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Abstract

Vision and Language Understanding Through Generative Modeling

by

Dong Huk S Park

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Language is such a powerful representation for capturing the knowledge and informa-
tion about our world. It excels at expressing discrete concepts such as objects and
their attributes, the relationships between them in a very compact manner all due to
its extremely high level of abstraction. Language is the primary means by which we
communicate, comprehend, and express our thoughts and ideas, and it lies at the very
core of human intelligence. With the advent of powerful generative models, machines
also have begun to comprehend and generate natural language with notable fluency
and creativity. However, they lack “grounding”—a direct tie to the visual world.
Vision plays a pivotal role in our comprehension and production of language. When
we describe a scene, understand instructions, or engage in a dialogue, visual context
significantly aids our interpretation and generation of language. This highlights the
need for integrating vision for generative modeling.

Chapter 1 and 2 delve into image-to-text domain, spotlighting the importance of
a multimodal approach for text generation. In Chapter 1, we explore how generating
textual rationales with attention visualizations can enhance model transparency for
visual question answering. In Chapter 2, we build generative models that abandon
traditional left-to-right sequencing in favor of an unsupervised technique to determine
optimal generation orders. Chapter 3 and 4 shift the focus to text-to-image generation.
In Chapter 3, we introduce a training-free framework that combines linguistic cues
with reference images, allowing for controllable image synthesis using denoising
diffusion probabilistic models. Lastly, Chapter 4 emphasizes the importance of
preserving object shapes in text-based image editing, proposing a unique mechanism
that augments text-to-image models to be more faithful to input masks and text
prompts.
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Chapter 1

Introduction

Over the last decade, we have seen great advancements of larger and enhanced
language models. Important technical developments such as sequence-to-sequence
learning [9–12] and generative modeling [13] driven by Transformers [14] have been
at the heart of these underlying advances. When trained on a massive corpus of texts
sourced from the web, these models are capable of comprehending and generating
natural language like humans do, demonstrating unprecedented capabilities in solving
a variety of natural language processing (NLP) tasks such as document summarization,
machine translation, code completion, and question answering.

While these models have demonstrated remarkable prowess in processing text,
there are fundamental challenges they face in truly grasping human intelligence. One
significant limitation lies in the fact that these generative models primarily learn
from textual data without a direct connection to the physical world. They lack what
is known as “grounding” or a visual understanding of the context in which language
exists. Language, after all, is intrinsically tied to our sensory experiences and our
interaction with the visual environment.

Joint modeling of images and texts has been actively explored in the form of
multimodal generative models. They can be largely categorized into image-to-text
models [15–20] where models are mainly optimized by learning how to generate texts
that are coherent to the conditioned visual information, and text-to-image models
in which the common training objective is to generate images that are consistent
with the input texts [21–27]. These models are trained on large-scale multimodal
datasets collected from the web which contain arbitrary text and image pairs. The
scale and quality of these datasets are integral to endowing them with remarkable
generalization capabilities, often known as in-context or zero-shot/few-shot learning.
By seamlessly bridging the gap between vision and language, these models are
enabling more intuitive interfaces for interacting with AI agents, fostering richer
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content generation, and paving the way for innovative solutions that enrich our lives.
In light of these progresses, this thesis aims to address some of the limitations

multimodal generative models have, and explores methodologies to improve them.
More concretely, this thesis covers image-to-text models in the domain of visual
question answering (VQA), activity recognition, and image captioning, and text-to-
image models for image synthesis and shape-guided editing.

In Chapter 2, we propose a multimodal approach to make VQA systems more
explainable where the models provide joint textual rationale and attention visu-
alization, and argue that the two modalities provide complementary explanatory
strengths. We further demonstrate that training with the textual explanations not
only yields better textual justification models, but also models that better localize
the evidence that supports the decision.

Chapter 3 introduces an unsupervised parallelizable learner that discovers high-
quality text generation orders purely from training data, deviating away from the
conventional left-to-right ordering. The learner contains an encoder network and
decoder language model that perform variational inference with autoregressive orders
(represented as permutation matrices) as latent variables. The corresponding ELBO
is not differentiable, so we develop a practical algorithm for end-to-end optimization
using policy gradients. We demonstrate the efficacy of our method on diverse tasks
such as code generation, machine translation, and image captioning.

In Chapter 4, we shift our focus to text-to-image task and showcase a novel unified
framework for semantic diffusion guidance, which allows either language or image
guidance, or both to be injected into a pretrained unconditional diffusion model
for image synthesis. By using the gradient of image-text or image matching scores,
we demonstrate that an unconditional image diffusion model can be repurposed to
become text and/or image conditional without any type of re-training. Moreover, the
proposed approach can be applied to datasets without associated text annotations
which makes it easier to be used as a drop-in solution

Chapter 5 examines a rather different problem from Chapter 4 where we identify
a key issue in existing text-to-image diffusion models. Namely, when manipulating
an object they often ignore the shape of the object and generate content that is
incorrectly scaled, cut off, or replaced with background content. We propose a
training-free method, Shape-Guided Diffusion, that modifies pretrained diffusion
models to be sensitive to shape input. We use a novel Inside-Outside Attention
mechanism during the inversion and generation process designates which spatial
region is the object (inside) vs. background (outside) then associates edits specified
by text prompts to the correct region.

Finally, in Chapter 6, we summarize the findings of this thesis, and discuss
possible extensions and future avenues for further research.
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Chapter 2

Multimodal Explanations: Justifying
Decisions and Pointing to the Evidence

2.1 Introduction
Explaining decisions is an integral part of human communication, understanding,

and learning, and humans naturally provide both deictic (pointing) and textual
modalities in a typical explanation. We aim to build deep learning models that also
are able to explain their decisions with similar fluency in both visual and textual
modalities. Previous machine learning methods for explanation were able to provide
a text-only explanation conditioned on an image in context of a task, or were able
to visualize active intermediate units in a deep network performing a task, but were
unable to provide explanatory text grounded in an image.

We propose a new model which can jointly generate visual and textual explana-
tions, using an attention mask to localize salient regions when generating textual
rationales. We argue that to train effective models, measure the quality of the
generated explanations, compare with other methods, and understand when methods
will generalize, it is important to have access to ground truth human explanations.
Unfortunately, there is a dearth of datasets which include examples of how humans
justify specific decisions. Thus, we collect two new datasets, ACT-X and VQA-X,
which allow us to train and evaluate our novel model, which we call the Pointing
and Justification Explanation (PJ-X) model. PJ-X is explicitly multimodal: it
incorporates an explanatory attention step, which allows our model to both visually
point to the evidence and justify a model decision with text.

To illustrate the utility of multimodal explanations, consider Figure 2.1. In both
examples, the question “Is this a healthy meal?” is asked, and the PJ-X model
correctly answers either “no” or “yes” depending on the visual input. To justify why
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Visual PointingQ: Is this a healthy meal?

...because it 
is a hot dog 
with a lot of 
toppings. 

Textual Justification

...because it 
contains a 
variety of 
vegetables on 
the table.

A: No

A: Yes

Figure 2.1: For a given question and an image, our Pointing and Justification Explanation
(PJ-X) model predicts the answer and multimodal explanations which both point to the
visual evidence for a decision and provide textual justifications. We show that considering
multimodal explanations results in better explanations as visual and textual components
complement each other.

the image is not healthy, the generated textual justification mentions the kinds of
unhealthy food in the image (“hot dog” and “toppings”). In addition to mentioning
the unhealthy food, our model is able to point to the hot dog in the image. Likewise,
to justify why the image on the right is healthy, the textual explanation mentions
“vegetables”. The PJ-X model then points to the vegetables, which are mentioned in
the textual explanation, but not other items in the image, such as the bread.

We propose VQA and activity recognition as testbeds for studying explanations
because they are challenging and important visual tasks which have interesting
properties for explanation. VQA is a widely studied multimodal task that requires
visual and textual understanding as well as commonsense knowledge. The newly
collected VQA v2 dataset [28] includes complementary pairs of questions and answers.
Complementary VQA pairs ask the same question of two semantically similar images
which have different answers. As the two images are semantically similar, VQA
models must employ finegrained reasoning to answer the question correctly. Not
only is this an interesting and useful setting for measuring overall VQA performance,
but it is also interesting when studying explanations. By comparing explanations
from complementary pairs, we can more easily determine whether our explanations
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focus on the important factors for making a decision.
Additionally, we collect annotations for activity recognition using the MPII

Human Pose (MHP) dataset [2]. Activity recognition in still images relies on a
variety of cues, such as pose, global context, and the interaction between humans and
objects. Though a recognition model can potentially classify an activity correctly, it
is not capable of indicating which factors influence the decision process. Furthermore,
classifying specific activities requires understanding finegrained differences (e.g.,
“road biking” and “mountain biking” include similar objects like “bike” and “helmet,”
but road biking occurs on a road whereas mountain biking occurs on a mountain
path). Such finegrained differences are interesting yet difficult to capture when
explaining neural network decisions.

In sum, we present VQA-X and ACT-X, two novel datasets of human annotated
multimodal explanations for activity recognition and visual question answering.
These datasets allow us to train the Pointing and Justification (PJ-X) model which
goes beyond current visual explanation systems by producing multimodal explana-
tions, justifying the predicted answer post-hoc through visual pointing and textual
justification. Our datasets also allow us to effectively evaluate explanation models,
and we show that the PJ-X model outperforms strong baselines. Importantly, by
generating multimodal explanations, we outperform models which only produce
visual or textual explanations.

2.2 Related Work

Explanations. Early textual explanation models span a variety of applications
(e.g., medical [29] and feedback for teaching programs [30–32]). More recently, [33]
developed a deep network to generate natural language justifications of a fine-grained
classifier. Unlike our model, it does not provide multimodal explanations and is not
trained on reference human explanations as no such dataset existed.

Many works have proposed methods to explain decisions visually. Some methods
find discriminative visual patches [34,35] whereas others aim to understand what spe-
cific neurons represent [36–38]. Perhaps the most prevalent form of visual explanation
rely on producing heat maps/attention maps which indicate which region of an image
is most important for a decision [39–42]. Our PJ-X model points to visual evidence
via an attention mechanism [9] which conveys knowledge about what evidence is
important without requiring domain knowledge to understand. Explanation systems
can either be introspective systems, which are designed to reflect the inner workings
and decision processes of deep networks, or justification systems, which are designed
to communicate which visual evidence supports a decision. In this paradigm, models
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Description Explanation
A gang of biker police 
riding their bikes in 
formation down a street.

Q: Can these people arrest someone?
A: Yes.
Because... they are 
Vancouver police.

A man standing wearing 
a pink shirt and grey 
pants near a ball.

I can tell the person is juggling. 
Because... he has two balls 
in his hands while two are in 
the air.

<VQA-X>

<ACT-X>

Figure 2.2: In comparison to descriptions, our VQA-X explanations focus on the evidence
that pertains to the question and answer instead of generally describing the scene. For
ACT-X, our explanations are task specific whereas descriptions are more generic. Images
are from [1] and [2].

like [43] which highlight discriminative image attributes without attempting to model
the classifiers reasoning process are considered justification explanations, whereas
models like [36,38,41] which aim to illuminate the inner reasoning process of deep
networks are considered introspective explanations. We argue that both are useful.
Though justifications would not be necessarily helpful for an engineer debugging
an AI component, we assert justification is a core AI problem in and of itself: not
only is it an AI challenge to answer “is this image a calico cat,” but also we claim it
is a foundational AI challenge to answer “why would one say this is an image of a
calico cat.” Though we train justification systems in this work, the data we have
collected could be used to understand how well introspective explanations align with
our human annotated justifications.

Prior work investigated how well generated visual explanations align with human
gaze [44]. However, when answering a question, humans do not always look at
image regions which are necessary to explain a decision. For example, given the
question “What is the restaurant’s name?” human gaze might capture other buildings
before settling on the restaurant. When we collect annotations, annotators view
the entire image and point to the most relevant visual evidence for making a
decision. Furthermore, visual explanations are collected in conjunction with textual
explanations to build and evaluate multimodal explanation models.
Visual Question Answering and Attention. Initial approaches to VQA used full-
frame representations [45], but most recent approaches use some form of spatial
attention [46–53]. We base our method on [52], the winner of VQA 2016 challenge,
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Dataset Split #Imgs Q/A U.Q. U.A. Expl. Avg. #w Vocab Comple. V.Ann.

VQA-X

Train 24876 29459 12942 1147 31536 8.56 12412 6050 –
Val 1431 1459 813 246 4377 8.89 4325 240 3000
Test 1921 1968 898 272 5904 8.94 4861 510 3000
Total 28180 32886 13921 1236 41817 8.64 14106 6800 6000

ACT-X

Train 12607 – – 397 37821 13.96 12377 – –
Val 1802 – – 295 5406 13.91 4802 – 3000
Test 3621 – – 379 10863 13.96 6856 – 3000
Total 18030 – – 397 54090 13.95 14588 – 6000

Table 2.1: Dataset statistics for VQA-X (top) and ACT-X (bottom). Q/A = Ques-
tion/Answer pairs, U.Q. = Unique questions, U.A. = Unique answers, Expl. = Explana-
tions, Avg. #w = Average number of words, Comple. = Complementary pairs, V.Ann. =
Visual annotations.

but use an element-wise product as opposed to compact bilinear pooling. [53] also
explore the element-wise product for VQA, but [53] improves performance by applying
hyperbolic tangent (TanH) after the multimodal pooling whereas we improve by
applying signed square-root and L2 normalization.
Activity Recognition. Recent work on activity recognition in still images relies on a
variety of cues, such as pose and global context [54–56]. Specifically, [54] considers
additional image regions and [55] considers a global image feature in addition to the
region where an activity occurs. Generally, works on the MPII Human Activities
dataset provide the ground truth location of a human at test time [54]. In contrast,
we consider a more realistic scenario and do not provide the ground truth location
of humans at test time. Our model relies on attention to focus on important parts
of an image for classification and explanation.

2.3 Multimodal Explanations
We propose multimodal explanation tasks with visual and textual components,

defined on both visual question answering and activity recognition testbeds. To train
and evaluate models for this task we collect two multimodal explanation datasets:
Visual Question Answering Explanation (VQA-X) and Activity Explanation (ACT-X)
(see Table 2.1 for a summary). For each dataset we collect textual explanations (see
Figure 2.2) and visual explanations (see Figure 2.3) from human annotators.
VQA Explanation Dataset (VQA-X). The Visual Question Answering (VQA)
dataset [57] contains open-ended questions about images which require understanding
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VQA-HAT VQA-X

Q: What is the person holding? A: Ski Poles

VQA-HAT VQA-X
Q: Are there street lights? A: Yes

Q: What is the person doing?              A: Skiing

Q: What is the boy doing?          A: Skateboarding

Activity: Mowing Lawn 

Activity: Planting, Potting 

((a)) Example annotations
collected on VQA-X dataset.

Activity: Mowing Lawn 

Activity: Planting, Potting 

((b)) Example annotations
collected on ACT-X dataset.

VQA-HAT VQA-X

Q: What is the person holding? A: Ski Poles

VQA-HAT VQA-X
Q: Are there street lights? A: Yes

((c)) VQA-HAT vs VQA-X.

Figure 2.3: Human annotated visual explanations. The visual evidence that justifies the
answer is segmented in yellow. Images are from [1] and [2].

vision, language, and commonsense knowledge to answer. VQA consists of approxi-
mately 200K MSCOCO images [1], with 3 questions per image and 10 answers per
question.

Many questions in VQA are of the sort: “What color is the banana?” which
is difficult to explain because it requires explaining a fundamental visual property:
color. To provide textual explanations for questions that go beyond such trivial
cases, we consider the annotations collected in [58] which say how old a human must
be to answer a question. We find that questions which require humans to be of age
9 or higher are generally interesting to explain.

Additionally, we consider complementary pairs from the VQA v2 dataset [59].
Complementary pairs consist of a question and two similar images which give
two different answers. Complementary pairs are particularly interesting for the
explanation task because they allow us to understand whether explanatory models
name the correct evidence based on image content, or just memorize which content
to consider based off specific question types. We collect one textual explanation for
QA pairs in the training set and three textual explanations for test/val set.
Action Explanation Dataset (ACT-X). The MPII Human Pose (MHP) dataset [2]
contains 25K images extracted from Youtube videos. From the MHP dataset, we
select all images that pertain to 397 activities, resulting in 18, 030 images total.
For each image we collect three explanations. During data annotation, we ask the
annotators to complete the sentence “I can tell the person is doing (action) because..”
where the action is the ground truth activity label. We also ask them to use at least
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Figure 2.4: Our Pointing and Justification (PJ-X) architecture generates a multimodal
explanation which includes textual justification (“it contains a variety of vegetables on the
table”) and points to the visual evidence.

10 words and avoid mentioning the activity class in the sentence. MHP dataset also
comes with sentence descriptions provided by [60].
Ground truth for pointing. In addition to textual justifications, we collect visual
explanations from humans for both VQA-X and ACT-X datasets in order to evaluate
how well the attention of our model corresponds to where humans think the evidence
for the answer is. Human-annotated visual explanations are collected via Amazon
Mechanical Turk where we use the segmentation UI interface from the OpenSurfaces
Project [61]. Annotators are provided with an image and an answer (question and
answer pair for VQA-X, class label for ACT-X). They are asked to segment objects
and/or regions that most prominently justify the answer. Some examples can be
seen in Figure 2.3.
Comparing with VQA-HAT. A thorough comparison between our dataset and
VQA-HAT dataset from [44] is currently not viable because the two datasets have
different splits and the overlap is small. However, we present qualitative comparison
in Figure 2.3(c). In the first row, our VQA-X annotation has a finer granularity
since it segments out the objects in interest more accurately than the VQA-HAT
annotation. In the second row, our annotation contains less extraneous information
than the VQA-HAT annotation. Since the VQA-HAT annotations are collected by
having humans “unblur” the images, they can introduce noise when irrelevant regions
are uncovered.

2.4 Pointing and Justification Model (PJ-X)
We implement a multimodal explanation system that justifies a decision with

natural language and points to the evidence. Our Pointing and Justification Model
(PJ-X) is explicitly trained for these two tasks and relies on natural language
justifications and the classification labels as the only supervision. The PJ-X model
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learns to point in a latent way using an attention mechanism [9] which allows it to
focus on a spatial subset of the visual representation.

We first predict the answer given an image and question using the answering
model. Then given the answer, question, and image, we generate visual and textual
explanations with the multimodal explanation model. An overview of our model is
presented in Figure 2.4.
Answering model. In visual question answering the goal is to predict an answer
given a question and an image. For activity recognition we do not have an explicit
question. Thus, we ignore the question which is equivalent to setting the question
representation to fQ(Q) = 1, a vector of ones.

We base our answering model on the overall architecture from the MCB model [52],
but replace the MCB unit with a simpler element-wise multiplication ⊙ to pool
multimodal features. This leads to similar performance, but trains faster.

In detail, we extract spatial image features f I(I, n, m) from the last convolutional
layer of ResNet-152 followed by 1 × 1 convolutions (f̄ I) giving a 2048 × N ×M
spatial image feature. We encode the question Q with a 2-layer LSTM , which we
refer to as fQ(Q). We combine this and the spatial image feature using element-wise
multiplication followed by signed square-root, L2 normalization, and Dropout, and
two more layers of 1 × 1 convolutions with ReLU in between. This process gives
us a N ×M attention map ᾱn,m. We apply softmax to produce a normalized soft
attention map.

The attention map is then used to take the weighted sum over the image features
and this representation is once again combined with the LSTM feature to predict
the answer ŷ as a classification problem over all answers Y . We provide an extended
formalized version in the supplemental.
Multimodal explanation model. We argue that to generate multimodal explanation,
we should condition the explanation on question, answer, and image. We model this
by pooling the image, question, and answer representations to generate an attention
map, our Visual Pointing. The Visual Pointing is further used to create attention
features that guide the generation of our Textual Justification.

More specifically, the answer predictions are embedded in a d-dimensional
space followed by tanh non-linearity and a fully connected layer: f yEmbed(ŷ) =
W6(tanh(W5ŷ + b5)) + b6. To allow the model to learn how to attend to relevant
spatial location based on the answer, image, and question, we combine this answer
feature with Question-Image embedding f̄ IQ(I, Q) from the answering model. Ap-
plying 1× 1 convolutions, element-wise multiplication followed by signed square-root,
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L2 normalization, and Dropout, results in a multimodal feature.

f̄ IQA(I, n, m, Q, ŷ) =(W7f̄
IQ(I, Q, n, m) + b7) (2.1)

⊙ f yEmbed(ŷ)) (2.2)
f IQA(I, Q, ŷ) =L2(signed_sqrt(f̄ IQA(I, Q, ŷ))) (2.3)

Next we predict a N ×M attention map ᾱn,m and apply softmax to produce a
normalized soft attention map, our Visual Pointing αpointX

n,m , which aims to point at
the evidence of the generated explanation:

ᾱn,m =fpointX(I, n, m, Q, ŷ) (2.4)
=W9ρ(W8f

IQA(I, Q, ŷ) + b8) + b9 (2.5)

αpointX
n,m = exp(ᾱn,m)∑N

i=1
∑M

j=1 exp(ᾱn,m)
(2.6)

with Relu ρ(x) = max(x, 0).
Using αpointX

n,m , we compute the attended visual representation, and merge it with
the LSTM feature that encodes the question and the embedding feature that encodes
the answer:

fX(I, Q, ŷ) =(W10

N∑
x=1

M∑
y=1

αpointX
n,m f I(I, n, m) + b10) (2.7)

⊙ (W11f
Q(Q) + b11)⊙ f yEmbed(ŷ) (2.8)

This combined feature is then fed into an LSTM decoder to generate our Textual
Justifications that are conditioned on image, question, and answer.

Textual Justifications are a sequence of words [w1, w2, . . .] and our model predicts
one word wt at each time step t conditioned on the previous word and the hidden
state of the LSTM:

ht = fLST M(fX(I, Q, ŷ), wt−1, ht−1) (2.9)
wt = fpred(ht) = Softmax(Wpredht + bpred) (2.10)

2.5 Experiments
In this section, we present quantitative results on ablations done for textual

justification and visual pointing tasks, and discuss their implications. Additionally,
we provide and analyze qualitative results for both tasks.
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GT-ans Train Att. VQA-X ACT-X
Cond. Data Expl. B M R C S Human B M R C S Human

[43] Yes Desc. No – – – – – – 12.9 15.9 39.0 12.4 12.0 17.4
Ours on Descriptions Yes Desc. Yes 6.1 12.8 26.4 36.2 12.1 34.5 6.9 12.9 28.3 20.3 7.3 22.9
Ours w/o Attention Yes Expl. No 18.0 17.6 42.4 66.3 14.3 40.1 16.9 17.0 42.0 33.3 10.6 21.4
Ours Yes Expl. Yes 19.8 18.6 44.0 73.4 15.4 45.1 24.5 21.5 46.9 58.7 16.0 38.2

Ours on Descriptions No Desc. Yes 5.9 12.6 26.3 35.2 11.9 – 5.2 11.0 26.5 10.4 4.6 –
Ours w/o Attention No Expl. No 18.0 17.3 42.1 63.6 13.8 – 11.9 13.6 37.9 16.9 5.7 –
Ours No Expl. Yes 19.5 18.2 43.4 71.3 15.1 – 15.3 15.6 40.0 22.0 7.2 –

Table 2.2: Evaluation of Textual Justifications. BLEU-4 (B), METEOR (M), ROUGE (R),
CIDEr (C), and SPICE (S). All in %. GT-ans Cond. stands for Ground Truth Answers
Conditioning, Train Data represents the type of data used for training, Att. Expl. denotes
whether attention mechanism is used when generating explanations, and Human indicates
human evaluation scores.

2.5.1 Experimental Setup
Here, we detail our experimental setup in terms of model training, hyperparameter

settings, and evaluation metrics.
Model training and hyperparameters. For VQA, the answering model of PJ-X is
pre-trained on the VQA v2 training set [59]. We then freeze or finetune the weights
of the answering model when training the multimodal explanation model on textual
annotations as VQA-X is significantly smaller than the original VQA dataset. For
activity recognition, answering and explanation components of PJ-X are trained
jointly. The spatial feature size of PJ-X is N = M = 14. For VQA, the answer space
is limited to the 3000 most frequent answers on the training set (i.e. |Y | = 3000)
whereas for activity recognition, |Y | = 397. The answer embedding size is d = 300
for both tasks.
Evaluation metrics. We evaluate our textual justifications w.r.t BLEU-4 [62],
METEOR [63], ROUGE [64], CIDEr [65] and SPICE [66] metrics, which measure the
degree of similarity between generated and ground truth sentences. We also include
human evaluation since automatic metrics do not always reflect human preference.
We randomly choose 1000 data points each from the test splits of VQA-X and ACT-X
datasets, where the model predicts the correct answer, and then for each data point
ask 3 human subjects to judge whether a generated explanation is better than, worse
than, or equivalent to the ground truth explanation (we note that human judges do
not know what explanation is ground truth and the order of sentences is randomized).
We report the percentage of generated explanations which are equivalent to or better
than ground truth human explanations, when at least 2 out of 3 human judges agree.

For visual pointing task, we use Earth Mover’s Distance (EMD) [67] which
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measures the distance between two probability distributions over a region. To
compute EMD, we use [68]. We also report on Rank Correlation which was used
in [44]. For computing Rank Correlation, we follow [44] where we scale the generated
attention map and the human ground-truth annotations from the VQA-X/ACT-
X/VQA-HAT datasets to 14×14, rank the pixel values, and then compute correlation
between these two ranked lists.

2.5.2 Textual Justification
We ablate PJ-X and compare with related approaches on our VQA-X and ACT-X

datasets through automatic and human evaluations for the generated explanations.
Details on compared models. We compare with the state-of-the-art [43] using
publicly available code and use ResNet features for fair comparison. The generated
sentences from [43] are conditioned on both the image and the class label and uses a
discriminative loss. The discriminative loss requires training a sentence classifier and
back-propagating policy gradients when training the language generator. Our model
does not use discriminative loss/policy gradients and does not require defining a
reward. Note that [43] is trained with descriptions. Similarly, “Ours on Descriptions”
is an ablation in which we train PJ-X on descriptions instead of explanations. “Ours
w/o Attention” is similar to [43] in the sense that there is no attention mechanism
involved when generating explanations, however, it does not use the discriminative loss
and is trained on explanations instead of descriptions. For all models, explanations
can be generated either by conditioning on ground-truth labels or on predicted labels.
We call the former “GT-ans Conditioning” and show results in Table 2.2 to see how
it affects the performance.
Descriptions vs. Explanations. “Ours” significantly outperforms “Ours with De-
scriptions” by a large margin on both datasets which is expected as descriptions are
insufficient for the task of generating explanations. Additionally, “Ours” compares
favorably to [43] even in the case when “Ours” generates textual justifications condi-
tioned on the prediction, not the ground-truth answer. These results demonstrate
the limitation of training explanation systems with descriptions, and thus support
the necessity of having datasets specifically curated for explanations. “Ours on
Descriptions” performs worse on certain metrics compared to [43] which may be
attributed to additional training signals generated from discriminative loss and policy
gradients, but further investigation is left for future work.
Unimodal explanations vs. Multimodal explanations. Including attention when
generating textual justifications allows us to build a multimodal explanation model.
Aside from the immediate benefit of providing visual rationale about a decision,
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Earth Mover’s Rank Correlation
(lower is better) (higher is better)
VQA-X ACT-X VQA-X ACT-X VQA-HAT

Random Point 6.71 6.59 +0.0017 +0.0003 -0.0001
Uniform 3.60 3.25 +0.0003 -0.0001 -0.0007
HieCoAtt-Q [44] – – – – +0.2640
Answering Model 2.77 4.78 +0.2211 +0.0104 +0.2234
Ours 2.64 2.54 +0.3423 +0.3933 +0.3964

Table 2.3: Evaluation of Visual Pointing Justifications. For rank correlation, all results
have standard error < 0.005.

learning to point at visual evidence helps generate better textual justifications. As
can be seen in Table 2.2, “Ours” greatly improves textual justifications compared
to “Ours w/o Attention” on both datasets, demonstrating the value of multimodal
explanation systems.

2.5.3 Visual Pointing
We compare the visual pointing performance of PJ-X to several baselines and

report quantitative results.
Details on compared models. We compare our model against the following baselines.
Random Point randomly attends to a single point in a 14× 14 grid. Uniform Map
generates attention map that is uniformly distributed over the 14 × 14 grid. We
also compare PJ-X attention maps with those generated from state-of-the-art VQA
systems ( [44]).
Improved localization with textual explanations. We evaluate attention maps using
the Earth Mover’s Distance (lower is better) and Rank Correlation (higher is better)
on VQA-X and ACT-X in Table 2.3. From Table 2.3, we observe that “Ours”
outperforms baselines Random Point and Uniform Map, as well as our answering
model and [44] on both datasets and on both metrics. The attention maps generated
from our answering model and [44] do not receive training signals from the textual
annotations as they are only trained to predict the correct answer, whereas the
attention maps generated from PJ-X multimodal explanation model are latently
learned through supervision of textual annotations. This implies that learning to
generate textual explanations helps improve visual pointing task, and further confirms
the advantages of multimodal explanations.
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2.5.4 Qualitative Results
In this section we present our qualitative results on VQA-X and ACT-X datasets

demonstrating that our model generates high quality sentences and the attention
maps point to relevant locations in the image.

The activity is

A: Mowing Lawn

… because he is kneeling 
in the grass next to a lawn 
mower.

… because he is pushing a 
lawn mower over a grassy 
lawn.

The activity is
A: Mountain Biking

… because he is riding a 
bicycle down a mountain 
path in a mountainous area.

… because he is wearing a 
cycling uniform and riding 
a bicycle down the road.

A: Mowing LawnA: Road Biking

Q: Is this a zoo?
A: No A: Yes

… because the zebras are 
standing in a green field.

… because there are 
animals in an enclosure.

Figure 2.5: Qualitative results on VQA-X (top row) and ACT-X (bottom row): For each
image the PJ-X model provides an answer and a justification, and points to the evidence
for that justification. For VQA-X, we show complementary pairs. Images are from [1]
and [2].
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VQA-X. As seen in Figure 2.5, our textual justifications are able to both capture
common sense and discuss specific image parts important for answering a question.
For example, when asked “Is this a zoo?”, the explanation model is able to discuss
what the concept of “zoo” represents (i.e. “animals in an enclosure”) and also discuss
specific regions (i.e. “green field”) to determine whether it is a zoo or not.

Visually, we notice that our attention model is able to point to important visual
evidence as well. For example in the top row of Figure 2.5, the visual explanation
focuses on the field in one case, and the fence in another.
ACT-X. Figure 2.5 also shows results on our ACT-X dataset. Textual explanations
discuss a variety of visual cues important for correctly classifying activities such
as global context (e.g. “a mountainous area”), and person-object interaction, (e.g.
“riding a bicycle”) for mountain biking. These explanations require determining
which of many multiple cues are appropriate to justify a particular action.

Our model points to visual evidence important for understanding each human
activity. For example to classify “mountain biking” in the bottom row of Figure 2.5
the model focuses both on the bicycle as well as the mountainous path. Our model
can also differentiate between similar activities based on the context, e.g.”mountain
biking”/”road biking”.
Explanation Consistent with Incorrect Prediction. Generating reasonable expla-

Q: Does the guy look happy?
GT: No

… because he has a smile 
on his face.

The activity is

GT: Cello, Sitting

… because she is sitting on a 
chair in front of a microphone 
and strumming a guitar.

… because he is standing in 
a living room and pushing a 
vacuum cleaner.

Pred: Yes

Pred: Guitar, Sitting

GT: Painting Inside House
Pred: Vacuuming

Figure 2.6: Visual and textual explanations generated by our model conditioned on incorrect
predictions. Images are from [1] and [2].

nations for correct answers is important, but it is also crucial to see how a system
behaves when predictions are incorrect. Such analysis would provide insights into
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whether the explanation generation component of the model is consistent with the
answer prediction component. In Figure 2.6, we can see that the explanations are
consistent with the incorrectly predicted answer for both VQA-X and ACT-X. For
instance in the right example, we see that the model attends to a vacuum-like object
and textually justifies the prediction “vacuuming”. Such consistency between the
answering model and the explanation model is also shown in Table 2.2 where we see
a drop in performance when explanations are conditioned on predictions (bottom
rows) instead of the ground-truth answers (top rows).

2.5.5 Usefulness of Multimodal Explanations
In this section, we address some of the advantages of generating multimodal

explanations. In particular, we look at cases where visual explanations are more
informative than textual explanations, and vice versa. We also investigate how
multimodal explanations can help humans diagnose the performance of an AI system.

Q: Is the man leaning forward?
A: Yes

… because he is riding 
a wave.

… because the sky is clear 
blue and there are no 
clouds.

A: No
Q: Is it cloudy?

Figure 2.7: Qualitative results comparing the insightfulness of visual pointing and textual
justification. The left example demonstrates how visual pointing is more informative than
textual justification whereas the right example shows the opposite. Images are from [1].

Complementary Explanations. Multimodal explanations can support different tasks
or support each other. Interestingly, in Figure 2.7, we present some examples where
visual pointing is more insightful than textual justification, and vice versa. Looking
at the left example in Figure 2.7, it is rather difficult to explain “leaning” with
language and the model resorts to generating a correct, yet uninsightful sentence.
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vqa-x act-x
Without explanation 57.5% 51.5%
Ours on Descriptions 66.5% 72.5%
Ours w/o Attention 61.5% 76.5%
Ours 70.0% 80.5%

Table 2.4: Accuracy of humans guessing whether the model correctly or incorrectly answered
the question.

However, the concept is easily conveyed when looking at the visual pointing result.
In contrast, the right example shows the opposite. Looking at only some patches of
the sky presented by the visual pointing result does not necessarily confirm if the
scene is cloudy or not, while it is also unclear if attending to the entire region of
the sky is a desired behavior. Yet, the textual justification succinctly captures the
rationale. These examples clearly demonstrate the value of generating multimodal
explanations.
Diagnostic Explanations. We evaluate an auxiliary task where humans have to guess
whether the system correctly or incorrectly answered the question. The predicted
answer is not shown; only image, question, correct answer, and textual/visual
explanations. The set contains 50% correctly answered questions. We compare
our model against the models used for ablations in Table 2.2. Table 2.4 indicates
that explanations are better than no explanations and our model is more helpful
than models trained on descriptions and also models trained to generate textual
explanations only.

2.6 Conclusion
As a step towards explainable AI models, we proposed multimodal explanations

for real-world tasks. Our model is the first to be capable of providing natural language
justifications of decisions as well as pointing to the evidence in an image. We have
collected two novel explanation datasets through crowd sourcing for visual question
answering and activity recognition, i.e. VQA-X and ACT-X. We quantitatively
demonstrated that learning to point helps achieve high quality textual explanations.
We also quantitatively show that using reference textual explanations to train
our model helps achieve better visual pointing. Furthermore, we qualitatively
demonstrated that our model is able to point to the evidence as well as to give natural
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sentence justifications, similar to ones humans give. Our model is a third-person,
post-hoc rationalization type of explanation, akin to what one human produces when
asked to explain the actions of a second human. A third-person explanation is clearly
different from a first-person explanation, but we believe both forms of explanation
are valuable.
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Chapter 3

Discovering Non-monotonic
Autoregressive Orderings with
Variational Inference

3.1 Introduction

Two people standing in the snow on snowboards.

people snow two standing in . snowboards on the

perm
ute

Generation Order
Language Model

Natural Order

Order

Language
Model

Language
Model

Language
Model

Slow

Order

Encoder

Language
Model

Loss Variational Order Inference:  Fast ✔

Ground-truth
Sequences

Figure 3.1: Left: our language model, shown in light blue, learns to decode in non-monotonic
generation orders, rather than pre-determined orders, such as left-to-right. Right: during
training, we leverage an encoder in a variational inference pipeline to parameterize a latent
distribution over the generation orders for the autoregressive language model. In this
way, training can be done in just one forward / backward pass per batch, unlike previous
approaches in non-monotonic sequence modeling that require multiple forward passes per
batch to determine a generation order.

Autoregressive models have a rich history. Early papers that studied autore-
gressive models, such as [69] and [70], showed an interest in designing algorithms
that did not require a gold-standard autoregressive order to be known upfront by
researchers. However, these papers were overshadowed by developments in natural
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Two people standing in the snow on snowboards .

Natural Order

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

Multi-Head Attention

Add & Norm

Gumbel Matching

Hidden Activations

No Masking

Sinkhorn Operator

Hungarian Method

Gumbel Noise

xN

Doubly-Stochastic 
Matrix

Permutation 
Matrix

people snow Two standing in . snowboards on the

Generation Order

Insertion-Based 
Transformer Language model

Gumbel Matching

xN

Standard Gradient

Permutation 
Matrix

Figure 3.2: Architecture for sequence-modeling tasks. The goal is to predict the target
sequence y given the source sequence x, with latent generation orders z represented as
permutation matrices. We use a Transformer without causal masking to serve as the
encoder in Variational Order Inference (VOI), which samples orderings in a single forward
pass. These orderings are used to train an insertion-based Transformer language model,
which serves as the VOI decoder. As the objective is non-differentiable over permutation
matrices, policy gradient algorithms (e.g. Reinforce [3], PPO [4]) are applied to update
the permutation-generating encoder.

language processing that demonstrated the power of the left-to-right autoregressive
order [71, 72]. Since then, the left-to-right autoregressive order has been essential for
application domains such as image captioning [73,74], machine translation [75,76]
and distant fields like image synthesis [77]. However, interest in non left-to-right
autoregressive orders is resurfacing [78,79], and evidence [80–82] suggests adaptive
orders may produce more accurate autoregressive models. These positive results
make designing algorithms that can leverage adaptive orders an important research
domain.

Inferring autoregressive orderings in a data-driven manner is challenging. Modern
benchmarks for machine translation [83] and other tasks [84] are not labelled with
gold-standard orders, and left-to-right seems to be the default. This could be
explained if domain-independent methodology for identifying high-quality orders is
an open question. Certain approaches [78,79,85] use hand-designed loss functions
to promote a genre of orders—such as balanced binary trees. These loss functions
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incorporate certain domain-assumptions: for example, they assume the balanced
binary tree order will not disrupt learning. Learning disruption is an important
consideration, because prior work shows that poor orders may prohibitively slow
learning [86]. Future approaches to inferring autoregressive orders should withhold
domain knowledge, to promote their generalization.

To our best knowledge, we propose the first domain-independent unsupervised
learner that discovers high-quality autoregressive orders through fully-parallelizable
end-to-end training without domain-specific tuning. We provide three main con-
tributions that stabilize this learner. First, we propose an encoder architecture
that conditions on training examples to output autoregressive orders represented
as permutation matrices using techniques in combinatorial optimization. Second,
we propose Variational Order Inference (VOI) that learns an approximate posterior
over autoregressive orders. Finally, we develop a practical algorithm for solving the
resulting non-differentiable ELBO end-to-end with policy gradients. A high-level
summary of our approach is presented in Figure 3.1, and a detailed architecture
diagram for sequence modeling tasks is presented in Figure 3.2.

Empirical results with our solution on various sequence modeling tasks suggest
that with similar hyperparameters, our algorithm is capable of recovering autore-
gressive orders that are even better than fixed orders. Case studies suggest that
our learned orders depend adaptively on content, and resemble a type of best-first
generation order, which prioritizes salient objects / phrases and deprioritizes auxillary
tokens (see Fig. 3.3).

3.2 Related Works
Autoregressive Models Autoregressive models decompose the generation of a

high dimensional probability distribution by generating one dimension at a time,
with a predefined order. Combined with high capacity neural networks, this approach
to modeling complex distributions has been very successful [87,88]. Recent works
have achieved great improvements with autoregressive models in many applications,
including language modeling [13, 89, 90], machine translation [12] and image cap-
tioning [91]. Most previous works on autoregressive models regress to an ordering
selected by designers, with left-to-right emerging as the primary choice. In contrast,
our method is capable of learning arbitrary orderings conditioned on data and is
more flexible.

Non-Monotonic Autoregressive Orderings [92] shows that a sub-optimal ordering
can severely limit the viability of a language model and propose to first generate a
partially filled sentence template and then fill in missing tokens. Previous works have
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Image ID: 000000036539
two people standing in the snow on snowboards . 
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two people standing in the snow on snowboards . 
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Decoded Text

the stock market &apos; s leading
indexes rose to record highs again

thursday despite new earnings warnings
from several companies .

Conditioned Text

stock market indexes rise to record highs 

stock market indexes rise to record highs 

stock market indexes rise to record highs 

stock market indexes rise to record highs 

stock market indexes rise to record highs 
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many have already been extradited to the us . 
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many have already been extradited to the us . 

many have already been extradited to the us . 

many have already been extradited to the us . 
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Decoded Text

Figure 3.3: Examples of sequence generations for tasks like image captioning, text summa-
rization, and machine translation using the decoder insertion-based language model (top
right of Fig. 3.2) in Variational Order Inference . Orderings highlight descriptive phrases
from conditioned images (e.g., “people”, “snow”) and sentences (e.g., “stock market”,
“U.S.”), while modifiers (e.g., “to”, “on”, “the”) come last.
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also studied bidirectional decoding [93–95] and syntax trees based decoding [96–100]
in the natural language setting. However, all of the works mentioned above do not
learn the orderings and instead opt to use heuristics to define them. [101] performs
language modeling according to a known prior, such as balanced binary tree, and does
not allow arbitrary sequence generation orders. [102] proposes to use a tree-based
recursive generation method to learn arbitrary generation orders. However, their
performance lags behind that of left-to-right. [103] proposes Transformer-InDIGO
to allow non-monotonic sequence generation by first pretraining with pre-defined
orderings, such as left-to-right, then fine-tuning use Searched Adaptive Order (SAO)
to find alternative orderings. They report that without pretraining, the learned orders
degenerate. In addition, they perform beam search to acquire plausible orderings,
which cannot be efficiently parallelized across different time-steps. [104] proposes an
alternative to SAO, but suffers from similar poor time complexity. In contrast, our
method learns high-quality orderings directly from data under fully-parallelizable
end-to-end training.

Variational Methods Our method optimizes the evidence lower bound, or ELBO
in short. ELBO is a quantity that is widely used as an optimization proxy in
the machine learning literature, where the exact quantity is hard to compute or
optimize. Variational methods have achieved great success in machine learning, such
as VAE [105] and β-VAE [106].

Combinatorial Optimization Recent works have studied gradient-based optimiza-
tion in the combinatorial space of permutations [107–109]. These works have been
applied in tasks such as number sorting, jigsaw puzzle solving, and neural signal
identification in worms. To our best knowledge, we are the first to build on these
techniques to automatically discover autoregressive orderings in vision and language
datasets.

3.3 Preliminaries
The goal of autoregressive sequence modelling is to model an ordered sequence

of target values y = (y1, y2 . . . , yn) : yi ∈ R, possibly conditioned on an ordered
sequence of source values x = (x1, x2 . . . , xm) : xi ∈ R, where (x, y) is sampled
from the dataset D. In the context of language modeling, xi, yi ∈ N as the token
distribution is categorical.

Inspired by [110] and [103], we formulate the generation process of y as a 2n
step process, where at time step 2t − 1 we generate a value, and at timestep 2t
we select a not-yet-chosen position in {1, 2, · · · , n} to insert the value. Thus, we
introduce the latent sequence variable z = (z1, z2 . . . , zn) : z ∈ Sn, where Sn is the set
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Policy Gradient
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x

Figure 3.4: Computational diagram for the encoder (left) and decoder (right) that compose
Variational Order Inference. We optimize a lower bound on the standard maximum
likelihood objective.

of one-dimensional permutations of {1, 2, · · · , n}, and zt is defined as the absolute
position of the value generated at time step 2t− 1 in the naturally ordered y. Then
p(y, z|x) denotes the probability of generating y in the ordering of z given the source
sequence x. We can thus factorize p(y, z|x) using the chain rule:

p(y, z|x) = p(yz1|x)p(z1|yz1 , x)
n∏

i=2
p(yzi
|z<i, yz<i

, x)p(zi|z<i, yz<=i
, x) (3.1)

For example, p(y1, y2, z1 = 2, z2 = 1|x) = p(y2|x)p(z1|y2, x)p(y1|z1, y2, x)p(z2|y1, z1, y2, x)
is defined as the probability of generating y2 in the first step, then inserting y2 into
absolute position 2, then generating y1, and finally inserting y1 into absolute position
1.

Note that in practice, the length of y is usually varied. Therefore, we do not
first create a fixed-length sequence of blanks and then replace the blanks with actual
values. Instead, we dynamically insert a new value at a position relative to the
previous values. One common approach to predict such relative position is Pointer
Network [110]. In other words, at timestep t, we insert the value at position rt

relative to the previous generated values. Here, for any z ∈ Sn, r = (r1, r2, . . . , rn) is
constructed such that there is a bijection between Sn and the set of all constructed r.
Due to such bijection, we can use z and r interchangeably. We will use z throughout
the paper.

3.4 Variational Order Inference (VOI)
Starting from just the original data y in natural order, we can use variational

inference to create an objective (3.2) that allows us to recover latent order z,
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parametrized by two neural networks θ and ϕ. The encoder network ϕ samples
autoregressive orders given the ground truth data, which the decoder network θ
uses to recover y. More specifically, ϕ is a non-autoregressive network (permutation
generator in Fig. 3.4) that takes in the source sequence x and the entire ground
truth target sequence y and outputs latent order z in a single forward pass. θ is
an autoregressive network (autoregressive decoder in Fig. 3.4) that takes in x and
predicts both the target sequence y and the ordering z through the factorization in
Equation (3.1). We name this process Variational Order Inference (VOI).

E(x,y)∼D [log pθ(y|x)] = E(x,y)∼D

[
logEz∼qϕ(z|y,x)

[
pθ(y, z|x)
qϕ(z|y, x)

]]
≥ E(x,y)∼D

[
Ez∼qϕ(z|y,x) [log pθ(y, z|x)] +Hqϕ

(·|y, x)
] (3.2)

Here, Hqϕ
is the entropy term. In practice, a closed form for Hqϕ

usually cannot be
obtained, so an approximation is needed. During training, we train ϕ and θ jointly
to maximize the ELBO in (3.2). During testing, we only keep the decoder θ.

To optimize the decoder network θ in (3.2), for each y, we first sample K latents
z1, z2, . . . , zK from qϕ(·|y, x). We then update θ using the Monte-Carlo gradient
estimate Ey∼D

[
1
K

∑K
i=1∇θ log pθ(y, zi|x)

]
.

Optimizing the encoder network ϕ is tricky. Since z is a discrete latent variable,
the gradient from log pθ(y, z) does not flow through z. Thus, we formulate (3.2) in a
reinforcement learning setting with a one-step Markov Decision Process (S,A,R).
Under our setting, the state space S = D; for each state (x, y) ∈ D, the action space
A(x,y) = Slength(y) with entropy term Hqϕ

(·|y, x); the reward function R((x, y), z ∈
Slength(y)) = log pθ(y, z|x). We can then set the optimization objective L(ϕ) to
be (3.2). In practice, we find that adding an entropy coefficient β and gradually
annealing it can speed up the convergence of decoder while still obtaining good
autoregressive orders.

To compute ∇ϕL(ϕ), we derive the policy gradient with baseline formulation [3]:

∇ϕL(ϕ) = E(x,y)∼D
[
Ez∼qϕ

[∇ϕ log qϕ(z|y, x)(log pθ(y, z|x)− b(y, x))] + β∇ϕHqϕ

]
(3.3)

where b(y, x) is the baseline function independent of action z. The reason we use a
state-dependent baseline b(y, x) instead of a global baseline b is that the the length
of y can have a wide range, causing significant reward scale difference. In particular,
we set b(y, x) = Ez∼qϕ

[log pθ(y, zi|x)]. If we sample K ≥ 2 latents for each y, then
we can use its Monte-Carlo estimate 1

K

∑K
i=1 log pθ(y, zi|x).
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Since we use policy gradient to optimize ϕ, we still need a closed form for the
distribution qϕ(z|y, x). Before we proceed, we define Pn×n as the set of n × n
permutation matrices, where exactly one entry in each row and column is 1 and
all other entries are 0; Bn×n as the set of n × n doubly stochastic matrices, i.e.
non-negative matrices whose sum of entries in each row and in each column equals 1;
R+

n×n as the set of non-negative n× n matrices. Note Pn×n ⊂ Bn×n ⊂ R+
n×n.

To obtain qϕ(z|y, x), we first write z in two-dimensional form. For each z ∈ Sn,
let fn(z) ∈ Pn×n be constructed such that fn(z)i = one_hot(zi), where fn(z)i is the
i-th row of fn(z). Thus fn is a natural bijection from Sn to Pn×n, and we can rewrite
qϕ as a distribution over Pn×n such that qϕ(fn(z)|y, x) = qϕ(z|y, x).

Next, we need to model the distribution of qϕ(·|y, x). Inspired by [107], we
model qϕ(·|y, x) as a Gumbel-Matching distribution G.M.(X) over Pn×n, where
X = ϕ(y, x) ∈ Rn×n is the output of ϕ. Then for P ∈ Pn×n,

qϕ(z|y, x) = qϕ(f−1
n (P )|y, x) = qϕ(P |y, x) ∝ exp ⟨X, P ⟩F (3.4)

where ⟨X, P ⟩F = trace(XT P ) is the Frobenius inner product of X and P . To obtain
samples in Pn×n from the Gumbel-Matching distribution, [107] relaxes Pn×n to Bn×n

by defining the Gumbel-Sinkhorn distribution G.S.(X, τ) : τ > 0 over Bn×n, and
proves that G.S.(X, τ) converges almost surely to G.M.(X) as τ → 0+. Therefore,
to approximately sample from G.M.(X), we first sample from G.S.(X, τ), then apply
Hungarian algorithm [111] to obtain P ∈ G.M.(X). The entropy term Hqϕ

can
be approximated as −DKL(G.S.(X, τ) || G.S.(0, τ)) + log n! , and can be further
approximated using the technique in Appendix B.3 of [107]. Further details are
presented in Appendix.

The Gumbel-Matching distribution allows us to obtain the numerator for the
closed form of qϕ(z|y, x) = qϕ(f−1

n (P )|y, x), which equals exp ⟨X, P ⟩F . However,
the denominator is intractable to compute and equals ∑

P ∈Pn×n
exp ⟨X, P ⟩F . Upon

further examination, we can express it as perm(exp(X)), the matrix permanent of
exp(X), and approximate it using permB(exp(X)), its Bethe permanent. We present
details about matrix permanent and Bethe permanent along with the proof that the
denominator of qϕ(·|y, x) equals perm(exp(X)) in Appendix.

After we approximate qϕ, we can now optimize ϕ using the policy gradient in (3.3).
We present a computational diagram of VOI in Figure 3.4, and a pseudocode of VOI
in Algorithm 1. Note that even though latent space Sn is very large and contains n!
permutations, in practice, if pθ(y, z∗|x) ≥ pθ(y, z|x) ∀z ∈ Sn, then pθ(y, z|x) tends
to increase as the edit distance between z and z∗ decreases. Therefore, ϕ does not
need to search over the entire latent to obtain good permutations, making variational
inference over Sn feasible.
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Algorithm 1 Variational Order Inference
1: Given: encoder network ϕ with learning rate αϕ, decoder network θ with learning

rate αθ, entropy coefficient β, batch of training data (X, Y) = {(xb, yb)}N
b=1

sampled from dataset D
2: Set gradient accumulators gϕ = 0, gθ = 0
3: for (x, y) ∈ (X, Y) do ▷ In practice, this is done through parallel tensor

operations
4: X = ϕ(y, x)
5: Sample K doubly stochastic matrices B1, B2, . . . , BK ∈ Bn×n from G.S.(X, τ)
6: Obtain P1, P2, . . . , PK ∈ Pn×n from B1, B2, . . . , BK using Hungarian Algo-

rithm
7: Obtain latents z1, z2, . . . , zK = f−1

len(y)(P1), f−1
len(y)(P2), . . . , f−1

len(y)(PK)
8: gθ = gθ + 1

N ·K
∑K

i=1∇θ log pθ(y, zi|x)
9: Calculate log qϕ(zi|y, x) = ⟨X, Pi⟩F − log(perm(exp (X)))

≈ ⟨X, Pi⟩F − log(permB(exp(X)))
10: Calculate b(y, x) = 1

K

∑K
i=1 log pθ(y, zi|x)

11: gϕ = gϕ + 1
N ·K

∑K
i=1∇ϕ log qϕ(zi|y, x)(log pθ(y, zi|x) − b(y, x)) + β ·

∇ϕHqϕ
(·|y, x)

12: end for
13: ϕ = ϕ + αϕ · gϕ

14: θ = θ + αθ · gθ

3.5 Experiments
Encoder and Decoder Architectures. We implement Variational Order Inference

on conditional sequence generation tasks, specifically language modeling tasks. We
implement the encoder of VOI as a Transformer with non-causal attention that
outputs permutations in one forward pass. The generated permutations then serve
as target generation orders for training an insertion-based Transformer language
model. A summary of our architectures for conditional sequence generation tasks
is illustrated in Figure 3.2. We would like to note that VOI is also applicable
to unconditional sequence generation domains, such as image generation, through
different encoder and decoder architectures, which we leave for future work. We
would also like to note that “encoder" and “decoder" refer to the two networks ϕ and
θ in Algorithm 1, respectively, instead of Transformer’s encoder and decoder.

For decoder θ, we use the Transformer-InDIGO [103] architecture, which maxi-
mizes pθ(y, z|x) by alternating token generation and token insertion processes. Note
that the ordering z used to train θ is obtained through the output of encoder ϕ in
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our approach, instead of through Searched Adaptive Order (SAO) proposed in the
Transformer-InDIGO paper, which requires multiple forward passes per batch to
obtain a generation order. Once z is already given, pθ(y, z|x) can be optimized in
one single pass through teacher forcing.

For encoder ϕ, we adopt the Transformer [112] architecture. Note that our encoder
generates latents based on the entire ground truth target sequence y. Therefore, it
does not need to mask out subsequent positions during attention. We also experiment
with different position embedding schemes (see Section 3.7) and find that Transformer-
XL’s [113] relative positional encoding performs the best, so we replace the sinusoid
encoding in the original Transformer.

Tasks. We evaluate our approach on challenging sequence generation tasks:
natural language to code generation (NL2Code) [114], image captioning, text sum-
marization, and machine translation. For NL2Code, we use Django [84]. For image
captioning, we use COCO 2017 [115]. For text summarization, we use English
Gigaword [116, 117]. For machine translation, we use WMT16 Romanian-English
(Ro-En).

Baselines. We compare our approach with several pre-defined fixed orders: Left-
to-Right (L2R) [118], Common-First (Common) [119], Rare-First (Rare) [119], and
Random-Ordering (Random). Here, Common-First order is defined as generating
words with ordering determined by their relative frequency from high to low; Rare-
First order is defined as the reverse of Common-First order; and Random-Ordering
is defined as training with a randomly sampled order for each sample at each time
step.

Preprocessing. For Django, we adopt the same preprocessing steps as described
in [103], and we use all unique words as the vocabulary. For MS-COCO, we find
that the baseline in [103] is much lower than commonly used in the vision and
language community. Therefore, instead of using Resnet-18, we use the pretrained
Faster-RCNN checkpoint using a ResNet-50 FPN backbone provided by TorchVision
to extract 512-dimensional feature vectors for each object detection. To make our
model spatially-aware, we also concatenate the bounding box coordinates for every
detection before feeding into our Transformers’ encoder. For Gigaword and WMT,
we learn 32k byte-pair encoding (BPE, [120]) on tokenized data.

Training. For our decoder, we set dmodel = 512, dhidden = 2048, 6 layers for both
Transformer’s encoder and decoder, and 8 attention heads. This is the same model
configuration as Transformer-Base [112] and as described in [103]. Our encoder
also uses the same configuration. For our model trained with Variational Order
Inference , we sample K = 4 latents for each training sample for Django, COCO, and
Gigaword and K = 3 latents for WMT (due to computational resource constraints,
we were unable to set a higher K for WMT). An ablation on the choices of K on
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a small dataset is presented in Section 3.7. For WMT, many previous works on
nonsequential orderings [79] and nonautoregressive sequence generation [121] have
found sequence-level knowledge distillation [122] helpful. Therefore, we first train
the L2R model on the original WMT corpus, then create a new training corpus
using beam search. We find that this improves the BLEU of VOI model by about
2.0. Even though the training set changed, the orderings learned by VOI are very
similar to the ones trained on the original corpus. More detailed training processes
are described in Appendix.

During training, our encoder and decoder are optimized in one single pass per
batch. If we let N denote the batch size, l denote the length of each target sequence,
and d denote the size of hidden vector, then one single forward pass of our model has
computation complexity O(NKdl2), while Transformer-InDIGO trained with SAO
has total complexity O(Ndl3). Since K ≪ l in general, our algorithm has better
theoretical computational complexity during training. During evaluation, we only
keep the decoder to iteratively generate the next position and token, which is as
efficient as any standard fixed-order autoregressive models.

We also empirically compare VOI’s runtime with that of SAO and fixed-order
baselines (e.g. L2R). We implement SAO as described in [103]. We test the runtime
on a single GPU in order to accurately measure the number of ops required. For
training speed per iteration, we use a batch size of 8. For ordering search time, we
use a batch size of 1 to avoid padding tokens in the input for accurate measure.
We observe that VOI is significantly faster than SAO, which searches orderings
sequentially. In practice, as we distribute VOI across more GPUs, the K factor in
the runtime is effectively divided by the number of GPUs used (if we ignore the
parallelization overhead), so we can achieve further speedups.
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Figure 3.5: Runtime performance improvement. We compare the runtime performance of
VOI (K = 4) with SAO on a single Tesla P100 GPU, in terms of time per training iteration
and ordering search time. VOI outputs latent orderings in a single forward pass, and we
observe a significant runtime improvement over SAO that searches orderings sequentially.
The speedup factor linearly increases with respect to the sequence length.

Results. We compare VOI against predefined orderings along with Transformer-
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InDIGO trained with SAO in Table 3.1. The metrics we used include BLEU-4 [123],
Meteor [124], Rouge [125], CIDEr [126], and TER [127]. The “accuracy” reported
for Django is defined as the percentage of perfect matches in code generation. Our
results illustrate consistently better performance across fixed orderings. Most notably,
CIDEr for MS-COCO, BLEU for Django, and Rouge-1 for Gigaword reveal the largest
improvements in performance.

Order MS-COCO Django Gigaword WMT16 Ro-En
B M R-L C B A R-1 R-2 R-L B↑ M↑ TER↓

InDIGO - SAO 1 29.3 24.9 54.5 92.9 42.6 32.9 –– –– –– 32.5 53.0 49.0

Ours - Random 28.9 24.2 55.2 92.8 21.6 26.9 30.1 11.6 27.6 20.3 43.5 62.0
Ours - L2R 30.5 25.3 54.5 95.6 40.5 33.7 35.6 17.2 33.2 32.7 54.4 50.2
Ours - Common 28.0 24.8 55.5 90.3 37.1 29.8 33.9 15.0 31.1 28.2 50.8 53.1
Ours - Rare 28.1 24.5 52.9 91.4 31.1 27.9 34.1 15.2 31.3 26.4 48.5 55.1

Ours - VOI 31.0 25.7 56.0 100.6 45.9 34.5 36.6 17.6 34.0 32.9 54.6 49.3

Table 3.1: Results of MS-COCO, Django, Gigaword, and WMT with fixed orders (L2R,
Random, Common, Rare) as baseline. Here, R-1, R-2, and R-L indicate ROUGE-1,
ROUGE-2, and ROUGE-L, respectively. For TER, lower is better; for all other metrics,
higher is better. “––" = not reported. B, M, C, and A represent BLEU, Meteor, CIDEr,
and Accuracy metrics respectively.

3.6 Order Analysis
In this section, we analyze the generation orders learned by Variational Order

Inference on a macro level by comparing the similarity of our learned orders with
predefined orders defined in Section 3.5, and on a micro level, by inspecting when
the model generates certain types of tokens.

3.6.1 Understanding The Model Globally
We find that prior work [102,103,128] tends to study autoregressive orders by

evaluating performance on validation sets, and by visualizing the model’s generation
1For InDIGO-SAO, we report the results on COCO and Django trained using our own imple-

mentation. We did not attempt SAO on Gigaword or WMT due to the large dataset sizes, which
can take a very long time to train. For WMT, we report the SAO result as in the original paper,
and we follow their evaluation scheme.
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Figure 3.6: Global statistics for learned orders. We compare metrics as a function of the
sequence length of generated captions on the COCO 2017 validation set. On the left, we
compare orders learned with Variational Order Inference to a set of predefined orders
(solid lines) using Order Rank Correlation. As a reference, we provide the Order Rank
Correlation between L2R and the same set of predefined orders (dashed lines). In the
right plot, with identical setup, we measure Normalized Levenshtein Distance. We observe
that Variational Order Inference favors left-to-right decoding above the other predefined
orders—this corresponds to the blue lines. However, with a max Order Rank Correlation
of 0.6, it appears left-to-right is not a perfect explanation. The comparably high Order
Rank Correlation of 0.3 with rare-tokens-first order suggests a complex strategy.

steps. We provide similar visualizations in Appendix.

DNLD (w, z) = lev (w, z) /n (3.5)
lev (w, z) = 1 + min {lev (w1:, z) , lev (w, z1:) , lev (w1:, z1:)} (3.6)

The function lev (w, z) is the Levenshtein distance, and z1: removes the first element
of z. This metric has the property that a distance of 0 implies that two orders w and
z are the same, while a distance of 1 implies that the same tokens appear in distant
locations in w and z. Our second metric Order Rank Correlation, is the Spearman’s
rank correlation coefficient between w and z.

DORC (w, z) = 1− 6 ·∑n
i=0 (wi − zi) /

(
n3 − n

)
(3.7)

A correlation of 1 implies that w and z are the same; a correlation of −1 implies
that w and z are reversed; and a correlation of 0 implies that w and z are not
correlated. In Figure 3.6, we apply these metrics to analyze our models learnt
through Variational Order Inference .
Discussion. The experiment in Figure 3.6 confirms our model’s behavior is not well
explained by predefined orders. Interestingly, as the generated sequences increase in
length, the Normalized Levenshtein Distance decreases, reaching a final value of 0.57,
indicating that approximately half of the tokens are already arranged according to a
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Figure 3.7: Local statistics for learned orders. In this figure, we evaluate the normalized
generation indices for parts of speech in predicted captions on the COCO 2017 validation
set. The normalized generation index is defined as the absolute generation index of a
particular token, divided by the final length of predicted sequence. Parts of speech (details
in Appendix ??) are sorted in ascending order of average normalized location. We observe
that modifier tokens, such as “the”, tend to be decoded last, while descriptive tokens, such
as nouns and verbs, tend to be decoded first.

left-to-right generation order. However, the Order Rank Correlation barely increases,
so we can infer that while individual tokens are close to their left-to-right generation
index, their relative ordering is not preserved. Our hypothesis is that certain phrases
are generated from left-to-right, but their arrangement follows a best-first strategy.

3.6.2 Understanding The Model Locally
To complement the study of our model at a global level, we perform a similar

study on the micro token level. Our hope is that a per-token metric can help us
understand if and when our Variational Order Inference is adaptively choosing
between left-to-right and rare-first order. We also hope to evaluate our hypothesis
that Variational Order Inference is following a best-first strategy.
Discussion. The experiment in Figure 3.7 demonstrates that Variational Order
Inference prefers decoding descriptive tokens first—such as nouns, numerals, adverbs,
verbs, and adjectives. In addition, the unknown part of speech is typically decoded
first, and we find this typically corresponds to special tokens such as proper names.
Our model appears to capture the salient content first, which is illustrated by
nouns ranking second in the generation order statistics. For image captioning,
nouns typically correspond to focal objects, which suggests our model has an object-
detection phase. Evidence of this phase supports our previous hypothesis that a
best-first strategy is learned.
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3.6.3 Understanding The Model Via Perturbations
Image ID: 000000001584
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Generation Order SensitivityIn this section, we study the ques-
tion: to what extent is the genera-
tion order learned by Variational Or-
der Inference dependent on the con-
tent of the conditioning variable x?
This question is important because
simply knowing that our model has
learned a best-first does not illumi-
nate whether that strategy depends
only on the target tokens y being
generated, or if it also depends on the content of x. An adaptive generation order
should depend on both.
Discussion. In this experiment, we first obtain a sequence y generated by our VOI
given the source image x. We then freeze y, which allows the model to infer a new
generation order for y when different features of x are removed. The right figure
shows that for a particular case, removing a single region-feature (feature number 0,
which corresponds to the bus) from x changes the model-predicted generation order
by as much as 0.7 Normalized Levenshtein Distance. These results confirm that our
model appears to learn an adaptive strategy, which depends on both the tokens y
being generated and the content of the conditioning variable x, which is an image in
this experiment.

3.7 Ablation Studies
In Section 3.5, we introduced the specific encoder and decoder architectures we

use for conditional sequence generation tasks. In this section, we present ablation
studies to support the architecture design of our encoder and modeling qϕ with
Gumbel-Matching distribution.

We consider 4 different positional encoding schemes for the encoder Transformer
ϕ: the sinusoid encoding in the original Transformer [112], the sinusoid encoding
with positional attention module [128], the relative positional encoding in [129],
and the relative positional encoding proposed in Transformer-XL [113]. Besides
modeling qϕ(·|x, y) as Gumbel-Matching distribution and using Bethe permanent to
approximate its denominator, we also consider modeling using Plackett-Luce distribu-
tion [130,131] and sample using techniques recently proposed in [108]. Plackett-Luce
distribution has tractable density, so we can compute the exact qϕ efficiently without
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Enc \ Distrib Gumbel-Matching Plackett-Luce
Sinusoid 0.40 0.62

Sinusoid + Pos Attn 0.42 0.58
Relative 0.38 0.53

XL-Relative 0.25 0.57

Table 3.2: Normalized Levenshtein Distance between the ordering learnt by the encoder
and the ground truth ordering, under different positional encodings (enc) and modeling
distributions of qϕ (distrib).

using approximation techniques.
To analyze the encoder’s ability to learn autoregressive orderings, we first train

a decoder with Common-First order on one batch of MS-COCO until it perfectly
generates each sentence. We then fix the decoder and initialize an encoder. We train
the encoder for 15k gradient steps using the procedure in Algorithm 1 to recover the
ground truth Common-First order, and we report the final Normalized Levenshtein
Distance against the ground truth in Table 3.2. We observe that modeling qϕ with
Gumbel-Matching distribution significantly outperforms modeling with Plackett-
Luce, despite the former requiring denominator approximation. We also observe that
under Gumbel-Matching modeling distribution, the relative position encoding in
Transformer-XL significantly outperforms other encoding schemes. Thus we combine
these two techniques in our architecture design.

Table 3.3: Normalized Levenshtein
Distance between the encoder order-
ing and the ground truth with respect
to the choice of K.

K 2 3 4 10 20
DNLD 0.31 0.28 0.25 0.21 0.21

In addition, we analyze how choices of K, the
number of latents per training sample, affects
model performance. We use the same setting
as above and apply Transformer-XL relative
position encoding, and we report the results in
Table 3.3. We observe that the encoder more
accurately fits to the ground truth order as K
increases, until a value of around 10. Since a very large K can slow the model
down while only bringing marginal improvements, we find a good choice of K to be
between 4 and 10.

3.8 Conclusion
We propose, to our best knowledge, the first unsupervised learner that learns high-

quality autoregressive orders through fully-parallelizable end-to-end training without
domain-specific tuning. We propose a procedure named Variational Order Inference
that uses the Variational Lower Bound with the space of autoregressive orderings as
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latent. Building on techniques in combinatorical optimization, we develop a practical
policy gradient algorithm to optimize the encoder of the variational objective, and
we propose an encoder architecture that conditions on training examples to output
autoregressive orders. Empirical results demonstrate that our model is capable of
discovering autoregressive orders that are competitive with or even better than fixed
and predefined orders. In addition, the global and local analysis of the orderings
learned through Variational Order Inference suggest that they resemble a type of
best-first generation order, characterized by prioritizing the generation of descriptive
tokens and deprioritizing the generation of modifier tokens.
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Chapter 4

More Control for Free! Image
Synthesis with Semantic Diffusion
Guidance

4.1 Introduction

(a) Image synthesis with language guidance

(c) Image synthesis with both language and image guidance

A smiling woman with straight, blonde hair wearing sunglasses.  Image Guidance                                         Generated images          

(b) Image synthesis with image guidance

A photo of a 
woman with 
curly hair.

Language Guidance + Image Guidance Generated images

+

Figure 4.1: We incorporate flexible and lightweight semantic guidance into diffusion models
for image synthesis. Our method allows fine-grained semantic control via language guidance,
image guidance, or both, and can be applied to datasets without paired image-caption
data.

Image synthesis has made great progress in recent years [132–136]. In addition to
the goal of generating high-quality photo-realistic images, fine-grained control over
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the generated images is also an important desideratum when assisting users with art
creation and design.

Previous works have explored controllable image synthesis by adding different
conditions, including language [135,137,138], attributes [139–141], scene graphs [142],
and user sketch or scribbles [143]. Specifically, text-to-image synthesis, as shown in
Figure 5.1-(a), aims to generate images based on text instructions, by adding text
embeddings as conditional information to the image generation network. However,
most previous text-to-image synthesis methods require image-caption pairs for
training, and cannot generalize to datasets without text annotations.

Besides text instructions, users may also want to guide the image generation
model with a reference image. E.g., a user might want to generate cat images which
look similar to a given photo of a cat in terms of its appearance. This information
cannot be easily described by language, but can be provided via a reference image,
as shown in Figure 5.1-(b). Moreover, sometimes a user may want to provide both
language and image guidance. For example, a user might seek to generate “a woman
with curly hair” that looks similar to a reference image of a woman with red hair, as
illustrated in Figure 5.1-(c).

Current image-conditioned synthesis techniques would either only transfer the
“style” of a reference image to a target image [144,145] or are restricted to the domains
with a well-defined structure such as human or animal faces [141, 144]. However,
they cannot generate diverse images with various pose, structure, and layout based
on a single reference image.

We propose Semantic Diffusion Guidance (SDG), a unified framework for text-
guided and image-guided synthesis that overcomes these limitations. Our model is
based on denoising diffusion probabilistic models (DDPM) [146] which generates an
image from a noise map and iteratively remove noise to approach the data distribution
of natural images.

We inject the semantic input by using a guidance function to guide the sampling
process of an unconditional diffusion model. This enables more controllable generation
in diffusion models and gives us a unified formulation for both language and image
guidance. Specifically, our language guidance is based on the image-text matching
score predicted by CLIP [147] finetuned on noised images. As for the image guidance,
depending on what information we seek in the image, we define two options: content
and style guidance. The flexibility of the guidance module allows us to inject either
language or image guidance alone or both at once into any unconditional diffusion
model without the need for re-training. We propose a self-supervised scheme to
finetune the CLIP image encoder without text annotations, from which we obtain
the guidance model with minimal cost.

Our unified framework is flexible and allows fine-grained semantic control in
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image synthesis with various applications, as shown in Figure 5.1. We show that
our model can handle: (1) Text-guided image synthesis with a complex fine-grained
text query on any dataset without language annotations; (2) Image-guided image
synthesis with content or style control from an input image, which generates diverse
images with different pose, structure, and layout; (3) Multi-modal guidance for image
synthesis with both language and image input. Our guidance network can be injected
into off-the-shelf unconditional diffusion models, without the need for finetuning
or re-training the diffusion model. We conduct experiments on FFHQ [148] and
LSUN [149] datasets to validate the quality, diversity, and controllability of our
generated images, and show various applications of our proposed Semantic Diffusion
Guidance.

4.2 Related Work

Text-guided Synthesis Pioneered by GAN-INT-CLS [150] and GAWWN [151], con-
ditional generative adversarial networks (GANs) [152] have been the dominant
framework for text-based image synthesis. Various methods have been studied,
proposing many different text-adaptive architectures and loss functions to enforce
better semantic alignment between the input text and generated image, resulting in
significant improvements in editing quality and correctness [153–165].

Recent work DALL-E [135] shows promising results with transformers [14] and
discrete VAE [166] by leveraging web-scale data. A concurrent work GLIDE [22]
adapts classifier-free guidance for large diffusion models and large-scale training for
text-guided image synthesis.

Despite great advancements, prior methods require paired image-text annotations
which limits the application to certain datasets or requires large amount of data and
computational resources for training. Our proposed framework is able to generate
images on multiple domains given detailed text prompts, requiring neither image-text
paired data from those domains nor large amount of compute to train the text-guided
image synthesis model.
Image-guided Synthesis Image-guided synthesis aims at generating diverse images
with the constraint that they all should resemble a given reference image in terms
of content or style. Many style transfer works fall under this category where the
content of the input image must be preserved while the style of the reference image
is transferred [167–176], yet they struggle to generate diverse images. Some work
investigate image synthesis guided by the content of the refernce images. ILVR [177]
proposes a way to iteratively inject image guidance to a diffusion model, yet it
exhibits limited structural diversity of the generated images. Instance-Conditioned
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GAN [178] utilizes nearest neighbor images of a given reference for adversarial training
to generate structurally diverse yet semantically relevant images. Nonetheless, it
requires training the GAN model with instance-conditioned techniques. Our approach
demonstrates better controllability as different types of image guidance are proposed
where users can decide how much semantic, structural, or style information to
preserve by using different types and scales of guidance, while not needing to re-train
the unconditional diffusion model.
Diffusion Models Diffusion models are a new type of generative models consisting
of a forward process (signal to noise) and a reverse process (noise to signal). The
denoising diffusion probabilistic model (DDPM) [146, 179] is a latent variable model
where a denoising autoencoder gradually transforms Gaussian noise into real signal.
Score-based generative model [180, 181] trains a neural network to predict the score
function which are used to draw samples via Langevin Dynamics. In [182], it is
shown that diffusion probabilistic models and score-based generative models fall
under the same framework as both can be viewed as discretizations to stochastic
differential equations. Collectively, these models have demonstrated comparable or
superior image quality compared to GANs while exhibiting better mode coverage and
training stability. Diffusion models have also been explored for conditional generation
such as class-conditional generation, image-guided synthesis, super-resolution, and
image-to-image translation [136, 177, 182, 183]. Concurrent work [184] explored
text-guided image editing with diffusion models. In this work, we further explore
whether diffusion models can be semantically guided by text or image, or both to
synthesize realistic images.
CLIP-guided Generation CLIP [147] is a powerful vision-language joint embedding
model trained on large-scale images and texts. Its representations have been shown
to be robust and general enough to perform zero-shot classification and various vision-
language tasks on diverse datasets. StyleCLIP [185] and StyleGAN-NADA [148]
have demonstrated that CLIP enables text-guided image manipulation without
domain-specific image-text pairs. However, the application to image synthesis has
not been explored. Our work investigates text and/or image guided synthesis using
CLIP and unconditional DDPM.

4.3 Semantic Diffusion Guidance
We propose Semantic Diffusion Guidance (SDG), a new unified framework that

incorporates different forms of guidance into a pretrained unconditional diffusion
model. SDG can leverage language guidance, image guidance, and multimodal
guidance, enabling controllable image synthesis. The guidance module can be
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More Control for Free

• We apply semantic diffusion guidance on pretrained unconditional diffusion models.

• No need to re-train or finetune the unconditional diffusion models. We only need to finetune the 
guidance network.

• We do not need text annotations for training the text-to-image synthesis.

... ...

SDG
A woman wearing sunglasses

SDG

Figure 4.2: An overview our method. Our method is based on the DDPM model which
generates an image from a noise map by iteratively removing noise at each timestep.
We control the diffusion generation process by Semantic Diffusion Guidance (SDG) with
language and/or a reference image. SDG is iteratively injected at each step of generation
process. We only illustrate the guidance at one timestep t in the figure.

injected into any off-the-shelf unconditional diffusion model without re-training or
finetuning it. We only need to finetune the guidance network, which is a CLIP [147]
model in our implementation, on the images with different levels of noise. We propose
a self-supervised finetuning scheme, which does not require paired language data to
finetune the CLIP image encoder.

In Section 4.3.1, we review the preliminaries on diffusion models, and introduce
our approach for injecting guidance into the diffusion model for controllable image
synthesis. In Section 4.3.2, we illustrate the language guidance which enables the
unconditional diffusion model to perform text-to-image synthesis. In Section 4.3.3, we
propose two types of image guidance, which take the content and style information
from the reference image as the guidance signal, respectively. In Section 4.3.5,
we explain how we finetune the CLIP guidance network without requiring text
annotations in the target domain.

4.3.1 Guiding Diffusion Models for Controllable Image Synthesis
Diffusion models define a Markov chain where random noise is gradually added to

the data, known as the forward process. Formally, given a data point sampled from
a real-data distribution x0 ∼ q(x), the forward process sequentially adds Gaussian
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noise to the sample over T timesteps:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

q(x1:T |x0) =
T∏

t=1
q(xt|xt−1),

(4.1)

where {β}t=1:T denotes a constant or learned variance schedule that controls the
noise step size. A property of the forward process is that we can sample xt from x0
in a closed form:

q(xt|x0) =
√

ᾱtx0 + ϵ
√

1− ᾱt, ϵ ∼ N (0, 1) (4.2)

where αt = 1− βt and αt = ∏t
s=1 αs.

Generative modeling is done by learning the backward process where the forward
process is reversed via a parameterized diagonal Guassian transition:

pθ(xt−1|xt) = N (xt−1; µθ(xt), σ2
θ(xt)I) (4.3)

We choose the notation pθ(xt−1|xt) = N (µθ, σ2
θI) for brevity. In order to learn the

backward process, neural networks are trained to predict µθ and σ2
θ .

The formulations above explain the unconditional backward process pθ(xt−1|xt);
with an extra guidance signal y, the sampling distribution becomes:

pθ,ϕ(xt−1|xt, y) = Zpθ(xt−1|xt)pϕ(y|xt−1), (4.4)

where Z is a normalizing constant. It is proven in [136] that the new distribution after
incorporating the guidance can also be approximated by a Gausiann distribution
with shifted mean:

pθ(xt−1|xt)pϕ(y|xt−1) = N (µ + Σg, Σ), (4.5)

where µ = µθ, Σ = σ2
θI, g = ∇xt−1 log pϕ(y|xt−1).

Class-guided synthesis was explored in [136] where y is a discrete class label, and
pϕ(y|xt−1) is the probability of xt−1 belonging to class y. In this work, we generalize
y to a continuous embedding for language, image or multimodal guidance. In the
next subsections, we introduce how we define the guidance function Fϕ(xt, y, t) =
log pϕ(y|xt) for different guidance.

Figure 4.2 and Algorithm 2 summarize the proposed Semantic Diffusion Guidance.
Note that there is an additional scaling factor s for semantic guidance in Algorithm
2 which is a user-controllable hyperparameter that determines the strength of the
guidance. We discuss its effect in Section 5.5.

ruled
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Algorithm 2 Semantic Diffusion Guidance
KwDataInput guidance y, scaling factor s Given: diffusion model (µθ, σθ), Guidance
function Fϕ(xt, y, t)
xT ← sample from N (0, I)
for t = T, · · · 1 do
µ, Σ← µθ, σ2

θI
xt−1 ← sample from N (µ + sΣ∇xtFϕ(xt, y, t), Σ)
end for
return x0

4.3.2 Language Guidance
Language is one of the most intuitive ways that a user can control the generation

model. In order to incorporate language information to the image synthesis process,
we use a visual-semantic embedding model for image-text alignment. Specifically,
given an image x and a text prompt l, the model embeds them into the joint
embedding space using an image encoder EI and a text encoder EL, respectively.
The similarity between the embeddings EI(x) and EL(l) is calculated as the cosine
distance, and we utilize this to formulate the language guidance function.

However, note that the models for backward process and guidance in Equation
4.5 are time-dependent, and take noisy images as input. This means that the image
encoder EI needs to incorporate the timestep t as input and be further trained on
noisy images at different timesteps as well. We denote such time-dependent image
encoder for noisy images as E ′

I . Finally, the language guidance function can be
defined as:

F (xt, l, t) = E ′
I(xt, t) · EL(l), (4.6)

where E′ denotes the image encoder trained on noised images with additional
timestep input. In Section 4.3.5, we provide details on adapting a pretrained CLIP
model [147] to become time-dependent with minimal architecture changes, and
present a self-supervised finetuning strategy for noisy images.

4.3.3 Image Guidance
In some cases, an image can convey information that is difficult to express in

language. For example, users may want to generate a photo of a cat that looks
similar to another cat, or want to generate a photo of a bedroom in the style of
Van Gogh’s painting “The Starry Night”. They may also want to generate realistic
images given an emoji or a painting. We thus propose an approach for image-guided
diffusion that effectively controls the content or style information according to an
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image. We present two types of image guidance, namely image content guidance and
image style guidance.
Image Content Guidance aims to control the content of the generated image, with or
without structural constraints, based on a reference, and is formulated as the cosine
similarity of the image feature embeddings. Let x′

0 denote the noise-free reference
image. We perturb x′

0 per Equation 4.2 to get x′
t. Then, the guidance signal at

timestep t is,
F (xt, x′

t, t) = E ′
I(xt, t) · E ′

I(x′
t, t). (4.7)

Similar to language guidance, we use an image encoder finetuned with noised
images to define the image guidance function and extract embeddings that mostly
capture the high-level semantics. An interesting property of using image encoders
for guidance is that one can control how much structural information such as pose
and viewpoint is maintained from the reference image. For instance, the embeddings
used in Equation 4.7 do not have spatial dimensions, resulting in samples with great
variations in pose and layout. However, by utilizing spatial feature maps and forcing
alignment between features in corresponding spatial locations, we can guide the
generated image to additionally share similar structure with the reference image as
follows.

F (xt, x′
t, t) = −

∑
j

1
CjHjWj

||E ′
I(xt, t)j − E ′

I(x′
t, t)j||22 (4.8)

where E ′
I()j ∈ RCj×Hj×Wj denotes the spatial feature maps of the j-th layer of the

image encoder E ′
I .

Image Style Guidance allows style transfer from the reference image. It is formulated
similarly, except the alignment between the Gram matrices of the intermediate
feature maps is enforced:

F (xt, x′
t, t) = −

∑
j

||G′
I(xt, t)j −G′

I(x′
t, t)j||2F , (4.9)

where G′
I()j is the Gram matrix [186] of the j-th layer feature map of the image

encoder E ′
I .

4.3.4 Multimodal Guidance
In some application scenarios, image and language may contain complementary

information, and allowing both image and language guidance at the same time
provides further flexibility for user control. Our pipeline can easily incorporate both
by a weighted sum of the two guidance functions, with their scaling factors as weights.

Fϕ0(xt, y, t) = s1Fϕ1(xt, y, t) + s2Fϕ2(xt, y, t). (4.10)
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By adjusting the weighting factors of each modality, users can control the balance
between the language guidance and image guidance.

4.3.5 Self-supervised Finetuning of CLIP without Text Annotations
CLIP [147] is a powerful vision and language model pretrained on large-scale

image-text data. We leverage its semantic knowledge to achieve controllable synthesis
for diffusion models. To act as a guidance function, CLIP is expected to handle
noised images xt at any timestep t. We make a minor architectural change to CLIP
image encoder EI to accept an additional input t by converting batch normalization
layers to adaptive batch normalization layers, where the prediction of scale and bias
terms are conditioned on t. We denote this modified CLIP image encoder as ẼI .
The parameters of ẼI are initialized by the parameters of a pretrained CLIP model
EI , except for the parameters for predicting the scale and bias of the adaptive batch
normalization layers.

To finetune ẼI , we propose a self-supervised approach in which the task is to force
an alignment between features extracted from clean and noised images. Formally,
given a batch of N pairs of clean and noised images {xi

0, xi
ti
}N

i=1 where ti is the
timestep sampled for the i-th image that governs the amount of noise, we encode xi

0
and xi

ti
with EI and ẼI , respectively. We rely on the contrastive objective used in

CLIP to maximize the cosine similarity of the N positive pairs while minimizing the
similarity of the remaining negative pairs. We fix the parameters of EI and use the
contrastive objective to finetune the parameters of ẼI . With our finetuned CLIP
model, the diffusion model can be guided by image or language information that
users provide. Moreover, the CLIP model is finetuned in a self-supervised manner
without requiring any language data for the target dataset.

4.4 Experiments
4.4.1 Dataset and Implementation Details

We conduct experiments on FFHQ [148] and LSUN [149] cat, horse, and bedroom
subsets. FFHQ dataset contains 70,000 images of human faces. LSUN contains 3
million bedroom images, 2 million horse images, and 1.7 million cat images. We
use unconditional DDPMs from [136,177], and finetune CLIP [147] RestNet 50×16
models on noised images on each dataset with initial learning rate 10−4 and weight
decay 10−3, with a batch size of 256. On FFHQ dataset, the learning rate decays by
a factor of 0.1 every 3,000 iterations, and the model is trained for 14,000 iterations.
On LSUN cat, LSUN horse, and LSUN bedroom datasets, the learning rate decays by
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Table 4.1: Quantitative evaluation of our proposed SDG and comparison to prior work on
FFHQ dataset with image guidance and text guidance. For FID, the lower, the better.
For other scores, the higher, the better.

Quality Diversity Correctness (retrieval evaluation)
FID LPIPS Top 1 Top 5 Top 10 Top 20

Image
guidance

ILVR
(N=32) [177]

17.15 0.439 0.205 0.416 0.556 0.727

SDG 14.37 0.583 0.520 0.742 0.816 0.906
Text
guidance

StyleGAN
+CLIP 57.45 0.578 0.749 0.934 0.974 0.996
SDG 28.38 0.610 0.553 0.795 0.878 0.947

Table 4.2: Ablation study of our proposed SDG with image guidance. The numbers in
the brackets after “SDG” indicates the scaling factor. For FID, the lower, the better. For
other scores, the higher, the better.

Quality Diversity Correctness (retrieval evaluation)
FID LPIPS Top 1 Top 5 Top 10 Top 20

LSUN
Cat

SDG (100) 16.02 0.617 0.178 0.443 0.592 0.766
SDG (200) 16.23 0.565 0.278 0.533 0.738 0.880

LSUN
Horse

SDG (100) 10.30 0.597 0.165 0.418 0.568 0.704
SDG (200) 11.22 0.585 0.298 0.609 0.738 0.863

LSUN
Bedroom

SDG (100) 5.18 0.633 0.364 0.745 0.866 0.942
SDG (200) 5.19 0.550 0.445 0.805 0.900 0.951

a factor of 0.1 every 30,000 iterations, and the model is trained for 100,000 iterations.
When synthesizing images with our SDG, the scaling factor is a hyperparameter that
we manually adjust for each guidance, which will be discussed in Sec. 4.4.3.

4.4.2 Quantitative Evaluation
Evaluation Setup Since our SDG is the first method that unifies text guidance and
image guidance for image synthesis, there is no previous work on image synthesis
with both image and language guidance. So we evaluate the language-guided image
synthesis and image-guided image synthesis separately in order to compare with
previous work. We evaluate the language-guided generation on FFHQ dataset.
For that we define 400 text instructions based on combinations of gender and face
attributes from CelebA-Attributes [187]. For example, “A photo of a smiling man with
glasses”. The entire list of text instructions is included in the supplementary material.
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Table 4.3: Ablation study of our proposed SDG with language guidance on FFHQ dataset.
The numbers in the brackets after “SDG” is the scaling factor. For FID, the lower, the
better. For other metrics, the higher, the better.

Quality Diversity Correctness (retrieval accuracy)
FID LPIPS Top 1 Top 5 Top 10 Top 20

FFHQ

SDG (120) 19.60 0.650 0.248 0.526 0.654 0.795
SDG (160) 22.63 0.644 0.263 0.548 0.679 0.801
SDG (320) 28.38 0.610 0.553 0.795 0.878 0.947

Guidance GuidanceGenerated images Generated images

Figure 4.3: Image synthesis results with image content guidance on LSUN and FFHQ
datasets. Given a guidance image, the model is able to generate semantically similar images
with different pose, layout, and structure.

We generate 25 images for each text query, which results in 10,000 images in total.
We compare our language-guided generation with StyleGAN+CLIP1, which uses
CLIP [147] loss to optimize the randomly initialized latent codes of StyleGAN [188]
for text-guided image synthesis. Since our model does not require text annotation
for training, our text-guided image synthesis experiments are conducted on image-
only datasets without paired text annotations. So our method cannot be directly
compared with other text-based image synthesis methods which have to be trained on
text-image paired datasets. To evaluate image-guided image synthesis, we randomly
choose 10000 images from the dataset as guidance and synthesize new images based
on the guidance images. We compare our image-guided generation results with
ILVR [177].

We present quantitative results and comparison with previous work in Table 4.1
1https://colab.research.google.com/drive/1br7GP_D6XCgulxPTAFhwGaV-ijFe084X
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A smiling woman with curly brown hair and lipstick. A photo of a woman with a hat.

A photo of a surprised white cat looking at the camera. A photo of a person riding a horse.

A photo of a brown horse walking on the grass. A bedroom with a wooden closet and a painting on the wall.

Figure 4.4: Image synthesis results with language guidance on LSUN and FFHQ datasets.
Our model is able to generate images based on fine-grained language instructions.

with the following evaluation metrics.
FID for image quality evaluation. We report FID score [189] calculated on 10,000
images for each dataset to evaluate the quality of generated images. Lower FID
indicates better generation quality. Our SDG outperforms comapred methods for
both image-guided synthesis and language-guided synthesis.
LPIPS for diversity evaluation. We calculate the LPIPS score [190] between paired
images generated from the same image guidance or the same text guidance, as shown
in Table 4.1. Higher LPIPS indicates more diversity. Our model generates more
diverse images compared to previous work ILVR [177] and StyleGAN+CLIP. The
images generated by ILVR follows the same structure and layout, with variations
in details. While our method is able to generate diverse images with different
pose, structure, and layout, as shown in Figure 4.7(a). The images generated by
StyleGAN+CLIP also suffers from low diversity, as shown in Figure 4.7(b). The high
FID score of StyleGAN+CLIP is also because of the low diversity of the generated
images.
Retrieval accuracy to evaluate consistency with guidance. We use text-to-image
retrieval or image retrieval by an original CLIP ResNet 50×16 model without
finetuning to evaluate how well the generated images matches the guidance. For an
image generated with text guidance, we randomly select 99 real images from the
training set as negative images, and evaluate the text-to-image retrieval performance.
Similarly, for an image synthesized with a reference image, we use the reference
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A bedroom 
with windows

Guidance Generated images

+

A photo of 
two cats

A man 
riding horse +

Generated imagesGuidance

A smiling 
woman +

A woman
with short 
hair

+

+

A horse on 
the grass +

A photo of a 
woman with 
sunglasses

+

A bedroom 
with pink 
walls 

+

Figure 4.5: Image synthesis results with both image and language guidance. The image
and language guidance provides complementary information, and our model generates
images that matches both sources of guidance.

image to retrieve the generated image from the 99 randomly selected real images2.
StyleGAN+CLIP has a very high retrieval performance because the latent codes of the
StyleGAN model are directly optimized to minimize the CLIP score calculated by the
CLIP model used for retrieval. So the high retrieval performance of StyleGAN+CLIP
comes at the cost of low generation diversity, as indicated by the high FID and low
LPIPS scores.

4.4.3 Ablation Study
As demonstrated in in Section 4.3.1 and Algorithm 2, the scaling factor s is a

user-controllable hyper-parameter that controls the strength of the guidance. We
explore the effect of the scaling factor in Table 4.2 and Table 4.3. Figure 4.6 shows
the qualitative results for different scaling factors. We observe the trade-off between
semantic correctness and diversity of generated images. As the scaling factor gets
larger, the guidance signal has more control on the generation results, as indicated
by the increased semantic consistency with the guidance. While larger scaling factor

2The selected negative images are disjoint with the guidance images we used for synthesizing
images.
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Generated images (s=40)

Guidance 
Image

Generated images (s=200)

Generated images (s=100)

Generated images (s=400)

Figure 4.6: Image synthesis results with different scaling factors (s denotes the value of
the scaling factor). Larger scaling factors result in lower diversity and more consistency
with the guidance.

also leads to lower diversity of generated images. Users can adjust the scaling factor
to control how diverse they expect the generated images to be.

4.4.4 Qualitative Results
Text-guided and image-guided synthesis results Our model combines the language
and image guidance in a unified framework, and is easy to adapt to various appli-
cations. In Figure 4.3 we show the synthesis results with image content guidance
(Equation 4.7). With the image guided diffusion, the model is able to synthesize
new images with diverse structures that match the semantics of the guidance image.
Figure 4.4 shows the language-guided diffusion results, where our model is able to
handle complex and fine-grained descriptions, such as “A smiling woman with curly
brown hair and lipstick.”, or “A bedroom with a wooden closet and a painting on
the wall.” We can also incorporate language and image guidance jointly, as shown in
Figure 4.5. The image and language guidance provide complementary information,
and our semantic diffusion guidance is able to generate images that align with both.
For example, we can generate a bedroom similar to the guidance bedroom image
but with windows, or generate a woman according to a guidance image but with
a new attribute defined the language guidance (e.g., “smiling” or “short hair” or
“sunglasses”).
Comparison to prior work Since there is no prior work that incorporates text and
image guidance in the same unified framework, we compare our approach to previous
text-guided and image-guided synthesis work. In image-guided synthesis, the most
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(b) Language guidance: A photo of a man with eyeglasses.

Generated by our approach(a) Image guidance                                                  

Generated by ILVR Generated by StyleCLIP optimization

  Generated by our approach   

Figure 4.7: Comparison to previous work. (a) Image-guided image synthesis is compared
with ILVR, (b) text-guided image synthesis is compared with StyleGAN+CLIP
(a) Style guidance

(b) Structure-preserving guidance

(c) Out-of-domain guidance images

Figure 4.8: Different applications of our SDG model. (a) shows style-guided image synthesis.
(b) shows structure-preserving image synthesis when the user does not want to generate
diverse structures. (c) shows synthesizing realistic images with out-of-domain image
guidance.

related to our work is ILVR [177].As shown in Fig. 4.7(a), our model can generate
images in different poses and structures, while ILVR can only generate images of the
same pose and structure. We compare our language-guided image synthesis with
StyleGAN+CLIP in Fig. 4.7(b). Although StyleGAN+CLIP is able to generate
high-quality images, diversity is lacking in their results, while our model is able to
generate high-quality and diverse results based on the language instructions.
Other applications In Fig. 4.8(a,b), we demonstrate the results of style (Equation 4.9)
and structure-preserving (Equation 4.8) image guidance. With the style guidance,
the model trained on LSUN bedroom is able to synthesize bedrooms in the unseen
style of the reference image. With the structure-preserving content guidance, the
synthesized images preserve the structure, pose, and layout information from the
reference image. Fig. 4.8(c) shows that the model is able to take an out-of-domain
image as guidance, and synthesize photo-realistic images which are semantically
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similar to the guidance image.

4.5 Conclusion
We propose Semantic Diffusion Guidance (SDG), a unified framework for language-

guided and image-guided image synthesis. The semantic diffusion guidance is injected
into pretrained diffusion models without extra cost of re-training, and enables fine-
grained control over image synthesis with image or language guidance, or both.
However, image generation have as much potential for misuse in application as they
have for beneficial application. We should be aware of the potential negative social
impact if image synthesis is used for generating fake images to mislead people. Please
refer to the supplementary materials for more discussion on limitations, failure cases,
and potential negative social impacts.
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Chapter 5

Shape-Guided Diffusion with
Inside-Outside Attention

5.1 Introduction

Figure 5.1: We demonstrate the importance of using an explicit shape when performing a
local edit on a real image. Prior work (P2P [5]) has difficulty preserving the source object’s
shape, even when adapted for local editing (P2P + Shape). We propose Shape-Guided
Diffusion, a training-free method that uses a novel Inside-Outside Attention mechanism
to delineate which spatial regions are object vs. background and ensure that edits are
localized to the correct region. Our method can be provided an object mask as input or
infer a mask from text, as is shown in the above example.

Recent large-scale diffusion models [23,191,192], have significantly improved the
realism of text-conditional image synthesis and its faithfulness to the input prompt.
However, there is a limit to what can be expressed via language. For example, users
must perform extensive prompt tuning to achieve a desired silhouette or select one
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object instance out of many, when their intent could be more easily specified with
an object mask. Whether this mask is user specified or implicitly inferred, prior
work in image editing is often insensitive to the source object’s shape and violates
affordances (e.g., producing a dog with missing limbs or a truck with a missing cargo
container) or interactions (e.g., producing a boat with an inconsistent reflection)
that were present in the original image (see Figure 5.1). Enabling text-to-image
diffusion models to respect shape guidance is especially beneficial for applications
like anonymization, targeted ads customization, or synthetic data generation. Thus,
we consider the task of shape-guided editing, where a real image, text prompt, and
object mask are fed to a pre-trained text-to-image diffusion model to synthesize a
new object faithful to the the text prompt and the mask’s shape.

Our method is motivated by the observation that diffusion models often contain
spurious attentions that weakly associate object and background pixels. To overcome
this issue, we delineate the object (inside) and background (outside) with a novel
Inside-Outside Attention mechanism that removes spurious attentions during both
the inversion and generation process. This mechanism modifies the cross- and self-
attention maps such that a token or pixel referring to the object is constrained to
attend to pixels inside the shape, and vice versa.

To summarize, our contributions include the following:
(1) We identify a limitation in prior image editing methods where the shape of the
original object is not preserved and provide empirical insights on why this issue
exists.
(2) Unlike existing mask-based editing adaptations (e.g., copying the background or
finetuning the model to use mask input), we introduce a training-free mechanism
that applies a shape constraint on the attention maps at inference time. To the
best of our knowledge, we are the first work to explore constraining attention maps
during inversion, which allows us to discover inverted noise that better preserves
shape information from a real image.
(3) Our method achieves SOTA results in shape faithfulness on our MS-COCO
ShapePrompts benchmark, and is rated by annotators as the best editing method
2.7x more frequently than the most competitive baseline. We demonstrate diverse
editing capabilities such as object edits, background edits, and simultaneous inside-
outside edits.

5.2 Related Work
Diffusion Models Diffusion models [179] have had remarkable success in image
synthesis. They define a Markov chain of diffusion steps that slowly adds random
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Approach (a) Guidance (b) Attn Map (c) Inversion

SDEdit [8] edit prompt N/A N
P2P [5] src prompt, edit prompt Copy Y
InstructPix2Pix* [198] edit instruction Copy N
NTI* [199] src prompt, edit prompt Copy Y
PNP* [200] src prompt, edit prompt Copy Y
Ours src prompt, edit prompt, shape Constrain Y

Table 5.1: A conceptual comparison of our work vs. structure preserving methods. We
compare against SDEdit and P2P in a large-scale evaluation, whereas for concurrent works
(denoted by *) we include examples in the Supplemental.

noise to data then learn a model that can reverse the diffusion process to construct
desired data samples from the noise. Variants of diffusion models include Denoising
Diffusion Probabilistic Models (DDPM) [146], Denoising Diffusion Implicit Models
(DDIM) [193], and score-based models [182]. Classifier guidance [194] and classifier-
free guidance [195] have been investigated for conditional image synthesis. Recently,
diffusion models [135,191,192,196] have shown impressive performance on text-guided
image synthesis. Our work focuses on adapting these diffusion models towards text-
guided local editing according to a text prompt and object mask.
Global and Local Image Editing Researchers have proposed a variety of methods
to extend generative models towards image editing. For text-guided global editing,
StyleCLIP [185] adapts StyleGAN [188] and DiffusionCLIP [197] adapts diffusion
models to edit entire images according to a text prompt using CLIP [147]. Blended
Diffusion [6] proposes a method for local editing constrained to a mask by copying
an appropriately noised version of the source image’s background at each diffusion
timestep. While this “copy background” technique can be generally combined with
other methods to enable local editing in diffusion models, we demonstrate that this
method alone is insufficient for preserving object shape, and we further improve
shape faithfulness with our proposed method.
Structure Preserving Image Editing Aside from global and local image editing,
there also exists work in structure preserving image editing. These works aim
to maintain structure, including the position or pose of the object to be edited.
To achieve structure preservation, some works copy random seeds [201], finetune
model weights [?, 202], copy features and self-attention maps [200], or condition on
a partially noised version of the source image [8]. Prompt-to-Prompt (P2P) [5]
copies cross-attention maps from the source to target image, and follow up works
concurrent to ours improve its performance on real image editing [198,199].

We present a conceptual comparison of our work vs. a few structure preserving
works with open source code in Table 5.1 (see additional examples in the Supple-
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mental). (a) While these methods are often able to produce a background that looks
similar to that of the source image, they struggle to perform a local edit where
the background is not disturbed because they lack shape as an explicit form of
guidance. (b) Unlike prior work that leverages attention maps for image editing, we
do not copy these attention maps but rather constrain them to be sensitive to shape.
While directly copied attention maps are noisy and entangle changes in object and
background pixels, our constrained attention maps spatially localize these changes,
which allows us to perform shape-guided edits (see Figure 5.4). (c) Although P2P
demonstrates success in structure consistency when generating multiple synthetic
images, it has difficulty preserving the structure of a real image. It shows initial
results for real image editing using DDIM inversion [193,194], a deterministic tech-
nique that inverts a real image into noise that would reconstruct the image when
fed to the diffusion model for generation. While the inverted noise retains some
structure information, combining inversion with classifier-free guidance often causes
a drift issue where it is difficult to simultaneously preserve the structure and respect
the text prompt. As seen in Figure 5.4, we demonstrate that our shape constraint
on the attention maps is able to mitigate this drift issue, which is also explored
in the concurrent work Null Text Inversion [199] that instead proposes test-time
optimization of null embeddings.
Image Inpainting Image inpainting is the task of generating missing regions of an
image for object removal, image restoration, etc. Researchers have proposed dilated
convolution [203], partial convolution [204], gated convolution [205], contextual
attention [206], and co-modulation [207] for GAN-based image inpainting. Lugmayr
et al. [208] recently proposed a diffusion-based model for free-form image inpainting.
There exist variants of GLIDE [196] and Stable Diffusion [7, 191] finetuned for text-
conditional inpainting. However, these methods were trained with free-form masks
without semantic meaning, where infilling the mask with background is reasonable
and even encouraged. There exist a few training-based methods that use object masks,
none of which are publicly available. Make-a-Scene [24] trained an auto-regressive
transformer conditioned on full segmentation maps of a scene. Shape-guided Object
Inpainting [209] trained a GAN and Imagen Editor [210] trained Imagen [192] with
object masks for inpainting. In contrast, we apply our model on top of an open-source
text-to-image diffusion model at inference time. Because our method is training-free,
it is more flexible and can be applied towards tasks beyond object editing, such as
background editing or simultaneous inside-outside editing, as discussed in Sec. 5.5.2.
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Figure 5.2: Shape-Guided Diffusion. Our method takes a real image, source prompt
(“dog”), edit prompt (“dog wearing a colorful shirt”), as well as an optional object mask
(inferred from the source prompt if not provided), and outputs an edited image. Left: we
modify a frozen pretrained text-to-image diffusion model during both the inversion and
generation processes. Right: we show a detailed view of one layer in the U-Net, where
Inside-Outside Attention constrains the self- and cross-attention maps according to the
mask.

5.3 Shape-Guided Diffusion
We present Shape-Guided Diffusion, a training-free method that enables a pre-

trained text-to-image diffusion model to respect shape guidance. Our goal is to
locally edit image xsrc given text prompts Psrc and Pedit and optional object mask
m (inferred from Psrc if not provided), so that edited image xedit is faithful to both
Pedit and m. We introduce Inside-Outside Attention to explicitly constrain the cross-
and self-attention maps during both the inversion (image to noise) and generation
(noise to image) processes. An overview of our method can be found in Figure 5.2.

We build upon Stable Diffusion (SD), a Latent Diffusion Model (LDM) [191] that
operates in low-resolution latent space. LDM latent space is a perceptually equivalent
downsampled version of image space, meaning we are able to apply Inside-Outside
Attention in latent space via downsampled object masks. For the rest of this paper,
when we denote “pixel”, “image”, or “noise”, we are referring to these concepts in
LDM latent space.

5.3.1 Inside-Outside Attention
LDMs contain both cross-attention layers used to produce a spatial attention map

for each textual token and self-attention layers used to produce a spatial attention
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Figure 5.3: Inside-Outside Attention. We modify the attention maps from both the
cross-attention and self-attention layers. Here j refers to token/pixel indices and M∗j

denotes the attention map corresponding to the j-th index. Top: in the cross-attention
layer depending on whether the text embedding refers to the inside or outside the object,
we constrain the attention map M according to the object mask or the inverted object
mask to produce M ′. Bottom: in the self-attention layer we perform a similar operation
on the inside and outside pixel embeddings.
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Figure 5.4: Spurious attentions and classifier-free guidance limits shape preservation.
Inside-Outside Attention (top) preserves the shape relationship between the object and
background by associating tokens to specific spatial regions. We demonstrate this property
when reconstructing (left) and editing (right) a real image with classifier-free guidance.
We also depict the cross attention map for the token “dog” averaged all attention heads
and timesteps.

map for each pixel. We postulate that prior methods often fail because of spurious
attentions – attentions that seek to edit the object compete with those that seek to
preserve the background because they are not well localized (see Figure 5.4). Hence,
we manipulate the cross-attention map such that the inside tokens are responsible for
editing a distinct, non-overlapping spatial region compared with the outside tokens
(e.g., “dog”,“shirt”, etc. may only edit the dog and “background” may only edit the
remaining scene). Since self-attention layers heavily influence how pixels are grouped
to form coherent objects, we apply a similar manipulation to the self-attention map
to further ensure that the desired object is contained within the boundaries of the
input mask.

An overview of Inside-Outside Attention is given in Figure 5.3 and our algorithm
is defined as follows (also see Alg. 3). For one forward pass at each timestep during
inversion or generation, we go through all layers of the diffusion model DM and
manipulate the cross- and self-attention maps M . We denote the dimensions of M
as RHW ×dτ and RHW ×HW for each cross- and self-attention map, respectively, where
H is the image height, W is the image width, HW is the number of pixels in the
flattened image, and dτ is the number of tokens. We also downsample m according
to the resolution of the cross- or self-attention layer. For the cross-attention map,
we determine column indices Jin and Jout based on whether the token refers to
the object or the background. For the self-attention map, we determine column
indices Jin and Jout based on whether the pixel belongs inside or outside the object
as defined by mask m. Finally, we compute the new constrained attention maps
M ′

∗jin
= {M∗jin

⊙m | ∀jin ∈ Jin} and M ′
∗jout

= {M∗jout ⊙ (1−m) | ∀jout ∈ Jout}.
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Algorithm 3 Inside-Outside Attention
Input: A diffusion model DM , a binary object mask m, a prompt P .
Output: An edited diffusion model where the attention maps M are masked according
to m and P for one forward pass.

1: for all l ∈ layers(DM) do
2: if type(l) is CrossAttention
3: Jin ← {j | jth token refers to object}
4: Jout ← {j | jth token refers to background}
5: elif type(l) is SelfAttention
6: Jin ← {j | jth pixel belongs inside object}
7: Jout ← {j | jth pixel belongs outside object}
8: M ′

∗jin
= M∗jin

⊙m ∀jin ∈ Jin

9: M ′
∗jout

= M∗jout ⊙ (1−m) ∀jout ∈ Jout

10: end for

5.3.2 Inside-Outside Inversion
To edit real images, we use DDIM inversion [193,196] to convert the source image

to inverted noise. However, we observe that using inversion with a text-to-image
diffusion model often results in a shape-text faithfulness tradeoff. Nonzero levels of
classifier-free guidance can completely destroy information about the source object
(see bottom row of Figure 5.4). We propose applying Inside-Outside Attention to
mitigate this trade-off. Similar to how prior work can associate tokens to entire
images [202,211], with Inside-Outside Attention we can associate tokens to specific
spatial regions. As such, if the token remains the same its associated region should
remain the same (e.g., “dog” and “background” in the reconstruction setting) and
if it changes its associated region should change (e.g., “dog” in the editing setting)
without affecting other regions. While without our method (bottom) the inverted
noise is able to retain some information about the real image – the checkerboard
pattern on the chair is converted to flowers or polka dots in the bottom row – with
our method (top) the edited image is able to retain the full chair. We also depict the
cross-attention map for “dog”, where without our method the attention map weakly
includes the background and with our method the map is localized to the dog.

5.3.3 Method Summary
In summary, we make the observation that object shape can be better preserved if

spurious attentions are removed, and we propose the novel inference-time mechanism



5.3. SHAPE-GUIDED DIFFUSION 61

Inside-Outside Attention. Our method Shape-Guided Diffusion uses Inside-Outside
Attention to constrain the attention maps during both inversion and generation,
which we depict in Figure 5.2. The Shape-Guided Diffusion algorithm can be defined
as follows (also see Alg. 4).

Algorithm 4 Shape-Guided Diffusion
Input: A diffusion model DM with autoencoder E ,D, real image xsrc, a source
prompt Psrc, an edit prompt Pedit, and either a binary object mask m or a shape
inference function InferShape(·).
Hyperparameters: Classifier-free guidance scale wg.
Output: An edited image xedit that differs from xsrc only within the mask region m.

1: if m is not provided then
2: m← InferShape(xsrc,Psrc)
3: end if
4: [z̄0, ..., z̄T ] ∼ InsideOutsideInv(z|E(xsrc),Psrc, m, DM)
5: zT ← z̄T

6: for all t from T to 1 do
7: InsideOutsideAttention(DM,Pedit, m)
8: zcond ← DM(zt,Pedit)
9: zuncond ← DM(zt,∅)

10: zt−1 ← zcond + wg ∗ (zcond − zuncond)
11: zt−1 ← zt−1 ⊙m + z̄t−1 ⊙ (1−m)
12: end for
13: xedit ← D(z0)

If the mask is not provided, we use the shape inference function InferShape(·) to
identify Psrc in the image. For our experiments we use an off-the-shelf segmentation
model [212], but any method for textual grounding could also be used with our
method. We run Inside-Outside Inversion on the conditional diffusion model driven
by the prompt Psrc (e.g., “dog”) to get inverted noise z̄T . We then set our initial
noise zT to z̄T . For each sampling step, we apply Inside-Outside Attention for both
the conditional and unconditional diffusion models using mask m and Pedit (e.g.,
“dog wearing a colorful shirt”).

We mix the predictions of both models using the original formulation of Ho et
al. [146], which applies classifier-free guidance to the conditional prediction (Line
10, Alg. 4). In early experiments we found this design choice leads to higher
text alignment without a loss in other metrics. Finally, we copy the real image’s
background found during the inversion process z̄t−1 ·m to form the edited image
prediction zt−1. This ensures the edited image xedit and the original image xsrc only
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differ within the mask region m.

5.4 MS-COCO ShapePrompts
Benchmark We evaluate our approach on MS-COCO images [213]. We filter for
object masks with an area between [2%, 50%] of the image, following prior work
in image inpainting [214]. Our test set derived from MS-COCO val 2017 contains
1, 149 object masks spanning 10 categories covering animal, vehicle, food, and sports
classes. We create a validation set with 1, 000 object masks in the same fashion
derived from MS-COCO train 2017. For each category we design a few prompts that
add clothing or accessories (e.g., “floral shirt” or “sunglasses”), manipulate color
(e.g., “iridescent”, “with spray paint graffiti”), switch material (“lego”, “paper”),
or specify rare subcategories (“spotted leopard cat”, “tortilla wrapped sandwich”).
More information about the prompts can be found in the Supplemental.
Metrics Since we aim to synthesize an image faithful to the input shape, we use mean
Intersection over Union (mIoU) as a metric. Specifically, we compute the proportion
of pixels within the masked region correctly synthesized as the desired object class,
as determined by a segmentation model [212] trained on COCO-Stuff [215]. Since
animal object masks are particularly fine-grained, and mIoU does not capture a full
picture of degenerate cases (e.g., if the edit replaces a cat’s full body with a cat’s
head), we also compute a keypoint-weighted mIoU (KW-mIoU) for the animal classes.
Specifically, we weight each sample’s mIoU by the percentage of correct keypoints
when comparing the source vs. edited image, as determined by an animal keypoint
detection model [216]. We also report FID scores as a metric for image realism, which
measures the similarity of the distributions of real and synthetic images using the
features of an Inception network [217,218]. Finally, we report CLIP [147] scores as a
metric for image-text alignment, which measures the similarity of the text prompt
and synthetic image using the features of a large pretrained image-text model. More
information on metrics can be found in the Supplemental.

5.5 Experiments
In Sec. 5.5.1 we evaluate our method on the shape-guided editing task where it

must replace an object given a (real image, text prompt, object mask) triplet from
MS-COCO ShapePrompts. We also evaluate on the same task with masks inferred
from the text and ablate the use of our Inside-Outside Attention mechanism. In
Sec. 5.5.2 we present additional results beyond object editing.
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Figure 5.5: Comparison to prior work. We compare our results with Blended Diffusion [6],
SD-Inpaint [7], SDEdit [8], and P2P [5] with the MS-COCO image and instance mask for
reference. Our method is able to generate realistic edits that are faithful to both the input
shape and text prompt. + Shape denotes a variant of the structure preserving method
adapted for local image editing using the “copy background” method from [6].
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Approach KW-mIoU (↑) mIoU (↑) FID (↓) CLIP (↑)

Real Images 83.3 76.3 - 0.15
MS-COCO Shape
Blended Diffusion [6] 23.3 41.8 46.2 0.20
SD-Inpaint [7] 38.5 51.7 43.7 0.19
SDEdit + Shape [8] 31.0 49.9 45.1 0.21
P2P + Shape [5] 46.9 63.3 39.6 0.20
Ours (w/o IOA) 43.8 55.3 41.5 0.21
Ours 53.3 63.6 40.2 0.21
Inferred Shape
P2P [5] 24.2 64.6 97.5 0.26
P2P + Shape [5] 37.7 54.0 51.1 0.21
Ours (w/o IOA) 33.0 46.0 56.8 0.22
Ours 43.0 54.9 49.5 0.22

Table 5.2: Automatic evaluation on MS-COCO ShapePrompts (test set). MS-COCO Shape
uses instance masks provided by MS-COCO, and Inferred Shape uses masks inferred from
the text. Ours w/o IOA denotes our method without Inside-Outside Attention.

Baselines For our baselines, we compare against the local image editing method
Blended Diffusion [6], the inpainting method SD-Inpaint [7], and the structure
preserving methods SDEdit [8] and P2P [5]. Blended Diffusion, built on top of a
Guided Diffusion [194] backbone, uses mask input by copying the source image’s
background at each timestep and text input by applying classifier guidance with
CLIP [147]. SD-Inpaint, built on top of a Stable Diffusion [191] backbone, finetunes
the model with an extra U-Net channel to use mask input and applies classifier-
free guidance to use text input. SDEdit partially noises then denoises the source
image and P2P copies cross attention maps to preserve structure, and they apply
classifier-free guidance to use text input. For the structure preserving methods
we use implementations built on top of a Stable Diffusion backbone, and in some
experiments we adapt them to use mask input by applying the “copy background”
method from [6].
Experimental Setup For all baselines we use the default hyperparameters provided
by their respective repositories. For sampling we use a standard DDIM scheduler for
50 inversion and generation steps. When using Inside-Outside Attention on cross-
attention layers, we evenly divide the maximum number of text tokens excluding the
<bos> token, resulting in 38 “inside” tokens and 38 “outside” tokens. The attentions
for the <bos> token are zeroed out.
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Figure 5.6: Annotator evaluation on MS-COCO ShapePrompts (100-sample subset of test
set). Columns (a, b, c, d): we asked people to rate edits performed by our method vs. a
baseline, where the two edits were presented as anonymized and in randomized order. Rows
(shape faithfulness, image realism, text alignment): annotators selected the superior edit
along these three axes. Each bar denotes the percentage of samples where the superior edit
was “Ours”, “Tie”, or a baseline. In (e) we use the same procedure, except we presented
three anonymized edits, ours vs. two baselines. Annotators were additionally asked to
select the “overall best edit.” We provide further details in the Supplemental.

5.5.1 Comparison to Prior Work
MS-COCO Shape We first experiment with instance-level masks provided by MS-
COCO as our shape guidance. In Figure 5.5, we depict real images (first row) and
edits made by Blended Diffusion (second row), SD-Inpaint (third row), and SDEdit
+ Shape (fourth row), P2P + Shape (fifth row), Ours (sixth row). Prior works
demonstrate a variety of failure modes in shape-guided editing, where an object may
be transformed into a new shape, removed completely, severely downscaled, or fail to
respect the text prompt. On the other hand, our method is able to simultaneously
respect the shape and the prompt without a compromise in image realism. As seen
in Table 5.2, our method outperforms the local editing and inpainting baselines [6,7]
across the board, with at least a 15 point improvement in KW-mIoU. Comparing with
the structure preserving baselines [5,8], we achieve at least a 6 point improvement in
KW-mIoU with comparable FID and CLIP scores. Intuitively, the baselines have
trouble achieving shape faithfulness because “copy background” only provides shape
signal based on how realistic the visual output looks at each timestep – the diffusion
model attempts to rectify its edits based on how well it blends with the copied
background. In Figure 5.7 we demonstrate this shape signal is weak in early diffusion
timesteps where the output looks similar to pure noise, meaning that the model can
irrecoverably produce an object with the incorrect scale or pose. Our Inside-Outside
attention mechanism provides much stronger shape signal in early timesteps, where
we enforce the location and scale of the object via the attention constraint.
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We also conducted an evaluation with annotator ratings. We created four
evaluations corresponding to each baseline, each of which contained 100 samples
comparing an edit made by our method vs. the baseline in an anonymized and
randomized fashion. For each sample, we asked five people to select the superior
edit along the axes of shape faithfulness, image realism, and text alignment. As seen
in the top row of Figure 5.6, annotators confirm that our method outperforms the
baselines in shape faithfulness, with our method selected as superior at least 54% of
the time (3.2x the most competitive baseline P2P + Shape). For image realism and
text alignment, our method was selected as superior at least 48% of the time (1.3x
and 1.9x the most competitive baseline SD-Inpaint).

Figure 5.7: Shape signal from “copy background” is weak in early timesteps. In both
examples we only use shape guidance in the first half of generation, where Inside-Outside
Attention (w/ IOA) is able to provide stronger shape signal.

Inferred Shape Next, we demonstrate that our method also works on automatically
inferred masks, which encompass a variety of challenging cases, such as reflections
or multiple overlapping instances (Figure 5.1). We compare against our most
competitive baseline, vanilla P2P and P2P adapted for local image editing using the
inferred mask (P2P + Shape). P2P often produces edits that look nothing like the
source image (see Figure 5.1), explaining how it has the worst FID scores in Table 5.2
(its distribution of synthetic images is significantly different than the real images)
but the best image realism ratings in Figure 5.6. In a similar fashion, it achieves
a better CLIP score but worse text alignment rating than our method because it
is easier to align with the prompt if significantly deviating from the source image.
As a result, P2P is rated as the worst overall image editing method, as seen in the
bottom row of Figure 5.6. In contrast, our method is rated as the best edit for 43%
of samples, 2.7x more than the most competitive baseline P2P + Shape.
Ablations In Table 5.2 we ablate our method without Inside-Outside Attention (Ours
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w/o IOA) and with Inside-Outside Attention (Ours). We demonstrate that the
mechanism is a critical component of our method, providing a 9.5 point and 10
point increase in KW-mIoU in the MS-COCO Shape and Inferred Shape settings
respectively. Ours w/o IOA performs better than all baselines on all metrics, except
P2P + Shape (only P2P and our method use inversion), demonstrating how DDIM
inversion is another critical component. In the Supplemental we also ablate the use
of DDIM inversion, guidance scale hyperparameters, and the use of a soft vs. hard
shape constraint on the self-attention maps.

5.5.2 Additional Editing Results
In Figure 5.8, we demonstrate additional capabilities of our method beyond

object editing. (a) Our method is able to perform both intra- and inter- class
edits on the same image, for example editing a cow to wear “gold and diamond
chains” or transform into a “sheep.” (b) Our method is able to perform outside
edits, whether it is a background “at sunset” or “in front of the Eiffel Tower in
Paris.” Interestingly, our method sometimes maintains structures from the real image,
for example transforming the cabinet into a landmass in both edited images. (c)
Our method is able to perform simultaneous edits with one prompt for the inside
region (“...robot horse...“) and another for the outside region (“...Big Ben...” or
“...Metropolitan Museum of Art...”). Since our method delineates edits on the object
vs. background, although every pixel in the image is transformed we can maintain the
object-background relation from the source scene (e.g., the horse grazing). In contrast,
it is not obvious how to adapt structure preserving methods for this simultaneous
editing setting, since with “copy background” they require one region (e.g., the
background) to remain identical to the source image to enforce locality.

5.6 Conclusion
In this work, we present the usefulness of an explicit shape for local edits on

real images. We show that prior work in local editing, structure preserving editing,
and inpainting often fail to respect shape. To alleviate this issue, we propose Shape-
Guided Diffusion, a training-free method that uses a novel Inside-Outside Attention
mechanism during both the inversion and generation process, which localizes object
vs. background edits. We evaluate our method on our newly proposed MS-COCO
ShapePrompts benchmark on the shape-guided editing task, where the goal is to
edit an object given an input mask and text prompt. We show that our method
significantly outperforms the baselines in shape faithfulness without a degradation
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Figure 5.8: Additional editing results. Our method can perform intra- or inter-class edits
on the same image, outside edits, and simultaneous inside-outside edits.

in text alignment or image realism when using either precise MS-COCO instance
masks or masks inferred from the text.
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Chapter 6

Summary and Future Directions

In this thesis, we explored various avenues from which multimodal generative
models can be extended to provide a deeper understanding and enhanced performance
in various tasks. Specifically, the study delves into image-to-text models, focusing on
visual question answering (VQA), activity recognition, and image captioning, and into
text-to-image models concerning image synthesis and shape-guided editing. Chapter
2 offers a method to enhance VQA systems’ explainability, emphasizing the combined
use of textual rationale and attention visualization. This approach was shown to
improve model outputs and their ability to localize decision evidence. Chapter 3
diverges from traditional text generation orders, presenting an unsupervised learner
that discovers optimal text generation sequences from training data. Using this
method, improvements were observed in code generation, machine translation, and
image captioning. Chapter 4 introduces a novel framework for semantic diffusion
guidance, enabling the repurposing of unconditional image diffusion models to become
text and/or image conditional without retraining. This framework is particularly
advantageous for datasets lacking text annotations. Chapter 5 identifies and addresses
a problem in existing text-to-image diffusion models for editing task where object
shape must be preserved. By introducing a novel Inside-Outside Attention mechanism,
the study ensures that modifications are accurately associated with the intended
spatial region.

This thesis focuses on uni-directional generation tasks where a generation of one
modality is conditioned on the other (i.e. either image-to-text or text-to-image). As
much as these uni-directional objectives are useful for training multimodal models
with great versatility, less exploration has been made on whether training under
bi-directional objectives can be beneficial. Whether we can utilize limited resources
more efficiently by having a single model that can simultaneously generate both types
of modalities is an open question. Whether joint generation of texts and images
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can lead to more interesting generation patterns or task extension is also a research
direction that is yet to be explored. This thesis delves into various architectures
and optimization techniques, aiming to unlock novel generation capabilities for
multi-modal applications. We hope the findings from this research can serve as
a foundation for the development of more advanced vision and language models
and provide a clearer roadmap for future investigations in the field of multi-modal
generative modeling.
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