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Abstract
Scalable Binding
by
Allan Anwar Jabri
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Alexei A. Efros, Chair

Any useful agent will face many tasks and must rely on transfer of prior knowledge acquired
in a scalable manner. This thesis explores inductive biases that enable scalable pre-training
of representations — and algorithms that bind them — from the design of architectures capable
of adaptive computation for scalable generative modeling, to self-supervised objectives that
prepare embodied agents with mechanisms for state representation and reward maximization.

First, I consider the challenge of gracefully scaling generative models to high-dimensional data,
motivating the importance of adaptive computation, a property missing from predominant
architectures. This leads to a simple attention-based architecture for diffusion models
capable of dedicating computation adaptively across its input and output, attaining superior
performance in image and video generation despite being more domain-agnostic and efficient.
Attention visualizations demonstrate how the model learns to allocate computation to more
complex parts of samples, and in cases of high redundancy such as video prediction, can even
copy information when needed.

Next, I show how self-supervised objectives that exploit more domain knowledge can be
used to efficiently solve related downstream tasks. In the domain of perception, I show
how a simple self-supervised objective for space-time attention can be used to solve a range
of tasks involving temporal correspondence, a central challenge in state representation for
embodied agents. In the domain of reinforcement learning, I motivate the importance of
scalable construction of task distributions and demonstrate how meta-reinforcement learners
can be pre-trained with self-supervised reward models.

Finally, I conclude with a perspective on open problems in scalable pre-training, with a focus
on the interplay between transfer across modalities, universal generative modeling objectives
for discrete and continuous data, and adaptive computation.
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Chapter 1

Introduction

Any useful agent will face many tasks and must rely on transfer of prior knowledge in order to
learn new tasks efficiently. More than ever before, it is clear that the most effective approaches
for acquiring prior knowledge are learning systems that scale with computation and data [224,
86]. The extent to which these systems scale with computation is contingent on the cost of
the inductive bias in their underlying architectures, objectives, and training data (Figure
[1.1). While early applications of machine learning resorted to manual design of task-specific
representations, since the seminal work of Krizhevsky et al [132], progress in supervised deep
learning has shown how shifting the burden of inductive bias from representation design to
architecture and training data design can allow for learning stronger representations in a
manner that scales more gracefully for learning many tasks.

The underlying lesson is that inductive bias is useful insofar as it constrains the space
of possible solutions, but can be detrimental if its underlying assumptions are limiting
and should scale across tasks gracefully: despite being more expensive to design, manual
representations based on human understanding of complex structure eventually lose out to
data-driven representations learned end-to-end with architectures laced with more general
inductive bias, since they more readily benefit from scaling computation to eventually surpass
human insight.

1.1 Scalable Pre-training

While supervised deep learning allows for end-to-end learning representations, the cost of
task-specific data annotation still limits scaling across tasks. This motivates approaches for
pre-training with objectives that do not require such detailed annotation and thus scale even
better across domains by leveraging abundant unlabeled data.

Two key approaches for scalable pre-training are self-supervised learning and generative
modeling. Self-supervised learning shifts the burden from data annotation to the design
of annotation-free objectives that are hypothesized to induce learning of representations
similar to those needed for downstream tasks. The design of self-supervised objectives thus
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Scalability of Inductive Bias for Transfer
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Figure 1.1: Scalability of Inductive Bias for Transfer. The scalability of a modern
learning system for acquiring prior knowledge is contingent on the cost of the inductive biase
laced in its underlying data, architecture, and objectives. Self-supervised and generative
learning — i.e. pre-training — allow for acquiring transferrable biases in a scalable manner
by shifting the burden from representation design and human data annotation to label-free
objectives and unlabeled data curation.

hinges on an understanding of tasks in domains of interest, and assumptions that capture
factors of variation in input data that should be modeled. While this improves the sample
efficiency of supervised learning of downstream tasks, self-supervised objectives are not
entirely task-agnostic and must be designed for groups of tasks.

On the other hand, generative modeling considers more universal objectives based on
compression of the input data distribution, such as maximizing data likelihood and proxies
thereof. Because these objectives tend to minimally rely on domain-specific assumptions,
these techniques tend to be viewed as unsupervised learning and are more generally applicable
across domains. While this comes at the cost of having to optimize the more demanding
objective of high-dimensional stochastic data prediction, progress in large-scale neural network
training has unlocked the ability to fit models with orders of magnitude more parameters
than ever before. This has ushered in an era wherein the complexity of generative modeling
can be counteracted by sufficiently expressive function approximators, such that the overhead
of generative pre-training has begun to bear fruit, leading to breakthroughs in language
modeling|[184], |21], image and video generation|44, 188 |104], and geometric graph applications
such as protein design|141]. While self-supervised learning treats representation as the end
itself, generative pre-training learns representations — and as we will next discuss, algorithmic
subroutines that bind representations — as a means to the end of data prediction.
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1.2 Mechanisms of Transfer: Binding

While pre-training techniques aim for transferable knowledge, it is worth asking what mech-
anisms underlie transfer. The traditional view of pre-training and unsupervised learning
centers around the learning of representations capturing useful patterns or associations
in input data|l4]. Recent developments in large-scale generative pre-training have shown
that pre-training large neural networks to model conditional distributions of diverse data
is not only useful for learning representations, but also for learning algorithms (such as
in-context learning |21}, 31]) that manipulate sequences of representations in a manner that
transfers across domains|119} 21]. For example, the Induction Head hypothesis of Olsson et
al |167] puts forth evidence that generative pre-training of sequence models on text data (e.g.
language modeling) using architectures with relational inductive biases (e.g. attention-based
architectures such as Transformers|235]) can lead to the emergence of attention-heads that
implement operations for inductive learning that point to, copy, and transform representations
of the input in order to produce the output. Surprisingly, these neural algorithms seem
generalize to inputs beyond the training data, such as random sequences of tokens, and seem
to be a consequence of the burstiness of rare tokens in training data (a description which fits
many kinds of natural data, such as natural language)|31]. Thus, pre-training can induce not
only useful representations but also more general purpose algorithms that route, relate, and
transduce — more generally, bind — said representations for improved generalization.

While these emergent properties are exciting from the perspective of machine learning, it
is interesting to note their relevance to long-standing problems in neuroscience and cognitive
science, such as the binding problem [191] |6} [230, 56|, which asks the question of how humans
consolidate important attributes embedded in the flurry of high-dimensional observations
drawn from disparate sensors to enable goal-directed behaviour. While on the surface this
seems to correspond most directly to the machine learning problem of representation learning,
predominant mechanistic theories indulge the importance of subroutines for domain-agnostic
routing of information between representations. For example, feature integration theory
(FIT) of Treisman et al [230] proposes subroutines of sequential attention operating on top of
representations produced by early cortex. Global Workspace Theory|6] purports that domain-
specific processors operate in parallel to produce representations connected to a central global
workspace that integrates and broadcasts information. Similar links are explicitly established
in the more recent position paper by Greff, Steenkiste, and Schmidhuber [76], which draws
inspiration from the binding problem to motivate inductive biases in neural networks that
lead to emergent representations and operators for relational reasoning.

And yet, the Transformer|235] — with an underlying relational inductive bias that supports
many emergent properties evocative of binding (such as the Induction Head hypothesis) — was
motivated by a need for more parallelizable approaches for training large-scale auto-regressive
models. Machine learning systems need not imitate systems hypothesized to underlie human
intelligence — notably, since human understanding of human intelligence is fraught with
issues of reproducibility and verifiability, and since machines are not subject to the same
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constraintd] - but it is no coincidence that mechanistic accounts of emergent solutions in
machine and human intelligence sometimes converge despite arising from divergent paradigms.
Though these fields operate on different computational substrates, the constraints faced by
their systems are much more similar than different, such that their inductive biases are bound
to be shared.

1.3 Contributions

This thesis explores inductive biases that enable scalable pre-training, from the design of
architectures capable of adaptive computation for scalable generative modeling, to self-
supervised objectives that prepare embodied agents with mechanisms for state representation
and reward maximization.

In Chapter [2] I focus on the role of neural network architecture in scaling generative
modeling to high-dimensional data. In particular, motivated by the ubiquity of redundancy
in natural data, I argue for the importance of adaptively allocating computation to subspaces
of the input and output that carry more information — a property missing from predominant
architectures such as Transformers and convolutional networks, which tile the input and
output with computation uniformly. This leads to an attention-based architecture in which
most computation is applied on auxiliary memory vectors which read from and write to
the set of input tokens with attention. Despite being domain-agnostic and more efficient, it
allows for superior image and video generation. Moreover, we will see that visualizing the
read attention allows for identifying input tokens favoured by the auxiliary memory and that
thus dominate computation. Throughout generation, read attention (and thus computation)
is sparse and biased towards parts of images with more information; for video generation,
the network learns to copy information from conditioning frames and focuses computation
on regions with more complex dynamics. This behaviour emerges even though position
representations are fully learned.

Shifting focus, I show how leveraging more domain-specific structure can lead to self-
supervised objectives for more targeted pre-training for downstream tasks.

In Chapter [3] I show how a simple self-supervised objective can allow for solving a range
of perception tasks involving space-time correspondence, a challenge in state representation
for embodied agents which typically requires expensive human annotation. The approach
allows for learning a representation for space-time attention that transfers to optical flow,
space-time segmentation, and tracking, with a unified self-supervised loss function. Moreover,
optimizing the objective with a sequence model leads to object permanence.

In Chapter , I motivate the importance of scalable task (e.g. reward function) dis-
tributions for pre-training in-context reinforcement learners. This leads to a technique for
constructing self-supervised reward models which can be used to derive training objectives

1For instance, backpropagation and weight sharing are hard to implement in biological neural networks
but easy for artificial neural networks.
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for meta-reinforcement learning agents such as RL%[49] without human annotation. We will
see that this allows for accelerated reinforcement learning learning of related downstream
reward functions specified by humans.

Finally, I conclude with a perspective on open problems in scalable pre-training, with
a focus on the interplay between transfer across modalities, universal generative modeling
objectives for discrete and continuous data, and adaptive computation.



Chapter 2

A Scalable Architecture for Generative
Modeling

Generative models learn to predict conditional distributions of high-dimensional data. In
natural data, conditional entropy is never distributed evenly across subspaces of each data
point. In this chapter, we argue for the importance of adaptive computation in generative
modeling. This leads us to develop the Recurrent Interface Network (RIN), a neural net
architecture that learns to allocate computation adaptively to parts of the input and output,
allowing it to scale to generate high-dimensional data. The hidden units of RINs are partitioned
into the interface, which is locally connected to inputs, and latents, which are decoupled
from inputs and can exchange information globally. The RIN block selectively reads from the
interface into latents for high-capacity processing, with updates written back to the interface.
Stacking multiple blocks allows for more effective routing across local and global levels. While
routing adds overhead, the cost can be amortized in recurrent computation settings where
inputs change gradually while more global context persists, such as iterative generation using
diffusion models. To leverage recurrence, we propose a latent self-conditioning technique
that “warm-starts” the latents at each iteration of the generation process. When applied to
diffusion models operating directly on pixels, RINs yield state-of-the-art image and video
generation without cascades or guidance, while being domain-agnostic and up to 10x more
efficient compared to specialized 2D and 3D U—NetsE]

2.1 Adaptive Computation

The design of effective neural network architectures has been crucial to the success of
deep learning [132, 93, 235|. Influenced by modern accelerator hardware, predominant
architectures, such as convolutional neural networks [66, 135, 93| and Transformers [235],
allocate computation in a fixed, uniform manner over the input data (e.g., over image pixels,

!This work was published as Scalable Adaptive Computation for Iterative Generation, Jabri et al,
ICML 2023 [110].
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Figure 2.1: Overview of Recurrent Interface Networks. The input is tokenized to form
the interface X. A stack of blocks route information between X and latents Z, avoiding
quadratic pairwise interactions between tokens in X (bottom left). Note that |Z] < |X], and
most computation is applied to Z, which allows for scaling to large X. The network’s read
attention maps reveals how tokens are favored for latent computation (right), when trained
for a task like diffusion generative modeling. See Figure @ for more visualizations.

image patches, or token sequences). Information in natural data is often distributed unevenly,
or exhibits redundancy, so it is important to ask how to allocate computation in an adaptive
manner to improve scalability. While prior work has explored more dynamic and input-
decoupled computation, e.g., networks with auxiliary memory [41, 185] and global units
[260} 23, [114}, [113], general architectures that leverage adaptive computation to effectively
scale to tasks with large input and output spaces remain elusive.

In this chapter, we consider this issue as it manifests in high-dimensional generative
modeling tasks, such as image and video generation. When generating an image with a
simple background, for instance, an adaptive architecture should ideally be able to allocate
computation to regions with complex objects and textures, rather than regions with little
or no structure (e.g., the sky). When generating video, one should exploit frame to frame
redundancy, allocating less computation to static regions. While such non-uniform allocation
of computation becomes more crucial in higher-dimensional data, achieving it efficiently is
challenging on modern hardware, given the preference for fixed computation graphs with
dense matrix multiplication.

To address this challenge, we introduce a new architecture, dubbed Recurrent Interface
Networks (RINs). In RINs (Fig. 2.1), hidden units are partitioned into the interface and
latents. Interface units are locally connected to the input and grow linearly with input size. In
contrast, latents are decoupled from the input space, forming a more compact representation.
Computation proceeds in a stack of “read-process-write” blocks: in each block, information
is selectively read from the interface into the latents for high-capacity global processing,
after which incremental updates are sent back to the interface. Alternating computation
between latents and the interface allows information to be processed at local and global levels,
accumulating context for better routing. As such, RINs allocate computation more effectively
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Figure 2.2: Class-conditional ImageNet 1024x1024 samples generated by RINs for diffusion
modeling of pixels. While inputs of this size lead to 16384 data tokens, RINs can learn to
route the bulk of computation through just 256 latent vectors, using only domain-agnostic
attention blocks.
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Figure 2.3: RINs outperform U-Nets widely used in recent state-of-the-art image and video
diffusion models, while being significantly more efficient and domain-agnostic. Our models are
simple pixel-level denoising diffusion models without cascades as in (CDM [103]) or guidance
(as in ADM [44] and VD [105]). =: from [34] with input scaling.

than uniform models, scaling particularly well when information is unevenly distributed or
redundant across the input, as is common in natural data.

Iterative routing of information does require some overhead, which can overshadow
potential efficiency gains if the latents are initialized without context, especially for shallow
networks. This cost can be reduced in scenarios involving recurrent computation, where
network inputs change gradually and persistent context can be leveraged across iterations, in
effect forming a deeper network. As a concrete application, we consider iterative generation of
images and video with denoising diffusion models [213, (101} 214}, 215|. To leverage recurrence,
we propose latent self-conditioning as a “warm-start” mechanism for latents to amortize the
cost of effective information routing. Instead of reinitializing latents at each iteration, we
use latents from previous iterations as additional context, similar to a recurrent network but
without requiring backpropagation through time.

Our experiments with diffusion models show that RINs outperform U-Net architectures
for image and video generation (see Fig. [2.3)). For class-conditional ImageNet models, from
64x64 up to 1024x1024, RINs outperform leading diffusion models that use cascades [103]
or guidance [44} 102|, while consuming up to 10x fewer FLOPs per inference step. For
video prediction, RINs surpass leading approaches [105] on the Kinetics600 benchmark while
reducing the FLOPs of each step by 10x.
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Our contributions are summarized as follows:

e We propose RINs, a domain-agnostic architecture for input-dependent allocation of
computation that scales well to high dimensional data.

e We identify recurrent computation settings in which RINs thrive and advocate latent
self-conditioning to amortize the cost of routing.

e Despite reduced inductive bias, this leads to significant performance and efficiency gains
over 2D and 3D U-Nets in diffusion models for image and video generation.

2.2 Recurrent Interface Networks

In RINs, the interface is locally connected to the input space and initialized via a form
of tokenization (e.g., patch embeddings), while the latents are decoupled from data and
initialized as learnable embeddings. The basic RIN block allocates computation by routing
information between the interface and the latents. By stacking multiple blocks, we can
update the interface and latents incrementally, such that bottom-up and top-down context
can inform routing in the next block (see Fig. [2.4). Finally, a readout function (e.g. a linear
projection) produces the network’s output from the final interface representation.

Since the interface is tied to data, it grows linearly with input size and may be large (e.g.,
thousands of vectors), while the number of latent units can be much smaller (e.g., hundreds
of vectors). The computation operating directly on the interface (e.g. tokenization, read,
write) is uniform across the input space, but is designed to be relatively light-weight, to
limit the amount of uniform computation. The high-capacity processing is reserved for the
latents, formed by reading information from the interface selectively, such that the bulk of
the computation can be adapted to the structure and content of the input. When there
is redundancy in the input, the latents can further compress the input for more efficient
processing.

Compared to convolutional nets such as U-Nets [190, [101|, RINs do not rely on fixed
downsampling or upsampling for global computation. Compared to Transformers |235|, RINs
operate on sets of tokens with positional encoding for similar flexibility across input domains,
but avoid pairwise attention across tokens to reduce compute and memory requirements per
token. Compared to other decoupled architectures such as Perceiver [114] [113|, alternat-
ing computation between interface and latents enables more expressive routing without a
prohibitively large set of latents.

While RINs are versatile, their advantages are more pronounced in recurrent settings,
where inputs may change gradually over time such that it is possible to propagate persistent
context to further prime the routing of information. Therefore, here we focus on the application
of RINs to iterative generation with diffusion models.
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2.2.1 Iterative Generation with Diffusion Models

We first provide a brief overview of diffusion models |213} 101}, 214} |215| 123, [35]. Diffusion
models learn a series of state transitions to map noise € from a known prior distribution to
x( from the data distribution. To learn this (reverse) transition from noise to data, a forward
transition from x to @, is first defined:

x; = \/Y(t) o+ /1 —7(t) €,

where € ~ N (0,I), t ~U(0,1), and ¥(¢) is a monotonically decreasing function from 1 to 0.
Instead of directly learning a neural net to model the transition from @; to x;_A, one can
learn a neural net f(x;,t) to predict € from x;, and then estimate x;_ A from the estimated €
and x;. The objective for f(a;,t) is thus the ¢y regression loss:

Eii0.1),e~n01) [ (VA1) o + /1 — (1) €,t) — €.

To generate samples from a learned model, we follow a series of (reverse) state transition
T — 1A — -+ — xg. This is done by iteratively applying the denoising function f on
each state x; to estimate €, and hence x;_A, using transition rules as in DDPM [101] or
DDIM [214]. As we will see, the gradual refinement of & through repeated application of the
denoising function is a natural fit for RINs. The network takes as input a noisy image x;, a
time step t, and an optional conditioning variable e.g. a class label y, and then outputs the
estimated noise €.

2.2.2 Elements of Recurrent Interface Networks

We next describe the major components of RINs, illustrated in Figure [2.4]

Interface Initialization. The interface is initialized from an input x, such as an image
Timage € R3] or video Tyigeo € RMX*3 by tokenizing z into a set of n vectors X € R4,
For example, we use a linear patch embedding similar to [47] to convert an image into
a set of patch tokens; for video, we use 3-D patches. To indicate their location, patch
embeddings are summed with (learnable) positional encodings. Beyond tokenization, the
model is domain-agnostic, as X is simply a set of vectors.

Latent Initialization. The latents Z € R™*? are (for now) initialized as learned
embeddings, independent of the input. Conditioning variables, such as class labels and
time step t of diffusion models, are mapped to embeddings; in our experiments, we simply
concatenate them to the set of latents, since they only account for two tokens. While n is
linear in size of x, m is decoupled from the input size and can remain small even for large
inputs, since routing adaptively selects information from the interface for processing.

RIN Block. The RIN block routes information by reading from X into Z, computing on
7, and writing updates back to X. We implement these operations with key components of
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Figure 2.4: The RIN computation graph. RINs stack blocks that read, compute, and write.
Read operations load information into latents with cross-attention. Compute operations
exchange information across latent tokens with self-attention and across channels with
token-wise MLPs. Write operations update the interface with information from the latents
with cross-attention, and mix information across channels with token-wise MLPs. Latent
self-conditioning (gray lines) allows for propagation of latent context between iterations.

Transformers:

Read: 7 =7+ MHA(Z, X)

Z =7 +MLP(Z)

Compute: 7 =7+ MHA(Z, 7)
(xK] Z=Z+MLP(Z)
Write: X =X +MHA(X, 2)

X = X + MLP(X)

MLP denotes a multi-layer perceptron, and MHA(Q, K) denotes multi-head attention with
queries Q, and K being the keys and valuesE] The depth of latent computation layers K
allows for controlling the ratio of computation occurring on the interface and latents. From
the perspective of information exchange among hidden units, MHA propagates information
across vectors (i.e. between latents, or between latents and interface), while the MLP (applied
vector-wise, with shared weights) mixes information across their channels. Note that here
computation on the interface is folded into the write operation, as MHA followed by an MLP.

RIN blocks can be stacked to allow latents to accumulate context and write incremental
updates to the interface. To produce output predictions, we apply a readout layer (e.g. a
linear projection) to the corresponding interface tokens to predict local outputs (such as
patches of images or videos). The local outputs are then combined to form the desired output
(e.g., patches are simply reshaped into an image). A detailed implementation is given in

Appendix [2.6.1] (Alg [3).

2See [235| for details about multi-head attention, which extends single-head attention defined as
Attention(Z, X) = softmax(ZWoWL X T)XWy. MLP(Z) = o(ZW; + by)Wa + by where o is the GELU
activation function [96]. W are learned linear projections.
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Figure 2.5: Latent Self-Conditioning for Diffusion Models with RINs. (Left) During training,
latents for self-conditioning are first estimated with a forward pass of the denoising network
(with zeros as previous latents); we then condition the denoising network with these estimated
latents by treating them as latents of the previous iteration (without back-propagating
through the estimated latents). (Right) During sampling, we start with zero latents, and use
computed latents at each time-step to condition the next time-step.

2.2.3 Latent Self-Conditioning

RINs rely on routing information to dynamically allocate compute to parts of the input.
Effective routing relies on latents that are specific to the input, and input-specific latents
are built by reading interface information. This iterative process can incur additional cost
that may overshadow the benefits of adaptive computation, especially if the network begins
without context, i.e. from a “cold-start”. Intuitively, as humans, we face a similar “cold-start”
problem under changes in the environment, requiring gradual familiarization of new state to
enhance our ability to infer relevant information. If contexts switch rapidly without sufficient
time for “warm-up”, we repeatedly face costly adaptation. The “warm-up” cost in RINs can
be similarly amortized in sequential computation settings where inputs gradually change
while global context persists. We posit that in such settings, there exists useful context in
the latents accumulated in each forward pass.

Warm-starting Latents. With this in mind, we propose to “warm-start” the latents
using latents computed at a previous step. Concretely, the initial latents at current time
step t are the sum of the learnable embeddings Z.,,;, (independent of the input), and a
transformation of previous latents from ¢’ which are a function of correlated input at time
step t':

Zy = Zemp + LayerNorm(Z, + MLP(Zy))

where LayerNorm [5] is initialized with zero scaling and bias, so Z; = Z,,; early in training.

In principle, this relies on the existence of latents from a previous time step, Z;, and
requires unrolling iterations and learning with backpropagation through time, which can
hamper scalability. A key advantage of diffusion models is that the chain of transitions
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Algorithm 1 Training RINs with Latent Self-Cond.

def train_loss(x, self_cond_rate, latent_shape):
# Add noise.
t = uniform(0, 1)
eps = normal (mean=0, std=1)
x_t = sqrt(gamma(t)) * x + sqrt(l-gamma(t)) * eps

# Compute latent self-cond estimate.
latents = zeros(latent_shape)
if uniform(0, 1) < self_cond_rate:
_, latents = rin((x_t, latents), t)
latents = stop_gradient(latents)

# Predict and compute loss.
eps_pred, _ = rin((x_t, latents), t)
loss = (eps_pred - eps)**2

return loss.mean()

Algorithm 2 Sampling with Latent Self-Cond.

def generate(steps):
x_t = normal (mean=0, std=1)
latents = zeros(latent_shape)

for step in range(steps):
# Get time for current and next states.
t =1 - step / steps
t_ml = max(1 - (step + 1) / steps, 0)

# Predict eps.
eps_pred, latents = rin((x_t, latents), t)

# Estimate x at t_ml.
x_t = ddim_or_ddpm_step(x_t, eps_pred, t, t_ml)

return x_t

decomposes into conditionally independent steps allowing for highly parallelizable training, an
effect we would like to preserve. To this end, we draw inspiration from the self-conditioning
technique of [35], which conditions a denoising network at time ¢ with its own unconditional
prediction for time t.

Concretely, consider the conditional denoising network f(x,t, Z;/) that takes as input @
and ¢, as well as context latents Z,. During training, with some probability, we use f(x,t,0)
to directly compute the prediction €. Otherwise, we first apply f(a;,t,0) to obtain latents
Z, as an estimate of Zy, and compute the prediction with f(ay, t, sg(Zt)). Here, sg is the
stop-gradient operation, used to avoid back-propagating through the latent estimates. At
inference time, we directly use latents from previous time step ¢’ to initialize the latents at
current time step t, i.e., f(@,t, Zy), in a recurrent fashion. This bootstrapping procedure
marginally increases the training time ( < 25% in practice, due to the stop-gradient), but has a
negligible cost at inference time. In contrast to self-conditioning at the data level [35], here we
condition on the latent activations of the neural network, so we call it latent self-conditioning.

Figure [2.5 illustrates the training and sampling process with the proposed latent self-
conditioning. Algorithms [I] and [2] give the proposed modifications to training and sampling
of the standard diffusion process. Details of common functions used in the algorithms can be
found in Appendix [2.6.2]
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Table 2.1: RIN configurations for each task.

128px  256px 512px 1024px Kinetics

|Z| 128 256 256 256 256

dim(2) 1024 1024 768 768 1024

| X| 1024 1024 4096 16384 2048

dim(X) 512 512 512 512 512
Blocks 6 6 6 6 6
Depth K 4 4 6 8 4

Tokenization 4x4 8x8 8x8 8x8 2x4x4

2.3 Experiments

We demonstrate that RINs improve state-of-the-art performance on benchmarks for image
generation and video prediction with pixel-space diffusion models. In all experiments, we
do not use guidance. For each benchmark, we also compare the number of floating point
operations (GFLOPs) across methods; as we will see, RINs are also more efficient. Samples
and further visualizations are provided in Appendix [2.3.5] and the supplementary material.

2.3.1 Implementation Details

Noise Schedule. Similar to [123] [35], we use a continuous-time noise schedule function
v(t). By default we use a cosine schedule, as in previous work [163| but find it is sometimes
unstable for higher resolution images; we conjecture this is due to a relatively high probability
of sampling extremely high or low noise levels, which contribute noise in gradients. We
therefore explore schedules based the sigmoid function with different temperature, which shift
weight away from the tails of the noise schedule. Detailed implementation of noise schedules
and ablations are provided in Appendix For large images, we report results obtained
with models trained using input scaling|34} 36].

Tokenization and Readout. For image generation, we tokenize images by extracting
non-overlapping patches followed by a linear projection. We use a patch size of 4 for 64x64
and 128x128 images, and 8 for larger images. To produce the output, we apply a linear
projection to interface tokens and unfold each projected token to obtain predicted patches,
which we reshape to form an image.

For video, we tokenize and produce predictions in the same manner as images; for 16x64x64
inputs, we use 2x4x4 patches, resulting in 2048 tokens. For conditional generation, during
training, the context frames are provided as part of the input, without noise added. During
sampling, the context frames are held fixed.

Table compares model configuration across tasks. See Appendix for detailed
model and training hyper-parameters, and Appendix for detailed pseudo-code of the
full model.
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Figure 2.6: Visualizing Adaptive Computation. The read attention reveals which information
is routed into latents for heavy computation. We visualize the read attention (averaged
across latents) at each block (top) or the last block (bottom), at selected steps of the reverse
process when generating ImageNet 512x512 samples. While it is similar across samples in
early iterations, it becomes more sparse and data-specific, focusing latent computation on
more complex regions.
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2.3.2 Experimental Setup

For image generation, we mainly use the ImageNet dataset [193]. We only use center crops
and random left-right flipping. We also use CIFAR-10 [131] to show the model can be trained
with small datasets. For evaluation, we follow common practice, using FID [98] and Inception
Score |196] as metrics computed on 50K samples, generated by 1000 steps of DDPM.

For video prediction, we use Kinetics-600 dataset [29] at 16x64x64 resolution. For
evaluation, we follow common practice [105] and use FVD [233] and Inception Scores computed
on H0K samples, generated by 400 or 1000 steps of DDPM.

2.3.3 Comparison to SOTA

Image Generation. Table compares our architectures against existing state-of-the-art
pixel-space diffusion models on ImageNet. Despite being fully attention-based and single-scale,
our model attains superior generation quality (in both FID and IS) compared to existing
models that rely on specialized convolutional architectures, cascaded generation, and/or
class-guidance. Both the parameter count and FLOPs are significantly reduced in our model
compared to baselines, which is useful for training performant models at higher resolutions
without relying on cascades. For large images (512 and 1024), we report performance of RINs
trained with input scaling [34]. We find that 256 latents are sufficient for strong performance
even for 1024x1024 images, which produce 16384 tokens; this model are 2x more efficient
than the 256x256 ADM UNet, despite operating at 4x higher resolution. Samples are shown
in Fig. P2} 27 & 9.

Despite the lack of inductive bias, the model also works well with small datasets such as
CIFAR-10. Compared to state-of-the-art FID of 1.79 EDM [120], we obtain 1.81 FID without
using their improved sampling procedure. While our model has 31M parameters and trains
in 3 hours on 8 TPUv3 chips, their model has 67M parameters and trains in 2 days on 8
A100 GPUs ( faster accelerators).

Video Generation. Table compares our model to existing methods on the Kinetics-
600 Video Prediction benchmark. We follow common practice and use 5 conditioning frames.
Despite the architecture’s simplicity, RINs attain superior quality and are more efficient (up
to 10x per step), without using guidance. Beyond using 3D patches instead of 2D patches,
the architecture is identical to that used in 256x256 image generation; while the number
of tokens is 2048, the model can attain strong performance with 256 latents. The model
is especially suitable for video given the intense temporal redundancy, and learns to copy
information and dedicate computation to regions of change, as discussed in Section [2.3.5]
Samples are shown in Fig. [2.10]

2.3.4 Ablations

For efficiency, we ablate using smaller architectures (latent dimension of 768 instead of 1024)
on the ImageNet 64x64 and 128x128 tasks with higher learning rate (2x1073) and fewer
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Figure 2.7: Class-conditional ImageNet 768x768 samples generated by RINs with 256 latents
and 4096 tokens.
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Table 2.2: Comparison to leading approaches for Class-Conditional Generation on ImageNet.
T: use of class guidance, 1: [44], 2: [102], 3: [103].

Method FID| ISt GFLOPs Param (M)
IN 64x64

ADM ! - 2.07 210 297
CF-guidance 2t 1.55 66.0 - -
CDM 3 1.48  66.0 —~ -
RIN 1.23  66.5 106 281
IN 128x128

ADM ! 5.91 - 538 386
ADM + guid. ' 2.97 - >538 >386
CF-guidance 1 2.43 156.0 - -
CDM 3 3.51  128.0 1268 1058
RIN 2.75  144.1 194 410
IN 256x256

ADM ! 10.94  100.9 2212 553
ADM + guid.'f 459 186.7  >2212 >553
CDM? 4.88  158.7 2620 1953
RIN 451  161.0 334 410
RIN + input scaling 3.42 182.0 334 410
IN 512x512

ADM ! 23.2  58.1 4122 559
ADM + guid.'f 772 1727 >4122 =559
RIN + input scaling 3.95 216.0 415 320
IN 1024x1024

RIN + input scaling 8.72 163.9 1120 412

updates (150k and 220k, respectively). While this performs worse than our best models, it is
sufficient for demonstrating the effect of different design choices.

Importance of Latent Self-conditioning. We study the effect of the rate of self-
conditioning at training time. A rate of 0 denotes the special case where no self-conditioning
is used (for training nor inference), while a rate > 0 e.g. 0.9 means that self-conditioning is
used for 90% of each batch of training tasks (and always used at inference). As demonstrated
in Figure there is a clear correlation between self-conditioning rate and sample quality
(i.e., FID/IS), validating the importance using latent self-conditioning to provide context for
enhanced routing. We use a rate of 0.9 for our best results reported.

Stacking Blocks. An important design choice in our architecture is the stacking of read-
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Table 2.3: Video Prediction on Kinetics. f: reconstruction guidance. 1: [39], 2: [240], 3:
[147], 4: [162], 5: [105)].

Method FVD IS GFLOPs Param (M)

DVD-GAN-FP! 69.1 - _ B
Video VQ-VAE?  64.3 - . _
TrIVD-GAN-FP? 257 12.54 - —

Transframer? 25.4 - — —

Video Diffusion®t 16.6 15.64 4136 1100
RIN - 400 steps ~ 11.5  17.7 386 411
RIN - 1000 steps 10.8 17.7 386 411

Noa o ®
w
&
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Rate of Self-conditioning # Params (10°) Patch Size (# tokens)

(a) Latent self-condition (b) Number of Blocks (c) Tokenization

Figure 2.8: Ablations. (a) Effect of the self-conditioning rate for training: self-conditioning
is crucial; a rate of 0 is the special case of no self-conditioning. (b) Effect of the read-
write/routing frequency: multiple rounds of read-writes are important to obtain the best
result. (c) Effect of tokenization: the model can handle a large number (4096, with 1x1
patches in this case) of tokens on the inferface.

process-write blocks to enhance global and local processing. For a fair comparison, we analyze
the effect of model size on generation quality for a variety of read-write frequencies (Fig. [2.8b))
obtained by stacking blocks with varying number of processing layers per block. Note that a
single read-write operation without latent self-conditioning is similar to architectures such as
PerceiverlO [113]. With a single read-write, the performance saturates earlier as we increase
model size. With more frequent read-writes, the model saturates later and with significantly
better sample quality, validating the importance of iterative routing.

Tokenization. Recall that images are split into patches to form tokens on the interface.
Fig. shows that RINs can handle a wide range of patch sizes. For instance, it can scale to
a large number of tokens (4096, for 1x1). While larger patch sizes force tokens to represent
more information (i.e., with 8x8 patches), performance remains reasonable.

Effect of Noise Schedule. We find that the sigmoid schedule with an appropriate
temperature is more stable training than the cosine schedule, particularly for larger images.



CHAPTER 2. A SCALABLE ARCHITECTURE FOR GENERATIVE MODELING 21

For sampling, the noise schedule has less impact and the default cosine schedule can suffice

(see Figure [2.13)).

2.3.5 Visualizing Adaptive Computation

To better understand the network’s emergent adaptive computation, we analyze how infor-
mation is routed by visualizing the attention distribution of read operations. For image
generation, this reveals which parts of the image are most attended to for latent computation.
Figure [2.6] shows the progression of two samples across the reverse process and the read
attention (averaged over latents) through the blocks of the corresponding forward pass. As
the generation progresses, the first read (guided by latent self-conditioning) is increasingly
adapted to the sample. The read attention distribution becomes more sparse and favour
regions of high information. Since the read attention loads information into the latents
for high capacity computation, this suggests that the model learns to dynamically allocate
computation on information as needed. Fig. further shows similar phenomena in the
video prediction setting, with the added effect of reading favouring information that cannot
merely be copied from conditioning frames, such as object motion and panning.

2.4 Related Work

2.4.1 Neural architectures

Recurrent Interface Networks bear resemblance to architectures that leverage auxiliary memory
to decouple computation from the input structure such as Memory Networks [251, 220], Neural
Turing Machines [74], StackRNN [117], Set Transformer [137], Memory Transformers |23,
Slot Attention [142|, BigBird [260], and Workspace models [72]. While latents in our work are
similar to auxiliary memory in prior work, we allocate the bulk of computation to latents and
iteratively write back updates to the interface, rather than treating them simply as auxiliary
memory. Recurrent Interface Networks are perhaps most similar to Set Transformers [136]
and Perceivers [114, [113], which also leverage a set of latents for input-agnostic computation.
Unlike these approaches, RINs alternate computation between the interface and latents,
which is important for processing of information at both local and global levels without
resorting to prohibitively many latents. Moreover, in contrast to existing architectures, latent
self-conditioning allows RINs to leverage recurrence; this allows for propagation of routing
context along very deep computation graphs to amortize the cost of iterative routing, which
is crucial for achieving strong performance.

2.4.2 Adaptive computation

Other approaches for adaptive computation have mainly explored models with dynamic
depth with recurrent networks [73| 57| or sparse computation [258|, facing the challenges
non-differentiability and dynamic or masked computation graphs. RINs are able to allocate
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Figure 2.9: Class-conditional samples from a model trained on ImageNet 256x256. Classes
from the top: space shuttle (812), arctic fox (279), lorikeet (90), giant panda (388), cockatoo
(89).
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compute non-uniformly despite having fixed computation graphs and being differentiable.
RINs are closely related to recurrent models with input attention such as [80], but scale
better by leveraging piecewise optimization enabled by diffusion models.

2.4.3 Diffusion models

Common diffusion models for images and videos can be roughly divided into pixel diffusion
models [213] 101}, 214, 44, |103} |120] and latent diffusion models [189]. In this work we focus
on pixel diffusion models due to their relative simplicity. It is known to be challenging to
train pixel diffusion models for high resolution images on ImageNet without guidance [44,
102| or cascades [103]. We show how improved architectures can allow for scaling pixel-level
diffusion models to such large inputs without guidance and cascades, and we expect some
insights to transfer to latent diffusion models [189].

The U-Net [190, 101] is the predominant architecture for image and video diffusion
models [44, [103, [105]. While recent work [149] has explored pixel-level diffusion with
Transformers, they have not been shown to attain strong performance or scale to large
inputs. Concurrent work [176] has shown Transformers may be more tenable when combined
with latent diffusion i.e. by downsampling inputs with large-scale pretrained VAESs, but
reliance on uniform computation limits gracefully scaling to larger data. Our model suggests
a path forward for simple performant and scalable iterative generation of images and video,
comparing favourably to U-Nets in sample quality and efficiency, while based on domain-
agnostic operations such as attention and fully-connected MLPs, and therefore more universal.

Self-conditioning for diffusion models was originally proposed in [35]. It bears similarity
to step-unrolled autoencoders [198| and has been adopted in several existing work 219, 45|
36]. While these works condition on predictions of data, latent self-conditioning conditions a
neural network on its own hidden activations, akin to recurrent neural network at inference
while training without backpropagation through time.

2.5 Discussion

Recurrent Interface Networks are a family of neural networks that explicitly partition hidden
units into the interface and latents. The interface links the input space to the core computation
units operating on the latents, decoupling computation from data layout and allowing adaptive
allocation of capacity to different parts of the input. We show the challenge of building
latents can be amortized in recurrent computation settings — where the effective network
is deep and persistent context can be leveraged — while still allowing for efficient training.
While RINs are domain-agnostic, we found them to be performant and efficient for image and
video generation tasks. As we look towards building more powerful generative models, we
hope RINs can serve as a simple and unified architecture that scales to high-dimensional data
across a range of modalities. To further improve RINs, we hope to better understand and
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enhance the effect of latent self-conditioning. Moreover, we hope to combine the advantages
of RINs with orthogonal techniques, such as guidance and latent diffusion.

2.6 Appendix

2.6.1 Architecture Implementation Pseudo-code
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2.6.2 More Details of Training / Sampling Algorithms, and Noise
schedules

Algorithm (4| contains different choices of (), the continuous time noise schedule function.

Algorithm 4 Continuous time noise scheduling function.

def gamma_cosine_schedule(t, ns=0.0002, ds=0.00025):
# A scheduling function based on cosine function.
return numpy.cos(((t + ns) / (1 + ds)) * numpy.pi / 2)**2

def gamma_sigmoid_schedule(t, start=-3, end=3, tau=1.0, clip_min=1e-9):
# A scheduling function based on sigmoid function.
v_start = sigmoid(start / tau)
v_end = sigmoid(end / tau)
output = (-sigmoid((t * (end - start) + start) / tau) + v_end) / (v_end - v_start)
return np.clip(output, clip_min, 1.)

Algorithm |5 contains DDIM [214] and DDPM [101] updating rules, as specified in [35].
Algorithm 5 z; estimation with DDIM / DDPM updating rules.

def ddim_step(x_t, x_pred, t_now, t_next):
# Estimate x at t_next with DDIM updating rule.
“Ynow = gamma (t_now)
Ynext = gamma(t_next)
x_pred = clip(x_pred, -scale, scale)
eps =—<f%§§§ * (X_t - \/Ynow * x_pred)
x_next = |/Ynext * X_pred + /1 — Ynext * eps

return x_next

def ddpm_step(x_t, x_pred, t_now, t_next):
# Estimate x at t_next with DDPM updating rule.
Ynow = gamma(t_now)
Qnow = gamma(t_now) / gamma(t_next)
Onow = SQrt(l - Qmow)
z = normal (mean=0, std=1)
x_pred = clip(x_pred, -scale, scale)
eps =—ﬁf%ii§ * (X_t - \/Ynow * X_pred)
1
v/ ©now

return x_next

l1—«
x_next = * (x_t - ——B9 x eps) + o0, * z
\/7 P now

T—7now

Sigmoid noise schedule. We use noise schedule function based the sigmoid function
with different temperature (see Fig. , which subtly shifts more weight to medium noise
levels. We use a default temperature of 0.9, and its effect is ablated in our experiments.

2.6.3 Hyper-parameters and Other Training Details

We train most models on 32 TPUv3 chips with a batch size of 1024. Models for 512x512 and
1024x1024 are trained on 64 TPUv3 chips and 256 TPUv4 chips, respectively. All models are
trained with the LAMB optimizer [259).
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Table 2.4: Model Hyper-parameters.

Task Input/Output Blocks |Z| Z Dim X Dim  Tokens |X| Heads Params GFLOPs

IN 64x64 4x4 128 1024 256 256 (4x4) 16 280M 106
IN 128x128 6x4 128 1024 512 1024 (4x4) 16 410M 194
IN 256x256 6x4 256 1024 512 1024 (8x8) 16 410M 334
IN 912x512 6x6 256 768 512 4096 (8x8) 16 320M 415
IN 1024x1024 6x8 256 768 512 16384 (8x8) 16 415M 1120
Kin 16x64%x64 6x4 256 1024 512 2048 (2x4x4) 16 411M 386

Table 2.5: Training Hyper-parameters.

Task Input/Output Updates Batch Size LR-decay Optim 85 WD  Self-cond. EMA

IN 64x64 300K 1024 cosine 0.999 0.01 0.9 0.9999
IN 128x128 600K 1024 cosine 0.999 0.001 0.9 0.9999
IN 256x256 600K 1024 cosine 0.999 0.001 0.9 0.9999
IN 512x512 1M 1024 cosine 0.999 0.01 0.9 0.9999
IN 1024x1024 1M 512 None 0.999 0.01 0.9 0.9999

Kin 16x64x64 500K 1024 cosine 0.999 0.001 0.85 0.99




CHAPTER 2. A SCALABLE ARCHITECTURE FOR GENERATIVE MODELING 27

R 0 N B N N S M e e S s
e N e N s s M s
e e e e . . S . MY M0 I
!I!!’Iﬂ’!l
ﬂ ! E E !

& & i

Figure 2.10: Selected samples of video prediction on Kinetics-600 at 16x64x64 showing
examples of multi-modality across different future predictions, with conditioning frames from
the test set. For example, the ballerina’s arm and leg movements vary (first); the hand moves
in different ways while sewing (second); the wakeboarder faces different waves (third); the
bicyclist takes different turns; the sky-divers face different fates; the hockey scene (last) is
zoomed and panned in different ways.
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Figure 2.11: Visualization of emergent adaptive computation for video prediction on Kinetics-
600. The samples are subsampled 2% in time to align with the attention visualization. In each
column of the attention visualization, the first two columns are read attention on conditioning
frames. We observe that read attention and hence computation is focused on regions of
motion, that cannot be generated by simply copying from the conditioning frames.
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Algorithm 3 RINs Implementation Pseudo-code.

def block(z, x, num_layers):
"""Core computation block."""
z = z + multihead_attention(q=layer_norm(z), kv=x, n_heads=16)
z = z + ffn(layer_norm(z), expansion=4)

for _ in range(num_layers):
zn = layer_norm(z)

z =2z + multihead_attention(q=zn, kv=zn, n_heads=16)

z = z + ffn(layer_norm(z), expansion=4)
x = x + multihead_attention(q=layer_norm(x), kv=z, n_heads=16)
x = x + ffn(layer_norm(x), expansion=4)

return z, x

def rin(x, patch_size, num_latents, latent_dim, interface_dim,
num_blocks, num_layers_per_block, prev_latents=None):
"""Forward pass of Network."""
bsz, image_size, _, _ = x.shape
size = image_size // patch_size

# Initialize interface (with image tokenization as an example)

x = conv(x, kernel_size=patch_size, stride=patch_size, padding=’SAME’)
pos_emb = truncated_normal((1, size, size, dim), scale=0.02)

x = layer_norm(x) + pos_emb

# Initialize latents
z = truncated_normal ((num_latents, latent_dim), scale=0.02)

# Latent self-conditioning

if prev_latents is not None:
prev_latents = prev_latents + ffn(stop_grad(prev_latents), expansion=4)
z = z + layer_norm(prev_latents, init_scale=0, init_bias=0)

# Compute
for _ in range(num_blocks):
z, x = block(z, x, num_layers_per_block)

linear (layer_norm(x), dim=3*patch_size**2)

Readout
= depth_to_space(reshape(x, [bsz, size, size, -1]), patch_size)

#
X
X

return z, x

1.0 —— Cosine 154 —— Cosine
—— Sigmoid (t=0.7) ~—— Sigmoid (T=0.7)
—— Sigmoid (t=0.9) 104 —— Sigmoid (t=0.9)
0.8 —— Sigmoid (T=1.1) —— Sigmoid (T=1.1)
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Figure 2.12: Compared to the cosine schedule, sigmoid (with appropriate 7) places less weight
on extreme (high or low) noise levels.
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Figure 2.13: Effect of noise schedule. Comparing noise schedules for training and sampling,
with corresponding FID score. The sigmoid schedule with an appropriate temperature is more
stable during training than the widely used cosine schedule, particularly for larger images.
For sampling, the noise schedule has less impact and the default cosine schedule can suffice.
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Chapter 3

A Scalable Objective for Space-time
Attention

In this chapter, we argue that temporal correspondence — the fundamental challenge in state
representation of inferring what goes where — can be formulated as space-time attention,
and propose a simple but general self-supervised objective for learning such an attention
mechanism. We represent video as a graph, where nodes are e.g. image patches, and edges
are attention weights between nodes of neighboring time-steps. Our aim is to learn a node
representation such that temporal correspondence can be estimated by chaining attention
in time to find paths between query and target nodes in the graph. This can be cast as
a self-supervised contrastive learning problem by leveraging cycle-consistency, where the
objective is to maximize the likelihood of returning to the initial node when walking along a
graph constructed from a cyclic sequence (e.g. a palindrome) of frames. As a result, a single
path-level constraint can implicitly supervise chains of intermediate comparisons.

The resulting similarity metric gives rise to an attention mechanism that can be used
to propagate labels for object identity, part identity, and keypoints, which outperforms
the self-supervised state-of-the-art on label propagation tasks involving objects, semantic
parts, and pose. Moreover, we demonstrate that a technique we call edge dropout, as
well as self-supervised adaptation at test-time, further improve transfer for object-centric
correspondenceE] Finally, we also show how the same objective can give rise to space-time
attention for optical flow and object permanence.

3.1 Introduction

Video is often treated as a simple extension of an image into time, modeled as a spatio-temporal
XYT volume [164], 262, 28|. Yet, treating time as yet another dimension is limiting [55].
One practical issue is the sampling rate mismatch between X and Y vs. T. But a more

!This work was published as Space-time Correspondence as a Contrastive Random Walk in
NeurIPS 2020 [111].
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Figure 3.1: Video as a space-time graph. We represent video as a graph, where nodes are
image patches, and edges are attention weights between nodes of neighboring frames. Our aim
is to learn a node representation such that temporal correspondence is encoded by space-time
attention, finding paths through the graph by chaining attention in time between query and
target nodes. A contrastive loss encourages paths that reach the target, implicitly supervising
latent correspondence along the path. Learning proceeds without labels by training on a
palindrome sequence, walking from frame ¢ to t 4+ k, then back to ¢, using the initial node
itself as the target

fundamental problem is that a physical point depicted at position (x,y) in frame ¢ might
not have any relation to what we find at that same (z,y) in frame ¢ + k, as the object or
the camera will have moved in arbitrary (albeit smooth) ways. This is why the notion of
temporal correspondence — “what went where" [253| — is so fundamental for learning about
objects in dynamic scenes, and how they inevitably change.

Recent approaches for self-supervised representation learning, such as those based on
pairwise similarity learning [38] 48| (168, [205] 254, [100} 227, |94} 37], are highly effective when
pairs of matching views are assumed to be known, e.g. constructed via data augmentation.
Temporal correspondences, however, are latent, leading to a chicken-and-egg problem: we need
correspondences to train our model, yet we rely on our model to find these correspondences.
An emerging line of work aims to address this problem by bootstrapping an initially random
representation to infer which correspondences should be learned in a self-supervised manner
e.g. via cycle-consistency of time , . While this is a promising direction, current
methods rely on complex and greedy tracking that may lead to local optima, especially when
applied recurrently in time.

In this paper, we learn to associate features across space and time by formulating
correspondence as pathfinding on a space-time graph. The graph is constructed from a video,
where nodes are image patches and only nodes in neighboring frames share an edge. The
strength of the edge is determined by similarity under a learned representation, whose aim is
to place weight along paths linking visually corresponding patches (see Figure . Learning
the representation amounts to fitting the transition probabilities of a walker stepping through
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pixels nodes

Figure 3.2: Correspondence as a Space-time Attention. We build a space-time graph by
extracting nodes from each frame and allowing directed edges between nodes in neighboring
frames. The transition probabilities of a random walk along this graph are determined by
the attention matrix computed with pairwise similarity in the learned node representation.

time along the graph, reminiscent of the classic work of Meila and Shi [155] on learning
graph affinities with a local random walk. This learning problem requires supervision —
namely, the target that the walker should reach. In lieu of ground truth labels, we use the
idea of cycle-consistency , , by turning training videos into palindromes, e.g.
sequences where the first half is repeated backwards. This provides every walker with a target
— returning to its starting point. Under this formulation, we can view each step of the walk as
a contrastive learning problem , where the walker’s target provides supervision for entire
chains of intermediate comparisons.

The central benefit of the proposed model is efficient consideration and supervision of
many paths through the graph by computing the expected outcome of a random walk. This
lets us obtain a learning signal from all views (patches) in the video simultaneously, and
handling ambiguity in order to learn from harder examples encountered during training.
Despite its simplicity, the method learns a representation that is effective for a variety of
correspondence tasks. When used as a similarity metric without any adaptation, the repre-
sentation outperforms state-of-the-art self-supervised methods on video object segmentation,
pose keypoint propagation, and semantic part propagation. The model scales and improves
in performance as the length of walks used for training increases. We also show several
extensions of the model that further improve the quality of object segmentation, including
an edge dropout technique that encourages the model to group “common-fate” [250]
nodes together, as well as test-time adaptation.
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Figure 3.3: Learning Space-time Attention. (a) Specifying a target multiple steps in the
future provides implicit supervision for latent correspondences along each path (left). (b) We
can construct targets for free by choosing palindromes as sequences for learning (right).

3.2 Space-time Attention as a Contrastive Random Walk

We represent each video as a directed graph where nodes are patches, and weighted edges
connect nodes in neighboring frames. Let I be a set of frames of a video and q; be the set
of N nodes extracted from frame I;, e.g. by sampling overlapping patches in a grid. An
encoder ¢ maps nodes to [;-normalized d-dimensional vectors, which we use to compute
a pairwise similarity function dy(q1,¢2) = (¢(q1), #(¢2)) and an embedding matrix for q,
denoted @, € RV*9, We convert pairwise similarities into non-negative affinities by applying
a softmax (with temperature 7) over edges departing from each node. For timesteps ¢ and
t + 1, the stochastic matrix of affinities gives the attention matrix

exp(dy(al, af 1)/ 7)
S exp(dg(a, ) /7)

A (i, ) = softmax(QtQtTH)ij = (3.1)

where the softmax is row-wise. Note that this describes only the local affinity between
the patches of two video frames, q; and q;,;. The affinity matrix for the entire graph, which
relates all nodes in the video as a Markov chain, is block-sparse and composed of local affinity
matrices.

Given the spatio-temporal connectivity of the graph, a step of a random walker on this
graph can be viewed as performing tracking with attention, by contrasting similarity of
neighboring nodes (using encoder ¢). Let X; be the state of the walker at time ¢, with
transition probabilities A" (4, j) = P(X,41 = j|X; = i), where P(X,; = i) is the probability
of being at node 7 at time ¢t. With this view, we can formulate long-range correspondence as
walking multiple steps along the graph (Figure :

Afh = HAiié“ P(Xo 4] X0). (3.2)
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Guiding the walk. Our aim is to train the embedding to encourage the random walker
to follow paths of corresponding patches as it steps through time. While ultimately we will
train without labels, for motivation suppose that we did have ground-truth correspondence
between nodes in two frames of a video, ¢t and ¢ + k (Figure[?7)). We can use these labels to
fit the embedding by maximizing the likelihood that a walker beginning at a query node at ¢
ends at the target node at time ¢t + k:

N
Lowp = Lop(ATFE VIR = — Z log P(Xyyp = Y (4)| X, = 4), (3.3)

=1

where Lo is cross entropy loss and Y™ are correspondence labels for matching time ¢ to
t+ k. Given the way transition probabilities are computed, the walk can be viewed as a chain
of contrastive learning problems. Providing supervision at every step amounts to maximizing
similarity between query and target nodes adjacent in time, while minimizing similarity to
all other neighbors.

The more interesting case is supervision of longer-range correspondence, i.e. £k > 1. In
this case, the labels of ¢t and t + k provide implicit supervision for intermediate frames
t+1,...,t+k—1, assuming that latent correspondences exist to link ¢t and ¢ 4+ k. Recall that
in computing P(X;,x|X;), we marginalize over all intermediate paths that link nodes in ¢ and
t + k. By minimizing Ly,,, we shift affinity to paths that link the query and target. In easier
cases (e.g. smooth videos), the paths that the walker takes from each node will not overlap,
and these paths will simply be reinforced. In more ambiguous cases — e.g. deformation,
multi-modality, or one-to-many matches — transition probability may be split across latent
correspondences, such that we consider distribution over paths with higher entropy. The
embedding should capture similarity between nodes in a manner that hedges probability over
paths to overcome ambiguity, while avoiding transitions to nodes that lead the walker astray.

3.2.1 Self-Supervision

How to obtain query-target pairs that are known to correspond, without human supervision?
We can consider training on graphs in which correspondence between the first and last frames
are known, by construction. One such class of sequences are palindromes, i.e. sequences
that are identical when reversed, for which targets are known since the first and last frames
are identical. Given a sequence of frames ([y, ..., [;1), we form training examples by simply
concatenating the sequence with a temporally reversed version of itself: (I;,... [k, ...I;).
Treating each query node’s position as its own target (Figure [?7]), we obtain the following
cycle-consistency objective:

N
L. = Lop(A7FAL T) == log P(Xipar = i X, = i) (3.4)

cyc
i=1

By leveraging structure in the graph, we can generate supervision for chains of contrastive
learning problems that can be made arbitrarily long. As the model computes a soft attention
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distribution at every time step, we can backpropagate error across — and thus learn from —
the many alternate paths of similarity that link query and target nodes.

Contrastive learning with latent views. To better understand the model, we can
interpret it as contrastive learning with latent views. The popular InfoNCE formulation [168§]
draws the representation of two views of the same example closer by minimizing the loss
Lop(UE, I), where U2 € R™™ is the normalized affinity matrix between the vectors of the
first and second views of n examples, as in Equation [3.1] Suppose, however, that we do not
know which views should be matched with one another, merely that there should be a soft
one-to-one alignment between them. We can formulate this as contrastive learning guided
by a ‘one-hop’ cycle-consistency constraint, composing U? with the “transposed" stochastic
similarity matrix Uy, to produce the loss Log(U2US, I), akin to Equation .

This task becomes more challenging with multiple hops, as avoiding spurious features that
lead to undesirable diffusion of similarity across the graph becomes more important. While
there are other ways of learning to align sets of features — e.g. by assuming soft bijection
[40, 169, 256, [197] — it is unclear how they should extend to the multi-hop setting, where such
heuristics may not always be desirable at each intermediate step. The proposed objective
avoids the need to explicitly infer intermediate latent views, instead imposing a sequence-level
constraint based on long-range correspondence known by construction.

3.2.2 Edge Dropout

One might further consider correspondence on the level of broader segments, where points
within a segment have strong affinity to all other points in the segment. This inspires a trivial
extension of the method — randomly dropping edges from the graph, thereby forcing the
walker to consider alternative paths. We apply dropout [217] (with rate 0) to the transition
matrix A to obtain A = dropout(A,4), and then re-normalize. The resulting transition
matrix B and noisy cycle loss are:

Ais
ij = T/jizl L. = Lop(BM By, 1),
Edge dropout affects the task by randomly obstructing paths, thus encouraging hedging of
mass to paths correlated with the ideal path — i.e. paths of common fate [250] — similar
to the effect in spectral-based segmentation [207, [L55]. In practice, we apply edge dropout
before normalizing affinities, by setting values to a negative constant. We will see in Section
that edge dropout improves object-centric correspondence.

B
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3.2.3 Implementation

Algorithm [6] provides complete pseu-
docode for the method.

Pixels to Nodes. At training time, we
follow 95|, where patches of size 64 x 64
are sampled on a 7x 7 grid from a 256 x 256
image (i.e. 49 nodes per frame). Patches
are spatially jittered to prevent matching
based on borders (see Appendix[3.7.3). At
test time, we reuse the convolutional fea-
ture map between patches instead of pro-
cessing the patches independently [143],

Algorithm 6 Pseudocode in PyTorch style.

for x in loader: # x: batch with B sequences
# Split image into patches
#BxCxTxHxW->BxCxTxNzxhzxw
x = unfold(x, (patch_size, patch_size))
x = spatial_jitter(x)
# Embed patches (B x C x T x N)
v = 12_norm(resnet (x))

# Transitions from t to t+1 (B x T-1 x N x N)
A = einsum("bcti,bctj->btij",
vl:,:,:-1], v[:,:,1:]) / temperature

# Transition energies for palindrome graph

AA = cat((A, A[:,::-1].transpose(-1,-2), 1)
AA[rand(AA) < drop_rate] = -1e10 # Edge dropout
At = eye(P) # Init. position

# Compute walks
for t in range(2xT-2):
At = bmm(softmax(AA[:,t]), dim=-1), At)

# Target is the original node

loss = At[[range(P)]1*B]].log()
making the features computable with only

a single feed-forward pass of our network.

bmm: batch matrix multiplication; eye: identity matrix; cat: con-
catenation.; rand: random tensor drawn from (0, 1).

Encoder ¢. We create an embedding for each image patch using a convolutional network,
namely ResNet-18 [93| for fair comparison to baselines. We apply a linear projection and
ly normalization after average pooling, obtaining a 128-dimensional vector. We reduce the
stride of last two residual blocks (res3 and res4) to be 1. Please see Appendix for
details.

Shorter paths. During training, we consider paths of multiple lengths. For a sequence of
length T, we optimize all sub-cycles: Lyqin = ZiTzl Eiyc. This loss encourages the sequence
of nodes visited in the walk to be a palindrome, i.e. on a walk of length /N, the node visited
at step t should be the same node as N — ¢. It induces a curriculum, as short walks are
easier to learn than long ones. This can be computed efficiently, since the losses share affinity
matrices.

Training. We train ¢ using the (unlabeled) videos from Kinetics400 [28], with Algorithm [6]
We used the Adam optimizer [124] for two million updates with a learning rate of 1 x 107%.
We use a temperature of 7 = 0.07 in Equation , following [254] and resize frames to
256 x 256 (before extracting nodes, as above). Except when indicated otherwise, we report
results with edge dropout rate 0.1 and a videos of length 10. Please find more details in

Appendix [3.7.5

3.3 Experiments

We evaluate the learned representation on video label propagation tasks involving objects,
keypoints, and semantic parts, by using it as a similarity metric. We also study the effects
of edge dropout, training sequence length, and self-supervised adaptation at test-time. In
addition to comparison with the state-of-the-art, we consider a baseline of label propagation
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Figure 3.4: Qualitative results for label propagation under our model for object, pose, and
semantic part propagation tasks. The first frame is indicate with a blue outline. Please see
our webpage| for video results, as well as a qualitative comparison with other methods.

with strong pre-trained features. Please find additional details, comparisons, ablations, and
qualitative results in the Appendices.

3.3.1 Transferring the Learned Representation

We transfer the trained representation to label propagation tasks involving objects, semantic
parts, and human pose. To isolate the effect of the representation, we use a simple inference
algorithm based on k-nearest neighbors. Qualitative results are shown in Figure [3.4]

Label propagation. All evaluation tasks considered are cast as video label propagation,
where the task is to predict labels for each pixel in target frames of a video given only
ground-truth for the first frame (i.e. the source). We use the representation as a similarity
function for prediction by k-nearest neighbors, which is natural under our model and follows

prior work for fair comparison [245] [139)].

Say we are given source nodes qs with labels L, € , and target nodes q;. Let K/
be the matrix of transitions between q; and qs (Equation , with the special property
that only the top—k transitions are considered per target node. Labels L; are propagated
as Ly = K] L,, where each row corresponds to the soft distribution over labels for a node,
predicted by k-nearest neighbor in dg.

RNXC’
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To provide temporal context, as done in prior work [245] 134} 139], we use a queue of the
last m frames. We also restrict the set of source nodes considered to a spatial neighborhood
of the query node for efficiency (i.e. local attention). The source set includes nodes of the
first labeled frame, as well as the nodes in previous m frames, whose predicted labels are
used for auto-regressive propagation. The softmax computed for K7 is applied over all source
nodes. See Appendix for further discussion and hyper-parameters.

Baselines. All baselines use ResNet-18 [93] as the backbone, modified to increase spatial
resolution of the feature map by reducing the stride of the last two residual blocks to be 1.
For consistency across methods, we use the output of the penultimate residual block as node
embeddings at test-time.

Pre-trained visual features: We evaluate pretrained features from strong image- and
video-based representation learning methods. For a strongly supervised approach, we consider
a model trained for classification on ImageNet [42]. We also consider a strong self-supervised
method, MoCo [94]. Finally, we compare with a video-based contrastive learning method,
VINCE [70], which extends MoCo to videos (Kinetics) with views from data augmentation
and neighbors in time.

Task-specific approaches: Wang et al. [245] uses cycle-consistency to train a spatial
transformer network as a deterministic patch tracker. We also consider methods based on
the Colorization approach of Vondrick et al. [239], including high-resolution methods: Cor-
rFlow [134] and MAST [133]. CorrFlow combines cycle consistency with colorization. MAST
uses a deterministic region localizer and memory bank for high-resolution colorization, and
performs multi-stage training on [234]. Notably, both [134) [133| use feature maps that are
significantly higher resolution than other approaches (2x) by removing max pooling from
the network. Finally, UVC [139] jointly optimizes losses for colorization, grouping, pixel-wise
cycle-consistency, and patch tracking with a deterministic patch localizer.

Video Object Segmentation

We evaluate our model on DAVIS 2017 [183|, a popular benchmark for video object segmenta-
tion, for the task of semi-supervised multi-object (i.e. 2-4) segmentation. Following common
practice, we evaluate on 480p resolution images. We apply our label propagation algorithm
for all comparisons, except CorrFlow and MAST [134} 133|, which require 4x more GPU
memory. We report mean (m) and recall (r) of standard boundary alignment (F) and region
similarity (J) metrics, detailed in [177].

As shown in Table [3.1] our approach outperforms other self-supervised methods, without
relying on machinery such as localization modules or multi-stage training. We also outper-
form [133| despite being more simple at train and test time, and using a lower-resolution
feature map. We found that when combined with a properly tuned label propagation algo-
rithm, the more generic pretrained feature baselines fare better than more specialized temporal
correspondence approaches. Our approach outperformed approaches such as MoCo [94] and
VINCE [70], suggesting that it may not always be optimal to choose views for contrastive
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Method Resolution Train Data J&Fm Jm A Fm Fr
VINCE [70] 1x Kinetics 60.4 579 66.2 628 T71.5
CorrFlow* [134] 2% OxUvA 50.3 484 532 522  56.0
MAST* [133] 2x OxUvA 63.7 61.2 732 66.3 783
MAST™* [133] 2% YT-VOS 65.5 63.3 732 676 777
TimeCycle [245] 1x VLOG 48.7 46.4  50.0 50.0 48.0
UVC+track* [139] 1x Kinetics 59.5 57.7 68.3 613 69.8
UVC [139] 1x Kinetics 60.9 59.3 68.8 627 70.9
Ours w/ dropout 1x Kinetics 67.6 64.8 76.1 70.2 82.1
w/ dropout & adapt. 1x Kinetics 68.3 65.5 786 71.0 829

Table 3.1: Video object segmentation results on DAVIS 2017 val set Comparison of our
method (2 variants), with previous self-supervised approaches and strong pretrained feature
baselines. Resolution indicates if the approach uses a high-resolution (2x) feature map.
Train Data indicates which dataset was used for pre-training. F is a boundary alignment
metric, while 7 measures region similarity as IOU between masks. % indicates that our label
propagation algorithm is not used.

learning by random crop data augmentation of frames. Finally, our model compares favorably
to many supervised approaches with architectures designed for dense tracking [177, 24} 243|

(see Appendix [3.7.2)).

Pose Tracking

We consider pose tracking on the JHMDB benchmark, which involves tracking 15 keypoints.
We follow the evaluation protocol of [139], using 320 x 320px images. As seen in Table (3.2 our
model outperforms existing self-supervised approaches, including video colorization models
that directly optimize for fine-grained matching with pixel-level objectives [139]. We attribute
this success to the fact that our model sees sufficiently hard negative samples drawn from the
same image at training time to learn features that discriminate beyond color. Note that our
inference procedure is naive in that we propagate keypoints independently, without leveraging
relational structure between them.

Video Part Segmentation

We consider the semantic part segmentation task of the Video Instance Parsing (VIP)
benchmark [265|, which involves propagating labels of 20 parts — such as arm, leg, hair, shirt,
hand — requiring more precise correspondence than DAVIS. The sequences are longer and
sampled at a lower frame rate. We follow the evaluation protocol of [139], using 560 x 560px
images and m = 1. The model outperforms existing self-supervised methods, and when using
more temporal context (i.e. m = 4), outperforms the baseline supervised approach of [265].
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Parts Pose
Method mloU PCK@O0.1 PCK@0.2
TimeCycle [245] 28.9 57.3 78.1
Uvepsg 341 586 96

Ours 36.0 59.0 83.2
Ours + context 38.6 59.3 84.9
ImageNet [93] 31.9 53.8 74.6
ATEN [265)] 37.9 - -
Yang et al. [257] - 68.7 92.1

Table 3.2: Part and Pose Propagation tasks, with the VIP and JHMDB benchmarks,
respectively. For comparison, we show supervised methods below.
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Figure 3.5: Variations of the Model. (a) Downstream task performance as a function of
training time. (b) Moderate edge dropout improves object-level correspondences. (c) Training
on longer paths is beneficial. All evaluations are on the DAVIS segmentation task.

3.3.2 Variations of the Model

Edge dropout. We test the hypothesis (Figure ) that edge dropout should improve
performance on the object segmentation task, by training our model with different edge
dropout rates: {0, 0.05, 0.1, 0.2, 0.3, 0.4}. Moderate edge dropout yields a significant
improvement on the DAVIS benchmark. Edge dropout simulates partial occlusion, forcing
the network to consider reliable context.

Path length. We also asked how important it is for the model to see longer sequences
during training, by using clips of length 2, 4, 6, or 10 (resulting in paths of length 4, 8,
12, or 20). Longer sequences yield harder tasks due to compounding error. We find that
longer training sequences accelerated convergence as well as improved performance on the
DAVIS task (Figure ) This is in contrast to prior work [245]; we attribute this success to
considering multiple paths at training time via soft-attention, which allows for learning from
longer sequences, despite ambiguity.
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Improvement with training We found that the model’s downstream performance on
DAVIS improves as more data is seen during self-supervised training (Figure ) Compared
to Wang et al |245], there is less indication of saturation of performance on the downstream
task.

3.3.3 Self-supervised Adaptation at Test-time

A key benefit of not relying on labeled data is that training need not be limited to the training
phase, but can continue during deployment [208, 160, (181} 222]. Our approach is especially
suited for such adaptation, given the non-parametric inference procedure. We ask whether
the model can be improved for object correspondence by fine-tuning the representation at
test time on a novel video. Given an input video, we can perform a small number of iterations
of gradient descent on the self-supervised loss (Algorithm @ prior to label propagation. We
argue it is most natural to consider an online setting, where the video is ingested as a stream
and fine-tuning is performed continuously on the sliding window of £ frames around the
current frame. Note that only the raw, unlabeled video is used for this adaptation; we do
not use the provided label mask. As seen in Table [3.1] test-time training improves object
propagation. Interestingly, we see most improvement in the recall of the region similarity
metric Jrecqn (Which measures how often more than 50% of the object is segmented). More
experiment details can be found in Appendix E.

3.4 Related Work

Temporal Correspondence. Many early methods represented video as a spatio-temporal
XYT volume, where patterns, such as lines or statistics of spatio-temporal gradients, were
computed for tasks like gait tracking [164] and action recognition [262]. Because the camera
was usually static, this provided an implicit temporal correspondence via (x,y) coordinates.
For more complex videos, optical flow [148] was used to obtain short-range explicit corre-
spondences between patches of neighboring frames. However, optical flow proved too noisy
to provide long-range composite correspondences across many frames. Object tracking was
meant to offer robust long-range correspondences for a given tracked object. But after many
years of effort (see [63] for overview), that goal was largely abandoned as too difficult, giving
rise to “tracking as repeated detection” paradigm [187|, where trained object detectors are
applied to each frame independently. In the case of multiple objects, the process of “data
association” resolves detections into coherent object tracks. Data association is often cast
as an optimization problem for finding paths through video that fulfill certain constraints,
e.g. appearance, position overlap, etc. Approaches include dynamic programming, particle
filtering, various graph-based combinatorial optimization, and more recently, graph neural
networks [263} 204, |15, |182, [33], 1261} 118}, 116, [129, |20, [26] [126]. Our work can be seen as
contrastive data association via soft-attention, as a means for learning representations directly
from pixels.
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Graph Neural Networks and Attention. Representing inputs as graphs has led to
unified deep learning architectures. Graph neural networks — versatile and effective across
domains [235, 87, 128, [236, [246, |10} 26] — can be seen as learned message passing algorithms
that iteratively update node representations, where propagation of information is dynamic,
contingent on local and global relations, and often implemented as soft-attention. Iterative
routing of information encodes structure of the graph for downstream tasks. Our work uses
cross-attention between nodes of adjacent frames to learn to propagate node identity through
a graph, where the task — in essence, instance discrimination across space and time — is
designed to induce representation learning.

Graph Partitioning. Graphs have been widely used in image and video segmentation as
a data structure. Given a video, a graph is formed by connecting pixels in spatio-temporal
neighborhoods, followed by spectral clustering [206, 207, |64] or MRF /GraphCuts [19]. Most
relevant is the work of Meila and Shi [155]|, which poses Normalized Cuts as a Markov
random walk, describing an algorithm for learning an affinity function for segmentation by
fitting the transition probabilities to be uniform within segments and zero otherwise. More
recently, there has been renewed interest in the problem of unsupervised grouping |77, 127,
78, 53, 126]. Many of these approaches can be viewed as end-to-end neural architectures
for graph partitioning, where entities are partitions of images or video inferred by learned
clustering algorithms or latent variable models implemented with neural networks. While
these approaches explicitly group without supervision, they have mainly considered simpler
data. Our work similarly aims to model groups in dynamic scenes, but does so implicitly so
as to scale to real, large-scale video data. Incorporating more explicit entity estimation is an
exciting direction.

Graph Representation Learning. Graph representation learning approaches solve for
distributed representations of nodes and vertices given connectivity in the graph [88]. Most
relevant are similarity learning approaches, which define neighborhoods of positives with
fixed (i.e. k-hop neighborhood) or stochastic (i.e. random walk) heuristics [178, [81} [225} |87],
while sampling negatives at random. Many of these approaches can thus be viewed as fitting
shallow graph neural networks with tasks reminiscent of Mikolov et al. |156]. Backstrom et
al. [8] learns to predict links by supervising a random walk on social network data. While the
above consider learning representations given a single graph, others have explored learning
node embeddings given multiple graphs. A key challenge is inferring correspondence between
graphs, which has been approached in prior work [256, (197] with efficient optimal transport
algorithms [211, 40, 179]. We use graph matching as a means for representation learning,
using cycle-consistency to supervise a chain of matches, without inferring correspondence
between intermediate pairs of graphs. In a similar vein, cycle-consistency has also been shown
to be a useful constraint for solving large-scale optimal transport problems [146].

Self-supervised Visual Representation Learning. Most work in self-supervised repre-
sentation learning can be interpreted as data imputation: given an example, the task is to
predict a part — or view — of its data given another view |11, 194} 138|. Earlier work leveraged
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unlabeled visual datasets by constructing pretext prediction tasks |46, |165] 264]. For video,
temporal information makes for natural pretext tasks, including future prediction |71}, 216,
153], 145, |151], arrow of time [158, 249|, motion estimation |2, |115, 232, 140| or audio |172,
4,171}, 1130]. The use of off-the-shelf tools to provide supervisory signal for learning visual
similarity has also been explored [244, 67, |174]. Recent progress in self-supervised learning has
focused on improving techniques for large-scale deep similarity learning, e.g. by combining
the cross-entropy objective with negative sampling [84, |156]. Sets of corresponding views
are constructed by composing combinations of augmentations of the same instance |48 |17,
254|, with domain knowledge being crucial for picking the right data augmentations. Strong
image-level visual representations can be learned by heuristically choosing views that are
close in space [168], (100} |7, 94, [37], in time [205] |181}, [89} 231} 70| or both [109, [227], even
when relying on noisy negative samples. However, forcing random crops to be similar is
not always desirable because they may not be in correspondence. In contrast, we implicitly
determine which views to bring closer — a sort of automatic view selection.

Self-supervised Correspondence and Cycle-consistency. Our approach builds on
recent work that uses cycle-consistency [266, 50| in time as supervisory signal for learning
visual representations from video [245] [242]. The key idea in [245, |242] is to use self-supervised
tracking as a pretext task: given a patch, first track forward in time, then backward, with the
aim of ending up where it started, forming a cycle. These methods rely on trackers with hard
attention, which limits them to sampling, and learning from, one path at a time. In contrast,
our approach computes soft-attention at every time step, considering many paths to obtain
a dense learning signal and overcome ambiguity. Li et al. [139] combines patch tracking
with other losses including color label propagation |239], grouping, and cycle-consistency
via an orthogonality constraint |68|, considering pairs of frames at a time. Lai et al. [134]
133| refine architectural and training design decisions that yield impressive results on video
object segmentation and tracking tasks. While colorization is a useful cue, the underlying
assumption that corresponding pixels have the same color is often violated, e.g. due to lighting
or deformation. In contrast, our loss is discriminative and permits association between regions
that may have significant differences in their appearance.

3.5 Discussion

While data augmentation can be tuned to induce representation learning tasks involving
invariance to color and local context, changes in other important factors of variation — such
as physical transformations — are much harder to simulate. We presented a self-supervised
approach for learning representations for space-time correspondence from unlabeled video
data, based on learning to walk on a space-time graph. Under our formulation, a simple
path-level constraint provides implicit supervision for a chain of contrastive learning problems.
Our learning objective aims to leverage the natural data augmentation of dynamic scenes,
1.e. how objects change and interact over time, and can be combined with other learning
objectives. Moreover, it builds a connection between self-supervised representation learning
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and unsupervised grouping [155]. As such, we hope this work is a step toward learning to
discover and describe the structure and dynamics of natural scenes from large-scale unlabeled
video.

3.6 Extensions

As demonstrated, the CRW formulation can be used across a variety of space-time correspon-
dence tasks. Here, we discuss two additional applications to the problems of optical flow and
tracking with object permanence.

3.6.1 Optical Flow: Pixels as Nodes

t t+k t

i

Figure 3.6: To scale to large space-time graphs (i.e. dense pixel graphs), we propose to use
hierarchical attention, resulting in multiscale contrastive random walks.

The main challenge in applying CRW to the problem of optical flow is the quadratic cost
of computing large attention matrices between pixels in high-resolution images, requiring
much more dense pixel-level space-time graphs. To overcome this challenge, we can introduce
hierarchy into the search problem by computing the attention matrix between two frames
in a coarse-to-fine manner, forming a multiscale contrastive random walk when extended in
time. This establishes a unified technique for self-supervised learning of optical flow, keypoint
tracking, and video object segmentationEl

3.6.2 Object Permanence: Spatial Memories as Nodes

Object permanence is the idea that objects continue to exist even when they are not apparent.
As presented, the CRW formulation makes the assumption that correspondence is Markovian.

2This work was published as Learning Pizel Trajectories with Multiscale Contrastive Random Walks,
Bian et al, CVPR 2022 .
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Figure 3.7: For object permanence, we can instead consider the spatio-temporal graph of
an evolving spatial memory; here, we show one transition in time. To overcome partial
observability, states @); are computed with a sequence encoder, allowing for transition
probability A to model object permanence. Only a subset of the edges is shown for
readability.

In reality, this assumption does not always hold due to partial observability, i.e. in cases of
total occlusion. State-of-the-art approaches for object permanence, e.g. used for the task
of video object detection or segmentation, typically rely on supervision during occlusion
or simplifying assumptions such as constant velocity to overcome this challenge. Rather
than directly supervising the locations of invisible objects, we can use the CRW objective
to learn object permanence in a manner that does not requires neither human annotation
nor assumptions about object dynamics. In particular, object permanence can emerge by
optimizing for temporal coherence of memory: we fit a Markov walk along a space-time graph
of spatial memories, where the states in each time step are non-Markovian features from a
sequence encoder. This leads to a memory representation that stores occluded objects and
predicts their motion, to better localize them. The resulting model outperforms existing
approaches on several datasets of increasing complexity and realism, despite requiring minimal
supervision, and hence being broadly applicable. E|

3This work was published as Object Permanence Emerges in a Random Walk along Memory, Tok-
makov et al, ICML 2022 [229].
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3.7 Appendix

3.7.1 Derivation of Label Noise and Effect of Identical Patches

Here, we show that false negatives that are identical to the positive — for example, patches of
the sky — do not change the sign of gradient associated with the positive. Let ¢ be the query,
u be the positive, V' be the set of negatives. W.l.o.g, let the softmax temperature 7 = 1.
The loss and corresponding gradient can be expressed as follows, where Z is the partition
function:

L(g,u,V) =u"q —loglexpu'q+ Z expv' gl =u'q—logZ

veV
T T T T
B expu’ q expv q expu q expv ' q
Vi L(g,u,V)=u— Tu—ZTv— (1-— T)U—ZTU
veV veV
Let V= be the set of false negatives, such that V- C V and V* =V \ V. Consider the
worst case, whereby v_ = u,Vv_ € V7 so that false negatives are exactly identical to the

positive:

T T T
expu q expv_q expu, q
qu(Q7u’V) = (1_ )u_ Z v- — Z ZJr U+

A A
v_€eV— v eVt
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We see that the contribution of the negatives that are identical to the positive do not flip the
sign of the positive gradient, i.e. A\, > 0, so that in the worse case the gradient vanishes:

(1+ |V |)expu'q

N=1-
A
1 (1+ |V ])expu'q
(L+ V- expulq+32, cp+ eXpuiq
>0

3.7.2 Comparison to Supervised Methods

The proposed method outperforms many supervised methods for video object segmentation,
despite relying on a simple label propagation algorithm, not being trained for object segmen-
tation, and not training on the DAVIS dataset. We also show comparisons to pretrained
feature baselines with larger networks.
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Method Backbone Train Data (#frames) J&Fm Jm Jr Fm Fr
OSMN [257] VGG-16 1/C/D (1.2M + 227k) 548 525 609 571  66.1
SiamMask [243] ResNet-50  I/V/C/Y (12M + 2.7M) 564 543 628 585 675
OSVOS [24] VGG-16 I/D (1L2M | 10k) 60.3 566 63.8 639 738
OnAVOS [237] ResNet-38  1/C/P/D (1.2M + 517Kk) 654  61.6 674 69.1 754
OSVOS-S [152] VGG-16 I/P/D (1.2M + 17k) 68.0 647 742 713 80.7
FEELVOS [238] Xception-65  1/C/D/Y (1.2M + 663k) 715 691 791 740 838
PReMVOS [150] ResNet-101  I/C/D/P/M (1.2M + 527k)  77.8  73.9 831 81.8 88.9
STM [166| ResNet-50 I/D/Y (1.2M ~+ 164k) 818 792 - 843 -
ImageNet [93] ResNet-50 I (1.2M) 66.0 63.7 740 684 79.2
MoCo [94] ResNet-50 I (1.2M) 65.4 63.2 73.0 67.6 78.7
Ours ResNet-18 K (20M unlabeled) 67.6 64.8 76.1 70.2  82.1

Table 3.3: Video object segmentation results on DAVIS 2017 val set. We show results of
state-of-the-art supervised approaches in comparison to our unsupervised one (see main
paper for comparison with unsupervised methods). Key for Train Data column: I=ImageNet,
K=Kinetics, V = ImageNet-VID, C=COCO, D=DAVIS, M=Mapillary, P=PASCAL-VOC
Y=YouTube-VOS. F is a boundary alignment metric, while 7 measures region similarity as
IOU between masks.

3.7.3 Using a Single Feature Map for Training

We follow the simplest approach for extracting nodes from an image without supervision,
which is to simply sample patches in a convolutional manner. The most efficient way of doing
this would be to only encode the image once, and pool the features to obtain region-level
features [143].

We began with that idea and found that the network could cheat to solve this dense
correspondence task even across long sequences, by learning a shortcut. It is well-known
that convolutional networks can learn to rely on boundary artifacts [143] to encode position
information, which is useful for the dense correspondence task. To control for this, we
considered: 1) removing padding altogether; 2) reducing the receptive field of the network to
the extent that entries in the center crop of the spatial feature map do not see the boundary;
we then cropped the feature map to only see this region; 3) randomly blurring frames in each
video to combat space-time compression artifacts; and 4) using random videos made of noise.
Surprisingly, the network was able to learn a shortcut in each case. In the case of random
videos, the shortcut solution was not nearly as successful, but we still found it surprising that
the self-supervised loss could be optimized at all.

3.7.4 Frame-rate Ablation
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Effect of frame-rate at training time We ablate the effect of framerate J &Fm

frame-rate (i.e. frames per second) used to generate sequences for 2 65.9
training, on downstream object segmentation performance. The 4 67.5
case of infinite frame-rate corresponds to the setting where the § 67.6
same image is used in each time step; this experiment is meant 3( 62.3
to disentangle the effect of data augmentation (spatial jittering of oo 57.5

patches) from the natural “data augmentation" observed in video.
We observe that spatio-temporal transformations is beneficial for
learning of representations that transfer better for object segmentation.

3.7.5 Hyper-parameters

We list the key hyper-parameters and ranges considered at training time. Due to computational
constraints, we did not tune the patch extraction strategy, nor several other hyper-parameters.
The hyper-parameters varied, namely edge dropout and video length, were ablated in Section
3 (shown in bold). Note that the effective training path length is twice that of the video
sequence length.

Train Hyper-parameters Values
Learning rate 0.0001
Temperature 7 0.07
Dimensionality d of embedding 128
Frame size 256
Video length 2,4,6,10
Edge dropout 0, 0.05, 0.1, 0.2, 0.3
Frame rate 2,4, 8, 30
Patch Size 64
Patch Stride 32
Spatial Jittering (crop range) (0.7, 0.9)

We tuned test hyper-parameters with the ImageNet baseline. In general, we found
performance to increase given more context. Here, we show hyper-parameters used in
reported experiments; we largely follow prior work, but for the case of DAVIS, we used 20
frames of context.
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Test Hyper-parameters ‘ Values
Temperature 7 0.07
Number of neighbors k 10, 20
Number of context frames m | Objects: 20
Pose: 7
Parts: 4
Spatial radius of source nodes 12, 20

3.7.6 Label Propagation

We found that the performance of baselines can be improved by carefully implementing label
propagation by k-nearest neighbors. When compared to baseline results reported in |139]

and [133|, the differences are:

1.

Restricting the set of source nodes (context) considered for each target node, on the
basis of spatial locality, i.e. local attention. This leads to a gain of +4% J&F for the
ImageNet baseline.

Many of the task-specific approaches for temporal correspondence incorporate restricted
attention, and we found this rudimentary form to be effective and reasonable.

. Computing attention over all source nodes at once and selecting the top-k, instead of

independently selecting the top-k from each frame. This leads to a gain of +3% J&F for
the ImageNet baseline.

This is more natural than computing nearest neighbors in each frame individually, and
can be done efficiently if combined with local attention. Note that the softmax over
context can be performed after nearest neighbors retrieval, for further efficiency.

3.7.7 Effect of Label Propagation Hyper-parameters

DAVIS J&F
2 2 3 8

2
8

Effect of Context on Label Propagation Model: ImageNet Model: ImageNet

10

Number of Context Frames
20
Number of Neighbors

40

6
o 62.8 62.8 -
. " - 62.0
|- 62.5
-615
S 624 623 - 624
636 634 610
- 62.3
12 20

Number of Context Frames 10 20
Number of Neiahbors Radius

20 30 40

We study the effect of hyper-parameters of the label propagation algorithm, when applied

with strong baselines and our method. The key hyper-parameters are the length of context

m,

the number of neighbors k, and the search radius r. In the figures above, we see the

benefit of adding context (see left, with & = 10, = 12), effect of considering more neighbors
(middle, with r = 12), and effect of radius (right, with m = 20).
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3.7.8 Encoder Architecture

We use the ResNet-18 network architecture, modified to increase the resolution of the output
convolutional feature map. Specifically, we modify the stride of convolutions in the last two
residual blocks from 2 to 1. This increases the resolution by a factor of four, so that the
downsampling factor is 1/8. Please refer to Table for a detailed description.

For evaluation, when applying our label propagation algorithm, we report results using
the output of res3 as node embeddings, for fair comparison to pretrained feature baselines
ImageNet, MoCo, and VINCE, which were trained with stride 2 in res3 and res4. We also
found that res3 features compared favorably to res4 features.

Layer Output Details
input HxW
convl H/2 xW/2 7x7, 64, stride 2
maxpool H/4xW/4 stride 2
resl H/4x W/4 3% 3,64 x 2, stride 1
3 x 3,64
res2 H/8 x W/8 33,128 2, stride 2
3% 3,128
res3 H/8 x W/8 33,256 2, stride 2 1
3 x 3,256
resd H/S x W/8 3X 35121 Gtride 2 1
3 x 3,512

Table 3.4: Modified ResNet-18 Architecture. Our modifications are shown in blue.

3.7.9 Test-time Training Details

We adopt the same hyper-parameters for optimization as in training: we use the Adam
optimizer with learning rate 0.0001. Given an input video I, we fine-tune the model parameters
by applying Algorithm [6 with input frames {I;_,, ..., Iy, ..., li4n }, prior to propagating labels
to I;. For efficiency, we only finetune the model every 5 timesteps, applying Adam for 100
updates. In practice, we use m = 10, which we did not tune.
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3.7.10 Utility Functions used in Algorithm 1
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Algorithm 7 Utility functions.

// psize : size of patches to be extracted

import torch
import kornia.augmentation as K

# Turning images into list of patches
unfold = torch.nn.Unfold((psize, psize), stride=(psize//2, psize//2))

# 12 normalization
12_norm = lambda x: torch.nn.functional.normalize(x, p=2, dim=1)

# Slightly cropping patches once extracted
spatial_jitter = K.RandomResizedCrop(size=(psize, psize), scale=(0.7, 0.9), ratio=(0.7, 1.3))
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Chapter 4

Scalable Meta-RL with Self-supervised
Rewards

In principle, meta-reinforcement learning algorithms leverage experience across many tasks
to learn fast reinforcement learning (RL) strategies that transfer to similar tasks. However,
current meta-RL approaches rely on manually-defined distributions of training tasks, and
hand-crafting these task distributions can be challenging and time-consuming. Can “useful”
pre-training tasks be discovered in an unsupervised manner? We develop an unsupervised
algorithm for inducing an adaptive meta-training task distribution, i.e. an automatic curricu-
lum, by modeling unsupervised interaction in a visual environment. The task distribution
is scaffolded by a parametric density model of the meta-learner’s trajectory distribution.
We formulate unsupervised meta-RL as information maximization between a latent task
variable and the meta-learner’s data distribution, and describe a practical instantiation
which alternates between integration of recent experience into the task distribution and
meta-learning of the updated tasks. Repeating this procedure leads to iterative reorganization
such that the curriculum adapts as the meta-learner’s data distribution shifts. In particular,
we show how discriminative clustering for visual representation can support trajectory-level
task acquisition and exploration in domains with pixel observations, avoiding pitfalls of
alternatives. In experiments on vision-based navigation and manipulation domains, we
show that the algorithm allows for unsupervised meta-learning that transfers to downstream
tasks specified by hand-crafted reward functions and serves as pre-training for more efficient
supervised meta-learning of test task distributions[]

4.1 Introduction

The discrepancy between animals and learning machines in their capacity to gracefully adapt
and generalize is a central issue in artificial intelligence research. The simple nematode C.

*This work was original published as Unsupervised Curricula for Visual Meta-Reinforcement Learning,
Jabri et al, NeurIPS 2019|112].
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Figure 4.1: An illustration of CARML, our approach for unsupervised meta-RL. We choose
the behavior model g, to be a Gaussian mixture model in a jointly, discriminatively learned
embedding space. An automatic curriculum arises from periodically re-organizing past
experience via fitting g, and meta-learning an RL algorithm for performance over tasks
specified using reward functions from g,.

elegans is capable of adapting foraging strategies to varying scenarios 25|, while many higher
animals are driven to acquire reusable behaviors even without extrinsic task-specific rewards
[252 [180]. It is unlikely that we can build machines as adaptive as even the simplest of animals
by exhaustively specifying shaped rewards or demonstrations across all possible environments
and tasks. This has inspired work in reward-free learning [91], intrinsic motivation [210],
multi-task learning [30], meta-learning [201], and continual learning [226].

An important aspect of generalization is the ability to share and transfer ability between
related tasks. In reinforcement learning (RL), a common strategy for multi-task learning
is conditioning the policy on side-information related to the task. For instance, contextual
policies [199] are conditioned on a task description (e.g. a goal) that is meant to modulate
the strategy enacted by the policy. Meta-learning of reinforcement learning (meta-RL) is
yet more general as it places the burden of inferring the task on the learner itself, such
that task descriptions can take a wider range of forms, the most general being an MDP.
In principle, meta-reinforcement learning (meta-RL) requires an agent to distill previous
experience into fast and effective adaptation strategies for new, related tasks. However, the
meta-RL framework by itself does not prescribe where this experience should come from:;
typically, meta-RL algorithms rely on being provided fixed, hand-specified task distributions,
which can be tedious to specify for simple behaviors and intractable to design for complex
ones [85]. These issues beg the question of whether “useful” task distributions for meta-RL
can be generated automatically.

In this work, we seek a procedure through which an agent in an environment with visual
observations can automatically acquire useful (i.e. utility maximizing) behaviors, as well
as how and when to apply them — in effect allowing for unsupervised pre-training in visual
environments. Two key aspects of this goal are: 1) learning to operationalize strategies so as
to adapt to new tasks, i.e. meta-learning, and 2) unsupervised learning and exploration in the
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absence of explicitly specified tasks, i.e. skill acquisition without supervised reward functions.
These aspects interact insofar as the former implicitly relies on a task curriculum, while the
latter is most effective when compelled by what the learner can and cannot do. Prior work
has offered a pipelined approach for unsupervised meta-RL consisting of unsupervised skill
discovery followed by meta-learning of discovered skills, experimenting mainly in environments
that expose low-dimensional ground truth state [83]. Yet, the aforementioned relation between
skill acquisition and meta-learning suggests that they should not be treated separately.

Here, we argue for closing the loop between skill acquisition and meta-learning in order to
induce an adaptive task distribution. Such co-adaptation introduces a number of challenges
related to the stability of learning and exploration. Most recent unsupervised skill acquisition
approaches optimize for the discriminability of induced modes of behavior (i.e. skills), typically
expressing the discovery problem as a cooperative game between a policy and a learned
reward function |79, |54} |1]. However, relying solely on discriminability becomes problematic
in environments with high-dimensional (image-based) observation spaces as it results in an
issue akin to mode-collapse in the task space. This problem is further complicated in the
setting we propose to study, wherein the policy data distribution is that of a meta-learner
rather than a contextual policy. We will see that this can be ameliorated by specifying a
hybrid discriminative-generative model for parameterizing the task distribution.

The main contribution of this paper is an approach for inducing a task curriculum for
unsupervised meta-RL in a manner that scales to domains with pixel observations. Through
the lens of information maximization, we frame our unsupervised meta-RL approach as
variational expectation-maximization (EM), in which the E-step corresponds to fitting a task
distribution to a meta-learner’s behavior and the M-step to meta-RL on the current task
distribution with reinforcement for both skill acquisition and exploration. For the E-step, we
show how deep discriminative clustering allows for trajectory-level representations suitable
for learning diverse skills from pixel observations. Through experiments in vision-based
navigation and robotic control domains, we demonstrate that the approach i) enables an
unsupervised meta-learner to discover and meta-learn skills that transfer to downstream tasks
specified by human-provided reward functions, and ii) can serve as pre-training for more
efficient supervised meta-reinforcement learning of downstream task distributions.

4.2 Preliminaries: Meta-Reinforcement Learning

Supervised meta-RL optimizes an RL algorithm fy for performance on a hand-crafted distri-
bution of tasks p(7), where fy might take the form of an recurrent neural network (RNN)
implementing a learning algorithm [49, 241], or a function implementing a gradient-based
learning algorithm [58|. Tasks are Markov decision processes (MDPs) 7; = (S, A, i, P,v,p,T)
consisting of state space S, action space A, reward function r; : § x A — R, probabilistic
transition dynamics P(s;;1|s, a;), discount factor -, initial state distribution p(s;), and finite
horizon T'. Often, and in our setting, tasks are assumed to share S, .A. For a given T ~ p(7),
fo learns a policy mg(als, D7) conditioned on task-specific experience. Thus, a meta-RL
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Figure 4.2: A step for the meta-learner. (Left) Unsupervised pre-training. The policy
meta-learns self-generated tasks based on the behavior model g,. (Right) Transfer. Faced
with new tasks, the policy transfers acquired meta-learning strategies to maximize unseen
reward functions.

algorithm optimizes fy for expected performance of my(als, D7) over p(T), such that it can
generalize to unseen test tasks also sampled from p(7).

For example, RL? |49, |241] chooses fy to be an sequence model with weights 6. For a
given task T, fp hones my(als, D7) as it recurrently ingests Dy = (s1, a1, 7(s1,a1),dy, ... ), the
sequence of states, actions, and rewards produced via interaction within the MDP. Crucially,
the same task is seen several times, and the hidden state is not reset until the next task. The
loss is the negative discounted return obtained by my across episodes of the same task, and fy
can be optimized via standard policy gradient methods for RL, backpropagating gradients
through time and across episode boundaries.

Unsupervised meta-RL aims to break the reliance of the meta-learner on an explicit,
upfront specification of p(7). Following Gupta et al. |[83|, we consider a controlled Markov
process (CMP) C = (S, A, P,v,p,T), which is an MDP without a reward function. We are
interested in the problem of learning an RL algorithm fp via unsupervised interaction within
the CMP such that once a reward function r is specified at test-time, fy can be readily
applied to the resulting MDP to efficiently maximize the expected discounted return.

Prior work [83| pipelines skill acquisition and meta-learning by pairing an unsupervised
RL algorithm DIAYN [54] and a meta-learning algorithm MAML [58]: first, a contextual
policy is used to discover skills in the CMP, yielding a finite set of learned reward functions
distributed as p(r); then, the CMP is combined with a frozen p(r) to yield p(T), which is
fed to MAML to meta-learn fy. In the next section, we describe how we can generalize
and improve upon this pipelined approach by jointly performing skill acquisition as the
meta-learner learns and explores in the environment.
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4.3 Curricula for Unsupervised Meta-Reinforcement
Learning

Meta-learning is intended to prepare an agent to efficiently solve new tasks related to those
seen previously. To this end, the meta-RL agent must balance 1) exploring the environment to
infer which task it should solve, and 2) visiting states that maximize reward under the inferred
task. The duty of unsupervised meta-RL is thus to present the meta-learner with tasks that
allow it to practice task inference and execution, without the need for human-specified task
distributions. Ideally, the task distribution should exhibit both structure and diversity. That
is, the tasks should be distinguishable and not excessively challenging so that a developing
meta-learner can infer and execute the right skill, but, for the sake of generalization, they
should also encompass a diverse range of associated stimuli and rewards, including some
beyond the current scope of the meta-learner. Our aim is to strike this balance by inducing
an adaptive task distribution.

With this motivation, we develop an algorithm for unsupervised meta-reinforcement
learning in visual environments that constructs a task distribution without supervision.
The task distribution is derived from a latent-variable density model of the meta-learner’s
cumulative behavior, with exploration based on the density model driving the evolution of the
task distribution. As depicted in Figurd4.1] learning proceeds by alternating between two steps:
organizing experiential data (i.e., trajectories generated by the meta-learner) by modeling
it with a mixture of latent components forming the basis of “skills”, and meta-reinforcement
learning by treating these skills as a training task distribution.

Learning the task distribution in a data-driven manner ensures that tasks are feasible
in the environment. While the induced task distribution is in no way guaranteed to align
with test task distributions, it may yet require an implicit understanding of structure in
the environment. This can indeed be seen from our visualizations in section (4.5 which
demonstrate that acquired tasks show useful structure, though in some settings this structure
is easier to meta-learn than others. In the following, we formalize our approach, CARML,
through the lens of information maximization and describe a concrete instantiation that
scales to the vision-based environments considered in section L5l

4.3.1 An Overview of CARML

We begin from the principle of information maximization (IM), which has been applied across
unsupervised representation learning [12, 9, 168] and reinforcement learning [159, 79| for
organization of data involving latent variables. In what follows, we organize data from our
policy by maximizing the mutual information (MI) between state trajectories T := (sy,...,sr)
and a latent task variable z. This objective provides a principled manner of trading-off
structure and diversity: from I(7;z) := H(7T) — H(7|z), we see that H(7) promotes coverage
in policy data space (i.e. diversity) while —H (7|z) encourages a lack of diversity under each
task (i.e. structure that eases task inference).
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We approach maximizing I(7;2z) exhibited by the meta-learner fy via variational EM [9)],
introducing a variational distribution g4 that can intuitively be viewed as a task scaffold
for the meta-learner. In the E-step, we fit g4 to a reservoir of trajectories produced by fy,
re-organizing the cumulative experience. In turn, ¢, gives rise to a task distribution p(7):
each realization of the latent variable z induces a reward function r,(s), which we combine
with the CMP C; to produce an MDP 7; (Line . In the M-step, fy meta-learns the task
distribution p(7). Repeating these steps forms a curriculum in which the task distribution
and meta-learner co-adapt: each M-step adapts the meta-learner f, to the updated task
distribution, while each E-step updates the task scaffold ¢, based on the data collected during
meta-training. Pseudocode for our method is presented in Algorithm [§]

Algorithm 8 CARML — Curricula for Automatic Reinforcement of Meta-Learning

1: Require: C, an MDP without a reward function
2: Initialize fp, an RL algorithm parameterized by 6.
3: Initialize D, a reservoir of state trajectories, via a randomly initialized policy.
4: while not done do
5. Fit a task-scaffold ¢4 to D, e.g. by using Algorithm [9} E-step
6: for a desired mixture model-fitting period do
7 Sample a latent task variable z ~ g4 (z).
8: Define the reward function r,(s), e.g. by Eq. and a task T = C Ur,(s).
9: Apply fs on task T to obtain a policy my(als, D) and trajectories {7;}.
10: Update fy via a meta-RL algorithm, e.g. RL? |49). M-step section m
11: Add the new trajectories to the reservoir: D < DU {7;}.
12: end for
13: end while
14: Return: a meta-learned RL algorithm fy tailored to C

4.3.2 E-Step: Task Acquisition with Deep Clustering

The purpose of the E-step is to update the task distribution by integrating changes in the
meta-learner’s data distribution with previous experience, thereby allowing for re-organization
of the task scaffold. This data is from the post-update policy, meaning that it comes from a
policy my(als, Dy) conditioned on data collected by the meta-learner for the respective task.
In the following, we abuse notation by writing my(als, z) — conditioning on the latent task
variable z rather than the task experience Dy.

The general strategy followed by recent approaches for skill discovery based on IM is
to lower bound the objective by introducing a variational posterior g4(z|s) in the form of a
classifier. In these approaches, the E-step amounts to updating the classifier to discriminate
between data produced by different skills as much as possible. A potential failure mode of
such an approach is an issue akin to mode-collapse in the task distribution, wherein the
policy drops modes of behavior to favor easily discriminable trajectories, resulting in a lack of
diversity in the task distribution and no incentive for exploration; this is especially problematic
when considering high-dimensional observations. Instead, here we derive a generative variant,
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which allows us to account for explicitly capturing modes of behavior (by optimizing for
likelihood), as well as a direct mechanism for exploration.

We introduce a variational distribution g, which could be e.g. a (deep) mixture model

with discrete z or a variational autoencoder (VAE) [125] with continuous z, lower-bounding
the objective:

I(T;2) = — ZWQ(T) log mo(T) + Zﬂ'g(’r, z) log my(7|2) (4.1)

> =) mo(r)logmo(T) + Y mo(T|2)qs(2) log 4s(T]2) (4.2)

The E-step corresponds to optimizing Eq. with respect to ¢, and thus amounts to
fitting g4 to a reservoir of trajectories D produced by 7y:

mq?x Ez~q¢ (z),7~D [ 1Og Q¢(T|Z)} (43)

What remains is to determine the form of g,. We choose the variational distribution to
be a state-level mixture density model g4(s,z) = g4(s|z)gs(z). Despite using a state-level
generative model, we can treat z as a trajectory-level latent by computing the trajectory-level
likelihood as the factorized product of state likelihoods (Algorithm [0} Line 4). This is useful
for obtaining trajectory-level tasks; in the M-step (section , we map samples from ¢,(z)
to reward functions to define tasks for meta-learning.

Algorithm 9 Task Acquisition via Discriminative Clus-
tering

1: Require: a set of trajectories D = {(s1,...,s7)} ¥,

2: Initialize (¢y,, ¢m), encoder and mixture parameters.

3: while not converged do

4: Compute L(¢n; T, 2) = D 4 e 10865, (95, (51)]2)-
. N /. . 1
b: O ¢ argmaxy > ;0 L(¢),; 7, 2) (via MLE) Figure 4.3: Conditional inde-
6: D :={(s,y := argmax; ¢y, (z = k|gs,,(s)) }- :
pendence assumption for states
T G < argmaxy D en 108 q(ylge, (s))

8: end while along a trajectory.

9: Return: a mixture model gy4(s, 2)

Modeling Trajectories of Pixel Observations. While models like the variational
autoencoder have been used in related settings |[161], a basic issue is that optimizing for
reconstruction treats all pixels equally. We, rather, will tolerate lossy representations as
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long as they capture discriminative features useful for stimulus-reward association. Drawing
inspiration from recent work on unsupervised feature learning by clustering [17], 27|, we
propose to fit the trajectory-level mixture model via discriminative clustering, striking a
balance between discriminative and generative approaches.

We adopt the optimization scheme of DeepCluster [27], which alternates between i)
clustering representations to obtain pseudo-labels and ii) updating the representation by
supervised learning of pseudo-labels. In particular, we derive a trajectory-level variant
(Algorithm [9)) by forcing the responsibilities of all observations in a trajectory to be the same
(see Appendix for a derivation), leading to state-level visual representations optimized
with trajectory-level supervision.

The conditional independence assumption in Algorithm [9is a simplification insofar as
it discards the order of states in a trajectory. However, if the dynamics exhibit continuity
and causality, the visual representation might yet capture temporal structure, since, for
example, attaining certain observations might imply certain antecedent subtrajectories. We
hypothesize that a state-level model can regulate issues of over-expressive sequence encoders,
which have been found to lead to skills with undesirable attention to details in dynamics [1].
As we will see in section [4.5] learning representations under this assumption still allows for
learning visual features that capture trajectory-level structure.

4.3.3 M-Step: Meta-Learning with RL?

Using the task scaffold updated via the E-step, we meta-learn fy in the M-step so that m
can be quickly adapted to tasks drawn from the task scaffold. To define the task distribution,
we must specify a form for the reward functions r,(s). To allow for state-conditioned
Markovian rewards rather than non-Markovian trajectory-level rewards, we lower-bound the
trajectory-level MI objective:

T T
1 1
I(7i2) = & 37 H(D) — Hidlsy,usr) > =Y Hn) — Hlzls,) (4.4
t=1 t=1
> Eogmgy(z)smmo(slz) [ 108 4o (s]2) — log mo(s)] (4.5)

We would like to optimize the meta-learner under the variational objective in Eq. 4.5 but
optimizing the second term, the policy’s state entropy, is in general intractable. Thus, we
make the simplifying assumption that the fitted variational marginal distribution matches
that of the policy:

max By (2),s~mo(s]2) | 108 4o (s]2) — log gy (s)] (4.6)
= max I(7o(s); q4(2)) — Dxrmo(s|2)qy(s|2) + Dxrmo(s)gy(s)) (4.7)

Optimizing Eq. amounts to maximizing the reward of r,(s) = log g,(s|z) — log gs(s).
As shown in Eq. [4.7] this corresponds to information maximization between the policy’s
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state marginal and the latent task variable, along with terms for matching the task-specific
policy data distribution to the corresponding mixture mode and deviating from the mix-
ture’s marginal density. We can trade-off between component-matching and exploration by
introducing a weighting term A € [0, 1] into 7,(s):

r4(8) = Alog gs(s|z) — log g, (s) (4.8)
= (A — 1) log gy(s|z) + log g4(z[s) + C (4.9)

where C' is a constant with respect to the optimization of 6. From Eq. [4.9] we can interpret
A as trading off between discriminability of skills and task-specific exploration. Figure 4.4
shows the effect of tuning A on the structure-diversity trade-off alluded to at the beginning
of section [4.3

30
A=0.2
20
A=05
10
A=038
tO

Figure 4.4: Balancing consistency and exploration with A in a simple 2D maze environment.
Each row shows a progression of tasks developed over the course of training. Each box presents
the mean reconstructions under a VAE ¢4 (Appendix of 2048 trajectories. Varying A
of Eq. across rows, we observe that a small A (top) results in aggressive exploration; a
large A (bottom) yields relatively conservative behavior; and a moderate A (middle) produces
sufficient exploration and a smooth task distribution.

4.4 Related Work

Unsupervised Reinforcement Learning. Unsupervised learning in the context of RL is
the problem of enabling an agent to learn about its environment and acquire useful behaviors
without human-specified reward functions. A large body of prior work has studied exploration
and intrinsic motivation objectives [200] [195], 173] 65, 22, 13|, 138} [170]. These algorithms
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do not aim to acquire skills that can be operationalized to solve tasks, but rather try to
achieve wide coverage of the state space; our objective (Eq. reduces to pure density-based
exploration with A = 0. Hence, these algorithms still rely on slow RL [18] in order to adapt
to new tasks posed at test-time. Some prior works consider unsupervised pre-training for
efficient RL, but these works typically focus on settings in which exploration is not as much of
a challenge [248, 59, [51], focus on goal-conditioned policies [175] [L61], or have not been shown
to scale to high-dimensional visual observation spaces [144, 209|. Perhaps most relevant
to our work are unsupervised RL algorithms for learning reward functions via optimizing
information-theoretic objectives involving latent skill variables |79, |1} |54 247]. In particular,
with a choice of A =1 in Eq. we recover the information maximization objective used
in prior work |1, 54], besides the fact that we simulatenously perform meta-learning. The
setting of training a contextual policy with a classifier as g4 in our proposed framework (see
Appendix provides an interpretation of DIAYN as implicitly doing trajectory-level
clustering. Warde-Farley et al. [247| also considers accumulation of tasks, but with a focus
on goal-reaching and by maintaining a goal reservoir via heuristics that promote diversity.

Meta-Learning. Our work is distinct from above works in that it formulates a meta-
learning approach to explicitly train, without supervision, for the ability to adapt to new
downstream RL tasks. Prior work [108] |122, 3| has investigated this unsupervised meta-
learning setting for image classification; the setting considered herein is complicated by the
added challenges of RL-based policy optimization and exploration. Gupta et al. [83] provides
an initial exploration of the unsupervised meta-RL problem, proposing a straightforward
combination of unsupervised skill acquisition (via DIAYN) followed by MAML [58] with
experiments restricted to environments with fully observed, lower-dimensional state. Unlike
these works and other meta-RL works [241], 49, 157, 186, 58, 107, 82, 192, 218}, 223|, we close
the loop to jointly perform task acquisition and meta-learning so as to achieve an automatic
curriculum to facilitate joint meta-learning and task-level exploration.

Automatic Curricula. The idea of automatic curricula has been widely explored both
in supervised learning and RL. In supervised learning, interest in automatic curricula is based
on the hypothesis that exposure to data in a specific order (i.e. a non-uniform curriculum)
may allow for learning harder tasks more efficiently [52 200, 75]. In RL, an additional
challenge is exploration; hence, related work in RL considers the problem of curriculum
generation, whereby the task distribution is designed to guide exploration towards solving
complex tasks |61, (154, 60, 202| or unsupervised pre-training [221, 62]. Our work is driven by
similar motivations, though we consider a curriculum in the setting of meta-RL and frame
our approach as information maximization.

4.5 Experiments

We experiment in visual navigation and visuomotor control domains to study the following
questions:



CHAPTER 4. SCALABLE META-RL WITH SELF-SUPERVISED REWARDS 63

Figure 4.5: Example Observation Sequences from the Sawyer and Vizdoom environments.

e What kind of tasks are discovered through our task acquisition process (the E-step)?
e Do these tasks allow for meta-training of strategies that transfer to test tasks?

e Does closing the loop to jointly perform task acquisition and meta-learning bring
benefits?

e Does pre-training with CARML accelerate meta-learning of test task distributions?

Videos are available at the project website https://sites.google.com/view/carml.

4.5.1 Experimental Setting

The following experimental details are common to the two vision-based environments we
consider. Other experimental are explained in more detail in Appendix

Meta-RL. CARML is agnostic to the meta-RL algorithm used in the M-step. We use
the RL? algorithm [49], which has previously been evaluated on simpler visual meta-RL
domains, with a PPO optimizer. Unless otherwise stated, we use four episodes per trial
(compared to the two episodes per trial used in [49]), since the settings we consider involve
more challenging task inference.

Baselines. We compare against: 1) PPO from scratch on each evaluation task, 2) pre-
training with random network distillation (RND) for unsupervised exploration, followed
by fine-tuning on evaluation tasks, and 3) supervised meta-learning on the test-time task
distribution, as an oracle.

Variants. We consider variants of our method to ablate the role of design decisions
related to task acquisition and joint training: 4) pipelined (most similar to [83]) — task
acquisition with a contextual policy, followed by meta-RL with RL?; 5) online discriminator
— task acquisition with a purely discriminative g, (akin to online DIAYN); and 6) online
pretrained-discriminator — task acquisition with a discriminative g4 initialized with visual
features trained via Algorithm [0


https://sites.google.com/view/carml
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4.5.2 Visual Navigation

The first domain we consider is first-person visual navigation in ViZDoom [121], involving a
room filled with five different objects (drawn from a set of 50). We consider a setup akin to
those featured in 32, [255] (see Figure [£.3). The true state consists of continuous 2D position
and continuous orientation, while observations are egocentric images with limited field of
view. Three discrete actions allow for turning right or left, and moving forward. We consider
two ways of sampling the CMP C. Fixed: fix a set of five objects and positions for both
unsupervised meta-training and testing. Random: sample five objects and randomly place
them (thereby randomizing the state space and dynamics).

Visualizing the task distribution. Modeling pixel observations reveals trajectory-level
organization in the underlying true state space (Figure . Each map portrays trajectories
of a mixture component, with position encoded in 2D space and orientation encoded in
the jet color-space; an example of interpreting the maps is shown left of the legend. The
components of the mixture model reveal structured groups of trajectories: some components
correspond to exploration of the space (marked with green border), while others are more
strongly directed towards specific areas (blue border). The skill maps of the fixed and random
environments are qualitatively different: tasks in the fixed room tend towards interactions
with objects or walls, while many of the tasks in the random setting sweep the space in a
particular direction. We can also see the evolution of the task distribution at earlier and
later stages of Algorithm . While initial tasks (produced by a randomly initialized policy)
tend to be less structured, we later see refinement of certain tasks as well as the emergence

Figure 4.6: Skill maps for visual navigation. We visualize some of the discovered tasks
by projecting trajectories of certain mixture components into the true state space. White
dots correspond to fixed objects. The legend indicates orientation as color; on its left is an
interpretation of the depicted component. Some tasks seem to correspond to exploration of
the space (green border), while others are more directed towards specific areas (blue border).
Comparing tasks earlier and later in the curriculum (step 1 to step 5), we find an increase in
structure.

Fixed

Random
Gdais <«— Ldais
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Figure 4.7 CARML enables unsupervised meta-reinforcemnt learning that transfer to
downstream tasks. Direct transfer curves (marker and dotted line) represent a meta-learner
deploying for just 200 time steps at test time. Compared to CARML, PPO and RND Init
sample the test reward function orders of magnitude more times to perform similarly on
a single task. Finetuning the CARML policy also allows for solving individual tasks with
significantly fewer samples. The ablation experiments (c) assess both direct transfer and
finetuning for each variant. Compared to variants, the CARML task acquisition procedure
improves transfer by mitigating task mode-collapse and adapting the task distribution.

of others as the agent collects new data and acquires strategies for performing existing tasks.

Do acquired skills transfer to test tasks?” We evaluate how well the CARML task
distribution prepares the agent for unseen tasks. For both the fixed and randomized CMP
experiments, each test task specifies a dense goal-distance reward for reaching a single object
in the environment. In the randomized environment setting, the target objects at test-time
are held out from meta-training. The PPO and RND-initialized baseline polices, and the
finetuned CARML meta-policy, are trained for a single target (a specific object in a fixed
environment), with 100 episodes per PPO policy update.

In Figure [4.7a] we compare the success rates on test tasks as a function of the number of
samples with supervised rewards seen from the environment. Direct transfer performance of
meta-learners is shown as points, since in this setting the RL? agent sees only four episodes
(200 samples) at test-time, without any parameter updates. We see that direct transfer is
significant, achieving up to 71% and 59% success rates on the fixed and randomized settings,
respectively. The baselines require over two orders of magnitude more test-time samples to
solve a single task at the same level.

While the CARML meta-policy does not consistently solve the test tasks, this is not
surprising since no information is assumed about target reward functions during unsupervised
meta-learning; inevitable discrepancies between the meta-train and test task distributions
will mean that meta-learned strategies will be suboptimal for the test tasks. For instance,
during testing, the agent sometimes ‘stalls’ before the target object (once inferred), in order
to exploit the inverse distance reward. Nevertheless, we also see that finetuning the CARML
meta-policy trained on random environments on individual tasks is more sample efficient
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Figure 4.8: (Left) Skill maps for visuomotor control. Red encodes the true position of the
object, and light blue that of the end-effector. Tasks correspond to moving the object to
various regions (see Appendix for more skills maps and analysis). (Right) Observation
and third person view from the environment, respectively.

than learning from scratch. This suggests that deriving reward functions from our mixture
model yields useful tasks insofar as they facilitate learning of strategies that transfer.

Benefit of reorganization. In Figure[d.7a] we also compare performance across early and
late outer-loop iterations of Algorithm [§] to study the effect of adapting the task distribution
(the CARML E-step) by reorganizing tasks and incorporating new data. In both cases,
number of outer-loop iterations K = 5. Overall, the refinement of the task distribution, which

we saw in Figure leads improved to transfer performance. The effect of reorganization is
further visualized in the Appendix |4.7.6]

Variants. From Figure 4.7c, we see that the purely online discriminator variant suffers
in direct transfer performance; this is due to the issue of mode-collapse in task distribution,
wherein the task distribution lacks diversity. Pretraining the discriminator encoder with
Algorithm [9) mitigates mode-collapse to an extent, improving task diversity as the features
and task decision boundaries are first fit on a corpus of (randomly collected) trajectories.
Finally, while the distribution of tasks eventually discovered by the pipelined variant may be
diverse and structured, meta-learning the corresponding tasks from scratch is harder. More
detailed analysis and visualization is given in Appendix [4.7.5]

4.5.3 Visual Robotic Manipulation

To experiment in a domain with different challenges, we consider a simulated Sawyer arm
interacting with an object in MuJoCo [228], with end-effector continous control in the 2D
plane. The observation is a bottom-up view of a surface supporting an object (Figure ;
the camera is stationary, but the view is no longer egocentric and part of the observation is
proprioceptive. The test tasks involve pushing the object to a goal (drawn from the set of
reachable states), where the reward function is the negative distance to the goal state. A

subset of the skill maps is provided below.
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Figure 4.9: Finetuning the CARML meta-policy allows for accelerated meta-reinforcement
learning of the target task distribution. Curves reflect error bars across three random seeds.

Do acquired skills directly transfer to test tasks? In Figure [1.7b] we evaluate the
meta-policy on the test task distribution, comparing against baselines as previously. Despite
the increased difficulty of control, our approach allows for meta-learning skills that transfer
to the goal distance reward task distribution. We find that transfer is weaker compared
to the visual navigation (fixed version): one reason may be that the environment is not as
visually rich, resulting in a significant gap between the CARML and the object-centric test
task distributions.

4.5.4 CARML as Meta-Pretraining

Another compelling form of transfer is pretraining of an initialization for accelerated supervised
meta-RL of target task distributions. In Figure [1.9] we see that the initialization learned by
CARML enables effective supervised meta-RL with significantly fewer samples. To separate
the effect of the learning the recurrent meta-policy and the visual representation, we also
compare to only initializing the pre-trained encoder. Thus, while direct transfer of the
meta-policy may not directly result in optimal behavior on test tasks, accelerated learning of
the test task distribution suggests that the acquired meta-learning strategies may be useful for
learning related task distributions, effectively acting as pre-training procedure for meta-RL.

4.6 Discussion

We proposed a framework for inducing unsupervised, adaptive task distributions for meta-RL
that scales to environments with high-dimensional pixel observations. Through experiments
in visual navigation and manipulation domains, we showed that this procedure enables
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unsupervised acquisition of meta-learning strategies that transfer to downstream test task
distributions in terms of direct evaluation, more sample-efficient fine-tuning, and more sample-
efficient supervised meta-learning. Nevertheless, the following key issues are important to
explore in future work.

Task distribution mismatch. While our results show that useful structure can be
meta-learned in an unsupervised manner, results like the stalling behavior in ViZDoom (see
section suggest that direct transfer of unsupervised meta-learning strategies suffers
from a no-free-lunch issue: there will always be a gap between unsupervised and downstream
task distributions, and more so with more complex environments. Moreover, the semantics of
target tasks may not necessarily align with especially discriminative visual features. This is
part of the reason why transfer in the Sawyer domain is less successful. Capturing other forms
of structure useful for stimulus-reward association might involve incorporating domain-specific
inductive biases into the task-scaffold model. Another way forward is the semi-supervised
setting, whereby data-driven bias is incorporated at meta-training time.

Validation and early stopping: Since the objective optimized by the proposed method
is non-stationary and in no way guaranteed to be correlated with objectives of test tasks, one
must provide some mechanism for validation of iterates.

Form of skill-set. For the main experiments, we fixed a number of discrete tasks to be
learned (without tuning this), but one should consider how the set of skills can be grown or
parameterized to have higher capacity (e.g. a multi-label or continuous latent). Otherwise,
the task distribution may become overloaded (complicating task inference) or limited in
capacity (preventing coverage).

Accumulation of skill. We mitigate forgetting with the simple solution of reservoir
sampling. Better solutions involve studying an intersection of continual learning and meta-
learning.
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4.7 Appendix

4.7.1 Derivations
Derivation for Trajectory-Level Responsibilities (Section 3.2.1)

Here we show that, assuming independence between states in a trajectory when conditioning
on a latent variable, computing the trajectory likelihood as a factorized product of state
likelihoods for the E-step in standard EM forces the component responsibilities for all states
in the trajectory to be identical. Begin by lower-bounding the log-likelihood of the trajectory
dataset with Jensen’s inequality:

> logp(t) =) logp(si,sh, .., sf) (4.10)
= log ) " p(si,sh, .., s712)p(=) (4.11)

(s, 85 -, 87|2)p(2)
> z|s1, 89, ...,87) lo 4.12
> § E L W (4.12)

p(Si. 85, s 2p(2)
_ B . | ' 4.13
; 46 (2ls1,52,....s7) 108 qs(2]81, 82, ..., s7) (419)

We have introduced the variational distribution g,(7, 2), where z is a categorical variable.
Now, to maximize Eq. with respect to ¢ := (p1, 31,71, ..., by, 2N, TN ), We alternate
between an E-step and an M-step, where the E-step is computing
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We assume that each g,(s|z = k) is Gaussian; the M-step amounts to computing the
maximum-likelihood estimate of ¢, under the mixture responsibilities from the E-step:
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In particular, note that the expressions are independent of t. Thus, the posterior ¢,(z|s)
will be, too.
CARML M-Step

The objective used to optimize the meta-RL algorithm in the CARML M-step can be
interpreted as a sum of cross entropies, resulting in the mutual information plus two additional
KL terms:

— Esory(sla) s (a) [ 108 46(8) — log g(s]2)] (4.20)
== as(2) Y _ 7o(s|z) (log gs(s) — log gy (s|z)) (4.21)

- Z 49(2) Z 7(s|z) (108; (5) + log my(s) — log _q¢(s]|z§

— log 7r9(s|z)> (4.22)

mo(s) mo(s|z
=H (mp(s)) + Dxrmo(s)qe(s) — H(me(s|z)) — Dxrmo(s|z)qs(s|z) (4.23)
=1(m9(s); 4s(2)) + Dxrmo(8)qs(s) — Dxrme(s|2)qy(s|2). (4.24)

The first KL term can be interpreted as encouraging exploration with respect to the
density of the mixture. The second KL term is the reverse KL term for matching the modes
of the mixture.

Density-based exploration. In practice, we may want to trade off between exploration
and matching the modes of the generative model:

r4(8) = Alog gy (s|z) — log g, (s) (4.25)
= (A = 1)log gy(s|z) + log g4 (zls) — log ¢4(2) (4.26)
= (A —1)loggs(s|z) + log gs(z|s) + C (4.27)

where C' is constant with respect to the optimization of 6. Hence, the objective amounts to
maximizing discriminability of skills where \ < 1 yields a bonus for exploring away from the
mode of the corresponding skill.

Discriminative CARML and DIAYN

Here, we derive a discriminative instantiation of CARML. We begin with the E-step. We
leverage the same conditional independence assumption as before, and re-write the trajectory-
level MI as the state level MI, assuming that trajectories are all of length T

I(T;2) > % > I(siiz) =I(s;2) (4.28)

We then decompose MI as the difference between marginal and conditional entropy of the
latent, and choose the variational distribution to be the product of a classifier ¢, (z|s) and a
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density model gy, (s):
I(s;z) = H(z) — H(z|s) (4.29)
= —Zp( log p(z +Z7T9 (s,2)logme(z|s) (4.30)

> = p(z)logp(z +Z7Te z) log g, (zs) (4.31)

We fix z to be a uniformly-distributed categorical variable. The CARML E-step consists
of two separate optimizations: supervised learning of gy, (z|s) with a cross-entropy loss and
density estimation of gg,(s):

max o) som(a) 108 Goc (2l8)] max Byvpa) snm(a) (108 65,(5)] (4.32)

For the CARML M-step, we start from the form of the reward in Eq. and manipulate
via Bayes’:

74(8) = log gy, (z|s) + (A — 1) log gy, (z]s) + (A — 1) log gy, (s) — (A — 1) log p(z) — log p(z)
= Alog gy, (zls) + (A — 1) log gy, (s) + C (4.33)

where C' is constant with respect to the optimization of 6§ in the M-step
5 By gy wryo) (M08 6, (2]5) + (A — 1) log g5, (5)] (4:34)

To enable a trajectory-level latent z, we want every state in a trajectory to be classified to the
same z. This is achievable in a straightforward manner: when training the classifier g, (z|s)
via supervised learning, label each state in a trajectory with the realization of z that the
policy my(als,z) was conditioned on when generating that trajectory.

Connection to DIAYN. Note that with A = 1 in Eq. [£.34] we directly obtain the
DIAYN [54] objective without standard policy entropy regularization, and we do away with
needing to maintain a density model log g,,(s), leaving just the discriminator. If my(als, z)
is truly a contextual policy (rather than the policy given by adapting a meta-learner), we
have recovered the DIAYN algorithm. This allows us to interpret on DIAYN-style algorithms
as implicitly doing trajectory-level clustering with a conditional independence assumption
between states in a trajectory given the latent. This arises from the weak trajectory-level
supervision specified when training the discriminator: all states in a trajectory are assumed
to correspond to the same realization of the latent variable.
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4.7.2 Additional Details for Main Experiments
CARML Hyperparameters

We train CARML for five iterations, with 500 PPO updates for meta-learning with RL? in the
M-step (i.e. update the mixture model every 500 meta-policy updates). Thus, the CARML
unsupervised learning process consumes on the order of 1,000,000 episodes (compared to the
400,000 episodes needed to train a meta-policy with the true task distribution, as shown
in our experiments). We did not heavily tune this number, though we noticed that using
too few policy updates (e.g. ~100) before refitting g, resulted in instability insofar as the
meta-learner does not adapt to learn the updated task distribution. Each PPO learning
update involves sampling 100 tasks with 4 episodes each, for a total of 400 episodes per
update. We use 10 PPO epochs per update with a batch size of 100 tasks.

During meta-training, tasks are drawn according to z ~ g4(2), the mixture’s latent prior
distribution. Unless otherwise stated, we use A = 0.99 for all visual meta-RL experiments.
For all experiments unless otherwise mentioned, we fix the number of components in our
mixture to be k = 16. We use a reservoir of 1000 trajectories.

Temporally Smoothed Reward: At unsupervised meta-training time, we found it
helpful to reward the meta-learner with the average over a small temporal window, i.e.
¥ (s) = S, 7=(si), choosing W to be W = 10. This has the effect of smoothing the
reward function, thereby regularizing acquired task inference strategies.

Random Seeds: The results reported in Figure 6 are averaged across policies (for each
treatment) trained with three different random seeds. The performance is averaged across 20
test tasks. The results reported in Figure 7 are based on finetuning CARML policies trained
with three different random seeds. We did not observe significant effects of the random seed
used in the finetuning procedure of experiments reported for Figure 7.

Model Selection: Models used for transfer experiments are selected by performance on
a small held-out validation set (ten tasks) for each task, that does not intersect with the test
task.

Meta-RL with RL?

We adopt the recurrent architecture and hyperparameter settings as specified in the visual
maze navigation tasks of Duan et al. [49], except we:

e Use PPO for policy optimization (clip = 0.2, value coef = 0.1)

e Set the entropy bonus coefficient o in an environment-specific manner. We use a = 0.001
for MuJoCo Sawyer and o = 0.1 for ViZDoom.

e Enlarge the input observation space to 84 x 84 x 3, adapting the encoder by half the
stride in the first convolutional layer.

e Increase the size of the recurrent model (hidden state size 512) and the capacity of the
output layer of the RNN (MLP with one hidden layer of dimension 256).
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e Allow for four episodes per task (instead of two), since the tasks we consider involve
more challenging task inference.

e Use a multi-layer perceptron with one-hidden layer to readout the output for the actor
and critic, given the recurrent hidden state.

Reward Normalization

A subtle challenge that arises in applying meta-RL across a range of tasks is difference in
the statistics of the reward functions encountered, which may affect task inference. Without
some form of normalization, the statistics of the rewards of unsupervised meta-training tasks
versus those of the downstream tasks may be arbitrarily different, which may interfere with
inferring the task. This is especially problematic for RL? (compared to e.g. MAML [58]),
which relies on encoding the reward as a feature at each timestep. We address this issue by
whitening the reward at each timestep with running mean and variance computed online,
separately for each task from the unsupervised task distribution during meta-training. At
test-time, we share these statistics across tasks from the same test task distribution.

Learning Visual Representations with Deep Clustering

To jointly learn visual representations with the mixture model, we adopt the optimization
scheme of DeepCluster [27]. The DeepCluster model is parameterized by the weights of a
convolutional neural network encoder as well as a k-means model in embedding space. It is
trained in an EM-like fashion, where the M-step additionally involves training the encoder
weights via supervised learning of the image-cluster mapping.

Our contribution is that we employ a modified E-step, as presented in the main text, such
that the cluster responsibilities are ensured to be consensual across states in a trajectory in
the training data. As shown in our experiments, this allows the model to learn trajectory-level
visual representations. The full CARML E-step with DeepCluster is presented below.

Algorithm 10 CARML E-Step, a Modified EM Procedure, with DeepCluster

1: Require: a set of trajectories D = {(sy,...,s7)}¥,

2: Initialize ¢ := (¢, ¢n), the weights of encoder g and embedding-space mixture model
parameters.

3: while not converged do

4: Compute L(¢m; T, 2) = Y g, cr 108 G5, (90, (51)]2).

5. Update via MLE: ¢,, < arg max, SN L(¢ T, 2).

6:  Obtain training data D := {(s, y := argmax;, ¢s,, (2 = k|gs,(s))}

7. Update via supervised learning: ¢, <— arg max,, Z(s,y)ED log q(y|gs, (s))-

8: end while

9: Return: a mixture model gy4(s, 2)
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For updating the encoder weights, we use the default hyperparameter settings as described
in [27], except 1) we modify the neural network architecture, using a smaller neural network,
ResNet-10 [92] with a fixed number of filters (64) for every convolutional layer, and 2) we
use number of components K = 16, which we did not tune. We tried using a more expressive
Gaussian mixture model with full covariances instead of k-means (when training the visual
representation), but found that this resulted in overfitting. Hence, we use k-means until the
last iteration of EM, wherein a Gaussian mixture model is fitted under the resulting visual
representation.

Environments

ViZDoom Environment The environment used for visual navigation is a 500x500 room built

Figure 4.10: Top-down view of VizDoom environment, with initial agent position. White
squares depict stationary objects (only relevant to fixed environment).

with ViZDoom [121]. We consider both fixed and random environments; for randomly placing
objects, the only constraint enforced is that objects should not be within a minimal distance
of one another. There are 50 train objects and 50 test objects. The agent’s pose is always
initialized to be at the top of the room facing forward. We restrict observations from the
environment to be 84 x 84 RGB images. The maximum episode length is set to 50 timesteps.
The hand-crafted reward function corresponds to the inverse [, distance from the specified
target object.

The environment considered is relatively simple in layout, but compared to simple mazes,
can provide a more complex observation space insofar as objects are constantly viewed
from different poses and in various combinations, and are often occluded. The underlying
ground-truth state space is the product of continuous 2D position and continuous pose spaces.
There are three discrete actions that correspond to turning right, turning left, and moving
forward, allowing translation and rotation in the pose space that can vary based on position;
the result is that the effective visitable set of poses is not strictly limited to a subset of the
pose space, despite discretized actions.

Sawyer Environment For visual manipulation, we use a MuJoCo [228| environment
involving a simulated Sawyer 7-DOF robotic arm in front of a table, on top of which is an
object. The Sawyer arm is controlled by 2D continuous control. It is almost identical to the
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Figure 4.11: Third person view of the Sawyer environment

environment used by prior work such as [161], with the exception that our goal space is that
of the object position. The robot pose and object are always initialized to the same position
at the top of the room facing forward. We restrict observations from the environment to be
84 x 84 RGB images. The maximum episode length is set to 50 timesteps. The hand-crafted
reward function corresponds to the negative [l distance from the specified target object.

4.7.3 Additional Details for Qualitative Study of A
Instantiating ¢, as a VAE

Three factors motivate the use of a variational auto-encoder (VAE) as a generative model for
the 2D toy environment. First, a key inductive bias of DeepCluster, namely that randomly
initialized convolutional neural networks work surprisingly well, which Caron et al. [27] use
to motivate its effectiveness in visual domains, does not apply for our 2D state space. Second,
components of a standard Gaussian mixture model are inappropriate for modeling trajectories
involving turns. Third, using a VAE allows sampling from a continuous latent, potentially
affording an unbounded number of skills.

We construct the VAE model in a manner that enables expressive generative densities
p(s|z) while allowing for computation of the policy reward quantities. We set the VAE
latent to be (z,t), where p(z,t) = p(z)p(t) = N(0,I)5. The form of p(t) follows from
restricting the policy to sampling trajectories of length 7. We factorize the posterior as
4s(z,tIsy) = q(z|sy)d(t —t'). Keeping with the idea of having a Markovian reward, we
construct the VAE’s recognition network such that it takes as input individual states after
training. To incorporate the constraint that all states in a trajectory are mapped to the
same posterior, we adopt a particular training scheme: we pass in entire trajectories sy.r,
and specify the posterior parameters as p. = 7>, g,(s¢) and 02 = 7 3, g,(sy).

The ELBO for this model is

I[‘—1-:’z,15~q¢(z,t|st/) [lOg Q¢(St’ ‘Z7 t)} - DKLq¢(Za t’St’ )p(Z, t) (435)
=By (zls,) [log 4o (sv|2, t’)] — Dk1.qe(z|sy)p(z) — C (4.36)

where C' is constant with respect to the learnable parameters. The simplification directly
follows from the form of the posterior; we have essentially passed t' through the network
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unchanged. Notice that the computation of the ELBO for a trajectory leverages the conditional
independence in our graphical model.

CARML Details

Since we are not interested in meta-transfer for this experiment, we simplify the learning
problem to training a contextual policy my(als, z). To reward the policy using the VAE g,
we compute

r.(s) = Aog gs(s|z) — log g4(s) (4.37)

where
1
| =1 t)p(t) = log — t 4.
o504(12) =108 3 ao(5f (1) = o8 7 3~ (ol (1.35)

and we approximate log g4(s) by its ELBO (Eq. , substituting the above expression for
the reconstruction term.

4.7.4 Sawyer Task Distribution

Visualizing the components of the acquired task distribution for the Sawyer domain reveals
structure and diversity related to the position of the object as well as the control path taken
to effect movement. Red encodes the true position of the object, and light blue that of the
end-effector. We find tasks corresponding to moving the object to various locations in the
environment, as well as tasks that correspond to moving the arm in a certain way without
object interaction. The tasks provide a scaffold for learning to move the object to various
regions of the reachable state space.

Since the Sawyer domain is less visually rich than the VizDoom domain, there may
be less visually discriminative states that align with semantics of test task distributions.
Moreover, since a large part of the observation is proprioceptive, the discriminative clustering
representation used for density modeling captures various proprioceptive features that may
not involve object interaction. The consequences are two-fold: 1) the gap in the CARML
and the object-centric test task distributions may be large, and 2) the CARML tasks may be
too diverse in-so-far as tasks share less structure, and inferring each task involves a different
control problem.
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4.7.5 Mode Collapse in the Task Distribution

Here, we present visualizations of the task distributions induced by variants of the presented
method, to illustrate the issue of using an entirely discrimination-based task acquisition
approach. Using the fixed VizDoom setting, we compare:

(i) CARML, the proposed method

(ii) online discriminator - task acquisition with a purely discriminative g, (akin to an
online, pixel-observation-based adaptation of [83]);

(ili) online pretrained-discriminator — task acquisition with a discriminative ¢, as in
(ii), initialized with pre-trained observation encoder.

For all discriminative variants, we found it crucial to use a temperature > 3 to soften the
classifier softmax to prevent immediate task mode-collapse.

) CARML (ours) ) online discriminator (iii) pretrained online

[83] discriminator

We find the task acquisition of purely discriminative variants (ii, iii) to suffer from an
effect akin to mode-collapse; the policy’s data distribution collapses to a smaller subset of the
trajectory space (one or two modes), and tasks correspond to minor variations of these modes.
Skill acquisition methods such as DTIAYN rely purely on discriminability of states/trajectories
under skills, which can be more easily satisfied in high-dimensional observation spaces and
can thus lead to such mode-collapse. Moreover, they do not a provide a direct mechanism
for furthering exploration once skills are discriminable. On the other hand, the proposed
task acquisition approach (Algorithm [9] section fits a generative model over jointly
learned discriminative features, and is thus not only less susceptible to mode-collapse (w.r.t
the policy data distribution), but also allows for density-based exploration (section .
Indeed, we find that (iii) seems to mitigate mode-collapse — benefiting from a pretrained
encoder from (i) — but does not entirely prevent it. As shown in the main text (Figure [4.7d),
in terms of meta-transfer to hand-crafted test tasks, the online discriminative variants (ii,
iii) perform worse than CARML (i), due to lesser diversity in the task distribution.
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4.7.6 Evolution of Task Distribution

Here we consider the evolution of the task distribution in the Random VizDoom environment.
The initial tasks (referred to as CARML It. 1) are produced by fitting our deep mixture
model to data from a randomly-initialized meta-policy. CARML Its. 2 and 3 correspond to
the task distribution after the first and second CARML E-steps, respectively.

We see that the initial tasks tend to be less structured, in so far as the components
appear to be noisier and less distinct. With each E-step we see refinement of certain tasks
as well as the emergence of others, as the agent’s data distribution is shifted by 1) learning
the learnable tasks in the current data-distribution, and 2) exploration. In particular, tasks
that are "refined" tend to correspond to more simple, exploitative behaviors (i.e. directly
heading to an object or a region in the environment, trajectories that are more straight),
which may not require exploration to discover. On the other hand, the emergent tasks seem
to reflect exploration strategies (i.e. sweeping the space in an efficient manner). We also see
the benefit of reorganization that comes from refitting the mixture model, as tasks that were
once separate can be combined.

o ======..

[teration 3 ........

Iteration 5 H.-..H..

Figure 4.13: Evolution of the CARML task distribution over 3 iterations of fitting g, in the
random ViZDoom visual navigation environment. We observe evidence of task refinement
and incorporation of new tasks.
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Chapter 5

Looking Forward

It has long been hypothesized that learning paradigms beyond supervised and reinforcement
learning — i.e. relatively unsupervised learning — must play a key role in the development of
artifical intelligence [99]. Recent trends in machine learning — driven by breakthroughs in
deep learning, large-scale optimization, and internet-scale data curation — have enabled the
rise of scalable pre-training techniques that are beginning to deliver on this promise [43] 21].
This thesis has explored inductive biases that enable scalable pre-training, from the design
of architectures capable of adaptive computation for scalable generative modeling, to self-
supervised objectives that prepare embodied agents with mechanisms for state representation
and reward maximization.

While self-supervised learning and generative modeling both shift the burden of manual
representation and annotation to that of computation and data curation, these two approaches
span a trade-off of the role of domain knowledge in the design of pre-training schemes. Self-
supervised learning requires more task-oriented design of annotation-free objectives, but this
additional bias can in principle allow for more targeted pre-training. Generative models solve
the more general and challenging task of maximizing the likelihood of data, but this learning
objective is more universal and thus stands to scale more gracefully across domains. Taking
the lessons of the past decade to heart, it is worth asking how our understanding of their
relative advantages might evolve as underlying techniques for generative modeling improve.

5.1 Task-specific Binding as Conditional Inference

A key question is whether the task-oriented bias of self-supervised learning is necessary, or
whether a similar effect can be achieved in a more scalable manner i.e. without the design
of bespoke objectives. Though generative models optimize more universal objectives, they
are not necessarily ‘fully’ unsupervised insofar as they rely on the curation of data with
useful underlying conditional distributions. Indeed, many recent breakthroughs in generative
modeling for image|[188| and video|104] generation are instances of conditional generative
models that rely on large datasets of curated data annotated with natural language. While
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this might suggest that data annotation remains a limiting factor, generative pre-training
of large language models has demonstrated that much of the seemingly noisy ambient text
data is rich with conditional distributions that capture useful task-specific structure. This
is because language — even that of text spewed across the internet — is intrinsically an
account of task-relevant latent variables and how they interact to produce goal-directed
behaviour. As long as generative models can be formulated to model the joint distribution
of a sufficiently universal data interface (e.g. in the case of NLP, variable length sequences
with large vocabularies), learning new tasks amounts to specializing to specific conditional
inference problems. The versatility of large language models — in terms of sample-efficient
transfer to downstream tasks — has highlighted the potential of training on noisy datasets
drawn from the joint distribution of tokens for efficiently learn more goal-directed conditional
distributions, when paired with supervised finetuning and reinforcement learning from human

feedback|169).

5.2 Universal Generative Models and Adaptive
Computation

This points to the potential of yet untapped sources of useful conditional generation problems
lying dormant in unlabeled data. A promising place to look is the increasing amounts of
data across multiple modalities produced as a by-product of human activity, such as video
and audio, in addition to text. A simple argument is that natural language is limited in
bandwidth and finite in abundance. A more fundamental motivation is that language is
just one account of the underlying state of the world and the coincidence of phenomena
across modalities may play an important role in learning of more robust representations and
algorithms [90, 212]. Large multi-modal data can thus provide additional sources of prior
knowledge as well as useful constraints for how this knowledge should be structured. Looking
forward, a key challenge will be scalable modeling of joint distributions of heterogeneous data
sources that reflect phenenoma across different modalities.

Modeling continuous and discrete data. While we have seen breakthroughs in genera-
tive models for discrete and continuous data, these two domains are dominated by different
approaches. Discrete data can be directly modeled with likelihood objectives such as auto-
regressive models because normalizing probability distributions is tractable for categorical
variables. Approaches such as diffusion models excel at modeling high-dimensional continuous
because they avoid probability normalization. Recent work has shown how these objectives
can be viewed from a unified perspective |106], suggesting the possibility of designing hybrid
objectives that marry the best of both. In particular, generative models for text may benefit
from advantages of diffusion models such as the ability of parallel refinement for more un-
ordered generation (rather than a strict left-to-right bias), the ability to vary depth of the
stochastic computation graph during generation, and the hierarchical coarse-to-fine nature of
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the increasing signal-to-noise ratio in the diffusion reverse process. Beyond the application
to more universal generative models, this interplay between unordered and hierarchical
generation may improve the coherence of generating long sequences that remain a challenge,
such as theorem proving and document generation.

Adaptive computation. The coincidence of phenomena across modalities is useful for
learning insofar as these different views of the same underlying latent structure share mutual
information [109]. While this is a key motivation for modeling their joint distribution, it is
also implies that multi-modal data is not only higher in dimension (e.g. video), but also
inherently more redundant. The need for generative model architectures capable of adaptive
computation presented in Chapter [2| thus becomes even more important. Understanding the
scaling laws of generative models has driven our ability to improve existing systems in a more
scientific manner [119,|97]. As we look towards building more universal generative models
that span modalities, establishing their scaling laws will be instrumental in understanding the
nature of transfer between modalities, and adaptive computation is sure to play a significant
role.
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