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Abstract

Magnetic Resonance Image Reconstruction with Greater Fidelity and Efficiency

By

Ke Wang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael Lustig, Chair

Professor Stella Yu, Co-chair

Magnetic resonance imaging (MRI) is an effective imaging modality offering tremendous
benefits to both science and medicine. It provides exceptional contrast for visualizing soft
tissue, can capture images from any orientation, and does not involve any ionizing radiation.
Its remarkable versatility enables a wide range of applications, including assessing blood flow,
imaging brain activity with functional MRI (fMRI), and quantifying susceptibility mapping,
ushering in a new era of clinical diagnosis and brain research.

However, due to its physics limitations, acquiring MRI data is inherently time-consuming,
which significantly extends scan times and limits throughput in hospitals. As a result,
there is great interest in reconstructing diagnostic-quality images from limited measurements
(k-space data) to shorten scan times. For instance, parallel imaging (PI) capitalizes on
spatially sensitive receive coil arrays to simultaneously acquire multiple MRI measurements.
Compressed Sensing (CS) techniques have been employed to iteratively reconstruct under-
sampled data into high-quality images by utilizing sparse priors. More recently, end-to-end
deep learning (DL) based reconstruction techniques have been introduced, leveraging deep
neural networks to learn the reconstruction pipeline directly from extensive training datasets,
rather than relying on hand-crafted prior knowledge.

Although DL-based methods have demonstrated significant success surpassing PI and CS ca-
pabilities, several challenges persist that limit the fidelity and efficiency, for example: 1) Loss
functions used in DL-based reconstruction are mostly hand-crafted, either pixel-wise (e.g.,
ℓ1,ℓ2 losses) or based on local statistics (e.g. SSIM loss), inadequately capture perceptual
information, leading to compromised image quality and blurring; 2) Memory constraints dur-
ing network training restrict the applicability of DL reconstruction for high-dimensional MRI
(e.g., 2D+time, 3D, 3D+time); 3) The confidence or reliability of reconstructed structures
remains insufficiently investigated, posing a challenge for DL-based approaches in clinical
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applications. 4) Unlike natural images, MRI data is inherently complex-valued and faces
challenges due to the limited availability of fully-sampled ground truth. This constraint
inevitably restricts the applications of deep learning-based MRI techniques to tasks without
access to adequate ground truth.

In this dissertation, we introduce a series of projects aimed at overcoming existing obstacles
and achieving enhanced fidelity and efficiency in Magnetic Resonance (MR) image recon-
struction.

Chapter 3 begins by reconstructing high-fidelity contrast-weighted images from highly under-
sampled Magnetic Resonance Fingerprinting (MRF) scan. It introduces a supervised learning
method that directly synthesizes contrast-weighted images (T1-weighted, T2-weighted, and
FLAIR) from an MRF scan. This technique generates multi-contrast images with signifi-
cantly reduced scan times, as detailed in the [paper link].

Chapters 4-6 feature physics-informed DL-based reconstruction from undersampled k-space
data. First, A novel patch-based Unsupervised Feature Loss (UFLoss) is proposed as a
novel perceptual loss function and incorporated into the training of DL-based reconstruction
frameworks in order to preserve perceptual similarity and high-order statistics ([paper link]).
Next, I employ our previously proposed memory-efficient learning framework to minimize
the memory required for backpropagation, facilitating the training of DL-based unrolled re-
constructions for large-scale 3D MRI and 2D+time cardiac cine MRI ([paper link]). Then,
I present our uncertainty estimation framework to identify when and where a reconstruc-
tion model is producing potentially misleading results. Our framework produces confidence
intervals at each pixel of a reconstruction image with a rigorous finite-sample statistical
guarantee. Our in-vivo knee and brain results probe the quality of our uncertainty estima-
tion model, which allows us to identify specific regions where the model performs poorly
([abstract link]).

A distinctive aspect of MRI lies in its inherently complex-valued data. The final section
of this dissertation concentrates on the representation learning of complex-valued data. In
contrast to deep learning applied to natural images, MRI faces the challenge of a scarcity of
fully-sampled ground truth and well-annotated data. To tackle this challenge, I introduce
Complex-valued Scattering Representation (CSR) as a universal complex-valued representa-
tion, which so far demonstrates superior performance in both real-valued (e.g., RGB image)
and complex-valued (e.g., MRI) image classification tasks compared to its counterparts, par-
ticularly when training samples are limited. Although this dissertation has not applied CSR
to DL-based reconstruction, it represents a promising direction for future research.

Collectively, these approaches embody the central theme and progress toward MR image
reconstruction with high fidelity, high efficiency, and high reliability.

https://arxiv.org/abs/2212.10817
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.29227
https://link.springer.com/chapter/10.1007/978-3-030-87231-1_45
https://cds.ismrm.org/protected/22MPresentations/abstracts/0749.html
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3.8 Representative N-DCSNet results in mitigating spiral off-resonance ar-
tifacts in an MRF time series near the skull region. The MRF time-
averaged image and PixelNet results exhibit spiral off-resonance artifacts near
the skull region (zoomed-in images) because of B0 inhomogeneity and the long
readout time. N-DCSNet recovers the structure and produces contrast-weighted
images with few residual artifacts. True acquisitions are displayed as references.
Red arrows point to the regions with residual artifacts. . . . . . . . . . . . . . . 34

3.9 Representative N-DCSNet results in mitigating off-resonance artifacts
near the nasal region. MRF time-averaged images display spiral off-resonance
artifacts near the nasal region (as seen in zoomed-in images) due to the lengthy
readout time. PixelNet also struggles to restore the structures and exhibits signif-
icant noise and distortions. N-DCSNet successfully mitigates the artifacts and
produces contrast-weighted images with few residual artifacts. True acquisitions
are displayed as references. Red arrows point to regions with residual artifacts. . 35

4.1 Overview of training the DL-based reconstruction with UFLoss. We
split the pipeline into two steps. a) Step 1: We pre-train the UFLoss feature
mapping network on fully-sampled image patches without human annotations,
where the aim of the training is to maximally separate out all the patches in
the feature space. b) Step 2: For the training of the DL-based reconstruction,
Gw,E represents a reconstruction network with learnable parameters w, and given
system encoding operator E. The inputs of Gw,E are under-sampled k-space y,
and zero-filled reconstruction EHy. We feed-forward EHy through Gw,E to obtain
the output reconstruction results. We adopt the pre-trained UFLoss network
from (a) to compute the UFLoss in the feature space. Then, end-to-end training
is performed with respect to the combination of UFLoss and per-pixel loss. Note
that the training of DL-based reconstruction with UFLoss is still supervised. . . 39



vii

4.2 a) Training pipeline for the UFloss feature mapping network. Patches
cropped from the fully sampled images are separately passed through a ResNet 18
[39] backbone followed by an ℓ2 normalization layer to map the patches to features
on a low-dimensional unit sphere (128-dimension unit-norm features in this work).
A memory bank is used to store the features from all the training patches to save
computation when computing the softmax loss function (Equation 4.9). Then,
end-to-end training is performed such that each patch is maximally separated
from other patches in the 128D unit-norm feature space. Similar patches will
naturally cluster in the low-dimensional space. b) Detailed formulation of the
proposed UFLoss during the training of the DL-based reconstruction.
Operator R extracts a total of M patches from an image. These patches are
extracted on a grid with a sliding window. Each patch from the reconstructed
output and the fully-sampled reference will go through a pre-trained network fθ
and mapped to a low-dimensional feature space. The UFLoss corresponds to
the sum of the ℓ2 distance between the feature vectors from the output and the
fully-sampled reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Architectures for UFLoss feature mapping network and MoDL. a) The
UFLoss feature mapping network is based on a ResNet 18 network structure [39]
and followed by an ℓ2 normalization layer to map the input patches to the 128D
unit-norm feature space. b) Architecture of the MoDL [2] reconstruction network.
A data consistency Conjugate Gradient Descent (CG) module is inserted after a
CNN-based denoiser Dw. Dw follows the structure of U-Net [94] with two input
channels that represent the real and imaginary parts of the complex-valued image
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 UFLoss can be used as a valid loss function. a) Evaluation of UFLoss with
different levels of perturbations. Upper: additional Gaussian noise, Lower: im-
age blurring through k-space cropping. UFLoss evolution curves indicate that
UFLoss increases in a convex way with respect to more Gaussian noise and in-
creases in a near-convex way with respect to more blurring. b) Evaluation of
UFLoss in guiding a blurred image xp−0 to the target high resolution image.
Gradient descent is performed on xp−k to reduce the UFLoss with respect to the
target image in an iterative way. Intermediate images show that UFLoss is able
to gradually guide the blurred image to the target without falling into any local
minimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



viii

4.5 UFLoss is able to capture perceptual similarities across anatomies and
contrasts. a) Feature clustering results using UFLoss feature mapping where,
given an input patch, neighbor patches from the training set can be queried based
on their feature space distance. The top four patches are the closest neighbors
with the input patch and have the highest inner products. At the same time,
we also show four counterexamples with relatively low inner products with the
input patch. The feature space inner products between the input patch and the
retrieved patches are shown as different colors of the borders. The color bar
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Chapter 1

Introduction

1.1 Background

Magnetic resonance imaging (MRI) is a highly effective imaging modality that offers im-
mense advantages to both scientific and medical fields. It delivers outstanding contrast for
visualizing soft tissue structures, enables image acquisition from any orientation, and unlike
X-Ray, Computed Tomography (CT) and Positron Emission Tomography (PET), operates
without the use of ionizing radiation. MRI’s extraordinary versatility supports an extensive
array of applications. These include evaluating blood flow dynamics, monitoring brain ac-
tivity using functional MRI (fMRI), and quantifying susceptibility mapping. Consequently,
MRI has paved the way for a new era in clinical diagnosis and brain research, revolutionizing
our understanding of human anatomy and physiology while enhancing patient care.

Despite its benefits, the inherent time-consuming nature of MRI data acquisition, owing
to physics limitations, considerably prolongs scan times and restricts throughput in health-
care settings. A standard MRI scan may require 20-60 minutes, whereas a full-body CT
scan can be completed in just a matter of seconds.

As a result, there is considerable interest in reconstructing diagnostic-quality images from
a limited number of measurements with the aim of decreasing scan times and improving the
overall efficiency of MRI procedures. It is important to note that MRI data is acquired
in the frequency domain, commonly referred to as k-space. For instance, parallel imaging
(PI) [107, 90, 36] capitalizes on spatially sensitive receive coil arrays to simultaneously acquire
multiple MRI measurements. Compressed Sensing (CS) [64] techniques have been employed
to iteratively reconstruct under-sampled data into high-quality images by utilizing sparse
priors. More recently, end-to-end deep learning (DL)-based reconstruction methods [16, 68,
92, 99, 37, 2, 110] have been proposed to learn the regularization terms directly from a large
training dataset.

Although DL-based methods have demonstrated significant success surpassing PI and
CS capabilities, several challenges remain that limit the image fidelity and efficiency, for
example: 1) Loss functions used in DL-based reconstruction are mostly hand-crafted, either
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pixel-wise (e.g., ℓ1,ℓ2 losses) or based on local statistics (e.g. SSIM loss [130]), inadequately
capture perceptual information, leading to compromised image quality and blurring [44, 2,
37, 125]; 2) Memory constraints during network training restrict the applicability of DL
reconstruction for high-dimensional MRI (e.g., 2D+time, 3D, 3D+time) [95, 127]; 3) The
confidence or reliability of reconstructed structures remains insufficiently investigated, posing
a challenge for DL-based approaches in clinical applications [129]. 4) Unlike natural images,
MRI data is inherently complex-valued and faces challenges due to the limited availability
of fully-sampled ground truth. This constraint inevitably restricts the applications of deep
learning-based MRI techniques to tasks without access to adequate ground truth.

1.2 Contribution

This dissertation introduces a series of projects aimed at overcoming existing obstacles and
achieving enhanced fidelity and efficiency in MR image reconstruction. Chapter 3 highlights
DL-based reconstruction from highly under-sampled MRF scans, introducing a supervised
learning-based method that directly synthesizes contrast-weighted images (T1-weighted, T2-
weighted, and FLAIR) from a single MRF scan. This approach produces multi-contrast
images with substantially reduced scan time ([paper link] [125]).

In Chapter 4, a novel patch-based Unsupervised Feature Loss (UFLoss) is introduced
as a perceptual loss function, incorporated into the training of DL-based reconstruction
frameworks to preserve perceptual similarity and high-order statistics ([paper link] [126]).

Chapter 5 employs a previously proposed memory-efficient learning framework to re-
duce backpropagation memory requirements, enabling DL-based unrolled reconstructions
for large-scale 3D MRI and 2D+time cardiac cine MRI ([paper link] [127]).

In Chapter 6, an uncertainty estimation framework is presented, which identifies when
and where a reconstruction model produces potentially misleading results. The framework
generates confidence intervals for each pixel in a reconstructed image, providing rigorous
finite-sample statistical guarantees. In-vivo knee and brain results assess the quality of the
uncertainty estimation model, highlighting specific regions with poor performance ([abstract
link] [129]).

One of MRI’s unique characteristics is its inherently complex-valued data. The final sec-
tion (Chapter 7) of this dissertation focuses on complex-valued data representation learning.
Unlike deep learning in natural images, MRI faces challenges due to limited fully-sampled
ground truth and well-annotated data. To address this, I introduce Complex-valued Scatter-
ing Representation (CSR) as a universal complex-valued representation. It has demonstrated
superior performance in both real-valued (e.g., RGB image) and complex-valued (e.g., MRI)
image classification tasks compared to alternatives, especially when training samples are
limited. While CSR has not been applied to DL-based reconstruction in this dissertation, it
offers a promising direction for future research.

These methods collectively form the central theme, progressing toward advanced MR
image reconstruction, characterized by high fidelity, high efficiency, and high reliability.

https://arxiv.org/abs/2212.10817
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.29227
https://link.springer.com/chapter/10.1007/978-3-030-87231-1_45
https://cds.ismrm.org/protected/22MPresentations/abstracts/0749.html
https://cds.ismrm.org/protected/22MPresentations/abstracts/0749.html
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1.3 Outline

The organization of this dissertation is presented as follows:

Chapter 2: Overview of MR imaging and reconstruction

This chapter offers a comprehensive overview of MRI imaging and reconstruction, serving as
the foundation for subsequent chapters. It begins with the fundamental physics principles
and signal equations of MRI. Next, MRI reconstruction is introduced as a generalized inverse
problem, delving into several representative reconstruction techniques: Parallel Imaging,
Compressed Sensing, and ultimately, the focus of this thesis, DL-based MRI reconstruction.

Chapter 3: Direct Contrast Synthesis from MR Fingerprinting

This chapter showcases DL-based reconstruction from highly under-sampled MRF scans.
Here, I introduce a supervised learning-based method (N-DCSNet) that directly synthesizes
contrast-weighted images (T1-weighted, T2-weighted, and FLAIR) from a single, short MRF
scan. N-DCSNet not only significantly reduces scan time but also has the ability to inherently
mitigate slice in-flow artifacts and spiral off-resonance blurring.

Chapter 4: Unsupervised Feature Loss for DL-based MRI reconstruction

This chapter presents Unsupervised Feature Loss (UFLoss), a novel patch-based unsuper-
vised learning-based feature loss, designed to overcome the limitations of existing hand-
crafted loss functions (i.e., their inability to capture high-level perceptual information).
UFLoss improves the training of DL-based reconstruction methods by enabling them to cap-
ture more detailed textures, finer features, and sharper edges. This results in a higher overall
image quality within the context of DL-based reconstruction frameworks.

Chapter 5: Memory-efficient learning for high-dimensional MRI reconstruction

In this chapter, I utilize our previously proposed Memory-Efficient Learning (MEL) frame-
work [51] to substantially decrease the Graphic Processing Unit (GPU) memory consumption
during the backpropagation of unrolled networks. MEL facilitates the training of high-
dimensional MRI reconstruction (e.g., 3D MRI, 2D+time cardiac cine MRI) on a 12 GB
GPU, significantly alleviating the computational burden associated with high-dimensional
DL-based MRI reconstruction.

Chapter 6: Rigorous uncertainty estimation for MRI reconstruction

In this chapter, I propose a rigorous uncertainty estimation framework to identify when
and where a reconstruction model is producing potentially misleading results. Specifically,
our framework produces confidence intervals at each pixel of a reconstruction image such
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that 1 − α of these intervals contain the true pixel value with high probability (typically,
α = 0.05). Without any constraints on the reconstruction model, our framework acts as
a plug-and-play module, and may significantly improve the accuracy of the diagnosis and
clinical interpretation of DL-based reconstructions.

Chapter 7: Complex-valued Scattering Representations

In contrast to deep learning applied to real-valued natural images, MRI deals with inher-
ently complex-valued images and faces challenges arising from the limited availability of
fully-sampled ground truth and well-annotated data. To address this, Chapter 7 introduces
Complex-valued Scattering Representations (CSR) as a universal complex-valued represen-
tation. CSR has exhibited superior performance in both real-valued (e.g., RGB images)
and complex-valued (e.g., MRI) image classification tasks compared to its counterparts,
especially when the number of training samples is limited.

Chapter 8: Summary and future work

This chapter provides a summary of the approaches introduced throughout this dissertation
and delineates potential avenues for future research.
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Chapter 2

MR Imaging and Reconstruction

In this chapter, the objective is to provide a comprehensive overview of MR imaging and re-
construction, which will facilitate a more thorough understanding of the subsequent chapters.
We begin by delving into the fundamental MRI signal equation and the process of recon-
struction. Following that, we introduce two conventional image reconstruction approaches:
parallel imaging and compressed sensing. Lastly, we present a review of DL-based MRI
reconstruction approaches and their remaining challenges.

For readers who are interested in diving deeper into the subject matter, we recommend
the following resources:

• Prof. Nishimura’s book, Principles of Magnetic Resonance Imaging [75], offers a thor-
ough understanding of MRI physics and basic reconstruction techniques.

• Prof. Zhi-pei Liang and Prof. Paul C. Lauterbur’s book, Principles of Magnetic Res-
onance Imaging: A Signal Processing Perspective [60], provides a more mathematical
exploration of MRI from a signal processing standpoint.

• Dr. Sandino’s review paper, Compressed Sensing: From Research to Clinical Prac-
tice with Deep Neural Networks [96], presents a comprehensive introduction to deep
learning-based reconstruction methods in the context of compressed sensing.

These resources collectively provide a well-rounded understanding of the field, covering
various aspects of MRI reconstruction, from physics and basic principles to mathematical
perspectives and cutting-edge deep learning approaches.

2.1 MR Imaging

MR physics

MRI relies on the principles of nuclear magnetic resonance (NMR) to generate detailed
images of the internal structures of the human body.
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Figure 2.1: Overview of MR physics and image reconstruction. An MRI scanner
uses a strong magnetic field B0 and radiofrequency (RF) signals to excite protons in the body.
These protons emit signals that are encoded by gradient fields (Gx, Gy, Gz) and detected by
coils placed outside the body. These signals reside in the spatial frequency domain (i.e.,
k-space), representing the image’s Fourier coefficients. They are measured, digitized, and
sent to a computer for reconstruction using a discrete Fourier transform and coil combination
steps, resulting in a reconstructed MR image.

At its core, MR physics revolves around the interaction between the magnetic moments of
atomic nuclei, predominantly hydrogen nuclei in water molecules, and the externally applied
magnetic field. As shown in Figure 2.1, when placed in a strong static magnetic field (B0),
the nuclear spins of hydrogen atoms align either parallel or anti-parallel to the direction of
the field, creating a net magnetization.

Upon the application of a radiofrequency (RF) pulse, the magnetization vector is per-
turbed, effectively mixing the longitudinal and transverse components. Following this ex-
citation, the precession generates a varying magnetic field in the transverse direction. The
changes in the magnetic field are then detected by the receiving coils through induction.

3D Magnetic field gradients (Gx, Gy, Gz) that vary linearly in space are employed to
establish a spatial relationship with precession frequency. Consequently, magnetization is
spatially distinguished by associating frequency with the position in a linear manner within
the received signal. Hence, the received signal measures the spatial Fourier transform of the
object being imaged. In the realm of MRI, we call the spatial frequency domain, where the
MR signal resides, k-space.

Once we acquire the k-space data, and assume the data is fully-sampled, we can apply
an inverse Fourier transform and coil combination to reconstruct MR images.
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Image contrast

One of the key features of MRI is its ability to generate images with varying contrast by pro-
gramming the scanner using different sequence designs, which allows for better differentiation
of various tissues and structures within the body.

Image contrast in MRI is primarily governed by biophysical tissue properties, such as pro-
ton density (PD), longitudinal/transverse relaxation (T1/T2), magnetic susceptibility, and
diffusion. These parameters offer valuable insights into tissue composition and microstruc-
ture, serving as excellent biomarkers for the diagnosis and assessment of various diseases.

By adjusting the imaging sequence, MRI can emphasize specific tissue properties to gener-
ate a range of contrast types, including T1-weighted, T2-weighted, proton density-weighted,
Fluid-attenuated inversion recovery (FLAIR), diffusion-weighted, and susceptibility-weighted
images. Each of these contrast types provides unique information about the underlying tis-
sue characteristics, enabling clinicians and researchers to identify pathological changes and
monitor disease progression effectively. Figure 2.2 presents representative image contrasts
from a 2D brain slice.

Proton density (PD) T1-weighted T2-weighted FLAIR

Figure 2.2: Example of MRI contrasts for a 2D brain slice. From left to right, we
showcase four distinct image contrasts: Proton Density (PD), T1-weighted, T2-weighted,
and FLAIR. Each of these contrasts offers unique information about the underlying tissue
properties for clinical diagnosis.

In clinical settings, multiple imaging contrasts are often acquired to gather diverse and
complementary information about the patient’s anatomy and potential abnormalities. By
combining various contrasts, healthcare professionals can obtain a more comprehensive un-
derstanding of the underlying tissue properties, which helps them make more accurate diag-
noses, assessments, and treatment plans.

However, acquiring multiple imaging contrasts significantly prolongs the scan time, re-
quiring patients to remain still for tens of minutes and therefore hindering the scanner
throughput.
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In Chapter 3 of this dissertation, we introduce a novel deep learning-based reconstruction
approach to generate multiple MR imaging contrasts from a single acquisition, significantly
reducing scan time while preserving image quality.

MRI signal equations

Derived from MR physics and taking into account multiple receiving coils, the linear rela-
tionship between the k-space signal si(t), obtained from the i-th coil, and the image space
can be described as:

si(t) =

∫
r

MxySi(r)(r, t)e
−j2πk(t)·rdr+ w(t), (2.1)

where in our formulation, si(t) ∈ C represents the complex-valued acquired signal from
the i-th coil at time t,Mxy denotes the transverse component of the magnetization at position
r and time t, Si(r) represents the coil sensitivity from the i-th coil at position r, j =

√
−1,

k(t) corresponds to the k-space encoding, and w(t) is complex-valued Gaussian noise.
By discretizing the above equation, the MR signal equation can be written using a matrix

form:
y = PFSx+w, (2.2)

where x denotes the image, y refers to the acquired k-space data, F symbolizes the Fourier
transform operator, S corresponds to the sensitivity maps, and w is the noise component.
We also introduce P as the operator that selects the acquired k-space samples. For simplicity,
we define the forward model E = PFS.

It’s worth noting that, in our formulation, P is shared across channels, and w is white
Gaussian and uncorrelated across channels.

2.2 MR reconstruction

Given the forward model y = Ex, the objective of MRI reconstruction is to obtain an image,
denoted by x̂, that closely approximates the underlying image x, using the acquired k-space
measurements y. This process is an inverse problem.

Without relying on additional prior knowledge, the system encoding operator E needs to
be critical or overdetermined to form a well-posed inverse problem. For fully-sampled k-space
and normalized sensitivity maps, we have EHE = SHFHPHPFS = I, where H represents the
conjugate transpose. Since P = I for fully-sampled k-space, an image can be reconstructed
by:

x̂ = EHy = SHFHPHy = SHFHy. (2.3)

In this formulation, FH performs the orthonormal discrete inverse Fourier transform and can
be efficiently computed using the Fast Fourier Transform (FFT) algorithm.
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Figure 2.3: Direct inverse FFT reconstruction from zero-filled under-sampled k-
space Applying inverse FFT to zero-filled under-sampled k-space data can result in aliasing
or blurring artifacts. We visualize three undersampling patterns, from left to right: 1)1D
uniform undersampling with undersampling rate R=3; 2)1D random undersampling with
R=3; 3)2D Poisson Disk undersampling with R=8. The k-space visualization is in log scale.

In practice, to reduce scan time, under-sampled k-space is often acquired. However, when
the k-space is under-sampled, the inverse problem becomes ill-posed.

According to the Nyquist–Shannon sampling theorem, directly applying inverse FFT to
zero-filled under-sampled k-space results in aliasing or blurring. Figure 2.3 displays arti-
facts from three different undersampling patterns (R: undersampling rate): 1) 1D uniform
undersampling (R=3); 2) 1D random undersampling (R=3); 3) 2D Poisson Disk undersam-
pling (R=8). Different undersampling patterns lead to varying artifacts based on their Point
Spread Functions (PSFs). The following subsections introduce representative reconstruction
approaches from under-sampled k-space.

Parallel imaging

Parallel imaging has been widely used in clinical settings to reduce scan time by acquiring
less k-space data using multiple coils.
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As visualized in Figure 2.1, the k-space data is acquired using an array of coils positioned
outside the body. Each coil captures complementary signals characterized by coil sensitivi-
ties. Parallel imaging (PI) approaches leverage redundant spatial information to reconstruct
alias-free images from under-sampled k-space data. Representative PI approaches include
SMASH [107], SENSE [90] in image space, GRAPPA [36] and SPIRiT [65] in k-space. In this
section, we will provide a brief overview of SENSE and refer readers to relevant literature
for other approaches.

Sensitivity encoding (SENSE) formulates the image reconstruction as a linear inverse
problem. Given the forward model (Equation 2.2), a SENSE reconstruction is obtained by
solving the following least square equation:

x̂ = argmin
x

∥Ex− y∥22. (2.4)

This equation has a closed-form solution:

x̂ = (EHE)
−1
EHy. (2.5)

In practical situations, the substantial computational expense associated with matrix
inversion typically leads to the adoption of the conjugate gradient algorithm as a solution
method [101]. With modern hardware design, SENSE has been widely used in clinical
routines. The commonly employed undersampling factors for SENSE are typically 2x or 3x.

When the undersampling rate increases, the least square problem shown in Equation 2.4
becomes ll-posed, leading to noise amplification and reduced image quality. At the same time,
the quality of reconstructed images relies on the accuracy of the sensitivity maps. These maps
can be obtained and estimated from a separate scan or directly estimated from the under-
sampled k-space data (e.g., J-SENSE [137], Nonlinear Inversion [117], or ESPIRiT [116]).

Compressed sensing

In addition to utilizing multi-coil information for improved reconstruction, compressed sens-
ing (CS) presents an alternative approach by harnessing prior knowledge on the image itself.
This technique enables the reconstruction of high-quality images from highly under-sampled
k-space, further enhancing the efficiency of the image reconstruction process.

In CS, the k-space data is acquired in a (pseudo)-random manner. The reconstruction
process takes advantage of the sparse structure prior within a specific domain. To accomplish
this, a regularization term is integrated into Equation 2.4, resulting in a refined regularized
least square problem:

x̂ = argmin
x

∥Ex− y∥22 + λR(x), (2.6)

where R represents a regularization term that encourages sparsity in the chosen transform
domain, while λ serves as a weighting parameter. In particular, R is usually designed as the
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ℓ1 norm of the wavelet coefficients of x. Let Ψ be the wavelet transform operator and the
optimization problem becomes:

x̂ = argmin
x

∥Ex− y∥22 + λ∥Ψx∥1, (2.7)

which can be solved using iterative algorithms, for example, Fast Iterative Soft Thresh-
olding Algorithm (FISTA) [9]. For dynamic MRI reconstruction, R imposes low-rank prior
knowledge on the inverse problem [82, 83].

During the past decade, PI and CS have successfully enabled a broad range of clinical
applications, and all major MRI vendors have implemented products based on them.

Despite the advancements of PI and CS, several challenges persist:

• 1) The regularization functions employed in CS are either hand-crafted (such as sparse
transformation) or rely on relatively simple learned features (for example, dictionary
learning as described in [93]). These approaches are known to be less effective in
accurately modeling the underlying data distribution, as discussed in [37].

• 2) CS reconstruction is highly sensitive to the tuning parameters, which can impact the
overall performance and accuracy of the reconstructed image. The optimal selection
of these parameters remains a challenging task.

• 3) The reconstruction time for CS can be relatively long due to the necessity of it-
erative optimization. This may result in a slower reconstruction process, hindering
its practical applicability in real-time scenarios or clinical settings where timely image
reconstruction is crucial.

Next, we will introduce DL-based reconstructions that aim to revolutionize MR recon-
struction.

2.3 DL-based MRI reconstruction

Deep Learning (DL) is a subset of Machine Learning that leverages artificial neural networks
to model complex patterns and structures within data. By employing advanced algorithms
and hierarchical feature learning, DL has demonstrated remarkable success in various fields,
including computer vision [121], natural language processing [62], and speech recognition [50].
It is this versatility and adaptability that make DL an ideal candidate for MRI reconstruction.

In the context of MRI, DL can be employed to learn a learnable non-linear function fθ
with network weights θ that effectively maps the acquired k-space data y to an estimated
image x̂:

x̂ = fθ(y). (2.8)

fθ is trained and optimized to achieve that the estimated image x̂ closely approximates
the ground truth x. Once trained, during inference time, fθ facilitates efficient image re-
construction without relying on lengthy iterative methods, which often require numerous
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iterations to converge. This results in a significant reduction in reconstruction time, enhanc-
ing the overall efficiency of the process. By utilizing sophisticated neural network architec-
tures such as Convolutional Neural Networks (CNNs) [3] and Recurrent Neural Networks
(RNNs) [139], DL-based reconstruction can learn to model more complex relationships be-
tween under-sampled k-space data and the images, enabling more accurate reconstruction.

fully-sampled k-space

retrospectively 
under-sample

under-sampled k-space

Loss

Figure 2.4: Supervised learning for DL-based MRI reconstruction Given fully-
sampled k-space data, corresponding under-sampled data can be simulated by retrospec-
tively undersampling from the fully-sampled data. The input low-quality image is then
reconstructed using the adjoint system operator. Ultimately, the network weight fθ is opti-
mized by minimizing the loss between the network outputs and the ground truth.

Supervised learning for DL-based image reconstruction

Supervised learning is the predominant method employed in DL-based reconstruction, uti-
lizing vast quantities of fully-sampled training data to learn the reconstruction. Figure 2.5
summarizes the supervised learning framework for DL-based reconstruction.
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Given a fully-sampled k-space (usually from a 2D slice), the first step is to under-sample
it retrospectively, creating a simulated under-sampled k-space represented as y. The function
fθ is typically constructed using convolutional neural networks (CNNs), which take advantage
of spatial relationships in the image domain. Consequently, it is a standard approach in
deep learning-based reconstruction to initially convert the input k-space measurements into
an aliased image through the conjugate MR signal model Eh, denoted by EHy, before
processing with the CNN. The ground truth image, x, is derived from converting the fully-
sampled k-space to image space, while the reconstructed image, x̂, results from applying fθ:
x̂ = fθ(E

Hy).
In supervised learning, a loss function, represented as L(·), is commonly used to evaluate

the difference between the network output, x̂, and the ground truth, x. Frequently utilized
loss functions include ℓ1 loss, ℓ2 loss (also called MSELoss), and Structural Similarity (SSIM)
loss. For ℓ1 loss, L(·) can be written as:

L(x̂,x) = ∥x̂− x∥1. (2.9)

Chapter 4 will provide a more comprehensive overview of the loss function for DL-based
reconstruction. During the training process, the network weights θ are optimized to min-
imize the average loss over the entire training dataset through iterative gradient descent
algorithms [52].

The architecture or design of fθ holds significant importance in deep learning-based re-
construction. A straightforward solution involves implementing an end-to-end feed-forward
network, such as U-Net [94, 141], ResNet [39], or Vision Transformer [27].

Nevertheless, feed-forward networks possess inherent drawbacks. Firstly, they typically
lack robustness to alterations in sampling patterns, meaning that a network trained on
one type of undersampling pattern and tested on another may fail to yield high-quality
reconstruction results. Secondly, within the realm of MRI, training a feed-forward model
demands a sizable model and an extensive training dataset to ensure its generalizability.

These limitations considerably hinder the performance, efficiency, and clinical adoption
of feed-forward networks in MRI reconstruction applications.

In order to overcome these limitations, physics-informed unrolled reconstructions have
been proposed, which integrate the underlying physics and signal model directly into the
network architecture [1, 37, 110].

Physics-informed unrolled reconstruction

Unrolled networks incorporate physics and signal modeling (signal model E) into the network
architecture and have emerged as a powerful approach for DL-based MRI reconstruction,
offering significant improvements in image quality and acquisition efficiency [124, 110, 37,
2].

These networks bridge the gap between traditional iterative optimization algorithms and
deep learning techniques, providing a robust and efficient method for reconstructing high-
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Figure 2.5: Diagram of iterative reconstruction and unrolled reconstruction.
a) Conventional iterative reconstruction alternates between the gradient descent step and
proximal step, with the proximal step being determined by the hand-crafted regularization
term, R. b) Physics-informed unrolled reconstruction learns the regularization function by
replacing the proximal step with a learnable CNN.

quality MR images from under-sampled k-space data. The unrolled network framework is
inspired by the structure of iterative optimization algorithms to solve the inverse problem
equation 2.6, with the aim of learning R directly from the data.

To solve Equation 2.6, as shown in Figure 2.5 a, the problem is divided into two alternat-
ing steps that are executed repeatedly, which we called proximal gradient descent. During
the k-th iteration, a gradient update is carried out as follows:

x(k+) = x(k) − 2tEH(Ex(k) − y), (2.10)

where t is the gradient step size, x(k+) is the intermediate result. Subsequently, the proximal
problem associated with regularization R is solved:

x(k+1) = proxλR(x
(k+)) = argmin

u
R(u) +

1

2tλ
∥u− x(k+)∥22, (2.11)

where u is a helper variable. The updated x(k+1) is then passed to the next iteration. It’s
worth mentioning that the solution for the proximal step of ℓ1 regularization is a simple
soft-thresholding step.
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Unrolled networks essentially learn the proximal step in equation 2.11, thereby implicitly
learning the regularization function R instead of relying on hand-crafted alternatives.

As illustrated in Figure 2.5 b, one of the most widely used unrolled network [96] re-
places the proximal step in equation 2.11 to an image-to-image CNN-based denoiser (e.g.,
U-Net [94]), where we denote as Dθ. Now, the proximal step for the unrolled network can
be rewritten as:

x(k+1) = Dθ(x
(k+)), (2.12)

where θ are learnable parameters. Unrolled networks usually fix the number of iterations K.
The exact number depends on the specific tasks.

By incorporating both signal modeling (Equation 2.10) and data-driven deep learning
(Equation 2.12), unrolled networks offer a more robust and efficient alternative to feed-
forward networks.

In recent years, numerous unrolled networks [2, 37, 110, 127] have been proposed for MRI
reconstruction, showcasing superior image quality and robustness to sampling patterns in
comparison to their counterparts. More importantly, unrolled networks utilize the underlying
physics and signal modeling, resulting in a reduced need for large model sizes and extensive
training data, which offers significant advantages in terms of efficiency and practicality.

Two prominent unrolled networks include Model-based Deep Learning (MoDL)[2] and
Variational Networks[37]. We will delve into MoDL in detail in Chapters 4 and 5.

Challenges for DL-based MRI reconstructions

Despite the significant success of deep learning-based MRI reconstructions, particularly un-
rolled reconstructions, several challenges persist in the field, which limits the fidelity and
efficiency. Some of these challenges include:

• Loss functions employed in DL-based reconstruction methods are predominantly hand-
crafted. These can be pixel-wise (e.g., ℓ1 and ℓ2 losses) or based on local statistics (e.g.,
SSIM loss [130]). However, such loss functions may inadequately capture perceptual
information, which can result in compromised image quality and blurring [44, 2, 37,
125].

• DL-based unrolled reconstruction comprises of multiple learnable networks (one for
each iteration), which demand substantial GPUmemory resources for back-propagation.
Consequently, memory constraints during network training can limit the applicability
of deep learning reconstruction techniques for high-dimensional MRI data, such as
2D+time, 3D, and 3D+time MRI [95, 127].

• The confidence or reliability of reconstructed structures remains insufficiently investi-
gated, posing a challenge for DL-based approaches in clinical applications [129].

• Unlike natural images, MRI data is inherently complex-valued and faces challenges
due to the limited availability of fully-sampled ground truth. This constraint inevitably
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restricts the applications of deep learning-based MRI techniques to tasks without access
to adequate ground truth (e.g., 3D MRI, 2D/3D dynamic MRI).

This dissertation presents a series of projects that aims to tackle these challenges and
unlock the potential of deep learning for large-scale MRI reconstructions.
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Chapter 3

Direct Contrast Synthesis from MR
Fingerprinting

3.1 Introduction

In the first chapter of this dissertation, emphasis is placed on the reconstruction of multiple
contrast-weighted images from a single highly under-sampled acquisition. In particular,
it explores the generation of diagnostic contrast-weighted images from a single, short MR
Fingerprinting scan.

As introduced in Chapter 2, image contrast in MRI is dominated by biophysical tis-
sue properties, such as proton density (PD), longitudinal/transverse relaxation (T1/T2),
magnetic susceptibility, and diffusion. These parameters provide information on the tissue
composition and its microstructure and are excellent biomarkers for diagnosing and assessing
disease. Measuring the quantitative value of tissue parameters, i.e., through quantitative
MRI (qMRI), is desirable, because it provides a standardized metric for tissue properties [89].
However, qMRI has been notoriously challenging to implement and standardize in clinical
practice. Traditional mapping sequences require many lengthy scans to map a single param-
eter and thus are unsuitable for rapid imaging.

Consequently, current diagnostic examinations are composed of a series of several scans,
each qualitatively emphasizing one of the physical parameters above. For example, routine
brain MRI includes PD-weighted scans, wherein brighter pixel intensities indicate a higher
density of protons; T1-weighted (T1w) scans, wherein brighter intensities indicate shorter T1
recovery; T2-weighted (T2w) scans, wherein brightness indicates longer T2 relaxation; fluid-
attenuated inversion recovery (T1/T2-FLAIR), wherein fluid signals are suppressed; and
diffusion scans, wherein brighter intensities indicate less diffusivity. The relative contrast
differences within and across these scans can aid in the assessment of disease.

Owing to the need for multiple scans to obtain multiple contrasts, the typical MRI
protocol is lengthy, requiring patients to remain still for tens of minutes and hindering
scanner throughput.
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In recent years, notable research efforts have focused on acquiring or synthesizing multi-
contrast images from single scans or fewer scans to shorten the total examination time [113,
111, 128, 66, 67, 122]. These techniques have shown early success in clinical practice [43,
118]. For example, synthetic MR methods [10, 35, 113, 131, 43] acquire multiple short scans
and use parameter fitting and physical models to simulate a variety of contrast-weighted
images. T2 shuffling [111, 112] reconstructs multiple contrast-weighted images along the
transverse relaxation curve by using a single volumetric fast spin echo acquisition, through
randomly shuffling the phase encoding view ordering and performing subspace modeling.
Similarly, multitasking [18, 14] approaches use tensor low-rank constraints to reconstruct
multiple contrast-weighted images from a single rapid acquisition. The above approaches
all require scan parameters to be carefully chosen to limit confounding factors and isolate a
small number of qMRI parameters contributing to the overall image contrast.

Instead of decreasing confounding factors, an alternative approach, known as magnetic
resonance fingerprinting (MRF) [67, 66, 43] was proposed to mix many quantitative param-
eters by using a short acquisition with randomized scan parameters. MRF has accelerated
the pace of clinical qMRI by demonstrating the ability to rapidly and reliably generate mul-
tiple quantitative parameter maps from a single scan. MRF acquisition is usually based
on gradient echo sequences and consists of rapid repetition times (TR) with under-sampled
spiral readouts, in which the flip angle is modified for every TR, such that the steady state
of spin dynamics is never achieved. MRF produces a sequence of images in which tissues
with different relaxation and field properties (T1, T2, PD, B0, and B1) produce a unique
time series or ”fingerprint.” The quantitative parameters of the tissue are then extracted
by matching the resulting time series of each pixel to the closest signal in a precomputed
dictionary constructed by simulating the Bloch equation for parameter combinations within
a realistic range.

The fact that quantitative parameters can be extracted from MRF also indicates that the
information embedded should be sufficient to synthesize contrast-weighted images. Although
quantitative parameter maps provide meaningful physical tissue parameters, clinicians still
rely primarily on contrast-weighted images for clinical diagnosis. Therefore, an opportunity
exists for MRF to enable both parameter maps and synthetic contrast MRI to be provided
by a single sequence.

One approach to synthesizing contrast-weighted images from MRF is to first fit the
quantitative parameters and then simulate the contrast-weighted images [10]. Figure 3.1
and Figure 3.2a show the spin-dynamic simulation pipeline, which uses quantitative param-
eter maps to synthesize different contrast-weighted images by using the Bloch equation or
extended phase graphs (EPG) [133]. Unfortunately, contrast-weighted images generated in
this manner often exhibit artifacts because of many sources of error. Errors can arise from
discrepancies between the MRF sequence and the dictionary simulation, for example, when
flow, diffusion, magnetization transfer, excitation slice profile, or partial volume is not mod-
eled appropriately. This limitation is most pronounced in FLAIR contrast, in which errors
are seen along the boundaries of cerebrospinal fluid [118].

An alternative, and relatively more straightforward, pipeline avoids explicit modeling
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Figure 3.1: Contrast synthesis from MRF via a current simulation-based pipeline
and proposed direct contrast synthesis (DCS) pipeline. The simulation-based
method takes the predicted quantitative parameter maps from MRF and synthesizes dif-
ferent contrast-weighted images by simulating the MRI physics. Our proposed DCS uses
a spatial CNN to transform the MRF time series directly into different contrast-weighted
images. DCS bypasses dictionary matching and contrast simulation steps, avoids modeling
and acquisition imperfections, and produces high-fidelity contrast-weighted images.

and instead directly learns how to synthesize contrast-weighted images from the MRF data
through neural networks. We refer to this approach as Direct Contrast Synthesis (DCS).
Previous work [120] has proposed a supervised DCS method in which a network was trained
to take a single voxel MRF time series and map it to a specific contrast weighting (e.g., T1w,
T2w, or FLAIR). This approach, which we refer to as PixelNet, is illustrated in Figure 3.2b.
By training on many pairs of MRF and contrast-weighted images, PixelNet can achieve
better results than dictionary mapping and simulation-based contrast synthesis. However,
by processing each pixel independently, PixelNet does not leverage the spatial structure in
the data and thus can suffer from noise and spatial inconsistency. To address this issue,
we propose to implement DCS as an image sequence-to-image translation task to leverage
structural information. In the field of computer vision, image-to-image translation is an
established problem that aims to translate an image from a source domain to a target domain
(e.g., reconstructing objects from edge maps [44] and colorizing images [144]). Recent studies
have shown promising results through image-to-image convolutional neural networks (CNNs)
and generative adversarial networks (GANs) [34, 44]. The seminal work of pix2pix [44]
investigated conditional adversarial networks as a general-purpose solution to image-to-image
translation problems. CycleGAN [148] improved upon the technique of learning image-
to-image translation in the absence of paired examples. Image-to-image translation has



CHAPTER 3. DIRECT CONTRAST SYNTHESIS FROM MR FINGERPRINTING 20

T2

MRF Signal Dictionary 
Matching

PD

Parameter Maps 
(T1/T2/PD)

CNN in time domain

T1w
T2w
FLAIR

T2wT1w FLAIR

T2wT1w FLAIR

Spin dynamic (MRI physics) simulation

Pixel-wise DCS - PixelNet

CNN in spatial domain (Proposed)

T2wT1w FLAIR

N-DCSNet
MRF Time Series

a)

b)

c)

Synthetic MR

PixelNet

N-DCSNet

Figure 3.2: Three possible pipelines to generate contrast-weighted images from
MRF. a) Synthetic MR generates multi-contrast images through dictionary matching
and sequence simulation (e.g., Bloch equation, EPG). b) PixelNet uses a 1D pixel-wise
time-domain CNN to output a qualitative contrast weighting for each voxel. c) Our pro-
posed N-DCSNet leverages a GAN-based architecture and spatial-convolutional network
to synthesize multi-contrast images.

also been applied in the fields of medical imaging and MRI. For example, references [69,
38, 134] learned cross-modality image synthesis between MRI and CT images; references
[138, 22] synthesized T2w images from T1w images; reference [91] synthesized 7T high-
resolution, high-SNR images from 3T input images; and reference [123] introduced a multi-
task deep learning model to synthesize multi-contrast MRI images from multi-echo sequences.
Recently, reference [21] proposed a residual transformer-based deep learning model for multi-
modal cross-contrast MR image synthesis.

Inspired by previous works, we propose to use a conditional GAN-based architecture for
DCS from MRF that enables substantial improvements in image quality and computation
efficiency over simulation-based contrast synthesis and PixelNet. We refer to our approach
as N-DCSNet, first described in reference [124], where N represents N different contrasts
that can be synthesized by our network (here N = 3). Figure 3.2 summarizes the three
pipelines of producing synthetic, multi-contrast images.

As illustrated in Figures 3.1 and 3.2c, N-DCSNet directly synthesizes different contrast
weighted images, i.e., T1w, T2w, or FLAIR, from the MRF time series data through a
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spatial CNN. Our generator is designed as a U-Net with a single encoder and multi-branch
decoders [94]. We implement a multi-layer CNN (PatchGAN) [44] as the discriminator. The
generator is based on spatial convolutions, thus allowing the network to learn and exploit
spatial structural information. Different contrast-weighted outputs share the same encoder
to exploit the shared information across contrasts. Separate decoders are designed to learn
the unique features of each contrast. During the training procedure, we leverage a conditional
GAN framework, wherein the time average of the MRF time series is also used as an input
to the discriminator to constrain the GAN training.

In vivo experiments on healthy volunteers show that N-DCSNet can generate high-
fidelity, multi-contrast images from MRF time-series. Our approach outperforms contrast
synthesis from parameter maps and PixelNet both qualitatively and quantitatively. Fur-
thermore, we demonstrate that N-DCSNet can inherently mitigate some artifacts that
appear in MRF, such as slice in-flow artifacts and spiral off-resonance blurring. Our main
contributions can be summarized as follows:

• We introduce a spatial CNN-based method to learn the mapping between MRF time
series and contrast-weighted images (i.e., T1w, T2w, and FLAIR). Our approach can
avoid the simulation errors typically seen in Synthetic MR.

• We use a conditional GAN-based framework to encourage finer textures and produce
more faithful contrasts. Additionally, our N-DCSNet can inherently mitigate slice
in-flow artifacts as well as spiral off-resonance blurring.

• N-DCSNet outperforms simulation-based contrast synthesis from parameter maps
and PixelNet qualitatively and according to quantitative metrics. It also has significant
computation advances. During inference, our approach is significantly faster than
simulation-based contrast synthesis and PixelNet, thus improving the potential for
clinical adoption.

3.2 Data acquisition and formulation of N-DCSNet

In this section, we first describe the data acquisition protocols and the simulation-based
contrast synthesis via parameters used as our baseline for comparisons (§ 3.2). Then, we
introduce our GAN-based framework design for N-DCSNet (§ 3.2). Next, we detail the loss
functions (§ 3.2) and the training process. Finally, we compare our method with previous
approaches (§ 7.6).

Data acquisition and contrast synthesis via parameters

Data acquisition: After obtaining IRB approval, we scanned 21 men, ranging from 29 to 61
years of age, with a 1.5 T Philips Ingenia scanner using a 15-channel head coil. A total of 13
channels were selected by using automatic coil selection. To avoid conducting so-called ”data
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crimes,” [103] we report our data preparation pipeline as follows. Four consecutive axial brain
scans were acquired for each examination session. The participants were instructed to remain
still throughout the examination so that data across scans remained registered. The scans
were as follows:

• A spoiled gradient echo [47] MRF sequence with 500 time points, constant TE=3.3
ms, TR=20 ms (Each TR consisted of a spiral-out readout. The spirals between two
consecutive TR were rotated by 9◦.). The readout time is 12 ms and the undersampling
factor is 20.

• T1w spin echo with TE=15 ms, TR=450 ms, flip angle=69◦, and two averages.

• T2w turbo spin echo (TSE) with TE=110 ms, TR=1990-2215 ms, ETL=16, flip
angle=90◦ and two averages.

• FLAIR inversion recovery TSE with TE=120 ms, TR=8500 ms, TI=2500 ms, ETL=41,
flip angle=90◦ and two averages.

All scans were acquired with an in-plane resolution of 0.72×0.72 mm (FOV 230×230 mm,
matrix size 320×320) and nine to ten slices with a thickness of 5 mm. Of the 21 participants,
17 were scanned twice (on different days), thus resulting in a total of 38 examinations. FLAIR
sequences were acquired for only 26 of the 38 examinations. Only the 26 examinations with
all four sequences were used in this study, of which 21 were used for training, two were used
for validation, and three were used for testing. The data from participants used for testing
were not included in any of the training sets.

To further minimize residual motion or misalignment between scans, we employ a 2D
rigid in-plane registration per slice, aligning the ground truth contrast-weighted images with
the time-averaged MRF image. Moreover, we manually inspect the images and discard those
exhibiting significant in-plane and through-plane movements.
Pre-processing: Each of the three contrast-weighted image data was normalized with
respect to the 95th percentile of the intensity values for each image. MRF time series images
were reconstructed from each TR by using gridding with density compensation [79, 45]
followed by coil combination with Philips’ CLEAR. The MRF data were then normalized
as follows. For each dataset, an averaged image from the 500 time points was computed.
The 95th percentile of the magnitude values from the average MRF image was then used to
normalize the time series.
Parameter maps and contrast simulation: The dictionary for MRF parameter mapping
was simulated by using EPG [133]. The dictionary consisted of 22,031 MRF signals with T1
parameters ranging from 4 to ms to 3,000 ms and T2 parameters ranging from 2 ms to 2,000
ms. Each simulated signal in the dictionary was scaled to have a Euclidean norm equal to
one. We used cosine similarity [67] to match the acquired MRF signal to the nearest neighbor
in the simulated dictionary (Figure 3.2 a). Additional factors, such as B1 inhomogeneity
and slice profile, were not included in the simulated dictionary.
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The parameter maps (T1, T2) obtained from dictionary matching were then used to
simulate the contrast-weighted images. The T1w spin echo (SE) has a closed form for
specific TE and TR, and PD parameters:

SE(PD,T1,T2,TE,TR) = PD · (1− e−
TR−TE

T1 ) · e−
TE
T2 . (3.1)

PD was computed by taking the magnitude of the inner product between the acquired MRF
signal and the nearest neighbor in the simulated dictionary. The T2w and FLAIR sequences
are based on TSE and do not have closed forms. For these, we used EPG [133] to simulate
the contrast-weighted images.

N-DCSNet framework

500 time points
MR Fingerprinting

Generator
Multi-branch U-Net

Per-pixel Loss

Perceptual VGG 
Loss

Real or Fake?
Adversarial 

Loss

Discriminator

+

+

Synthesized Target

T1w

T2w

FLAIR

Time average of MRF

Time average

Figure 3.3: Illustration of our proposed N-DCSNet framework. Given a complex-
valued MRF time series MRFin ∈ Ct×h×w, with number of time points t ∈ N and image
dimensions h,w ∈ N, N-DCSNet synthesizes three contrast-weighted images (T1w, T2w,
and FLAIR) with a single network. We designed a multi-branch U-Net as the generator and
a multi-layer CNN as the discriminator by following the conditional GAN training strategy.
To constrain the GAN training, we additionally input the time average of MRF to the
discriminator. A combination of per-pixel ℓ1 loss, perceptual VGG loss, and adversarial loss
is imposed on the network. N-DCSNet generates high-fidelity contrast-weighted images
with sharper edges, finer textures, and more faithful contrasts than simulation-based contrast
synthesis and PixelNet.
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Figure 3.3 illustrates the overall pipeline of our proposed N-DCSNet. Our network
expects the complex-valued MRF time series MRFin ∈ Ct×h×w as input, where t, h, and
w correspond to the number of time points, image height, and image width, respectively
(t, h, w ∈ N). The network outputs are real-positive (magnitude) contrast weighted images
ˆT1w, ˆT2w, ˆFLAIR ∈ Rh×w. In our experiments, t = 500, h = w = 320.
We designed a conditional GAN-based framework for N-DCSNet, the standard frame-

work in references [44, 148], consisting of a generator (G) and a discriminator (D).
First, for the input complex-valued MRF data with dimensions 500×320×320, we con-

catenate the real and imaginary parts along with the time dimension as channels to the
network. This results in a real-valued input with dimensions 1000×320×320.

Our generator is a modified U-Net [94], which consists of one shared encoder and multiple
independent decoders. The shared encoder exploits structural similarities across the multi-
contrast images, whereas the independent decoders learn the unique features of the different
contrasts. At test time, N-DCSNet produces multi-contrast images with a single network.
The discriminator (D) is a multi-layer CNN (patchGAN) [44] that penalizes structure at a
patch scale. D aims to classify whether each N×N patch in an image is real or fake. We run
this discriminator convolutionally across the image, averaging all responses to provide the
final output of D. To constrain the GAN training, we follow reference [44] and further input
the magnitude of the MRF time-averaged image to the discriminator to provide structural
guidance. This image has mixed contrast, because of averaging, and significantly fewer spiral
undersampling artifacts than the MRF time-series images. We denote it MRFavg.

During training, the generator G learns to predict high-quality contrast-weighted images
that cannot be distinguished from the real acquired images (ground truth) by an adversarially
trained discriminatorD. Meanwhile,D is simultaneously trained to distinguish the generated
images (labeled as ”fake”) from the ground truth images (labeled as ”real”).

Loss functions

Our proposed N-DCSNet is fully supervised, with the purpose of generating high-fidelity
contrast-weighted images that are close to the ground truth real acquisitions. The loss
function of our generator G is a combination of three components: 1) ℓ1 reconstruction loss,
2) perceptual loss, and 3) adversarial loss. Given our generator G and the input MRF signal
MRFin, G outputs the synthesized contrast-weighted images (T1w, T2w, and FLAIR):

ˆT1w, ˆT2w, ˆFLAIR = G(MRFin). (3.2)

Then the cumulative ℓ1 loss is formulated as:

Lℓ1 = EMRFin
(∥ ˆT1w −T1w∥1 + ∥ ˆT2w −T2w∥1 + ∥ ˆFLAIR− FLAIR∥1), (3.3)

where T1w,T2w, and FLAIR represent the real, ground-truth acquisitions of the three
contrast-weighted images (§ 3.2). Per-pixel losses such as the ℓ1 loss are known to exhibit
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image blurring [44, 49, 59, 125]. Therefore, we incorporate additional perceptual and
adversarial losses to encourage detailed reconstructions.

Perceptual losses [49, 125] have been used successfully in super-resolution and image syn-
thesis [123] tasks to improve image quality and encourage delicate structures. The underlying
idea is that layer features of task-based networks, such as image classification networks, can
capture high-level perceptual information in the image. Therefore, minimizing the loss in the
feature space can preserve such perceptual information [49]. In this work, the perceptual loss
is implemented as the ℓ2 distance between relu2-2 layer features of an ImageNet [24] pre-
trained VGG Network [104]. We denote the function used to extract these features as ϕ(·),
where ϕ(x) extracts the relu2-2 layer features of a specific image x. Each contrast-weighted
image is scaled to [0, 1], duplicated three times, and concatenated along the channel dimen-
sion (to simulate RGB channels) before feeding into ϕ(·). Then, the overall VGG perceptual
loss term can be written as:

Lvgg = EMRFin
(∥ϕ( ˆT1w)−ϕ(T1w)∥2+∥ϕ( ˆT2w)−ϕ(T2w)∥2+∥ϕ( ˆFLAIR)−ϕ(FLAIR)∥2).

(3.4)
The third component of our loss function is an adversarial loss. This term is used to

further encourage high-frequency details and achieve more realistic synthesized outputs [44].
The generator G is trained to produce outputs that cannot be distinguished from “real” im-
ages. We concatenate the acquired images [MRFavg,T1w,T2w,FLAIR] along the channel
dimension, and treat it as the ”real” sample Sreal = [MRFavg,T1w,T2w,FLAIR]. Mean-

while, we create Sfake = [MRFavg, ˆT1w, ˆT2w, ˆFLAIR] as the ”fake” sample Sfake. Then,
the adversarial loss for our generator is given by:

Ladv = −ESfake
[log(D(Sfake))]. (3.5)

The overall objective function for the generator becomes:

LG = Lℓ1 + λvggLvgg + λadvLadv, (3.6)

where λvgg and λadv are the weights of the perceptual loss and adversarial loss, respectively.
In our experiments, we empirically set λvgg = 0.03 and λadv = 0.015.

Our discriminator is adversarially trained to detect the generators’ outputs as ”fake”
images. According to reference [34], the objective function for our discriminator LD is given
by:

LD = −ESreal
[log(D(Sreal))]− ESfake

[log(1−D(Sfake))]. (3.7)

We update the parameter weights of G and D by alternatively minimizing the objectives
LG and LD.
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Experiments

To demonstrate its effectiveness, we evaluate our N-DCSNet against simulation-based con-
trast synthesis (synthesis via parameters) and PixelNet on the same testing dataset (detailed
in §3.2). The EPG simulation using the dictionary-matched parameters was run for all voxels
in parallel by using the joblib package [48] on 24 CPUs. On the basis of the architecture
introduced in reference [120], we implemented PixelNet as a 1D temporal CNN to map the
MRF time series at every voxel to the corresponding three contrast-weighted scans. The Pix-
elNet network consists of three convolutional layers followed by three fully connected layers
and is trained with an ℓ2 loss. The inference time for the different approaches is calculated by
computing the average runtime of 20 separate runs of a single MRF slice. Ablation studies
were also conducted to analyze the impacts of the different loss functions on the synthesized
contrast-weighted images.

Evaluation metrics

To quantitatively compare our results to the ground truth, we report the following evaluation
metrics: normalized root mean square error (nRMSE), peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) [130], learned perceptual image patch similarity (LPIPS) [145]
with AlexNet [56], and Fréchet inception distance (FID) score [40]. When computing LPIPS
and FID, the output images were scaled to the range [0, 255] and saved as png files.

Implementation details

All the proposed algorithms and networks were implemented with PyTorch 1.8 [86] on 24
GB NVIDIA 3090 graphics processing units (GPUs). Our generator and discriminator were
trained by using Adam optimizer [52], with a batch size of 4 and a learning rate of 1× 10−4.

We supervise the direct contrast synthesis with magnitude contrast weighted images.
However, the MRF time series is inherently complex-valued. To reduce the sensitivity to
phase, during training, we augment the phase of the MRF data on the fly by multiplying each
time-series with random constant phase ejθ, where j =

√
−1 and θ is uniformly distributed

between [0, 2π].
The ablation study evaluating the loss functions’ contributions was performed by com-

parison of the proposed combined loss function (Equation 3.6) against Lℓ1 , Lℓ1 + λvggLvgg,
and Lℓ1 + λadvLadv losses.

3.3 Comparisons with contrast synthesis via

parameters and PixelNet

Figure 3.4 summarizes the results of the different contrast synthesis methods applied to a
representative 2D brain slice. Compared with EPG simulation-based synthesis (synthesis
via parameters) [133], and PixelNet [120], N-DCSNet produces finer and cleaner structural
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details, sharper edges, and better perceptual agreement with the true acquisition (ground
truth).

T1w

T2w

FLAIR

Synthesis
via parameters

PixelNet N-DCSNet
(proposed)

True acquisition
(ground truth)

Figure 3.4: Representative contrast synthesis results of different methods (upper
brain). From left to the right, we compare our proposed N-DCSNet with simulation-based
contrast synthesis via parameters [133], PixelNet [120], and the true acquisition. N-DCSNet
shows better visual agreement with the true acquisition, producing finer textures and higher
overall image quality than the other approaches. Zoomed-in details are displayed next to
each image.

The EPG simulation-based results (synthesis via parameters) exhibit incorrect contrast
and noise artifacts due to the modeling and acquisition imperfections (as expected in §3.1).
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PixelNet significantly improves the synthesized image quality, but the noise artifacts persist
(as shown in T1w and T2w). In comparison, N-DCSNet leverages both temporal and
spatial information, producing more faithful contrast, preserving finer details, and showing
better agreement with the ground truth images.

T1w

T2w

FLAIR

Synthesis
via parameters

PixelNet N-DCSNet
(proposed)

True acquisition
(ground truth)

Figure 3.5: Representative contrast synthesis results of different methods (lower
brain). From left to the right, we compare our proposed N-DCSNet with simulation-based
synthesis via parameters [133], PixelNet [120], and the true acquisition. Zoomed-in images
show the inflow (vasculature) regions where parameter-based synthesis (left column) fails to
deliver correct contrast, owing to the moving blood flow. In comparison, N-DCSNet suc-
cessfully reconstructs delicate textures and produces high-quality contrast-weighted images.
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Figure 3.6: Gallery of N-DCSNet synthesized contrast-weighted images along-
side parameter maps. N-DCSNet synthesizes high-fidelity contrast-weighted images (right
three columns) from MRF data. Concurrently, the parameter maps (i.e., PD, T1, T2) can
be obtained through dictionary matching (left three columns). Our approach showcases the
feasibility of generating complementary parameter maps and contrast-weighted images from
a single scan.

Figure 3.5 compares the results of another representative 2D slice from the lower brain.
Regions of the vasculature are zoomed in and expanded at the bottom right corners. Because
of the blood flow, MRF cannot retrieve accurate parameter maps by dictionary matching [30].
Therefore, synthesis via parameters fail to deliver precise contrasts in the vasculature regions
(as shown in T2w images). In comparison, N-DCSNet produces accurate contrast and can
successfully reconstruct the delicate vessel structures (as shown in T2w results). From the
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synthesized FLAIR images, we observe that PixelNet produces noisier images with flattened
contrasts in the back of the brain. Instead, N-DCSNet successfully depicts the detailed
textures and produces high-quality, sharper images.

Figure 3.6 displays an extensive collection of N-DCSNet synthesized images, accompa-
nied by the corresponding parameter maps (i.e., PD, T1, T2). These parameter maps are
obtained through dictionary matching. Our approach highlights the capability to produce
complementary parameter maps and contrast-weighted images from a single scan.

Table 3.1 compiles the quantitative evaluation metrics (nRMSE, PSNR, SSIM, LPIPS,
and FID) of different methods (synthesis via parameters [133], PixelNet [120] and N-
DCSNet) for each contrast. We compute the metrics across the testing dataset and report
the mean and standard deviation (std). As indicated in the table, for all three contrasts
(T1w, T2w, and FLAIR), our method consistently outperforms other methods in all five
evaluation metrics. Of note, LPIPS and FID use learned features to measure perceptual
similarity between two images or two distributions, thus resulting in better matching with
human judgment than pixel-wise (nRMSE) or patch-wise (SSIM) metrics [145, 40]. N-
DCSNet, compared with PixelNet, significantly reduces the LPIPS by more than 30% and
the FID by more than 50% for all three contrasts, thus demonstrating the superiority of our
proposed method in terms of perceptual image quality.

ContrastsMethods nRMSE (%) ↓ PSNR (dB) ↑ SSIM ↑ LPIPS ↓
(×10−2)

FID ↓

T1w

Synthesis
via parameters [133]

6.44 ± 1.25 24.0 ± 1.93 0.786 ± 0.030 20.1 ± 1.14 130.8

PixelNet [120] 4.58 ± 0.83 26.9 ± 1.71 0.880 ± 0.026 11.3 ± 1.81 109.6

N-DCSNet (ours) 3.57 ± 0.64 29.1 ± 1.63 0.923 ± 0.019 6.33 ± 1.87 57.32

T2w

Synthesis
via parameters [133]

13.4 ± 1.68 17.5 ± 1.11 0.671 ± 0.032 21.1 ± 1.60 148.1

PixelNet [120] 5.24 ± 0.64 25.7 ± 1.11 0.853 ± 0.027 12.6 ± 1.92 114.1

N-DCSNet (ours) 3.76 ± 0.59 28.6 ± 1.35 0.921 ± 0.017 5.77 ± 1.02 57.01

FLAIR

Synthesis
via parameters [133]

19.4 ± 2.75 14.3 ± 1.25 0.576 ± 0.028 20.6 ± 2.50 185.4

PixelNet [120] 4.69 ± 0.67 26.7 ± 1.30 0.797 ± 0.025 11.3 ± 1.35 126.9

N-DCSNet (ours) 3.64 ± 0.65 29.0 ± 1.75 0.883 ± 0.018 8.63 ± 0.839 63.17

Table 3.1: Quantitative comparisons (nRMSE, PSNR, SSIM, LPIPS, and FID)
among different contrast synthesis methods (mean ± standard deviation). We
calculate the metrics for each contrast (T1w, T2w, and FLAIR) separately. N-DCSNet
is compared with contrast synthesis via parameters [133] and PixelNet [120]. Our pro-
posed method consistently outperforms other approaches in all five metrics for each contrast.
Bold corresponds to the best results. ↑ means that higher is better, ↓ means that lower is
better.

Table 3.2 summarizes the inference times of the different approaches. As indicated in
the table, simulation-based synthesis (synthesis via parameters) requires an average of 24.37
seconds because of the time-consuming dictionary matching and contrast simulation proce-
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Synthesis
via parameters

PixelNet N-DCSNet (ours)

Inference time (s) ↓ 24.37 0.3421 0.01617

Table 3.2: Inference times of different methods for contrast synthesis from a 2D
MRF time series. N-DCSNet reduces the inference time by more than 20 fold with
respect to that of PixelNet, demonstrating superior computation efficiency and the potential
for clinical adoption. All experiments are implemented on a single NVIDIA 3090 GPU for
fair comparison. Bold corresponds to the best result.

dures that are repeated for each voxel across the entire image. PixelNet is more efficient,
and averages 0.3421 seconds by leveraging parallel GPU computing (on a single NVDIA
3090). In comparison, our N-DCSNet has 20 times faster inference time than PixelNet.
N-DCSNet requires an average of 0.01617 seconds to synthesize three contrast-weighted
images from a single 2D MRF time series, demonstrating superior computation efficiency
and a potential for clinical translation. All experiments were run on a single NVIDIA 3090
GPU.

3.4 Ablation study of different loss functions

To investigate and better understand the effects of loss functions (§ 3.2) on the resulting
image quality, we conducted an ablation study by comparing our overall loss function LG

(Equation 3.6) to Lℓ1 , Lℓ1 + λvggLvgg and Lℓ1 + λadvLadv losses. We trained separate models
with different objective functions and used the same training setup and datasets (i.e., training
set, learning rate, epochs, etc.). Figure 3.7 shows the results on a representative 2D brain
slice. The model trained with pure Lℓ1 (left column) suffers from degraded perceptual image
quality and exhibits some blurring, in agreement with the findings in literature [125, 44, 123].
Adding perceptual VGG loss (second column) encourages finer details and sharper edges.
However, blurring artifacts remain (as seen in T2w and FLAIR). Adding adversarial loss on
top of Lℓ1 (third column) encourages even finer structures but suffers from residual blurring
(T2w) and recurrent checkerboard artifacts (FLAIR). By incorporating both perceptual loss
and adversarial loss, the model trained with our proposed objective (fourth column, Equation
3.6) further improves the synthesized image quality by reconstructing more delicate textures
(T2w example) and producing more faithful contrast (FLAIR example).

Table 3.3 summarizes the five evaluation metrics for N-DCSNet trained with the differ-
ent loss functions. Because the model trained with pure Lℓ1 loss optimizes the pixel distances,
it produces the best nRMSE and PSNR results. However, nRMSE and PSNR are known
not to match human perception [145]. For perception-representative metrics (SSIM, LPIPS,
and FID), N-DCSNet trained with our proposed full objective outperforms the other loss
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T1w

T2w

FLAIR

𝑙! Loss 𝑙! Loss + 
perceptual Loss

𝒍𝟏 Loss + perceptual Loss
+ adversarial Loss (full)
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(ground truth)
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Figure 3.7: Representative visual comparison of N-DCSNet with different loss
functions. From left to right, our full objective (fourth column; Equation 3.6) is compared
with Lℓ1 , Lℓ1+λvggLvgg, Lℓ1+λadvLadv and the ground truth. Perceptual VGG loss encourages
sharper edges than pure Lℓ1 , whereas adversarial loss further improves the image quality.
The model trained with our full objective is able to recover subtle structures and show better
visual agreement with the ground truth.

functions for all three contrasts (except SSIM for T1w), thus demonstrating the effectiveness
of our loss functions in producing high-fidelity contrast-weighted images.

3.5 Mitigation of spiral off-resonance artifacts

Beyond the aforementioned superior performance, we also demonstrate cases in which N-
DCSNet effectively mitigates the off-resonance artifacts within the MRF time series caused
by B0 inhomogeneity and the long readout time of spiral acquisitions. Previous studies have
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Contrasts Methods nRMSE (%) ↓ PSNR (dB) ↑ SSIM ↑ LPIPS ↓
(×10−2)

FID ↓

T1w
Lℓ1 3.34 ± 0.63 29.7 ± 1.69 0.918 ± 0.018 8.02 ± 2.40 67.39

Lℓ1 + λvggLvgg 3.43 ± 0.82 29.5 ± 2.16 0.926 ± 0.022 9.14 ± 2.53 66.66

Lℓ1 + λadvLadv 3.68 ± 0.93 28.7 ± 1.72 0.921 ± 0.020 8.04 ± 2.18 62.94

Lℓ1 + λvggLvgg + λadvLadv 3.57 ± 0.64 29.1 ± 1.63 0.923 ± 0.019 6.33 ± 1.87 57.32

T2w
Lℓ1 3.57 ± 0.67 29.2 ± 1.64 0.914 ± 0.018 10.08 ± 1.73 71.44

Lℓ1 + λvggLvgg 3.67 ± 0.61 28.8 ± 1.45 0.918 ± 0.018 8.67 ± 1.46 64.55
Lℓ1 + λadvLadv 3.79 ± 0.72 28.4 ± 1.55 0.919 ± 0.024 7.57 ± 1.18 60.30

Lℓ1 + λvggLvgg + λadvLadv 3.76 ± 0.59 28.6 ± 1.35 0.921 ± 0.017 5.77 ± 1.02 57.01

FLAIR
Lℓ1 3.44 ± 0.66 29.4 ± 1.72 0.879 ± 0.017 11.1 ± 0.98 93.01

Lℓ1 + λvggLvgg 3.73 ± 0.61 28.7 ± 1.55 0.878 ± 0.019 10.7 ± 1.02 96.01
Lℓ1 + λadvLadv 3.68 ± 0.93 28.1 ± 1.71 0.869 ± 0.021 9.62 ± 1.08 78.71

Lℓ1 + λvggLvgg + λadvLadv 3.64 ± 0.65 29.0 ± 1.75 0.883 ± 0.018 8.63 ± 0.839 63.17

Table 3.3: Quantitative comparisons (nRMSE, PSNR, SSIM, LPIPS, and FID)
of N-DCSNet with different loss function designs (mean ± standard deviation).
The model trained with pure Lℓ1 optimizes the per-pixel distances, producing the lowest
nRMSE and highest PSNR. The model trained with our full objective outperforms other
loss function designs in perceptual metrics SSIM, LPIPS, and FID. Bold corresponds to
the best results. ↑ indicates that higher is better, ↓ indicates that lower is better.

demonstrated the feasibility and potential of deep learning in off-resonance corrections [142,
23]. As shown in Figure 3.4, 3.5, parameter-based synthesis and PixelNet present blurry scalp
fat signals in boundary regions of the brain, because of the MRF off-resonance effects (seen
in T1w). In comparison, benefiting from spatial convolutions, N-DCSNet reconstructs a
clean and sharp scalp fat signal, overcomes the off-resonance artifacts, and agrees well with
the ground truth.

Figure 3.8 shows a representative example in which the MRF time-averaged image and
PixelNet exhibit off-resonance signal loss artifacts in the regions close to the skull (indicated
by the zoomed-in details). N-DCSNet significantly reduces the artifacts and recovers the
correct contrasts and structures. Some residual artifacts can be observed, as indicated by the
red arrows. Figure 3.9 presents another example in which the MRF time-averaged image and
PixelNet exhibit several off-resonance signal loss artifacts and geometric distortion near the
nasal region. Most brain structures are blurred out, primarily because of the considerable
B0 homogeneity and the long readout time for the spiral acquisition. As visualized in the
figure, N-DCSNet accurately recovers most of the delicate brain structures near the nasal
region. The red arrows indicate the residual artifacts.
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Figure 3.8: Representative N-DCSNet results in mitigating spiral off-resonance
artifacts in an MRF time series near the skull region. The MRF time-averaged image
and PixelNet results exhibit spiral off-resonance artifacts near the skull region (zoomed-in
images) because of B0 inhomogeneity and the long readout time. N-DCSNet recovers the
structure and produces contrast-weighted images with few residual artifacts. True acquisi-
tions are displayed as references. Red arrows point to the regions with residual artifacts.

3.6 Discussion

In this work, we present a novel high-fidelity direct contrast synthesis framework,N-DCSNet,
for synthesizing multi-contrast images from a single MRF scan. N-DCSNet directly learns
a mapping between the MRF time series and the desired contrast weighted images (i.e.,
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Figure 3.9: Representative N-DCSNet results in mitigating off-resonance artifacts
near the nasal region. MRF time-averaged images display spiral off-resonance artifacts
near the nasal region (as seen in zoomed-in images) due to the lengthy readout time. PixelNet
also struggles to restore the structures and exhibits significant noise and distortions. N-
DCSNet successfully mitigates the artifacts and produces contrast-weighted images with
few residual artifacts. True acquisitions are displayed as references. Red arrows point to
regions with residual artifacts.

T1w, T2w, and FLAIR) and thus bypasses the mapping and simulation steps required for
contrast synthesis from parameter maps.

As briefly introduced in § 3.1, the sources of error contrast synthesis via parameter maps
are attributed mainly to 1) factors that are not included in the dictionary simulation (e.g.,
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B0/B1 homogeneity, slice profile, and flow effects), 2) approximation and error propagation in
the contrast synthesis simulation (EPG algorithm) [133], and 3) artifacts (noise and aliasing)
from highly undersampled MRF scans (example shown in Figure 3.1). As indicated by the
visual comparison results (Figure 3.4, 3.5), the parameter-based contrast synthesis method
does not deliver the correct contrast and produces noisier outputs (particularly for T2w and
FLAIR results). One possible way to improve the results is modeling more parameters during
the dictionary simulation procedure, such as B1 inhomogeneity [13], flow [30], and partial
volume [25]. Unfortunately, including more simulation parameters forces the dictionary
to grow in size, thereby prolonging the dictionary matching time (Table 3.2), or severely
sacrificing parameter resolution and range.

Direct contrast synthesis leverages paired training data to learn a mapping from MRF
signals to contrast-weighted images without explicitly modeling the aforementioned condi-
tions. The previous DCS method PixelNet [120] proposed a 1D temporal CNN that maps the
MRF time series at each pixel to the contrast weightings for that pixel and improves synthe-
sized image quality and inference time (Table 3.2). However, because PixelNet treats each
pixel independently, it does not leverage the unique spatial structural information within
the MRF data. In vivo results (Figure 3.4, 3.5) indicate that PixelNet exhibits severe noise
artifacts and diminished fine textures, particularly in FLAIR scans.

Our N-DCSNet shows significant improvements by introducing a conditional GAN-
based framework with a spatial convolution network as the generator. N-DCSNet produces
more faithful contrasts and is able to recover finer structures with overall better image quality
than the other methods examined (Figure 3.4 and 3.5). Moreover, as described in section
§ 3.5 and shown in Figure 3.8 and 3.9, we demonstrate cases in which N-DCSNet effectively
mitigates spiral off-resonance artifacts.

In our approach, we directly input the MRF time series to the network without performing
pre-reconstruction on the MRF data. With the current MRF undersampling factor of 20,
our method generates high-fidelity synthesized contrast-weighted images. For even higher
undersampling factors (or for improved quality), incorporating pre-reconstruction techniques
(e.g., subspace reconstruction [zhao2018improved]) could be a promising direction as it
may yield less-aliased inputs. However, depending on the constraints, it could also result in
the removal of some information and substantially lengthen the inference time.

Despite significant improvements over previous approaches, we observe that there re-
mains some residual oversmoothing in our results compared to the ground truth (Figure 3.4
and 3.5). This could be attributed to the following reasons: 1) Limited training data con-
strains the GAN training potential, diminishes robustness against data outliers, and may
potentially lead to oversmoothing. 2) MRF and ground truth contrast-weighted scans were
obtained at different times. Despite careful experimental design and in-plane registration,
small-scale through-plane motion and misalignment can cause oversmoothing. Improving
the experimental setup (e.g., hardware setups) to manage motion could mitigate this is-
sue. 3) The MRF input images are relatively noisy due to the high undersampling rate and
high resolution. The network is trained to reduce noise. However, this process (training on
noisy inputs) can result in oversmoothing. We believe that some of these limitations can be
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mitigated through improved experimental design and a larger training dataset.
Another limitation of this work is that the DCS frameworks (PixelNet and N-DCSNet)

can generate only contrast-weighted images with fixed sequence parameters (e.g., TE or
TR) and are therefore less flexible than simulation-based contrast synthesis from parameter
maps. Separate networks must be trained for different MRF parameters or contrast acqui-
sitions. Additionally, our N-DCSNet requires paired data; however, our approach allows
each decoder branch to be trained independently, potentially relaxing this constraint, al-
though further investigation is required. In this work, we trained N-DCSNet on a limited
number of healthy volunteer data (21 examinations, 203 slices). To facilitate future clinical
adoption, larger and more diverse clinical training data (e.g., with pathology) are necessary.

In the future, we plan to extend our framework to more diverse contrast synthesis, includ-
ing but not limited to gradient echo imaging, diffusion-weighted imaging, and susceptibility-
weighted imaging.

3.7 Conclusion

In this work, we propose N-DCSNet to directly synthesize multi-contrast MR images
from a single MRF acquisition. This method significantly reduces examination time. By
directly training a network to generate contrast-weighted images from MRF, our method
does not require any model-based simulation and therefore avoids reconstruction errors due
to simulation. In vivo experiments demonstrate that N-DCSNet produces high-fidelity
contrast-weighted images with sharper contrast and minimal artifacts (in-flow and spiral
off-resonance artifacts), and significantly outperforms simulation-based contrast synthesis
and PixelNet, both visually and according to metrics. Additionally, our proposed method
can inherently mitigate some off-resonance artifacts within MRF data, thereby producing
high-quality contrast-weighted images with minimal residual artifacts.
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Chapter 4

Unsupervised Feature Loss for
DL-based MRI reconstruction

4.1 Introduction

As we introduced in Chapter 2, DL-based MRI reconstruction methods, such as those pre-
sented in [16, 68, 92, 99, 37, 2, 110], have achieved remarkable success by learning regular-
ization terms directly from extensive training datasets, surpassing the capabilities of PI and
CS techniques. However, it is well-established that the performance of DL-based methods
relies heavily on the loss functions employed during training. Commonly used loss functions
for training include pixel-wise ℓ1, ℓ2, and patch-wise structural similarity index (SSIM) [130]
losses [2, 37, 16]. These loss functions, though, are often hand-crafted or based on local
statistics and may not accurately capture the perceptual information of fine structures. As a
result, reconstructed images may exhibit degraded perceptual quality and blurring compared
to un-accelerated scans [68, 136].

To address these issues, Generative Adversarial Networks (GANs) [33, 44, 71] with adver-
sarial losses have been proposed to exploit the implicit feature information by incorporating
discriminators into the reconstruction pipeline [61, 68, 136]. Unfortunately, GANs are no-
toriously hard to train, easily fall into mode collapse, and are sensitive to hyperparameter
selections. Additionally, the adversarial loss is a less-constrained instance-to-set loss func-
tion, where improper training parameters may result in unexpected instabilities during the
training and artifacts in the reconstructions [96, 72].

Aside from the adversarial loss, recent works in computer vision have shown that CNN-
based perceptual losses can be used to learn high-level image feature representations [49,
145]. These perceptual loss functions are based on feature layers of classification networks
(such as the VGG Net [104]). They are typically designed to work for natural images with
a fixed channel number (RGB) and are usually trained in a supervised manner with human-
annotated labels, e.g., from ImageNet [24]. Therefore, simply using perceptual VGG losses
may not be ideal for MRI reconstruction tasks. For MR data sets, the dimensionality of
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the data can vary from application to application (e.g., 2D/3D complex-valued data, 2D/3D
dynamic data), while at the same time, human-annotated labels for MR images are much
harder to obtain. More importantly, it is also unclear what kind of human annotations would
be best for comparing the image quality for MR images.

… …

Training images Training patches UFLoss feature 
mapping network Feature vectors

a) Step 1: Train the UFLoss feature mapping network: Unsupervised

b) Step 2: Train the DL reconstruction with UFLoss: Supervised

Generator

Per-pixel 
loss

UFLoss
(Proposed)
+

=

UFLoss + Per-pixel loss
End-to-end TrainingUnder-sampled inputs

Output Reference

Figure 4.1: Overview of training the DL-based reconstruction with UFLoss. We
split the pipeline into two steps. a) Step 1: We pre-train the UFLoss feature mapping network
on fully-sampled image patches without human annotations, where the aim of the training
is to maximally separate out all the patches in the feature space. b) Step 2: For the training
of the DL-based reconstruction, Gw,E represents a reconstruction network with learnable
parameters w, and given system encoding operator E. The inputs of Gw,E are under-sampled
k-space y, and zero-filled reconstruction EHy. We feed-forward EHy through Gw,E to obtain
the output reconstruction results. We adopt the pre-trained UFLoss network from (a) to
compute the UFLoss in the feature space. Then, end-to-end training is performed with
respect to the combination of UFLoss and per-pixel loss. Note that the training of DL-based
reconstruction with UFLoss is still supervised.
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In this Chapter, we propose a novel unsupervised learned feature loss (Figure 4.1) to
capture the perceptual and high-order statistical difference within MR images, which we call
Unsupervised Feature Loss (UFLoss). The UFLoss is a large-patch-wise loss function that
provides instance-level discrimination by mapping similar patches to similar low-dimensional
feature vectors using a pre-trained mapping network (which we refer to as UFLoss feature
mapping network or UFLoss network) [126]. The rationale of using features from large-
patches (typically 40×40 pixels for a 300×300 pixels image) is that we want our UFLoss to
capture mid-level structural and semantic features instead of using small patches (typically
around 10×10 pixels), which only contain local edge information. On the other hand, we
avoid using global features due to the fact that our training set (typically around 5000 slices)
is usually not large enough to capture common and general features at a large-image scale.

Different from adversarial loss, UFLoss is a more-constrained instance-to-instance loss
function, which leads to more stable training with clear and straightforward stop criterion.
Meanwhile, unlike the VGG perceptual loss, pre-training the UFLoss network requires no
supervision, and thus is able to capture high-level structural information specifically for MR
images without any human annotations. Similar to the VGG perceptual loss, UFLoss can
also be easily incorporated into the training of DL-based reconstruction networks without
modifying the network architecture. Figure 4.1 shows the overall pipeline for using our
UFLoss to train a DL-based reconstruction. We first pre-train the UFLoss network on fully
sampled image patches without accompanying annotated labels (Figure 4.1a). This step
maps patches to a lower-dimensional space while attempting to maximally separate them
in the feature space. The outcome is that similar patches end up being close together
in the feature space while dissimilar ones end up further apart. This pre-trained feature
mapping network is then adopted to compute the UFLoss during the training of the DL-
based reconstruction (Figure 4.1b), which corresponds to the ℓ2 distance in the feature space
summed across all images patches. End-to-end training is performed with respect to a
combination of UFLoss and per-pixel ℓ1/ℓ2 or SSIM losses.

To demonstrate the power of UFLoss, we focus on a representative unrolled DL-based
reconstruction framework: MoDL [2]. We conduct experiments to show that UFLoss is
a valid loss function sensitive to increasing low-level intensity deformation. Our results for
patch retrieval and patch correlation in MR images demonstrate that visually similar patches
are indeed close in the feature space.

In terms of computation costs, our UFLoss is added during training as an additional loss
function without modifying the reconstruction network architecture. This imposes about
50% increase in training time and memory requirements during training. However, in in-
ference time, the UFLoss has no impact at all on the reconstruction time as well as the
memory requirements. Our experiments on 2D and 3D in-vivo data show that the addi-
tion of the UFLoss encourages more realistic reconstructions with more subtle details and
improved overall image quality compared to conventional and learning-based methods with
other losses (pure ℓ2 loss and ℓ2+VGG perceptual loss).
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4.2 Unrolled reconstruction for under-sampled MRI

In conventional under-sampled MRI, the PICS inverse problem can be formulated as [64]:

x̂ = argmin
x

1

2
∥Ex− y∥22 + λQ(x), (4.1)

where x is the image to be reconstructed, and y is the measured data in k-space. E describes
the system encoding matrix, which can be further expanded to: E = UFS, where F is the
Fourier transform operator, S represents the multiple sensitivity maps, and U corresponds
to the k-space sampling operator. For the Cartesian case, U is a diagonal matrix with 1’s
corresponding to collected k-space and 0’s to un-acquired k-space. For non-Cartesian, U is a
k-space re-sampling operator from a Cartesian grid to the acquired non-Cartesian trajectory.
The goal of this problem is to reconstruct the image which has the lowest error compared
to the measured k-space data in the least-squares sense. However, when the sampling rate
is below the Nyquist rate, Equation 4.1 becomes ill-posed. Therefore, a regularization term
Q(x) with a weighting parameter λ, which incorporates prior knowledge about the image,
is added to constrain the optimization problem. For conventional CS MRI, Q(x) is often
chosen to promote sparsity in a certain transform domain such as wavelets or finite spatial
differences.

A number of first-order iterative methods have been developed for efficiently solving the
minimization problem in Equation 4.1 for the case where Q(x) is convex [9, 11]. To further
develop fast and high-fidelity reconstructions, recent methods have attempted to directly
learn the proximal function Q and the corresponding parameters from a large set of fully-
sampled training data in an unrolled fashion [16, 68, 92, 99, 37, 2, 110].

A widely used unrolled reconstruction framework is MoDL [2], where the reconstruction
is formulated as:

x̂ = argmin
x

∥Ex− y∥22 + λ ∥x−Dw(x)∥22 . (4.2)

In this formulation, Dw is a learned CNN denoiser/artifact removal network and w are the
learned weighting parameters. The CNN-based prior ∥x−Dw(x)∥22 results in high values
when x is corrupted by noise and aliasing. Similar to ADMM [11], we can solve the opti-
mization problem in the following half-quadratic splitting steps:

zk = Dw(x
k) (4.3)

x(k+1) = argmin
x

∥Ex− y∥22 + λ
∥∥x− zk

∥∥2

2

= (EHE+ λI)−1(EHy + λzk)
(4.4)

Equation 4.4 can be solved using the Conjugate Gradient (CG) Method while Equation
4.3 is viewed as a CNN-based forward-pass step. MoDL is formulated as an unrolled network,
where in each iteration, a CG layer is followed by a CNN-based proximal step. The unrolled
reconstruction can be denoted as x̂ = Gw(y,E), where y, E and w correspond to the
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under-sampled k-space measurements, the encoding matrix, and the learnable weights of
the reconstruction network, respectively. Training the unrolled model becomes supervised
learning with a pre-defined loss function:

min
w

∑
i

L(Gw(yi,Ei),xi), (4.5)

where xi is the ith fully-sampled ground truth image, and yi is the retrospectively under-
sampled k-space computed by applying the encoding matrix Ei to generate yi = Eixi. The
loss function L(·) can be combinations of ℓ1, ℓ2, SSIM, and other losses. Once trained, a new
under-sampled scan denoted by y with the encoding operator E is reconstructed as:

x̂ = Gw(y,E). (4.6)

4.3 UFLoss feature mapping network

As shown in Figure 4.2a), a patch-wise mapping network (UFLoss feature mapping network)
is trained to map patches from image-space to a low-dimensional unit-norm feature space,
aiming to capture high-level structural differences. The UFLoss network can then be used
for training a DL-based reconstruction. In contrast to conventional supervised computer
vision tasks, the UFLoss network is trained from fully sampled image patches in an unsu-
pervised fashion. In other words, the training does not use any human annotation, which
has been challenging to obtain in large-scale MRI datasets. The training is motivated by
contrastive learning [135], where a feature mapping function fθ is learned such that each
patch is maximally separated from other patches in a lower-dimensional hypersphere feature
space.

Mathematically, we formulate our unsupervised feature mapping using the softmax cri-
terion. Suppose we have N patches {p1,p2, ...,pN} cropped from the fully sampled im-
ages from the training set, with their corresponding unit-norm features {v1,v2, ...,vN} with
vi = fθ(pi) ∈ Rd. For a certain patch p with feature v = fθ(p), the probability of it being
identified as the ith patch under a linear classifier is:

P (i|v) = exp (wT
i v)∑N

j=1 exp (w
T
j v)

, (4.7)

where wj is the weight vector of class j (or patch j), and wT
j v shows how well the feature

vector v matches the jth patch. However, the above formulation Equation 4.7 requires a
class prototype w in addition to the patch feature itself, making direct comparison between
patches infeasible. To address this problem, we follow the approach in [135] to turn the
instance-wise classification into a metric learning problem, where wT

j v in Equation 4.7 is
replaced with vT

j v. That is, the j
th patch feature is its class prototype itself. The probability

then becomes:

P (i|v) = exp (vT
i v)/τ∑N

j=1 exp (v
T
j v)/τ

, (4.8)
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Figure 4.2: a) Training pipeline for the UFloss feature mapping network. Patches
cropped from the fully sampled images are separately passed through a ResNet 18 [39]
backbone followed by an ℓ2 normalization layer to map the patches to features on a low-
dimensional unit sphere (128-dimension unit-norm features in this work). A memory bank is
used to store the features from all the training patches to save computation when computing
the softmax loss function (Equation 4.9). Then, end-to-end training is performed such that
each patch is maximally separated from other patches in the 128D unit-norm feature space.
Similar patches will naturally cluster in the low-dimensional space. b) Detailed formula-
tion of the proposed UFLoss during the training of the DL-based reconstruction.
Operator R extracts a total of M patches from an image. These patches are extracted on a
grid with a sliding window. Each patch from the reconstructed output and the fully-sampled
reference will go through a pre-trained network fθ and mapped to a low-dimensional feature
space. The UFLoss corresponds to the sum of the ℓ2 distance between the feature vectors
from the output and the fully-sampled reference.
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where τ is a temperature parameter that controls the extent of separation/concentration of
the distribution in the feature space. The learning objective is set to maximize the joint
probability ΠN

i=1Pθ(i|fθ(xi)), which is equivalent to minimizing the negative log-likelihood
over the training set:

J(θ) = −
N∑
i=1

logP (i|fθ(xi)). (4.9)

Note that in order to compute the probability P (i|v) in Equation 4.8, features {vi} from
all the patches are required. Instead of exhaustively computing all the features every time,
a memory bank V = {v1, . . . ,vN} is constructed to store all the feature vectors. During
each training iteration, while the network parameters θ are optimized over the ith patch, the
ith entry of the memory bank vi is replaced by the output of the feature mapping network
fθ(pi) → vi.

Once trained, the UFLoss network can be used as a perceptual loss term in other super-
vised reconstruction tasks, as described next.

4.4 Deep learning-based reconstruction with UFLoss

The UFLoss network is designed to maximally separate patches in the low-dimensional unit-
sphere feature space. Perceptually similar patches are mapped to similar features.

Consider the under-sampled reconstruction using an unrolled network in Equation 4.5.
Suppose we have the ground truth fully-sampled image xi, and the output of the unrolled
network x̂i = Gw(yi,Ei). Since the inputs of the UFLoss network are image patches (Fig-
ure 4.2b), we first extract M overlapping image patches from both xi and x̂i, obtaining two
patch groups: {p1

i ,p
2
i , ...,p

M
i } and {p̂1

i , p̂
2
i , ..., p̂

M
i }. The patches are extracted on a grid

with Ns pixel strides horizontally and vertically.
During each training step, random shifts between 0 to Ns pixels are applied with equal

shifts to both xi and x̂i. This choice has the effect of averaging out the blocking artifacts
and achieves the same performance as extracting all the patches [64, 111].

Since we use inner products to measure the distance in the hyperspherical feature space,
the UFLoss can be formulated as the average of the negative inner products over all the
patches. On top of that, we add a constant 1 in front of our loss function:

LUFLoss(xi, x̂i) =
1

M

∑
j

1− ⟨fθ(pj
i ), fθ(p̂

j
i )⟩, (4.10)

where ⟨·, ·⟩ is the inner product operation between two unit-norm vectors and fθ is the pre-
trained UFLoss mapping network. As both fθ(p

j
i ) and fθ(p̂

j
i ) have unit norms, the above

loss function can be also written as a mean-squared-error (MSE) in the feature space, or:
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LUFLoss(xi, x̂i) =
1

M

∑
j

1− ⟨fθ(pj
i ), fθ(p̂

j
i )⟩

=
1

2M

∑
j

∥∥fθ(pj
i )
∥∥2

2
− 2⟨fθ(pj

i ), fθ(p̂
j
i )⟩+

∥∥fθ(p̂j
i )
∥∥2

2

=
1

2M

∑
j

∥∥fθ(pj
i )− fθ(p̂

j
i )
∥∥2

2
.

(4.11)

Following the per-pixel ℓ2 loss and UFLoss mentioned above, the full objective loss function
for the DL-based reconstruction can be written as:

LRecon = LMSE−all + 2µLUFLoss−all

=
∑
i

LMSE(xi, x̂i) + 2µ
∑
i

LUFLoss(xi, x̂i)

=
∑
i

∥Gw(yi,Ei)− xi∥22 + µ
∑
i

1

M

∑
j

∥∥fθ(pj
i )− fθ(p̂

j
i )
∥∥2

2
,

(4.12)

where µ is the weighting factor on the contribution of the UFLoss. End-to-end training is
then performed on this total loss to optimize the reconstruction network Gw.

4.5 Datasets and implementations

Imaging datasets

We trained and evaluated our proposed UFLoss on both 2D and 3D fully-sampled knee
datasets with retrospective under-sampling. We used the fastMRI [141] high-resolution knee
data set for our 2D experiments. A total of 5700 fully-sampled slices from 380 cases were
split into 320 cases (6080 slices) for training, 40 cases (640 slices) for validation, and 20 cases
(320 slices) for testing. Image normalization was performed such that the 95% percentile
of the intensity values was scaled to 1 for each subject. The training dataset includes data
from two different contrasts: proton-density with (PDFS) and without (PD) fat suppression.
Relevant imaging parameters are described in the fastMRI [141] paper. For the unrolled
reconstruction task, retrospective under-sampling was performed by applying a 1D five times
accelerated random under-sampling mask (20% sampling rate) with an 8% fully sampled k-
space center. Sensitivity maps were computed using ESPIRiT [116] using BART [115] with
a 24×24 calibration region.

We conducted our 3D experiments on 20 fully sampled 3D knee scans (available at mri-
data.org) [98] with retrospective under-sampling. The k-space data was acquired on a 3T
GE Discovery MR 750, with an 8-channel HD knee coil. Scan parameters include a matrix
size of 320×320×256, and TE/TR of 25ms/1550ms. A total of 5120 slices from 16 cases
were used for training, 640 slices from 2 cases were used for validation, and 640 slices from
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the remaining 2 cases were used for testing. We normalized each 3D volume with respect
to the 95% percentile of the intensity values for the entire volume. Each 3D volume was
under-sampled with a different 8× Poisson-disk sampling mask (12.5% sampling rate) with
a 24×24 calibration region. Sensitivity maps were computed using ESPIRiT [116] with a
24×24 calibration region using BART [115]. Note that we train both the UFLoss network and
the DL-based reconstructions on the entire training set and use fully-sampled coil-combined
images as ground truth.

Implementation of UFLoss feature mapping network
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Figure 4.3: Architectures for UFLoss feature mapping network and MoDL. a) The
UFLoss feature mapping network is based on a ResNet 18 network structure [39] and followed
by an ℓ2 normalization layer to map the input patches to the 128D unit-norm feature space.
b) Architecture of the MoDL [2] reconstruction network. A data consistency Conjugate
Gradient Descent (CG) module is inserted after a CNN-based denoiser Dw. Dw follows the
structure of U-Net [94] with two input channels that represent the real and imaginary parts
of the complex-valued image data.

In all our networks, the input coil-combined complex-valued MR images/patches x ∈ CN

are converted into a two-channel representation x ∈ R2N, where the real and imaginary
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components are treated as two individual channels. As illustrated in Figure 4.3a), we imple-
mented the UFLoss network using a ResNet 18 [39] backbone followed by a ℓ2 normalization
layer to map the input patches to 128 dimension unit-norm features. Based on the FOV
and resolution difference, the input patch sizes of the 2D fastMRI knee dataset and 3D knee
dataset were set to 60×60 and 40×40 pixels, respectively. The UFLoss networks for the 2D
fastMRI and 3D knee datasets were trained separately due to the differences in image con-
tent. Eighty patches were extracted from each slice at random locations, resulting in 409,600
patches used to train the UFLoss network. Other hyperparameters include temperature τ of
1 (Equation 4.8), batch size 16, the number of epochs of 100, and the learning rate of 1e−4
with Adam [52] optimizer.

Implementation of DL-based reconstruction with UFLoss

For the unrolled reconstruction network architecture, we used the structure from the MoDL
paper [2], where a CG block was inserted after a CNN-based denoiser, and unrolled with a
fixed number of iterations. In this work, we used 5 unrolls and 6 CG steps. As shown in
Figure 4.3b), a U-Net [94] architecture was adopted for the CNN-based denoiser Dw.

The training of MoDL was performed by minimizing the proposed loss function LRecon

(Equation 4.12) over the training set for 50 epochs, with an empirical weighting parameter
µ = 1.5, and Adam [52] optimizer with a learning rate of 1e−4.

To compute the UFLoss, patches are extracted on a grid across the image with 5-pixel
strides in both vertical and horizontal directions. At each training step, both output and ref-
erence images are randomly shifted from 0 to 5 pixels in the vertical and horizontal directions
to eliminate blocking artifacts. In this work, we chose the weighting parameter to balance
the values of LMSE−all and LUFLoss−all so that they are on par after the training converges.
During inference, a zero-filled reconstruction is passed through the MoDL reconstruction
network. Note that training with UFLoss does not change the network architecture, so the
inference time remains the same as MoDL with pure ℓ2 loss.

All the proposed algorithms were implemented using Pytorch 1.2 [86], and were run on
12 GB Nvidia Titan Xp graphics processing units (GPUs).

4.6 Evaluation of the proposed UFLoss

UFLoss as valid loss function

To evaluate whether UFLoss is also a valid loss function for comparing two images at the
intensity level, we study how the UFLoss changes with different sizes of perturbations in two
representative types:

1. Additive white Gaussian noise.

A perturbed image xp is generated from the original image xo by adding different levels
of additive Gaussian noise nσ:
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xp = (1− β)xo + βnσ, (4.13)

where β is the noise level parameter in the range of 0−10%, and noise nσ follows normal
distribution: nσ ∼ N (0, 1). We study how LUFLoss(xo,xp) changes as β increases.

2. Image blurring.

A perturbed low-resolution image xp is generated by cropping and zero-padding the
k-space of the original image xo. The k-space cropping rate R ranges from 1-4. R = 4
indicates that only 25% of k-space samples in both horizontal and vertical dimensions
are kept. A higher R corresponds to more blurring and a coarser resolution. We study
how LUFloss(xo,xp) varies with different R’s.

In addition, we evaluate whether, by minimizing the objective UFLoss between the origi-
nal and perturbed images LUFloss(xo,xp), we are able to guide the perturbed version towards
the original version without falling into local minima. The starting perturbed image xp−0 is
generated by image blurring where R = 4. We update it per gradient descent with respect
to LUFloss(xo,xp−k) in an iterative fashion:

xp−k+1 = xp−k − α
∂LUFLoss(xo,xp−k)

∂xp−k

, (4.14)

where xp−k is the perturbed image after k steps of gradient descent.

Perceptual Similarity

In order to better interpret and understand the perceptual features learned for the UFLoss,
we performed a patch retrieval experiment to evaluate and show patch pairs with high and
low UFLoss feature similarities. First, we constructed a feature database (memory bank)
by running all training patches through the pre-trained UFLoss network. Then, given an
input patch from the testing set, we passed it through the network and queried its neighbors
from the training patches based on their distances (inner products) in the feature space. We
picked and visualized patches of the highest feature inner products with the input patch and
also counter-examples with relatively low inner products.

To further evaluate the UFLoss sensitivity and perceptual similarity for different anatomies
and contrasts, we constructed correlation maps by computing the feature correlation (inner
product) between a source patch and all patches in different images and visualized them as
heatmaps. This experiment helps us better understand how anatomy and structure similar-
ities relate to UFLoss feature similarities.

Specifically, we first extracted a source patch from a source image. Then, we computed
the feature correlations between the source patch and all patches on a grid from 1) the same
source image; 2) the target image with the same contrast but from a different subject; and
3) the target image with different contrast and also from a different subject. Patches closer
to the source patch in the feature space correspond to higher inner products. We evaluated
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this experiment on both PDFS and PD scans. For comparisons, we also conducted the same
experiments for the SSIM feature, where we computed the SSIM score between the source
patch and all patches from different images.

Unrolled Reconstructions with UFLoss

To quantitatively evaluate our proposed UFLoss on under-sampled MRI reconstruction, we
implemented both PICS [64] and MoDL [2]. In the unrolled reconstruction experiments,
MoDL with our proposed UFLoss was compared with PICS and with MoDL using only
per-pixel ℓ2 loss. The PICS method was implemented using the BART Toolbox [115] with
wavelets as the sparse transform. In order to further demonstrate the performance of our
UFLoss, MoDL with ℓ2 + perceptual VGG loss [49] was also included in our comparisons.
To compute the perceptual VGG loss, both the real and imaginary parts are scaled from 0
to 255 and duplicated 3 times to serve as the inputs of the pre-trained VGG network. The
VGG network is pre-trained on ImageNet classification. VGG loss corresponds to the ℓ2
distance between the relu 22 features from the output and the ground truth image.

For all the experiments, reconstruction performance was evaluated using different quan-
titative metrics, which reflect different aspects of image quality. The normalized root mean
squared error (NRMSE) was used to measure the overall pixel-wise errors. SSIM [130] was
used to assess the local image similarity with respect to the fully sampled reference. At the
same time, we also computed our proposed UFLoss between the reconstructed images and
the fully sampled references.

4.7 Results

UFLoss as a valid loss function

4.4 indicates that our proposed UFLoss could be used as a valid loss function by itself. As
shown in 4.4a), UFLoss between the perturbed and original clean images increases in a convex
way with respect to more Gaussian noise and increases in a near-convex way with respect to
more blurring. Even though the UFLoss feature mapping network is not specifically trained
for any such perturbations, it learns low-level perceptual similarities between images, where
a larger intensity perturbation corresponds to a larger UFLoss. On the other hand, 4.4b)
indicates that by minimizing the UFLoss between the perturbed and target images, we are
able to successfully restore the blurred image towards the clean one without falling into
any local minimum. Intermediate deblurred image samples are shown in the along with the
UFLoss evolution curve.

Perceptual Similarity

Figure 4.5a) shows the feature similarity results using the UFLoss feature. The feature space
inner products between the input patch and the retrieved patches are shown as different colors
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Figure 4.4: UFLoss can be used as a valid loss function. a) Evaluation of UFLoss
with different levels of perturbations. Upper: additional Gaussian noise, Lower: image
blurring through k-space cropping. UFLoss evolution curves indicate that UFLoss increases
in a convex way with respect to more Gaussian noise and increases in a near-convex way
with respect to more blurring. b) Evaluation of UFLoss in guiding a blurred image xp−0

to the target high resolution image. Gradient descent is performed on xp−k to reduce the
UFLoss with respect to the target image in an iterative way. Intermediate images show that
UFLoss is able to gradually guide the blurred image to the target without falling into any
local minimum.

of the borders. As seen in the figure, patches with similar perceptual structures (e.g., edges,
bone structures) are mapped closer to each other in the feature space.

Figure 4.5b) (PDFS) and Figure 4.6 (PD) show the feature correlation maps (UFLoss and
SSIM) between different patches. Two source patches, indicated with green and blue edges,
were chosen from each source image in the left column. The heatmaps under to each image,
with corresponding green and blue edges, show the corresponding maps for each source patch
from the source image. For the UFLoss results, we only show the positive inner products for
visualization purposes, while in principle, the inner products range from -1 to 1. As shown
in the UFLoss feature correlation maps, patches containing meniscus from both the same
contrast and different contrast show high correlations with the input patch of the meniscus
(blue border) while, on the other hand, patches from other anatomy show low correlation
with it. These UFLoss feature correlation maps indicate that our unsupervised feature
mapping is able to capture the perceptual structure similarities across different subjects and
across different contrasts. In contrast, SSIM feature correlation maps do not successfully
capture perceptual similarities across anatomies and contrasts (e.g., meniscus).
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b) Feature correlation maps (UFLoss and SSIM)
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Figure 4.5: UFLoss is able to capture perceptual similarities across anatomies and
contrasts. a) Feature clustering results using UFLoss feature mapping where, given an input
patch, neighbor patches from the training set can be queried based on their feature space
distance. The top four patches are the closest neighbors with the input patch and have the
highest inner products. At the same time, we also show four counterexamples with relatively
low inner products with the input patch. The feature space inner products between the input
patch and the retrieved patches are shown as different colors of the borders. The color bar
on the right indicates that a brighter border corresponds to a higher correlation while a
darker border corresponds to a lower correlation. b) Feature correlations between different
patches. The heat maps under a certain image show the feature correlations (feature space
inner products for UFLoss) between all the patches from the image and the reference patches
from the source image (first column). The heat maps with green/blue borders correspond
to different source patches whose borders have the same colors. The correlation results for
PDFS contrast using UFLoss and SSIM features are shown in the top and bottom rows,
respectively.
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Figure 4.6: UFLoss is able to capture perceptual similarities across anatomies and
contrasts. The heat maps under a certain image show the feature correlations between all
the patches from the image and the source patches from the source image (first column). The
heat maps with green/blue borders correspond to different source patches whose borders have
the same colors. The correlation results for PD contrasts using UFLoss and SSIM features
are shown in the top and bottom rows, respectively.

More specifically, as shown in supporting Figure 4.7, patch with the highest UFLoss
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feature correlation (top) shows very similar anatomical textures of the meniscus compared to
the source patch. At the same time, because SSIM focuses more on the local signal statistics
instead of high-level perceptual similarity, the patch with the highest SSIM (bottom) has
totally different textures from a different anatomical region.

Figure 4.7: UFLoss retrieves patches with closer structural similarity compared to
SSIM across different contrasts. The heat maps alongside the PD image show the feature
correlation values between all the patches from the PD image and the source patch from the
PDFS image (first column). The correlation results using UFLoss and SSIM features are
shown on the right. Patches with the highest UFLoss and SSIM feature correlations in the
PD image are visualized as zoomed-in patches with light blue borders. Feature correlation
value are shown under each patch.

Unrolled reconstructions with UFLoss

Figure 4.8 shows reconstruction comparisons between different methods (PICS, MoDL,
MoDL with VGG, MoDL with UFLoss) for a representative 3D knee scan with under-
sampling rate of R = 8. Quantitative metrics (NRMSE, SSIM) are shown under the images.
As indicated in the zoomed images and error maps, MoDL with UFLoss shows finer structural
details, sharper edges, and higher perceptual agreement with the fully-sampled reference im-
ages compared to the other reconstruction methods. Without our UFLoss, pure ℓ2 loss at
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Figure 4.8: Representative 3D knee reconstruction results from different methods.
A fully-sampled scan is retrospectively under-sampled with a Poisson under-sampling mask
by a factor of 8. From left to right are reconstructions by: PICS, MoDL with ℓ2 loss, MoDL
with ℓ2+perceptual VGG loss, and MoDL with ℓ2+our proposed UFLoss. NRMSE, SSIM,
and UFLoss for each method are computed with respect to the fully sampled reference and
shown under the image for reference. As shown in the zoomed images and error maps, our
proposed MoDL with UFLoss showed sharper edges and more detailed structures with high
perceptual similarity compared to the reference image.

this under-sampling rate leads to blurring and perceptual quality degradation. MoDL with
the VGG perceptual loss [49] shows higher perceptual quality compared with MoDL, but
generates unintended checkerboard structured artifacts, which is consistent with findings in
[108, 80]. In terms of the training time and GPU memory cost for 3D reconstruction experi-
ments, under the same setup, MoDL with UFLoss takes 92 minutes for a single epoch using
8.1 GB GPU memory, while MoDL with ℓ2 loss takes 58 minutes using 5.5 GB and MoDL
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Figure 4.9: Representative examples of 2D PD knee reconstruction results using
different methods. A fully-sampled slice is retrospectively randomly under-sampled by a
factor of 5. From left to right are reconstructions by PICS, MoDL with ℓ2 loss, MoDL with
perceptual VGG loss, and MoDL with our proposed UFLoss. NRMSE, SSIM, and UFLoss
for each method are shown below the figure for references. As shown in the zoom-in views and
error maps, our proposed MoDL with UFLoss can provide more realistic and natural-looking
textures, while MoDL with ℓ2 loss alone tends to blur out some high-frequency textures.

with perceptual VGG loss takes 61 minutes using 5.7 GB. In inference time, it takes around
25 ms and 0.9 GB for all methods.

Figure 4.9 shows the comparison of different reconstruction methods for a representative
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Figure 4.10: Representative examples of 2D PDFS knee reconstruction results
using different methods at under-sampling rate R=5. nRMSE, SSIM, and UFLoss
for each method are shown in the figure. Quantitative metrics indicate that MoDL with
UFLoss has the highest SSIM and the lowest UFLoss, as well as the highest perceptual
quality of the reconstructed image. Meanwhile, as shown in the zoom-in images and error
maps, our proposed MoDL with UFLoss reconstruction looks more natural with a more
faithful contrast than other methods.

2D PD slice from the fastMRI dataset [141]. The retrospective 2D under-sampling rate is 5,
where around 20% of the k-space data is sampled. At this acceleration rate, PICS failed to
effectively recover the fine bone structures, and MoDL with ℓ2 loss alone also suffers blur-
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Figure 4.11: MoDL with UFLoss shows competitive results in the metric compar-
isons for both a) PD and b) PDFS experiments. Two representative fully-sampled
scans (10 PD and 10 PDFS) with 15 slices each are randomly under-sampled by a factor of
5 and reconstructed using PICS, MoDL, MoDL with perceptual VGG loss, and MoDL with
UFLoss. NRMSE, SSIM, and UFLoss are calculated with respect to fully sampled reference
images and shown in the plot. We use zoomed-in plots to show more clear comparisons for
some sub-plots. For both contrasts, MoDL with UFLoss outperforms both PICS and MoDL
with ℓ2 loss in terms of SSIM and UFLoss and can achieve comparable performance in terms
of NRMSE.

ring artifacts. In contrast, MoDL with UFLoss demonstrates more realistic reconstruction
performance with more detailed texture everywhere, including the bone.

Figure 4.10 shows the reconstruction comparisons for a representative 2D PDFS slice
from the fastMRI dataset [141]. Quantitative comparisons are shown at the bottom of the
figure. Due to the suppression of the fat signal, the SNR of the data is relatively low, where
high-frequency features can be mixed up with the noise. The zoomed-in views and the
corresponding error maps indicate that PICS results in a high level of artifacts. Meanwhile,
MoDL with ℓ2 loss alone misses fine detailed structures. Similar to the analysis above,
MoDL with the VGG feature loss is capable of recovering subtle structures but generates
unintended structured artifacts. In contrast, MoDL with UFLoss can effectively recover the
detailed texture and have the most realistic reconstructions. In terms of the training time
and GPU memory cost for 2D fastMRI experiments, under the same setup, MoDL with
UFLoss takes 143 minutes for a single epoch using 11.9 GB GPU memory, while MoDL
with ℓ2 loss takes 104 minutes using 7.3 GB and MoDL with perceptual VGG loss takes 108
minutes using 7.5 GB. In inference time, it takes around 40 ms and 1.4 GB for all methods.

So far, for all of our experiments, we used a fixed UFLoss weighting factor (µ = 1.5) for
Equation 4.12. Supporting Figure 4.12 shows two representative reconstruction results with
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Figure 4.12: Representative examples of 2D PD and 2D PDFS knee reconstruction
with different UFLoss weighting factors during the training. Fully-sampled slices
are retrospectively randomly under-sampled by a factor of 5, and reconstructed using MoDL
with different weights of UFLoss. Pure ℓ2 loss, combined ℓ2 and UFLoss with µ=0.5,1.5,4,
and pure UFLoss are included for evaluations. Zoomed-in details are shown along with each
image.

different UFLoss weighting factors during the training. We can clearly see that neither pure
ℓ2 loss nor pure UFLoss achieves the best image quality. By combining these two terms, our
model is able to take advantage of both the per-pixel intensity information and patch-level
perceptual similarities.

Figure 4.11 shows the quantitative metric (NRMSE, SSIM, UFLoss) comparisons for
the 2D unrolled reconstruction experiments. For both a) PD and b) PDFS experiments, ten
representative testing scans with 15 slices each are used to calculate the quantitative metrics.
As indicated in the figure, for both contrasts, MoDL with UFLoss outperforms both PICS and
MoDL with ℓ2 loss in terms of SSIM and UFLoss and can achieve comparable performance
in terms of NRMSE.
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4.8 Discussion

In this work, we presented a novel patch-based perceptual loss function, which we call Unsu-
pervised Feature Loss or UFLoss. UFLoss corresponds to the ℓ2 distance in a low dimensional
feature space. Feature vectors are mapped from image patches through a pre-trained map-
ping network. The mapping network aims to maximally separate all the patches in the
feature space, where similar patches become closer to each other, capturing high-level per-
ceptual similarities. As indicated in Figure 4.5, unlike ℓ2 distance, which focuses on the
pixel-wise values, our proposed UFLoss agrees better with human visual judgment, where
similar-looking patches have lower UFLoss in the feature space. By incorporating UFLoss
into the training of DL-based reconstructions, we are able to recover finer textures, smaller
features, and sharper edges with higher overall image quality compared to conventional per-
pixel losses. By leveraging a memory bank to store all the features, the training of our
mapping network becomes feasible for a large dataset: The UFLoss network training re-
quired less than 500 MB GPU memory and was easily trained within two hours. In terms
of computation costs, our UFLoss imposes about 50% increase in training time and memory
requirements during training. However, in inference time, the UFLoss has no penalty at all
on the reconstruction time as well as the memory requirements.

As we mentioned before, another important class of feature losses for DL-based recon-
struction is adversarial loss or GAN loss [33]. Adversarial losses have shown great success
in capturing perceptual properties of ground-truth images and could be used to improve the
reconstruction quality. However, due to the min-max loss function, the convergence of GANs
is generally underdetermined, and it is difficult to determine the stop criterion for GANs’
training [54]. In contrast, the convergence and stop criterion of training with UFLoss is clear
and straightforward, simply when the loss function (pixel loss + UFLoss) converges. Another
important distinction is that GAN loss is an instance-to-set loss, which means that so long
as the reconstruction is similar to any of those ground-truth training images, the loss would
be small, which is undesirable for reconstruction [20, 72, 28, 96]. In comparison, UFLoss
is an instance-wise discriminative loss, comparing the reconstruction to the specific ground
truth image in the feature space, which provides clear guidance and is more constraining
during the training.

In this study, UFLoss can be viewed as a separate module and be easily incorporated
into other learning frameworks. The performance of UFLoss was demonstrated for accel-
erating 2D and 3D knee imaging by comparing the reconstruction results with respect to
fully sampled references. The in-vivo results show that the addition of UFLoss during the
network’s training allows realistic texture recovery and improves overall image quality com-
pared to a reconstruction network trained without UFLoss. Our UFLoss network trained
on specific anatomy and contrast may yield suboptimal results when applied to a different
contrast/anatomy. Therefore, in the ideal case, one may want to use different networks for
different types of images. Fortunately, the UFLoss can be trained on the same ground truth
images that are used to train reconstruction networks, therefore it does not require additional
data sets to do so. Finally, the training of a UFLoss network takes less than two hours to
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train, so the overhead is negligible.
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Figure 4.13: Training loss curves for the l2 MSE loss and our proposed UFLoss.
A 2D fully-sampled slice is randomly under-sampled by a factor of 5 and reconstructed at
different training epochs. NRMSE and UFLoss are shown as quantitative metrics under each
reconstructed image. Yellow arrows point at the same representative textures at different
reconstructions. UFLoss continues improving the reconstructed image quality after l2 MSE
loss converged.

Another interesting finding of the UFLoss comes from how the training losses evolve,
as shown in Figure 4.13. The total loss consists of two different components, the per-pixel
ℓ2 MSELoss and our proposed UFLoss, which are shown in the top sub-figure as red and
blue curves, respectively. The bottom sub-figure shows the testing reconstruction results
at different epochs. As indicated from the curve, the MSELoss remains almost constant
after ten epochs, while our proposed UFLoss still decreases continuously. Inspecting the
reconstructed images at different training epochs, we can see that the image quality continues
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to improve with the further reduction of the UFLoss. At the same time, the quantitative
metrics indicate that those reconstructed images have very similar NRMSE compared with
the fully-sampled reference but a much more significant difference in their UFLoss values.
A low UFLoss value corresponds to better image quality. These results indicate that using
the ℓ2 MSE loss alone is not optimal. Therefore, the UFLoss can be potentially used as a
better perceptual comparison criterion and help further improve the reconstruction quality.

Limitations of this study include: 1)The training of DL-based reconstructions with
UFLoss is time-consuming (around 1.5×) and memory-inefficient (around 1.5×) due to the
extraction and feed-forwarding of a large number of patches within a single step. This can
be potentially improved by using fully-convolutional image-scale networks, GPU parallel
computing, and efficient memory-time trade-off [127]. 2)In this work, we haven’t thoroughly
investigated the sensitivity of different hyperparameters (e.g., patch size, temperature param-
eter, UFLoss network depth) to the training and final reconstructions. Supporting Figure S3
demonstrates how UFLoss weighting parameter contributes to the reconstruction results. A
more thorough parameter search and analysis will be explored in the future. 3) Even though
empirical evidence for both 2D and 3D knee results has demonstrated that UFLoss can ef-
fectively encourage finer texture and sharper edges, we have not investigated the theoretical
performance guarantee of UFLoss on enhancing the texture sharpness and image quality in
this paper; however, our observation is supported by other perceptual loss methods in the
literature[145, 49].

4.9 Conclusion

In summary, a novel patch-based feature loss, Unsupervised Feature Loss or UFLoss, is
proposed, and it can be easily incorporated into the training of any existing DL-based recon-
struction frameworks without any modification to the model architecture. UFLoss is based
on an unsupervised pre-trained feature mapping network without any external supervision.
With the addition of our proposed UFLoss, we are able to reconstruct high fidelity images
with sharper edges, more faithful contrasts, and better image quality overall.
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Chapter 5

Memory-efficient learning for
high-dimensional MRI reconstruction

5.1 Introduction

As we introduced in Chapter 2, DL-based unrolled reconstructions have emerged as a widely-
used type of DL-based reconstruction method. These techniques, as demonstrated in studies
such as [26, 99, 2, 37, 110, 57], have demonstrated remarkable success in under-sampled MRI
reconstruction.

These methods are often formulated by unrolling the iterations of an image reconstruction
optimization[37, 2, 110]. It has been shown that increasing the number of unrolls improves
upon finer spatial and temporal textures in the reconstruction[37, 2, 95].

Similar to compressed sensing and other low-dimensional representations, DL-based un-
rolled reconstructions can take advantage of additional structure in very high-dimensional
data (e.g., 3D, 2D+time, 3D+time) to further improve image quality. However, these large-
scale DL-based unrolled reconstructions are currently limited by GPU memory required
for gradient-based optimization using backpropagation. Therefore, most DL-based unrolled
reconstructions focus on 2D applications or are limited to a small number of unrolls.

In this Chapter, we employ our recently proposed memory-efficient learning (MEL) frame-
work[51, 143] to reduce the memory needed for backpropagation, which enables the training
of DL-based unrolled reconstructions for 1) larger-scale 3D MRI; and 2) 2D+time cardiac
cine MRI with a large number of unrolls (Figure 5.1). We evaluate the spatiotemporal
complexity of our proposed method on the Model-based Deep Learning (MoDL) architec-
ture [2] and train these high-dimensional DL-based unrolled reconstructions on a single 12GB
GPU. Our training uses far less memory while only marginally increasing the computation
time. To demonstrate the advantages of high-dimensional reconstructions to image quality,
we performed experiments on both retrospectively and prospectively under-sampled data
for 3D MRI and cardiac cine MRI. Our in-vivo experiments indicate that by exploiting
high-dimensional data redundancy, we can achieve better quantitative metrics and improved
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image quality with sharper edges for both 3D MRI and cardiac cine MRI.

2D Unrolled 
Network

3D Unrolled 
Network

Limited by GPU memory

a) High-dimensional unrolled DL recon: from 2D to 3D 

b) Cardiac cine DL recon: from fewer unrolls to more unrolls
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Improved texture 
continuity 
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Figure 5.1: GPU memory limitations for high-dimensional DL-based unrolled re-
constructions. a) Compared to a 2D unrolled network, the 3D unrolled network uses a
3D slab during training to leverage more 3D structural redundancy, but is limited by GPU
memory. b) 2D+time Cardiac cine DL-based unrolled reconstructions are often performed
with a small number of unrolls due to memory limitations.

5.2 Memory-efficient learning (MEL) framework

As shown in Figure 5.2 a), DL-based unrolled reconstructions are often formulated by un-
rolling the iterations of an image reconstruction optimization [37, 2]. Each unroll consists
of two submodules: CNN-based regularization layer and data consistency (DC) layer. In
conventional backpropagation, the gradient must be computed for the entire computational
graph, and intermediate variables from all N unrolls need to be stored at a significant mem-
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ory cost. By leveraging MEL, we can process the full graph as a series of smaller sequential
graphs. As shown in Figure 5.2 b), first, we forward propagate the network to get the out-
put x(N) without computing the gradients. Then, we rely on the invertibility of each layer
(required) to recompute each smaller auto-differentiation (AD) graph from the network’s
output in reverse order. MEL only requires a single layer to be stored in memory at a
time, which reduces the required memory by a factor of N . Notably, the required additional
computation to invert each layer only marginally increases the backpropagation runtime.

1st 2nd nth… … Nth

CNN DC

Under-sampled k-space
Zero-filled reconstruction

a) Unrolled network for DL-based reconstruction

b) Memory-efficient learning for unrolled network

nthn-1th n+1th

1. Recalculate layer input

2. Recompute layer’s auto-
differentiation (AD) graph

3. Backpropagate gradients

Figure 5.2: Gradient backpropagation of conventional training and MEL. a) In
conventional DL-based unrolled reconstruction training, gradients of all layers are evaluated
as a single computational graph, requiring significant GPU memory. b) In MEL, we sequen-
tially evaluate each layer by: i) Recalculate the layer’s input x(n−1), from the known output
x(n). ii) Reform the AD graph for that layer. iii) Backpropagate gradients q(n−1) through
the layer’s AD graph.
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Memory-efficient learning for MoDL

Here, we use a widely used DL-based unrolled reconstruction framework: MoDL [2]. We
formulate the reconstruction of x̂ as an optimization problem and solve it as below:

x̂ = argmin
x

∥Ex− y∥22 + µ∥x−Rw(x)∥22, (5.1)

where E is the system encoding matrix, y denotes the k-space measurements and Rw is a
learned CNN-based denoiser. For multi-channel MRI reconstruction, E can be formulated
as E = PFS, where S represent the multi-channel sensitivity maps, F denotes Fourier
Transform and P is the undersampling mask used for selecting the acquired data. MoDL
solves the minimization problem by an alternating procedure:

zn = Rw(xn) (5.2)

xn+1 = argmin
x

∥Ex− y∥22 + µ∥x− zn∥22,

= (EHE+ µI)−1(EHy + µzn)
(5.3)

which represents the CNN-based regularization layer and DC layer respectively. In this for-
mulation, the DC layer is solved using Conjugate Gradient (CG) [101], which is unrolled for
a finite number of iterations. For all the experiments, we used an invertible residual convo-
lutional neural network (RCNN) introduced in [32, 84, 39], whose architecture is composed
of a 5-layer CNN with 64 channels per layer.

The residual CNN is inverted using the fixed-point algorithm as described in [51], while
the DC layer is inverted through:

zn =
1

µ
((EHE+ µI)xn+1 − EHy). (5.4)

Training and evaluation of memory-efficient learning

With IRB approval and informed consent/assent, we trained and evaluated MEL on the
both retrospective and prospective 3D knee and 2D+time cardiac cine MRI. We conducted
3D MoDL experiments with and without MEL on 20 fully-sampled 3D knee datasets (320
slices each) from mridata.org [98]. 16 cases were used for training, 2 cases were used for
validation, and the other 2 for testing. Around 5000 3D slabs with size 21×256×320 were
used for training the reconstruction networks. All data were acquired on a 3T GE Discov-
ery MR 750 with an 8-channel HD knee coil. An 8x Poisson Disk sampling pattern was
used to retrospectively undersample the fully sampled k-space. Scan parameters included a
matrix size of 320×256×320 and TE/TR of 25ms/1550ms. In order to further demonstrate
the feasibility of our 3D reconstruction with MEL on realistic prospectively under-sampled
scans, we reconstructed 8× prospectively under-sampled 3D FSE knee scans (available at
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mridata.org) with the model trained on retrospectively under-sampled knee data. Scanning
parameters includes: Volume size: 320×288×236, TR/TE = 1400/20.46ms, Flip Angle: 90◦,
FOV: 160 mm×160 mm× 141.6 mm.

For the cardiac cine MRI, fully-sampled bSSFP cardiac cine datasets were acquired from
15 volunteers at different cardiac views and slice locations on 1.5T and 3.0T GE scanners
using a 32-channel cardiac coil. All data were coil compressed [146] to 8 virtual coils. Twelve
of the datasets (around 190 slices) were used for training, 2 for validation, and one for test-
ing. k-Space data were retrospectively under-sampled using a variable-density k-t sampling
pattern to simulate 14-fold acceleration with 25% partial echo. We also conducted experi-
ments on a prospectively under-sampled scan (R=12) which was acquired from a pediatric
patient within a single breath-hold on a 1.5T scanner.

We compared the spatiotemporal complexity (GPU memory, training time) with and
without MEL. In order to show the benefits of high-dimensional DL recons, we compared
the reconstruction results of PICS, 2D and 3D MoDL with MEL for 3D MRI, and 2D+time
MoDL with 4 unrolls and 10 unrolls for cardiac cine MRI. For both 2D MoDL and 3D
MoDL with MEL, we used 5 unrolls, 10 CG steps and Residual CNN as the regularization
layer. A baseline PICS reconstruction was performed using BART [115]. Sensitivity maps
were computed using BART [115] and SigPy [81]. Common image quality metrics such as
Peak Signal to Noise Ratio (pSNR), Structural Similarity (SSIM) [44] and Fréchet Inception
Distance (FID) [40] were reported. FID is a widely used measure of perceptual similarity
between two sets of images. All the experiments were implemented in Pytorch [86] and
used Nvidia Titan XP (12GB) and Titan V CEO (32GB) GPUs. Networks were trained
end-to-end using a per-pixel l1 loss and optimized using Adam [52] with a learning rate of
1× 10−4.

5.3 Results: spatiotemporal complexity

We first evaluate the spatiotemporal complexity of MoDL with and without MEL (Figure
5.3). Without MEL, for a 12GB GPUmemory limit, the maximum slab size decreases rapidly
as the number of unrolls increases, which limits the performance of a 3D reconstruction. In
contrast, using MEL, the maximum slab size is roughly constant. Figure 5.3 b) and c) show
the comparisons from two different perspectives: 1)GPU memory usage; 2)Training time per
epoch. Results indicate that for both 3D and 2D+time MoDL, MEL uses significantly less
GPU memory than conventional backpropagation while marginally increasing training time.
Notably, both MoDL with and without MEL have the same inference time.

5.4 Results: reconstruction comparisons with MEL

Figure 5.4 shows a comparison of different methods for 3D reconstruction. Instead of learning
from only 2D axial view slices (Figure 5.1 a), 3DMoDL with MEL captures the image features
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b) 2D MoDL versus 3D MoDL (! = 21) c) 2D+time MoDL with 4 and 10 unrolls

1st Unroll 2nd Unroll nth Unroll…{Slab 
Size:	"

Number of unrolls: #

a) Tradeoff between slab size and number of unrolls with 12GB GPU memory limit

Figure 5.3: Spatio-temporal complexity of MoDL with and without MEL. a) Trade-
off between 3D slab size z and a number of unrolls n with a 12GB GPU memory limitation.
b) and c) show the memory and time comparisons for MoDL with and without MEL.

from all three dimensions. Zoomed-in details indicate that 3D MoDL with MEL is able to
provide more faithful contrast with more continuous and realistic textures as well as higher
pSNR over other methods.

Figure 5.5 demonstrates that MEL enables the training of 2D+time MoDL with a large
number of unrolls (10 unrolls), which outperforms MoDL with 4 unrolls with respect to image
quality and y-t motion profile. With MEL, MoDL with 10 unrolls resolves the papillary
muscles (yellow arrows) better than MoDL with 4 unrolls. Also, the y-t profile of MoDL
with 10 unrolls depicts motion in a more natural way while MoDL with 4 unrolls suffers
from blurring. Meanwhile, using 10 unrolls over 4 unrolls yields an improvement of 0.6dB in
validation pSNR.

Table 5.1 shows the quantitative metric comparisons (pSNR, SSIM and FID) between
different methods on both 3D MRI and cardiac cine MRI reconstructions. Here, we also
included feed-forward U-Net [19] as a baseline. The results indicate that both 3D MoDL
with MEL and 2D+time MoDL with MEL outperforms other methods with respect to pSNR,
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Sagittal view

Coronal view

pSNR (dB)
29.80 30.18 30.84

33.81 34.05 34.71
ReferencePICS 2D MoDL 3D MoDL with MEL

(Proposed)

pSNR (dB)

Figure 5.4: A representative comparison of different methods on 3D knee recon-
struction. From the left to the right, we compare PICS, 2D MoDL, and 3D MoDL with
MEL. The sagittal view and The coronal view are visualized, while pSNRs are shown under
each reconstructed image. 3D MoDL with MEL is able to provide more faithful contrast
with more continuous and realistic textures as well as higher pSNR over other methods.

SSIM, and FID.
Figure 5.6 a) show the reconstruction results on two representatives prospectively under-

sampled 3D FSE knee scans. Note that in this scenario, there is no fully-sampled groud
truth. Despite there exists some differences between the training and testing (e.g., matrix
size, scanning parameters), 3D MoDL with MEL is still able to resolve more detailed texture
and sharper edges over traditional PICS and learning-based 2D MoDL. Figure 5.6 b) and
Vedio results show the reconstruction on a representative prospective under-sampled cardiac
cine scan. We can clearly see that enabled by MEL, 2D+time MoDL with 10 unrolls can
better depicts the finer details as well as a more natural motion profile.

https://people.eecs.berkeley.edu/~kewang/Vedio.mp4
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Figure 5.5: Results on 2D+time cardiac cine reconstruction. a) Short-axis view
cardiac cine reconstruction of a healthy volunteer on a 1.5T scanner. k-Space data was
retrospectively under-sampled to simulate 14-fold acceleration with 25% partial echo (shown
in b) and reconstructed by: 2D+time MoDL with 4 unrolls, 2D+time MoDL with MEL and
10 unrolls. c) Validation pSNR of MoDL with 4 unrolls and MoDL with 10 unrolls.
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metric method 3D MRI 2D cardiac cine MRI

pSNR
(dB)

PICS 31.01±1.97 24.69±2.74
2D MoDL 31.44±2.07 -
3D U-Net 29.55±1.86 -

3D MoDL with MEL 32.11±2.05 -
2D+time MoDL: 4 unrolls - 26.87±2.98

2D+time MoDL with MEL: 10 unrolls - 27.42±3.21

SSIM

PICS 0.816±0.046 0.824±0.071
2D MoDL 0.821±0.044 -
3D U-Net 0.781±0.039 -

3D MoDL with MEL 0.830±0.038 -
2D+time MoDL: 4 unrolls - 0.870±0.042

2D+time MoDL with MEL: 10 unrolls - 0.888±0.042

FID

PICS 46.71 39.40
2D MoDL 43.58 -
3D U-Net 60.10 -

3D MoDL with MEL 41.48 -
2D+time MoDL: 4 unrolls - 36.93

2D+time MoDL with MEL: 10 unrolls - 31.64

Table 5.1: Quantitative metrics comparisons. Quantitative metrics (pSNR, SSIM and
FID) of different methods on 3D MRI and cardiac cine MRI reconstructions (mean ± stan-
dard deviation of pSNR and SSIM).
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Figure 5.6: Results for prospectively under-sampled reconstruction. a) Represen-
tative reconstruction results on a prospectively under-sampled 3D FSE knee scan using
different methods (PICS, 2D MoDL and 3D MoDL with MEL). b) Representative recon-
struction results on a prospectively under-sampled cardiac cine dataset. y-t motion profiles
are shown along with the reconstructed images.
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5.5 Conclusions

In this work, we show that MEL enables learning for high-dimensional MR reconstructions
on a single 12GB GPU, which is not possible with standard backpropagation methods.
We demonstrate MEL on two representative large-scale MR reconstruction problems: 3D
volumetric MRI, 2D cardiac cine MRI with a relatively large number of unrolls. By leveraging
the high-dimensional image redundancy and a large number of unrolls, we were able to
get improved quantitative metrics and reconstruct finer details, sharper edges, and more
continuous textures with higher overall image quality for both 3D and 2D cardiac cine
MRI. Furthermore, 3D MoDL reconstruction results from prospectively undersampled k-
space show that the proposed method is robust to the scanning parameters and could be
potentially deployed in clinical systems. Overall, MEL brings a practical tool for training
large-scale high-dimensional MRI reconstructions with much less GPU memory and is able
to achieve improved reconstructed image quality.
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Chapter 6

Rigorous uncertainty estimation for
MRI reconstruction

6.1 Introduction

In the preceding chapters, we discussed the impressive capabilities of DL-based reconstruc-
tion techniques, which have demonstrated remarkable potential in significantly reducing scan
time while preserving high image quality [2, 37, 124, 127]. These methods have outperformed
traditional optimization-based approaches, offering new possibilities in the field of medical
imaging.

Despite their merits, DL-based reconstructions have notable limitations, as they carry a
significant risk of hallucination, manifesting as fabricated structures within the reconstructed
images [72]. Moreover, these methods may unintentionally remove genuine structures, result-
ing in potential inaccuracies that could hinder clinical adoption. These issues highlight the
importance of carefully examining and addressing the limitations of these methods, ensuring
their reliability and validity in medical applications.

In this regard, as one possible solution, precise uncertainty estimation for various regions
of the image can substantially enhance diagnostic confidence, further bolstering the adoption
of these methods in clinical settings. Over the past decade, numerous approaches have
been proposed to provide uncertainty maps alongside the reconstruction results [28, 46, 88,
73].To name a few, [28] construct the DL models using Variational Autoencoder (VAE) [53]
to develop a probabilistic reconstruction scheme. By utilizing Monte Carlo sampling to
generate reconstructions, the VAE models inherently produce pixel variance maps that serve
as uncertainty maps. [88] adapts deep learning models to output a value distribution for
each pixel rather than a singular value, enabling the variance of the distribution to represent
the uncertainty associated with that pixel.

While existing methods have shown promising results in estimating uncertainty maps,
most of them are either based on running multiple reconstructions to sample their distribu-
tion or require modification of the network architecture. Meanwhile, none of them provides
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confidence levels to ensure the quantitative accuracy of the uncertainty estimation.

Reconstruction network 

Uncertainty 
estimation 
networkZero-filled 

reconstruction
Heuristic 

uncertainty 
estimates

Rec image

Calibration sets with ground truth

Calibration 
procedure

Calibrated 
uncertainty
estimates

Overlay

Overlaid image w/ calibrated 
uncertainty estimates

Provides guaranteed
confidence intervals 

for clinical diagnosis
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Ground truth
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Figure 6.1: Overview of the proposed model-specific rigorous uncertainty estima-
tion framework for general DL-based reconstruction models. After training fθ, our
networks output the heuristic uncertainty estimates alongside the reconstructed image in one
forward pass. By developing a new form of Risk-Controlling Prediction Set to calibrate the
uncertainty estimates, our calibrated uncertainty estimates provide guaranteed confidence
intervals that contain at least (1-γ) (e.g., 95%) of the ground truth pixel values.

To address the aforementioned challenges, in this chapter, we introduce a straightforward
and rigorous uncertainty estimation framework that can be seamlessly integrated into the
existing reconstruction network without necessitating any modification or retraining (Fig-
ure 6.1). This streamlined approach not only maintains the integrity of existing network
architectures but also enhances efficiency by delivering both the image and its uncertainty
estimation simultaneously.

Our technique provides a rigorous finite-sample statistical guarantee. Our key contri-
bution is the development of a new form of Risk-Controlling Prediction Set (RCPS) [6, 8]
tailored to MRI reconstruction that outputs image-valued confidence intervals containing at
least (1-γ) (e.g., 95%) of the ground truth pixel values.

We showcase the effectiveness of our proposed framework by applying it to the fastMRI
knee and brain datasets [141] within the context of the MoDL reconstruction framework [2].

In-vivo experimental results indicate a strong correspondence between our uncertainty
estimation outcomes and the absolute residual error. Furthermore, our approach refines the
heuristic uncertainty estimation, quantitatively guaranteeing the desired confidence levels.
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This demonstrates the potential of our framework in enhancing the reliability and accuracy
of deep learning-based reconstructions in medical imaging applications.

Our method trains an uncertainty estimation network, then calibrates that network to
achieve a rigorous guarantee. We will now detail these two subroutines.

6.2 Training the uncertainty estimation network

Given a pre-trained reconstruction network (e.g., MoDL [2]), the uncertainty estimation
network fθ takes the intermediate features and predicts the absolute residual error for that
network (Figure 6.2a). The pre-trained network Gw takes the zero-filled reconstruction and
maps it to x̂i, an estimate of the ground truth image x̂i. Our uncertainty estimation network
fθ is trained to output an estimate erri of the magnitude of the residual error |x̂i − x̂i|.

In practice, the input provided to fθ consists of multiple concatenated features extracted
from each iteration of Gw. Once the training process is complete, our framework is capable of
mapping new, unseen under-sampled inputs to both reconstructed images and corresponding
uncertainty estimates in a single forward pass, ensuring efficiency and accuracy in clinical
settings. It is important to note, however, that there is no inherent guarantee that erri
effectively estimates the pixel-wise error. As a result, it is crucial to calibrate the uncertainty
estimation network to ensure its accuracy and reliability.

6.3 Calibration of the heuristic uncertainty estimates

Once the uncertainty estimation network is trained, we aim to calibrate its output using
RCPS (Figure 6.2b) to achieve a statistical guarantee. We first select a subset of the vali-
dation set to form the calibration set (xi, x̂i, erri), i = 1, 2, 3, 4, ...N (typically N ⪆ 1000).
Then, we calibrate a global scalar α̂ from the calibration set to ensure that, on average, at
least (1− γ) of all pixels from the reference are within its confidence intervals:

I
(m,n)
i = [x̂

(m,n)
i − α̂ · err(m,n)

i ), x̂
(m,n)
i + α̂ · err(m,n)

i )], (6.1)

for all pixel locations (m,n) in an image of size M × N . For example, choosing γ = 0.05
and δ = 0.1 will result in 95% of the pixels being contained in their intervals with 90%
probability. The detailed calibration procedure is described as follows. For a given image
xi, we first define the loss:

L(α)i =
|(m,n) : x(m,n)

i /∈ I
(m,n)
i |

MN
(6.2)

as the fraction of pixels not included in their respective intervals. We compute the
empirical risk over the calibration dataset and use the Upper Confidence Bound (UCB) [132,
42] procedure from [6, 8] with the Waudby-Smith and Ramdas (WSR) bound from [132] to
choose the smallest α that gives a RCPS,
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Figure 6.2: Detailed subroutines for the proposed framework. a) we first train
an uncertainty estimation network fθ to predict the pixel-wise residual of a pre-trained
reconstruction model Gw, where we name the output as heuristic uncertainty estimates.
b) After training, we calibrate the uncertainty estimates to form finite-sample confidence
intervals, which ensures that on average, (1-γ) of pixels are covered within the confidence
interval with high probability regardless of the distribution of the training data.

P[R̂+(α) ≥ R(α)] ≥ (1− δ), (6.3)

where δ here is the desired violation rate (e.g., δ = 0.1). In short, the method involves
computing the UCB R̂+(α) using a pointwise concentration inequality, then picking

α̂ = min{α : R̂+(α′) < γ, ∀α′ > α}. (6.4)
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Deploying this choice of α̂ guarantees risk-control; we defer the proof of this to [8].

6.4 Datasets and experimental setups

Uncertainty estimation for knee reconstruction 

Smoothed residual error

Figure 6.3: Representative uncertainty estimation comparisons for knee recon-
structions. We compare our uncertainty estimate and the absolute residual error for the
Proton density sequence. We also visualize the smoothed absolute residual error for compar-
ison. We overlaid the MoDL reconstructed images and the calibrated uncertainty estimates
for better visualization. Colorbar along with the overlaid image indicates the guaranteed
confidence interval with respect to the maximum value of the image.

We assessed the performance of our proposed uncertainty estimation framework on both
2D knee and brain fastMRI [141] datasets to demonstrate its effectiveness and applicability
across different anatomical structures.

Initially, we trained MoDL for both anatomies using 5120 distinct slices, ensuring the
reconstruction network was well-suited to handle the variations present in knee and brain
MRI data. Subsequently, we trained the uncertainty estimation network fθ using the same
training set, employing an acceleration factor of 4 to expedite the training process. After
training the networks, we proceeded to calibrate the heuristic uncertainty estimates using a
calibration set consisting of 1000 slices. Meanwhile, we established a validation set containing
2000 slices to facilitate a comprehensive comparison.
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Uncertainty estimation for brain reconstruction 

Smoothed residual error

Figure 6.4: Representative uncertainty estimation comparisons for brain recon-
structions. We compare our uncertainty estimate and the absolute residual error for the
Proton density sequence. We also visualize the smoothed absolute residual error for compar-
ison. We overlaid the MoDL reconstructed images and the calibrated uncertainty estimates
for better visualization. Colorbar along with the overlaid image indicates the guaranteed
confidence interval with respect to the maximum value of the image.

To evaluate the calibration procedure’s efficacy, we randomly split the validation set 2000
times. For each iteration, we calibrated a α̂j, j = 1, 2, 3, ..., 2000 and assessed the empirical

risk R̂j on the remaining validation set (evaluation set). By presenting a histogram of the

empirical risks, we were able to evaluate the empirical violation rate δ̂, which served as a
key metric for assessing the performance of our calibration process.

6.5 Results

Figure 6.3 and 6.4 present the uncertainty estimation outcomes for the knee and brain re-
constructions, providing a comprehensive comparison between our uncertainty estimates and
the absolute residual error for the Proton Density sequence. Our findings exhibit a robust
correlation between the uncertainty estimates and the attenuated residual error. Addition-
ally, we have incorporated a visual representation of the softened absolute residual error to
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Visualization of textures and the corresponding uncertainty estimates 

Figure 6.5: Visualization of textures and the corresponding uncertainty estimates
from two representative images. As can be seen in the zoomed-in details, the recon-
structions of the green-outlined patches are highly similar to the ground truth ones, while
those of the yellow-outlined patches are of lower quality, since some of the high-frequency
details are missing or blurred out. This is reflected by the overlaid calibrated uncertainty
estimates, where the yellow-outlined patches have much higher uncertainty levels than the
green ones.

facilitate an effective comparison. To improve the visualization experience, we have com-
bined the MoDL-reconstructed images with their respective calibrated uncertainty estimates
in a cohesive display. The accompanying color bar serves as a guide to indicate the guar-
anteed confidence intervals relative to the maximum value found within the image, further
enhancing the overall understanding of the data presented.

Figure 6.5 provides a detailed visualization of the textures and their associated uncer-
tainty estimates, effectively highlighting the intricate connections between them. By exam-
ining the zoomed-in sections of these images, it becomes evident that regions with higher
uncertainty coincide with areas where the reconstructed images were unable to successfully
capture the finer textures and subtle details.

Figure 6.6 shows the empirical risk distribution given different splits of calibration and
evaluation sets. Histograms show that the empirical violation rate δ̂ hits nearly exactly δ̂ for
both γ̂, which demonstrates the tightness and validity of our calibration procedure.



CHAPTER 6. RIGOROUS UNCERTAINTY ESTIMATION FOR MRI
RECONSTRUCTION 80

Histograms of empirical risk with random split of calibration/evaluation set

brain reconstruction

(desired risk level) measures the average number of pixels violating the desired confidence level

(empirical violation rate) indicates how frequent the desired risk level is violated (area in the histogram >   ). 

knee reconstruction

…

Validation set

C
al

ib
ra

tio
n 

se
t 1

Ev
al

ua
tio

n 
se

t 1

Calibration 
procedure

Compute
empirical

risk

…
Validation set

C
al

ib
ra

tio
n 

se
t N

Ev
al

ua
tio

n 
se

t N

Calibration 
procedure

Compute
empirical

risk

…

Histogram over 

Figure 6.6: Empirical risk distribution under 2000 random split of calibra-
tion/evaluation sets for brain and knee datasets. Each split of the calibration set
outputs an α̂ and the corresponding empirical risk R̂, which roughly describes the number of
pixels violating the desired risk/confidence level. Given a desired violation rate, the empiri-
cal violation rate δ̂ indicates how frequently the desired risk/confidence levels are violated.
Comparisons of two desired risk/confidence levels γ = 0.1, 0.005 are presented.
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6.6 Conclusions

In this chapter, we have introduced a comprehensive and robust uncertainty estimation
framework, designed to offer precise uncertainty estimates supported by finite-sample guar-
antees. Remarkably, our framework functions as a versatile plug-and-play module, imposing
no constraints on the reconstruction model. As a result, it holds the potential to sub-
stantially enhance the accuracy of diagnoses and clinical interpretations derived from deep
learning-based reconstructions.

By providing a solid foundation for understanding the limitations and uncertainties in-
herent in reconstructed images, our innovative approach offers valuable insights that can be
employed to improve clinical decision-making processes, ultimately contributing to better
patient care and outcomes.
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Chapter 7

Complex-valued Scattering
Representations

7.1 Introduction

So far, this dissertation has introduced various DL-based image reconstruction techniques. In
this particular chapter, I venture beyond the box and place emphasis on the distinctiveness
of general complex-valued DL approaches for MR images, with a specific focus on addressing
the challenge of limited training data.

Unlike deep learning applied to real-valued natural images, MR imaging inherently in-
volves complex-valued images due to the underlying physics principles. The phase of these
images carries crucial information for a broad range of applications, such as flow imaging
and susceptibility-weighted imaging. However, most existing networks are real-valued, which
results in the loss of important phase information. As a result, complex-valued deep learning
has emerged as a potent approach for modeling complex-valued data, taking advantage of
the distinctive algebraic operations and properties of complex-valued data to develop more
precise and efficient models.

On the other hand, MRI faces challenges arising from the limited availability of fully-
sampled ground truth and well-annotated data. To date, the largest raw MRI dataset -
fastMRI [141] contains 1,594 volumes, which is way less than natural image datasets (e.g.,
ImageNet [24], LAION-5B [100]).

The present chapter aims to concentrate on complex-valued deep learning, introducing
Complex-valued Scattering Representations (CSR) as a universal representation for diverse
input domains. This approach achieves exceptional performance in image classification tasks,
particularly in the context of limited training data.

Prior to delving into the specifics, let us begin with a brief overview of complex-valued
deep learning. Complex-valued deep learning is an emerging field that extends traditional
deep learning models to handle complex-valued data, enabling more accurate and efficient
systems for a wide range of scientific and engineering applications. Recent developments in
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Figure 7.1: Complex-valued Scattering Representations (CSR) serve as universal
complex-valued representations for a wide range of input domains. TOP: Given
image from an input domain (e.g., RGB image, MRI, MSI ), our Complex-valued Scatter-
ing Networks (CSN) output CSR, which is then fed into the complex-valued classifiers as
universal complex-valued representations. Bottom: By incorporating CSR with Co-domain
Symmetry (CDS) models, our approaches significantly outperform CDS and other real-valued
counterparts with different training samples on CIFAR 10 and xView benchmarks.

manifold geometry [15, 105] and group theory have further advanced the field, leading to
the creation of leaner and better classifiers with novel complex-valued layer functions and
network architectures [119, 114, 105, 15].

While complex-valued deep learning was initially developed to better model naturally
complex-valued data such as MRI, and Synthetic Aperture Radar (SAR), it has recently
been shown to be effective for real-valued input data such as RGB [105] or multispectral
images [106] through complex-valued representations, delivering leaner and better classifiers
with novel complex-valued layer functions and network architectures.

Singhal et al. [105] introduced ”sliding” and ”LAB” encodings to convert RGB color space
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to complex-valued representations. ”Sliding” encoding maps adjacent color channels to the
real and imaginary parts of a complex-valued channel to exploit the inter-channel correla-
tions. ”LAB” encoding converts RGB space to a real-valued luminance and a complex-valued
chromaticity, which leads to color distortion robustness without color jitter augmentations.

Despite notable progress achieved with current encoding methods, the resulting complex-
valued representations for real-valued inputs are rudimentary and limited to channel char-
acteristics, lacking the ability to model any spatial and spatial-frequency properties of the
input data.

A promising solution that can capture both spatial and spatial-frequency features at the
same time is Wavelet transform. Wavelet transforms achieve this by using a set of filters that
can decompose an image into different spatial-frequency bands at different scales, allowing
for the extraction of both spatial and spatial-frequency features simultaneously. Building on
this property, Bruna et al. [12] proposed real-valued Wavelet Scattering Networks (WSNs),
which have achieved notable success in extracting non-learned features for image classification
tasks, particularly when training with limited labeled data [85, 31].

Inspired by Wavelets and WSNs, we propose learnable Complex-valued Scattering Rep-
resentations (CSR) as a universal complex-valued representation to model the spatial and
spatial-frequency properties of the input data. We introduce the term Complex-valued Scat-
tering Networks (CSNs) to refer to the networks that produce CSR as their output for conve-
nience. As shown in Figure 7.1, we further integrate CSR with complex-valued deep learning
models, such as complex-valued Co-domain Symmetry models (CDS) [105], for downstream
image classifications.

As shown in Figure 7.2, we construct filters based on complex-valued Morlet wavelets [85,
12, 31]. Instead of limiting the filters to the half-frequency domain as in real-valued WSNs,
CSN extends them to the entire spatial-frequency domain. Motivated by [31], we learn the
geometry parameters of the complex-valued filters (i.e. orientations and aspect ratios) to
better fit the dataset.

Additionally, in contrast to using a fixed absolute value as the non-linear activation
function, which can discard important phase information, we introduce a learnable high-
dimensional complex-valued ReLU function as the non-linear activation module. This en-
ables our CSR to better adapt to the complexities of the input data by preserving the phase
information.

We integrated CSR into complex-valued models (Linear layer (LL) and CDS) and achieved
significant classification performance improvements compared to CDS and other real-valued
WSN-based models, especially on tasks with limited labeled data. Our evaluation includes
various benchmarks from different domains such as CIFAR 10/100 [55], xView MSI classifi-
cation [106], and a newly introduced complex-valued MRI Patch classification dataset.

To summarize, we make the following contributions:

• We propose CSR, a novel and universal complex-valued representation for extract-
ing both spatial and spatial-frequency features from diverse input image domains in
complex-valued deep learning.
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• We introduce a novel learnable high-dimensional Complex-valued ReLU function as
the non-linear activation module for our CSR. This module enhances the network’s
ability to effectively adapt to the complexities of the input data.

• By integrating CSR with complex-valued models, our approach outperforms complex-
valued models and real-valued WSNs in CIFAR10/100, xView MSI, together with a
new evaluation benchmark of complex-valued MRI patch classification.

7.2 Related Work

Complex-valued networks

Complex-valued neural networks (CVNNs) are an extension of traditional real-valued neural
networks designed to handle complex-valued data. Due to the importance of complex num-
bers in engineering and scientific disciplines [74], CVNNs have been an active topic since the
early days of deep learning research.

The paper [77] analyzes CVNNs in the context of the XOR problem and finds that the
real and imaginary components of the decision boundary of a CVNN are orthogonal. Further
works demonstrate better optimization properties [76] and representational capacity [78]. We
refer the reader to [7] for a deeper review of CVNNs.

A central question in this literature is how to adapt real-valued deep learning to complex
numbers. Previous works [119, 147, 114] redefine basic building blocks for complex-valued
networks, such as complex-valued convolution, batch normalization, and non-linear activa-
tions. However, those methods are not robust against complex-valued scaling. SurReal
[15] addressed this issue by modeling the complex value space as a manifold to enable ro-
bustness to complex-valued scaling. Meanwhile, Singhal et al. [105] developed equivariant
and invariant neural network layers for co-domain transformation that outperform other
complex-valued networks in image classification tasks. Additionally, they proposed novel
complex-valued encodings of real-valued color space, such as RGB, to effectively exploit
inter-channel correlations for real-valued inputs.

While current complex-valued encoding approaches have made notable progress, they
still lack the ability to effectively model both spatial and spatial-frequency properties of
the input data. Our proposed CSR, on the other hand, successfully captures both types of
features.

Scattering representations

Scattering representations, as proposed by Bruna and Mallat in [12], leverage pre-determined
wavelet filters to create powerful hierarchical representations and extract features from both
the spatial and spatial-frequency domains. From a mathematical perspective, these represen-
tations satisfy translation invariance up to a particular scale and are stable to deformations,
making them a simple yet effective tool for signal analysis in various fields such as image
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Figure 7.2: Diagram of obtaining CSR from real-valued inputs. Real-valued inputs
are first converted to complex-valued representations using ”Sliding” encodings [105]. We
then convolve with learnable filters and apply our high-dimensional Complex ReLU (H-
CReLU) module to extract the scattering coefficients up to 2nd order. H-CReLU lifts a
complex number to high-dimensional space, applies point-wise CReLU, and maps back to a
complex number. Coefficients from different orders are then concatenated to form CSR.

and audio processing [12, 4, 41, 29]. Benefiting from the well-designed filters, scattering
representation-based models have shown promising results in applications with limited la-
beled data.

Oyallon et al. [85] introduce hybrid networks, which demonstrate the effectiveness of scat-
tering transforms as early layers of learned CNNs. Hybrid networks outperform other prede-
fined representations and show comparable results with end-to-end learned CNNs. McEwen
et al. [70] constructed scattering networks on the sphere, providing a powerful represen-
tational space for spherical data. Gauthier et al. [31] learns the geometric parameters of
wavelet filters (e.g. orientation, aspect ratio), achieving new state-of-the-art results in a
low-data regime.
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Our CSR can be seen as an extension of real-valued scattering representations to the
complex-valued domain, providing a universal and powerful representation for complex-
valued deep learning.

7.3 Complex-valued Scattering Representations

(CSR)

Figure 7.2 visualizes how we obtain CSR from real-valued inputs (RGB image as an example).
For simplicity, we limit our focus to 2D CSNs and only consider their up to 2nd order
coefficients. It’s worth noting that previous studies have demonstrated that higher-order
coefficients yield negligible energy [12]. We start with a real-value image I of m channels, we
turn it into a complex-valued image of m−1 channels through ”sliding” color encoding [105]:

I(u) = [I1, I2, ..., Im]

→ [I1 + jI2, I2 + jI3, ..., Im−1 + jIm],
(7.1)

where u is the spatial position index, j =
√
−1.

Our CSN starts with the complex-valued representation I(u), a scaling integer J ∈ N, and
an integer L ∈ N representing the number of wavelet angular orientations. CSN computes
the scattering coefficients S0I, S1I, and S2I of orders 0, 1, and 2, respectively, which can be
interpreted as the result of convolving I(u) with 0, 1, and 2 wavelet filters. J represents the
spatial scale of the scattering transform.

As shown in Figure 7.2, to compute the 0th order coefficient, we use a low pass filter ϕJ

with a spatial window of scale 2J (here is the Gaussian smoothing function). To obtain the
coefficient, we convolve the input signal I(u) with ϕJ , and then downsample the result by
a factor of 2J . This operation can be expressed as S0I(u) = I ∗ ϕJ(2

Ju). To recover the
high-frequency information that S0 discards, higher-order coefficients are introduced using
wavelets.

A Morlet wavelet family is derived by scaling and rotating a complex-valued mother
wavelet ψ. Specifically, we obtain a particular Morlet wavelet at scale j ≥ 0, rotation θ, and
aspect ratio γ by dilating the mother wavelet as follows:

ψj,θ,γ(u) =
1

22j
ψγ(r

−θ u

2j
), (7.2)

where r−θ represents the rotation by −θ. For real-valued WSNs, it’s important to note that
the spatial-frequency domain exhibits conjugate symmetry. As a result, the rotation angle
θ is constrained to range from [0, π). In CSNs, we design θ to range from [0, 2π).

To compute the 1st-order scattering coefficients, we convolve the input signal with one
of the complex-valued wavelets ψji,θi,γi(u) and downsample the response by the scale 2J−ji .
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Next, we apply a pointwise activation function f(·) to the downsampled signal to add non-
linearity. Finally, the smoothed signal is obtained by convolving it with the low-pass filter
ϕJ(2

Ju).
For real-valued WSNs, f(·) is usually a complex modulus, which takes the absolute value

| · | of a complex number. However, complex modulus discards its phase information which
can be crucial for complex-valued applications where phase carries important information.
Here, we propose a learnable activation function fw(·), where w is the learnable parameters
(§ 7.4). Mathematically, the 1st-order coefficients can be expressed as:

S1I(u) = fw(I ∗ ψji,θi,γi) ∗ ϕJ(2
Ju). (7.3)

Similarly, as illustrated in Figure 7.2, we perform a second wavelet transform on each
channel of the 1st-order coefficients before applying the low-pass filter. This can be written
as:

S2I(u) = fw(fw(I ∗ ψji,θi,γi) ∗ ψjk,θk,γk) ∗ ϕJ(2
Ju), (7.4)

where ψjk,θk,γk is the second filter we apply. Due to the spatial-frequency supports of filters,
only coefficients with ji < jk have significant energy [12].

Motivated by [31], we let the network learn the orientation θ and aspect ratio γ of each
wavelet to enable better adaptions to particular datasets. θ is initialized to be equally spaced
on [0, 2π], while γ is initialized as a constant 4

L
. We adapted Kymatio software package [5]

to implement CSNs.

7.4 Learnable high-dimensional complex ReLU

As we pointed out, the complex modulus for SNs discards the important phase information
from the signal. One alternative is to use complex-valued ReLU (CReLU) [1, 114]. However,
CReLU destroys the phase information other than the first quadrant. Thus, instead of using a
hand-crafted function, we proposed a learnable high-dimensional CReLU (H-CReLU) module
(Orange block in Figure 7.2).

Motivated by other high-dimensional lifting methods [109, 97], H-CReLU operates on a
complex number z ∈ C by first lifting it to a higher-dimensional space using linear mapping.
Specifically, we use a trainable matrix UPNh

∈ CNh×1 to transform z into a Nh-dimensional
representation, where Nh is set to 16 in our experiments. After lifting the input, we ap-
ply point-wise CReLU to the high-dimensional intermediate results. Finally, we map the
high-dimensional intermediate results back to the original space using a trainable matrix
DOWNNh

∈ C1×Nh . The resulting activation function, fw(z), can be then written as:

fw(z) = DOWNNh
· CReLU(UPNh

· z), (7.5)

where {UPNh
,DOWNNh

} are the learnable matrices with 2Nh complex-valued learnable
parameters. Ablation studies demonstrate the effectiveness of H-CReLU as fw(z).
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7.5 CSR for downstream image classification

We integrate CSR with complex-valued models for downstream image classification tasks.
We convert real-valued inputs, such as CIFAR 10/100 and xView, to complex-valued rep-
resentations using ”sliding” encoding 7.1 before computing CSR. On the other hand, we
extract CSR directly from complex-valued data such as MRI patches.

In our experiments, we integrate CSR with two different types of recently proposed
complex-valued networks: 1) Complex-valued linear layer; 2) Type-I CDS with CIFARNet ar-
chitecture from [105]. We also include CDS-Large with Wide Residual Network (WRN) [140]
architecture from [105] for comparisons.

7.6 Experiments

We compare the performance of our approach against real-valued scattering representations
and previous complex-valued models (without scattering) on four diverse image datasets:
CIFAR 10, CIFAR 100, xVIEW MSI [106, 58], and a newly introduced dataset for MRI
patch classification. In addition, we assess the model’s performance under limited-labeled
training data.

CIFAR 10 and CIFAR 100 are well-established natural RGB image classification bench-
marks that have been used for similar analysis [31, 12, 85]. xView MSI is a large-scale 8-band
MSI dataset. Each channel within an 8-band image contains measurements obtained from a
different electromagnetic spectrum. Following [106], xView consists of 60 total classes, from
which we select 10 supercategories.
MRI classification dataset We created a new complex-valued dataset for MRI patch clas-
sification to showcase the effectiveness of CSR on naturally complex-valued data. To tackle
the scarcity of labeled MRI data, we performed automatic labeling by slicing a volumetric
MRI dataset into its cross-sections.

MRI data itself is complex-valued due to the physics and acquisition process involved
in capturing it. The magnitude of an MR image pixel provides information about different
tissues, but the phase component is also important for applications such as flow imaging and
susceptibility imaging.

To create our MRI patch dataset, we used complex-valued multi-echo 3D MRI volume
data from [102], which was originally intended for susceptibility mapping. The dataset
includes 144 3D GRE scans from eight healthy subjects, all acquired using a single MR
scanner. We take the first echo volumes and slice 2D images from three different orientations
(i.e., Sagittal, Axial, Coronal). Then, as shown in Figure 7.3, 2D patches (32×32) are
extracted for each orientation. The objective is to train a classifier that can correctly identify
the orientation of the complex-valued patch (3-classes classification task). Our training set
consists of 26,640 patches extracted from 4 subjects, while the testing set consists of 17,520
patches from another 4 subjects.
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Figure 7.3: Construction of complex-valued MRI patch classification dataset.
We start from complex-valued multi-echo 3D MRI volumes obtained from [102]. To create
our dataset, we sliced 2D images from different anatomical orientations, including sagittal,
axial, and coronal. We then cropped patches from these images to generate our dataset of
complex-valued patches. The objective is to train a classifier that can correctly identify the
anatomical orientation of the input complex-valued patch.

We evaluate CSR by utilizing them with two common complex-valued models. In the
first model, we considered CSR as the input of a simple LL. This configuration of LL helps us
understand the linear separability of CSR. In the second case, we integrate CSR with recently
proposed complex-valued CDS networks [105], where we experimented on Type-I CDS. For
both models (LL and CDS), we compare our CSNs with their real-valued counterparts,
including conventional scattering (S) and recently proposed learnable scattering (LS) [31].
We design the networks to have a similar number of parameters for fair comparisons. For
reference, we also compare our approach to CDS-Large (complex-valued) and WRN-16 (real-
valued).

All of our models and experiments are implemented in PyTorch [87] and optimized using
the AdamW optimizer [52, 63] with an initial learning rate of 3× 10−3, decayed by a factor
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0.3 every 10k iterations. We use a batch size of 256 for 50k training iterations.

Benchmark comparisons

Method CIFAR 10 CIFAR 100

- 100 samples 500 1000 All 1000 samples 5000 10000 All

Scattering + Linear layers
S [12]+LL 35.78±0.62 48.32±0.30 53.52±0.24 65.46 17.03±0.74 33.00±0.50 37.98±0.22 41.12

LS [31]+LL 37.87±0.55 52.88±0.26 56.94±0.20 69.68 18.96±0.71 33.95±0.63 39.83±0.18 43.65

CSR+LL † 39.84 ±0.54 56.23 ±0.32 60.01±0.16 74.30 20.07 ±0.82 34.54±0.49 41.18±0.29 47.81

Scattering + CIFARNet

S [12]+CIFARNet 36.23±0.70 48.88±0.54 55.17±0.18 70.23 17.29±0.93 30.44±0.39 36.23±0.28 40.76

LS [31]+CIFARNet 38.06±0.68 50.92±0.58 57.34±0.26 74.07 17.90±0.85 32.05±0.51 38.45±0.30 42.81

CSR+CDS type-I † 38.87±0.49 55.26±0.45 61.78 ±0.14 81.52 18.68±0.77 34.24±0.40 40.03±0.37 46.80

CDS and large models (no scattering)

CDS type-I [105] 31.67±0.50 47.53±0.21 52.57±0.31 70.55 15.52±1.01 29.77±0.36 33.98±0.23 37.14

CDS large [105] 33.32±0.98 48.65±0.27 60.23±0.13 93.27 17.30±0.65 33.73±0.72 48.19±0.33 71.03

WRN-16 [140] 32.55±1.13 44.19±0.83 59.57± 0.40 96.34 17.03±1.38 36.99 ±1.04 53.98 ±0.57 76.35

† ours ; S: Scattering [12]; LS: Learnable Scattering [31]; CSR: Complex-valued Scattering Representations (ours).

# Parameters for CIFAR 10 (CIFAR 100): 156k (1.6M) for S+LL; 156k (1.6M) for LS+LL; 207k (2.1M) for CSR+LL; 124k
(136k) for S+CIFARNet; 124k (136k) for LS+CIFARNet; 122k (145k) for CSR+CDS type-I; 105k (128k) for CDS type-I; 1.7M
(1.8M) for CDS large; 17.1M (22.4M) for WRN-16

Table 7.1: Classification accuracy for CIFAR 10 and CIFAR 100 benchmarks
(mean ± std.). We report results from models trained with varying sample sizes to demon-
strate the effectiveness of CSNs. To calculate the standard error in limited-data regimes,
we trained our models using 10 different seeds. Bold highlights the best results in each
category, while Bold represents the best results across all categories. CSNs outperform
their real-valued counterparts and CDS (without CSR) in all training setups.

CIFAR 10 (and CIFAR 100) consists of 10 (100) classes containing 6,000 (600) images
from each class. Each image has a size of 32 × 32. Both datasets are split into a training
set of 50,000 images and a test set of 10,000 images. The training images are augmented
with horizontal flipping, and random cropping. We use ”sliding” color encoding [106] and
set spatial scale J = 2. Additionally, we also evaluate the performance of CSRs in small
data regimes with limited labeled data. We train our models on a small random subset of
the training data but evaluate their performance on the entire testing set as done in previous
works [31, 85]. To account for the randomness in data selection, we train the same model
using 10 different seeds for the small-size experiments. The set of seeds used is consistent
for models trained with the same sample size. We compute the mean and standard error
across 10 different seeds. We evaluate training size of {100, 500, 1000, 50k} for CIFAR 10,
and {1000, 5000, 10000, 500k} for CIFAR 100.
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Method xView MRI patch classification
- 500 samples 1000 All 100 samples 500

Scattering + Linear layers
S [12] + LL 62.55±2.35 68.45±1.47 74.30 56.79±0.88 68.95±0.34
LS [31] + LL 67.69±2.01 71.14±1.88 75.78 67.03±0.64 85.40±0.42
CSR + LL † 71.83±2.70 74.86±1.17 80.04 74.22±0.57 91.73±0.33

Scattering + CIFARNet
S [12] + CIFARNet 66.88±2.65 69.54±1.60 78.68 59.62±0.80 83.53±0.96
LS [31] + CIFARNet 69.49±2.05 71.72±1.68 79.25 71.86±0.98 94.74±0.60

CSR + CDS type-I † 73.07 ±1.79 76.18 ±1.21 84.13 84.80 ±1.06 99.18 ±0.15

CDS and large models
CDS type-I [105] 64.80±2.45 69.65±1.33 78.69 54.49±0.34 69.77±0.38
CDS large [105] 68.45±2.32 72.77±0.98 81.80 82.68±0.43 98.45±0.17

WRN-16 [140] 61.13±3.74 70.46±1.52 84.25 39.25±1.43 55.66±2.35

† ours ; S: Scattering; LS: Learnable Scattering; CSN: Complex-valued Scattering Network (ours).
# Parameters for xView (MRI Patch classification): 415k (31k) for S+LL; 415k (31k) for LS+LL;
726k (31k) for CSR+LL; 364k (76k) for S+CIFARNet; 364k (76k) for LS+CIFARNet; 357k (73k)
for CSR+CDS type-I; 111k (102k) for CDS type-I; 1.8M (1.7M) for CDS large; 17.1M (17.1M) for
WRN-16

Table 7.2: Classification accuracy for xView and MRI patch classification dataset
(mean ± std.). XView models were trained with sample sizes of 500, 1000, and full size,
while MRI patch classification models used 100 and 500 samples. For both datasets, our
CSNs significantly outperform their real-valued counterparts. Table layouts and symbols are
the same as Table 7.1.

Table 7.1 summarizes the results under different training setups. In the first LL cate-
gory, our proposed CSR+LL outperforms the previous state-of-the-art LS method under all
training setups. CSR+LL achieves a > 4% accuracy gain for the full-size (50k) training and
set a new state-of-the-art for scattering methods in small data training regimes. LL results
demonstrate the superior linear separability of our scattering representation and provide the
most interpretable comparisons between different models.

For the second category CIFARNet (and CDS type-I) comparisons, Our proposed ap-
proach significantly outperforms its real-valued counterparts as well as the CDS model in all
the comparisons. When comparing results on CIFAR 10, CSR+CDS type-I outperformed
CSN+LL in the full-size dataset and the 1000 samples senorita, getting comparable results
in {100, 500} samples regimes. However, in CIFAR 100, CSR+LL consistently outperforms
CSR+CDS type-I. This may be attributed to LL’s larger network capacity (2.1M) under
CIFAR-100 setups. Besides, we also present the results of CDS type-I [105], CDS large [105],
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WRN-16 [140] as references and comparisons. While large networks tend to excel when
trained on ample amounts of data, they often fall short when the available data is limited,
such as in the case of CIFAR 10 (100, 500, 1000 examples) or CIFAR 100 (1000 examples).
In such scenarios, scattering-based methods tend to yield superior results.
xView MSI dataset Multi-band MSI remote sensing images consist of multiple bands in
addition to RGB color images. These images contain highly correlated channels that, when
analyzed together, reveal structures with greater clarity compared to the limited information
available in 3-band color images. xView MSI dataset contains a total of 86,980 images (size
32× 32), with 20,431 images for training, 2,270 images for validation, and 63,279 images for
testing. We use a spatial scale J = 2 and compare models trained with {500, 1000, full size}
samples.

Our experimental results (shown in Table 7.1) demonstrate that CSRs consistently out-
perform real-valued networks as well as CDS without CSR across all training settings by a
substantial margin. Furthermore, we found that our CSR+CDS model achieves the same
level of accuracy as WRN-16 on full-sized training data while using only 2% of the param-
eters. Meanwhile, in small data regimes, our method outperforms WRN-16 by a significant
margin.
MRI patch classification Previous sections evaluated CSR on real-valued benchmarks.
Here, we evaluate CSR on our complex-valued MRI patch classification dataset, where we
directly extract CSR from naturally complex-valued MRI data. MRI patch classification
is typically considered an easier task compared to natural image classification tasks like
CIFAR [55] and ImageNet [24], primarily due to the lower complexity and diversity of the
data. Thus, we create two small-data training regimes: (1) using 100 samples from a single
subject, and (2) using 500 samples from 5 scans of a single subject. We use a spatial scale
J = 2.

Table 7.2 shows that our Complex-Valued Neural Networks (CSR) significantly outper-
form their real-valued counterparts, CDS (without CSR) and achieve better results compared
with large models (i.e., WSN and CDS large). For LL experiments, CSR+LL improves classi-
fication accuracy by 7% and 6% for 100 and 500 samples training, respectively. In CIFARNet
(CDS type-I) experiments, CSR+CDS produces a notable 13% accuracy gain (for 100 sam-
ples training) compared to LS [31]. It’s noteworthy that, given the large network capacity
and inadequate training data, WRN-16 exhibits poor performance on this task.

Understanding CSR

To gain a better understanding of CSR, we conduct an analysis of the learnable filters and H-
CReLU modules. Figure 7.4 showcases the visualization of data-specific scattering filters of
CSNs in Fourier space that were trained with linear classification layers. The filters displayed
in the figure were trained on CIFAR 10 (full size) and MRI Patch (500 samples) datasets.

Unlike real-valued scattering methods that only cover half of the Fourier space [12, 31,
85] due to the conjugate symmetry, CSN initializes filters equally across the entire Fourier
space. As illustrated in Figure 7.4, the filters optimized for both CIFAR 10 and MRI Patch
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Figure 7.4: Visualization of learned data-specific filters. We visualize the learned
filters of CSR trained with linear classification layers on CIFAR 10 and MRI Patch dataset.
From top to bottom, we present combined filters in Fourier space, individual filters in Fourier
space, and individual filters in image space. We initialize the filters equally spaced across the
entire Fourier space. After learning, the scattering filters for both CIFAR 10 and MRI Patch
datasets exhibit wider bandwidths in the Fourier domain compared to their initialization.
Filters optimized for CIFAR 10 have higher spectral energy in the low-frequency regions,
while filters optimized for the MRI Patch dataset focus more on high-frequency regions.

present wider bandwidths than the initial filters, resulting in better coverage of the Fourier
domain. Furthermore, we observe that the learned filters for both datasets exhibit higher
spectral energy in high-frequency regions compared to the initial filters, indicating the ability
of our CSR in capturing and representing high-frequency features.

When comparing between the filters optimized for CIFAR 10 and MRI Patch, we no-
tice that the filters designed for MRI Patch present an even higher concentration of high-
frequency energy, whereas the filters for CIFAR 10 focus more on low-frequency regions. This
observation implies that the classification of MRI patches heavily relies on high-frequency
details, while CIFAR 10 classification is more sensitive to low-frequency features.

Figure 7.5 visualizes how our H-CReLU fw(·) maps the complex numbers. Following [97],
we generate an initial set of points on a spiral trajectory on the complex plane. Each point
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Figure 7.5: Visualization of H-CReLU in mapping points on the complex plane.
We generate an initial set of points on a spiral trajectory on the complex plane, where each
point corresponds to a unique complex number. We then visualize how Complex ReLU
(CReLU) and our H-CReLU map (CIFAR 10 with linear layers) the input complex numbers
to their outputs. The same color corresponds to the same points across figures. CReLU
results in certain input points collapsing into each other, while H-CeLU successfully avoids
information loss.

of coordinate (x, y) corresponds to a unique complex number x + jy. Next, we apply two
activation functions, C-ReLU and H-CReLU, to the initial set of points. These functions
transform the input points into output points, which we plot on the complex plane. Our
H-CReLU is obtained from CSR with a linear layer classifier trained on the full-sized CI-
FAR 10 dataset. More results can be found in the supplementary. From the figure, We’ve
noticed that the CReLU function can cause certain input points to collapse into each other,
destroying the phase information other than the first quadrant. In comparison, H-CReLU
avoids information loss, where the outputs have better coverage of the complex plane.

Phase information for MRI patch classification

In Section 7.6, we introduce a novel dataset for classifying complex-valued MRI patches.
The goal is to train a classifier that can accurately identify the anatomical orientation of
the complex-valued input patches. This section aims to analyze whether the inherent phase
information can enhance patch classification performance.

Table 7.3 compares the performance of the CSR+LL and CSR+CDS models trained with
magnitude-only MRI patches against the model trained using complex-valued input data.

Due to physics and acquisition factors, complex-valued MRI images can have random
phase offsets. Therefore, two phase maps, ϕ1 and ϕ2 = ϕ1 + α (where α is a constant phase
ranging from [0, 2π)), provide the same phase information. To reduce the phase sensitivity,
during training, we augment the phase of the input patches on the fly by multiplying each
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Method Phase Aug.
MRI Patch

100 samples 500

CSR+
LL†

✗ - 75.97±0.63 89.33±0.40

✓ ✗ 74.22±0.57 91.73±0.33

✓ ✓ 78.53±0.35 92.25 ±0.30

CSR+
CDS

✗ - 85.60±0.73 95.60±0.19

✓ ✗ 84.80±1.06 99.18±0.15

✓ ✓ 88.95±0.78 99.32±0.11

†: CDS type-I [105]; Aug.: random and constant phase augmentation

Table 7.3: Classification accuracy of complex-valued MRI patch dataset with and
without phase information. To mitigate the sensitivity to phase, we also incorporate a
model trained on complex-valued inputs with phase augmentation, resulting in the highest
accuracy and demonstrating the importance of phase information in MRI patch classification.

patch with random constant phase ejθ, where θ is uniformly distributed between [0, 2π). We
include the results in Table 7.3.

The results indicate that when trained on only 100 samples, models trained on complex-
valued inputs without phase augmentation (second row) show slightly lower accuracy than
those trained on magnitude-only patches (first row) due to phase sensitivity. However, incor-
porating phase augmentation can considerably enhance the performance of models trained
on complex-valued inputs (third row), resulting in the highest accuracy and highlighting the
significance of phase information.

When moving to a larger training set of 500 samples, increased data diversity inherently
mitigates the phase sensitivity. In this scenario, models trained on complex-valued inputs
without phase augmentation already outperform those trained on magnitude-only images by
a large margin, further highlighting the advantages of incorporating phase information in
patch classification.

Robustness to geometric deformations

Scattering transforms [12, 31] have been shown to be stable to small deformations as a
built-in feature. This section explores the stability of CSR to geometric deformations and
compares it with S [12] and LS [31]. Following [31], we include rotation, scaling, and shearing
as our deformations.

To study the robustness of deformations, we apply deformations of strength l to a given
image I, resulting in a deformed image denoted as Ĩ(l). When evaluating rotation and
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CIFAR 10 CIFAR 100 MRI patchxView

Figure 7.6: Normalized distance comparisons of different deformations
(i.e.,rotating, scaling, shearing). We compare the deformation stability of CSR with
LS [31] and S [12] evaluated on various datasets. From left to the right, we evaluate CIFAR
10, CIFAR 100, xView, and MRI patch classification. The plots illustrate the change in nor-
malized distances with respect to deformation levels. CSR roughly matches the deformation
stabilities of LS and S.

shearing, the deformation angle l ranges from [0, 30◦), while the scale parameter l ranges
from [1, 1.5] when assessing scaling. All the deformations are implemented using torchvision.

We then compute the normalized Euclidean distance D(l) between CSRs of I and Ĩ(l)
as a function of l:

D(u) =
∥CSR(I)− CSR(Ĩ(l))∥2

∥CSR(I)∥2
. (7.6)

We compute the average D(l) across the entire dataset and plot it against l. Figure 7.6
depicts the results obtained from all four datasets using CSR+LL: CIFAR 10, CIFAR 100,
xView, and MRI patch. We include the results from S and LS for comparison.

Our observation suggests that CSR is generally on par with LS and S in terms of defor-
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mation stability across datasets. More specifically, CSR exhibits slightly better deformation
robustness (lower distance values) in CIFAR 10 rotation, CIFAR 10 scaling, CIFAR 100
scaling, xView scaling, and shearing, while it shows slightly worse stability in some other
scenarios.

CSR for few-shot learning

Few-shot learning is a popular machine learning sub-field that aims to train models capable
of recognizing and classifying new objects or categories with only a few examples or instances.

In this section, we evaluate the effectiveness of CSR for few-shot learning on the CIFAR
10 dataset and compare its performance with S [12], LS [31] and CDS.

We begin by training CSR and other models on images from 5 subclasses in the CIFAR
10 dataset, which include 25,000 training images from the following classes: airplane, au-
tomobile, bird, cat, and deer. Next, we fine-tune the models on few-shot images (5 and 10
samples from each class) from the remaining 5 classes: dog, frog, horse, ship, and truck.
Finally, we evaluate the classification accuracy of the fine-tuned models on images of the
second set of 5 classes (2,500 images).

Table 7.4 summarizes the results for both the 5 samples and 10 samples experiments.
It can be observed that CSR outperforms its real-valued counterparts and CDS. Moreover,
CSR+CDS outperforms CDS by 8.78% and 8.13% in the 5 and 10 samples few-shot learning
experiments, respectively, which highlights the potential of CSR for few-shot learning.

Ablation studies

We evaluate the contributions of learnable filters and our proposed H-CReLU in CSR through
ablation studies. We report the results on CIFAR 10 (full size) and MRI patch classification
(100 samples) for CSR + LL and CSR + CDS type-I. More results can be found in the
supplementary.

Our experimental setup for CSR (Table 7.5) includes the following configurations: 1) fixed
filters and complex modulus as activation function (−,−); 2) learnable filters and complex
modulus (✓,−); 3) fixed filters and H-CReLU (−,✓); and 4) learnable filters and H-CReLU
(✓,✓).

Table 7.5 demonstrates that integrating learnable filters and H-CReLU into CSR re-
sults in enhanced performance with minimal parameter increase. Specifically, compared
to the baseline model, the learnable filters module only adds 32 extra parameters, while
the H-CReLU module introduces an additional 64 parameters. Furthermore, the combina-
tion of both modules can further enhance the performance, resulting in an accuracy gain
of 8.28%/7.01% (LL/CDS) for CIFAR 10 and 16.06%/22.25% (LL/CDS) for MRI patch
classification.

Tabel 7.6 further compare H-CReLU with other complex-valued activation functions: 1)
Complex modulus (one used for real-valued SNs); 2) Complex ReLU (CReLU); 3) learnable
Generalized Tangent ReLU proposed in [105]. To ensure fairness, we keep the learnable
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Method CIFAR 10
- 5 samples 10 samples

Scattering + Linear layers
S [12] + LL 52.70±3.01 64.56±1.27
LS [31] + LL 53.52±3.33 66.16±1.32

CSR + LL † 55.62±2.94 68.74 ±1.48

Scattering + CIFARNet
S [12] + CIFARNet 58.49±2.61 66.60±2.70
LS [31] + CIFARNet 58.95±3.30 65.45±1.90

CSR + CDS type-I † 60.12 ±2.53 68.04±1.38

CDS type-I
CDS type-I [105] 51.34±3.22 59.91±2.02

† ours ; S: Scattering; LS: Learnable Scattering; CSR: Complex-valued Scattering Repre-
sentations (ours).

Table 7.4: Few-shot classification accuracy on subset of CIFAR 10. We pre-train the
models on 25,000 images from 5 subclasses in the CIFAR 10 dataset. Next, we fine-tune the
models on few-shot images from the remaining 5 classes and evaluate on the testing images
(2,500) of the second set of 5 classes. In both training setups, our CSR outperforms CDS
and other real-valued scattering counterparts.

filter module for all the experiments. Our findings suggest that CReLU is not as effective
as modulus in producing higher accuracy due to the phase information loss. GTReLU
slightly outperforms modulus in certain experiments. In comparison, H-CReLU yields the
most significant improvement compared to other methods, demonstrating its superiority as
a non-linear activation module for CSR.

Dimensionality of H-CReLU

Thus far, we have set Nh = 16 for H-CReLU in all our experiments. In this section, we
explore the impact of Nh on the classification results, with a particular focus on the CIFAR
10 dataset. We conduct experiments with both non-learned and learned H-CReLU with
Nh = 2, 4, 8, 16, 32, 64.

Table 7.7 presents the classification results of CSR+LL and CSR+CDS on the CIFAR
10 dataset. We note that, for learned H-CReLU, Nh = 16 yields the highest accuracy.
Remarkably, the results of Nh = 2 are only 1.41% lower than Nh = 16 (CSR+LL), and still
surpass other real-valued scattering counterparts and complex-valued networks discussed
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Method L. F. H-C.
CIFAR

10
MRI
Patch

CSR
+ LL

- - 66.02 58.16±0.44

✓ - 71.23 ↑5.21 68.85±0.68 ↑10.69
- ✓ 70.35 ↑4.33 70.07±0.46 ↑11.91
✓ ✓ 74.30 ↑8.28 74.22±0.57 ↑16.06

CSR
+ CDS†

- - 74.51 62.55±0.74

✓ - 77.60 ↑2.89 74.03±0.56 ↑11.48
- ✓ 79.02 ↑4.51 78.40±0.91 ↑15.85
✓ ✓ 81.52 ↑7.01 84.80±1.06 ↑22.25

†: CDS type-I [105]; L.F.: Learnable filters; H-C.: High-dimensional C-ReLU (H-CReLU)

Table 7.5: Ablation studies of different CSR components. We analyze the contribu-
tions of learnable filtering and H-CReLU for CSNs on CIFAR 10 and MRI patch benchmarks.
Bold corresponds to the best results, ↑ shows the accuracy gain compared to the baseline
model (fixed filters and complex modulus).

Method Activation
CIFAR

10
MRI
Patch

CSR
+LL

Modulus [12] 71.23 68.85±0.68

CReLU 70.88 ↓0.35 65.33±0.88 ↓3.52
GTReLU [105] 71.04 ↓0.19 69.08±0.45 ↑0.24
H-CReLU (Ours) 74.30 ↑3.07 74.22±0.57 ↑5.37

CSR
+CDS

Modulus [12] 77.60 74.03±0.56

CReLU 75.08 ↓2.52 71.01±0.90 ↓3.02
GTReLU [105] 78.24 ↑0.64 76.40±0.78 ↑2.37
H-CReLU (Ours) 81.52 ↑3.92 84.80±1.06 ↑10.07

Table 7.6: Ablation studies of different non-linear activation functions with learn-
able filters. We compare our H-CReLU with other complex-valued activation functions:
complex modulus, CReLU, and learnable Generalized Tangent ReLU (GTReLU) from [105].
H-CReLU yields the best results. ↑ and ↓ indicate an increase and decrease in classification
accuracy, respectively.
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Method H-CReLU
CIFAR 10

Nh = 2 4 8 16 32 64

CSR
+LL

non-learned 66.62 68.25 70.54 72.39 72.48 70.77

learned 72.89 73.28 73.79 74.30 73.75 73.40

CSR
+CDS

non-learned 70.77 74.56 77.99 80.63 80.52 80.80
learned 79.18 80.86 81.40 81.52 81.05 80.87

Table 7.7: Ablation studies on different H-CReLU dimensionalities. We compare the
classification results of H-CReLU with varying dimensionalities (Nh), including non-learned
and learned H-CReLU using CSR+LL and CSR+CDS on the CIFAR 10 dataset. Bold
indicates best result in each row.

in § 7.6. This highlights the benefits of H-CReLU when Nh is low. We note that, when
Nh > 16, the accuracy starts to saturate and decrease. We hypothesize that H-CReLU is
more susceptible to overfitting when Nh is high.

On the other hand, for non-learned H-CReLU, we observe a significant gap in accuracy
across different dimensionalities, where Nh = 2, 4 yields markedly poorer results. We note
that the accuracy begins to saturate when Nh ≥ 16. Specifically, for CSR+LL, Nh = 32
yields the highest results, while for CSR+CDS, Nh = 64 produces the highest accuracy.

7.7 Conclusion

In this work, we propose Complex-valued Scattering Representations (CSR) as a novel and
universal complex-valued representation for a wide range of input domains, including RGB,
MRI, and MSI, in the field of complex-valued deep learning. The incorporation of tunable
data-specific wavelet filters and H-CReLU enables CSR to effectively capture both spatial
and spatial-frequency properties of input data. By integrating CSR into complex-valued
models for image classification, we have achieved significant performance gains compared to
real-valued counterparts and complex-valued models without CSR, especially under limited
labeled training data settings. Therefore, CSR can greatly enhance complex-valued networks
on a broader range of applications. In this study, Compressive Sensing Reconstruction (CSR)
is primarily applied to image classification tasks. Extending the application of CSR to image-
to-image translation tasks, such as image segmentation and image reconstruction, presents
promising opportunities for future research and advancements in the field.
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Chapter 8

Summary and future work

In this dissertation, I showcase a collection of research projects dedicated to enhancing
MRI image reconstruction’s fidelity and efficiency by developing advanced deep learning
techniques.

Our proposed approaches make significant strides in addressing the limitations of current
deep learning methods by improving the fidelity and efficiency of image reconstruction and
expanding the range of possible applications (e.g., high-dimensional MR reconstruction).
These advancements not only contribute to the current state-of-the-art but also create op-
portunities for further exploration and innovation in the field, opening up new directions
for future research and clinical applications. In this concluding chapter, I summarize the
contributions and outline some promising directions for future research.

8.1 Summary of contributions

The contributions of this dissertation are summarized in this section.

Direct contrast synthesis from MRF

I introduced a supervised learning-based method (N-DCSNet) that synthesizes multiple
contrast-weighted images (T1w, T2w, and FLAIR) from a single, short MRF scan, sig-
nificantly reducing examination time while preserving image quality. By training a network
to generate contrast-weighted images directly from MRF data, our method eliminates the
need for model-based simulations, thus avoiding reconstruction errors caused by simulation
inaccuracies.

In-vivo experiments demonstrate that N-DCSNet produces high-fidelity contrast-weighted
images with sharp contrasts and minimal artifacts (in-flow and spiral off-resonance artifacts),
outperforming simulation-based contrast synthesis and PixelNet both visually and metri-
cally. Furthermore, our proposed method inherently mitigates some off-resonance artifacts
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within MRF data, resulting in high-quality contrast-weighted images with minimal residual
artifacts.

Unsupervised Feature Loss for DL-based MRI reconstruction

I introduced the Unsupervised Feature Loss (UFLoss), a novel patch-based unsupervised
learning-based feature loss, designed to address the limitations of existing hand-crafted loss
functions, particularly their inability to capture high-level perceptual information and to
preserve high-dimensional perceptual similarities.

Our UFLoss can be seamlessly integrated into the training of any existing deep learning-
based reconstruction frameworks without necessitating modifications to the model archi-
tecture. UFLoss is founded on an unsupervised pre-trained feature mapping network that
operates independently of external supervision.

By incorporating our proposed UFLoss, we successfully reconstruct high-fidelity images
characterized by sharper edges, more accurate contrasts, and overall enhanced image quality.

Memory-efficient learning for high-dimensional MRI
reconstruction

In order to address the memory challenges associated with unrolled reconstruction, I uti-
lized the Memory-Efficient Learning (MEL) framework, which significantly reduces memory
consumption during backpropagation in the training process. Our approach facilitates the
training of unrolled deep learning-based reconstruction for 1) large-scale 3D MRI and 2)
2D+time cardiac cine MRI with an extensive number of unrolls, thereby enhancing the effi-
ciency and capabilities of MRI reconstruction techniques. Our in-vivo experiments indicate
that by exploiting high-dimensional data redundancy, we can achieve better quantitative
metrics and improved image quality with sharper edges for both 3D MRI and cardiac cine
MRI.

Rigorous uncertainty estimation for MRI reconstruction

To guarantee the reliability and validity of deep learning-based reconstructions, I introduce
a straightforward and rigorous uncertainty estimation framework that can be effortlessly
integrated into existing reconstruction networks without requiring any modification or re-
training. Notably, our technique, unlike previous work, provides a rigorous finite-sample
statistical guarantee on the predicted confidence intervals, ensuring that the confidence in-
tervals contain at least (1− γ) (e.g., 95%) of the ground truth pixel values.

In-vivo experimental results reveal a strong correlation between our uncertainty esti-
mation outcomes and the absolute residual error. Moreover, our approach refines heuris-
tic uncertainty estimation, quantitatively guaranteeing the desired confidence levels. This
highlights the potential of our framework in enhancing the reliability and accuracy of deep
learning-based reconstructions for medical imaging applications.
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Complex-valued Scattering Representations (CSR)

Deep learning for MRI applications consistently faces challenges arising from complex-valued
data inputs and limited training data availability. To address these challenges, I introduced
Complex-valued Scattering Representations (CSR) as a novel and universal complex-valued
representation for a broad range of input domains.

CSR employs tunable data-specific wavelet filters and H-CReLU, showcasing significant
performance improvements on image classification tasks compared to conventional CNNs,
particularly in situations with limited labeled training data. Thus, CSR exhibits immense
potential for representation learning in MRI applications.

8.2 Suggestions for future works

In this dissertation, we have showcased various advancements aimed at improving the fi-
delity and efficiency of MRI reconstruction. Despite our progress, numerous challenges and
opportunities still lie ahead. The topics of this dissertation pave the way for exciting future
research endeavors. Here are some promising ideas and projects for future research.

Direct contrast synthesis trained on large-scale diagnostic imaging
datasets

In Chapter 3, we introduce a supervised learning approach for high-fidelity direct contrast
synthesis from MRF. Nevertheless, in our work, we only trained our network on a relatively
small dataset acquired from healthy volunteers.

This could lead to generalization challenges when handling images with pathologies. As
such, a direct approach to address this issue would involve expanding the training dataset
and incorporating more diagnostic images containing various pathologies. Additionally, com-
prehensive and in-depth clinical assessments would be highly beneficial for DCS and its
integration into clinical practice.

Perceptual metric for MR image assessment

Quantitative metrics hold a crucial role in various aspects of image analysis, including image
assessment, algorithm evaluation, and the adoption of new techniques in clinical settings.

Nonetheless, the most prevalent metrics for comparing two MR images remain pixel-wise
(ℓ1, ℓ2 loss) or those based on local statistics (SSIM loss). While these metrics are straight-
forward, they have been demonstrated to be inadequate for capturing the high-dimensional
perceptual similarities that are crucial for a more comprehensive comparison. Zhang et
al. [145] first demonstrated the effectiveness of using learned features as a perceptual metric
for natural images. However, applying this perceptual metric to MR images is not straight-
forward due to their complexity and high dimensionality. To the best of my knowledge,
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there have been limited attempts at designing perceptual metrics for MR image assessment,
especially for high-dimensional MRI.

In Chapter 4, I describe an unsupervised feature loss designed to capture high-dimensional
perceptual similarities without requiring any supervision. Therefore, we hypothesize that
UFLoss can be also used as an effective perceptual metric for MRI, especially for high-
dimensional MRI. Thorough analysis, fair comparisons, and well-designed radiologist studies
are required to validate the hypothesis. One possible user study is Two-alternative forced
choice (2AFC).

Uncertainty estimation in feature domains (latent space)

Chapter 6 presents a novel uncertainty estimation framework for MRI reconstruction. Our
proposed uncertainty map resides in the image domain and effectively provides pixel-level
confidence intervals.

One limitation of the uncertainty map is that it does not provide high-level information,
such as the accuracy of the recovered pathologies. This makes it difficult to assess the overall
reconstruction quality in terms of clinically relevant features.

To address these challenges, we propose two directions: 1) Uncertainty estimation in
the feature domain or latent space, which can be directly translated into uncertainty in
downstream tasks, such as pathology classification or anatomical segmentation. 2) Design-
ing pipelines to propagate pixel-valued uncertainty to downstream tasks. As a more con-
crete example, given a pre-trained pathology detection network, one promising avenue is to
propagate the pixel-valued uncertainty to the uncertainty for pathology detection, thereby
providing more informed and reliable assessments of the reconstructed images in terms of
clinically relevant outcomes.

CSR for image-to-image translation tasks

In Chapter 7, I introduce CSR, which exhibits exceptional performance in image classifica-
tion, particularly under limited data conditions. One straightforward and promising direction
is to apply CSR to image-to-image translation tasks (e.g., image segmentation, and image
reconstruction).

A widely utilized image segmentation framework [17] involves using a pre-trained back-
bone to extract feature representations, which are then fed into an upsampling module. One
potential direction is to replace the pre-trained backbone with CSR, while maintaining the
upsampling module. Additionally, investigating the application of CSR in MR image recon-
struction tasks, particularly high-dimensional MRI with limited data, presents a promising
research avenue.
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