from scratch. We use the Adam optimizer with learning

rate 3e-4, with batch size 32, and number of epochs 150 and 500 respectively, taking the model with

the best validation loss. We use L1 Loss for all takss except for Image Segmentation, where we use

Cross Entropy Loss. For the procedural objects, we fine tuned the mid-level normal policy from the

final performance figures on just the procedural object dataset, using learning rate 3e-4 with batch

size 32 and 500 epochs.

We show (non-cherry-picked) results of the final networks evaluated in our environments in

Figure B.3.

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 108

Reach

Push

Autoencoding Denoising Depth Estimation Normals Image Segm. Occlusion Edges Texture EdgesQuery

Pick + Place

With Domain

Randomization

(Pick + Place)

With
Procedurally

Generated

Objects

(Pick + Place)

Figure B.3: Mid-level neural networks evaluated in our environments.

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 109

B.10 Sim-to-Real Setup

For the sim-to-real setup we test the generalization of the pretrained ªLocal Planningº (PointGoal)

policies from [182]. The policies are trained in the Gibson simulation environment [223], which

employs virtualized spaces to render images to the agent that capture much of the inherent visual

and semantic complexity of the real world. The training environment, called Beechwood, is a large

house with 154.9m2 of navigable space.

The policies are AtariNet [146] models trained with Proximal Policy Optimization [186] and

Generalized Advantage Estimation [185]. A thorough hyperparameter search was conducted for the

scratch baseline, with the best performing hyperparameters frozen and used for all policies; this

method favors the scratch baseline, making any gains over scratch all the more significant.

Hardware Setup

We used a Turtlebot with Kobuki base. The Turtlebot is a reliable mobile base platform, with easy

interaction using the Robot Operating System (ROS) framework. The on-board computer is quite

minimal, and doesn’t come with sufficient computing resources to run the policies; we therefore

network Turtlebot with a server equipped with an NVIDIA RTX 2080 Ti GPU. We additionally

augment the platform with a WiFi AC wireless adaptor and router to minimize communication

latency between Turtlebot and the server. The round-trip latency between the main computer and

Turtlebot is optimized to roughly .2s per action, resulting in near-continuous action execution.

Our camera is a Microsoft Kinect, which has a 43◦ vertical field of view and outputs color

images as 640× 480× 3 tensors. We only use the RGB output of the camera and discard depth.

We discretize the Turtlebot’s continuous action space into A = {forward, pivot right, pivot left}
to match that of the policies; each action corresponds to a velocity command to the Turtlebot base,

resulting in roughly 10cm movement along robot x-axis and heading changes of -10◦ and +10◦ for

each of the three actions respectively.

For calculation of vector from agent to target, we utilize the Turtlebot’s on-board odometry as

ground truth; in particular, we don’t use external localization such as a GPS, beacon, or SLAM [153]

module. We find that the odometry exhibits acceptable performance for our scenarios, with average

error of 0.25m across all runs.

Our controller communicates with the main computer with a client/server pattern. When the

controller receives a motion command, it executes an action for .6 seconds and stops. The next

received image is then sent back to the main computer. This pattern is used to ensure images acted

on by the policy are the final result of executing the previous action, and so provides close parity

with the sense-action-loop training dynamics experienced by the policy in simulation.

Real-World Testing Scenarios

We test our policies on 24 scenarios consisting of start-goal location pairs across two office buildings

with notably diverse interior scenes, seen in Figure B.4. Each building comes with pre-existing

3D scans and metric meshes, along with camera positions used for scanning. The scans are only

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 110

used for planning the study, and the agent does not receive any prior information from them.

Scenarios were generated in each building by 1) selecting start locations uniformly at random

from the list of camera positions constrained to public areas; 2) sampling a target distance d
from a Gaussian with mean 5m and standard deviation 4m; 3) choosing the camera position

that has distance from start location closest to the sampled distance; 4) uniformly sampling the

initial orientation from [−π, π]. Following this procedure, we generated four starting locations for

Building 1 and three starting locations for Building 2, each with three goal locations for a total of

12 scenarios in Building 1 and 9 scenarios in Building 2. We generated a total of 594 evaluation

runs across all scenarios and policies, for a total of 13 hours of continuous execution time. A full

list of scenarios and their geometric characteristics can be found in the supplementary material file

sim_to_real/test_episode_results.csv.

Scenarios vary significantly in length, complexity, and visual characteristics. One metric

used to evaluate the difficulty or non-linearity of a physical navigation scenario is navigation

complexity [223], defined as the ratio of geodesic (i.e. optimal path) distance to Euclidean distance.

Average geodesic distance among scenarios is 4.92m (variance 4.16m2) in Building 1, 6.42m
(variance 0.86m2) in Building 2, and 5.24m (variance 3.65m2) overall, while average navigation

complexity among scenarios is 1.18 (variance 0.036) in Building 1, 1.06 (variance 0.001) in Building

2, and 1.15 (variance 0.03) overall. Visual differences between buildings include floor patterns and

coloration, lighting sources & conditions, furniture styles, clutter makeup and distribution, and wall

material (e.g. glass or drywall).

B.11 Policy Learning Setup

Architecture: Our architecture follows [182] closely:

Pretrained Feature encoder: For all tasks, we modified a ResNet-50 encoder with no average-

pooling and replace the last stride 2 convolution with stride 1. This gives us an output shape of 16 x

16 x 2048. We use a 3 x 3 convolution to transform the output to a shape of 16 x 16 x 8.

Feature readout network: The feature readout network maps the feature encoding to a final

representation. It consists of one convolutional (Conv) layer and two fully-connected (FC) layers:

• Conv, 32 channel, 4x4 kernel, stride 4

• FC, ouptut size = 1024

• FC, ouptut size = 512

We train the readout networks on the vision objectives end to end, and at the end of training freeze

the encoder output for use as inputs to the downstream policy networks.

Atari-net network: The atari-net network [146] consists of three convolutional layers; we

modify it slightly as follows:

• Conv, 32 channel, 4x4 kernel, stride 2

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 111
B

u
il

d
in

g
 #

1
B

u
il

d
in

g
 #

2

Keypoint3D Autoencoder

Curvature Jigsaw Blind
Random

Projections

Semantic

Segmentation

Scratch

DepthNormals Class Places

Pixels as State

Class 1000

Keypoint3D Autoencoder

Curvature Jigsaw Blind
Random

Projections

Semantic

Segmentation

Scratch

DepthNormals Class Places

Pixels as State

Class 1000

: Start location

: Target location

Figure B.4: Recorded Trajectories of all experiments for the 2 text buildings. We ran a total of

594 evaluations in both buildings, for a variety of start-target locations and features. The recorded

trajectories are visualized per feature and start-target pair.

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 112

• Conv, 64 channel, 4x4 kernel, stride 1

• Conv, 64 channel, 3x3 kernel, stride 1

• FC, ouptut size = 1024

• FC, output size = 512

Putting it together: For mid-level policies, we use images of size 256 x 256 x 3 as input for the

feature encoder, and freeze the output for use as the representation for downstream policy networks.

We use the Atari-net network with slight modifications for learning from pixels on images of size

64 x 64 x 3.

Other methods: Another approach (such as in [247] and others) is to directly use the output of

the upstream computer vision tasks instead of the latent representations. In addition to the latents,

we ran experiments with the full output as well as the ground truth of the vision tasks, and found

no difference in the performance; this was the case in [182] as well. Here, we chose the latents

approach due to its uniform shape across tasks and smaller size.

Hyperparameters: We conducted a grid search for the best hyperparameters for learning from

scratch for Reach, and then used those same hyperparameters for mid-level policies across all tasks,

aside from a few noted differences: first, for Reach, noise for exploration was epsilon-greedy with

ϵ = 0.3, while for Push and Pick and Place we used Gaussian noise decaying from σ = 0.3 to 0.1
over 106 timesteps. For learning rate we used 1e-5 for both actor and critic when learning from

pixels, and 1e-4 for both actor and critic when learning mid-level policies. We find that mid-level

policies are still successful using a learning rate of 1e-5, but we are unable to successfully train

policies from scratch using a learning rate of 1e-4. The rest of the hyperparameters are the same:

Batch size of 128, discount factor 0.95, target policy noise 0.2, policy delay of 2, replay buffer size

of 1e6, rollouts of size 100 per epoch, gradient updates of size 100 per epoch, rollouts of size 50.

We use the Adam optimizer [109] and no frame stacking.

HER: To help with exploration for training from sparse rewards, we implement a visual form of

HER [8], where instead of concatenating different goals to a state/proprioception observation, we

re-render the observation using different goals. For goal resampling, we use the "final" method with

k=4.

Training Summary

We provide a full description of the main agents we trained on Reach, Push, and Pick + Place. We

focused on training agents with dense rewards as well as with sparse rewards in conjunction with

HER. Policies trained using state observations were successful for all settings. Policies trained from

scratch were only successful on Reach with dense reward, failing on all tasks with sparse reward.

Successful mid-level policies were trained on Reach and Push with dense reward, as well as on all

tasks with sparse reward.

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 113

B.12 Full Descriptions of Baselines

We use the following baselines, which are the same as [182]. They are summarized in [182] and

reproduced here:

Tabula Rasa (Scratch) Learning: The most common approach, tabula rasa learning trains the

agent from scratch. In this condition (sometimes called scratch), the agent receives the raw RGB

image as input and uses a randomly initialized AtariNet [146] network.

Blind: The blind baseline is the same as tabula rasa except that the visual input is a fixed image and

does not depend on the state of the environment. This gives us an idea of how much performance

can be learned from nonvisual biases, correlations, and structure of the environment.

Random Nonlinear Projections: this is identical to using mid-level features, except that the

feature encoder is not pretrained but rather randomly initialized and then frozen. The policy then

learns on top of this fixed nonlinear projection. This addresses the possibility that the ResNet

architecture, not the offline perception task, is responsible the representations’ success.

Random Actions: this uniformly randomly samples from the action space. It calibrates how

difficult the task is without any specialized method and determines how much can be obtained just

from random chance.

Pixels as Features: this is identical to using mid-level features, except that we downsample the

input image to the same size as the features (16× 16), apply a convolutional layer to match output

sizes, and use it as the feature. This addresses whether the feature readout network could be an

improvement over AtariNet [146].

In addition, we test:

State: In this setting the agent has access to the complete environment state: joint positions, the

goal centroid and, if applicable, the object center. Since objects are always the same, this should

be sufficient.

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 114

B.13 Train and Test Curves

Train/test curves for mid-level policies trained with sparse reward

Train/test curves for policies trained with sparse rewards. We omit the curves for scratch as they

failed to train in all environments.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Normal Reach

Train Test

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Image Segmentation Reach

Train Test

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

3d Edges Reach

Train Test

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Depth Reach

Train Test

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Denoise Reach

Train Test

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Autoencoder Reach

Train Test

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

2D Edges Reach

Train Test

Figure B.5: Reach policies: reward vs. number of training iterations

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 115

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Normal Push

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

3D Edges Push

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Autoencoder Push

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

2D Edges Push

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Denoise Push

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Image Segmentation Push

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Depth Push

Train Test

Figure B.6: Push policies: reward vs. number of training iterations

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Autoencoder Pick and Place

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

3D Edges Pick and Place

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

2D Edges Pick and Place

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Denoise Pick and Place

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Image Segmentation Pick and Place

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Normal Pick and Place

Train Test

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Depth Pick and Place

Train Test

Figure B.7: Pick and place policies: reward vs. number of training iterations

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 116

Train/test curves for policies trained with dense reward

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Scratch Reach Dense

Seen Unseen

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Normals Reach Dense

Seen Unseen

Trained on Regular Environment

0 2 4 6 8 10 12

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Scratch Reach Dense

Seen Unseen

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Normals Reach Dense

Seen Unseen

Trained with Domain Randomization

Figure B.8: Train/test curves for policies trained with dense reward. The reward engineering improved perfor-

mance and was necessary to get pixels to train at all. However, we found the approach scaled poorly as harder tasks

required prohibitive amounts of engineering.

Train/test curves for policies trained with additional objects

0 2 4 6

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Mid-Level Policy on Red Objects

Seen Unseen

0 2 4 6

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Mid-level Policy on Green Objects

Seen Unseen

0 1 2 3 4 5

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

State Policy

Seen Unseen

Figure B.9: Train/test curves for policies trained to pick + place various objects.

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 117

Test curves for policies trained from state

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

State Pick and Place

State

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

State Push

State

0.0 0.1 0.2 0.3 0.4

Timesteps (100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

State Reach

State

Figure B.10: Train/test curves for policies trained from true environment state.

118

Appendix C

Chapter 4 Supplementary Material

Supplementary Material

http://consistency.epfl.ch

The supplementary material provides qualitative and quantitative results and method details

which were moved out of the main paper in interest of space. Specifically:

I. A video evaluation showing various networks applied frame-by-frame to a Youtube video
(§ C.1).

II. A live demo where you can apply our networks to your own query images (§ C.2).

III. Results of consistency with unsupervised tasks (§ C.3).

IV. Discussion of how the perceptual loss formulation handles ill-posed tasks and associated
experiments (§ C.4).

V. Description of our strategy for balancing different loss terms (§ C.5).

VI. Plots showing that minimizing the direct term does not minimize consistency (§ C.6).

VII. Derivation of generic path length criterion (§ C.7).

VIII. Sensitivity analysis: Comparison of different edge selection strategies (§ C.8).

IX. Sensitivity analysis: Training with consistency over multiple path lengths (§ C.9).

X. Results with standard error over multiple initialization seeds (§ C.10).

XI. Results on NYUv2 dataset (§ C.11).

XII. Results on Taskonomy dataset reported with additional perceptual tasks (§ C.12) and using
common task-specific metrics (e.g., mean and median angular error for surface normals)
(§ C.12).

XIII. More qualitative results provided in § C.13 and on the project website.

XIV. More qualitative results on estimating surface normal out of middle domains before and after
enforcing consistency. (§ C.13).

http://consistency.epfl.ch
http://consistency.epfl.ch

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 119

XV. Definition and visualizations of the ªBlind Guessº (statistically informed guess) for the
Taskonomy dataset (§ C.14).

XVI. Code: including pretrained models, runnable examples, and a Docker (§ C.15).

C.1 Video Evaluation

The project website includes video clips that provide various results from the proposed framework

as well as the baselines. In particular, the video clips provide results of different stages of the

method applied on the YouTube video used in [237], which we find insightful. We recommend

watching the clips.

C.2 Live Demo

The project website includes a live demo that allows you to upload your own query images. The

demo will run that query through our servers and return the results, so that you can visualize the

predictions for various tasks from networks trained with and without consistency, as well as compare

to baselines. The demo page also contains a link to the ªdemo archiveº where you can browse

uploads from other users.

C.3 Consistency with Unsupervised Tasks

As described in the main paper, the tasks a network is constrained to be consistent with could be

unsupervised or self-supervised too. This is particularly useful if the dataset in hand is either single-

task (as most common datasets are) or includes few tasks. Unsupervised tasks allow generating new

domains without any additional supervision, thus enable utilizing denser cross-task consistency

constraints during training. Examples of such tasks are 2D texture edges and 2D keypoints

(SURF[22]), which were included in our dictionary.1 Such tasks have fixed operators thus can be

applied on any images to produce their respective domains with no additional supervision.

Interestingly, enforcing cross-task consistency with such unsupervised domains, even without

using any supervised ones, still led to better fitting the data and producing improved predictions.

Fig. C.1 shows the results of learning to predict surface normals, while the two consistency domains

were 2D texture edges and 2D keypoints. In other words, using the notation X→Y1→Y , here X was

RGB image, Y1 was surface normals, and the two domains in Y were 2D edges and 2D keypoints.

The loss was Lperceptual
XY1Y

.

The unsupervised consistency domains improved certain relevant features in the predicted

normals. We expect the improvement to increase with more tasks added, though the gain will

plateau beyond a certain point as the tasks will start to become redundant. Thus we expect the

1See [237] for more examples. Any task that has a fixed operator is a candidate.

https://consistency.epfl.ch/visuals
https://consistency.epfl.ch/demo
https://consistency.epfl.ch/demo

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 120

X Y1

Normals 2D Texture Edges (Sobel) 2D KeypointsRGB Image

Sensor Ground Truth

Learning with
(unsupervised)
Cross-Task Consistency

Learning without
Cross-Task Consistency

Y (unsupervised)

Figure C.1: Learning with cross-task consistency with unsupervised domains shown for a sample query. The

conventions of the figure is the same as Fig. 4 of the main paper. Using the notation X→Y1→Y , here X is RGB image,

Y1 is surface normals, and two domains in Y are 2D texture edges (Sobel filter) and 2D keypoints., depth, and occlusion

edges. Learning with Cross-Task Consistency constraints still improved the results, even though no supervision was

used in the introduced consistency constraints.

consistency tasks would need to be ‘engineered’ beyond a certain point to squeeze out further

improvements.

Generally speaking, the usefulness of unsupervised tasks extends the applicability of the pro-

posed method, in terms of improving the fit to the data, to single/few task datasets.

C.4 Handling of Ill-Posed Tasks

As noted in the introduction and Section 3.1.2 of the main paper, the task sets we consider may not be

informationally equivalent ± in the sense in that, in theory, one may not always be able to convert one

to the other without some uncertainty. For example, we can expect to derive normals from depth, but

the opposite direction is ill-posed. Therefore employing such an ill-posed link normal→depth as a

loss for training a task like RGB→normal (in other words the triangle RGB→normal→depth)

may appear problematic. That would be because, in theory it is impossible to infer the correct depth

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 121

even given ground truth normals. This is what causes cycle consistency to ‘hide’ information in the

predicted image, shown in Fig. C.2. Here we describe three points toward resolving this issue:

Input GT

Cycle
Consistency

RGB Normals → GT Normal RGB → RGB Normal

hf
x y

1
h(y

1
)

Perceptual
Consistency

x y
1

Training Process

Figure C.2: Cycle consistency vs. the proposed perceptual formulation. Top: Using naive cycle consistency for

ill-posed tasks (e.g. predicting RGB from surface normals) leads to the well-known problem where networks hide

hide information about the higher-information domain in the lower-information prediction. In this case, the network

encodes dark areas of the RGB image with a grid-like pattern in the predicted surface normals. Bottom: The proposed

perceptual formulation eliminiates this degenerate solution and, as expected, the artifacts disappear. Surface normal

prediction quality also improves.

I) Most links are not ill-posed to learn, despite analytical definitions: Even though a link

may be ill-posed in theory, the contextual information visible in the datapoint often resolves the

uncertainty; just like the fact that when humans look at ground truth normals, they can infer the

depth of the same scene based on the semantics and contextual information visible in the normal

image. We found that the trained neural networks were surprisingly good at using this knowledge.

This is well presented in Fig.4-(lower row) of the main paper, where the normals could be well

predicted out of intuitively surprising and ill-posed tasks (e.g. see TextureEdges→normal or

3DCurvature→normal or SurfKeypoints→normal). Hence most of the links in the complete

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 122

graph of tasks turn out to be not significantly ill-posed, despite their analytical definition. This also

underscores the advantages of a fully computational and data-driven method vs those that primarily

rely on analytical relationships [166], as many of the cross-task links we successfully use would be

analytically ill-posed.

II) The perceptual loss formulation handles the residual error: Even if a link is not ill-posed,

we still learn them using neural networks, which likely results in a small but non-zero loss after

convergence. This means the link Y1

f
Y1Y2−−−→Y2 will not yield the perfect Y∗

2 even if provided with

perfect Y∗
1 in the input, i.e. f

Y1Y2
(Y∗

1) ̸= Y∗
2 . Thus, there will always be residual imperfections

in the link, and consequently when trying to employ it to optimize the task X
f
XY1−−−→Y1 using the

triangle X
f
XY1−−−→Y1

f
Y1Y2−−−→Y2, the imperfections of Y1

f
Y1Y2−−−→Y2 may corrupt the link X

f
XY1−−−→Y1.

2

(Again, that will be due to the fact that even outputting perfect Y∗
1 by f

XY1
(X) would not result in

estimating Y∗
2 in the end of the triangle f

Y1Y2
◦ f

XY1
(X) since f

Y1Y2
(Y∗

1) ̸= Y∗
2 .) Therefore using

a loss of the form L = ∥f
Y1Y2

◦ f
XY1

(X) − Y∗
2∥ in the framework to train X

f
XY1−−−→Y1 would be

problematic and corrupt the network.

We handle this by adopting a perceptual loss [103] based formulation. This basically means we

use the loss

L = ∥f
Y1Y2

◦ f
XY1

(X)− f
Y1Y2

(Y∗
1)∥, (C.1)

in lieu of L = ∥f
Y1Y2

◦ f
XY1

(X)− Y∗
2∥. This simple trick enforces that predicting perfect X ∗

2 by

f
XY1

(X) would result in exactly loss 0 in the triangle loss, hence the residual imperfections of

Y1

f
XY1−−−→Y2 would not propagate to learning of X

f
Y1Y2−−−→Y1 via the triangle loss X

f
XY1−−−→Y1

f
Y1Y2−−−→Y2.

In addition, the above perceptual loss based formulation makes training datasets with pair

annotations (X ,Y1) & (Y1,Y2), rather than triplet (X ,Y1,Y2) or higher order annotations, sufficient

for learning with the cross-task consistency triangle X
f
XY1−−−→Y1

f
Y1Y2−−−→Y2. That is because the ground

truth for the third domain Y∗
2 is not used in the above perceptual loss in Eq. C.1, hence at no point

all three domains (X ,Y1,Y2) need be simultaneously known for one datapoint.

III) Removing the low-mutual-information edges: If a link between two domains is severely

problematic to the extent that the points I and II do not address it, we simply remove them from

the complete task graph. We do that by performing vanilla pre-training of links between all pairs

of domains (Xa ×Xb) and removing those that do not results in a sufficiently low loss. However,

we barely faced such links (see point I above) and noticed removing or not removing them did not

make a notable difference in the overall results after optimizing the entire system.

2Note that X
f
XY1−−−−→Y1

f
Y1Y2−−−−→Y2 is the same as X−−→Y1−−→Y2 in the rest of the paper, just annotated with

functions for ease of followed notations.

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 123

(a) Reshading→ Occl. Edges (b) Reshading→ 2D Edges (c) Reshading→ 3D Keypoint (d) Reshading→ 2D Keypoint

(e) Reshading→ Curvature (f) Reshading→ Normals (g) Reshading→ Depth

Figure C.3: Optimizing the standard direct loss does not lead to optimizing cross-task losses. Various cross-task

losses are plotted for a network that is being trained only for the standard direct MSE loss (orange curve) and one that is

being trained with the standard direct MSE loss as well as cross-task losses (red curve). The network being optimized

with only the direct loss does not reduce the perceptual losses, despite the fact that the direct loss was being successfully

optimized till full convergence. This echos the necessity of augmentation the training process with explicit losses based

on cross-task consistencies.

C.5 Balancing Different Loss Terms

As discussed in the main paper, the final (total) loss is:

N∑

i=1

(∣∣∣f
XYi

(x)−yi

∣∣∣+ λ
N∑

j=1

∣∣∣f
YiYj

◦f
XYi

(x)−f
YiYj

(yi)
∣∣∣
)
,

which we can rewrite as:
N∑

i=1

(
Ldirect + λ

N∑

j=1

Lpercept

XYiYj

)
,

One issue is that if the number of perceptual losses is large, the perceptual losses will come to

dominate the loss. We found that choosing λ to compensate for this effect improved the quality of

the final networks.

We set λ per-batch and per-loss in order to make the magnitude of the perceptual losses’ total

gradient contribution independent of the number of perceptual losses used. Specifically, we set λ as

follows:

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 124

λij(x) =
|∇Ldirect|+

∑
k ̸=i,j |∇Lpercept

XYiYj
|

(N − 1)
(
|∇Ldirect|+

∑
k |∇Lpercept

XYiYj
|
) ,

where | · | is the ℓ1 norm.

C.6 Optimizing the standard direct loss does not lead to

optimizing cross-task losses

In this section we experimentally demonstrate that optimizing the standard direct loss (e.g. MSE

loss) for a certain task does not naturally lead to optimizing the related cross-task losses; even if

the direct loss appears to go down. In other words, optimizing for X→Y1 does not substantially

optimize the red cross-task loss in X→Y1→Y2.

This is demonstrated in Fig. C.3, where various cross-task losses (i.e. the ‘→’s) are plotted for a

network that is being trained only for the standard direct MSE loss (orange curve) and one that is

being trained with the standard direct MSE loss as well as cross-task losses (red curve). For both

cases, the optimization starts from a baseline MSE-only network that is halfway to its convergence.

As apparent in the figure, the network being optimized with only the direct loss does not reduce

the perceptual losses, despite the fact that the direct loss was being successfully optimized till full

convergence. This is while the global minimum of both the direct loss (X→Y1) and the cross-task

losses (X→Y1→Y2) are the same (predicting the ground truth for Y1). This again echoes that,

given the existing sub-optimal optimizers, the process of training neural networks benefits from

explicit augmentation of cross-task consistency based losses. This is inline with the quantitative and

qualitative results provided in the main paper.

The results were reported using (re)Shading task. The conclusion was the same for other tasks.

C.7 Derivation of Generic Consistency Criterion

In the main paper we derived the triangle consistency constraint. The derivation for the general

path-consistency constraint is similar.

Here’s the setup: say that we have two paths (P = P1...Pk−1Pℓ and Q = Q1...Qℓ−1Qℓ). We

want to train the first edge in the path P , f
XP1

. Assume this edge does not also appear in Q. Note

that we are requiring P1 = Q1 = X and Pk=Qℓ. We can then define the path composition function:

f
P
(x)≜f

Pk−2
Pk−1

◦ f
Pk−1

Pk
◦ ... ◦ f

XP1
(x),

and the analogous functions: f
Q

for Q, and f
P
1:k′

for subpaths3 P1:k′ of P . The associated consistency

constraint is:

|f
P
(x)− f

Q
(x)|

3P1:k′ is the same as P up until and including Pk′ for k′ ≤ k.

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 125

Path selection method MSE (↓)

Maximally Violating Path 1.78

Random Path Selection 1.83

All Paths 1.88

Table C.1: Comparison of different path selection strategies in message passing.

.

The derivation requires mapped triplets (x, pk−1, pk) ∼ X × Pk−1 × Pk). In contrast, the final

equation (and, therefore, training) only requires paired data (x, pk−1) ∼ X × Pk−1.

Proof. In the derivation, we’ll absorb terms that are constant (w.r.t. the optimization parameters)

into some catch-all, C.

|f
P
(x)− f

Q
(x)|

≤ |f
P
(x)− pk|+ |pk − f

Q
(x)|

= |f
P
(x)− pk|+ C

≤ |f
Pk−1

Pk
◦ f

P
1:k−1

(x)− f
Pk−1

Pk
(pk−1)|

+ |fPk−1Pk
(pk−1)− pk|+ C

= |f
Pk−1

Pk
◦ f

P
1:k−1

(x)− f
Pk−1

Pk
(pk−1)|+ C

C.8 Sensitivity Analysis: Edge Selection

As described in Sec.3.2 of the main paper, multiple possibilities exists for selecting the path to be

optimized at each iteration. We adopted selecting the most inconsistent (Maximally Violating) path

at the time. We provide a discussion and experimental justification here.

Table C.1 compares different strategies for selecting the path to optimize in message passing

(i.e. SelectNetwork in Algorithm 1). Random Path Selection represents selecting one of the feasible

paths X→Y1→Y2 randomly. Maximally Violating Path represents selecting the most inconsistent

path at the time. That is akin to optimizing to reduce the upper bound of inconsistency in the system.

All Paths represents randomly picking a X→Y1 then using all of the perceptual losses that start

from Y1, with the total loss being the sum of all of them. Consequently, this method is slow and has

a large memory requirement as all many networks are in use at the same time.

As mentioned in the main paper, the results in Table C.1 shows picking the Maximally Violating

Path gave the best results, though there was not a significance difference among the methods in

terms of the final performance. In terms of the computation and memory requirements, using all

paths is significantly more expensive. This signifies the potential value in adopting a proper selection

criterion in message passing. We used Maximally Violating selection method in our experiments.

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 126

The amount of violation/inconsistency of a path X→Y1→Y2 is defined to be the loss of that path at

the predicting Y2 given X , normalized by a fixed constant which was found by via grid search.

Table C.1 is reported using (re)Shading task. The conclusions remain the same for different

tasks.

C.9 Sensitivity Analysis: Path Lengths

The proposed method is applicable to optimizing cross-task consistency with any inferences path

lengths. By path length, we are referring to the the number of cascaded edges in X→Y1→Y2→Y3→...
. Here we provide a discussion and experiments on this aspect. Table C.2 compares the final results

of optimizing with paths with maximum length 3 vs maximum length 2.

Method MSE

Path length 3 (X→Y1→Y2→Y3) 1.80

Path length 2 (X→Y1→Y3) 1.78

Table C.2: Impact of different path lengths in optimization.

As described in the main paper, there was a negligible difference associated with using longer

paths in our experiments. We believe this is due to the fact that our task graph is nearly complete,

hence for any path X→Y1→Y2→Y3 with length 3, the corresponding path with length 2 with

the same end points, i.e. X→Y1→Y3, is also included in the optimization. Hence the cross-task

consistency value of a path with length 3 is already enforced by a path with length 2, as far as

optimizing the link X→Y1 is concerned. The same discussion applies to paths longer than 3 as well.

Hence, as described in Sec. 3.2, we limited the length of sampled paths to 2 in our experiments

as shorter paths are computationally cheaper. However, the proposed framework is applicable to

arbitrary lengths, especially if the task graph is not complete.

Table C.2 is reported using (re)Shading task. The conclusion was the same for other tasks.

C.10 Standard Error Over Multiple Seeds

The tables below add Standard Error columns to the tables 1-3 of the main paper. The Standard

Error is reported over multiple (3) independent runs (ªStd. Err. (3 Runs)") of our network and

the main baseline as well as across test set images (ªStd. Err. (Test Set)"). The low Standard

Error denotes statistical significance in the observed trends. Also, please note that the reported

improvement margins (e.g. 0.87 vs 1.00) are quite significant (13% relative improvement) and

geometrically noteworthy.

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 127

Surface Normal Estimation Method MSE Std. Err. (Test Set) Std. Err. (3 Runs)

Baseline (UNet with MSE loss) 1.00 0.0037 0.0059
Consistency (UNet with consistency loss) 0.87 0.0052 0.0050

Error
Method (Depth) MSE Std. Err. (Test)

Baseline (UNet MSE) 0.40 0.0006
Consistency 0.36 0.0007

Error
Method (Reshading) MSE Std. Err. (Test)

Baseline (UNet MSE) 2.20 0.0005
Consistency 1.78 0.0003

Table C.3: Tables 1-3 of main paper with addition of Standard Error values (in bold). Results show statistical

significance in observed trends, as the standard errors indicate that these results are extremely unlikely to occur from

chance.

(Surface Normal Est.) Error (↓) Accuracy (↑)
Method Mean◦ Med.◦ L1 MSE ≤11.25◦ 22.5◦ 30◦

Baseline (UNet) 9.91 6.16 8.65 2.08 0.71 0.88 0.93
Cycle Consistency 12.83 9.85 11.01 2.63 0.57 0.83 0.91

GeoNet (Impr.) 10.27 6.47 8.97 2.22 0.70 0.87 0.92
GeoNet (Orig.) 10.08 6.49 8.79 2.09 0.71 0.88 0.93

Multitask 11.63 7.50 10.15 2.69 0.66 0.84 0.91
Pix2Pix 13.07 10.04 11.29 2.72 0.57 0.84 0.91

Prcpt. Loss (ImageNet) 11.06 7.14 9.65 2.53 0.68 0.85 0.91
Prcpt. Loss (Random) 11.29 7.45 9.85 2.57 0.66 0.85 0.91

Consistency 9.88 6.06 8.62 2.11 0.71 0.88 0.93

Table C.4: Evaluating surface normal prediction on NYU v2 test set. Values bolded and starred* indicate the

best-performing method. Values that are bolded but not starred indicate methods that were statistically indistinguishable

from the best-performing method (2-sample paired t-test, α = 0.01).

C.11 Results on NYUv2 Dataset

We used NYU v2 [193] dataset in addition to Taskonomy [237] and Replica [203] for evaluations.

Table C.4 shows our method and the main baseline, denoting that trends remain the same. Note that

NYU v2 was used for evaluation only, so the training dataset remained Taskonomy. These results

show the evaluation trends reported in the main paper were not specific to Taskonomy dataset. They

also suggest Taskonomy provided a better training data for achieving good geometric prediction

results compared to NYU v2 (as training our baseline UNet on Taskonomy and testing on NYU v2

reported better results compared to training on NYU v2 and testing on NYU v2± see Table 1 of

[166]) possibly due to its larger size and type of sensor ground truth. Hence we adopted Taskonomy

as the training dataset for a more reliable experimentation.

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 128

C.12 More Metrics

We provide additional evaluations on the Taskonomy and Replica datasets here in the supplementary

material to show that the results are not specific to the ℓ1-norm. Specifically we provide additional

task-specific and perceptual metrics that were omitted, for space, from Table 1 in the main paper.

The trends and conclusions remain the same as in the main paper.

Additional Task-Specific Metrics for Direct Prediction

Some tasks (surface normal estimation, depth estimation) also have additional common standard

metrics beyond MSE or ℓ1. Common task-specific metrics evaluating models on direct prediction of

RGB to X are provided for

• Surface normals: Angular error metrics are provided for Taskonomy (Table C.10) and

Replica (Table C.7), and NYUv2 (Table C.4).

• Depth estimation: Depth error metrics are provided for Taskonomy (Table C.8) and Replica

(Table C.5).

For reShading, since there are not commonly-accepted metrics, we provide both L1 and MSE error.

Common angular error metrics: The Tables C.10 & C.7 show five metrics beyond L1 and

MSE: mean and median of angular surface normal error, and the proportion of predictions within

11.25◦, 22.5◦, and 30◦ of the ground-truth. The trends and conclusions remain the same as in the

main paper.

Common depth error metrics: The Tables C.8 & C.5 show the same results as the direct

L1 prediction from Table 1 in the main paper, with the addition of standard depth estimation

metrics: Relative Error (Rel. Err), Scale Invariant Logarithmic error (SILog, main benchmark for

KITTI [67]), Inverse Root Mean Squared Error (IRMSE, RMSE is used for NYUv2 [193]) and

Logarithmic Error (log10). The trends and conclusions remain the same as in the main paper.

Additional Perceptual Metrics

We also provide additional perceptual metrics for both Replica and Taskonomy. Fig. C.7 shows

results using additional perceptual tasks (Keypoints 2D, Keypoints 3D, and Edges 3D) and metrics

(MSE) to those shown in Table 1 on Taskonomy in the main paper. In Replica, there are currently

only the three provided tasks, so we show MSE loss in addition to L1 from the main paper. The

trends and conclusions remain the same as in the main paper.

In general, evaluation of high dimensional regression tasks, in comparison to lower dimensional

classification, is more challenging as often no single metric captures all the desirable properties of a

prediction. Thus using multiple metrics simultaneously provide a more complete evaluation picture

for such cases.

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 129

Replica Direct Prediction (Additional Metrics)

(Depth Estimation) Error (↓)
Method L1 MSE IRMSE Log10 SI Log

Baseline UNet 1.99 0.07 0.00* 0.13 0.01*
Constant Pred. 4.81 0.38 0.00 0.32 0.07
GeoNet (Impr.) 1.83 0.06 0.00 0.13 0.01
GeoNet (Orig.) 4.01 0.30 0.00 0.23 0.04

Multitask 2.44 0.11 0.00 0.16 0.02
Taskonomy 3.72 0.24 0.00 0.23 0.02
Consistency 1.63* 0.05* 0.00 0.12* 0.01

Table C.5: Depth estimation on Replica.

(reShading) Error (↓)
Method L1 MSE

Baseline UNet 9.55 1.77
Constant Pred. 16.45 4.35

Multitask 10.32 1.95
Taskonomy 11.43 2.27
Consistency 9.22* 1.69*

Table C.6: ReShading estimation on Replica.

(Surface Normal Est.) Error (↓) Accuracy (↑)
Method Mean◦ Median◦ L1 MSE ≤11.25◦ 22.5◦ 30◦

Baseline UNet 5.76 2.63 4.96 1.02 0.87 0.95 0.97
Constant Pred. 19.13 16.27 16.02 4.94 0.36 0.65 0.77

Cycle Consistency 8.36 4.84 7.13 1.54 0.77 0.91 0.95
GeoNet (Impr.) 5.46* 2.59 4.70* 0.95* 0.88* 0.95* 0.97*
GeoNet (Orig.) 11.50 7.19 7.48 1.98 0.68 0.86 0.91

Multitask 7.02 3.51 6.03 1.45 0.84 0.92 0.95
Pix2Pix 9.03 5.95 7.70 1.60 0.75 0.91 0.95

Prcpt. Loss (ImageNet) 5.62 2.57* 4.85 0.99 0.87 0.95 0.97
Prcpt. Loss (Random) 5.78 2.74 4.99 1.00 0.86 0.95 0.97

Taskonomy 19.13 16.27 16.02 4.94 0.36 0.65 0.77

Consistency 5.60 2.63 4.80 0.99 0.88 0.95 0.97

0.25% Data: Baseline (UNet) 8.83 4.13 7.61 2.27 0.78 0.89 0.91
0.25% Data: Consistency 8.46 3.77 7.28 2.05 0.79 0.89 0.92

Table C.7: Surface normal estimation on Replica.

Figure C.4: Extended quantitative results on Replica. Values bolded and starred* indicate the best-performing

method. Values that are bolded but not starred indicate methods that were statistically indistinguishable from the

best-performing method (2-sample paired t-test, α = 0.01)

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 130

Taskonomy Direct Prediction (Additional Metrics)
(Depth Estimation) Error (↓)

Method L1 MSE IRMSE Log10 Rel. Err. SI Log

Baseline (UNet) 2.27 0.17 0.00 0.13 0.17 0.02
Constant Pred. 7.07 0.87 0.00 0.41 0.63 0.07
GeoNet (Impr.) 2.26* 0.16* 0.00* 0.13* 0.17* 0.02
GeoNet (Orig.) 4.07 0.44 0.00 0.22 0.31 0.05

Multitask 2.81 0.20 0.00 0.17 0.22 0.02
Taskonomy 4.55 0.44 0.00 0.26 0.28 0.03

Consistency 2.29 0.16 0.00 0.13 0.17 0.02*

Table C.8: Depth estimation on Taskonomy.

(reShading) Error (↓)
Method L1 MSE

Baseline (UNet) 10.45* 3.21
Constant Pred. 24.85 8.91

Multitask 11.61 3.36
Taskonomy 16.58 5.36

Consistency 10.52 3.21*

Table C.9: ReShading estimation on Taskonomy.

(Surface Normal Est.) Error (↓) Accuracy (↑)
Method Mean◦ Median◦ L1 MSE ≤11.25◦ 22.5◦ 30◦

Baseline (UNet) 6.86 2.42 5.95 1.58 0.81 0.91 0.94
Constant Pred. 21.06 19.14 17.80 5.73 0.27 0.56 0.76

Cycle Consistency 10.09 6.29 8.68 2.06 0.69 0.87 0.93
GeoNet (Impr.) 6.81* 2.37* 5.91* 1.57* 0.81* 0.91* 0.94*
GeoNet (Orig.) 15.49 11.38 9.58 2.86 0.51 0.76 0.86

Multitask 8.17 3.66 7.07 1.84 0.78 0.89 0.93
Pix2Pix 10.92 7.28 9.40 2.26 0.68 0.87 0.92

Prcpt. Loss (ImageNet) 6.98 2.50 6.06 1.62 0.81 0.91 0.94
Prcpt. Loss (Random) 7.10 2.68 6.17 1.62 0.81 0.91 0.94

Taskonomy 8.70 4.21 7.54 1.96 0.76 0.89 0.93

Consistency 7.01 2.52 6.08 1.63 0.81 0.91 0.94

0.25% Data: Baseline 9.43 4.05 8.17 2.43 0.74 0.86 0.91
0.25% Data: Consistency 10.63 5.17 9.19 2.78 0.70 0.84 0.89

Table C.10: Surface normal estimation on Taskonomy.

Figure C.5: Extended quantitative results on the Taskonomy test set. Values bolded and starred* indicate the

best-performing method. Values that are bolded but not starred indicate methods that were statistically indistinguishable

from the best-performing method (2-sample paired t-test, α = 0.01)

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 131

Replica Perceptual Results (Extended)

Depth Est. → Surface Normal reShading
Method L1 (↓) MSE (↓) L1 (↓) MSE (↓)

Baseline UNet 10.47 3.08 12.99 3.12
Constant Pred. 22.23 7.80 19.94 6.00
GeoNet (Impr.) 10.47 3.07 12.75 3.03
GeoNet (Orig.) 13.88 5.03 14.03 4.30

Multitask 15.30 5.33 16.14 4.56
Taskonomy 18.06 6.04 15.39 3.86

Consistency 7.01* 1.71* 11.21* 2.57*

Table C.11: Perceptual results for depth

estimation on Replica.

reShading→ Surface Normal Depth Estimation
Method L1 (↓) MSE (↓) L1 (↓) MSE (↓)

Baseline UNet 6.90 1.59 2.74 0.12
Constant Pred. 15.74 5.13 5.14 0.41

Multitask 7.24 1.81 3.36 0.18
Taskonomy 8.70 2.41 3.85 0.23

Consistency 5.50* 1.18* 1.96* 0.07*

Table C.12: Perceptual results for reShad-

ing on Replica.

Surface Normal→ Depth Estimation reShading
Method L1 (↓) MSE (↓) L1 (↓) MSE (↓)

Baseline UNet 4.69 0.37 13.15 2.80
Constant Pred. 4.75 0.43 33.31 15.15

Cycle Consistency 5.65 0.54 22.39 7.30
GeoNet (Impr.) 4.62 0.36 12.79 2.65
GeoNet (Orig.) 6.23 0.81 19.34 7.24

Multitask 5.58 0.53 22.11 7.20
Pix2Pix 4.52 0.39 19.03 5.87

Prcpt. Loss (ImageNet) 3.45 0.20 8.31* 1.43*
Prcpt. Loss (Random) 4.88 0.41 15.34 3.61

Taskonomy 3.73 0.26 33.31 6.62

Consistency 2.07* 0.08* 9.99 1.69

0.25% Data: Baseline 5.65 0.53 21.76 7.03
0.25% Data: Consistency 2.41 0.10 12.26 2.69

Table C.13: Perceptual results for surface normal estima-

tion on Replica.

Figure C.6: Quantitative perceptual results for surface normal estimation on Replica. Values bolded and

starred* indicate the best-performing method. Values that are bolded but not starred indicate methods that were

statistically indistinguishable from the best-performing method (2-sample paired t-test, α = 0.001)

C.13 More Qualitative Results

We provide some randomly selected (non-cherry picked) sample images to give a sense of the

general performance of the consistency-trained and the baseline networks.

Queries From the Taskonomy Test Set

Fig. C.9 shows the results on various test images sampled from two of the buildings in Taskonomy’s

test set. The buildings were picked randomly. Each row shows a query and the columns show the

predictions, the ground truth, and error maps, for different prediction domains. This figure is the

same as Fig. 4-middle row of the main paper, but for more queries.

Surface Normals From Middle Domains

Fig. C.10 (without consistency) and Fig. C.11 (with consistency) provide more results in the same

format of Figure 3 in the main paper, with addition of error images and ground truth.

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 132

Taskonomy Perceptual Results (Extended)

Depth Estimation → Surface Normal reShading Princ. Curvature Keypts. (2D, SURF) Keypts (3D, NARF) Edges (2D, Sobel) Edges (3D, Occ.)

Method L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓)

Baseline UNet 13.62 4.33 15.68 5.28 7.31 2.19 3.50 0.36 7.56 1.10 12.61 3.49 1.46* 0.12

Constant Pred. 22.37 8.31 27.27 10.72 7.96 2.29 3.85 0.42 7.88 1.56 12.77 4.82 1.97 0.16

GeoNet (Impr.) 13.77 4.41 15.76 5.27 7.52 2.26 3.49 0.36 7.69 1.12 12.67 3.50 1.46 0.12*

GeoNet (Orig.) 15.44 5.94 18.73 7.63 4.03 1.04 2.66* 0.27* 6.56 1.09 10.78 2.76* 2.18 0.22

Multitask 17.18 6.12 19.55 7.14 7.54 2.28 3.39 0.35 9.55 1.53 13.67 3.68 1.91 0.13

Taskonomy 18.82 6.40 20.83 7.17 6.65 1.75 3.44 0.36 9.72 1.48 14.10 4.16 1.94 0.14

Consistency 9.46* 2.56* 12.66* 4.06* 3.61* 0.85* 3.55 0.35 5.69* 0.88* 9.82* 3.00 1.52 0.13

Table C.14: Perceptual results for depth estimation on Taskonomy.

reShading → Surface Normal Depth Estimation Princ. Curvature Keypts. (2D, SURF) Keypts (3D, NARF) Edges (2D, Sobel) Edges (3D, Occ.)

Method L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓)

Baseline UNet 9.58 2.59 3.38 0.25 3.78 0.92 2.98 0.28 6.22 1.06 10.85 3.50 1.53 0.15

Constant Pred. 19.96 7.40 7.14 0.88 3.53 0.91 3.17 0.33 7.48 1.67 12.62 5.53 1.83 0.17

Multitask 9.19 2.48 3.54 0.27 3.56 0.86 2.96 0.27 6.23 1.10 10.75 3.30 1.53 0.15

Taskonomy 11.72 3.45 4.69 0.49 3.54 0.90 3.09 0.31 6.93 1.44 11.19 4.26 1.60 0.16

Consistency 7.13* 1.88* 2.51* 0.18* 3.28* 0.79* 2.93* 0.24* 5.40* 0.83* 9.38* 2.85* 1.35* 0.12*

Table C.15: Perceptual results for reShading on Taskonomy.

Surface Normal → Depth Estimation reShading Princ. Curvature Keypts. (2D, SURF) Keypts (3D, NARF) Edges (2D, Sobel) Edges (3D, Occ.)

Method L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓) L1 (↓) MSE (↓)

Baseline UNet 8.17 1.21 20.94 8.09 3.41 0.84 3.91 0.40 6.48 1.06 9.98 3.38 1.52 0.16

Cycle Consistency 8.81 1.44 30.33 14.83 3.84 0.92 3.88 0.40 7.53 1.18 10.26 3.11 1.69 0.17

GeoNet (Impr.) 8.18 1.21 20.84 8.05 3.40 0.83 3.91 0.40 6.43 1.06 9.99 3.40 1.52 0.16

GeoNet (Orig.) 7.71 1.46 27.35 15.27 3.32 0.81 2.97 0.31 7.64 1.30 9.09* 2.51* 1.48 0.15

Multitask 8.78 1.41 27.32 12.82 3.65 0.91 3.94 0.41 7.21 1.12 10.16 3.38 1.64 0.17

Pix2Pix 8.12 1.27 26.23 11.23 3.83 0.93 3.92 0.40 7.80 1.21 10.33 3.39 1.75 0.17

Prcpt. Loss (ImageNet) 6.86 0.88 17.36 5.70 3.36 0.80 3.77 0.38 6.01 0.98 9.63 3.08 1.45 0.14

Prcpt. Loss (Random) 8.59 1.36 23.98 10.26 3.41 0.83 3.91 0.40 6.75 1.10 10.01 3.40 1.56 0.16

Consistency 4.32* 0.36* 12.15* 3.38* 3.29* 0.76* 2.94* 0.24* 5.48* 0.89* 9.50 2.89 1.36* 0.12*

0.25% Data: Baseline (UNet) 8.86 1.42 26.91 12.33 3.78 0.97 3.95 0.41 7.16 1.14 10.31 3.54 1.60 0.16

0.25% Data: Consistency 5.07 0.50 15.96 5.01 3.74 0.90 3.77 0.38 6.35 1.04 9.93 2.97 1.57 0.15

Table C.16: Perceptual results for surface normal estimation on Taskonomy.

Figure C.7: Extended quantitative perceptual results on the Taskonomy test set. Values bolded and starred*

indicate the best-performing method. Values that are bolded but not starred indicate methods that were statistically

indistinguishable from the best-performing method (2-sample paired t-test, α = 0.001). MSE is shown in addition to

L1, and results are shown for additional tasks (Keypoints 2D, Keypoints 3D, and Edges 3D).

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 133

C.14 Blind Guess (Statistically Informed Guesses)

As described in the paper, we compared all networks against a ªstatistically informed guessº. This

is a guess in that it does not look at the input x when predicting the label y. This is statistically

informed in that it is the best-possible such guess given the ªguessº constraint. Specifically, we

compute the guess, g∗ as

g∗≜ argmin
g

Ey[|g − y|]

.

A visualization of these guesses for the normals, reshading, and depth are provided in Fig. C.8.

C.15 Code, Examples, and Docker

We’ve open-sourced our code and are providing tools for training and evaluating models using

consistency. The repository is available here, and contains (among other things):

• Pretrained models

• Demo code

• Uncertainty energy estimation code

• Training scripts

• Docker and installation instructions

Please see the README in that repository for the most up-to-date information.

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 134

Figure C.8: Statistically informed guesses (ªBlind Guessº) on the Taskonomy dataset. Left

to right, by row: Depth, Surface Normals, (re)Shading. Curvature, 2D Keypoints, 3D Keypoints.

Occlusion Edges. These images minimize expected L1 error on the training dataset: ming Ey[|g−y|].

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 135

Figure C.9: More qualitative results on test set images of Taskonomy dataset. This figure is the

same as Fig. 4-middle row of the main paper, but for more queries. The first four columns show:

query, surface normal prediction, surface normal ground truth, and error map. Other domains show

prediction and ground-truth. The domains from left to right are: surface normals, 3D curvature,

Sobel edges, reshading, depth, 3D keypoints, 2D keypoints, occlusion edges. [best seen on screen &

zoomed in]

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 136

Figure C.10: More results on estimating surface normal out of middle domains without enforcing

consistency. This figure is the same as Fig. 3-upper row of the main paper, but for more queries.

The ground truth and RGB image are shown on the left. The error map of each prediction is show

on its right. [best seen on screen & zoomed in]

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 137

Figure C.11: More results on estimating surface normal out of middle domains after enforcing

consistency. This figure is the same as Fig. 3-lower row of the main paper, but for more queries.

The ground truth and RGB image are shown on the left. The error map of each prediction is show

on its right. [best seen on screen & zoomed in]

APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 138

✗

139

Appendix D

Chapter 5 Supplementary Material

Omnidata: A Scalable Pipeline for Making

Multi-Task Mid-Level Vision Datasets from 3D Scans

The following items are provided in the supplementary material:

I. A live demo to run our networks on your own query images and a dataset design tool to

visualize the effects of different dataset design parameters (§ D.1).

II. Code, Docker, runnable examples and a documentation of usage for the annotator, tools, and

the starter dataset (§ D.2).

III. Mid-level cues provided by Omnidata annotator and their definitions (§ D.3).

IV. Results of surface normal estimation with refocusing augmentation on blurred data (§ D.4).

V. A description of GSO+Replica dataset generation process (§ D.5).

VI. Dataset ablation analysis on surface normal estimation and panoptic segmentation for the

starter set (§ D.6).

VII. Visualization and evaluation of the ªBlind Guessº (statistically informed guess) for the starter

set (§ D.7).

VIII. More qualitative results of surface normal estimation on OASIS dataset (§ D.8).

IX. Full experimental setup for multi-task learning rank reversal experiment (§ D.9).

D.1 Online Demos

The project website includes a live demo that allows to run our pretrained networks on your own

uploaded query images. You can visualize the predictions for different tasks and see a comparison of

Omnidata models to various baselines. The demo page also contains a link to the ªdemo archiveº

where you can browse uploads from other users. We also provide a dataset design tool that allows

playing with different dataset design choices to visualize their effect on the sampled data.

https://omnidata.vision
https://omnidata.vision/demo/
https://omnidata.vision/designer/

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 140

D.2 Dockerized Pipeline, Tools, and Documentation

We provide a Dockerized Pipeline with all necessary software (Blender [45], MeshLab [42], and

other libraries) installed, Pytorch dataloaders for loading the generated data and applying the

necessary transforms for reading in each modality to analytic values, a starter dataset along with

download scripts and other utilites. We also provide Omnidata Docs which includes a documentation

on how to use all the open-sourced material of our paper.

D.3 Mid-level Cues Provided

This section describes the default mid-level cues and additional outputs provided by the Omnidata

annotator.

2D Cues

2D Unsupervised Segmentation: Gestalt psychology proposes grouping as a primary mechanism

through which humans learn to perceive the world as a set of coherent objects [219]. The annotator

provides groupings based on normalized cuts [191] of the RGB image into perceptually similar

spatially coherent groups.

Texture Edges: offer low-level cues about object boundaries. Classic computer vision pipelines

commonly use edges as an intermediate representation in a larger processing pipeline. The annotator

provides edges from a Canny [30] edge detector without nonmax suppression.

2D Keypoints: are designed to indicate possibly important pixels and identify them across images.

These are frequent in both vision [69] and robotics [139, 138] pipelines. The annotator provides

pre-nonmax-suppression SURF intensity maps to identify potentially important regions of the RGB

image, and the fragments cue (see below) can be used to link points across images.

Single-View 3D Cues

Depth: Z-Buffer: For each pixel, the metric distance from the point to the camera plane. The most

common form of depth in computer vision + robotics.

Depth: Euclidean: For each pixel, the metric distance from the point to the camera’s optical center.

This can be used (e.g.) for adding lens blur (Sec. 6.2 of the main paper).

Surface Normals: Crucial for computer vision and robotics tasks (e.g. for computing lighting,

grasp estimation, etc.): the tangent vector relative to the camera of the corresponding point on the

mesh.

Principal Curvature: For each pixel, the principal curvatures κ1 and κ2, which are also sufficient

for computing Gaussian (κ1 · κ2) and mean ((κ1 + κ2)/2) curvature. These quantities are in-

variant under rigid transformations, and curvature is known to be important in primate visual

processing [234].

https://github.com/EPFL-VILAB/omnidata-annotator
https://docs.omnidata.vision

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 141

Occlusion Edges: indicate boundaries where one pixel occludes something behind it. While 2D

edges respond to to changes in texture, 3D edge features depend only on 3D geometry and are

invariant to color and lighting.

(re)Shading: One cue to infer scene geometry from an RGB image is ªshape from shadingº [20]

via the intrinsic image decomposition I = A · S into an albedo A and a shading function S
parameterized by lighting and depth. The decomposition is thought to be useful for human visual

perception [1]. We define a (re)shading cue for S as follows: Given an RGB image, the label is

the shading function S that results from having a single point light at the camera origin, and S is

multiplied by a constant fixed albedo A.

3D Keypoints: 3D keypoints, like 2D, are designed to indicate possibly important points and link

them across viewpoints. Unlike 2D keypoints, 3D keypoints are often designed to be invariant to

informative (but possibly distracting) cues such as texture [245, 200, 141, 235, 114]. Based on its

specificity and robustness, we use the pre-nonmax-suppressed output of [200] for this cue.

2.5D Unsupervised Segmentation: uses the same graphcut algorithm as 2D, but the labels are

computed jointly from the RGB, depth image, and surface normals. Thus the 2.5D segmentation

cue incorporates information about scene geometry that is not present in the RGB image but readily

inferred by humans.

Manhattan Vanishing Points: Vanishing points offer useful information about the scene geometry

[142, 118], particularly a ªManhattan worldº [48, 240, 23] with three dominant vanishing points (X,

Y, and Z axis). We provide the X, Y, and Z Manhattan vanishing points (Gaussian sphere format).

Camera Intrinsics: Deep networks are excessively sensitive to changes in camera intrinsics such

as field-of-view. We provide camera intrinsics for each image.

Multi-View 3D Cues

Camera Extrinsics: provides camera RT matrices for each image.

Point Matching: indicates which other preselected points are present in this view. Useful for point

matching tasks such as [69].

Fragments (Optical Flow): Each space_point_view image contains an image whose pixel values

encode the corresponding mesh face, and these values are consistent across images in the space

and can be decoded to approximate global 3D coordinates or used for optical flow. This would be

akin to perfect feature descriptors for either 2D or 3D keypoints.

Semantic Cues

If the dataset supports, the annotator can provide cues for the following:

Class Presence: labels provide a present/not present indicator used for image classification.

Instances: identify the instance identity of each pixel. Regardless of class, this gives an object-

centric grouping.

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 142

Semantic Class: the semantic category for each pixel.

Panoptic Segmentation1: combination of semantic segmentation and instance identification [111].

Additional Information

RGB: RGB images can be real image scans if provided, or they can be rendered from the textured

mesh.

Masks that indicate whether the pixel corresponds to an area missing from the mesh.

D.4 Surface Normal Estimation with Refocusing Augmentation

As described in Sec. 6.2 of the main paper, the mid-level cues can be used as data augmentations

in addition to training targets. While defocus cue can be useful in depth estimation [79, 32, 197],

we explore it as refocusing augmentation on our dataset, which is possible due to availability of

camera parameters and euclidean depth. We provide quantitative and qualitative surface normal

estimation results for training with this augmentation. Tab. D.1 compares 2 models trained with and

without this augmentation evaluated on both refocused and blurred test data from our starter set. We

use Gaussian blur with kernel size 3 and sigma uniformly chosen in the range (0.1, 2). As shown

by the results, the model trained with refocusing augmentation shows much better performance

on the blurred data. The gap is clearer as shown by images in Fig. D.1. The figure shows that the

baseline model would easily fail with a small amount of blur present in the input, and the refocusing

augmentation has a substantial effect in increasing the robustness to these blur effects. We repeat the

experiment with different levels of blur in the input using different kernel sizes (3, 5, 7, 9). Fig. D.2

shows the performance of the models for each amount of blur. As the plots show, the model trained

with augmentation shows good performance even for high levels of blur, while the accuracy drops

significantly in the baseline model as the blur increases.

1

A concrete name like ªPer-Pixel Category and Instance Segmentationº would

be clearer and less provocative than ªPanoptic Segmentationº. The Panopticon

(from 18th-century philosopher Jeremy Bentham) was conceived as the ideal

prison; an institutional system of control-by-surveillance whereby a central-

ized security guardhouse can observe all prisoners in one view, while subjects

are unable to tell whether they are being watched. Though instantiated as a

building, Bentham intended it as a method for any institution, with the threat

of observation, to force compliance and docility. Expanded and popularized

by Foucault [64] in the 20th century, Panopticism remains influential among

disciplines across the humanities and social sciences. The panopticon is also

well-known in popular culture; as ªBig Brotherº in the surveillance narrative

Nineteen Eighty-Four, for example, and by name in the cover story of the most

recent edition of The Economist (ªThe People’s Panopticon,º 7 Aug. 2021

edition).

An illustrated panopticon. Two
of the first 10 images returned
for the Google query ªmodern
panopticonº make reference to
Facebook, including one that is
simply the above image with the

Facebook logo superimposed.

https://www.encyclopedia.com/social-sciences/applied-and-social-sciences-magazines/gaze-panoptic
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100304152
https://www.nytimes.com/2013/07/21/books/review/the-panopticon-by-jenni-fagan.html
https://www.iamfoodmarshall.com/blog/digial-panopticon
https://medium.com/predict/a-21st-century-panopticon-called-facebook-a312949c08fb

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 143

All-in-Focus GT AugmentationAugmentation

Te
st

-T
im

e
R

ef
oc

us
ed

Te
st

-T
im

e
B

lu
rr

ed

Modified
Input

Training Procedure

Figure D.1: Qualitative results for refocusing augmentation. The results compare the models trained with and

without refocusing augmentation on both refocused and blurred data from the test splits of the starter set. Same

parameters as training are used for refocusing the test data. We also use Gaussian blur with kernel size 3 for blurring the

input. Clearly the model trained with the augmentation shows much more robustness to blur effects while the baseline

model easily fails with a small amount of blur [best viewed zoomed in].

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 144

Error (↓) Angular Error◦ (↓) % Within t◦ (↑)

Refocusing Augmentation Test Data L1 MSE Mean Median 11.25◦ 22.5◦ 30◦

✗ Blurred 7.54 2.04 16.86 8 61.91 75.73 81.17

✓ 6.44 1.61 14.37 6.40 66.20 79.31 84.53

✗ Refocused 6.45 1.63 14.42 6.52 66.36 79.55 84.67

✓ 6.14 1.48 13.685 6.108 67.23 80.46 85.64

Table D.1: Surface normal estimation with refocusing augmentation. The models are evaluated on blurred and

refocused test split of the starter set. Gaussian blur with kernel size 3 is used for blurring the input. As the results show,

refocusing augmentation improves the performance of the model on blurred data.

3 4 5 6 7 8 9
Kernel Size

54

56

58

60

62

64

66

Ac
cu

ra
cy

 w
ith

in
 1

1.
25

°

Training Procedure
With Augmentation
Without Augmentation

3 4 5 6 7 8 9
Kernel Size

15

16

17

18

19

20

21
M

ea
n

An
gu

la
r E

rro
r

Training Procedure
With Augmentation
Without Augmentation

Figure D.2: Performance of the 2 training procedures (w/ and w/o refocusing augmentation) for different

amounts of blur in test data. We use Gaussian blur with kernel sizes 3, 5, 7, and 9, to produce different amounts of

blur in the input. The plots show the "Accuracy within 11.25°" (left) and "Mean Angular Error" (right) for the 2 models

for each kernel size. It is shown that the performance of the baseline model significantly drops with increasing the

amount of blur while the model trained with augmentation shows much more robustness.

D.5 GSO+Replica Dataset Generation Process

We scatter Google Scanned Objects [95] around Replica [202] buildings to create object-centric

views. Habitat [137] environment is used to generate physically plausible scenes. The dataset is

provided in 3 different object densities for each space (3, 6, 15 objects per square meter which we

refer to as low, medium, high density). Objects are randomly sampled from 1032 objects provided

in Google Scanned Objects, and they are scattered uniformly across the building according to the

density. To create object-centric views, thousands of cameras are generated in each space using

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 145
lo

w
 d

en
si

ty
m

ed
iu

m
 d

en
si

ty
hi

gh
 d

en
si

ty

Figure D.3: Sample images from GSO + Replica dataset. Images shown are from the 3 different object densities

(3, 6, 15 objects/m2) included in GSO+Replica dataset.

Poisson Disc Sampling. Points of interest are only sampled from the objects rather than the whole

mesh. For each point-of-interest, a subset of cameras with an unobstructed line-of-sight of the point

are selected. Cameras are filtered according to an additional constraint so that the point-camera

distance is between 0.2 and 1 meter to make sure we have an object-centric view. The views are

saved for each camera-point combination in which the camera is fixated on the point-of-interest.

Examples of images from each object density are shown in Fig. D.3.

D.6 Dataset Ablation Analysis of the Starter Set

To assess the contribution of each single dataset in our starter set, we list the zero-shot transfer

performance to OASIS [38] and COCO [130] for models trained on each single dataset of the starter

set, and some combinations of them.

The results listed in Tab. D.2 and D.3 provide an understanding of the impact of each dataset

component in our starter set. Models trained on only scene-level data such as Taskonomy [238],

Hypersim [176], or Replica [202] result on poor performance on objects, while the model trained on

GSO+Replica will have an object-centric bias with poor performance on backgrounds and scenes.

We provide a starter dataset with both scene- and object-centric views which, as shown by the

results, is necessary for final best performance and generalization to in-the-wild data. Furthermore,

including all datasets is necessary since the diversity present in the whole starter dataset will further

improve the generalization.

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 146

Training Data Anglular Error◦ (↓) % Within t◦ (↑) Relative Normal (↑)

Taskonomy Replica Hypersim Replica+GSO BlendedMVG Mean Median 11.25◦ 22.5◦ 30◦ AUCo AUCp

✓ 29.68 21.78 25.73 51.29 62.66 0.6220 0.6163

✓ 33.06 26.03 19.03 43.60 56.31 0.5711 0.6099

✓ 29.94 22.81 21.64 49.36 62.28 0.6375 0.6311

✓ 33.22 26.46 15.81 41.97 56.21 0.5669 0.5893

✓ 29.77 23.23 23.47 48.64 61.23 0.5661 0.6033

✓ ✓ 28.62 21.59 24.01 51.85 64.40 0.6260 0.6248

✓ ✓ ✓ 28.61 21.55 23.81 51.94 64.78 0.6614 0.6566

✓ ✓ ✓ ✓ 27.73 20.43 25.72 54.06 66.51 0.6686 0.6596

✓ ✓ ✓ ✓ ✓ 26.34 19.39 28.66 56.37 68.43 0.6572 0.6832

Table D.2: Zero-shot transfer performance on OASIS dataset. Models are evaluated on val split of OASIS dataset.

The results show the impact of each single dataset in the starter set on the performance of surface normal estimation and

generalization to in-the-wild data.

Training Data Taskonomy Replica Hypersim

Taskonomy Replica Hypersim PQth(↑) SQth(↑) RQth(↑) PQth(↑) SQth(↑) RQth(↑) PQst(↑) SQst(↑) RQst(↑) PQth(↑) SQth(↑) RQth(↑) PQst(↑) SQst(↑) RQst(↑)

✓ 8.39 38.88 9.54 6.99 37.67 9.32 - - - 21.76 68.46 26.94 - - -

✓ 1.01 17.39 1.31 28.82 56.45 36.01 55.12 69.72 65.08 2.89 35.68 3.90 6.11 28.95 8.99

✓ 9.35 54.25 11.90 14.67 55.56 18.65 13.48 29.73 18.57 23.90 65.73 29.94 26.87 52.29 35.14

✓ ✓ 10.27 45.85 11.82 28.66 57.87 35.98 54.17 70.18 63.76 8.90 38.29 11.04 10.25 27.02 14.61

✓ ✓ 8.70 40.67 10.13 9.44 50.56 12.07 15.37 33.35 20.61 26.28 67.64 32.43 30.72 54.03 38.97

✓ ✓ 9.09 61.48 11.69 44.07 75.94 53.88 48.99 64.00 58.10 24.67 68.51 30.46 19.04 37.52 24.68

✓ ✓ ✓ 9.14 41.95 10.29 30.14 57.92 37.50 52.35 64.87 61.67 27.79 68.86 34.28 32.53 54.77 40.84

Table D.3: Ablation of training datasets for panoptic segmentation. Transfers to and from Taskonomy only

evaluate things labels, as Taskonomy does not feature any stuff labels.

D.7 Blind Guesses (Statistically Informed Guesses) for the

Starter Set

Similar to [236], we compute the blind guesses (query-agnostic statistically informed guess) from

the starter set for each domain. We evaluate the blind guess for surface normals on OASIS data,

and the test split of the starter set in Tab. D.4. The reported results will provide an estimation of

the lower bound performance for these datasets. We also compare our blind guesses to the ones

computed only from the Taskonomy dataset. A visualization of these guesses for surface normals

and reshading are provided in Fig. D.4. Comparing the blind guesses for the 2 datasets demonstrates

that there is less bias present in the starter set compared to the Taskonomy alone, such as the ceiling

bias present in the top part of the image for surface normal blind guess of Taskonomy which is

not the case in our starter set. Better performance of the starter set blind guess (compared to the

Taskonomy alone) on OASIS data, as shown in Tab. D.4, will further prove the point.

D.8 Surface Normal Estimation on OASIS Dataset

In this section, we include additional qualitative results from our surface normal estimation experi-

ments on OASIS [38]. Fig. D.5 qualitatively compares the models trained on Full Taskonomy and

the starter set on some sample images from the val split of OASIS. As shown by the figure, the

model trained on Full Taskonomy has poor performance on objects and largely misses the details as

opposed to the model trained on the starter set.

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 147
St

ar
te

r
Se

t
Ta

sk
on

om
y

Reshading Surface Normals

Figure D.4: Statistically informed guesses (ªBlind Guessº) on the Starter Set. Blind guesses computed from the

starter set and Taskonomy alone are shown for 2 domains. Comparing the surface normal blind guess for the 2 datasets

will show that there is less bias present in our starter set comparing to Taskonomy alone (the ceiling bias which is only

present in Taskonomy blind guess).

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 148

RGB GT Taskonomy OURS

Figure D.5: Qualitative results on OASIS data. The 2 models are trained on Full Taskonomy and the starter set.

The Taskonomy model has poor performance on objects and largely misses the details.

APPENDIX D. CHAPTER 5 SUPPLEMENTARY MATERIAL 149

Angular Error◦ (↓) % Within t◦ (↑) Relative Normal (↑)

Test Data Blind Guess Mean Median 11.25◦ 22.5◦ 30◦ AUCo AUCp

Starter Set 35.28 30.64 14.48 36.7 49.03 0.5352 0.4302

OASIS Taskonomy 41.73 35.80 10.28 29.00 41.38 0.5282 0.4404

Starter Set 43.72 43.04 7.41 21.6 32.17 - -

Starter Set Taskonomy 44.88 44.66 8.87 22.57 31.97 - -

Table D.4: Blind guess evaluation on OASIS and starter set. The blind guesses computed from our starter set and

Taskonomy alone are evaluated on val split of OASIS and test split of the starter set. The results will provide a lower

bound for performance on these benchmarks.

D.9 Multi-Task Learning Rank Reversal Experimental Setup

In this section, we explain the experimental setup for the multi-task learning rank reversal experiment

provided in the section 5.3 of the main paper. Similar to [212], we use a simple shared-encoder MTL

model, a single task baseline, as well as 2 other common MTL approaches (MTAN [131] and Cross-

stitch [145]) for our experiment. Each encoder is a ResNet-50 model with dilated convolutions

and pre-trained on ImageNet [50]. We use Deeplab [35] head for the task specific decoders. Each

multi-task model is trained on the 4 following tasks: semantic segmentation, 3D keypoints, depth

z-buffer, and occlusion edges. We use medium Taskonomy, Replica, and Hypersim as the training

data, and evaluate the models performance on semantic segmentation and 3D keypoints on tiny

Taskonomy test set. Table 4 of the main paper provides the results for this experiment.

	Contents
	Introduction
	Visual Representations for Navigation
	Introduction
	Related Work
	Methodology
	Case Study: Vision-Based Navigation
	Experimental Results
	Conclusion

	Representations for Manipulation and Real-World Navigation
	Introduction
	Related Works
	Methodology
	Results
	Conclusion

	Cross-Task Consistency
	Introduction
	Related Work
	Method
	Consistency Energy
	Experiments
	Conclusion and Limitations

	Scaling Datasets to Train Robust Representations
	Introduction
	Related Work
	Pipeline Overview
	Starter Dataset Overview
	Illustrative Data-Focused Analyses
	Conclusion and Limitations

	Conclusion
	Bibliography
	Chapter 2 Supplementary Material
	Detailed Methodology
	Additional Experiments and Analysis

	Chapter 3 Supplementary Material
	Overview Video Clip
	Videos of sim-to-real test episodes from physical onboard cameras
	Code
	Experiments with Shaped Rewards
	Complete sim-to-real episode-level results
	Descriptions of Manipulation Tasks
	Description of Navigation Tasks
	Train and Test Splits
	Mid-Level Vision Objectives
	Sim-to-Real Setup
	Policy Learning Setup
	Full Descriptions of Baselines
	Train and Test Curves

	Chapter 4 Supplementary Material
	Video Evaluation
	Live Demo
	Consistency with Unsupervised Tasks
	Handling of Ill-Posed Tasks
	Balancing Different Loss Terms
	Optimizing the standard direct loss does not lead to optimizing cross-task losses
	Derivation of Generic Consistency Criterion
	Sensitivity Analysis: Edge Selection
	Sensitivity Analysis: Path Lengths
	Standard Error Over Multiple Seeds
	Results on NYUv2 Dataset
	More Metrics
	More Qualitative Results
	Blind Guess (Statistically Informed Guesses)
	Code, Examples, and Docker

	Chapter 5 Supplementary Material
	Online Demos
	Dockerized Pipeline, Tools, and Documentation
	Mid-level Cues Provided
	Surface Normal Estimation with Refocusing Augmentation
	GSO+Replica Dataset Generation Process
	Dataset Ablation Analysis of the Starter Set
	Blind Guesses (Statistically Informed Guesses) for the Starter Set
	Surface Normal Estimation on OASIS Dataset
	Multi-Task Learning Rank Reversal Experimental Setup

