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Abstract

Towards Robust and Scalable Large Language Models

By

Paras Jagdish Jain

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Co-Chair

Professor Joseph E. Gonzalez, Co-Chair

This dissertation addresses two significant challenges of large language models

(LLMs): robustness and scalability. Firstly, we focus on improving large language

model robustness through the lens of learning code representations. I highlight

our work on ContraCode which learns representations of code that are robust to

label-preserving edits. Secondly, we tackle scalability challenges from a systems

perspective. We present Checkmate, a system to support training models beyond

GPU memory capacity limits through optimal rematerialization. Furthermore,

Skyplane, a system that optimizes bulk data transfers between cloud object stores,

enables training models on larger pre-training datasets in the cloud. Together, these

contributions present a roadmap for enhancing the robustness and scalability of

large language models.



i

To my family and my partner.



CONTENTS ii

Contents

1 Introduction 1
2 Improving the robustness of large language models 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Training models beyond memory capacity limits 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Optimal Rematerialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Scalable data transfer in the cloud 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Overview of Skyplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Principles of Skyplane’s planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Finding optimal transfer plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Implementation of Skyplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion 66
Bibliography 67



ACKNOWLEDGEMENTS iii

Acknowledgements

Firstly, I would like to extend my deepest gratitude to my advisors, Ion Stoica and Joseph E.

Gonzalez. The value of focus and drive that I have learned from Ion has been a guiding force in

accomplishing ambitious research visions. From Joey, I have learned the true essence of optimism

in the face of critical reviewers and the numerous challenges that a PhD journey brings.

I also extend my heartfelt thanks to my committee members, Matei Zaharia and Jacob Steinhardt,

for their valuable feedback and guidance throughout my research journey. Special mention goes

to Barna Saha and Laurent El Ghaoui for aiding me in applying convex optimization to my first

major paper, a tool that has since been pivotal in my research. I also want to express my gratitude

to Pieter Abbeel for the enriching collaborations in generative modeling.

Special thanks go out to John Kubiatowicz, under whose guidance I had the pleasure of teaching

CS 162 operating systems. I thank Azalia Mirhoseini, Safeen Huda, and Martin Maas for their

mentorship during my tenure at Google Brain. I particularly would like to thank Polo Chau and

Shang-Tse Chen who took a chance mentoring me as a freshman at Georgia Tech and teaching me

the fundamentals of academic research.

I extend my appreciation to the Skyplane team, with whom I had the privilege of working

closely during the final years of my PhD. My gratitude goes out to Sam Kumar for the rigorous

debates that undoubtedly made our paper more robust. I also thank Sarah Wooders, Shishir Patil,

Shu Liu, Simon Mo, and Asim Biswal, my fellow PhD students on the Skyplane project. I also

acknowledge the undergraduates I had the honor of mentoring, including Anton Zabreyko, Jason

Ding, Xuting Liu, and Hailey Jang. I am also grateful to Vincent Liu and Daniel Kang for their

guidance on the Skyplane project.

It was a pleasure to collaborate with many wonderful people during my PhD: Ajay Jain, Alexey

Tumanov, Amir Gholami, Aniruddha Nrusimha, Azalia Mirhoseini, Bartolomeo Stellato, Conor

Power, Dawn Song, Francesco Borrelli, Goran Banjac, Harikaran Subbaraj, Jeffrey Ichnowski, Ken

Goldberg, Kurt Keutzer, Martin Maas, Matei Zaharia, Matthew Wright, Michael Luo, Peter Kraft,

Pieter Abbeel, Prabal Dutta, Rehan Durrani, Safeen Huda, Sam Kumar, Sarah Wooders, Shishir G

Patil, Tathagata Das, Tianjun Zhang, Wendi Zhang, Simon Mo, Yu Gai and Zhanghao Wu.



ACKNOWLEDGEMENTS iv

Lastly, but most importantly, I dedicate this thesis to my family. My parents, Pradeep and

Chanchal Jain, my sister, Aditi Jain, and my brother, Ajay Jain, have been a source of constant

support throughout my PhD. Collaborating with Ajay has been a treasure, and I’m grateful for

our shared journey. Lastly, my partner, Anjali Shankar, deserves my deepest gratitude for her

unwavering love and support throughout this journey.



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In 1945, Vannevar Bush envisioned the memex, a hypothetical device that could store and index all

of humanity’s knowledge, enabling users to query and navigate the knowledge with "wholly new

forms of encyclopedias". Although Bush imagined the memex as a mechanical microfilm-based

device, his vision went far beyond the physical form of the device. He foresaw the development of

systems capable of deep language understanding, knowledge storage, and reasoning.

Large language models (LLMs) have made significant progress towards this vision by learning

representations of language that can be queried and reasoned over. Unlike previous language

models, these neural networks are trained on vast amounts of data to predict words and under-

stand language. They have achieved human-level performance on certain benchmarks, but face

significant challenges that limit their widespread deployment. Specifically, large language models

confront crucial hurdles in two dimensions: robustness and scalability.

Robustness in large language models is a multifaceted challenge. While large language models

have shown remarkable progress in understanding and generating text, they still struggle with

hallucinations, sensitivity to input perturbations and compositional generalization. Scalability, on

the other hand, is a challenge of size and computational resources. For large language models, the

cross-entropy loss scales as a power-law with model size, dataset size, and the amount of compute

used for training. In this dissertation, I contribute to the ongoing efforts to improve the robustness

and scalability of large language models.

In Chapter 2, we investigate strategies to enhance the robustness of large language models.

One question central to this discourse is whether language modeling objectives lead to learning

robust semantic representations, or if they merely predict tokens based on local context. To

answer this question, we turn to the context of source code, where the semantics of a program

are defined by its execution. We explore the contrastive pre-training task, ContraCode, which
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learns code functionality instead of form. ContraCode pre-trains a neural network to distinguish

functionally similar variants of a program from many non-equivalent distractors. This strategy

has shown improvement in JavaScript summarization and TypeScript type inference accuracy. We

also introduce a new zero-shot JavaScript code clone detection dataset, with results indicating that

ContraCode is both more robust and semantically meaningful compared to other methods.

In Chapter 3, we start addressing the scalability challenges of large language models by examin-

ing the "memory wall" problem that arises during the training of large models. Here, we introduce

Checkmate, a system that optimally trades off computation time and memory requirements for

DNN training. Checkmate solves the tensor rematerialization optimization problem, a generaliza-

tion of prior checkpointing strategies. It determines optimal rematerialization schedules using

off-the-shelf MILP solvers and accelerates millions of training iterations. The system scales to

complex, realistic architectures and is hardware-aware, using accelerator-specific, profile-based

cost models. Checkmate enables the training of real-world networks with up to 5.1× larger inputs.

In Chapter 4, we explore the management of large pre-training datasets, another aspect of the

scalability challenge. Specifically, we investigate how to collect and move these datasets between

cloud destinations. We present Skyplane, a system for bulk data transfer between cloud object

stores that uses cloud-aware network overlays. It optimally balances price and performance using

mixed-integer linear programming to determine the optimal overlay path and resource allocation

for data transfer. Skyplane outperforms public cloud transfer services by up to 4.6× for transfers

within one cloud and by up to 5.0× across clouds.
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Chapter 2

Improving the robustness of large
language models

Large language models have achieved remarkable progress on natural language tasks, yet struggle

when generalizing to new domains. An open question is whether language modeling objectives

actually learn semantic representations or simply predict tokens based on local context.

It remains challenging to quantitatively evaluate the robustness of large language models. We

consider the domain of source code where the meaning of a program is defined by its execution.

Programming languages provide clear semantics and structure that allows quantitative evaluation.

In “Contrastive Code Representation Learning”, I investigate adversarial robustness of code

representations to gain insights into their semantic meaning. I find that popular models like

RoBERTa are highly sensitive to simple, semantics-preserving edits to input code, showing their

representations are not robust to rephrasing or reformatting the same program logic. To address

this issue, I propose ContraCode, a pre-training approach that learns robust code semantics by

generating program variants that differ syntactically but are functionally equivalent. ContraCode

pre-trains a model to identify these variants among many non-equivalent distractors, requiring the

model to develop representations indifferent to superficial changes in program form and structure.

By learning representations aligned with program semantics rather than syntax, ContraCode

improves robustness to adversarial evaluation.

This work was the result of a collaboration with Ajay Jain, Tianjun Zhang and Pieter Abbeel.
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Figure 2.1: Robust code clone detection: On source code, RoBERTa is not robust to simple
label-preserving code edits like renaming variables. Adversarially selecting between

possible edits lowers performance below random guessing (dashed line). Contrastive

pre-training with ContraCode learns a more robust representation of functionality,

consistent across code edits.

function (len) {
  for (i = 0; i < len, i++) {
    ...
  }
}

function (n) { while (i < n) { ... } }

function (str, len) { return str.slice(0, len); }

function f(n) { return n<2 ? 1 : f(n-1) + f(n-2); }

function (arr) { for (i of arr) { ... } }

Maximize similarity with equivalent programs

Minimize similarity with
functionally different programs

Given a program,

Figure 2.2: For many analyses, programs with the same functionality should have similar represen-

tations. ContraCode learns such representations by pre-training an encoder to retrieve

equivalent, transformed programs among many distractors.

2.1 Introduction

Programmers increasingly rely on machine-aided programming tools that analyze or transform

code automatically to aid software development [100]. Traditionally, code analysis uses hand-

written rules, though the wide diversity of programs encountered in practice can limit their

generality. Recent work leverages machine learning for richer language understanding, such as

learning to detect bugs [142] and predict performance [122].

Still, neural models of source code are susceptible to adversarial attacks. Yefet, Alon, and

Yahav [181] and Schuster, Song, Tromer, and Shmatikov [153] find accuracy degrades significantly



CHAPTER 2. IMPROVING THE ROBUSTNESS OF LARGE LANGUAGE MODELS 5

under adversarial perturbations for both discriminative and generative code models. In our work,

we investigate adversarial attacks on code clone detection. Successful adversarial attacks could

circumvent malware detectors.

While self-supervision can improve adversarial robustness [77], we find that RoBERTa is sensitive

to stylistic implementation choices of code inputs. Fig. 2.1 plots the performance of RoBERTa

and ContraCode, our proposed method, on a code clone detection task as small label-preserving

perturbations are applied to the input code syntax. With just three adversarial edits to code syntax,

RoBERTa underperforms the random classifier (in gray). In Fig. 2.3, we show that RoBERTa’s

representations of code are sensitive to code edits as studied in prior work [145, 171, 172].

To address this issue, we develop ContraCode: a self-supervised representation learning algo-

rithm that captures program semantics. We hypothesize that programs with the same functionality

should have similar underlying representations for downstream code understanding tasks.

ContraCode generates syntactically diverse but functionally equivalent programs using source-

to-source compiler transformation techniques (e.g., dead code elimination, obfuscation and constant

folding). It uses these programs in a challenging discriminative pretext task that requires the model

to identify similar programs out of a large dataset of distractors (Fig. 2.2). To solve this task, the

model must embed code semantics rather than syntax. ContraCode improves adversarial robustness

in Fig. 2.1. Surprisingly, adversarial robustness transfers to better natural code understanding.

Our novel contributions include:

1. the novel use of compiler-based transformations as data augmentations for code,

2. the concept of program representation learning based on functional equivalence, and

3. a detailed analysis of architectures, code transforms and pre-training strategies, showing

ContraCode improves type inference top-1 accuracy by 9%, learned inference by 2%–13%,

summarization F1 score by up to 8% and clone detection AUROC by 2%–46%.

2.2 Related work

Self-supervised learning (SSL) is a learning strategy where some attributes of a datapoint are

predicted from remaining parts. BERT [49] is a SSL method for NLP that reconstructs masked

tokens as a pretext task. RoBERTa [114] further tunes BERT. Contrastive approaches minimize

distance between learned representations of similar examples (positives) and maximize distance

between dissimilar negatives [72]. CPC [76, 133] encodes segments of sequential data to predict

future segments. SimCLR [38] and MoCo [40, 73] use many negatives for dense loss signal.
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RoBERTa embeddings

UMAP 1

UM
AP

2

Program 19
Variant B

Program 19
Variant A

… …

ContraCode embeddings

UMAP 1

Figure 2.3: A UMAP visualization of JavaScript method representations learned by RoBERTa and

ContraCode, in R2. Programs with the same functionality share color and number.

RoBERTa’s embeddings often do not cluster by functionality, suggesting that it is

sensitive to implementation details. For example, many different programs overlap, and

renaming the variables of Program 19 significantly changes the embedding. In contrast,

variants of Program 19 cluster in ContraCode’s embedding space.

Code representation learning We address clone detection [174], type inference [75], and

summarization [9]. Others explored summarization [2, 6, 86, 128] and types [4, 5, 27, 135, 141, 173]

for various languages. Inst2vec [24] embeds statements in LLVM IR by processing a flow graph

with a context prediction objective [127]. Code2seq [9] embeds AST paths with an attentional

encoder for seq2seq tasks. Kanade, Maniatis, Balakrishnan, and Shi [94] and Feng, Guo, Tang,

Duan, Feng, Gong, Shou, Qin, Liu, Jiang, and Zhou [53] pre-train a Transformer on code using the

masked language modeling (MLM) objective [49, 167].
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function x(maxLine) {
  const section = {
    text: '',
    data
  };

  for (; i < maxLine; i += 1) {
    section.text += `${lines[i]}\n`;
  }

  if (section) {
    parsingCtx.sections.push(section);
  }
}

Original JavaScript method

function x(t) {
  const n = {
    'text': '',
    'data': data
  };
  for (;i < t; i += 1) {
    n.text += lines[i] + '\n';
  }
  n && parsingCtx.sections.push(n);
}

Renamed variables, explicit object style, 
explicit concatenation, inline conditional

function x(t){const 
n={'text':'','data':data};for(;i<t;i+=
1)n.text+=lines[i]
+'\n';n&&parsingCtx.sections.push(n)}

Mangled source with
compressed whitespace

Figure 2.4: A JavaScript method from our unlabeled training set with two automatically generated

semantically-equivalent programs. The method is from the StackEdit Markdown editor.

5 10 15 20
Unique transformed program variants

0
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00

)

Figure 2.5: Histogram of the number of unique transformed variants per JavaScript method during

pre-training.

Adversarial attacks on code models Yefet, Alon, and Yahav [180] find code models are

highly sensitive to adversarial code edits in a discrimative setting. Schuster and Paliwal [152]

discovers in-the-wild attacks on code autocompletion tools. Compared to language models, code

models may be more vulnerable to adversarial attacks due to synthetic labels [25, 54, 142] and

duplication [3] that degrade generalization.

2.3 Approach

Our core insight is to use compiler transforms as data augmentations, generating a dataset of

equivalent functions (§2.3.1, 2.3.2). We then use a contrastive objective to learn a representation

invariant to these transforms (§2.3.3).
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Code compression Identifier modification
✓ Reformatting (R) ✓ Variable renaming (VR)

✓ Beautification (B) ✓ Identifier mangling (IM)

✓ Compression (C) Regularization
✓ Dead-code elimination (DCE) ✓ Dead-code insertion (DCI)

✓ Type upconversion (T) ✓ Subword regularization (SW)

✓ Constant folding (CF) ✗ Line subsampling (LS)

✓ = semantics-preserving transformation ✗ = lossy transformation

Table 2.1: We augment programs with 11 automated source-to-source compiler transforms. 10 are

correct-by-construction and preserve operational semantics.

2.3.1 Compilation as data augmentation

Modern programming languages afford great flexibility to software developers, allowing them to

implement the same function in different ways. Yet, crowdsourcing equivalent programs from

GitHub is difficult as verifying equivalence is undecidable [22, 93] and approximate verification is

costly and runs untrusted code [118].

Instead of searching for equivalences, we propose correct-by-construction data augmentation.

We apply compiler transforms to unlabeled code to generates many variants with equivalent func-

tionality, i.e. operational semantics. For example, dead-code elimination (DCE) is an optimization

that removes operations that do not change function output. While DCE preserves functionality,

Wang and Christodorescu [171] find that up to 12.7% of the predictions of current supervised

algorithm classification models change after DCE.

We parse a particular source code sequence, e.g. W*x + b into a tree-structured representation

(+ (* W x) b) called an Abstract Syntax Tree (AST). We then transform the AST with automated

traversal passes. A rich body of prior programming language work explores parsing and transform-

ing ASTs to optimize a program. If source code is emitted by the compiler rather than machine

code, this is called source-to-source transformation or transpilation. Transpilation is common

for optimizing and obfuscating dynamic languages like JavaScript. Further, if each transform

preserves code semantics, then any composition also preserves semantics.

We implement our transpiler with the Babel and Terser compiler infrastructures [121, 150] for

the JavaScript programming language. In future work, a language-agnostic compiler [103] could

be used to extend ContraCode to other languages. Each compiler transformation is a function

𝜏 : P → P, where the space of programs P is composed of the set of valid ASTs and the set of
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function (...) {
    for ...
}

function log() {
    var num = ...
}

function () {... }

Unlabeled
programs

ContraCode
compiler

function (...) {
    while ...
}

function x() {
    var a = ... 
}

function () {... }

Augmented
variants

Sample & tokenize
positives

fq
<latexit sha1_base64="kwvFlZZfW/SthOGV+o99mjhVx5Y=">AAAB+HicbVBNS8NAEN3Urxo/GvXoZbEUPJWkCnosevFYwbZCE8pmu2mXbjZxdyLU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmhangGlz32yqtrW9sbpW37Z3dvf2Kc3DY0UmmKGvTRCTqPiSaCS5ZGzgIdp8qRuJQsG44vp753UemNE/kHUxSFsRkKHnEKQEj9Z1Kzc+xDyTD/tSO+g99p+rW3TnwKvEKUkUFWn3nyx8kNIuZBCqI1j3PTSHIiQJOBZvafqZZSuiYDFnPUElipoN8fvgU14wywFGiTEnAc/X3RE5irSdxaDpjAiO97M3E/7xeBtFlkHOZZsAkXSyKMoEhwbMU8IArRkFMDCFUcXMrpiOiCAWTlW1C8JZfXiWdRt07qzduz6vNqyKOMjpGJ+gUeegCNdENaqE2oihDz+gVvVlP1ov1bn0sWktWMXOE/sD6/AFdEpJA</latexit>

fk
<latexit sha1_base64="/tyrMSrE/ZiFZKSpzmob4gk8Ehs=">AAAB+HicbVDLSgNBEJyNr7g+EvXoZTAEPIXdKOgx6MVjBPOA7LLMTmaTIbMPZnqEuORLvHhQxKuf4s2/cZLsQRMLGoqqbrq7wkxwBY7zbZU2Nre2d8q79t7+wWGlenTcVamWlHVoKlLZD4ligiesAxwE62eSkTgUrBdObud+75FJxdPkAaYZ82MySnjEKQEjBdVK3cuxB0Rjb2ZHwSSo1pyGswBeJ25BaqhAO6h+ecOU6pglQAVRauA6Gfg5kcCpYDPb04plhE7IiA0MTUjMlJ8vDp/hulGGOEqlqQTwQv09kZNYqWkcms6YwFitenPxP2+gIbr2c55kGlhCl4siLTCkeJ4CHnLJKIipIYRKbm7FdEwkoWCysk0I7urL66TbbLgXjeb9Za11U8RRRqfoDJ0jF12hFrpDbdRBFGn0jF7Rm/VkvVjv1seytWQVMyfoD6zPH1P6kjo=</latexit>

Embed

q
<latexit sha1_base64="H/jqpSm08dtfkSIPszp3ThFAjbM=">AAAB+3icbVBNS8NAEJ3Urxq/Yj16WSwFTyWpgh6LXjxWsK3QhLDZbtqlmw93N2IJ+StePCji1T/izX/jts1BWx8MPN6bYWZekHImlW1/G5W19Y3Nreq2ubO7t39gHdZ6MskEoV2S8ETcB1hSzmLaVUxxep8KiqOA034wuZ75/UcqJEviOzVNqRfhUcxCRrDSkm/VGm6OXIUz5BZmI/Qn5oNv1e2mPQdaJU5J6lCi41tf7jAhWURjRTiWcuDYqfJyLBQjnBamm0maYjLBIzrQNMYRlV4+v71ADa0MUZgIXbFCc/X3RI4jKadRoDsjrMZy2ZuJ/3mDTIWXXs7iNFM0JotFYcaRStAsCDRkghLFp5pgIpi+FZExFpgoHZepQ3CWX14lvVbTOWu2bs/r7asyjiocwwmcggMX0IYb6EAXCDzBM7zCm1EYL8a78bForRjlzBH8gfH5A8Rekvg=</latexit>

k+
<latexit sha1_base64="t0gZiTCKHWVxVpLPSKOU8Yznuqw=">AAAB/XicbVDLSsNAFJ34rPEVHzs3g6UgCCWpgi6LblxWsA9oYphMJ+3QyYOZG6GG4q+4caGIW//DnX/jtM1CWw9cOJxzL/feE6SCK7Dtb2NpeWV1bb20YW5ube/sWnv7LZVkkrImTUQiOwFRTPCYNYGDYJ1UMhIFgrWD4fXEbz8wqXgS38EoZV5E+jEPOSWgJd86rLg5doFk2B2bldAfmsP7U98q21V7CrxInIKUUYGGb325vYRmEYuBCqJU17FT8HIigVPBxqabKZYSOiR91tU0JhFTXj69fowrWunhMJG6YsBT9fdETiKlRlGgOyMCAzXvTcT/vG4G4aWX8zjNgMV0tijMBIYET6LAPS4ZBTHShFDJ9a2YDogkFHRgpg7BmX95kbRqVeesWrs9L9evijhK6AgdoxPkoAtURzeogZqIokf0jF7Rm/FkvBjvxsesdckoZg7QHxifP+DBk48=</latexit>

{⌧}
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Figure 2.6: ContraCode pre-trains a neural program encoder 𝑓𝑞 and transfers it to downstream

tasks. A-B. Unlabeled programs are transformed C. into augmented variants. D.We

pre-train 𝑓𝑞 by maximizing similarity of projected embeddings of positive program
pairs–variants of the same program–and minimizing similarity with a queue of cached

negatives. E. ContraCode supports any architecture for 𝑓𝑞 that produces a global

program embedding such as Transformers and LSTMs. 𝑓𝑞 is then fine-tuned on smaller

labeled datasets.

programs in tokenized source form. Fig. 2.4 shows variants of an example program. Table 2.1 list

program transformations in detail, but we broadly group them into three categories:

• Code compression changes the syntactic structure of code and performs correct-by-

construction transforms such as pre-computing constant expressions.

• Identifier modifications substitute method and variable names with random tokens,

masking some human-readable information in a program but preserving functionality.

• Finally, Regularizing transforms improve model generalization by reducing the number

of trivial positive pairs with high text overlap. The line subsampling pass in this group

potentially modifies program semantics.

2.3.2 Diversity through transform dropout

Stochastic augmentations in other modalities like random crops generate diverse outputs, but most

of our compiler-based transformations are deterministic. To produce a diverse set of transformed

programs, we randomly apply a subset of available compiler passes in a pre-specified order,

applying transform 𝜏𝑖 with probability 𝑝𝑖 . Intermediate programs are converted between AST and

source form as needed for the compiler. Algorithm 1 details our transform dropout procedure.
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Algorithm 1 Transform dropout for stochastic program augmentation.

1: Input: Program source 𝑥 , transformation functions 𝜏1, . . . 𝜏𝑘 , transform probabilities 𝑝1, . . . 𝑝𝑘 , count 𝑁

2: Returns: 𝑁 variants of 𝑥

3: V ← {𝑥}, a set of augmented program variants

4: for Sample 𝑖 ← 1 . . . 𝑁 − 1 do
5: 𝑥 ′ ← 𝑥

6: for transform 𝑡 ← 1 . . . 𝑘 do
7: Sample 𝑦𝑡 ∼ Bernoulli(𝑝𝑡 )
8: if 𝑦𝑡 = 1 then
9: if ReqiresAST(𝜏𝑡 (·)) and ¬IsAST(𝑥 ′) then 𝑥 ′ ← ParseToAST(𝑥 ′)
10: else if ¬ReqiresAST(𝜏𝑡 (·)) and IsAST(𝑥 ′) then 𝑥 ′ ← LowerToSource(𝑥 ′)
11: 𝑥 ′ ← 𝜏𝑡 (𝑥 ′)
12: end if
13: end for
14: if IsAST(𝑥 ′) then 𝑥 ′ ← LowerToSource(𝑥 ′)
15: V ← V ∪ {𝑥 ′}
16: end for
17: returnV

Figure 2.5 measures the resulting diversity in programs. We precompute up to 20 augmentations

of 1.8m JavaScript methods from GitHub. Algorithm 1 deduplicates method variants before pre-

training since some transforms will leave the program unchanged. 89% of the methods have

more than one alternative after applying 20 random sequences of transformations. The remaining

methods without syntactically distinct alternatives include one-line functions that are obfuscated.

We apply subword regularization [107] as a final transformation to derive different tokenizations

every batch, so pairs derived from the same original method will still differ. All transformations

are fast; our compiler transforms 300 functions per second on a single CPU core.

2.3.3 Contrastive pre-training

We extend the Momentum Contrast (MoCo) methodology [73] that was designed for contrastive

image representation learning. In our case, we learn a program encoder 𝑓𝑞 that maps a sequence of

program tokens to a single, fixed dimensional embedding. We organize programs into functionally

similar positive pairs and dissimilar negative pairs. Generating two augmentations of the same

GitHub program yields a positive pair (𝑥𝑞, 𝑥𝑘+), and an augmentation of a different program yields

a negative 𝑥𝑘
−
. The program 𝑥𝑞 is called a “query” used to retrieve the corresponding “key” 𝑥𝑘

+

during contrastive pre-training. We use these to shape representation space, drawing positives

together and pushing away from negatives. Negatives are important to prevent the encoder 𝑓𝑞

from mapping all programs to the same, trivial representation [151].
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Pre-training objective Like He, Fan, Wu, Xie, and Girshick [73], we use the InfoNCE loss [133],

a tractable objective that frames contrastive learning as a classification task: can the positives

be identified among negatives? InfoNCE computes the probability of selecting the positive by

taking the softmax of projected embedding similarities across a batch and a queue of negatives. Eq.

(2.1) shows the InfoNCE loss, a function whose value is low when 𝑞 is similar to the positive key

embedding 𝑘+ and dissimilar to negative key embeddings 𝑘− . 𝑡 is a temperature hyperparameter

proposed by Wu, Xiong, Yu, and Lin [177].

− log exp(𝑞 · 𝑘+/𝑡)
exp(𝑞 · 𝑘+/𝑡) +∑𝑘− exp(𝑞 · 𝑘−/𝑡)

(2.1)

The query representation 𝑞 = 𝑓𝑞 (𝑥𝑞) is computed by the encoder network 𝑓𝑞 , and 𝑥
𝑞
is a query

program. Likewise, 𝑘 = 𝑓𝑘 (𝑥𝑘 ) using a separate key encoder 𝑓𝑘 . The summation

∑
𝑘− in the

normalizing denominator is taken over the queue of pre-computed negatives in the batch.

Following He, Fan, Wu, Xie, and Girshick [73], to reduce memory consumption during pre-

training, we cache embedded programs from past batches in a queue containing negative samples,

as shown in Fig. 2.6. The query encoder 𝑓𝑞 is trained via gradient descent while the key encoder 𝑓𝑘

is trained slowly via an exponential moving average (EMA) of the query encoder parameters. The

EMA update stabilizes the pre-computed key embeddings across training iterations. Since keys

are only embedded once per epoch, we use a very large set of negatives, over 100K, with minimal

additional computational cost and no explicit hard negative mining.

ContraCode is agnostic to the architecture of the program encoder 𝑓𝑞 . We evaluate contrastive

pre-training of 6-layer Transformer [170] and 2-layer BiLSTM [82, 152] architectures (§2.4).

Transfer learning After pre-training converges, the encoder 𝑓𝑞 is transferred to downstream

tasks. For code clone detection, we use 𝑓𝑞 (𝑥) without fine-tuning. For tasks where the output
space differs from the encoder, we add a task-specific MLP or Transformer decoder after 𝑓𝑞 , then

fine-tune the resulting network end-to-end on labeled task data.

2.4 Evaluation

In order to evaluate whether ContraCode defend against adversarial code inputs, we benchmark

adversarial code clone detection accuracy [21]. We evaluate results over natural and adversarial

edits. We then evaluate how improvements to adversarial robustness translate to improvements

on established in-the-wild code benchmarks. While improvements on adversarial benchmarks



CHAPTER 2. IMPROVING THE ROBUSTNESS OF LARGE LANGUAGE MODELS 12

Natural code Adversarial (𝑁=4) Adversarial (𝑁=16)

AUROC AP AUROC AP AUROC AP
Edit distance heuristic 69.55±0.81 73.75 31.63±0.82 42.85 12.11±0.54 32.46

Randomly initialized Transformer 72.31±0.79 75.82 22.72±0.20 37.73 3.09±0.28 30.95

+ RoBERTa MLM pre-train 74.04±0.77 77.65 25.83±0.21 39.46 4.51±0.33 31.17

+ ContraCode pre-train 75.73±0.75 78.02 64.97±0.24 66.23 58.32±0.88 59.66
+ ContraCode + RoBERTa MLM 79.39±0.70 81.47 37.81±0.24 51.42 10.09±0.50 32.52

Table 2.2: Zero-shot code clone detection with cosine similarity probe. Contrastive and hybrid

representations improve clone detection AUROC on unmodified (natural) HackerRank

programs by +8% and +10%AUROC over a heuristic textual similarity probe, respectively,

suggesting they are predictive of functionality. Contrastive representations are also the

most robust to adversarial code transformations.

would not be expected to translate to real code, we find significant improvements in extreme code

summarization [6] and type inference [75] tasks.

Clone detection experiments show that contrastive and hybrid representationswith our compiler-

based augmentations are predictive of program functionality in-the-wild, and that contrastive

representations are the most robust to adversarial edits (§2.4.1). Contrastive pre-training outper-

forms baseline supervised and self-supervised methods on all three tasks (§2.4.1-2.4.3). Finally,

ablations suggest it is better to augment unlabeled programs during pre-training rather than

augmenting smaller supervised datasets (§2.4.4).

Experimental setup Models are pre-trained on CodeSearchNet, a large corpus of methods

extracted from popular GitHub repositories [83]. CodeSearchNet contains 1,843,099 JavaScript

programs. Only 81,487 methods have both a documentation string and a method name. The

asymmetry between labeled and unlabeled programs stems from JavaScript coding practices where

anonymous functions are widespread. The pre-training dataset described in Section 2.3.1 is the

result of augmenting all 1.8m programs.

We evaluate two architectures: a 2-layer Bidirectional LSTM with 18m parameters, similar to the

supervised model used by Hellendoorn, Bird, Barr, and Allamanis [75], and a 6-layer Transformer

with 23m parameters. For a baseline self-supervised approach, we pre-train both architectures

with the RoBERTa MLM objective, then transfer it to downstream tasks.
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Figure 2.7: Code clone detection example. These programs solve the same HackerRank coding

challenge (reading and summing two integers), but use different coding conventions.

The neural code clone detector should classify this pair as a positive, i.e. a clone.

2.4.1 Robust Zero-shot Code Clone Detection

ContraCode learns to match variants of programs with similar functionality. While transformations

produce highly diverse token sequences (quantified in the supplement), they are artificial and do

not change the underlying algorithm. In contrast, human programmers can solve a problem with

many data structures, algorithms and programming models. To determine whether pre-trained

representations are consistent across programs written by different people, we benchmark code

clone detection, a binary classification task to detect whether two programs solve the same problem

or different ones (Fig. 2.7). This is useful for deduplicating, refactoring and retrieving code, as well

as checking approximate code correctness.

Benchmarks exist like BigCloneBench [164], but to the best of our knowledge, there is no

benchmark for the JavaScript. We collected 274 in-the-wild JavaScript programs that correctly

solve 33 problems from the HackerRank interview preparation website. There are 2065 pairs

solving the same problem and 70k pairs solving different problems, which we randomly subsample

to 2065 to balance the classes.

Since we probe zero-shot performance based on pre-trained representations, there is no training

set. Instead, we threshold cosine similarity of pooled representations of the programs 𝑢 and 𝑣 :

𝑢𝑇 𝑣/∥𝑢∥∥𝑣 ∥. Many code analysis methods for clone detection measure textual similarity [21].

As a baseline, we threshold the dissimilarity score, a scaled Levenshtein edit distance between

normalized and tokenized programs.
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Table 2.2 reports the area under the ROC curve (AUROC) and average precision (AP, area under

Precision-Recall). All learned representations improve over the heuristic on natural code. Self-

supervision through RoBERTa MLM pre-training improves over a randomly initialized network by

+1.7% AUROC. Contrastive pre-training achieves +3.4% AUROC over the same baseline. A hybrid

objective combining both the contrastive loss and MLM has the best performance with +7.0%

AUROC (+5.4% over MLM alone). Although MLM is still useful over natural code, ContraCode

learns overall stronger representations of functionality.

However, are these representations robust to code edits? We adversarially edit one program in

each pair by applying the loss-maximizing code compression and identifier modification transfor-

mation among𝑁 samples fromAlgorithm 1. These transformations preserve program functionality,

so ground-truth labels are unchanged. With only 4 edits, RoBERTa underperforms both the heuris-

tic (-5.8% AUROC) and random guessing (50% AUROC), indicating it is highly sensitive to these

kinds of implementation details. ContraCode retains much of its performance (+39% AUROC over

RoBERTa) as it explicitly optimizes for invariance to code edits. Surprisingly, the hybrid model is

less robust than ContraCode alone, perhaps indicating that MLM learns non-robust features [84].

2.4.2 Fine-tuning for Type Inference

JavaScript is a dynamically typed language, where variable types are determined at runtime based

on the values they represent. Manually annotating code with types helps tools flag bugs by

detecting incompatible types. Annotations also document code, but are tedious to maintain. Type

inference tools automatically predict types from context.

To learn to infer types, we use the annotated dataset of TypeScript programs fromDeepTyper [75],

excluding GitHub repositories that were made private or deleted since publication. The training

set contains 15,570 TypeScript files from 187 repositories with 6,902,642 total tokens. Validation

and test sets are from held-out repositories. For additional supervision, missing types are inferred

by static analysis to augment user-defined types as targets. A 2-layer MLP head predicts types

from token embeddings output by the DeepTyper LSTM. We early stop based on validation set

top-1 accuracy.

For the rest of our experiments, baseline RoBERTamodels are pre-trained on the same augmented

data as ContraCode for fair comparison. Learning representations that transfer from unlabeled

JavaScript programs is challenging because TypeScript supports a superset of JavaScript’s grammar,

with types annotations and other syntactic sugar that need to be learned during fine-tuning. Further,

the pre-training data only has methods while DeepTyper’s dataset uses entire files (modules). The

model is only given source code for a single file, not dependencies.
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Method Acc@1 Acc@5
TypeScript CheckJS 45.11% —

DeepTyper, variable name only 28.94% 70.07%

GPT-3 Codex (zero-shot, 175B) 26.62% —

GPT-3 Codex (few-shot, 175B) 30.55% —

Transformer 45.66% 80.08%

+ RoBERTa MLM pre-train 40.85% 75.76%

+ ContraCode pre-train 46.86% 81.85%
+ ContraCode + MLM (hybrid) 47.16% 81.44%

DeepTyper BiLSTM 51.73% 82.71%

+ RoBERTa MLM pre-train 50.24% 82.85%

+ ContraCode pre-train 54.01% 85.55%

Table 2.3: Type inference accuracy on TypeScript programs. As ContraCode does not modify

model architecture, contrastive pre-training improves both BiLSTM and Transformer

accuracy (1.5% to 2.28%). Comparedwith TypeScript’s built-in type inference, we improve

accuracy by 8.9%.

Figure 2.8: A variant of DeepTyper pre-trained with ContraCode generates type annotations for

two held-out programs. The model consistently predicts correct function return types,

and often correctly predicts project-specific variable types.

In Table 2.3, contrastive pre-training outperforms all baseline learned methods. ContraCode is

applied in a drop-in fashion to each of the baselines. Pre-training with our contrastive objective
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Method Precision Recall F1
code2vec 10.78% 8.24% 9.34%

code2seq 12.17% 7.65% 9.39%

RoBERTa MLM 15.13% 11.47% 12.45%

Transformer 18.11% 15.78% 16.86%

+ ContraCode 20.34% 14.96% 17.24%

Table 2.4: Results for different settings of code summarization: supervised training with 81k

functions, masked language model pre-training, training from scratch and contrastive

pre-training with fine-tuning.

and data augmentations yields absolute accuracy improvements of +1.2%, +6.3%, +2.3% top-1 and

+1.8%, +5.7%, +2.8% top-5 over the Transformer, RoBERTa, and DeepTyper, respectively.

The RoBERTa baseline may perform poorly as the MLM objective, sensitive to local syntactic

structure, focuses on token reconstruction or due to available fine-tuning data, termed as weight

“ossification” by Hernandez, Kaplan, Henighan, and McCandlish [78]. To combine approaches,

we minimized our loss alongside MLM for a hybrid local-global objective, improving accuracy by

+6.31% over the RoBERTa Transformer.

We also evaluate the recent GPT-3 Codex model by OpenAI [14] using their API. We benchmark

the 175B parameter DaVinci model in both a zero-shot as well as a few-shot prompting setup.

Although the Codex model was trained over TypeScript programs, it performs poorly as it achieves

an accuracy of 26.6% in the zero-shot setup and 30.6% in the few-shot setup. We only evaluate

Top-1 accuracy for GPT-3 models as GPT-3 does not reliably output confidence scores.

Learning outperforms static analysis by a large margin. Overall, our best model has +8.9%

higher top-1 accuracy than the built-in TypeScript CheckJS type inference system, showing the

promise of learned code analysis. Surfacing multiple candidate types can also be useful to users,

while CheckJS only has a single prediction.

Fig. 2.8 shows two files from held-out repositories. For the first, our model consistently predicts

the correct return and parameter types. The model correctly predicts that the variable message

is a string, even though its type is ambiguous without access to the imported write method

signature. For the second, ContraCode predicts 4 of 8 types correctly including ViewContainerRef

and ChangeDetectorRef from the AngularJS library.

2.4.3 Extreme Code Summarization

The extreme code summarization task asks a model to predict the name of a method given its

body [6]. These names often summarize the method, such as reverseString(...). Summarization
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function x(url, callback, error) {
var img = new Image();
img.src = url;
if(img.complete){
return callback(img);

}
img.onload = function(){
img.onload = null;
callback(img);

};
img.onerror = function(e){
img.onerror = null;
error(e);

};
}

Ground truth: loadImage
Prediction: loadImage

Top predictions:

1. getImageItem

2. createImage

3. loadImageForBreakpoint

4. getImageSrcCSS

Figure 2.9: A held-out JavaScript program from CodeSearchNet and method names generated by a

Transformer pre-trained with ContraCode. The correct method name is predicted as

the most likely decoding.

models could help programmers interpret poorly documented code. We create a JavaScript

summarization dataset using the 81,487 labeled methods in the CodeSearchNet dataset. The name

is masked in the method declaration. A sequence-to-sequence model with an autoregressive

decoder is trained to maximize log likelihood of the ground-truth name, a form of abstractive

summarization. All models overfit, so we stop early according to validation loss. As proposed

by Allamanis, Peng, and Sutton [6], we evaluate model predictions by precision, recall and F1

scores over the set of method name tokens.

Table 2.4 shows results in four settings: (1) supervised training using baseline tree-structured

architectures that analyze the AST (code2vec, code2seq), (2) pre-training on all 1.8m programs

using MLM followed by fine-tuning on the labeled programs (RoBERTa), (3) training a Transformer

from scratch and (4) contrastive pre-training followed by fine-tuning with augmentations.

Contrastive pre-training outperforms code2seq by +8.2% test precision, +7.3% recall, and +7.9%

F1 score. ContraCode outperforms self-supervised pre-training with RoBERTa by +4.8% F1. Con-

traCode also achieves slightly higher performance than the Transformer learned from scratch.

While this improvement is smaller, code summarization challenging as identifier names are not

consistent between programmers.

Figure 2.9 shows a qualitative example of predictions for the code summarization task. The

JavaScript method is not seen during training. A Transformer pre-trained with ContraCode predicts

the correct method name through beam search. The next four predictions are reasonable, capturing

that the method processes an image. The 2nd and 3rd most likely decodings, getImageItem and

createImage, use get and create as synonyms for load, though the final two unlikely decodings

include terms not in the method body.
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Code summarization model F1
Transformer (Table 2.4) 16.86
+ augmentations 15.65

Type inference model Acc@1
Transformer (Table 2.3) 45.66
+ augmentations 44.14

DeepTyper (Table 2.3) 51.73
+ augmentations 50.33

Table 2.5: Compiler data augmentations degrade performance when training supervised models

from scratch.

2.4.4 Understanding augmentation importance

We analyze the effect of augmentations on supervised learning and on pre-training.

Supervised learning with augmentations As a baseline, we re-train models from scratch

with compiler transforms during supervised learning rather than pre-training. Data augmentation

artificially expands labeled training sets. For sequence-to-sequence summarization, we apply

a variety of augmentations (LS, SW, VR, DCI). These all preserve the method name. For type

inference, labels are aligned to input tokens, so they must be realigned after transformation. We

only apply token-level transforms (LS, SW) as we can track labels.

Table 2.5 shows results. Compiler-based data augmentations degrade supervisedmodels, perhaps

by creating a training distribution not reflective of evaluation programs. However, as shown in

§2.4.1–2.4.3, augmenting during ContraCode pre-training yields a more accurate model. Our

contrastive learning framework also allows learning over large numbers of unlabeled programs

that supervised learning alone cannot leverage. The ablation indicates that augmentations do not

suffice, and contrastive learning is important.

Ablating pre-training augmentations Some data augmentations could be more valuable than

others. Empirically, pre-training converges faster with a smaller set of augmentations at the same

batch size since the positives are syntactically more similar, but this hurts downstream performance.

Table 2.6 shows that type inference accuracy degrades when different groups of augmentations

are removed. Semantics-preserving code compression passes that require code analysis are the

most important, improving top-1 accuracy by 1.95% when included. Line subsampling serves as a
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Pre-training augmentations Acc@1 Acc@5
All augmentations (Table 2.3) 52.65% 84.60%
w/o identifier modification (-VR, -IM) 51.94% 84.43%

w/o line subsampling (-LS) 51.05% 81.63%

w/o code compression (-T,C,DCE,CF) 50.69% 81.95%

Table 2.6: Ablating compiler transformations used during contrastive pre-training. The DeepTyper

BiLSTM is pre-trained with constrastive learning for 20k steps, then fine-tuned for

type inference. Augmentations are only used during pre-training. Each transformation

contributes to accuracy.

regularizer, but changes program semantics. LS is relatively less important, but does help accuracy.

Identifier modifications preserve semantics, but change useful naming information.

2.5 Conclusion

Large-scale code repositories like GitHub are a powerful resource for learning machine-aided

programming tools. However, most current code representation learning approaches need labels,

and popular label-free self-supervised methods like RoBERTa are not robust to adversarial inputs.

Instead of reconstructing tokens like BERT, learning what code says, we learn what code does.

We propose ContraCode, a contrastive self-supervised algorithm that learns representations

invariant to transformations via compiler-based data augmentations. In experiments, ContraCode

learns effective representations of functionality, and is robust to adversarial code edits. We

find that ContraCode significantly improves performance on three downstream JavaScript code

understanding tasks.
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Chapter 3

Training models beyond memory
capacity limits

Rapid scaling of large language models presents a significant challenge. As these models grow

in complexity and size, so too does the computational resource demand for their training. One

pressing issue is an emerging memory wall where GPU memory capacity is growing more slowly

than the size of modern large models.

In “Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization”, I examine

the trade-off between computation and memory in deep neural network training. Popular models

often face limitations in memory capacity when dealing with large inputs or complex architectures.

To address this issue, I introduce Checkmate, a system designed to optimally manage computation

and memory during DNN training.

Since publication, Checkmate has become an important paper in the rematerialization area.

Since we published the paper, follow-up work like Dynamic Tensor Rematerialization [101] have

generalized the approach in Checkmate to dynamic neural network graphs. I also worked on

follow-up work [138] to apply optimal rematerialization and also paging to flash storage to enable

training larger models on edge devices.

This work is the result of a collaboration with Ajay Jain, Aniruddha Nrusimha, Amir Gholami,

Pieter Abbeel and Kurt Keutzer.
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Figure 3.1: This 32-layer deep neural network requires 30GB of memory during training in order

to cache forward pass activations for the backward pass. Freeing certain activations

early and rematerializing them later reduces memory requirements by 21GB at the cost

of a modest runtime increase. Rematerialized layers are denoted as shaded blue regions.

We present Checkmate, a system to rematerialize large neural networks optimally.
Checkmate is hardware-aware, memory-aware and supports arbitrary DAGs.

3.1 Introduction

Deep learning training workloads demand large amounts of high bandwidth memory. Researchers

are pushing the memory capacity limits of hardware accelerators such as GPUs by training neural

networks on high-resolution images [50, 99, 166], 3D point-clouds [39, 178], and long natural

language sequences [41, 48, 169]. In these applications, training memory usage is dominated by

the intermediate activation tensors needed for backpropagation (Figure 3.3).

The limited availability of high bandwidth on-device memory creates a memory wall that stifles

exploration of novel architectures. Across applications, authors of state-of-the-art models cite

memory as a limiting factor in deep neural network (DNN) design [36, 41, 47, 62, 74, 106, 115, 140].

Given insufficient RAM to cache all activation tensors for backpropagation, select tensors can

be discarded during forward evaluation. When needed for gradient calculation, a discarded tensor

can be rematerialized. As Figure 3.1 illustrates, rematerializing values allows a large DNN to fit

within RAM, albeit with additional computation.

However, their approaches cannot be applied generally to nonlinear DNN structures such as

residual connections, and rely on the strong assumption that all nodes in the graph have the same

cost. Prior work also assumes that gradients may never be rematerialized. These assumptions

limit the efficiency and generality of prior approaches.
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Our work formalizes tensor rematerialization as a constrained optimization problem. Utilizing

off-the-shelf numerical solvers, we discover optimal rematerialization strategies for arbitrary

deep neural networks in TensorFlow with non-uniform computation and memory costs. We

demonstrate that optimal rematerialization permits larger batch sizes and substantially reduced

memory usage with minimal computational overhead across various image classification and

semantic segmentation architectures. Consequently, our approach enables researchers to explore

larger models and batch sizes on complex signals with minimal computation overhead.
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Breaking the Memory Wall with Optimal Tensor Rematerialization

tion within the stage. That is, FREEt,i,k = 1 if and only if
vi can be deallocated in stage t after evaluating vk. Pred-
icating on Rt,k in (5) ensures values are onlyfreed once.
To express FREE in our ILP, (5) must be defined arithmeti-
cally with linear constraints. Applying De Morgan’s law
for union and intersection interchange,

FREEt,i,k = ¬

0
BB@¬Rt,k _ St+1,i

_

j2USERS[i]
j>k

Rt,j

1
CCA

=

0
@1 � Rt,k + St+1,i +

X

j2USERS[i],j>k

Rt,j = 0

1
A

, (num_hazards(t, i, k) = 0) (6)

where num_hazards(t, i, k) is introduced simply for nota-
tional convenience. Relation (6) is implemented with linear
cast-to-boolean constraints, where  is the maximum value
num_hazards(t, i, k) can assume,

FREEt,i,k 2 {0, 1} (7a)
1 � FREEt,i,k  num_hazards(t, i, k) (7b)

(1 � FREEt,i,k) � num_hazards(t, i, k) (7c)

The complete memory constrained ILP follows in (8), with
O(|V ||E|) variables and constraints.

arg min
R, S, U, FREE

nX

t=1

tX

i=1

CiRt,i (1a)

subject to (1b), (1c), (1d), (1e),

(2), (3), (7a), (7b), (7c),

Ut,k  Mbudget

(8)

4.5 Constraints implied by optimality

Problem 8 can be simplified by removing constraints im-
plied by optimality of a solution. In (2), all values with
St,i = 1 are allocated space, even if they are unused. If
such a value is unused, the checkpoint is spurious and the
solver can set St,i = 0 to reduce memory usage if needed.

Further, FREEt,k,k = 1 only if operation k is spuriously
evaluated with no uses of the result. Hence, the solver can
set Rt,k = 0 to reduce cost. When solving the MILP, we
eliminate |V |2 variables FREEt,k,k, assumed to be 0, by
only summing over i 2 DEPS[k] in (4). Note that the elim-
inated variables can be computed inexpensively from R and
S after solving.

4.6 Generating an execution plan

Given a feasible solution to (8), (R, S, FREE), we generate
a concrete execution plan that evaluates the computation

Algorithm 1 Generate execution plan
Input: graph G = (V, E), feasible (R, S, FREE)
Output: execution plan s1, . . . , sk

Initialize REGS[1 . . . |V |] = �1, r = 0.
for t = 1 to |V | do

for k = 1 to |V | do
if Rt,k then

// Materialize vk

emit %r = allocate vk
emit compute vk, %r
REGS[k] = r
r = r + 1

end if
// Free vk and dependencies
for i 2 DEPS[k] [ {k} do

if FREEt,i,k then
emit deallocate %REGS[i]

end if
end for

end for
end for

graph with bounded memory usage. This execution plan,
or schedule, is constructed via a row major scan of the so-
lution matrices, detailed in Algorithm 1.

A concrete execution plan is a program consist-
ing of k statements P = (s1, . . . , sk), where
si 2 {allocate,compute,deallocate}. State-
ment %r = allocate v defines a virtual register for
the result of the operation corresponding to v, used to
track memory usage during execution. Such a register
must be allocated for v before an instance of statement
compute v, %r in the plan, which invokes the opera-
tion and generates an output value which is tracked by the
register %r. Finally, statement deallocate %r deletes
the virtual register, marks the output value for garbage col-
lection, and updates the tracked memory usage.

The execution plan generated by Algorithm 1 is further op-
timized by moving deallocations earlier in the plan if possi-
ble. For example, spurious checkpoints that are unused in a
stage can be deallocated at the start of the stage rather than
during the stage. Note that this code motion is unnecessary
as the solver guarantees that the unoptimized schedule will
not exceed the desired memory budget.

4.7 Generating static computation graph

For implementation, the concrete execution plan can either
be interpreted, or encoded as a static computation graph.
In this work, we generate a static graph G0 = (V 0, E0)
from the plan, which is executed by a numerical machine
learning framework. See Section 6.2 for implementation

Figure 3.2: Overview of the Checkmate system.

In particular, the contributions of this work include:

• a formalization of the rematerialization problem as a mixed integer linear program with a

substantially more flexible search space than prior work, in Section 3.4.7.

• a fast approximation algorithm based on two-phase deterministic LP rounding, in Section 3.5.

• Checkmate, a system implemented in TensorFlow that enables training models with up to

5.1× larger input sizes than prior art at minimal overhead.

3.2 Motivation

While inference optimizations are well studied [88], training workloads have received less attention.

Memory consumption during training consists of (a) intermediate features, or activations, whose

size depends on input dimensions and (b) parameters and their gradients whose size depends on

weight dimensions. Given that inputs are often several order of magnitude larger than kernels,

most memory is used by features, demonstrated in Figure 3.3.

Frameworks such as TensorFlow [1] and PyTorch [136, 137] store all activations during the

forward pass. Gradients are backpropagated from the loss node, and each activation is freed after

its gradient has been calculated. In Figure 3.1, we compare this memory intensive policy and
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a rematerialization strategy for a real neural network. Memory usage is significantly reduced

by deallocating some activations in the forward pass and recomputing them in the backward

pass. Our goal is fit an arbitrary network within our memory budget while incurring the minimal

additional runtime penalty from recomputation.

Most prior work assumes networks have linear graphs. For example, Chen, Xu, Zhang, and

Guestrin [37] divides the computation into

√
𝑛 segments, each with

√
𝑛 nodes. Each segment

endpoint is stored during the forward pass. During the backward pass, segments are recomputed

in reverse order at 𝑂 (𝑛) cost.
Linear graph assumptions limit applicability of prior work. For example, while the popular

ResNet50 [74] can be linearized by treating each residual block as a single node, this leads to

inefficient solutions. For networks with longer skip connections, e.g., U-Net [147], grouping nodes

oversimplifies the graph.

Prior work also assumes all layers are equally expensive to recompute. In the VGG19 architec-

ture [156], the largest layer is six orders of magnitude more expensive than the smallest layer.

Our work makes few assumptions on neural network graphs. We explore a solution space that

allows for (a) arbitrary graphs with several inputs and outputs for each node, (b) variable memory

costs across layers and (c) variable computation costs for each layer (such as FLOPs or profiled

runtimes). We constrain solutions to simply be correct (a node’s dependencies must be materialized

before it can be evaluated) and within the RAM budget (at any point during execution, resident

tensors must fit into RAM).

Subject to these constraints, we find solutions that minimize the amount of time it takes to

perform a single training iteration. We project schedules into space and time, allowing us to

cast the objective as a linear expression. This problem can then be solved using off-the-shelf

mixed integer linear program solvers such as GNU Project - Free Software Foundation (FSF) [61] or

COIN-OR Branch-and-Cut [56]. An optimal solution to the MILP will minimize the amount of

additional compute cost within the memory budget.

3.3 Related Work

We categorize related work as checkpointing, reversible networks, distributed computation, and

activation compression.

Checkpointing and rematerialization Chen, Xu, Zhang, and Guestrin [37] propose a

heuristic for checkpointing unit-cost linear 𝑛-layer graphs with 𝑂 (
√
𝑛) memory usage. Griewank

and Walther [67] checkpoint similar graphs with 𝑂 (log𝑛) memory usage and prove optimality
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Figure 3.3: Memory consumed by activations far outweigh parameters for popular model architec-

tures. Moreover, advances in GPU DRAM capacity are quickly utilized by researchers;

the dashed line notes the memory limit of the GPU used to train each model.

for linear graphs with unit per-node cost and memory. However, real-world DNN layers vary

significantly in memory usage and computational cost [165], so these heuristics are not always

optimal. Chen, Xu, Zhang, and Guestrin [37] develop a greedy algorithm checkpointing network

layers in roughly equal memory segments, defined by hyperparameter 𝑏. Yet, neither procedure

is cost-aware nor deallocates checkpoints when possible. Gruslys, Munos, Danihelka, Lanctot,

and Graves [68] introduce a dynamic programming algorithm for checkpoint selection in RNN

training. Feng and Huang [52] provide a dynamic program for selecting checkpoints in branching

networks, but overlook layer costs and memory usage. Siskind and Pearlmutter [159] propose a

divide-and-conquer strategy in programs, while Beaumont, Herrmann, Pallez, and Shilova [23]

employ dynamic programming for checkpoint selection for DNNs with joining sub-networks.

Intermediate value recomputation is also common in register allocation. Compiler backends

lower an intermediate representation of code to an architecture-specific executable binary. During

lowering, an abstract static single assignment (SSA) graph of values and operations [46, 148] is

concretized by mapping values to a finite number of registers. If insufficient registers are available
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Method Description General

graphs

Cost

aware

Memory

aware

Checkpoint all (Ideal) No rematerialization. Default in deep learning frameworks.

√ × ×
Griewank et al. log𝑛 Griewank and Walther [67] revolve procedure × × ×
Chen et al.

√
𝑛 Chen, Xu, Zhang, and Guestrin [37] checkpointing heuristic × × ×

Chen et al. greedy Chen, Xu, Zhang, and Guestrin [37], with search over parameter 𝑏 × × ∼

AP

√
𝑛 Chen et al.

√
𝑛 on articulation points + optimal R solve ∼ × ×

AP greedy Chen et al. greedy on articulation points + optimal R solve ∼ × ∼
Linearized

√
𝑛 Chen et al.

√
𝑛 on topological sort + optimal R solve

√ × ×
Linearized greedy Chen et al. greedy on topological sort + optimal R solve

√ × ∼

Checkmate ILP Our ILP as formulated in Section 3.4

√ √ √

Checkmate approx. Our LP rounding approximation algorithm (Section 3.5)

√ √ √

Table 3.1: Rematerialization baselines and our extensions to make them applicable to non-linear

architectures

for an SSA form computation graph, values are spilled to main memory by storing and later loading

the value. Register allocation has been formulated as graph coloring problem [34], integer program

[63, 116], and network flow [102].

Register allocators may recompute constants and values with register-resident dependencies

if the cost of doing so is less than the cost of a spill [29, 34, 144]. While similar to our setup,

register rematerialization is limited to exceptional values that can be recomputed in a single

instruction with dependencies already in registers. For example, memory offset computations can

be cheaply recomputed, and loads of constants can be statically resolved. In contrast, Checkmate

can recompute entire subgraphs of the program’s data-flow.

During the evaluation of a single kernel, GPUs spill per-thread registers to a thread-local region

of global memory (i.e. local memory) [124, 130]. NN training executes DAGs of kernels and stores

intermediate values in shared global memory. This produces a high range of value sizes, from 4

byte floats to gigabyte tensors, whereas CPU and GPU registers range from 1 to 64 bytes. Our

problem of interkernel memory scheduling thus differs in scale from the classical problem of

register allocation within a kernel or program. Rematerialization is more appropriate than copying

values out of core as the cost of spilling values from global GPU memory to main memory (RAM)

is substantial [87, 124], though possible [123].

Reversible Networks Gomez, Ren, Urtasun, and Grosse [62] propose a reversible (approx-

imately invertible) residual DNN architecture, where intermediate temporary values can be re-

computed from values derived later in the standard forward computation. Reversibility enables

recomputation during the backward pass. Bulo, Porzi, and Kontschieder [30] replace only ReLU

and batch normalization layers with invertible variants and reduce memory usage up to 50%. We
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find rematerialization enables greater savings and a wider range of budgets, but reversibility is a

promising complementary approach.

Distributed computation Orthogonal approaches to address the limited memory problem

are distributed-memory computations and gradient accumulation. However, model parallelism

requires access to additional expensive compute accelerators, fast networks, and non-trivial

partitioning of model state to balance communication and computation [60, 92, 120]. Gradient ac-

cumulation enables larger batch sizes by computing the gradients with multiple sub-batches across

a mini-batch. However, gradient accumulation can degrade performance as batch normalization

performs poorly on small batch sizes [85, 176].

Activation compression In some DNN applications, it is possible to process compressed

representations with minimal accuracy loss. Gueguen, Sergeev, Kadlec, Liu, and Yosinski [69]

classify discrete cosine transforms of JPEG images rather than raw images. Jain, Phanishayee, Mars,

Tang, and Pekhimenko [87] quantize activations, cutting memory usage in half. Compression

reduces memory usage by a constant factor, but reduces accuracy. Our approach is mathematically

equivalent to rematerialization-free training and incurs no accuracy penalty.

3.4 Optimal Rematerialization

In this section, we develop an optimal solver that schedules computation and garbage collection

during the evaluation of general data-flow graphs including those used in DNN training. Our

proposed scheduler minimizes computation or execution time while guaranteeing that the schedule

will not exceed device memory limitations. The rematerialization problem is formulated as a mixed

integer linear program (MILP) that can be solved with commercial or open-source solvers.

3.4.1 Problem definition

A computation or data-flow graph𝐺 = (𝑉 , 𝐸) is a directed acyclic graphwith𝑛 nodes𝑉 = {𝑣1, . . . , 𝑣𝑛}
that represent operations yielding values (e.g. tensors). Edges represent dependencies between

operators, such as layer inputs in a neural network. Nodes are numbered according to a topological

order, such that operation 𝑣 𝑗 may only depend on the results of operations 𝑣𝑖< 𝑗 .

Each operator’s output takes 𝑀𝑣 memory to store and costs 𝐶𝑣 to compute from its inputs.

We wish to find the terminal node 𝑣𝑛 with peak memory consumption under a memory budget,

𝑀budget, and minimum total cost of computation.
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the memory used after evaluating 𝑣𝑘 and before deallocating its dependencies. 𝑣𝑏 and

𝑣𝑐 may be deallocated during garbage collection, but 𝑣𝑎 may not due to a forward edge.

3.4.2 Representing a schedule

We define a schedule as a series of nodes being saved or (re)computed. The network execution

unrolls into 𝑇 stages, allowing a node to be computed once per stage. 𝑆𝑡,𝑖 ∈ 0, 1 signifies the

retention of operation 𝑖 result in memory at stage 𝑡 − 1 until stage 𝑡 , while 𝑅𝑡,𝑖 ∈ 0, 1 determines if

operation 𝑖 is recomputed at time step 𝑡 .

Our representation generalizes checkpointing [37, 52, 67, 68, 158], with the ability to retain

and deallocate values multiple times, at a cost of 𝑂 (𝑇𝑛) decision variables. To balance decision

variables number and schedule flexibility, we set 𝑇 = 𝑛, which permits 𝑂 (𝑛2) operations and
constant memory in linear graphs.

3.4.3 Scheduling with ample memory

In neural network evaluation with ample memory, our solver ensures checkpointed and computed

operations have resident dependencies. Minimizing total computation cost across stages with

these constraints yields objective (3.1a):

arg min

𝑅, 𝑆

𝑛∑︁
𝑡=1

𝑡∑︁
𝑖=1

𝐶𝑖𝑅𝑡,𝑖 (3.1a)

subject to

𝑅𝑡, 𝑗 ≤ 𝑅𝑡,𝑖 + 𝑆𝑡,𝑖 ∀𝑡 ∀(𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸, (3.1b)

𝑆𝑡,𝑖 ≤ 𝑅𝑡−1,𝑖 + 𝑆𝑡−1,𝑖 ∀𝑡 ≥ 2 ∀𝑖, (3.1c)∑
𝑖 𝑆1,𝑖 = 0, (3.1d)∑
𝑡 𝑅𝑡,𝑛 ≥ 1, (3.1e)

𝑅𝑡,𝑖 , 𝑆𝑡,𝑖 ∈ {0, 1} ∀𝑡 ∀𝑖 (3.1f)
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Constraints ensure feasibility and completion. Constraint (3.1b) and (3.1c) ensure that an operation

is computed in stage 𝑡 only if all dependencies are available. To cover the edge case of the first

stage, constraint (3.1d) specifies that no values are initially in memory. Finally, covering constraint

(3.1e) ensures that the last node in the topological order is computed at some point in the schedule

so that training progresses.

3.4.4 Constraining memory utilization

To constrain memory usage, we introduce memory accounting variables𝑈𝑡,𝑘 ∈ R+ into the ILP.
Let𝑈𝑡,𝑘 denote the memory used just after computing node 𝑣𝑘 in stage 𝑡 . 𝑈𝑡,𝑘 is defined recursively

in terms of auxiliary binary variables Free𝑡,𝑖,𝑘 for (𝑣𝑖 , 𝑣𝑘 ) ∈ 𝐸, which specifies whether node 𝑣𝑖

may be deallocated in stage 𝑡 after evaluating node 𝑣𝑘 .

We assume that (1) network inputs and parameters are always resident in memory and (2)

enough space is allocated for gradients of the loss with respect to parameters.
∗
Parameter gradients

are typically small, the same size as the parameters themselves. Additionally, at the beginning of a

stage, all checkpointed values are resident in memory. Hence, we initialize the recurrence,

𝑈𝑡,0 = 𝑀input + 2𝑀param︸               ︷︷               ︸
Constant overhead

+
𝑛∑︁
𝑖=1

𝑀𝑖𝑆𝑡,𝑖︸︷︷︸
Checkpoints

(3.2)

Suppose 𝑈𝑡,𝑘 bytes of memory are in use after evaluating 𝑣𝑘 . Before evaluating 𝑣𝑘+1, 𝑣𝑘 and

dependencies (parents) of 𝑣𝑘 may be deallocated if there are no future uses. Then, an output tensor

for the result of 𝑣𝑘+1 is allocated, consuming memory𝑀𝑘+1. The timeline is depicted in Figure 3.4,

yielding recurrence (3.3):

𝑈𝑡,𝑘+1 = 𝑈𝑡,𝑘 −mem_freed𝑡 (𝑣𝑘 ) + 𝑅𝑡,𝑘+1𝑀𝑘+1, (3.3)

where mem_freed𝑡 (𝑣𝑘 ) is the memory freed by deallocating 𝑣𝑘 and its parents at stage 𝑡 . Let

Deps[𝑘] = {𝑖 : (𝑣𝑖 , 𝑣𝑘 ) ∈ 𝐸}, and

Users[𝑖] = { 𝑗 : (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸}

∗
While gradients can be deleted after updating parameters, we reserve constant space since many parameter

optimizers such as SGD with momentum maintain gradient statistics.
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denote parents and children of a node, respectively. Then, in terms of auxiliary variable Free𝑡,𝑖,𝑘 ,

for (𝑣𝑖 , 𝑣𝑘 ) ∈ 𝐸,

mem_freed𝑡 (𝑣𝑘 ) =
∑

𝑖∈Deps[𝑘 ]
∪{𝑘 }

𝑀𝑖 ∗ Free𝑡,𝑖,𝑘 , and (3.4)

Free𝑡,𝑖,𝑘 = 𝑅𝑡,𝑘 ∗ (1 − 𝑆𝑡+1,𝑖)︸       ︷︷       ︸
Not checkpoint

∏
𝑗∈Users[𝑖 ]

𝑗>𝑘

(1 − 𝑅𝑡, 𝑗 )︸     ︷︷     ︸
Not dep.

(3.5)

The second factor in (3.5) ensures that 𝑀𝑖 bytes are freed only if 𝑣𝑖 is not checkpointed for the

next stage. The final factors ensure that Free𝑡,𝑖,𝑘 = 0 if any child of 𝑣𝑖 is computed in the stage,

since then 𝑣𝑖 needs to be retained for later use. Multiplying by 𝑅𝑡,𝑘 in (3.5) ensures that values are

only freed at most once per stage according to Theorem 3.4.1,

Theorem3.4.1 (No double deallocation). If (3.5) holds for all (𝑣𝑖 , 𝑣𝑘 ) ∈ 𝐸, then
∑

𝑘∈Users[𝑖 ] Free𝑡,𝑖,𝑘 ≤
1 ∀𝑡, 𝑖 .

Proof. Assume for the sake of contradiction that∃𝑘1, 𝑘2 ∈ Users[𝑖] such that Free𝑡,𝑖,𝑘1 = Free𝑡,𝑖,𝑘2 =

1. By the first factor in (3.5), we must have 𝑅𝑡,𝑘1 = 𝑅𝑡,𝑘2 = 1. Assume without loss of generality that

𝑘2 > 𝑘1. By the final factor in (3.5), we have Free𝑡,𝑖,𝑘1 ≤ 1−𝑅𝑡,𝑘2 = 0, which is a contradiction.

3.4.5 Linear reformulation of memory constraint

While the recurrence (3.2-3.3) defining𝑈 is linear, the right hand size of (3.5) is a polynomial. To

express Free in our ILP, it must be defined via linear constraints. We rely on Lemma 3.4.1 and

3.4.2 to reformulate (3.5) into a tractable form.

Lemma 3.4.1 (Linear Reformulation of Binary Polynomial). If 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}, then

𝑛∏
𝑖=1

𝑥𝑖 =


1

∑𝑛
𝑖=1(1 − 𝑥𝑖) = 0

0 otherwise

Proof. If all 𝑥1, . . . , 𝑥𝑛 = 1, then

∑𝑛
𝑖=1(1 − 𝑥𝑖) = 0 and we have Π𝑛

𝑖=1𝑥𝑖 = 1. If otherwise any 𝑥 𝑗 = 0,

then we have Π𝑛
𝑖=1𝑥𝑖 = 0, as desired. This can also be seen as an application of De Morgan’s laws

for boolean arithmetic.
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Lemma 3.4.2 (Linear Reformulation of Indicator Constraints). Given 0 ≤ 𝑦 ≤ 𝜅 where 𝑦 is integral

and 𝜅 is a constant upper bound on 𝑦, then

𝑥 =


1 𝑦 = 0

0 otherwise

if and only if 𝑥 ∈ {0, 1} and (1 − 𝑥) ≤ 𝑦 ≤ 𝜅 (1 − 𝑥).

Proof. For the forward direction, first note that by construction, 𝑥 ∈ {0, 1}. If 𝑦 = 0 and 𝑥 = 1,

then (1 − 𝑥) = 0 ≤ 𝑦 ≤ 0 = 𝜅 (1 − 𝑥). Similarly, if 𝑦 ≥ 1 and 𝑥 = 0, then 1 ≤ 𝑦 ≤ 𝜅, which is true

since 0 ≤ 𝑦 ≤ 𝜅 and 𝑦 is integral. The converse holds similarly.

To reformulate Constraint 3.5, let num_hazards(𝑡, 𝑖, 𝑘) be the number of zero factors on the RHS

of the constraint. This is a linear function of the decision variables,

num_hazards(𝑡, 𝑖, 𝑘) = (1 − 𝑅𝑡,𝑘 ) + 𝑆𝑡+1,𝑖 +
∑︁

𝑗∈Users[𝑖 ]
𝑗>𝑘

𝑅𝑡, 𝑗

Applying Lemma 3.4.1 to the polynomial constraint, we have,

Free𝑡,𝑖,𝑘 =


1 num_hazards(𝑡, 𝑖, 𝑘) = 0

0 otherwise

(3.6)

By Lemma 3.4.2, if 𝜅 is the maximum value that num_hazards(𝑡, 𝑖, 𝑘) can assume, the following

constraints are equivalent to (3.6),

Free𝑡,𝑖,𝑘 ∈ {0, 1} (3.7a)

1 − Free𝑡,𝑖,𝑘 ≤ num_hazards(𝑡, 𝑖, 𝑘) (3.7b)

𝜅 (1 − Free𝑡,𝑖,𝑘 ) ≥ num_hazards(𝑡, 𝑖, 𝑘) (3.7c)

3.4.6 Tractability via frontier-advancing stages

Fixing the execution order of nodes in the graph can improve the running time of the algorithm.

In eager-execution frameworks such as PyTorch, the order is given by user code and operations

are executed serially. Separating ordering and allocation is common in compiler design, and both

LLVM [113] and GCC [132] have separate instruction scheduling and register allocation passes.
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Any topological order of the nodes is a possible execution order. Given a topological order, such

as the one introduced in Section 3.4.1, we partition the schedule into frontier-advancing stages

such that node 𝑣𝑖 is evaluated for the first time in stage 𝑖 . We replace constraints (3.1d, 3.1e) that

ensure the last node is computed with stricter constraints (3.8a-3.8c),

𝑅𝑖,𝑖 = 1 ∀𝑖 (frontier-advancing partitions) (3.8a)∑
𝑖≥𝑡 𝑆𝑡,𝑖 = 0 (lower tri., no initial checkpoints) (3.8b)∑
𝑖>𝑡 𝑅𝑡,𝑖 = 0 (lower triangular) (3.8c)

This reduces the feasible set, constraining the search space and improving running time. For an

8 layer (𝑛 = 17) linear graph neural network with unit 𝐶𝑖 , 𝑀𝑖 at a memory budget of 4, Gurobi

optimizes the unpartitioned MILP in 9.4 hours and the partitioned MILP in 0.23 seconds to the

same objective.

3.4.7 Complete Integer Linear Program formulation

The complete memory constrained MILP follows in (3.9), with 𝑂 ( |𝑉 | |𝐸 |) variables and constraints.

arg min

𝑅, 𝑆,𝑈 , Free

𝑛∑︁
𝑡=1

𝑡∑︁
𝑖=1

𝐶𝑖𝑅𝑡,𝑖

subject to (3.1𝑏), (3.1𝑐), (3.1𝑓 ), (3.2), (3.3),

(3.7𝑎), (3.7𝑏), (3.7𝑐), (3.8𝑎), (3.8b), (3.8c),

𝑈𝑡,𝑘 ≤ 𝑀budget

(3.9)

3.4.8 Constraints implied by optimality

Problem 3.9 can be simplified by removing constraints implied by optimality of a solution.

Free𝑡,𝑘,𝑘 = 1 only if operation 𝑘 is spuriously evaluated with no uses of the result. Hence, the

solver can set 𝑅𝑡,𝑘 = 0 to reduce cost. We eliminate |𝑉 |2 variables Free𝑡,𝑘,𝑘 , assumed to be 0, by

modifying (3.4) to only sum over 𝑖 ∈ Deps[𝑘]. These variables can be computed inexpensively

after solving.

3.4.9 Generating an execution plan

Given a feasible solution to (3.9), (𝑅, 𝑆,𝑈 , Free), Algorithm 2 generates an execution plan via a

row major scan of 𝑅 and 𝑆 with deallocations determined by Free. An execution plan is a program
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Algorithm 2 Generate execution plan

Input: graph 𝐺 = (𝑉 , 𝐸), feasible (𝑅, 𝑆, Free)
Output: execution plan 𝑃 = (𝑠1, . . . , 𝑠𝑘 )
Initialize Regs[1 . . . |𝑉 |] = −1, 𝑟 = 0, 𝑃 = ().
for 𝑡 = 1 to |𝑉 | do
for 𝑘 = 1 to |𝑉 | do
if 𝑅𝑡,𝑘 then
// Materialize 𝑣𝑘
add %𝑟 = compute vk to 𝑃
Regs[𝑘] = 𝑟

𝑟 = 𝑟 + 1
end if
// Free 𝑣𝑘 and dependencies
for 𝑖 ∈ Deps[𝑘] ∪ {𝑘} do
if Free𝑡,𝑖,𝑘 then
add deallocate %Regs[𝑖] to 𝑃

end if
end for

end for
end for
return 𝑃

𝑃 = (𝑠1, . . . , 𝑠𝑘 ) with 𝑘 statements. When statement %r = compute v is interpreted, operation 𝑣 is

evaluated. The symbol %r denotes a virtual register used to track the resulting value. Statement

deallocate %r marks the value tracked by virtual register %r for garbage collection.

The execution plan generated by Algorithm 2 is further optimized by moving deallocations

earlier in the plan when possible. Spurious checkpoints that are unused in a stage can be deallocated

at the start of the stage rather than during the stage. Still, this code motion is unnecessary for

feasibility as the solver guarantees that the unoptimized schedule will not exceed the desired

memory budget.

The execution plan can either be interpreted during training, or encoded as a static computation

graph. In this work, we generate a static graph𝐺 ′ = (𝑉 ′, 𝐸′) from the plan, which is executed by a

numerical machine learning framework. See Section 3.6.2 for implementation details.

3.4.10 Cost model

To estimate the runtime of a training iteration under a rematerialization plan, we apply an additive

cost model (3.1a), incurring cost 𝐶𝑖 when node 𝑣𝑖 is evaluated. Costs are determined prior to MILP
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construction by profiling network layers on target hardware with random inputs across a range of

batch sizes and input shapes, and exclude static graph construction and input generation time. As

neural network operations consist of dense numerical kernels such as matrix multiplication, these

runtimes are low variance and largely independent of the specific input data [91, 162]. However,

forward pass time per batch item decreases with increasing batch size due to improved data

parallelism [32], so it is important to compute costs with appropriate input dimensions.

The memory consumption of each value in the data-flow graph is computed statically as input

and output sizes are known. Values are dense, multi-dimensional tensors stored at 4 byte floating

point precision. The computed consumption𝑀𝑖 is used to construct memory constraints (3.2-3.3).

3.5 Approximation

Many of our benchmark problem instances are tractable to solve using off-the-shelf integer linear

program solvers, with practical solve times ranging from seconds to an hour. ILP results in this

paper are obtained with a 1 hour time limit on a computer with at least 24 cores. Relative to

training time, e.g. 21 days for the BERT model [48], solving the ILP adds less than a percent of

runtime overhead.

While COTS solvers such as COIN-OR [56] leverage methods like branch-and-bound to aggres-

sively prune the decision space, they can take superpolynomial time in the worst-case and solving

ILPs is NP-hard in general. In the worst-case, for neural network architectures with hundreds

of layers, it is not feasible to solve the rematerialization problem via our ILP. An instance of the

VGG16 architecture [156] takes seconds to solve. For DenseNet161 [81], no feasible solution was

found within one day.

For many classical NP-hard problems, approximation algorithms give solutions close to optimal

with polynomial runtime. We review a linear program that produces fractional solutions in

polynomial time in Section 3.5.1. Using the fractional solutions, we present a two-phase rounding

algorithm in Section 3.5.2 that rounds a subset of the decision variables, then finds a minimum

cost, feasible setting of the remaining variables to find near-optimal integral solutions.

3.5.1 Relaxing integrality constraints

By relaxing integrality constraints (3.1f), the problem becomes trivial to solve as it is a linear

program over continuous variables. It is well known that an LP is solvable in polynomial time

via Karmarkar’s algorithm [97] or barrier methods [129]. With relaxation 𝑅, 𝑆, Free ∈ [0, 1], the
objective (3.1a) defines a lower-bound for the cost of the optimal integral solution.
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Algorithm 3 Two-phase rounding

Input: Fractional checkpoint matrix 𝑆∗ from LP

Output: Binary 𝑆 int, 𝑅int
, Free

Round 𝑆∗ deterministically: 𝑆 int𝑡,𝑖 ← 1[𝑆∗𝑡,𝑖 > 0.5]
𝑅int ← I𝑛 thereby satisfying (3.8a)

while ∃𝑡 ≥ 2, 𝑖 ∈ [𝑛] such that 𝑆 int𝑡,𝑖 > 𝑅int

𝑡−1,𝑖 + 𝑆 int𝑡−1,𝑖 i.e. (3.1c) violated do
Compute 𝑣𝑖 to materialize checkpoint: 𝑅int

𝑡−1,𝑖 ← 1

end while
while ∃𝑡 ≥ 1, (𝑖, 𝑗) ∈ 𝐸 such that 𝑅int

𝑡, 𝑗 > 𝑅int

𝑡,𝑖 + 𝑆 int𝑡,𝑖

i.e. (3.1b) violated do
Compute 𝑣𝑖 as temporary for dependency: 𝑅int

𝑡,𝑖 ← 1

end while
Evaluate Free by simulating execution

return 𝑆 int, 𝑅int
, Free

Rounding is a common approach to find approximate integral solutions given the result of an

LP relaxation. For example, one can achieve a
3

4
-approximation for MAX SAT [179] via a simple

combination of randomized rounding (Pr
[
𝑥 int𝑖 = 1

]
= 𝑥∗𝑖 ) and deterministic rounding (𝑥 int𝑖 = 1 if

𝑥∗𝑖 ≥ 𝑝 , where commonly 𝑝 = 0.5).

We attempt to round the fractional solution 𝑅∗, 𝑆∗ using these two strategies, and then apply

Algorithm 2 to 𝑅int, 𝑆 int. However, direct application of deterministic rounding returns infeasible

results: the rounded solution violates constraints. Randomized rounding may show more promise

as a single relaxed solution can be used to sample many integral solutions, some of which are

hopefully feasible. Unfortunately, using randomized rounding with the LP relaxation for VGG16 at

a 4× smaller budget than default, we could not find a single feasible solution out of 50,000 samples.

3.5.2 A two-phase rounding strategy

To find feasible solutions, we introduce two-phase rounding, detailed in Algorithm 3. Two-phase

rounding is applicable when a subset of variables can be solved in polynomial time given the

remaining variables. Our approximation algorithm only rounds the checkpoint matrix 𝑆∗. Given

𝑆∗, we solve for the conditionally optimal binary computation matrix 𝑅int
by setting as few values

to 1 as possible. Algorithm 3 begins with an all-zero matrix 𝑅int = 0, then iteratively corrects

violated correctness constraints.

Note that during any of the above steps, once we set some 𝑅int

𝑖, 𝑗 = 1, the variable is never changed.

Algorithm 3 corrects constraints in a particular order so that constraints that are satisfied will

continue to be satisfied as other violated constraints are corrected. The matrix 𝑅int
generated by
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Figure 3.5: Computational overhead versus memory budget for (a) VGG16 image classification NN

[156], (b) MobileNet image classification NN, and (c) the U-Net semantic segmentation

NN [147]. Overhead is with respect to the best possible strategy without a memory

restriction based on a profile-based cost model of a single NVIDIA V100 GPU. For

U-Net (c), at the 16 GB V100 memory budget, we achieve a 1.20× speedup over the

best baseline—linearized greedy—and a 1.38× speedup over the next best—linearized√
𝑛. Takeaway: our model- and hardware-aware solver produces in-budget solutions

with the lowest overhead on linear networks (a-b), and dramatically lowers memory

consumption and overhead on complex architectures (c).

this rounding scheme will be optimal up to the choice of 𝑆 int as every entry in 𝑅int
is set to 1 if and

only if it is necessary to satisfy a constraint. In implementation, we detect and correct violations

of (3.1b) in reverse topological order for each stage, scanning 𝑅int, 𝑆 int matrices from right to left.

3.5.3 Memory budget feasibility

Since we approximate 𝑆 by rounding the fractional solution, 𝑆 int, 𝑅int
can be infeasible by the

budget constraint𝑈𝑡,𝑘 ≤ 𝑀budget. While the fractional solution may come under the budget and

two-phase rounding preserves correctness constraints, the rounding procedure makes no attempt

to maintain budget feasibility. Therefore, we leave an allowance on the total memory budget

constraint (𝑈𝑡,𝑘 ≤ (1 − 𝜖)𝑀budget). We empirically find 𝜖 = 0.1 to work well.

3.6 Evaluation

In this section, we investigate the impact of tensor rematerialization on the cost and memory usage

of DNN training. We study the following experimental questions: (1) What is the trade-off between

memory usage and computational overhead when using rematerialization? (2) Are large inputs
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practical with rematerialization? and (3) How well can we approximate the optimal rematerialization

policy?

We compare our proposed solver against baseline heuristics on representative image classifi-

cation and high resolution semantic segmentation models including VGG16, VGG19, ResNet50,

MobileNet, U-Net and FCN with VGG layers, and SegNet. As prior work is largely limited to

linear graphs, we propose novel extensions where necessary for comparison. Results show that

optimal rematerialization allows significantly lower computational overhead than baselines at all

memory budgets, and lower memory usage than previously possible. As a consequence, optimal

rematerialization allows training with larger input sizes than previously possible, up to 5.1× higher
batch sizes on the same accelerator. Finally, we find that our two-phase rounding approximation

algorithm finds near-optimal solutions in polynomial time.

3.6.1 Baselines and generalizations

Table 3.1 summarizes baseline rematerialization strategies. The nominal evaluation strategy stores

all features generated during the forward pass for use during the backward pass—this is the default

in frameworks such as TensorFlow. Hence, every layer is computed once. We refer to this baseline

as Checkpoint all, an ideal approach given ample memory.

On the linear graph architectures, such as VGG16 and MobileNet (v1), we directly apply prior

work from Griewank and Walther [67] and Chen, Xu, Zhang, and Guestrin [37], baselines referred

to as Griewank and Walther log𝑛, Chen et al.
√
𝑛 and Chen et al. greedy. To build a tradeoff curve

for computation versus memory budget, we search over the segment size hyperparameter 𝑏 in the

greedy strategy. However, these baselines cannot be used for modern architectures with residual

connections. For a fair comparison, we extend the

√
𝑛 and greedy algorithms to apply to general

computation graphs (e.g. ResNet50 and U-Net).

Chen, Xu, Zhang, and Guestrin [37] suggests manually annotating good checkpointing can-

didates in a computation graph. For the first extensions, denoted by AP
√
𝑛 and AP greedy, we

automatically identify articulation points, or cut vertices, vertices that disconnect the forward pass

DAG, and use these as candidates. The heuristics then select a subset of these candidates, and we

work backwards from the checkpoints to identify which nodes require recomputation.

Still, some networks have few articulation points, including U-Net. We also extend heuristics by

treating the original graph as a linear network, with nodes connected in topological order, again

backing out the minimal recomputations from the selected checkpoints. These extensions are

referred to as Linearized
√
𝑛 and Linearized greedy.
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3.6.2 Evaluation setup

Checkmate is implemented in Tensorflow 2.0 [1], accepting user-defined models expressed via

the high-level Keras interface. We extract the forward and backward computation graph, then

construct and solve optimization problem (3.9) with the Gurobi mathematical programming library

as an integer linear program. Finally, Checkmate translates solutions into execution plans and

constructs a new static training graph. Together, these components form the Checkmate system,

illustrated in Figure 3.2.

To accelerate problem construction, decision variables 𝑅 and 𝑆 are expressed as lower triangular

matrices, as are accounting variables𝑈 . Free is represented as a |𝑉 | × |𝐸 | matrix. Except for our

maximum batch size experiments, solutions are generated with a user-configurable time limit of

3600 seconds, though the majority of problems solve within minutes. Problems with exceptionally

large batch sizes or heavily constrained memory budgets may reach this time limit while the

solver attempts to prove that the problem is infeasible. The cost of a solution is measured with a

profile-based cost model (Section 3.4.10) and compared to the ideal, unachievable cost with no

recomputation.

The feasible set of our optimal ILP formulation is a superset of baseline heuristics. We imple-

ment baselines as a static policy for the decision variable 𝑆 and then solve for the lowest-cost

recomputation schedule using a similar procedure to that described in Algorithm 3.

3.6.3 What is the trade-off between memory usage and computational
overhead?

Figure 3.5 compares remateralization strategies on VGG-16, MobileNet, and U-Net. The y-axis

shows the computational overhead of checkpointing in terms of time as compared to baseline. The

time is computed by profiling each individual layer of the network. The x-axis shows the total

memory budget required to run each model with the specified batch size, computed for single

precision training. Except for the

√
𝑛 heuristics, each rematerialization algorithm has a knob to

trade-off the amount of recomputation and memory usage, where a smaller memory budget leads

to higher overhead.

Takeaways: For all three DNNs, Checkmate produces clearly faster execution plans as compared

to algorithms proposed by Chen, Xu, Zhang, and Guestrin [37] and Griewank and Walther [67] –

over 1.2× faster than the next best on U-Net at the NVIDIA V100 memory budget. Our framework

allows training a U-Net at a batch size of 32 images per GPU with less than 10% higher overhead.

This would require 23 GB of memory without rematerialization, or with the original baselines

without our generalizations.
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3.6.4 Are large inputs practical with rematerialization?

16 29 21 16
7

98 21
518

51

33

19
7

11
6

45
2

35

51

43

26
6 19

9

64
0

61

60

62

28
9

22
5

11
05

0x

1x

2x

3x

4x

5x

U-Net FCN8 SegNet VGG19 ResNet50 MobileNet

N
or

m
al

iz
ed

 b
at

ch
 s

iz
e

Checkpoint all AP √n Lin. greedy Checkmate (ours)

Figure 3.6: Maximum batch size possible on a single NVIDIA V100 GPU when using different

generalized rematerialization strategies with at most a single extra forward pass. We

enable increasing batch size by up to 5.1× over the current practice of caching all

activations (on MobileNet), and up to 1.73× over the best baseline (on U-Net).

The maximum batch size enabled by different rematerialization strategies is shown in Figure 3.6.

The y-axis shows the theoretical maximum batch size we could feasibly train with bounded

compute cost. This is calculated by enforcing that the total cost must be less than the cost of

performing just one additional forward pass. That is, in Figure 3.6 the cost is at most an additional

forward pass higher, if the specified batch size would have fit in GPUmemory. To find Checkmate’s

maximum batch size, we reformulate Problem (3.9) to maximize a batch size variable 𝐵 ∈ N subject

to modified memory constraints that use 𝐵 ∗𝑀𝑖 in place of𝑀𝑖 and subject to a cost constraint,

𝑛∑︁
𝑡=1

𝑡∑︁
𝑖=1

𝐶𝑖𝑅𝑡,𝑖 ≤ 2

∑︁
𝑣𝑖 ∈𝐺fwd

𝐶𝑖 +
∑︁

𝑣𝑖 ∈𝐺bwd

𝐶𝑖 . (3.10)

The modified integer program has quadratic constraints, and is difficult to solve. We set a time

limit of one day for the experiment, but Gurobi may be unable to reach optimality within that limit.

Figure 3.6 then provides a lower bound on the maximum batch size that Checkmate can achieve.
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For fair comparison on the non-linear graphs used in U-Net, FCN, and ResNet, we use the AP

√
𝑛 and linearized greedy baseline generalizations described in Section 3.6.1. For the baselines, we

iterate over batch sizes, find candidate solutions (multiple candidates for linearized greedy), and

filter out the solutions that cost more than an additional forward pass or that would exceed the

16GB memory budget. The iteration stops when no solutions are available.

Costs are measured in FLOPs, determined statically. U-Net, FCN8 and SegNet semantic segmen-

tation networks use a resolution of 416 × 608, and classification networks ResNet50, VGG19 and

MobileNet use resolution 224 × 224.
Takeaways: We can theoretically increase the batch size of U-Net to 61 at a high resolution, an

unprecedented result. For many tasks such as semantic segmentation, where U-Net is commonly

used, it is not possible to use batch sizes greater than 16, depending on resolution. This is sub-

optimal for batch normalization layers, and being able to increase the batch size by 3.8× (61 vs
16 at this resolution) is quite significant. Orthogonal approaches to achieve this include model

parallelism and distributed memory batch normalization which can be significantly more difficult

to implement and have high communication costs.

Furthermore, for MobileNet, Checkmate allows a batch size of 1105 which is 1.73× higher

than the best baseline solution, a greedy heuristic, and 5.1× common practice, checkpointing all

activations. The same schedules can also be used to increase image resolution rather than batch

size.

3.6.5 How well can we approximate the optimal rematerialization policy?

To understand how well our LP rounding strategy (Section 3.5) approximates the ILP, we measure

the ratio Costapprox/Costopt, i.e. the speedup of the optimal schedule, in FLOPs. As in Section 3.6.3,

we solve each strategy at a range of memory budgets, then compute the geometric mean of the

ratio across budgets. The aggregated ratio is used because some budgets are feasible via the ILP

but not via the approximations. Table 3.2 shows results. The two-phase deterministic rounding

approach has approximation factors close to optimal, at most 1.06× for all tested architectures.

3.7 Conclusion

One of the main challenges when training large neural networks is the limited capacity of high-

bandwidth memory on accelerators such as GPUs and TPUs. This has created a memory wall

that limits the size of the models that can be trained. The bottleneck for state-of-the-art model
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AP√
𝑛

AP

greedy

Griewank

log𝑛

Two-phase

LP rounding

MobileNet 1.14× 1.07× 7.07× 1.06×
VGG16 1.28× 1.06× 1.44× 1.01×
VGG19 1.54× 1.39× 1.75× 1.00×
U-Net 1.27× 1.23× - 1.03×

ResNet50 1.20× 1.25× - 1.05×

Table 3.2: Approximation ratios for baseline heuristics and our LP rounding strategy. Results are

given as the geometric mean speedup of the optimal ILP across feasible budgets.

development is now memory rather than data and compute availability, and we expect this trend

to worsen in the future.

To address this challenge, we proposed a novel rematerialization algorithm which allows large

models to be trained with limited available memory. Our method does not make the strong

assumptions required in prior work, supporting general non-linear computation graphs such as

residual networks and capturing the impact of non-uniform memory usage and computation cost

throughout the graph with a hardware-aware, profile-guided cost model. We presented an ILP

formulation for the problem, implemented the Checkmate system for optimal rematerialization in

TensorFlow, and tested the proposed system on a range of neural network models. In evaluation,

we find that optimal rematerialization has minimal computational overhead at a wide range

of memory budgets and showed that Checkmate enables practitioners to train high-resolution

models with significantly larger batch sizes. Finally, a novel two-phase rounding strategy closely

approximates the optimal solver.
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Chapter 4

Scalable data transfer in the cloud

4.1 Introduction

Increasingly, cloud applications transfer data across datacenter boundaries, both across multiple

regions within a cloud provider (multi-region) and across multiple cloud providers (multi-cloud).

This is in part due to privacy regulations, the availability of specialized hardware, and the desire

to prevent vendor lock-in. In a recent survey [57], more than 86% of 727 respondents had adopted

a multi-cloud strategy across diverse workloads. Thus, support for fast, cross-cloud bulk transfers

is increasingly important.

Applications transfer data between datacenters for batch processing (e.g. ETL [16], Geo-

Distributed Analytics [143]), and production serving (e.g. search indices [79]). Extensive prior

work optimizes the throughput of bulk data transfers between datacenters within application-

defined minimum performance constraints [79, 89, 95, 182]. All major clouds offer services for bulk

transfers such as AWS DataSync [11], Azure AzCopy [44], and GCP Storage Transfer Service [66].

From the perspective of a cloud customer, transfer throughput and cost (price) are the two

important metrics of transfers in the cloud. Thus we ask how can we optimize network cost and

throughput for cloud bulk transfers? We study this question in the context of designing and

implementing Skyplane, an open-source cloud object transfer system.

A seemingly natural approach is to optimize the routing protocols in cloud providers internal

networks to support higher-throughput data transfers. Unfortunately, this is not feasible for two

reasons. First, rearchitecting the IP layer routing protocol to optimize for high-throughput bulk

transfer could be negatively impact other applications that are sensitive to network latency. Second,

cloud providers lack a strong incentive to optimize data transfer to other clouds. Indeed, AWS

DataSync [11], AzCopy [44], GCP Storage Transfer [66], AWS Snowball [155], and Azure Data



CHAPTER 4. SCALABLE DATA TRANSFER IN THE CLOUD 42

Skyplane
Planner

Desired
throughput

Number of VMs

Number of connections

Overlay paths

Data
Plane
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Figure 4.1: Cloud-aware overlays: Skyplane optimally transfers across cloud regions and

providers subject to the user’s cost and throughput requirements. Skyplane

finds the visualized overlay path from Azure’s Central Canada region to GCP’s

asia-northeast1, which is 2.0× faster but just 1.2× higher in price than the direct

path.

Box Disk [19], all support data transfer into, but not out of, their respective clouds. Improvements

to cross-cloud peering must be achieved with the cooperation of both the source and destination

providers.

Skyplane’s key observation is that we can instead identify overlay paths—paths that send data

via intermediate regions—that are faster than the direct path. The throughput of the direct path

from Azure’s Central Canada region to GCP’s asia-northeast1 region is 6.2 Gbps. Instead,

Skyplane can route the transfer via an intermediate stop at Azure’s US West 2 with a throughput

of 12.4 Gbps for a 2.0× speedup (Fig. 4.1). Crucially, this can be implemented on top of the cloud

providers’ services without their explicit buy-in.

We are not the first to propose the use of overlay networks on the public Internet [15]. However,

these techniques ignore two key considerations of public clouds: price and elasticity.
First, the highest-bandwidth overlay pathmay have an unacceptably high price. Cloud providers

charge for data egress separately for each hop along the overlay path. To reduce the cost of the

overlay, it is essential to transfer data along cheap paths to trade off price and performance. For

example, in Fig. 4.1, one can achieve 13.9 Gbps by instead using Azure’s East Japan region as the

relay, but the cost would be 1.9× that of transferring data directly. In contrast, using Azure’s West

US 2 region has only a 1.2× cost overhead with similar performance. Thus, Skyplane operates in

a richer problem space than traditional application-level routing—one where cloud instance and

cloud egress fees are significant.
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Second, whereas the bandwidth between two nodes in a traditional network overlay [15] is

considered “fixed,” in Skyplane’s setting it depends on elasticity—the ability to allocate more

resources at each cloud region. For example, one can increase the capacity of any overlay path by

simply allocating more VM instances in each cloud region. There are a limited number of physical

machines at each cloud region, which cloud providers pass on to users in the form of instance

limits. An overlay enables improved throughput beyond this limit. Thus, Skyplane operates in a

richer solution space than traditional application-level routing—one where we must choose the

number of VMs to use as relays due to cloud elasticity.

Skyplane addresses both price and elasticity, empowering users to navigate the trade-off

between price and performance while leveraging cloud elasticity. Users can ask Skyplane to

maximize bandwidth subject to a cost ceiling, or minimize cost subject to a bandwidth floor.

At the heart of Skyplane is a planner that computes a data transfer plan, subject to the user’s

constraints, that specifies the overlay path to use and amount of cloud resources to allocate along

that path. Price and elasticity make it challenging to compute the plan. Our insight is that,

with some care, planning can be formulated as linear constraints. Thus, Skyplane’s planner can

discover the optimal plan by solving a mixed-integer linear program (MILP) which can be closely

approximated by a linear program (LP). Both can be accomplished using a fast, off-the-shelf solver.

Our Skyplane prototype
∗
outperforms AWS DataSync by up to 4.6× and GCP Storage Transfer

by up to 5.0×. Skyplane outperforms academic baselines like RON by 34% at 62% lower cost.

4.2 Background

Network overlays In the early 2000s, network overlays emerged as a technique for application-

level routing without the participation of underlying network providers. These network overlays can

be designed to improve performance or reliability. Notable network overlays include Chord [163],

Resilient Overlay Networks (RON) [15], Bullet [104], Baidu BDS [183] and Akamai [131, 160].

Although ISPs may have broad visibility into their networks, the metrics that ISPs use to select

routes may not align with user preferences. Wide-area networks today do not allow specification

of alternative routing preferences while network overlays provide applications a mechanism to

control routing decisions. For example, Akamai uses a network overlay to reduce the latency of

CDN misses while RON routes around network outages via an unaffected intermediate host.

RON is implemented by periodically measuring network performance via probes embedded

in a fixed set of routers. When path outages occur, RON selects an intermediate relay router to

∗https://github.com/skyplane-project/skyplane

https://github.com/skyplane-project/skyplane
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circumvent the outage. This intermediate router is selected to have low packet loss or latency

to/from the client and server. Optionally, RON can use a model of TCP Reno’s throughput [134] to

select intermediate routers. RON will generally select only a single intermediate node.

Wide-area networking in the cloud From the perspective of cloud customers, the cloud

is elastic—additional resources can be allocated on demand. For example, an overloaded cloud

application can leverage the cloud’s elasticity by allocating additional VM instances. However, the

physical reality of the cloud is that there are only finite resources at each region. Therefore, cloud

providers impose service limits on their customers for resources such as VMs.

Each VM’s network bandwidth is throttled according to its instance type. For example, an AWS

m5.8xlarge instance can use atmost 10 Gbps of network bandwidth, and anAzure Standard_D32_v5

instance can use at most 16 Gbps of network bandwidth. Furthermore, only some of the available

bandwidth can be used for egress traffic to another cloud provider. The policies differ by cloud

provider. AWS limits VM egress bandwidth to the larger of 5 Gbps or 50% of total bandwidth [10],

GCP limits VM egress bandwidth to any public IP address to 7 Gbps [65], and Microsoft Azure has

no egress limit beyond the total bandwidth limit for a VM. Of course, the actual achievable TCP

network bandwidth is subject to congestion control which may be less than the limit.

Cloud egress pricing Cloud providers charge egress prices for network traffic leaving a cloud

region. Importantly, egress prices are assessed based on the volume of data transferred, not the

rate at which it is transferred. Transferring a file at 10 Mbps or at 10 Gbps will result in the same

egress charge. Egress charges introduce asymmetry in billing—there is no corresponding ingress

charge for transfers into a cloud.

For intra-cloud transfers (i.e., transfers between two regions or zones in the same cloud),

transfers between geographically distant endpoints are priced more than transfers between nearby

endpoints. In contrast, inter-cloud transfers (i.e., transfers between two cloud providers) are billed

at the same rate regardless of the transfer’s geographic distance. For example, the egress price

from a single Azure region is billed at the same rate for any destination outside of Azure, including

any region in AWS or GCP [12, 64, 125].

Egress prices typically dominate the cost of a bulk transfers. For example, if a VM sends data at

a rate of 1 Gbps for an hour on AWS with an Internet egress price of $0.09/GB, the total egress

charge will total $40.50, which far exceeds the VM price of $1.50 (for m5.8xlarge) [12].

Cloud object storage AWS, Azure, and GCP provide object storage APIs that allow customers

to save data attached to a string key. Data is stored immutably and therefore any updates require
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writing a new version. Unlike POSIX file systems, object stores do not provide atomic metadata

operations (e.g., rename). Consistency models vary across providers. Cloud object stores store

copies of a blob on multiple machines to improve availability and durability. Large objects support

concurrent writes via sharding. Read throughput of a single shard may be limited by the provider

(e.g. 60 MB/s for Azure [20]).

4.3 Overview of Skyplane

Skyplane allows applications to efficiently transfer large objects from an object store in one region

to an object store in another cloud region or provider. To use Skyplane, the user installs the

Skyplane client locally and configures it with access to cloud provider-supplied credentials. Then,

the user submits a job, together with a constraint on price or bandwidth. The job specifies which

objects to transfer, the source cloud provider and region, and the destination cloud provider and

region. The constraint can have one of two forms: it can ask Skyplane to optimize either bandwidth

subject to a price ceiling, or price subject to a bandwidth floor.

Skyplane itself comprises a planner (Fig. 4.1, bottom) and a data plane (Fig. 4.2). Given the user’s

job and constraint, the planner produces an optimal data transfer plan to complete the job subject

to the constraint. The planner relies on a profile of the network throughput between different

cloud regions. The data plane is responsible for executing the data transfer plan: allocating cloud

resources (e.g., VMs), transferring data between them, and interacting with object stores.

4.3.1 Overlay formulation in Skyplane’s planner

Suppose the user needs to transfer an object from a source cloud region, 𝐴, to a destination cloud

region, 𝐵. A naïve object transfer system might spawn VMs in regions 𝐴 and 𝐵, and transfer data

via a TCP connection between the two VMs. Skyplane improves performance compared to this

baseline by applying principles from overlay networks [15]. For example, Skyplane may identify a

third cloud region, 𝐶 , and transfer data from 𝐴 to 𝐵 via 𝐶 . This is accomplished at the application

layer; Skyplane will spawn a VM in region 𝐶 , set up TCP connections from 𝐴 to 𝐶 and from 𝐶 to

𝐵. We refer to intermediate regions like 𝐶 as relay regions.

The baseline approach (𝐴→ 𝐵) routes data along the “direct path,” since it uses the default path

provided by the Internet. However, Skyplane (𝐴 → 𝐶 → 𝐵) routes data along the an “indirect

path,” that may not be on the Internet-provided default path. An indirect path may use multiple

relays although a single relay is usually sufficient.
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Figure 4.2: Skyplane splits an example data transfer over three paths: the direct path, and two

indirect paths. Dashed lines indicate control orchestration (e.g., for spawning VMs)

and solid lines depict the flow of object data.

A key difference between Skyplane and classical overlay networks is that Skyplane takes price

into account when choosing the overlay path to use for a job. Concretely, Skyplane’s planner

uses a price grid and a throughput grid to determine which indirect path to use. The price grid

specifies the price of transferring data between each pair of cloud regions, in each direction. We

computed the price grid based on information on the cloud providers’ websites and from querying

the cloud APIs. The throughput grid is collected by measuring the network, as we explain in the

next subsection.

Note that throughput grid measurements are made using TCP connections, subject to TCP

congestion control. Thus, the throughput grid measures the bandwidth available to a single user for

transferring data, accounting for cross-traffic from other users’ flows. We assume a high degree of

statistical multiplexing in wide-area network traffic—in other words, that the bandwidth consumed

by a single user’s bulk transfer is negligible compared to the total available inter-region bandwidth.

This allows a Skyplane user to compute a data transfer plan without regard to other users’ bulk

transfers using Skyplane or other bulk transfer tools—all cross traffic from other users is assumed

to be accounted for in the throughput grid. As we show in the next subsection, the bandwidth of

inter-region TCP connections is relatively stable in the short term, validating our assumption of

high statistical multiplexing.
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Figure 4.3: Intra-cloud vs. inter-cloud links: Inter-cloud links are consistently slower than

intra-cloud links for network routes from Azure and GCP. Service limits are shown

with a dashed line; GCP throttles inter-cloud egress to 7 Gbps while AWS throttles all
egress traffic to 5 Gbps.
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Figure 4.4: Stability of egress flows over 18 hour period: Continuous probes of cloud networks
over one day reveal that routes from AWS have stable throughput over time. Paths

between GCP regions are noisy but have a consistent mean.

4.3.2 Profiling cloud networks

The planner relies on a profile of the network throughput between pairs of cloud regions. We

collected a throughput grid by measuring the TCP goodput between each region pair using iperf3.

In total, computing this profile cost approximately $4000 in egress charges.

Fig. 4.3 displays the relationship between network latency and throughput for profiling routes

originating from GCP and Azure for our measured throughput grid. For GCP, we leverage internal

IPs which improve intra-cloud bandwidth. For both GCP and Azure, intra-cloud routes had lower

tail RTTs than inter-cloud routes. We observe that in both GCP and Azure, inter-cloud links are

slower than intra-cloud links. As Azure has no service limit for egress bandwidth, we see the

fastest intra-cloud links achieve up to the NIC capacity of 16 Gbps. However, both GCP and AWS

encounter egress throttling at 7 Gbps and 5 Gbps respectively.
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A natural question is how frequently the throughput grid must be re-measured. Fig. 4.4 visualizes

achieved throughput from AWS us-west-2 and GCP us-east1-b taken every 30 minutes over

an 18 hour timespan. Throughput is stable over time for both inter-cloud and intra-cloud routes

from AWS us-west-2. Routes from GCP us-east1-b to AWS destinations is similarly stable

but intra-cloud routes to GCP destinations are less stable. Regardless, the overall rank order of

regions by throughput remains mostly consistent over a few hours. Thus, it should be sufficient to

profile networks relatively infrequently (i.e. every few days). In practice, this information could

be collected by third-party service, or measured via active probing along live transfers.

4.3.3 Skyplane’s data plane

Skyplane’s data plane executes data transfers using the plan computed by Skyplane’s planner.

Ephemeral VMs for a single transfer, called “gateways,” are provisioned in the source region,

destination region, and overlay regions for a transfer plan. Each source gateway reads a small

shard of data from the object store and transfers data via intermediate gateways to the destination

where the shard is written.

Skyplane reads data from an object store in the source cloud region and writes data to an object

store in the destination cloud region. We focus on the object stores provided as a service by AWS

S3, Azure Blob Storage, and Google Storage. Unlike a traditional overlay network, there is no

central Skyplane service that allocates resources to each user from a pool of “Skyplane resources.”

Instead, Skyplane can be understood as a local service run by each user that is invoked when

an application needs to transfer data. Skyplane directly allocates cloud resources on the user’s

behalf when processing a job, and manages those resources to transfer the user’s data across

cloud regions. This allows Skyplane to manage each user’s resources according to their cost and

performance objectives, independently from the cloud providers’ existing data transfer services,

while relying on clouds to offer a large pool of resources and manage isolation between users.

4.4 Principles of Skyplane’s planner

Skyplane’s planner
†
is responsible for developing a plan for transferring data across the wide

area to complete an object transfer job submitted by a user or their application (Fig. 4.5). This

plan describes the overlay path and the amount of cloud resources to allocate along that path to

facilitate the transfer.

Skyplane’s planner supports two modes:

†
Explore Skyplane’s planner at https://optimizer.skyplane.org

https://optimizer.skyplane.org
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Cost minimizing: The planner will minimize cost subject to an application-specified throughput

constraint.

Throughput maximizing: The planner will maximize throughput subject to an application-

specified cost constraint.

As we will describe in §4.5, Skyplane finds the optimal plan by formulating it as an Mixed-

Integer Linear Program (MILP) and using a fast but exponential-time solver. This section describes

the degrees of freedom available to the optimizer to navigate the price-performance trade-off

for the user’s specified constraint. Our goal is to describe what aspects of the plan are at the

planner’s disposal, justify why it is reasonable to vary those aspects of the plan, and describe

certain techniques available to the planner to manage the price-performance trade-off. Note that

the planner is not directly programmed to use these techniques; they are merely patterns that it

discovers in the course of finding the optimal MILP solution.

4.4.1 Achieving low instance and egress costs

That bandwidth costs dominate the cost of data transfer (§4.2) is both a challenge and an opportunity

for Skyplane. It is an opportunity because it allows Skyplane to be competitive with the price of

using data transfer tools provided directly by the cloud providers (e.g. AWS DataSync, AzCopy,

GCP Cloud Transfer Service), as those tools incur bandwidth costs but not instance costs. It

is a challenge for Skyplane because it implies that, used naïvely, indirect paths are much more

expensive than direct paths. This is because egress bandwidth is charged for each hop along the

path. For example, for a path 𝐴→ 𝐶 → 𝐵, the bandwidth cost must be paid for both 𝐴→ 𝐶 and

𝐶 → 𝐵, which could be double the cost of transferring over the direct path. As a result, it is crucial

for Skyplane’s optimizer carefully manage egress transfer costs.

Choosing the relay region

One way for Skyplane to manage the additional cost associated with indirect paths is to carefully

choose the relay region𝐶 to minimize this cost. For example, suppose that a user needs to transfer

an object from AWS us-west-2 (region 𝐴) to Azure UK South (region 𝐵). The direct path 𝐴→ 𝐵

would require the user to pay $0.09 per GB, the cost of bandwidth leaving AWS’ network. If the

relay region 𝐶 is chosen in us-central-1 or us-east-1, then the overall bandwidth price will

only increase slightly; while the 𝐶 → 𝐵 transfer still incurs $0.09 per GB, as data is leaving AWS’

network, the 𝐴 → 𝐶 bandwidth only costs $0.02 per GB, as it is an intra-continental transfer

within the cloud provider’s network. Skyplane’s planner can use the throughput and price grids
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Figure 4.5: Skyplane’s planner considers throughput and cost constraints from the user along with

per-cloud price information and an inter-region throughput profile grid to determine

the optimal data transfer plan.

to identify relay regions that improve the performance of the transfer while minimizing additional

bandwidth costs.

Combining multiple paths

Another way to manage the cost of indirect paths is to split the data transfer over multiple paths,

in order to make fine-grained trade-offs between price and performance. For example, suppose

that Skyplane identifies a high-bandwidth indirect path, but that the path is more expensive than

the user’s price ceiling. Skyplane can still benefit partially from that indirect path by sending part

of the data over that path, at higher cost, and the remaining data over the direct path 𝐴→ 𝐵, at

lower cost. Thus, Skyplane may average the price and performance of multiple paths, when doing

so allows Skyplane to more optimally satisfy the user’s constraints.

4.4.2 Parallel TCP for high bandwidth

Skyplane uses parallel TCP connections—that is, bundles of TCP connections—to achieve high

goodput over a chosen path. This is a well-known technique for achieving good performance,

particularly for wide-area transfers [7, 161]. Our Skyplane implementation uses up to 64 outgoing

connections for each VM instance, as we empirically measured that using additional connections

typically resulted in diminishing benefits in aggregate goodput. When collecting measurements

for the throughput grid, we make sure to use 64 parallel connections to measure the achievable

TCP goodput for each ordered pair of regions.

It is known that using multiple TCP streams in parallel may cause an application to obtain

more than its “fair share” of bandwidth [55, §A.1], particularly in contexts where networks are
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running at nearly 100% utilization [89]. Our view is that, despite this, it is acceptable to use

multiple TCP connections in parallel in the context of Skyplane. There are three reasons for this.

First, it is common for applications to use parallel TCP, including for workloads like bulk data

transfer [7, 109]. It is important for Skyplane to appropriately compete with such applications for

limited bandwidth. Second, the user pays the cloud provider for bandwidth, both in the form of

the bandwidth price (total amount transferred) and the instance price (rate at which data can be

transferred), and it is natural for users to be able to make use of the bandwidth that they pay for.

Third, cloud providers control the datacenter network, and can shape traffic in the presence of

congestion to ensure that each customer gets a fair share of bandwidth.

4.4.3 Multiple VMs for high bandwidth

For a given overlay path, Skyplane must allocate sufficient resources along the path to achieve

high bandwidth. However, the achievable outgoing bandwidth from a VM instance is limited, as

described in §4.2.

Therefore, Skyplane may allocate multiple VM instances at certain regions along the path, to

increase aggregate data transfer rate of the VMs at each region. Although simply using larger

VMs may seem like a viable alternative, it is less effective than using multiple instances due to

per-instance bandwidth limits. Skyplane uses a fixed VM size, and its planner chooses how many

instances to allocate in each region, under the assumption that TCP goodput scales linearly with

the number of allocated VM sizes.

It may seem that Skyplane can achieve an arbitrarily high bandwidth by spawning many

instances in each region. Unfortunately, this simple strategy does not work because cloud resources

are not perfectly elastic. The finite capacity for VMs in a datacenter is passed down to cloud

customers in the form of service limits, which limit the number of VM instances, and therefore

the amount of network bandwidth, that users can allocate in each region. While users can request

limit increases, these are ultimately subject to resource availability. To model this, Skyplane’s

planner takes into account a limit on the number of instances that a user can allocate per region.

4.5 Finding optimal transfer plans

Skyplane’s planner searches for cost-efficient high-throughput transfer plans that jointly specify

the overlay path, TCP connections between regions and VMs to provision per region.

At the core of Skyplane’s planner is an optimizer that finds the optimal plan using off-the-shelf

Linear Programming (LP) solvers. We formalize the constraints of our problem as Mixed Integer LP
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Variables
F ∈ R |𝑉 |× |𝑉 |+ Throughput grid
N ∈ Z |𝑉 |+ VMs per region
M ∈ Z |𝑉 |× |𝑉 |+ TCP conn. per region

Constraint: goal throughput
tput goal ∈ R |𝑉 |× |𝑉 |+ User’s desired throughput

Constants: provider limit
Limit

𝑙𝑖𝑛𝑘 ∈ R |𝑉 |× |𝑉 |+ Throughput grid limit
Limit

𝑐𝑜𝑛𝑛 ∈ Z |𝑉 |× |𝑉 |+ TCP connection limit
Limit

𝑖𝑛𝑔𝑟𝑒𝑠𝑠 ∈ Z |𝑉 |+ VM limit
Limit

𝑒𝑔𝑟𝑒𝑠𝑠 ∈ Z |𝑉 |+ Egress bandwidth limit
Constants: provider cost

Cost
egress ∈ R |𝑉 |+ Egress cost ($/Gbit)

Cost
VM ∈ R |𝑉 |+ VM cost ($/s)

Table 4.1: Symbol table for Skyplane’s ILP formulation.

(MILP) which can quickly be solved in under 5 seconds with an open-source solver. The problem

can be further relaxed into a continuous LP which is solvable in worst-case polynomial time via

interior point methods [96].

Independently optimizing for each variable then combining partial solutionswould not guarantee

a globally optimal solution. It is therefore important that Skyplane’s planner models all variables

in an integrated search space to obtain provably optimal data transfer plans.

4.5.1 Cost minimizing overlay paths

Flow networks can naturally represent overlay networking topologies like those used by Aka-

mai [160]. We start with a min-cost flow problem. The following primal LP finds the optimal flow

matrix F ∈ R |𝑉 |× |𝑉 |+ for a network topology graph 𝐺 = (𝑉 , 𝐸) where nodes represent regions and
edges are links:

arg min

F

⟨𝐶, F⟩

subject to

∑
(𝑐,𝑣) ∈𝐸 F𝑐,𝑣 ≥ tput goal,∑
(𝑢,𝑣) ∈𝐸 F𝑢,𝑣 =

∑
𝑣,𝑤 F𝑣,𝑤 ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡},

0 ≤ F ≤ Limit
𝑙𝑖𝑛𝑘

(4.1)
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where 𝑠 and 𝑡 are the source and destination regions, Limit
𝑙𝑖𝑛𝑘 ∈ R |𝑉 |× |𝑉 |+ is the maximum capacity

for each link and𝐶 ∈ R |𝑉 |× |𝑉 |+ is the cost per unit of bandwidth between regions. We use the same

notation for matrix and vector inner products: ⟨𝐶, F⟩ = ∑
𝑢,𝑣𝐶𝑢,𝑣F𝑢,𝑣 .

Objective: Minimize cost from egress and VMs

Min-cost flows do not accurately reflect the cost of transfers in the cloud. The total cost of a

transfer in Skyplane includes egress cost and VM cost. Note that this objective is not linear; we

present a linear reformulation in Sec. 4.5.1. We present the full objective is in the in Equation 4.4a.

Modeling egress cost Unlike physical networks, virtual networks in the cloud will charge the

same amount if 1GB of data is sent at 1 Mbps or 10 Gbps. Transfers are priced according to egress

volume ($ per GB, Costegress) rather than bandwidth ($ per Gbps). We can update the cost function

to instead model the transfer cost by first computing how much the overlay path costs to run per

unit time and then scale that by the runtime for a transfer. We denote the total volume of the

transfer as volume. Total egress cost is then:

⟨F,Costegress⟩︸           ︷︷           ︸
Egress cost per s

∗ volume ÷∑𝑣∈𝑉 F𝑠,𝑣︸                    ︷︷                    ︸
Transfer time

(4.2)

Modeling VM cost Multiple VMs can increase aggregate bandwidth as discussed in Sec. 4.4.3.

To optimally trade-off parallel VMs with the overlay, we introduce a new decision variableN ∈ Z |𝑉 |+
that models the number of instances use to transfer data per region. VM count per region may

vary due to asymmetric egress and ingress limits. To accurately consider transfer costs from

VMs, we add the the following instance cost expression to Equation 4.2 where Cost
VM

is a vector

containing the cost per second per VM in each region:

⟨N,CostVM⟩︸         ︷︷         ︸
VM cost per s

∗ volume ÷∑𝑣∈𝑉 F𝑠,𝑣︸                    ︷︷                    ︸
Transfer time

(4.3)

Linear reformulation of the objective As written, the objective in Equation 4.4a is not linear

due to a product of variables between F and N. By reformulating the problem to instead consider

finding a plan that provides exactly tput goal (instead at least), the runtime for the transfer can

be reduced to a constant volume ÷ tput goal.
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Constraints: Cloud provider service limits

Resources are not infinite at cloud regions; providers limit the number of VMs that a user may

provision and in some cases, providers may throttle the performance of ingress and egress.

Per VM ingress and egress limits AWS and GCP each throttle egress from their clouds via

SDN policies. For AWS, instances with 32 cores or less are limited to 5 Gbps. For GCP, individual

flows are limited to 3 Gbps and total egress is service limited to 7 Gbps. Ingress is bottlenecked

by VM NIC bandwidth. We constrain the maximum ingress bandwidth per VM to Limit
𝑖𝑛𝑔𝑟𝑒𝑠𝑠

via

Constraint 4.4f and the maximum egress bandwidth per VM to Limit
𝑒𝑔𝑟𝑒𝑠𝑠

via Constraint 4.4g.

Constraining TCP connections Using parallel TCP connections is a well known approach to

improve WAN performance as discussed in Section 4.4.2. Yet, bandwidth does not scale linearly

with connections (Figure 4.9a). We introduce a decision variable M ∈ Z |𝑉 |× |𝑉 |+ representing the

number of connections between a pair of regions (not per VM pair). Constraint 4.4b ensures M

is constrained by N and Limit
𝑐𝑜𝑛𝑛

(typically 64 per VM). We then limit the total incoming and

outgoing connections with Constraints 4.4i and 4.4h.

Per-region VM limits We introduce the variable N ∈ Z |𝑉 |+ to denote the number of VMs per

region. N must be under the global instance cap in Constraint 4.4j. The optimizer linearly scales

the maximum number of egress TCP connections per region by the number of VMs provisioned in

each region.

Continuous relaxation of MILP

To improve solve times, N andM are relaxed into real valued variables N ∈ R |𝑉 |+ andM ∈ R |𝑉 |× |𝑉 |+ .

Rounding variables down performs comparably to randomized rounding with solutions ≤ 1% from

optimal. The relaxed problem has worst case polynomial time complexity [96].
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Full formulation of the cost optimal solver

All variables and constants are listed in Table 4.1. The full formulation of Skyplane’s optimizer is:

arg min

F, N

M

volume

tput goal

(
⟨F,Costegress⟩ + ⟨N,CostVM⟩

)
(4.4a)

subject to

F ≤(Limit𝑙𝑖𝑛𝑘 ⊙ M) ÷ Limit
𝑐𝑜𝑛𝑛, (4.4b)∑

𝑣∈𝑉 F𝑠,𝑣 ≥ tput goal, (4.4c)∑
𝑢∈𝑉 F𝑢,𝑡 ≥ tput goal, (4.4d)∑
𝑢∈𝑉 F𝑢,𝑣 =

∑
𝑢∈𝑉 F𝑣,𝑢 ∀𝑣 ∈ 𝑉 − {s, t}, (4.4e)∑

𝑢∈𝑉 F𝑢,𝑣 ≤ Limit

𝑖𝑛𝑔𝑟𝑒𝑠𝑠
𝑣 ∗ N𝑣 ∀𝑣 ∈ 𝑉 , (4.4f)∑

𝑣∈𝑉 F𝑢,𝑣 ≤ Limit

𝑒𝑔𝑟𝑒𝑠𝑠
𝑢 ∗ N𝑢 ∀𝑢 ∈ 𝑉 , (4.4g)∑

𝑣∈𝑉 M𝑢,𝑣 ≤ Limit
𝑐𝑜𝑛𝑛 ∗ N𝑣 ∀𝑢 ∈ 𝑉 , (4.4h)∑

𝑢∈𝑉 M𝑢,𝑣 ≤ Limit
𝑐𝑜𝑛𝑛 ∗ N𝑢 ∀𝑣 ∈ 𝑉 , (4.4i)

𝑁𝑣 ≤ Limit
𝑉𝑀 ∀𝑣 ∈ 𝑉 (4.4j)

4.5.2 Throughput maximizing overlay paths

Directly solving for a throughput maximizing path under a cost ceiling is non-trivial as we cannot

use the linear reformulation of the cost objective. We can approximate a solution by solving for the

minimum cost transfer plan at a range of many throughput goals. The result of this procedure is a

Pareto frontier curve (as shown in Fig. 4.9c). A throughput maximizing solution can be extracted

from this curve. The quality of approximate solution will depend on how many samples are used.

A single AWS c5.9xlarge instance can evaluate 100 samples in under 20 seconds.

4.6 Implementation of Skyplane

We implemented Skyplane in Python 3. Skyplane’s planner uses the proprietary Gurobi library

to solve MILP instances (used in our evaluation), but the Coin-OR library can be used instead to

avoid this dependency. Our implementation currently supports the three major cloud providers:

Amazon Web Services, Microsoft Azure, and Google Cloud Platform.
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We use m5.8xlarge instances on AWS, as smaller VM sizes were subject to burstable networking

performance, which we wished to avoid [10, 13]. For consistency, we used Standard_D32_v5

instances on Microsoft Azure and n2-standard-32 instances on Google Cloud.

A user initiates a transfer from their application with the Skyplane client. The client provisions

VMs in each region according to the transfer plan and runs the Skyplane gateway program on

each VM. The gateway is responsible for actually reading from source object stores, relaying data

through overlay regions and writing to destination object stores.

While transfer time is dominated by network throughput, the time to spawn gateway VMs

contributes to the transfer latency. To minimize unnecessary bloat in VM images, we use compact

OSes such as Bottlerocket [154] and package dependencies via Docker.

Skyplane assumes that objects are broken up into small chunks of approximately equal size. Ap-

plications can often do this without significant burden; for example, machine learning applications

store data as TFRecords, which are easy to split into small chunks. This allows Skyplane to read

and write data quickly from and to cloud object stores, by issuing many read/write operations in

parallel to different chunks.

To mitigate the impact of straggler connections, Skyplane dynamically partitions data across

TCP connections as they become ready to accept more data. This is in contrast to tools like

GridFTP [7], which assign data blocks to connections in a round-robin fashion. The downside is

that, for plans that use multiple overlay paths, the amount of data sent on each path may deviate

from the targets computed at planning time, which could cause the actual cost of transferring data

to deviate from the cost predicted by Skyplane’s planner.

To avoid overflowing buffers at relay regions, Skyplane uses hop-by-hop flow control to stop

reading data from incoming TCP connections when a VM’s queue of chunks reaches capacity.

Bufferbloat-type problems [59] are not a concern for Skyplane, with regard to queued chunks, as

we pipeline transfers to optimize for throughput instead of latency.

4.7 Evaluation

To evaluate Skyplane, we investigate transfer time and price. We will sometimes use transfer

throughput as a proxy for transfer time. In our price calculations, we include both instance cost

and egress cost.
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Figure 4.6: Comparison to cloud transfer systems: The thatch pattern in each bar represents

the storage I/O overhead.

4.7.1 Experimental setup

We evaluate Skyplane with 20 AWS regions, 24 Azure regions and 27 GCP regions. For all

experiments, we use public IP addresses attached to the VMs for transferring data. In some cases,

one can achieve better performance for intra-cloud overlay hops by using private IP addresses

assigned to each VM. For GCP this yields higher performance; for AWS and Azure it may yield

higher performance, but requires peering virtual networks which incurs additional fees.

Furthermore, Azure and GCP allow one to select network tiers to control whether data is

transferred via the cloud provider’s network or via the public Internet. The Skyplane prototype

utilizes external IPs over standard network tiers. That said, Skyplane is not incompatible with

optimizations like VPC peering or hot-potato routing tiers to reduce cost and improve performance

which we leave to future work. We use the CUBIC congestion control protocol in experiments.

4.7.2 How much faster is Skyplane than existing data transfer solutions?

Existing cloud providers offer data transfer tools such as AWS DataSync, GCP Storage Transfer,

and Azure AzCopy for low-cost transfers of bulk data into their respective clouds. These tools do

not disclose what mechanisms they use to transfer data—for example, the number of VMs and

TCP connections (if any) used for a transfer, or the QoS (if any) associated with the network traffic.

When evaluating Skyplane, we restrict Skyplane to use at most 8 VMs in each region. This is

conservative; for example, on equalizing $/GB for some routes, Skyplane could provision up to 262

VMs per region within DataSync’s service fee. Moreover, while these services only support data

transfer into their respective clouds, Skyplane supports data transfer between every region pair.
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Figure 4.7: Ablation of predicted overlays: Overlay routes improve throughput per VM in-

stance. We visualize the distribution of predicted throughput by the planner with all

optimizations enabled (Skyplane) and with all optimizations except for overlay routing

(Skyplane without overlay). The AWS and GCP egress limits are displayed with a

dashed line.

We consider transferring the training and validation set for ImageNet [45]. We specifically

use the TFRecords as generated by Google as part of the Cloud TPU benchmark example [45].

We evaluate flows between regions within a single cloud (intra-provider) and between clouds

(inter-provider). We expected that data transfer within each cloud provider (e.g., between AWS’s

us-east-1 and AWS’s us-west-1) to perform well as they have full visibility into their networks

and can utilize private interfaces with higher performance than over public API. For example,

Azure Blob Storage throttles per-object reads for third-party VMs[126]. Our experiments did

observe this behavior. However, Skyplane benefits from parallelizing the transfers.

We compare against AWS DataSync, GCP Storage Transfer and Azure AzCopy in Fig. 4.6. We

evaluated Skyplane with a cost budget cap that is lower than the service fee for cloud transfer

services in all our experiments. For each source-destination pair, we additionally measured the

time to transfer procedurally-generated data using Skyplane; this allows us to break out the

overhead of reading and writing to cloud storage as a “thatched” region in each bar. Skyplane

significantly outperforms AWS DataSync and GCP Cloud Transfer in all configurations. In certain

cases, Azure AzCopy performs about as well as Skyplane. We chose the koreacentral region

because we expected the greatest improvements from the overlay in that region; however, storage
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Figure 4.8: Transfers bottlenecked at each location: For transfers in Fig. 4.7, we visualize what

percentage of transfers were bottlenecked at various locations. Enabling the overlay

shifts bottlenecks from the network to the VM.

overheads (the “thatched” regions of the bars), not networking overheads, dominated the runtime.

It is possible that AzCopy avoids the Azure Blob Storage I/O overhead that dominates Skyplane’s

transfer time by leveraging Azure’s Copy Blob From URL API call to download data directly into

the servers running Azure Blob Storage [18].

4.7.3 How much faster are the overlay paths?

The planner optimally explores the trade-off between improved throughput and cost for cloud

data transfers. We explore solving for the optimal transfer path between all pairs of clouds regions

between all cloud providers. We evaluated 22 AWS regions, 23 unrestricted Azure regions and 27

GCP regions which leads to 5,184 possible replication routes. It would be too expensive to transfer

a large amount of data along each path in order to measure the empirical achieved throughput;

therefore we use the planner to generate a plan and compare the resulting plan with the direct

path, both in terms of expected throughput and cost. We compute predicted costs for transferring

a 50 GB dataset between each possible source and destination. We report the speedup relative to

Skyplane with a direct connection between each set of instances. The baseline is itself an ablation

of Skyplane and it generally outperforms existing cloud transfer services to begin with (see §4.7.2).

The results are shown in Fig. 4.7. For each pair of source and destination clouds, we show

distribution of predicted throughputs across region pairs, both with Skyplane’s planner restricted

to the direct path and allowing Skyplane’s planner to use overlay paths. The results show that

Skyplane’s overlay routing meaningfully improves achievable throughput between cloud regions.



CHAPTER 4. SCALABLE DATA TRANSFER IN THE CLOUD 60

0 20 40 60 80 100 120
Number of connections

0

1

2

3

4

5
Th

ro
u
g
h
p
u
t
(G

b
p
s)

Skyplane (BBR)
Skyplane (CUBIC, default)
Expected throughput

(a) TCP connections versus through-

put

0 4 8 12 16 20 24
Number of gateways

0

20

40

60

80

Th
ro
u
g
h
p
u
t
(G

b
p
s)

Skyplane
Expected throughput

(b) Number of gateway VMs versus

throughput

(c) Predicted planner throughput ver-

sus cost

Figure 4.9: Skyplane ablations: We evaluate the impact of parallel TCP connections, parallel

gateway VMs and overlay cost.

Note that transfers out of AWS cannot exceed 5 Gbps and transfers leaving GCP cannot exceed 7

Gbps due to these cloud providers’ caps on egress bandwidth.

4.7.4 Where are transfer bottlenecks?

To understand how the overlay improves throughput, we characterize the fraction of transfers that

are bottlenecked at each location. In Fig. 4.8, we visualize the percentage of transfers from §4.7.3

that were bottlecked at a VM in the source region, the network link leaving the source region,

a VMs in optional overlay regions, a network links leaving an overlay region, and a VM in the

destination region. We consider a particular location to be a bottleneck if utilization is over 99%.

Multiple locations may simultaneously be a bottleneck for one transfer.

For Skyplane with overlay routing disabled, the network link from the source to the destination

region is the most common bottleneck for transfers. In a small set of cases, the source VM is a

bottleneck for the transfer. Generally, the direct path is not fast enough to saturate the maximum

egress bandwidth limit for a VM. The overlay shifts source link bottlenecks by reducing the number

of transfers bottlenecked by the source link by 32%. The bottleneck shifts to the source VM or in

some cases a network link leaving an overlay region.

4.7.5 Skyplane microbenchmarks

Impact of parallel TCP connections Fig. 4.9a shows the impact of varying the number of

parallel TCP connections used to transfer data between VMs. For this experiment, the source VM

was located in AWS ap-northeast-1 and the destination VM was located in AWS eu-central-1.

Skyplane transfers 32 GB of synthetic, procedurally-generated data in these experiments to avoid
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Figure 4.10: Scaling VMs versus overlay: In situations where the direct path is slow, the overlay

is faster than simply scaling the number of VMs used alone.

incurring object store I/O overheads and thereby isolate network performance. The black dashed

line shows the expected throughput, assuming that bandwidth scales linearly with the number of

parallel TCP connections up to AWS’ 5 Gbps egress cap. The blue line shows Skyplane’s achieved

throughput, and the green line uses Skyplane’s achieved throughput using the BBR congestion

control algorithm (used only this experiment). For this experiment, the source VM was located in

AWS ap-northeast-1 and the destination VM was located in AWS eu-central-1. Skyplane’s

achieved throughput plateaus below the 5 Gbps egress cap at 64 connections.

Impact of parallel VMs Fig. 4.9b shows the impact of using multiple VMs in each region to

achieve higher aggregate throughput. The black dashed line shows the expected throughput, as-

suming that bandwidth scales linearly with the number of VMs. Although Skyplane’s performance

is significantly less than the expected throughput for a large number of gateways, the graph shows

that using parallel VMs is an effective way for Skyplane to scale its aggregate bandwidth. Addi-

tionally, using parallel VMs is a particularly valuable tool in the context of inter-cloud transfers, as

Skyplane can use multiple VMs in one cloud provider to circumvent the egress limit. For example,

for an overlay hop from an AWS region to an Azure region, one may allocate many instances in

AWS but few in Azure, to account for AWS’ egress cap.

Trade-off between cost and throughput Fig. 4.9c shows the impact on overlay path through-

put as the price budget is varied. We adjusted the cost budget afforded to the planner (x-axis),
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Table 4.2: Comparison with academic baselines: Skyplane outperforms RON’s path selection

heuristic implemented in Skyplane [15].

Method Time Throughput Cost

GCT GridFTP [7, 17] (1 VM) 133s 1.03 Gbps $1.40

Skyplane (1 VM, direct) 73s 1.71 Gbps $1.40

Skyplane w/ RON routes (4 VMs) [15] 21s 6.02 Gbps $2.27

Skyplane (cost optimized, 4 VMs) 32s 3.88 Gbps $1.56

Skyplane (throughput optimized, 4 VMs) 16s 8.07 Gbps $1.59

and plot the throughput predicted by the planner for the output plan (y-axis). We show three

routes where the overlay benefits are considerable (Azure westus to AWS eu-west-1), good (GCP

asia-east1-a to AWS sa-east-1) and minimal (AWS af-south-1 to AWS ap-southeast-2).

As the cost budget increases, Skyplane uses increasingly complex overlay topologies, adding new

overlay paths as the instance limit (1 VM, in this case) is saturated in each region. Each elbow

in the plot (e.g. 1.2× for the Azure to AWS route) represents a point where Skyplane adds a new

overlay route via a faster but more costly region. At some point, the planner cannot increase

throughput further as the overlay network is saturated.

Is it better to use VMs to form overlay paths or parallelize the direct path? Given a

limited number of VMs (§4.4.3), a natural question is whether it is better to use those VMs to form

overlay paths or to parallelize the direct path. In Fig. 4.10, we evaluate Skyplane with and without

the overlay enabled for various numbers of VMs in the context of an inter-continental transfer

and an intra-continental transfer. For the inter-continental transfer, using the VMs with overlays

enabled provides a 2.08× geomean speedup compared to using those VMs to parallelize the direct

path. However, for the intra-continental transfer, there is little benefit to using VMs in overlay

paths (1.03× geomean speedup).

4.7.6 Comparison against academic baselines

In Table 4.2, we compare Skyplane with RON [15] and the community-maintained fork [17] of

GridFTP [7] for a 16 GB data transfer from Azure East US to AWS ap-northeast-1. To isolate

network throughput from I/O overheads, we benchmark the transfers without object stores (VM

to VM only).

We use the open-source GCT fork of GridFTP [17]. Although GCT GridFTP theoretically

supports striped transfers across multiple machines, we were unable to find a supported non-
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commercial implementation. To make a fair comparison, we run both GCT GridFTP and Skyplane

with a single VM per region. Skyplane is 1.6× faster than GCT GridFTP.

We implement RON’s path selection heuristic in Skyplane to compare overlays between RON

and Skyplane. Our results show that Skyplane has better cost and throughput than RON. Skyplane

with routes from RON’s path selection heuristic achieves 3.5× higher throughput than Skyplane

with a single VM but at 62% cost overhead. Skyplane’s planner instead finds overlay paths with up

to 4.7× higher throughput than the direct path within a 14% cost overhead.

4.8 Related Work

Skyplane builds on the overlay network literature [15, 31, 160]. As discussed in §4.1, Skyplane

adapts classical overlays to the cloud setting, accounting for the price of network bandwidth and

leveraging the elasticity of cloud resources. CRONets [31] briefly discusses cost, but focuses on

comparing cloud-based options to private leased lines. Unlike Skyplane, it does not discuss how to

manage the cost of cloud resources. Lai et al. [111] find relay regions improve throughput in AWS

when utilizing a single TCP connection but find the 2 Gbps instance NIC limit from their chosen

instance class limits the benefit of overlay paths. CloudCast [149] examines the use of triangle

overlays in the cloud to reduce network latency while Skyplane examines throughput.

Several existing efforts [58, 119, 146] aim to optimize bulk data transfers by reducing the amount

of data transferred. Such techniques are complementary to Skyplane; one can first apply these

techniques to reduce the amount of data to transfer, and then apply Skyplane’s techniques to

transfer that reduced data efficiently. Unlike Skyplane, these works do not use cost when selecting

the network path to use for a transfer.

Another line of research aims to improve bulk data transfers by improving resource management.

GridFTP [7] is a tool for wide-area transfers that techniques such as using multiple machines and

TCP connections. GridFTP sends all data over the direct path and does not utilize overlays. Khanna

et al. [98] explore application of network overlays to GridFTP but do not consider elasticity and

egress price in the cloud. Other solutions, like PSockets [161], also use parallel TCP connections

for high bandwidth. Pied Piper [26] also explored how cloud resource elasticity could be used to

improve cloud data transfers, but utilize a different mechanism than Skyplane.

There have been decades of improvements and optimizations at the transport layer to make TCP

perform better in large-BDP settings within TCP itself [8, 28, 33, 71], while others concern operating

system support for TCP [43, 51, 117]. Improvements to TCP are complementary to Skyplane.

CodedBulk [168] uses network coding to complete bulk-transfer multicast jobs quickly [168].
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Another set of research [35, 175, 182] investigates how to schedule urgent and non-urgent bulk

transfers to meet a transfer’s deadline. None of these techniques consider the cost of transferring

data in the cloud.

Traffic engineering (TE) systems, like Google’s B4 [80, 89] and BwE [108] and Microsoft’s

SWAN [79], Cascara [157], and BlastShield [105], are used internally by cloud providers to navigate

the cost-performance trade-off in their wide-area networks. The precise nature of the trade-off

differs from Skyplane in two ways. First, TE systems consider costs in terms of the bandwidth

provisioned (e.g., the cost of installing long-distance cables [89], or the 95th percentile bandwidth

for peering links [157]). In contrast, Skyplane considers cost from the perspective of a cloud

customer, where the cost depends on the volume and not bandwidth of data transferred. Second,

TE systems like Cascara [157] assume a static topology and aim to reallocate bandwidth to save

cost, with a global view of a single provider’s network. Skyplane optimizes a single user’s transfer,

with the ability to use overlay regions in multiple cloud providers’ networks.

Skyplane has similarities to Content Delivery Networks (CDNs) [160], most notably in that both

make use of overlay networks. However, Skyplane’s focus is different from CDNs. CDNs focus on

caching objects near users, in order to provide low network latency. In contrast, Skyplane focuses

on transferring large amounts of data quickly, with a focus on achieving high bandwidth rather

than low network latency such as in workloads like ML training and database replication. CDNs

are more suitable for workloads where popular objects need to be replicated to many regions so

that geo-distributed users can access them with low network latency.

VM migration [42, 70, 90, 110] aims to balance VM downtime and bandwidth consumed when

transferring data. Supercloud [90] uses a network of vSwitches in an overlay that maintains TCP

connections upon migration, not to provide high bandwidth at low cost.

Some existing research efforts and commercial products focus on bulk transfer jobs that are

not time-critical. For example, Laoutaris et al. [112] propose techniques to reduce the cost of

transferring data for delay tolerant applications.

Cloud providers provide services for bulk transfer, such as AWS Snowball [155], Azure Data

Box [19], and GCP Transfer Appliance [139], that have users ship their data via physical drives via

the postal service. For sufficiently large transfers, these services may allow data to be transferred

into the cloud datacenter more quickly than using the Internet.
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4.9 Conclusion

This paper explores how to efficiently transfer data between cloud regions using cloud-aware

overlay networks. Our key observation is that principles from overlay networks can be applied to

the cloud setting to identify high-quality network paths that lead to fast transfer times. However,

adapting principles from overlay networks to the cloud setting requires consideration of cloud

resource pricing, most notably the egress fees associated with network bandwidth. Skyplane

manages the trade-off between performance and cost when performing bulk data transfer. It

works by accepting a user- or application-provided constraint on performance and solving a mixed

integer linear program (MILP) to obtain the optimal data transfer plan. Skyplane can reduce the

time to transfer data by up to 5.0× at minimal additional cost.
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Chapter 5

Conclusion

This dissertation aims to address two key challenges when building large language models: ro-

bustness and scalability. Chapter 2 addresses robustness through the lens of sensitivity to input

perturbations. ContraCode introduced a new method to learn code representations robust to

label-preserving transformations. Chapter 3 introduced Checkmate, an algorithm to train neural

networks beyond GPU memory capacity limits with optimal rematerialization. Chapter 4 con-

siders another aspect of the scalability problem: the management of large pre-training datasets.

Skyplane is a system for bulk data transfer between cloud object stores, thereby enabling ever

larger pre-training datasets when training models in the cloud.

There is considerable exciting future directions in both robustness and scalability. While not

addressed in this thesis, I previously investigated methods to improve compositional generalization

in large language models. This direction remains challenging for state-of-the-art models. Moreover,

large language models exhibit hallucination where ungrounded text can be generated containing

unfactual information. Explicit memorymechanisms for large-languagemodels remain a promising

approach to address this problem. Finally, the scalability of large language models remains a

ever present challenge. I am particularly excited about methods to enable training these large

models without massive distributed clusters. This would enable academic researchers, such as

myself during my time at Berkeley, to train large language models without the need for expensive

large-scale cloud infrastructure.
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