
Towards Operating Underactuated Robotic Systems

by Going With the Flow

Marius Wiggert

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-211

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-211.html

August 11, 2023



Copyright © 2023, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
First of all, I am deeply grateful to my wonderful PhD advisor Claire Tomlin,
for her unwavering support, her trust in me that allowed me the space to
develop this research project, and her genuine kindness in guiding me and
helping me flourish. I aspire to mentor and help others grow the way Claire
helped me. I also owe much gratitude to the other members of my
dissertation committee, Pierre Lermusiaux, Shankar Sastry, and Pieter
Abbeel. Lastly, I want to thank my collaborators and students who
contributed to this work, Manan Doshi, Jonas Dieker, Matthias Killer,
Nicolas Hoischen, Jerome Jeannin, Killian Kempf, and Andreas Doering.



Towards Operating Underactuated Robotic Systems by Going With the Flow

by

Marius Wiggert

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Claire Tomlin, Chair
Professor Pierre Lermusiaux
Professor Shankar Sastry
Professor Pieter Abbeel

Summer 2023



The dissertation of Marius Wiggert, titled Towards Operating Underactuated Robotic Sys-
tems by Going With the Flow, is approved:

Chair Date

Date

Date

University of California, Berkeley



Towards Operating Underactuated Robotic Systems by Going With the Flow

Copyright 2023
by

Marius Wiggert



1

Abstract

Towards Operating Underactuated Robotic Systems by Going With the Flow

by

Marius Wiggert

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire Tomlin, Chair

Over the centuries, humanity has created ever more ingenious systems to traverse the oceans
and skies of our planet. Modern ships and planes operate with powerful engines that require
substantial amounts of fuel, leading to high operating costs. However, this approach becomes
impractical for applications that require extended periods of autonomous operation without
the possibility of refueling. This dissertation starts with the idea of operating systems by
going with the flow : harnessing the wind and ocean currents by letting the system drift in
favorable directions and strategically using a low-power engine to change flows when this is
beneficial. As the power to counteract drag forces scales cubically with the relative velocity
of the system, this new paradigm reduces the power required for operation by 2-3 orders of
magnitude, thereby significantly reducing the system and operating costs. This could enable
a host of novel applications that require low-cost and long-term operations, such as active
environmental monitoring of the oceans and atmosphere or floating solar platforms. The
primary case study used throughout this work is autonomous seaweed farms that roam the
oceans while rapidly growing biomass for biofuel, bioplastic, or to sink it for carbon removal.

In this dissertation, we systematically develop control techniques to tackle the four key
challenges of operating by going with the flow : First, the system is severely underactuated
with its own propulsion often being less than 1

10
th of the magnitude of the surrounding flows.

Second, to make strategic control decisions when to change flows, only coarse, deterministic
forecasts are available. Third, the forecasts have a limited time horizon of 5-10 days, but
realistic control objectives extend over weeks to months. Lastly, the forecast error defined
as the difference between the forecasted and the true flows often exceeds the propulsion
capabilities of the system, hence robust control is infeasible.

We start by introducing techniques for continuous-time optimal control when the complex
flows are known. We use dynamic programming for the objectives of navigation and max-
imizing seaweed growth. Next, we turn towards the challenge of operating with imperfect
and short-term forecasts. Our insight is that the value functions obtained by the previously
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developed optimal control methods can be used as closed-loop control policies, which are
equivalent to replanning on the forecast at every step. Through extensive simulation studies
in realistic ocean conditions, we demonstrate that such frequent replanning allows for reli-
able operation despite significant forecast errors. To enable reasoning beyond the forecast
horizon, we derive a discounted optimal control formulation and demonstrate how the value
function can be extended by estimating the cost-to-go using historical flow averages. In the
last part of this dissertation, we focus on how to handle constraints in these challenging
environments. For that, we integrate time-varying obstacles into our value function and
show empirically that this almost eliminates the risk of stranding. Moreover, we develop a
hierarchical control approach to operate a fleet of underactuated autonomous systems while
avoiding collisions and ensuring connectivity across the fleet.

At the end of this dissertation, we summarize our techniques for operating by going with the
flow which could enable a host of new applications of low-power autonomous systems in the
oceans and skies. We also discuss promising ongoing and future research directions towards
further improving the performance of underactuated robotic systems operating in flows.
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Chapter 1

Introduction

Humanity’s journey through the ages has been marked by our endeavors to explore our world,
crafting ever more ingenious systems to traverse the oceans and skies. As this journey has
unfolded, we have developed an array of vessels and systems, each designed to operate in
different environments and serve various needs. In the oceans we transitioned from simple
sailboats to modern container ships and submarines that are increasingly operating au-
tonomously. Similarly, in the realm of aviation, we have progressed from lighter-than-air
balloons and gliders to modern commercial airplanes and drones.

The vast majority of our contemporary systems traversing the skies and oceans are pow-
ered by powerful engines. The operational costs of these airplanes and ships are driven by
the fuel required for these engines to continually counteract the drag force FD of pushing
them through air or water at high velocities v. The engine power to counteract the drag is:

P = FD · v =
1

2
ρAcrossCDv

3. (1.1)

Where Across is the cross-sectional area of the system, ρ the density of the medium, and CD
the drag coefficient. This has led research toward optimizing the shape of these structures
for smaller Across and improved aerodynamic and hydrodynamic coefficients CD.

However, certain applications require long-term independent operation without the pos-
sibility of refueling. In such cases, operating a high-powered engine is not feasible, as it
would require a large source of energy, such as fuel tanks or energy generation with large
solar arrays. But the oceans and skies are permeated by natural flows such as winds and
ocean currents, so an alternative is to passively let the system drift on these flows. This
method has been adopted in drifter buoys for ocean monitoring [88] and balloons both for
weather monitoring [63] and in WWII when the Japanese launched balloons to transport
bombs to the continental US [4]. Although they are cost-effective, the trajectories of these
drifting systems are uncontrollable and dependent on natural flows.

However, there are numerous potential applications that require control of the system,
but utilizing powerful engines is infeasible. The primary example that inspired this thesis
is the vision proposed by the Start-Up Phykos, to build autonomous seaweed farms that
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roam the oceans while growing seaweed [40, 122] (Figure 1.1). These robotic farms could
scale seaweed farming from labor intensive practices near the coast to the vast expanse
of the open oceans [137, 12], thus enabling various applications of seaweed biomass for
climate mitigation. Seaweed can be used as human food, as cattle feed that reduces methane
emissions from burping [115], as bio fuel and plastic to replace oil [147], and to capture up
to 12.3 GtCO2/year from the atmosphere when the biomass is sunk to the ocean floor [143,
120]. To operate such floating farms, we need to be able to control their position to prevent
stranding and colliding with ships, as well as maximize seaweed growth by staying in nutrient-
rich waters and minimize negative environmental externalities by avoiding protected marine
zones and ensuring precise biomass sinking in suitable locations (Fig. 1.1). The drag forces
for operating these farms at appropriate speeds v are enormous due to the inherently high
cross-sectional area, Across, and the drag coefficient CD. These drag forces make steering
farms with powerful ship engines prohibitively expensive [116].

!

Phykos
Nutrient Density

Deposition AreasShip-Channels

Marine Protected Zones

Figure 1.1: The Start-Up Phykos is building autonomous seaweed farms that roam the
ocean. For efficient operations they need to stay in high nutrient areas and avoid stranding,
shipping channels, and marine protected zones. At the end of a growth cycle they deposite
the biomass in deep ocean trenches for carbon removal.

This dissertation starts with the idea of operating systems by going with the flow :
letting the system drift in a favorable direction and strategically using a small engine to
change flows when this is beneficial.

Consider, as an example, the floating seaweed farm in Figure 1.2: By strategically apply-
ing its small propulsion of umax = 0.1m

s
, which is significantly less than surrounding flows, it

can successfully navigate from the start position to the target area in 40 days. The diversity
and complexity of the currents with numerous bifurcations and eddies makes this possible,
as small propulsion can be enough to change from one eddy to the next.
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Figure 1.2: By using its small propulsion umax strategically, the autonomous seaweed farm
can leverage the ocean currents to reach the target within 40 days whereas passive drifting
would lead it along the white trajectory. This paradigm of going with the flow requires only
small motors which enables a host of new applications that would otherwise be prohibitively
expensive.

This paradigm is particularly promising, as the required operating power scales cubically
with the relative velocity v (Eq. 1.1) and this paradigm requires only minimal relative
velocity. Let us compare the power required by going with the flow with the use of powerful
engines: operating with 1 m

s
or 10 m

s
(the cruise speed of a container ship), that is, 10

times and 100 times the speed of umax = 0.1m
s
, implies a power requirement of 1000 times

and 1.000.000 times as much as going with the flow. The power requirements determine
the required motor, battery, and solar panel sizes and thereby the cost of the system. To
compare the total energy required for the journey in Fig. 1.2 we need to multiply the power
by the duration of the journey. Autonomous farms using powerful engines would arrive at
the target faster; Instead of 40 days, it would take 13 days with 1 m

s
and 48 hours with 10

m
s
, which means that by going with the flow, we need 325 times less energy than operating

with 1 m
s
and 50.000 times less energy than operating at 10m

s
, the speed of a cruise ship.

This paradigm could also enable other applications such as floating solar farms that could
store their energy in synthetic fuels to be picked up by ships [105] or active drifters for ocean
monitoring [99]. The principle of going with the flow extends beyond the ocean surface to the
skies and underwater domains, where systems can leverage the three-dimensional nature of
air or water flows at varying altitudes or depths to achieve their operational objectives. An
example in the skies are the balloons of Project Loon [52]: they are designed to affordably
connect remote rural areas with the Internet by passing messages along a network of balloons
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to ground stations. These balloons require control over their position but cannot afford the
weight of fuel or the large solar panels required to power an engine. The balloons can change
their altitude to take advantage of the different stratospheric winds that transport them in
various directions [52].

By leveraging complex flows for the vast majority of movement, the power requirements
and thus the costs of the systems are reduced by a large magnitude, thus unlocking the
possibility for ultra-low-power autonomy in the oceans and skies.

However, these flows are inherently complex, non-linear, and highly varying over time.
Reliably navigating hundreds of kilometers on those flows or operating in them when only
uncertain short-term forecasts are available is challenging for existing control methods, as
we will explain in Section 1.1. Hence, the focus of this dissertation is to develop control
methods that enable the operation of underactuated robotic systems by leveraging complex
flows in realistic conditions where only deterministic flow forecasts are available.

1.1 Central Challenges for Underactuated Robotic

Systems in Flows

To enable the operation paradigm of going with the flow we need to develop control methods
that address the four central challenges of this paradigm.

Severe Underactuation

Firstly, the system is underactuated with respect to the flow. There are two notions of
underactuation that might apply. First, underactuation in the sense of limited degrees of
freedom e.g. Loon balloons can only go up and down but operate in a three-dimensional
space. Secondly, underactuation in the sense that the maximum propulsion is much smaller
than the magnitude of the surrounding flow. For example, our seaweed farm in Fig. 1.2
has a maximum propulsion of umax = 0.1m

s
but the vast majority of flows are stronger with

magnitudes up to 2m
s
. In settings with severe underactuation, long-term planning is critical

to anticipate favorable flows. Although our methods are generally applicable to operating
any kind of system in flows, we focus on the underactuated setting.

Only Coarse, Deterministic Forecasts available

Secondly, the flows are non-linear and highly dynamic, and the predictions available from
operational forecast systems of the stratosphere [45] or the oceans [20] are coarse, multi-
kilometer resolution and deterministic. The uncertainty in the flows is not modeled, and
hence it is hard to hedge against it during operation.
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Large Forecast Error

Thirdly, the forecast errors defined as the difference between the forecasted and the true flows
are large with respect to the propulsion capabilities of the system. In the oceans, forecast
errors are of the order of magnitude of 0.2m

s
whereas the actuation of our seaweed farms is

only 0.1m
s
. This rules out robust control methods as elaborated further in Chapter 2.2.

Limited Forecast Horizon

Thirdly, ocean and atmospheric forecasts are only available for limited horizons. For example,
the Ocean System HYCOM provides forecasts over the next 5 day [20], while the time
required for navigating hundreds of kilometers leveraging ocean currents is in the range of
weeks to months. Therefore, planning will inevitably need to consider what happens after
the forecast horizon and adapt as new ocean forecasts and observations are obtained.

1.2 Outline and Contributions

The central goal of this Ph.D. dissertation is to enable underactuated robotic systems to
operate with very low power by going with the flow. To achieve reliable operations that
tackle the four central challenges outlined in Sec. 1.1 we will use ideas and techniques from
control theory and machine learning. To ensure applicability of the methods in realistic
conditions, the theoretical contributions are complemented with extensive simulation studies
that are designed to be as realistic as possible. The organization and key contributions are
summarized below.

Chapter 2 defines the general problem of operating in flows and the system dynamics.
This chapter will introduce a consistent notation that will be used throughout this document.
Moreover, it provides details on flow forecasts and how we ensure a realistic simulation of
real-world conditions in our empirical studies.

Part II: Optimal Control in Known Flows. This part of the thesis presents the theory
and methods of optimal control when the flows are known based on the principles of dynamic
programming. For navigation we introduce our formulation of Multi-Time Reachability in
Chapter 3 which is particularly suited for analysis and control of systems in time-varying
dynamics such as flow field. In Chapter 4 we introduce how we can maximize seaweed
growth or similarly any exponential time-varying running cost while operating in flows. The
techniques were first introduced in the papers [31, 60].

Part III: Handling Forecast Uncertainty. The third part focuses on how to operate
when the true flows are not known and only deterministic forecasts are available. In Chapter
5 we show how we can use the techniques developed in Part I to ensure reliable operation
despite forecast error. This can be done by using the value functions developed in Part II
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calculated on the forecasts as a feedback control policy that is equivalent to replanning at
every step. Furthermore, in Chapter 6 we show how we can reason beyond the short time-
horizon of the forecast to optimize long-term objectives by estimating the expected cost to go
and discounting the future costs. To validate the techniques, we present extensive simulation
studies using realistic conditions. The results in this part were originally introduced in [141,
60].

Part IV: Operating with Constraints. This part investigates how to satisfy constraints
for underactuated systems while operating in uncertain flows. Chapter 7 elaborates on the
safety concerns when operating in the oceans, focusing and evaluating the risk of stranding
and showing how this can be significantly reduced by incorporating obstacles into the value
function. Going beyond single systems, Chapter 8 develops a hierarchical control framework
for fleets of underactuated robotic systems that want to stay connected in a local mesh
network while avoiding collisions and achieving their performance objectives. The results in
this part were originally introduced in [48, 30].

Part V: Conclusion and Future Directions. The last part of the thesis will discuss
the results in the context of the goal of achieving ultra-low power autonomy by going with
the flow. We elaborate on future directions to improve performance by leveraging additional
information and using techniques from data assimilation and reinforcement learning.
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Chapter 2

Background and Preliminaries

2.1 System Dynamics and Problem Statement

Spatial System Dynamics

The robotic systems that we want to operate by leveraging flows can be modeled by dif-
ferential equations that capture the underlying physical evolution. Mathematical models of
moving objects are typically derived from first principles using Newton’s second law and
using the notion of a state, a set of variables that are sufficient to predict the evolution of
the system over time.

For our purpose of operating in n dimensional flows, let the spatial state be denoted by
x ∈ Rn. Our robotics system is not purely passively drifting but its state evolution over
time is at least partially influenced by a control value u ∈ U ⊆ Rnu that we chose. For
example, the direction and magnitude of propulsion for surface ocean vessels or the vertical
movement for a balloon. We can then write the evolution of the state of the spatial system
through the dynamics Ordinary Differential Equation (ODE)

ẋ(x, t) = f(u,x, t) = g(u,x, t) + v(x, t;µ) (2.1)

where f denotes the general dynamics. For our case of operating in time-varying flows
the spatial movement of the system depends on two terms: the control term g(x,u, t); and
the drift due to the time-varying, non-linear flow field v(x, t;µ)→ Rn where µ is a random
variable that encapsulates the uncertainty of the flow. Although more complex second-order
dynamics can be used to model operating in flows, we chose this simplified dynamics for
ease of exposition. This makes the common assumption that the drift of the system directly
affects its state and neglects any inertial effects. The control can be holonomic when the
system can directly actuate in each dimension, e.g. g(u,x, t) = u or nonholonomic, e.g. a
balloon can only actuate up and down along the vertical axis. Note that here we only define
the system dynamics of the spatial state x, but the system might have other states such as
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the pressure of the balloon, the battery charge, or the seaweed mass. These will be defined
in the respective chapters as applicable.

We denote the spatial trajectory induced by this ODE by ξ. For a vessel starting in
the initial state x0 at time t0 with control signal u(·), we denote the state at time t by

ξ
u(·)
t0,x0

(t) ∈ Rn.
The control signal u(·) can be freely chosen to achieve the desired operational objective

of the system. Committing to a control signal at t0 and executing it is called open-loop
control and it is rarely good ideas, as the mathematical model often does not fully represent
reality. The key idea behind feedback control is to mitigate the inaccuracy of our system
dynamics model by making the control input u dependent on the perceived state preceding
it, thus closing the perception-action loop. This leads to the notion of a feedback policy,
a function π : Rn × R → U that maps the current state x and time t to a control input
u(t) = π(x, t).

General Problem Statement

In realistic operational settings only coarse, deterministic forecasts v̂FC of the flows are
available which differ significantly from the true currents v (Sect. 1.1). The overarching
goal of this dissertation is then to develop methods that use deterministic forecasts v̂FC to
determine a feedback control policy π that optimizes an objective in expectation over realistic
flow conditions. Although the principles behind our methods apply to arbitrary objectives,
throughout this thesis, we focus on the two objectives of reliable and time-optimal navigation
(Chapter 3, 5) and maximization of the seaweed mass at a final time (Chapter 4, 6). In Part
IV we introduce constraints that the policy π needs to satisfy during operation.

2.2 Evaluation and Realistic Simulation

Evaluating novel control methods can be achieved through two primary avenues: theoretical
proofs and empirical simulations. Theoretical proofs involve making assumptions about the
system and its operational context, such as the discrepancy between the forecasted flows and
the actual flows. Through this mathematical approach, one can determine that a control
method will satisfy certain properties such as optimality or constraint satisfaction under the
assumptions. As such, the proofs are useful to understand under what conditions and with
what performance a control method will work. In Chapter 3, 4, and 8 we prove various
properties of our methods such as optimality of the value function when the flows are known
and safe multi-agent interactions under conditions on the surrounding flow.

With the vastness of possible operational scenarios, such as the space of possible flows
our systems can experience, how can we prove performance? One approach is to assume
a bound on the forecast error δ, the difference between the forecasted v̂FC and the true
flows v. Using techniques from robust control we can then design a control policy π and
guarantee a certain performance despite worst-case forecast errors δ. However, such a robust
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control policy π does not exist in a setting where the system is significantly underactuated
and the average forecast error exceeds the actuation. For example, in our experiments we
have ||g(u,x, t)||2 ≤ 0.1m

s
≪ RMSE(δ) ≈ 0.2m

s
with Root Mean Squared Error as metric

for the magnitude of the forecast error. Another approach for stochastic systems is to prove
probabilistic bounds, where the system performs at a certain level with high probability.
Probabilistic bounds could be established by making strong assumptions on the distribution
of the forecast error field δ. But this approach would require an oversimplified flow field for
tractability, thereby limiting the applicability of the results in realistic settings.

To overcome these limitations and bridge the gap between theory and practice, we turn to
empirical simulations. These provide a more flexible means of evaluation, allowing for perfor-
mance comparison of control methods under a wide range of realistic operational conditions.
Simulations thus become invaluable for evaluating the efficacy of our methods amidst the
complexities of the real world. For this reason, we conduct extensive empirical evaluations
under realistic conditions in Chapters 5, 6, 7, and 8.

But what constitutes realistic operating conditions for underactuated robotic systems
operating in the oceans and skies? The operation of these systems is strongly influenced by
natural flows, such as wind and ocean currents. These flows are forecasted and provided at
regular intervals by major institutions, which provides the basis for our simulations. In the
following we elaborate on the sources and conditions for ocean currents, but the principles
equally apply to winds. The two major providers of ocean data are HYCOM [20] and
Copernicus [35]. They provide 5-10 day forecasts for the global oceans on a daily basis.
Additionally, they provide hindcasts - retrospective analyses using additional measurement
data, such as satellite measured sea surface height which is assimilated with the model to
more accurately infer past ocean conditions.

To mirror the practical operation of such systems, we simulate its closed-loop operation
as depicted in Figure 2.1. The controller receives daily forecasts v̂FC of the flows and de-
termines the control input u based on these forecasts, the spatial state x, and the time
t of the system. The dynamics of the system, however, are driven by the true currents
v which deviate from the forecasts by the forecast error δ. Therefore, it is critical to en-
sure a realistic forecast error δ to provide a faithful representation of real-world operational
conditions. Our code base for simulating closed-loop operations is available on GitHub:
https://github.com/MariusWiggert/OceanPlatformControl. It is fast and modular so that
different flows and control architectures can be simulated.

In our experiments, we use forecasts from two major providers, HYCOM [20] and Coperni-
cus [35]. They provide 5-10 day forecasts for the global oceans on a daily basis. Additionally,
they provide hindcasts - retrospective analyses that generate historical data sets by using
the current forecast model to simulate past conditions. The challenge is how to model the
true currents v such that the forecast error δ is realistic.

However, defining what constitutes a realistic forecast error is not straightforward. In
fact, the forecast error is itself a complex entity, a vector field that varies across both space
and time δ(x, t) : Rn × R → Rn. In reality, this error is a function of numerous factors
including the dynamism of the flow, the accuracy of measurement tools, and precision of
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https://github.com/MariusWiggert/OceanPlatformControl

Figure 2.1: The closed-loop simulator provides the controller with daily forecasts v̂FC while
simulating the system using the true currents v.

computational models. In certain regions, forecasts are more accurate due to higher avail-
ability of observational data or better understood dynamics; conversely, other regions are
harder to predict accurately. This results in a diverse error distribution, spatially and tem-
porally, for any given forecast. There are a few sources of measurements of true currents v
that allow us to estimate δ. There are high-frequency radar systems which provide coarse
observations of surface currents near shore [114], but for the vast majority of the oceans,
there are only sparse measurements from surface drifter buoys [88, 89] and vertical drifting
ARGO floats [142]. Oceanographers use these sparse measurements to evaluate their fore-
casting systems and compute summary metrics of the forecast error, such as Root Mean
Squared Error and vector correlation [27]. We use these metrics to evaluate the realism of
our simulated forecast error.

We developed two approaches to simulate the v while ensuring a realistic forecast error
δ. The first approach is to simulate daily forecasts with the forecasts v̂FC from ocean data
providers and use the hindcasts they also provide as our ’ground truth’ currents v. To
estimate how realistic this setup is, we empirically compare the simulated forecast error δ
over a large set of spatial and temporal regions in the Gulf of Mexico with the HYCOM
forecast error as estimated by Metzger et. al. using extensive drifter buoy data [94]. In
Fig.2.2 we visualize two metrics, the velocity RMSE and the vector correlation, where 2
represents perfect correlation and 0 no correlation [27]. We find that using forecasts and
hindcasts from the same provider i.e. HYCOM-HYCOM underestimates the forecast error,
especially in the first 24h where the forecast is identical to the hindcast. But using forecasts
from one provider and the hindcasts of the other provider e.g. HYCOM-Copernicus yields
simulated forecast error of similar magnitude as the actual HYCOM forecast error.

We found this approaches to be fast and straightforward, which is why we use it in



CHAPTER 2. BACKGROUND AND PRELIMINARIES 12

0.35 m/s 

� 0.30 m/s 
::8 
� 
'"d 0.25 m/s 
a; 
a; 
°"" 
en 0.20 m/s 
� 
0 � 
� 0.15 m/s 
-1-J en 
ro 
u � 0.10 m/s 
0 

� 

0.05 m/s 

0.00 m/s 

2.00 

� 1.75 
0 .,....

-1-J 

ro 
cJ 1.50 
� �
0 

� 1.25 
0 

-1-J 

u 

� 1.00 
� 
0 
t:: 0.75 

µ.J 
-1-J en 
� 0.50 
a; � 
0 
� 0.25 

-

------------

·-

_.,.,-
r' 

1,...........-

,, __ 

� 

---------- -

-- HYCOM Forecast Error 
HYCOM Forecast - HYCOM Hindcast 
HYCOM Forecast - Copernicus Hindcast 

'-

...... _J -

/"'
I - - -�- -· - - - - -1- - - -� �---

� 
'ti"""" 

L- .JI 

----

I 
f 

r---

�� 
� 

� r-.

� '------.. 
' 

l \ 

� 

� 1"'1111,,,..._ � 
-

- \ 
L_ 

,---

r--
' 

-- -------·------
"'-----

,-

0.00 
Oh 20h 40h 60h 80h 100h 120h 

Figure 2.2: The simulated forecast errors in our experiments are of similar magnitude as the
actual HYCOM forecast errors [94]. The graphs show the mean and standard deviation of
two forecast error metrics, velocity RMSE and vector correlation, over a large set of spatial
domains in the Gulf of Mexico.

all experiments in this dissertation. However, in parallel, together with Jonas Dieker we
conducted research on how to improve on this approach and make the simulated forecast
error even more realistic [28]. The key motivation is that while the difference between the
numerical ocean models of the two main providers matches some summary metrics of the
true forecast error, it is not ideal because both numerical ocean models neglect small-scale
physical effects and make systematic errors. Therefore, as a second approach we developed,
trained and evaluated various generative models producing realistic spatio-temporal error
profiles δ̄ which can then be added to the hindcasts to serve as the simulation ground truth
vsim = v̂HC + δ̄. While these generative models are trained using the extremely sparse
observational data of drifter buyos (0.1% of coverage) the forecast errors they produce are
diverse and they match higher-order statistics of the empirical forecast error. We refer to
[28] for details on these models.
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Part II

Optimal Control in Known Flows
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Chapter 3

Navigation With Known Flows

This chapter is based on the paper “Hamilton-Jacobi Multi-Time Reachability” [31],
written in collaboration with Manan Doshi, Manmeet Bhabra, Claire Tomlin, and
Pierre F.J. Lermusiaux.

3.1 Introduction

The navigation of underactuated robotic systems in known flows presents a considerable
challenge given the inherent complexity of the dynamics involved. This complexity arises
from two interconnected sources: the underactuated nature of the system and the intricate
and time-varying character of the flows that we want to utilize to achieve the objective.

There is a rich literature on navigation in flows with both time- and energy-optimal paths
in the oceans and air. When flows are known, researchers have proposed Hamilton-Jacobi
(HJ) reachability [85, 128, 72], non-linear programming [152, 56], evolutionary algorithms
[136], and graph-based techniques such as A* [102, 51, 64], RRT [112, 19], and time-varying
Dijkstra [90]. Non-linear programming, evolutionary algorithms, and graph-based methods
suffer from discretization error and the non-convexity of the optimization problem which
can cause solvers to get stuck in local minima and infeasible solutions. In contrast, HJ
reachability is guaranteed to obtain time-optimal paths when the target is reachable, as it
solves the exact continuous-time control problem via dynamic programming, which is why
we build on it.

Reachability analysis quantifies the set of all states that can be reached by an actuated
dynamical system over a specified time horizon. Hamilton-Jacobi reachability formalizes
how to calculate the reachable set with differential equations, hence allowing to compute
reachable sets for arbitrarily complex dynamics [5, 23]. Classical HJ reachability is mainly
concerned with the computation of reachable sets, forward and backward in time, often for
robotics and autonomy applications. It provides analyses of the performance and safety
of dynamical systems [5], including formal safety guarantees by determining regions of a
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system’s state space that results in catastrophic failure (for example, hitting an obstacle)
[22]. With some modifications, it handles moving obstacles and targets in both steady
and time-varying systems [66, 13, 14, 39]. HJ reachability is a versatile method for path
planning, even in complex environments such as strong and dynamic ocean currents [85, 84,
82]. It can provide the exact solution and is more efficient than other schemes, e.g., graph
methods [91]. Reachability planning has been extended to uncertain environments [127] and
risk optimality [130]. Finally, HJ reachability has been used in aircraft auto-landing, Model
Predictive Control (MPC) of unmanned aerial vehicles (UAVs) and underwater vehicles
(AUVs), and multiplayer reach-avoid games [5, 132, 50, 6, 29, 3].

Although classic HJ reachability already allows us to compute a time-optimal path for
navigation, replanning is expensive as the Partial Differential Equation (PDE) has to be
solved again. In other words, the value function of classic HJ reachability is not suitable for
frequent replanning which is necessary when the flows are now perfectly known. Therefore,
in this chapter, we introduce a new variant of reachability that expands the type of questions
that can be answered and, importantly for this thesis, allows us to use the value function for
closed-loop control as detailed in Chapter 5.

The key questions that motivate this work include: i) How can we extend classical reach-
ability theory to multiple start and terminal times?, ii) What is the corresponding value
function that provides all level sets at once and what is its governing HJ reachability equa-
tion?, iii) Could we compute reachable tubes for all possible times without having to resort to
repeated solves of classic reachability PDEs?, iv) What are other quantities that such multi-
time forward and backward analysis could compute?, and v) What are the corresponding
computational costs?

To address the above questions, we derive a new approach for analyzing the reachability of
time-varying dynamical systems that we refer to as multi-time reachability. We formulate the
optimal control problem using a new running cost term and obtain new governing equations
for reachability analysis over multiple start and terminal times all at once, and for systems
operating in time-varying environments with dynamic obstacles and any other dynamic fields
relevant to their control. Unlike prior results on moving targets and obstacles, we present a
theory that incorporates these effects into the dynamics of the system without introducing
additional dimensions [66] and fields [39]. We apply our results to three applications and
demonstrate that the new governing equations not only more efficiently compute backward
and forward reachable tubes, but also generate new secondary quantities that encode valuable
reachability information such as duration maps.

In what follows, Section 3.2 outlines the problem statement and introduces key notation.
Section 3.3 develops the theory and equations for multi-time reachability. Numerical methods
are briefly discussed in 3.4. In Section 3.5, applications and numerical results for new multi-
reachability problems are presented, followed by the conclusions in Section 3.6.
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3.2 Problem Formulation

Our goal in this chapter is to accurately and efficiently compute reachable tubes for general
time-varying dynamical systems. There are essentially two main cases. In the first, we
consider a time-varying target set and predict what is known as the backward reachable
tube. In the second, we consider a time-varying start set and compute the forward reachable
tube. For each case, we derive the governing equations and also solve the added complexity
of time-varying obstacles that must be avoided in the dynamic environment.

Next, we formalize the above concepts. We define the properties of the dynamical sys-
tems. Then we describe the start, target and obstacle sets, as well as the backward and
forward reachable tubes. Finally, we combine all these components and define the types of
problems we solve.

System Dynamics

In this work, we consider a general dynamical systems defined by an ordinary differential
equation (ODE) of the form

ξ̇(s) = f(ξ(s),u(s), s), s ∈ [0, T ], (3.1)

with given initial or terminal conditions, where ξ ∈ Rn is the system state governed by the
ODE, s the temporal variable in an interval [0, T ], and u(·) the control from a set U of
measurable functions of s ∈ [0, T ] with values in U :

U = {ϕ : [0, T ]→ U | ϕ(·) is measurable}. (3.2)

The dynamical systems (3.1) govern state variables explicitly affected by the controls (e.g.
autonomy variables) but the dynamics f in general includes all other relevant forcing such
as the dynamic environment with dynamic obstacles and other dynamic fields that affect the
autonomy, e.g. [71, 12].

The control space U is often a closed bounded set in Rnu , where nu is the number of
control inputs. The system dynamics f : Rn × U × R → Rn are further assumed to be
continuous, bounded, and Lipschitz continuous in ξ uniformly in u [5]. Then, there exists
a unique solution to Equation (3.1) for any control sequence u(·) [67, 5]. For the initial
value problem, this solution is the trajectory of the system from an initial state x0 at time
t ∈ [0, T ] forced by the control sequence u(·) and denoted here by ξ

u(·)
t,x0

(s).

Start, Target, and Obstacle Sets

We focus on systems that are either launched from some dynamic start set or are required to
reach a dynamic target set, with the constraint of avoiding the dynamic obstacle set, i.e. any
dynamic disjoint obstacles that may be present. We now formalize some of the properties
of these sets. For each t ∈ [0, T ], we denote the time-varying start, target, and obstacle sets
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as St, Tt and Ot respectively, where all sets are closed subsets of Rn. Following closely [39],
these sets, in turn, yield corresponding space-time sets S, O, and T, which are all closed
subsets of Rn × [0, T ]:

S :=
⋃

t∈[0,T ]

St × {t}, T :=
⋃

t∈[0,T ]

Tt × {t},

O :=
⋃

t∈[0,T ]

Ot × {t}. (3.3)

The start, target, and obstacle sets are further assumed to evolve “smoothly” in time.
Specifically, a setMt is said to evolve smoothly in time if there exists a Lipschitz continuous
function gM(ξ) : Rn → Rn such that for the system

ξ̇ = gM(ξ), (3.4)

all trajectories that start inMt at some time t stay in the setMt̄ at all subsequent times
t̄ ∈ [t, T ]. That is,

ξt,x0
(t̄) ∈Mt̄ ∀t ∈ [0, T ], ∀x0 ∈Mt, ∀t̄ ∈ [t, T ]. (3.5)

Practically, this implies that the dynamic start, target, and obstacle sets cannot teleport or
disappear in the state space.

Reachability Sets and Tubes

In reachability analysis, backward and forward reachable sets or tubes are commonly needed
[5]. The maximal sets and tubes encompass all the states to which the system can be
driven to when going forward or backward through time, avoiding dynamic obstacles. These
maximal sets and tubes can be defined as follows [22, 23, 5]:

Backward Reachable Set (BRS)

Given a specified final time tf ∈ [0, T ], the BRS at time t ≤ tf is the set of all states at time
t that can reach a target set Ttf exactly at the final time tf :

R(t,tf , Ttf ,O) = {x̂ | ∃u ∈ U, x0 = x̂,

ξ
u(·)
t,x0

(tf ) ∈ Ttf ∧ ∀s ∈ [t, tf ], ξ
u(·)
t,x0

(s) /∈ Os}. (3.6)

Backward Reachable Tube (BRT)

BRTs extend BRSs. Given a specified final time tf ∈ [0, T ], the BRT at time t < tf is the
set of all states that can reach a time-varying target T ⊂ Rn × [0, T ] at any time t̄ ∈ [t, tf ]:

R̄(t,tf ,T,O) = {x̂ | ∃u ∈ U, ∃t̄ ∈ [t, tf ], x0 = x̂,

ξ
u(·)
t,x0

(t̄) ∈ Tt̄ ∧ ∀s ∈ [t, tf ], ξ
u(·)
t,x0

(s) /∈ Os}. (3.7)
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Forward Reachable Set (FRS)

Given a specified start time ts ∈ [0, T ], the FRS at time t ≥ ts is the set of all states that
can be reached at time t when starting from a state within the set Sts at time ts:

F(t,ts,Sts ,O) = {x̂ | ∃u ∈ U, ∃x0 ∈ Sts ,
ξ
u(·)
ts,x0

(t) = x̂ ∧ ∀s ∈ [ts, t], ξ
u(·)
ts,x0

(s) /∈ Os} (3.8)

Forward Reachable Tube (FRT)

FRTs extend FRSs. Given a specified start time ts ∈ [0, T ], the FRT at time t > ts is the
set of all states that can be reached when launched from a state from a time-varying start
set S ⊂ Rn × [0, T ] at any time t̄ ∈ [ts, t]:

F̄(t,ts,S,O) = {x̂ | ∃u ∈ U, ∃t̄ ∈ [ts, t], ∃x0 ∈ St̄,
ξ
u(·)
t̄,x0

(t) = x̂ ∧ ∀s ∈ [t̄, t], ξ
u(·)
t̄,x0

(s) /∈ Os} (3.9)

Problem Statement

Given a dynamical system of the form (3.1) operating in a dynamic environment with obsta-
cles and possibly affected by other dynamic fields, our goal is to obtain equations that govern
the backward and forward reachability tubes, as well as schemes that solve these equations
efficiently:

Backward Reachability

Given a final time tf ∈ [0, T ], a time t < tf , and time-varying target and obstacle sets that
define space-time sets T and O, Eq. (3.3), we seek to derive and solve the equations for the
BRTs, R̄(t, tf ,T,O), Eq. (3.7).

Forward Reachability

Given a start time ts ∈ [0, T ], a time t > ts, and time-varying start and obstacle sets that
define space-time sets S and O, Eq. (3.3), we seek to derive and solve the equations for the
FRTs, F̄(t, ts,S,O), Eq. (3.9).

Once the BRTs and/or FRTs are computed ∀(t, tf ) and/or ∀(ts, t), they can be used to
compute various other quantities of interest. Such quantities include: time-to-reach maps,
i.e. maps of the minimum travel time to the target given the present state and time; start
time vs. duration plots, i.e. function that maps the travel time to the target to the time at
which the trajectory starts given a start state; and time-to-leave maps, i.e. maps of the latest
time at which one can depart from the start state and reach the target point at a given time.
The computation of these secondary quantities is discussed in Section 3.3
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3.3 Multi-time Hamilton Jacobi Reachability

We now develop the theory and obtain the governing equations for HJ multi-time reachability
for systems operating in dynamic environments. We start with multi-time reachability in
the backward context, i.e. predict backward reachable tubes for time-varying target sets. We
use continuous-time, optimal control and show how the resulting value function elegantly
captures not only the backward reachable tubes but also time-to-reach maps. We then extend
the results to the forward counterpart, i.e. predict forward reachable tubes for time-varying
start sets. Finally, we present remarks and discuss secondary quantities such as time-to-reach
and time-to-leave maps as well as start time vs. duration plots.

Backward Multi-Time Reachability

Augmented Dynamics

To account for the dynamic target and obstacle sets, we define a new augmented dynamical
system as follows:

ξ̇ = fa(ξ,u, s) =


gO(ξ, s), ξ ∈ Os
gT (ξ, s), ξ ∈ Ts and ξ ̸∈ Os
f(ξ,u, s), otherwise

. (3.10)

where gO(ξ, s) and gT (ξ, s) are functions that keep trajectories within their respective sets as
defined by Eq. (3.4). With this augmentation, we provide valuable properties to the system.
First, once a state enters an obstacle set, it will remain in that set for all subsequent times
irrespective of the controls applied. Second, the same holds for states that enter the target
set. These properties will be shown to be key in our optimal control setting.

Optimal Control

For our optimal control problem, we first define the terminal cost at time T ,

lterm(ξ) =

{
∞, ξ ∈ OT
d(ξ, TT ), otherwise

. (3.11)

Eq. (3.11) defines the terminal cost of a state in the obstacle set to be infinitely high (in
Section 3.4 we address how this property can be numerically handled). For all other states,
the cost is defined as the distance of the state (ξ) from the target set at the terminal time
(TT ) under some distance metric d which depends on the system at hand. Being a distance
metric, we require d(ξ, TT ) ≥ 0 ∀(ξ, TT ) and d(ξ, TT ) = 0 if and only if ξ ∈ TT .
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The running cost is defined as a constant negative value at the target set and zero
everywhere else

l(ξ, s) =

{
−α, ξ ∈ Ts and ξ ̸∈ Os
0, otherwise

, (3.12)

where α is an arbitrary positive constant which we set to 1. The solution is exact irrespective
of the value of α. Values of α can however be used to minimize numerical errors due to
discontinuities that arise out of this loss function (not shown).

Using the augmented dynamics (3.10), terminal cost (3.11), and running cost (3.12), the
total cost function incurred when using controls u(·) and initial state x0 at initial time t is

J(x0,u(·), t) = lterm(ξ
u(·)
t,x0

(T )) +

∫ T

t

l(ξ
u(·)
t,x0

(s), s)ds (3.13)

To obtain an intuition for the meaning of the total cost, we substitute the functions for
the case when the trajectory ξ

u(·)
t,x0

(s) never enters the obstacle set,

J(x0,u(·), t) = d(ξ
u(·)
t,x0

(T ), TT )︸ ︷︷ ︸
Terminal distance
from target set

−α
∫ T

t

ITs
(
ξ
u(·)
t,x0

(s)
)
ds︸ ︷︷ ︸

Time spent in target set

(3.14)

where the identity function ITs(ξ) = 1 when ξ ∈ Ts and is 0 otherwise. We note that if the
trajectory ever enters the obstacle set, it will stay in the obstacle set at the terminal time
under the augmented dynamics and will incur an infinitely high total cost. Additionally, the
value function under the optimal control for trajectories that avoids the obstacles is,

J∗(x0, t) = min
u(·)∈U

[
d(ξ

u(·)
t,x0

(T ), TT )− α
∫ T

t
ITs

(
ξ
u(·)
t,x0

(s)
)
ds

]
(3.15)

To explain this minimization physically, we consider two cases. In the first, we assume
there exists some control that drives the system from initial state x0 (or set) at time t into
the target set at a time t̄ ∈ [t, T ] while avoiding the obstacles. In the opposive second, we
assume no control can drive the system to the target set while avoiding the obstacles.

Case 1 Let u∗(·) be the set of controls that drives the system from state x0 at time t
(under the augmented dynamics) to the target set at the earliest possible time t∗ = min(t̄)
while avoiding the dynamic obstacle set O. We reiterate that for the augmented system
(3.10), if the target set is reached at some t∗ < T , the system will stay in the set at all future

times and hence ξ
u(·)
t,x0

(T ) ∈ TT . It follows then that the cost for such a set of controls is:

J(x0,u
∗(·), t) = d(ξ

u(·)
t,x0

(T ), TT )︸ ︷︷ ︸
0

−α
∫ T

t

ITs
(
ξ
u(·)
t,x0

(s)
)
ds︸ ︷︷ ︸

T−t∗

= −α(T − t∗) .
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We now provide the lower bound of the value function (3.15) under the optimal control

J∗(x0, t) = min
u(·)∈U

[
d(ξ

u(·)
t,x0

(T ), TT )−

α

∫ T

t
I
{
ξ
u(·)
t,x0

(s) ∈ Ts
}
ds

]
(3.16)

≥ min
u(·)∈U

[
d(ξ

u(·)
t,x0

(T ), TT )
]

+ min
u(·)∈U

[
−α

∫ T

t
I
{
ξ
u(·)
t,x0

(s) ∈ Ts
}
ds

]
(3.17)

J∗(x0, t) ≥ −α(T − t∗) . (3.18)

This lower bound is achieved under the control u∗. Therefore, when the vehicle can reach
the destination, the optimal control under the given loss function generates a time optimal
trajectory to the target state. The value function is given by J∗(x0, t) = −α(T − t∗) where
t∗ is the minimum time at which a trajectory starting at (x0, t) can reach the target state.

Case 2 When there exists no control u(·) that can drive the system from (x0, t) to the

target set while avoiding the obstacles, the term ITs
(
ξ
u(·)
t,x0

(s)
)
in the value function (3.15) is

always 0 by construction. It follows then that:

J∗(x0, t) = min
u(·)∈U

[
lterm(ξ

u(·)
t,x0

(T ))
]

(3.19)

That is, when a trajectory with initial conditions (x0, t) cannot reach the target set, the
minimization of the cost function will lead the system as close to the target set as possible
while avoiding the obstacle (since hitting the obstacle will drive the terminal cost infinitely
high).

To summarize, the value function corresponding to the optimal control problem is given
as

J∗(x0, t) =



−α(T −min(t̄)), if∃u(·) s.t.
ξ
u(·)
t,x0

(t̄) ∈ Tt̄
∞, if ̸ ∃u(·) s.t.

ξ
u(·)
t,x0

(t̄) ̸∈ Ot̄
∀t̄ ∈ [t, T ]

minu d(ξ
u(·)
t,x0

(T ), TT ), Otherwise.

(3.20)

In other words, at any state x0 at a time t ∈ [0, T ], the value of J∗(x0, t), if negative,
physically implies that a state starting at x0 at time t can reach the target set before the
terminal time T . Moreover, the earliest time that it can reach the destination is given by
T + J∗(x0,t)

α
. If the value of J∗(x0, t) is positive, it implies that a state starting at x0 at time
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t cannot reach the target set in the time interval [t, T ], and the value physically corresponds
to how close such a state could possibly get to the target set at the terminal time T . Finally,
for states for which J∗(x0, t) is infinite, we have that for a system starting at x0 at time t,
the obstacle will inevitably be hit.

The Hamilton-Jacobi-Bellman Equation

The value function can be efficiently computed using dynamic programming. For continuous-
time optimal control, it is the viscosity solution of the Hamilton-Jacobi-Bellman (HJB)
partial differential equation (PDE) [36, 10, 61]

∂J∗(x0, t)

∂t
+min

u
[l(x0, t) +∇xJ

∗ · fa(x0,u, t)] = 0

J∗(x0, T ) = lterm(x0), (3.21)

where lterm and l are the terminal and running costs, respectively. For our problem, these
costs are defined in Eqs. (3.11) and (3.12). Inserting them and the augmented dynamical
system (3.10) in Eq. (3.21), we obtain the final HJB PDE:

∂J∗(x0, t)

∂t
=


− [−α +∇xJ

∗ · gT (x0, t)] , x0(t) ∈ Tt ∩ (Ot)c

− [∇xJ
∗ · gO(x0, t)] , x0(t) ∈ Ot

−minu [∇xJ
∗ · f(x0,u, t)] , otherwise

J∗(x0, T ) =

{
∞, x0 ∈ OT
d(x0, TT ), otherwise

. (3.22)

Eq. (3.22) is a terminal-value problem which is solved backward in time to obtain the value
of J∗(x0, t) for all states in the state space and all times t ∈ [0, T ].

Equation for Backward Reachable Tubes

Using the value function J∗ governed by the HJB PDE (3.22), we now obtain the equation for
the BRTs defined by Eq. (3.7) as well as an efficient scheme for their computation. Consider
a fixed time tf ∈ [0, T ] and a time t < tf . From Eq. (3.20), it follows that for any state x0

satisfying J∗(x0, t) ≤ −α(T − tf ), a control function u(·) exists that will drive the system
from state x0 at time t to the target set at some time t̄ ∈ [t, tf ]. This results in an efficient
scheme to compute the BRT:

R̄(t,tf ,T,O) = {x0 | J∗(x0, t) ≤ −α(T − tf )}. (3.23)

For a specified final time tf , the BRT at any time t < tf can simply be extracted by
considering the appropriate sub-level set of the value function at that time. This is because
an agent in this set would reach the target while avoiding the obstacle at t < tf under the
optimal control and stay in the target because of the augmented dynamics 3.10 accumulating
the negative cost at the destination.



CHAPTER 3. NAVIGATION WITH KNOWN FLOWS 23

Equation for Time-to-Reach Maps

The value function stores important information regarding the optimal time a system can
reach the target set. This can be used to compute time-to-reach or duration maps D from
Eq. (3.21) or (3.22):

D(x0, t) = T +
J∗(x0, t)

α
− t, ∀(x0, t) s.t., J

∗(x0, t) < 0.

For a state x0 at time t satisfying J∗(x0, t) ≤ 0, Eq. (3.20) implies that such a state can

reach the target set and the earliest possible time this will happen will be at T + J∗(x0,t)
α

.
It follows then that for all (x0, t) with J

∗(x0, t) ≤ 0, D(x0, t) corresponds to the minimum
duration for a trajectory starting at state x0 at time t to reach the target set.

Closed-loop optimal controller

As discussed in Section 3.3, an optimal controller that minimizes the cost function will: (a)
avoid dynamic obstacles; (b) reach the target in minimum time if it can; and (c), reach as
close to the target as possible if it cannot reach it. The optimal controller can also compute
the minimum duration to the target set from the current state. Thus, solving for J∗(x0, t)
using Eq. (3.22) provides a powerful closed-loop control policy:

π(x0, t) = argmin
u

[∇xJ
∗(x0, t) · f(x0,u, t)] ∀x0 ̸∈ (Ot ∪ Tt) ,

as demonstrated with reliable navigation in complex time-varying ocean currents with fore-
cast errors [141].

Forward Multi-Time Reachability

Section 3.3 addressed backward multi-time reachability. That is, we considered how to
efficiently compute backward reachable tubes (and time-to-reach maps) in a dynamic envi-
ronment with time-varying target and obstacle sets. In this section, we examine the forward
counterpart, and derive how to compute forward reachable tubes in dynamic domains con-
taining now time-varying start sets.

The forward problem can be addressed analogously to the derivation in Section 3.3, but
now analyzing the system evolution backwards in time. First, an augmented dynamic system
akin to Eq. (3.10) can be defined as follows:

ξ̇ = f̃a(ξ,u, s) =


gO(x, s), ξ ∈ Os
gS(x, s), x ∈ Ss and ξ ̸∈ Os
f(ξ,u, s), otherwise

. (3.24)

where now the start set is used instead of the target set. This system’s evolution backwards
in time can be studied by mapping time to a new “reverse-time” variable, τ(t) = T − t,
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resulting in a mapped augmented dynamical system:

dξ

dτ
= −f̃a(ξ,u, T − τ) . (3.25)

Analogous to backward multi-time reachability, we can formulate an optimal control for the
system (3.25) while using the start set in place of the target set. Specifically, we define a
terminal cost, now at time τ = T , of the form:

l̃term(ξ) =

{
∞, ξ ∈ O0

d(ξ,S0), otherwise
. (3.26)

To remain consistent with the set indexing convention introduced in Section 3.2, the sets in
Eq. (3.26) are evaluated at time t = 0 (corresponds to the “terminal” reverse-time τ = T ).
Moreover, a running cost can be similarly defined:

l̃(ξ, τ) =

{
−α, ξ ∈ S(T−τ) and ξ ̸∈ O(T−τ)

0, otherwise
, (3.27)

The value function for this optimal control problem can again be computed by forming
a HJB PDE using now the dynamical system (3.24), terminal cost (3.26), and running cost
(3.27). Mapping the resulting HJB PDE back to the original time variable t so as to not
have to explicitly work in reverse-time τ , the HJB PDE can be shown to be given as:

∂J̃∗(x0, t)

∂t
+max

u

[
−l̃(x0, t) +∇xJ̃

∗ · f̃a(x0,u, t)
]
= 0

J̃∗(x0, 0) = l̃term(x0), (3.28)

which, upon inserting the augmented dynamics (3.24), and the costs (3.26) and (3.27), yields:

∂J̃∗(x0, t)

∂t
=


− [α +∇xJ

∗ · gS(x0, t)] , x0(t) ∈ St ∩ (Ot)c

− [∇xJ
∗ · gO(x0, t)] , x0(t) ∈ Ot

−maxu [∇xJ
∗ · f(x0,u, t)] , Otherwise

J̃∗(x0, 0) =

{
∞, x0 ∈ O0

d(x0,S0), otherwise
. (3.29)

In duality to the backward multi-reach setting where a terminal-value problem was obtained,
in this case the value function J̃∗(x0, t) is given as the solution to an initial value problem.
Furthermore, analogous to the backward setting, the value function can be used to extract
the FRT,

F̄(t,ts,S,O) = {x0 | J̃∗(x0, t) ≤ −α · ts}, (3.30)
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and the time-to-leave maps,

D̃(x0, t) = −
J̃∗(x0, t)

α
, ∀(x0, t) s.t., J̃

∗(x0, t) < 0. (3.31)

In comparison to backward reachability, the optimal controller obtained by working in
reverse-time allows computing the start set as quickly as possible in a reverse-time setting.
This is not as commonly useful since the universe runs forward in time, thus usually requiring
an open-loop controller to execute the corresponding trajectories.

Remarks and Discussion

With the evolution equations derived for multi-time reachability, we now present several
properties and differences when compared to classic reachability.

Ability to compute BRTs /FRTs with arbitrary start and end times

We note that we require a single solve of the PDE Eq. 3.22 / 3.29 to compute all possible
BRTs /FRTs for a given dynamical system, target/start set, and obstacle set using Eq.
(3.23) / (3.30). With classic reachability, one would instead a solve of a HJB PDE for every
terminal time tf , or start time ts. While this benefit is inconsequential when dealing with a
time-invariant system (since the backward and forward reachability tubes depend only on the
time duration, tf−t and t−ts, respectively), this property is very useful for analyzing dynamic
systems. Many multi-time autonomy problems today indeed involve dynamic environments
governed by PDEs (e.g., UAVs or AUVs affected by currents or winds), dynamic target / start
sets, and / or dynamic obstacle sets [81]. Multi-time reachability thus has strong appeal.

While finishing this work, [78] posted a related framework that also adds a running cost
to the HJB equation. Presently however, we derive and apply the exact governing equations
for BRTs /FRTs and associated quantities, for the first time for systems operating in time-
varying environments with dynamic obstacles and affected by other dynamic fields.

Field of Level Sets

In classical reachability, only the data on the zero level set of the value function is typically
used, as this decomposes the space into the reachable and non-reachable regions which is
usually what is of interest In multi-time reachability, a PDE of essentially identical complex-
ity is solved, yet every value on the field provides useful physical reachability information.
Specifically, in the backward reachability setting, the physical meaning of other level sets of
the value function is given by Eq. (3.20). In this case, we reiterate, level sets with a negative
value provide minimum times at which a target set can be reached from a given state, level
sets with a positive value correspond to the closest distance to the target that can be reached
for states that cannot reach the target, and finally an infinite value for J∗ are states where
it is unavoidable that an obstacle will be hit. The case of forward reachability has a similar
physical interpretation for its different level sets.
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Secondary quantities

While the value function obtained by classical backward reachability determines if one can
reach the destination by time tf given a starting time and position, the value function
obtained using multi-time backward reachability determines when one can reach the target
set (D(x0, t)). When evaluated at a given position x0, one can infer the map between the
starting time of the trajectory to the duration it takes to reach the target. Similarly, the
forward value function determines when to start a journey to be able to reach an arbitrary
point from the starting set (D̃(x0, t)). This information can be extremely valuable for time
varying systems where the time to reach the destination can vary drastically with the time
at which the trajectory starts. We refer to the resulting plots as duration vs. arrival time,
and start time vs. duration.

Optimal Controller

The closed loop controller under the value function for multi-time reachability (Sect. 3.3)
has varied desirable properties including obstacle avoidance, time optimality if the target
is reachable, and distance to target minimized if not. This drastically augments classical
reachability that only minimizes the terminal signed distance from the target set at time T
and does not provide time optimality when the state is not on the zero level set. We will
make use of this property for operating under forecasts in Chapter 5.

3.4 Computation and Numerical Schemes

In Section 3.3, the PDEs (3.21)-(3.22) for the value function of backward reachability and
PDEs (3.28)-(3.29) for the value function of forward reachability are HJB PDEs. These
PDEs, including the existence, uniqueness, and properties of their viscosity solutions, have
been extensively studied in recent years due to their broad applicability [101, 123, 36].

Several options exist for numerically computing a viscosity solution to a given HJB PDE,
ranging from Finite Volume methods to high-order discontinuous Galerkin methods [86, 46,
96, 84, 81]. Presently, we used the method of lines, with high-order finite difference methods
for the temporal and spatial discretization, on structured, uniform, rectangular meshes [32,
11]. Our software was built on top of an open-source HJ equation solver, hj reachability [119],
built on JAX [16]. To numerically compute the viscosity solution, the Local Lax-Friedrichs
scheme was used [123, 32, 11].

Since the above scheme is fully explicit, the computational cost is O(NxNt) where Nx and
Nt are the total number of spatial grid points and of timesteps, respectively. The explicit
scheme allows direct parallelization of the computation across grid points. The cost of our
method is thus exactly of the same order as that of classical reachability while providing
much richer information about the system.

Finally, we discuss two numerical implementation details: (1) Handling the infinite con-
dition in the terminal cost for when a state terminates in an obstacle set, i.e. Eqs. (3.11) and
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(3.26), is straightforward. Since the numerical solve is inherently restricted to a closed and
bounded state space, we simply set the terminal cost value when in an obstacle set to an
arbitrary constant greater than the largest possible signed distance value in the domain at
terminal time. When processing the final numerically computed value function, we simply
mask off all values that equal this arbitrary constant as there are no controls that allow
the system to avoid the obstacle. (2) The constant α in Eq. (3.12) can be chosen to de-
crease round off errors associated to the numerical solve. By setting α to the order of the
characteristic time of the problem, the contours of interest will be O(1).

3.5 Numerical Results

We illustrate our theory and schemes in three numerical cases. In the first, we verify our
method by applying it to a system with analytical reachability tubes. In the second and
third cases, we consider more complex systems and demonstrate the various capabilities of
our approach.

Analytical Moving Target and Obstacle

Problem Setup

This case uses the example of [39, Sec 5.1]. The 2D dynamical system consists of a vehicle
moving with a constant speed in any heading, ẋ = uvehĥ, where the state x = [x, y] is
the vehicle position, ĥ the unit heading, and uveh = 0.5 the constant speed of the vehicle.
The dynamic target set is a square of side length 0.4 units centered at [0, 0.75] at t = 0
traveling with a velocity of [0,−1.5] units. The obstacle is a square of side length 0.2 initially
centered at [0, 0] and traveling at a velocity of [0,−1] units. Our goal is to compute backward
reachability tubes and compare them to the analytical solution we obtained geometrically
using [39, Sec 5.1.1]. The augmented dynamics is straightforward here: we modify the system
dynamics such that when the agent is in the target (/obstacle), it moves exactly with the
known velocity of the target (/obstacle).

Results

Fig. 3.1 shows the analytical, overlaid on the numerical, backward reachability tubes using
our multi-time reachability. The analytical and numerical tubes (left half of the domain)
are effectively identical. When compared to the results in [39] that compute the BRTs for
tf = 0.5, our approach accurately computes tubes for all terminal times tf and in a single
PDE simulation.
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Figure 3.1: Backward reachability tubes for various start and end times. Analytically com-
puted tubes are superimposed in the left half on top of numerically computed tubes (dashed
line).

Dynamic Dubin’s car

Problem Setup

We now consider a more complex 3D dynamical system often referred to as the Dubin’s car.
The state space of the car is given by its position and orientation: x = [x, y, θ]. The only
control is that of the steering rate θ̇ = uα. The dynamics is given by

[
ẋ ẏ θ̇

]T
=

[
v cos θ v sin θ uα

]T
,

where v = 1 is the velocity of the car. We additionally constrain the steering rate to satisfy
|uα| < π

3
units.

We add a moving target and moving obstacle with velocities [0.4, 0] and [0.2, 0], respec-
tively. The positions of the target and the obstacle at various times are shown in Fig. 3.2
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(the target is blue and the obstacle orange). Our goal is to compute backward reachable
tubes as well as time-to-reach maps.

Results

Since the state space is 3D, the value function now lives in a 3D space. To get an intuition
of what kind of information can be gained from the value function, we consider the duration
map at a slice D(x, y, θ = 8.95o, t) (Fig. 3.2). At a given (x, y) and time t, the duration map
returns the amount of time needed to reach the target when starting at that position and
time, and being initially aligned at the given angle (i.e. θ = 8.95o). As expected, states to
the left of the target can reach the target set more easily given their initial orientation (states
to the right need to turn around to reach the target set). In addition, note the triangular
region that forms on the left of the obstacle, corresponding to regions where the car cannot
avoid the obstacle.

Fig. 3.2 highlights a key feature of the power of multi-time reachability. Consider the
following question: given a start point (xs, ys, θs) (marked with a star), what is the minimum
duration to the target as a function of the start time (ts)? This information is readily available
using the duration map, D(xs, ys, θs, ts), as seen in Fig. 3.3. As different contours of the
duration map reach the start point, we see vastly different gradients of the value function –
implying changing optimal control strategies based on when the car starts.

Suppose we pose another question: Given a start position (xs, ys) what is the optimal
starting angle at different starting times to minimize the duration to the target set? We
can use the following expression to compute the duration under optimal θ as a function
of the starting time ts: d(ts) = minθD(xs, ys, θ, ts). The corresponding optimal θ is given
by argminθD(xs, ys, θ, ts). Fig. 3.4 shows, for a start position (xs, ys) = (−3,−0.7), this
minimum duration and optimal θ as a function of start time. These plots, trivially generated
using the multi-time reachability value function, contain information that is invaluable in
deciding when and how to start the journey from a given start point.

Different regimes of the optimal solution can be noted, as the car decides to start with
drastically different angles based on the starting time. To see why this is occurs, we plot the
trajectories (Fig. 3.5) of all the points of interest marked with black dots in Figs. 3.3 and
3.4. The plot on the left traces out optimal trajectories when starting at the star (for various
start times marked in Fig. 3.3) while constraining the initial heading the vehicle must start
with. We find that the duration initially falls with start time as cutting across the front of
the obstacle is difficult for the agent given this constrained initial angle. The plot on the
right corresponds to the trajectories starting at optimal θ at various times (Fig. 3.4). We
see that early on, the optimal agent cuts across the front of the obstacle and heads straight
for the target. If it starts later, it has to go out of its way to drive around the front of
the obstacle. However, if it waits long enough, the agent can reach the target by traversing
behind the obstacle.

This case shows how we compute optimal trajectories for a variety of starting positions,
angles, and start/terminal times. We further note that these can all be efficiently computed
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Figure 3.2: Slice of the duration map at θ = 8.95o. This map physically represents the time
needed to reach the target set based on the initial position of the car. The point marked
with the star denotes an arbitrary start point that is used in subsequent analysis (Fig. 3.5).

using information from a single multi-time reachability PDE solve – something not possible
with other approaches.
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Figure 3.3: Duration of the journey to the target set as a function of the starting time. Since
this is a time varying system, the duration is not constant. Due to the moving obstacle, the
duration first decreases and increases. Times of interest are marked with a black dot.

Figure 3.4: (Left) Minimum duration to reach the target set, given the starting position
(xs, ys) = (−3,−0.7), as a function of starting time (ts). (Right) Initial angle θs under
which this minimum duration can be achieved for each corresponding starting time. Points
of interest are marked with black dots.

AUV in a Bottom Gravity Current Flow Field

Problem Setup

Finally, we showcase results when a time-varying dynamic environment affects the system
and optimal control. We consider an AUV in 2D with state variables x = (x, z) where x
and z are position and depth of the vehicle. We denote the dynamics by

ẋ =
[
Fx cos(uθ) + Vx(x, t) Fy sin(uθ) + Vy(x, t)

]T
,
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Figure 3.5: Trajectories for various start points, start times and start angles. (Left) Tra-
jectories starting at fixed start point but with the optimal angle to reach the destination as
early as possible. (Right) Trajectories start at a constrained position and angle. Both set
of trajectories start at a user defined time and end at different times before the final time
horizon T

where uθ is the sole control and V = [Vx, Vy] is the dynamic background ocean flow field
that advects the AUV around. The background flow is that of a non-hydrostatic bottom
gravity current simulated using our Finite Volume ocean modeling software [138]. This flow
involves heavy salt water flowing down an incline and creating eddies due to Kevin-Helmholtz
instabilities, as visualized in Fig. 3.6 [79].

Figure 3.6: Salinity field (left) and x-component of the velocity field in m/s (right) for the
the bottom gravity flow. The units of x and y are in km.

Results

We consider a domain of interest at the bottom of the incline. As expected, we see that the
duration map is uniform at the time before the current reaches the bottom, whereas it is
non-uniform and time-varying at the time frame when the current and its billows and waves
arrive (Fig. 3.7). Applications of multi-time reachability to dynamic ocean environments can
be found in [141].
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Figure 3.7: Duration maps under the bottom gravity flow after (left) and before (right) the
current enters the domain. The units of x and y are in km, and the unit for time is hours.

3.6 Conclusions

In this chapter, we obtained the governing equations for reachability over multiple start and
terminal times all at once for systems operating in time-varying environments with dynamic
obstacles and any other relevant dynamic fields. We analytically verified the results for a
moving target and obstacle problem, then applied multi-time reachability to an extended
dynamic Dubin’s car, and finally showcased the method in a bottom gravity current system,
an example of an underactuated system operating in dynamic flows. The results highlight
the novel capabilities of exact multi-time reachability in dynamic environments. In Chapter
5 these will allow us to handle forecast errors by replanning frequently at a low computational
cost.
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Chapter 4

Optimal Control for Seaweed Growth

This chapter is based on the paper “Maximizing Seaweed Growth on Autonomous
Farms: A Dynamic Programming Approach for Underactuated Systems Navigating on
Uncertain Ocean Currents” [60], written in collaboration with Matthias Killer, Hanna
Krasowski, Manan Doshi, Pierre F.J. Lermusiaux, and Claire Tomlin.

4.1 Introduction

In the preceding chapter, we explored the use of dynamic programming to compute a value
function for reachability and time-optimal navigation from a starting point to a target. The
principles applied in Chapter 3, where we utilized dynamic programming to solve an optimal
control problem, aren’t limited to navigation. In fact, these principles apply to arbitrary cost
functions specified as a combination of a running cost and a terminal cost. In this chapter,
we apply the same principles to maximize seaweed growth for underactuated robotic systems
operating in dynamic flows.

Only a few research papers in the control field focus on maximizing seaweed growth. For
example, Bhabra et al. [11] maximize seaweed harvesting using autonomous vessels in varied
settings. A key limitation is that the seaweed is grown not on the system itself, but in discrete
seaweed farms, with the objective of optimizing the trajectory and sequence of harvesting
rather than continuously maximizing growth. Bhabra et al. [11] use a 3D HJ reachability
framework in which the harvesting state is augmented into the third dimension. To find the
path with maximum growth, they run forward reachability in the state space for seaweed in
3D. However, a challenge with dynamic programming is that the required scales exponentially
with the dimension of the state space n [5], hence this method of state-augmentation is
computationally demanding due to the added dimension in the HJ calculation.

In this chapter, we present our method of maximizing seaweed growth using a running
cost problem solved with Dynamic Programming (DP) in the system’s 2D spatial state (Sec.
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4.2). This approach considerably reduces computational complexity compared to the 3D HJ
reachability method used by Bhabra et al. [11].

Additionally, the resulting value function can be used as a feedback policy to obtain the
growth-optimal control for all states and times. Therefore, it can provide control inputs to
multiple farms and it can be used to mitigate forecast errors by using it as a closed-loop
control policy [141] which is equivalent to replanning at every time step. We will elaborate
more on this in chapters 5 and 6.

4.2 Method

Problem Setting

We consider a floating seaweed farm with the system dynamics of the spatial state x ∈ Rn

influenced both by the control input u and the surrounding ocean currents v(x, t) as defined
in Sec. 2.1. In our example, we use n = 2 for a surface vessel on the ocean. In addition
to the spatial state, the farm has a seaweed mass m which evolves according an exponential
growth ODE:

ṁ=m ·Ψ(x, t), t ∈ [0, T ] (4.1)

where Ψ is the growth factor per time unit, e.g. 20 %
day

, which depends on nutrients, incoming
solar radiation, and water temperature at the spatial state x and time t.

The objective of the seaweed farm starting from x0 at t0 with a seaweed mass m(t0) is
then to maximize the mass of the seaweed at the final time T . This implies optimizing the
growth over its spatial trajectory ξ

u(·)
t0,x0

.

max
u(·)

m(T ) = m(t0) + max
u(·)

∫ T

t0

m(s) ·Ψ(ξ
u(·)
t0,x0

(s), s)︸ ︷︷ ︸
growth factor

ds (4.2)

We maximize the final seaweed mass when the ocean currents are known by formulating
a running cost objective that can be efficiently solved with Dynamic Programming.

Maximizing Seaweed Mass With Known Dynamics

We use continuous-time optimal control where the value function J(x,u(·), t) of a trajectory
ξ is based on a state and time-dependent reward l and a terminal reward lterm:

J(x,u(·), t) =
∫ T

t

l(ξ
u(·)
t,x0

(s), s)ds+ lterm(ξ
u(·)
t,x0

(T ), T ).

Instead of maximizing this objective with graph-search methods or non-linear programming
which require discretization in space and time, we use DP. Let J∗(x, t) = maxu(·) J(x,u(·), t)
be the optimal value function; we can then derive the corresponding Hamilton-Jacobi PDE
[5]:
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−∂J
∗(x, t)

∂t
= max

u
[∇xJ

∗(x, t) · f(x,u, t) + l(x, t)] (4.3)

J∗(x, T ) = lterm(x, T ). (4.4)

We can then numerically compute J∗(x, t) on a spatial mesh by integrating the PDE
backwards in time [97]. Next, we need to define the reward l and the terminal reward lterm
to maximize m(T ). One approach is to model the seaweed farm with an augmented state
xaug = (x,m)⊤ ∈ R3. If we set lterm=0 and define the reward as l=m · Ψ(x, t), the value
function is our objective (Eq. (4.2)).

However, the computational complexity of solving for J∗ scales exponentially with the
state dimension. Therefore, we want a reward l that does not depend on m as augmented
state. For that, we introduce the variable η = ln(m) with the new dynamics η̇ = ṁ

m
= Ψ(x, t).

As η(m) is strictly increasing in m, the control u∗(·) that maximizes η(T ) is equivalent to
u∗(·) maximizing m(T ). We can then reformulate Eq. (4.2) to η(T ):

max
u(·)

η(T ) = η(t0) + max
u(·)

∫ T

t0

Ψ(ξ
u(·)
t,x0

(s), s) ds. (4.5)

By setting the reward to l = Ψ(x, t) the optimal value function captures this optimization
without requiring m:

J∗(x, t) = max
u(·)

∫ T

t

Ψ(ξ
u(·)
t,x0

(s), s) ds. (4.6)

We can then solve the HJ PDE for J∗(x, t) in x and obtain the optimal control u∗(·) and
trajectory ξ

u∗(·)
t0,x0

that maximize m(T ) at lower computational cost. This formulation can be
applied more generally to optimize the state of exponential growth or decay ODEs. Note
that we can convert the value of J∗(x0, t0) to the final seaweed mass of the optimal trajectory
starting at x0, t0 with m(t0):

m(T ) = m(t0) · e
∫ T
t0

Ψ(ξ
u∗(·)
t0,x0

(s),s) ds
= m(t0) · eJ

∗(x0,t0).

4.3 Experiments

To offer further intuition and facilitate understanding, we present a simple toy example 1 of a
2D system maximizing seaweed growth in a simple flow field and leave the realistic examples
for Chapter 6.

In Fig. 4.1, a current highway is depicted [59]. From the y-values of [4m, 6m], a current
flows from left to right with a strength of 0.2m

s
(red colored), everywhere else the current

velocity is zero. Within this flow, a rectangular seaweed growth region is modeled, while
outside of this area, no growth occurs.

1This section is based on the work with Matthias Killer [59].
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The 2D system is initiated at the position [1m, 3m] at t0, with the objective of max-
imizing seaweed growth over a given time period [t0, T ]. Two settings are considered: 1)
an overactuated setting, and 2) an underactuated setting. We can then use our method to
calculate the trajectory that maximizes the seaweed mass at the final time.

In the overactuated scenario, the system is equipped with a propulsion strength of 0.3m
s
.

This allows it to counteract the currents, thus being overactuated. The optimal growth
trajectory (depicted in green) in this case quickly brings the system into the growth region,
where it remains to maximize seaweed growth. The farm attempts to enter the highway, and
while on the highway but outside the growth region, the actuation points in the direction of
the flow to quickly reach the growth area. Upon arrival, the actuation opposes the current
flow, as the goal is to remain within the growth field.

In the underactuated scenario, the trajectory (depicted in black) also brings the system
rapidly toward the growth region. However, due to insufficient actuation to stay within
the region, it is unable to simply counteract the currents for maximum growth. Instead,
the system periodically circles in and out of the growth region. So it periodically exits the
current flow and retreats slightly before re-entering the current flow and growth region.
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Figure 4.1: Toy example for maximizing seaweed growth highlighting the difference between
the underactuation vs. overactuation setting.
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4.4 Conclusion

In this chapter, we addressed the challenge of maximizing seaweed growth in underactuated
autonomous ocean farms by proposing a growth-maximizing DP approach. Instead of solving
this problem in 3D using state augmentation, our method solves a running-cost problem in
the 2D spatial state of the system. This reduces computational complexity and also generates
a value function, which can be used as a feedback policy for growth-optimal control across
all states and times, as we will see in Chapter 6.
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Part III

Handling Forecast Uncertainty
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Chapter 5

Navigating With Forecasted Flows

This chapter is based on the paper “Navigating underactuated agents by hitchhiking
forecast flows” [141], written in collaboration with Manan Doshi, Pierre F.J. Lermusi-
aux, and Claire Tomlin.

5.1 Introduction

In Part II we have developed the theory and methods to optimally operate underactuated
robotic systems in flows. In this chapter, we discuss how to navigate when the true flows
are not known and only forecasts are available. We present how we can achieve reliable
navigation by using the value function obtained from Multi-Time HJ Reachability (Chapter
3) as a closed-loop control policy that is equivalent to fully replanning at every step.

There is a rich literature on planning time- and energy-optimal paths in flows both in
the oceans [85, 128, 72, 152, 56, 136, 51, 64, 112, 90, 65, 130, 107, 49, 62, 17, 43, 25, 133,
117] and the air [118, 19, 102, 8]. We have already discussed various methods when the
flows are known in Chapters 3 and 4. As the wind and ocean forecasts are never perfect,
different paradigms and their combinations have been explored for navigation when the true
flow is not known. When we have access to a realistic distribution of the flows we can
use probabilistic methods to optimize the expected energy or travel time of a policy using
stochastic reachability [129] or Markov Decision Processes (MDP) [65, 118]. Previous work
also explored risk-optimal path planning in this stochastic setting [130, 107, 49] including
estimating the confidence in the forecast using interpolation variance [49]. Unfortunately,
for ocean surface currents, only daily deterministic forecasts are available from the leading
ocean forecasting providers HYCOM [20] and EU Copernicus Marine [35]. There are ocean
dynamics models with stochastic forcing to compute accurate probabilistic forecasts [75, 73,
74], however, these are too computationally expensive for real-time operations. A heuristic
approach is then to assume Gaussian noise [65] or to increase the prediction uncertainty
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around high-velocity currents [49], which does not capture the complexity of the forecast
errors.

Another paradigm is to plan on the deterministic forecast flows and follow the planned
path with tracking algorithms that compensate for drifts and can guarantee a tracking error
bound [117]. While this is important in tight spaces around obstacles, minimizing tracking er-
ror does not necessarily lead to time and energy optimal paths. Another family of approaches
follows the Model Predictive Control (MPC) paradigm that uses frequent replanning from
the positions of the agent to handle the dynamics error [51, 111]. Our approach will build on
this paradigm without the need for expensive replanning operations at every step. Lastly,
there are robust control methods in which we assume a bound on the forecast error to derive
a path and controls that reach the target despite bounded adversarial disturbances. This can
be done using reach-avoid HJ reachability formulations [39] or approximations [51]. How-
ever, for underactuated agents, often there exists no robust control for realistic forecast error
bounds (see Sec. 2.2).

Recent work has explored the application of deep Reinforcement Learning (RL) to navi-
gate in flows [43, 25, 17]. The controller trained by Gunnarson et. al. on vortical flows using
only local current information navigates successfully in these flows but, unsurprisingly, fails
in other flow structures [43]. The Loon team trained an RL agent for station-keeping of bal-
loons with forecasts as inputs and it performed well in long-duration real-world experiments
after training on an immense distribution of flows [8].

In this chapter, we focus on the problem of reliable navigation of underactuated agents
leveraging flows in the realistic setting when regular deterministic forecasts are available.
We define reliability empirically as the success rate of a controller in navigating from a
start point to a target region over a set of start-target missions, as developed in Section
5.1. In this chapter, we make three core contributions: (1) We propose a control approach
enabling full time-horizon replanning at every time step with a single computation. For
that, we build on the recent Multi-Time HJ Reachability formulation [31] to compute a
time-optimal value function (Time-to-reach) on the latest forecast and use it as a policy
π for closed-loop control. This can be thought of as full-time horizon Model Predictive
Control at every step; (2) We are the first to evaluate and compare the reliability of closed-
loop control schemes for underactuated agents in ocean flows in the setting of daily forecasts
with realistic forecast error. We evaluate performance across a large set of multi-day start-
to-target missions distributed spatially across the Gulf of Mexico and temporally over four
months using HYCOM and Copernicus Ocean Forecasts [35, 20] We compare several methods
on this dataset across multiple metrics and find that our control architecture significantly
outperforms other methods in terms of reliability ; (3) We quantify how the reliability of
various control methods is affected by the forecast error.

Problem Setting

The objective of the agent is to navigate reliably from a start state x0 to a target region
T ∈ Rn while being underactuated maxu||g(x(s),u(s), s)||2 ≪ ||v(x(s), s)||2 most of the
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time. During operation, the agent is given a forecast of the flow v̂(x, s) which differs from
the true flow v(x, s) by the stochastic forecast error δ(x, s;ω) where ω is a random variable.
The error field δ can be characterized based on different metrics such as RMSE of the
velocities or vector correlation [94]. The agent receives a new forecast at regular intervals
(typically daily) that can be used to improve performance.

Our goal is reliable navigation of underactuated agents in realistic complex flows occur-
ring in nature. The strongest notion of reliability is robustness to a bounded disturbance,
which guarantees reaching the target despite a worst-case forecast error δ. However, proving
robustness is not possible in our setting where the agent is significantly underactuated and
the average forecast error is larger than the actuation. Nevertheless, we compare against a
robust control baseline in Sec. 5.3. A weaker notion of reliability is a probabilistic bound, i.e.
the agent reaches the target with high probability. Probabilistic bounds could be established
by making strong assumptions on the distribution of the forecast error fields δ and using a
simple flow field; this would render the results less meaningful for the realistic settings we
consider.

For these reason we define reliability empirically as the success rate of a controller nav-
igating from a start point to a target T over a set of start-target missions M in realistic
flows. If the agent reaches the target T within a maximum allowed time Tmax the mission is
successful, otherwise it failed. In our experiments we sample missions M over a large spatial
region and over a period of four months.

5.2 Using the Value Function for Frequent

Replanning

In this section, we first outline the motivation behind our method and then detail our closed-
loop control strategy.

Motivation

In our challenging setting, when only deterministic forecasts are available and the forecast
error is larger than the actuation, we can neither use probabilistic methods without making
unrealistic assumptions about the error distribution δ, nor can we apply robust control as the
average error δ is larger than the actuation of the agent. How then can we achieve reliable
navigation in this setting?

Our approach builds on the Model Predictive Control paradigm of regular replanning with
deterministic dynamics to compensate for imperfect knowledge of the dynamics and achieve
reliable navigation. Intuitively, the higher the frequency of replanning, the more we can adapt
the control to the dynamics experienced. While we could use any planning algorithm for
non-linear time-varying dynamics, as mentioned in the related work, HJ reachability is state-
of-the-art, as it guarantees finding the optimal solution and can even handle time-varying
obstacles and targets [85, 39, 5]. While we can obtain time-optimal trajectories from both
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classic forward and backward HJ reachability, the value function of backwards reachability is
more useful. The backwards reachability objective is to minimize the distance of the agent to
the target set at a terminal time. A key insight is that the value function of this objective can
be used for closed-loop control as for every state and time in the domain we can extract the
optimal control that minimizes this objective. This provides a notion of replanning at every
step even when the deterministic dynamics are not accurate. However, there is a problem
with directly applying classic backwards HJ reachability: the value function minimized is
the distance to the target at a fixed terminal time. This poses the problem of which terminal
time to choose to calculate the value function? If we choose it too distant in the future, the
system will ”loiter”, not making progress towards the goal. If we choose it too close to the
current time, it might be impossible to reach the target, and the agent will minimize the
distance to the target in the short term, potentially at the cost of long-term progress. We
can compute the earliest possible arrival time, using forward reachability, and then compute
backwards reachability from that time to get our value function for closed-loop control (a
baseline in 5.3). A more elegant approach is to use the Multi-Time Reachability formulation
(Chapter 3), which requires only one backwards computation and produces a value function
that yields the time-optimal control everywhere, not just at the zero level-set, as the classic
reachability value function. We found that using time-optimal control is a good proxy for
reliability in our setting.

Multi-Time Reachability for Closed-Loop Control

In the following we will first reiterate the relevant aspects of the multi-time reachability
technique for completeness and for simplicity we leave out time-varying obstacles and targets
as in the full derivation in [31].

The Multi-time reachability formulation (Chapter 3) uses dynamic programming to derive
a controller that (a) if possible, will get the system to the target in the minimum time and
(b) if not, will get as close to the target as possible. To achieve this behavior, we define the
following cost function J :

J(x0,u(·), t) = d(ξ
u(·)
t,x0

(T ), T )︸ ︷︷ ︸
Terminal distance
from target set

−
∫ T

t

IT
(
ξ
u(·)
t,x0

(s)
)
ds︸ ︷︷ ︸

Time spent in target set

(5.1)

where d(x, T ) is a distance metric of a point x to the target set T , ξu(·)t,x0
(s) is the position

of the agent at time s, when starting at x at time t with the spatial dynamics given in
Eq. (2.1). IT (x) is the identity function that is 1 when the state is in the target x ∈ T
and 0 otherwise. The consequence of this cost function is that if the agent can reach the
destination, minimizing the cost implies reaching as quickly as possible. If the agent cannot
reach the destination, the optimal control will attempt to reduce the terminal distance to
the target.
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Note that for underactuated systems we want to consider the dynamics of the agent only
until it reaches the target. Within the target, we switch off the dynamics to reward the
agent for staying in the target.

Given this cost function, we use the principle of dynamic programming to derive an HJ
PDE whose viscosity solution is [31]:

∂J∗(x0, t)

∂t
=

{
1 x0(t) ∈ T
−minu [∇xJ

∗ · f(x0,u, t)] otherwise

J∗(x0, T ) = d(x0, T ) (5.2)

Since the value of J∗ contains information about the minimum time it takes to reach the
destination, we can extract an informative time-to-reach map D∗ from it:

D∗(x0, t) = T + J∗(x0, t)− t, ∀(x0, t) s.t., J
∗(x0, t) ≤ 0 (5.3)

If the target can be reached from x starting at t (implied by J∗(x0, t) ≤ 0), then D∗(x0, t)
is the minimum duration required to reach T . This means that inside the target D∗(x0, t) =
0 ∀t,x ∈ T . The optimal control u∗(x, t) is then the value that minimizes the Hamiltonian.

u∗(x, t) = argmin
u∈U

f(x,u, t) · ∇xJ
∗(x0, t) (5.4)

= argmin
u∈U

g(x,u, t) · ∇xJ
∗(x0, t) (5.5)

Where 5.5 follows from 5.4 because v(x, t) does not depend on u. Note that ∇xD∗(x0, t) =
∇xJ

∗(x0, t) which means that we can use D∗(x0, t) and J
∗(x0, t) interchangeably to obtain

the optimal control. This formulation solves the two key issues with classic backwards
reachability as described above: a) we do not need to fix an arrival time a priori, instead we
can run backwards Multi-Time Reachability from a large maximum time backwards until the
current time t; and b) the control obtained from this value function provides the time-optimal
control at all states, making it more useful for reliable navigation.

The key insight here is that the value function allows us to extract the time-optimal
control for each state x at each time t thus we can use it as a closed-loop control policy π
which enables frequent replanning at low computational cost.

π(x, t) = argmax
u∈U

f(x,u, t) · ∇xJ
∗(x, t) (5.6)

= argmax
u∈U

g(x,u, t) · ∇xJ
∗(x, t) (5.7)

This use of the reachability value function differs significantly from the ways in which
it has been used in the literature. Much of the previous work in reachability-based control
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Figure 5.1: Our method for reliable navigation leveraging flows is based on frequent replan-
ning. For that the Time-to-reach map D∗ is computed daily as new flow forecasts v̂(x, t)
become available. Then for closed-loop operation, the time-optimal control u∗

t is calculated
from D∗ which is equivalent to replanning at every step. The system is simulated using the
true flow v(x, t) which differs from the forecast by the forecast error δ(x, t).

has focused on least restrictive control for safety specifications [5], where the terminal cost
encodes constraints that must be satisfied for safety, and the solution of the corresponding
HJ PDE provides both a reachable set of states that satisfy the constraints, as well as the
control u∗ to apply at the boundary of the reachable set in order to stay within this safe
set. This least restrictive framework has been applied both to safe trajectory planning [44,
76, 113] and to learning-based control [38, 121].

For the full framework visualized in Fig.5.1 we propose to solve the Multi-time reacha-
bility problem once per forecast, which are received at regular (daily) intervals (see Alg.1).
The most recent time-to-reach map is then used as closed-loop control policy π which by
construction provides reliability through what can be thought of as time-optimal replanning
at every time step. For an intuitive example, take the setting in Fig. 5.2: at x0 the agent
applies u∗

0 based on the planned time-to-reach map. As the true currents v are different than
the forecast v̂, the agent finds itself at x1, a different state than expected. Based on our
forecast, the time-optimal control from this state onward can again directly be computed
from the time-to-reach map.

There are two advantages of this method over classic MPC replanning based on fast
non-linear programming or graph-based methods: (a) much higher replanning frequencies
are possible because deriving the optimal control from the value function is computationally
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Figure 5.2: In time-invariant forecast flows v̂ the time-to-reach map D∗(x, t) is static. The
level-sets of D∗(x, t) indicate how fast an agent can reach the target from a specific state
x. With holonomic actuation the optimal control is the spatial gradient u∗

t = ∇xD∗(x, t).
Applying u∗

t closed loop leads to reaching the target region T even if the true currents are
different vt �= v̂t. This schema is equivalent to time-optimal replanning at every step which
leads to its reliability.

cheap compared to solving the optimal control problem from a new state at every time step,
and (b) less discretization error because the HJ PDE solves the continuous-time problem,
whereas the classic MPC methods rely on discretization in time and space to enable fast
planning in the loop.

Algorithm 1: Multi-Time HJ Closed-loop Schema

Input: Forecast Flow(s) v̂(x(s), s), t = 0, xt = x0

1 while t ≤ Tmax and xt �∈ T do
2 if new forecast available then
3 compute time-to-reach map D∗

4 Use latest D∗ for control u∗
t = argminu∈U g(xt,u, t) · ∇xD∗

xt+1 = xt +
∫ t+1

t
f(u, x(s), s) ds
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5.3 Experiments

In this section we evaluate our control schema of using multi-time HJ reachability as closed-
loop control policy π and compare it to baseline methods on realistic ocean currents.

Experimental Set-Up

We investigate the reliability of various controllers in navigating a two dimensional Au-
tonomous Surface Vehicle (ASV) with holonomic actuation of fixed magnitude ||g(u,x, t)||2 =
||u||2 = 0.1m

s
. The control is the thrust angle θ and the ASV is navigating in strong ocean

currents v(x, t) ∈ [0.3m
s
, 2m

s
] which it wants to hitchhike to reach the targets. In the follow-

ing, we describe how we ensure realistic ocean forecast simulation and obtain a large set of
missions. Then we explain the baselines and evaluation metrics.

Realistic Ocean Forecast Simulation We use the simulation setup as outlined in Chap-
ter 2.2. Ocean forecast data are the HYCOM forecast [20] and Copernicus hindcasts [35] for
the Gulf of Mexico region. To simulate realistic conditions, we provide the control methods
daily with the HYCOM forecast as it becomes available while simulating the system dy-
namics with the hindcast as the true flow v(x, x)(Fig. 5.1). We investigate two settings (a)
planning on HYCOM forecasts and simulating on HYCOM hindcasts (HYCOM-HYCOM)
and (b) planning on HYCOM forecasts and simulating on Copernicus hindcasts (HYCOM-
Copernicus) (5.3).

To estimate how realistic our simulations are, we compare the simulated forecast error
δ across our start-target mission set M with the HYCOM forecast error as estimated by
Metzger et. al. using extensive drifter buoy data [94]. In Fig.5.3 we visualize two metrics,
the velocity RMSE and the vector correlation, where 2 represents perfect correlation and 0
no correlation [27]. We find that the HYCOM-HYCOM setting underestimates the forecast
error, especially in the first 24h where the forecast is perfect. The HYCOM-Copernicus set-
ting is realistic as the simulated forecast error is of similar magnitude as the actual HYCOM
forecast error.

Large Representative Set of Missions To obtain a set of start-target missions M we
first fix 18 regularly spaced starting times ti between November 2021 and February 2022.
For each starting time ti we uniformly sample 16 start points xti,jStart spatially over the Gulf of
Mexico. In our underactuated setting, many start-target missions are impossible even if the
true currents are known. Therefore, for the test set M we need to ensure that each mission
is fundamentally feasible given the true currents. To generate only feasible missions from
each starting point xti,jStart, we calculate the forward reachable set (FRS) starting at ti for a
maximal time horizon of Tmax = 120h using HJ reachability. The FRS is the set of all states
xs at time s for which there exists a control signal u(·) such that ξ

u(·)
ti,x

ti,j
Start

= xs. To get a

variety of mission durations, we sample 4 relative times ∆tk ∈ [20, 120]h and sample a target
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Figure 5.3: The simulated forecast errors in our experiments are of similar magnitude as the
actual HYCOM forecast errors [94]. The graphs show the mean and standard deviation of
two forecast error metrics, velocity RMSE and vector correlation, over our mission set M for
the two simulation settings.

point xi,j,kT from within the forward reachable set at s = ti +∆tk. Then x
i,j,k
T is guaranteed

to be reachable from xti,jStart and the target T is the circular region of radius rT = 0.1◦ around
it. This gives us a large and diverse start-target set M of 1152 missions ranging in duration
from 20 to 120 hours as visualized in Fig. 5.4, together with their respective time-optimal
trajectories based on the true currents.

Baseline Controllers We compare the performance of our multi-time HJ reachability
closed-loop strategy with four baselines. The first baseline is the HJ Closed-Loop method
which is the same as our method except that it employs the classic backwards reachability
value function. The backwards reachability value function is calculated based on the earliest
possible arrival time and used for closed-loop control, as explained in Sec. 5.2. Our second
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Figure 5.4: We evaluate our method over a large set of 1152 start-target missions spatially
distributed over the Gulf of Mexico and temporally from November 2021 until February
2022.

baseline (Robust Hamilton-Jacobi-Isaacs (HJI) Closed-Loop) is a robust controller which is
equivalent to HJ Closed-Loop but instead of solving for the classic backward reachability
value function, it solves for the reach-avoid value function with a small bounded disturbance
of d = 0.05m

s
[39]. This means that the control extracted from it in closed-loop is a con-

servative control that can arrive at T or get as close as possible to T at the earliest arrival
time despite the worst-case disturbance d. The third method (HJ + Waypoint Tracking) we
compare with is based on the idea of tracking waypoints to compensate for the forecast er-
ror. It plans the time-optimal path on each new forecast using HJ and at each time actuates
towards the next waypoint in this plan. Lastly, we compare against a Naive-to-Target ap-
proach which ignores the forecasts altogether and always actuates towards the center of the
target region. Note that we do not compare with any graph-based methods such as RRT and
A* because they only approximate the time-optimal control problem that HJ reachability
solves exactly in continuous time and space. Hence, we expect them to be strictly worse.

Evaluation Metrics The key performance metric for our controllers is reliability, defined
as the success rate of a controller over the set of missions M (Sec. 5.1). To further elucidate
the controller performances we look at two additional metrics. Finally, we investigate how
the reliability of a controller changes with the forecast error.

To evaluate how fast a controller reaches a target, we compute the time-optimality ratio
ρ. We define it as the time it took the controller to reach T divided by the fastest it could
have reached T under perfect knowledge of the currents. It is calculated over the set of all
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missions in which the controller succeeds (M̃ctrl) as

ρ =
1

||M̃ctrl||

∑
M̃ctrl

∆tarrival ctrl
∆tarrival best-in-hindsight

(5.8)

A value of 1 means that the controller was as fast as possible, and 1.1 means that it took
10% longer than the fastest possible.

The minimum distance to the target measures the closest the controller got to T during
the entire simulation horizon Tmax in degrees of latitude and longitude. The minimum
distance to the target is positive, except for when the controller succeeds in a mission, then
it is 0.

Lastly, our diverse set of missions M allows us to investigate how the reliability of various
controllers changes with increasing forecast error. For that we calculate the average forecast
error RMSE(δ) for each mission spatially over a regional box containing the start and target
region and temporally over the 5 day horizon of each forecast. We then group the missions
by their RMSE(δ) into 20 bins and calculate for each controller the success rate in each bin.
To make the trends more visible, we fit a weighted linear regression over these 20 success
rate - RMSE(δ) points and weight each bin by its number of missions.

Experimental Results

Simulation Setting HYCOM-HYCOM
In this setting we evaluate the controller performance over ||M|| = 1152 start-target missions
and run the simulation for Tmax = 150h. If the controller reaches the target region within
that time, it is successful; otherwise, it failed. Our control approach achieves a success rate
of 99% and outperforms the baselines (Table 5.1). The time to reach the target is on average
only 3% higher than the fastest possible, here HJ Closed-Loop performs slightly better with
2%. The Naive-to-Target controller succeeds only in 84.9% of the missions. These results
highlight that highly reliable navigation is possible with a low (short-term) forecast error.
However, as of now the actual forecast error of current ocean models is significantly higher
(Fig.5.3) which makes this an optimistic performance estimate. To evaluate the statistical
significance of our results, we perform a one-sided two sample z proportion test for each
of the controllers against the Naive-to-Target baseline. With Γ denoting the success rate
of a controller, our null hypothesis is H0 : ΓNaive-to-Target = Γcontroller and the alternative
hypothesis is HA : ΓNaive-to-Target < Γcontroller. We obtain that the success rate of all controllers
is higher than Naive-to-Target in a statistically significant way (p-values Multi-Time HJ CL
p = 3.9e−36, HJ CL p = 2.8e−27, Robust HJI CL p = 1.36e−22, HJ + Waypoint Tracking
p = 3.65e−15).

Simulation Setting HYCOM-Copernicus
To ensure comparability across settings we take the same set of missions M, however, with
the Copernicus hindcasts only 837 of the missions are fundamentally feasible, which makes
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the set M smaller. Again, our control approach achieves a success rate of 82.3% and out-
performs the baselines, but with a lower margin than in HYCOM-HYCOM (Table 5.1). We
perform the same statistical significance test and find that only our approach has a statisti-
cally significant higher success rate than Naive-to-Target (p = 0.012). We want to emphasize
that a 4.4% increase over the baseline in this challenging setting with large forecast errors is
a sizeable improvement. Moreover, the results from HYCOM-HYCOM indicate that perfor-
mance improves with better forecasts. Our closed-loop control schema is easily extendable
to include learning about the currents while operating in them and using this information
to improve its estimate of the future currents and thereby improve performance.

Figures 5.5 show how the success rate of the controllers changes for missions with varying
forecast errors. As expected, we see that the success rate decreases with increasing forecast
error with different slopes for different controllers. The performance of our Multi-Time HJ
Closed-Loop approach decreases slower than the baselines. In the HYCOM-HYCOM setting
it is almost unaffected by a higher forecast error. Note that we would expect Naive-to-
Target to be indifferent to the forecast error as it does not consider the forecast. However,
for Naive-to-Target, we observe a significant drop in performance for missions with high
forecast error. We hypothesize that the forecast error is higher in regions with complex and
strong currents, conditions which are inherently more challenging to navigate. This could
explain why Naive-to-Target fails more frequently with a higher forecast error.

5.4 Conclusion

In this work we have demonstrated that planning with Multi-Time HJ Reachability on daily
forecasts and using the value function for as closed-loop control policy π enables reliable
navigation of underactuated agents leveraging complex flows. The reliability of our method
stems from the fact that the optimal control extracted from the value function at every time
step is equivalent to full-horizon time-optimal replanning. There are two key advantages over
classic MPC with non-linear programming or graph-based methods. First, our method has
lower computational cost as it only requires computing the value function once per forecast
instead of having to solve an optimal control problem at every time step. Second, our method
solves the continuous-time optimal control problem and does not require spatial or temporal
discretization that is typically employed by MPC for fast computation. This leads to high
reliability at low computational cost, enabling reliable autonomy for resource-constrained
systems navigating in flows in the atmosphere and the oceans.

We evaluated the performance of our method in realistic ocean currents over a large
set of multi-day start-to-target missions distributed spatially across the Gulf of Mexico and
temporally across four months. In the setting of using forecasts from HYCOM and simulating
the true currents with HYCOM hindcasts, our method achieves a 99% success rate and
outperforms the baselines. However, this setting underestimates the actual HYCOM forecast
error. Hence, we also evaluated our method in a setting with forecast errors that reflect more
realistic operations: planning on HYCOM forecasts and simulating the true currents with
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Success Rate Time-Opt. Min. Dist.

Plan on HYCOM Forecasts – true flows HYCOM Hindcasts

Multi-Time HJ CL 99.0%∗ 1.0332 0.060◦

HJ Closed-Loop 97.6%∗ 1.0207 0.104◦

Robust HJI CL 96.6%∗ 1.0346 0.154◦

HJ + Waypt. Tracking 94.7%∗ 1.1412 0.060◦

Naive-to-Target 84.9% 1.0752 0.068◦

Plan on HYCOM Forecasts – true flows Copernicus Hindcasts

Multi-Time HJ CL 82.3%∗ 1.129 0.107◦

HJ Closed-Loop 79.1% 1.106 0.110◦

Robust HJI CL 78.6% 1.111 0.106◦

HJ + Waypt. Tracking 67.1% 1.373 0.091◦

Naive-to-Target 77.9% 1.052 0.078◦

Table 5.1: We compare the performance of multiple controllers in two forecast settings. Our
Multi-Time HJ Closed-Loop (CL) controller outperforms the baselines in reliability, the key
focus of this work. The ∗ marks statistically significant higher success rate compared to
Naive-to-Target. The average time-optimality ratio indicates how fast the controller reached
the target relative to the best possible in-hindsight. Minimum distance measures the closest
the controller got to the target region in degree lat, lon.

Copernicus hindcasts. In this more challenging setting, our method again outperforms the
baselines achieving a 82.3% success rate. While we showcased our method on 2D ocean
currents, we want to emphasize that it is directly applicable to other flows, e.g. 3D flows
in the air and underwater. Lastly, we demonstrated that our method is less affected by
increasing forecast errors than the baselines.
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Forecast Error: Velocity RMSE

Plan on HYCOM Forecasts - true flows HYCOM Hindcasts

Plan on HYCOM Forecasts - true flows Copernicus Hindcasts

Figure 5.5: The reliability of different controllers decreases for missions with higher forecast
error. The dots represent the average success rate over a subset of missions with mean fore-
cast error plotted on the x axis. The size indicates the number of missions in the respective
subset. The lines indicate the trends and represent the linear regression of the success-rate
to forecast error points weighted by their number of missions.
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Chapter 6

Maximizing Seaweed Growth Over
Months

This chapter is based on the paper “Maximizing Seaweed Growth on Autonomous
Farms: A Dynamic Programming Approach for Underactuated Systems Navigating on
Uncertain Ocean Currents” [60], written in collaboration with Matthias Killer, Hanna
Krasowski, Manan Doshi, Pierre F.J. Lermusiaux, and Claire Tomlin.

6.1 Introduction

In Part II we developed techniques to operate in known flows both for navigation and for
maximizing seaweed growth. In Chapter 5 we saw how the value function for navigation can
be used as a closed-loop control policy π which results in reliable navigation despite forecast
errors for missions up to 5 days long. However, often we want our systems to optimize
objectives over longer time horizons such as maximizing seaweed growth over a multi-month
growth cycle or navigating longer distances. This is challenging, as the forecasts from the
leading providers are only 5-10 days long [35, 20] and, similar to weather forecasts, the
uncertainty for long-term predictions is very high due to the chaotic nature of the system [110,
109]. In control terms, we need to tackle long-term horizon optimization with uncertainty
that increases over time. The long-term dependency of the objective, such as navigation or
seaweed growth, means that it often cannot be easily decomposed into multiple short-term
objectives, as can be seen in Figure 6.5.

In this chapter, we develop techniques that extend the value function beyond the forecast
horizon and hence yield a control policy that optimizes for long-term performance. We
develop and experimentally validate these techniques with seaweed growth, but they are
equally applicable for navigation or other objectives.
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Related Work

In order to address the increasing complexity associated with long-time horizons, problems
are frequently divided into multiple sub-problems using graph-based methods or hierarchical
RL [37, 103]. These approaches are more appropriate for combinatorial optimization prob-
lems, where dividing and conquering in subtasks is effective. However, this is not suitable for
our problem involving continuous space and long-time dependencies. A potential solution
to handle growing uncertainty and distribution shifts over time, as well as to balance short-
term and future events, is the use of a discount factor. This technique is commonly applied
in discrete RL settings [134] and continuous-time systems [34]. Another approach used to
overcome the well-known shortsightedness of MPC is including a terminal value function in
the objective, which propagates global information. Recent work in the controls and RL
community uses machine learning to learn a terminal value function that approximates the
cost to go after the short-term planning horizon [7, 87, 135].

Overview of method & contributions

In this Chapter, we make three main contributions towards controllers that can maximize
the growth of floating seaweed farms over long time periods beyond the forecast horizon.

First, we propose a method to obtain a feedback policy for long-term optimal growth
beyond the 5-day forecast horizon over which ocean currents are available. For that we
estimate the expected growth using historical average currents over a coarse grid and then
initialize the DP problem that we solve in Chapter 4 over the forecast horizon with these
values (Fig. 6.1, (Sec. 6.2)).

Second, to account for the growing uncertainty of the ocean current estimates, we intro-
duce a finite-time discounting into the DP PDE (Sec. 6.2).

Lastly, we conducted extensive empirical simulations of floating seaweed farms in real-
istic current settings in the Pacific Ocean over 30 days. We first investigate how different
propulsion of the farms would affect the best achievable seaweed growth based on optimal
control with known currents. We then evaluate how close different variations of our feedback
policy can get to the best possible growth when daily 5-day forecasts are available (Sec. 6.3).

We solve the same running-cost problem as outlined in Chapter 4 and build on it. Sec.
6.2 then details our method to optimize long-term seaweed growth when only short-term, de-
terministic forecasts are available. Sec. 6.3 contains the closed-loop performance evaluation
of our methods and baselines, and we conclude with Sec. 6.5.

6.2 Reasoning Beyond the Forecast Horizon

Feedback Policy Based on Regular Forecasts

The value function J∗(x, t) we developed in Chapter 4, allows us to compute the optimal
control u∗(x, t) for all x, t and hence a feedback policy π(x, t) for the vessel or multiple
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vessels in the same region [141]. This policy is the optimizer of the Hamiltonian:

π(x, t) = argmax
u∈U

f(x,u, t) · ∇xJ
∗(x, t) (6.1)

= argmax
u∈U

g(x,u, t) · ∇xJ
∗(x, t) (6.2)

While π is optimal if J∗ was calculated based on true currents v, it can also be applied for
closed-loop control when imperfect forecasts v̂FC were used to compute the value function
J∗
v̂FC

(x, t). In that case, an agent in state x that executes πv̂FC
(x, t) will likely find itself

at a different state than anticipated, as v differs from v̂FC . But the control that would be
growth optimal under v̂FC can again be calculated directly with πv̂FC

(x(t+∆t), t+∆t). Ap-
plying πv̂FC

closed-loop is hence equivalent to full-time horizon re-planning with v̂FC at each
time step [141]. This notion of re-planning at every time step at a low computational cost
ensures good performance despite forecast errors. Additionally, J∗

v̂FC
(x, t) can be updated

periodically. In our experiments, we compute J∗
v̂FC

(x, t) once per day when receiving a new
forecast.

Reasoning Beyond the Forecast Horizon

As the growth cycles of seaweed typically span weeks to months, our objective is to maximize
the seaweed mass at an extended future time Text after the final time of the available 5-day
forecast TFC . A principled way to reason beyond the planning horizon is to estimate the
expected growth our seaweed farm will experience from the state ξ

u(·)
t,x0

(TFC) onward and add
this as a terminal reward lterm to Eq. (4.6) (Chapter 4)

J∗
v̂FC ,ext

(x, t) = J∗
v̂FC ,TFC

(x, t) + E
[
J∗
Text(ξ

u(·)
t,x0

(TFC), TFC)
]

(6.3)

J∗
v̂FC ,TFC

(x, t) = max
u(·)

∫ TFC

t

Ψ(ξ
u(·)
t,x0

(s), s) ds (6.4)

Where J∗
v̂FC ,TFC

(x, t) is the growth a vessel starting from x at t will achieve at TFC and

E
[
J∗
Text

(ξ
u(·)
t,x0

(TFC), TFC)
]
estimates the additional growth from TFC to Text. The expectation

is taken over the uncertain future ocean currents.
We propose estimating E

[
J∗
Text

]
by computing a new value function J∗

v̄,Text
based on

monthly average currents v̄ for the region. To compute J∗
v̂FC ,ext

, we again solve the HJ PDE
Eq. (4.3) (Chapter 4) backwards with lterm(x, TFC) = J∗

v̄,Text
(x, TFC). This approach is

visualized in Figure 6.1.

Finite-time Discounting to Mitigate Uncertainty

As the oceans are a chaotic system, the uncertainty of the predicted ocean currents increases
over time. We can incorporate this increasing uncertainty in the value function by using the
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Figure 6.1: Long-term planning for autonomous farms to maximize seaweed growth with two time-
horizons: 1. compute the terminal reward E[growthafterForecast] by computing the value function
backwards. We cover a large spatial domain with coarse grid over long-term temporal domain
T > TFC after the end of forecast horizon (initialized with 0kg). 2. Compute value function from
t0 → TFC (end of forecast horizon) by initializing the backward value function computation over a
smaller spatial domain (with a finer grid) with terminal cost computed in 1).

finite-time discounted optimal control formulation:

Jτ (x,u(·), t) =
∫ T

t

e
−(s−t)

τ l(ξ
u(·)
t,x0

(s), s) ds+ lterm(ξ
u(·)
t,x0

(T ), T ),

where τ is the discount factor. The smaller τ , the more future rewards are discounted. We
derive the corresponding HJ PDE by following the steps in [34] and instead of Eq. (4.3) we
obtain:

∂J∗,τ (x, t)

∂t
= −max

u
[∇xJ

∗,τ · f(x,u, t) + l(x, t)] +
J∗,τ (x, t)

τ

Summary Control Algorithm Variations

All variations of our method are closed-loop control policies π derived from a value function
(Sec. 6.2). There are four variants which differ only in how the value function is computed.
First, when the true currents v are known, we compute J∗ (Eq. (4.6)) for optimal control
(Chapter 4). Second, when only forecasts v̂FC are available, we can calculate J∗

v̂FC
for
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planning horizons up to the end of the forecast TFC and update it as a new forecast becomes
available (Sec. 6.2). Third, to optimize growth until Text > TFC we can calculate an extended
value function J∗

v̂FC ,ext
(Sec. 6.2) using average currents v̄. Lastly, we can discount future

rewards with J∗,τ (Sec. 6.2) in any of the above value functions. In algorithm 2 we detail
the discounted long-term version as it contains all components.

Algorithm 2: Discounted HJ Closed-loop Control

Input: Forecast Flow(s) v̂FC , t = 0, xt = x0, average Flows v̄, discount τ , plan
until Text

1 Compute J∗,τ
v̄,Text

using v̄ (Sec. 6.2);

2 while t ≤ T do
3 if new forecast v̂FC available then
4 Compute J∗,τ

v̂FC ,ext
(Sec. 6.2);

5 Apply policy induced by J∗,τ
v̂FC ,ext

(Sec. 6.2);

6 ut = π∗,τ
v̂FC ,ext

(xt, t);

7 xt+1 = xt +
∫ t+1

t
f(ut, x(s), s) ds;

8 t← t+ 1;

6.3 Experiments

In this section, we empirically evaluate and compare various settings of our control scheme for
maneuvering the two-dimensional ASV with holonomic actuation in realistic ocean currents
and seaweed growth scenarios.

Experimental Set-Up

Seaweed Growth Model Macroalgae growth depends on the algae species, the water
temperature, solar irradiance, and dissolved nutrient concentrations, specifically nitrate
(NO3) and phosphate (PO4) [12]. We use the model of the Net Growth Rate (NGR) of
Wu et al. [144] because it models the key growth dependencies without maintaining addi-
tional state variables to model the plant-internal nutrient state [92]. We used the parameters
of a temperate species from the work of Martins and Marques [92] and Zhang et al.[150]. In
this model, the NGR is determined by the gross growth rate rgrowth and the respiration rate
rresp caused by metabolism. Resulting in the change of biomass:

ṁ(t)=m(t) · NGR=m(t) · (rgrowth − rresp). (6.5)

Fig. 6.1 shows the NGR for our region in January 2022. We assume that the seaweed growth
model is known by the planner.
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Figure 6.2: To ensure a realistic simulation we compare the forecast errors of our experiments to
real HYCOM forecast errors [94]. We can see that our simulation settings closely resemble the real
setting. The mean is enveloped by the standard deviation of two forecast error metrics, velocity
RMSE and vector correlation over our considered area.

Realistic Ocean Forecast Simulation We simulate ocean currents and forecasts based
on the oceanographic systems of HYCOM [20] and Copernicus [35] as outlined in Chapter 2.2.
Each system offers 1) a 5-10 day forecast model with daily updates and 2) a hindcast model
published a few days later with improved accuracy based on additional data assimilation. To
simulate realistic operations, the forecast currents v̂FC received by the planner must differ
from the true currents v used for simulation by a forecast error δ that is comparable to the
empirical forecast error of oceanographic systems. For our experiments, we use Copernicus
hindcasts as v and mimic daily 5-day forecasts v̂FC by giving the planner access to a 5-day
sliding time window of HYCOM hindcasts. With this setting, the forecast error δ in our
simulation is comparable to the true forecast error as shown in Fig. 6.2. Therefore, we use
the HYCOM hindcast data as our forecast source v̂FC and the Copernicus hindcast data as
our hindcast source v aka our simulated true currents. v and v̂FC are available with 1

12
th deg

resolution.
To estimate the expected future growth beyond the 5-day forecast horizon of v̂FC (Sec.

6.2) we use coarse seasonal averages v̄ of the ocean currents in our region. In particular, we
use the monthly average currents of 2021 from Copernicus with 1

6
th deg resolution.

Large Scale Mission Generation We conduct our experiments in the southeast Pacific
due to high nutrient concentrations. For a large representative set of missions, we initially
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generated |M| = 1325 starting tuples (x0, t), uniformly distributed in time between January
and October 2022 and across the specified region of longitude range -130◦W to -70◦W and
latitude range -40◦S to 0◦S. This allows for varying current distributions. The samples were
generated maintaining a distance of 0.5 degrees from land to avoid any instant collisions. It
should be noted that issues such as stranding were not considered in this work, as an appro-
priate safety control scheme is proposed in the parallel work [30]. We took the intersection of
admissible missions between all controllers to evaluate the results, resulting in 1035 missions
for analysis. Admissible missions are defined as those that do not strand and remain within
the predefined area, as data is unavailable beyond these bounds. Each mission starts with
a seaweed mass of 100kg. A normal seaweed growth cycle is about 60-90 days, but we limit
our large-scale experiments to a time period of 30 days per mission to keep the required
compute tractable at scale.

Evaluated Controllers We evaluate a variety of controllers under different configurations,
which can be classified according to the following criteria: 1) the data utilized as input for
the controller, such as the true currents v for planning or forecast data v̂FC and average data
v̄, and 2) the controller’s planning horizon, which may span the entire 30-day period or a
shorter greedy 5-day interval with periodic replanning. Additionally, we examine controllers
employing a discounted value function, as outlined in Sec. 6.2. Moreover, we compare
those controllers with the scenario where seaweed farms float freely in the water without
any actuation. A comprehensive overview of the configurations for each evaluated controller
is provided in Tab. 6.1. For all long-term (30-day horizon) controllers, we compute the
terminal reward term of J∗

v̂FC ,ext
(x, t) over the complete predefined area (60x40◦) on a coarse

grid (1
6

◦
resolution). The running cost term of J∗

v̂FC ,ext
(x, t) is computed only on a smaller

grid around the current farm’s position (10◦ window around) but with a higher resolution
( 1
12

◦
).

Evaluation Metrics Our primary objective is to maximize seaweed mass, so we evaluate
the results based on the absolute seaweed mass at the end of each mission and the relative
improvement in accumulated seaweed mass across different controllers. For relative improve-
ment, we normalize the values within each mission, allowing us to gauge the extent to which
a specific controller exceeds a baseline for that mission. This is especially important as the
starting position of a mission is a major indicator of achievable growth as illustrated in Fig.
6.3. Finally, we present the average relative improvements across all missions. We consider
either the floating system without actuation or our control method planning on the true
currents v.

Experimental Results

We investigate our controller’s performance under various maximum thrust limitations (umax)
in two scenarios: 1) The controller receives the true currents v as planning input, representing
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controller planning horizon discount factor τ
w/o discount (v) 30 days -

floating - -
greedy 1 hour (v̂FC) 1 hour -
greedy 5 days (v̂FC) 5 days -

w/o discount (v̂FC + v̄) 30 days -
w/ discount I (v̂FC + v̄) 30 days 1.296.000
w/ discount II (v̂FC + v̄) 30 days 1.728.000

Table 6.1: We compare various controller settings.

the best-case performance given the selected maximum propulsion; 2) the controller receives
daily 5-day v̂FC and the seasonal averages v̄, approximating real-world conditions. Moreover,
we assess the performance for a floating farm where umax = 0m

s
.

Fig. 6.4 and Tab. 6.2 compare seaweed mass distributions at the end of each mission
under different settings. The average seaweed growth scales linearly with the farm’s maxi-
mum thrust. Controllers planning on forecasts exhibit slightly inferior performance due to
prediction errors compared to those using true currents. The performance shift in the upper
quartile is more pronounced for lower umax values, possibly because higher umax values better
compensate for forecast errors. Nonetheless, with minimum propulsion of umax = 0.1m

s
, our

controller performs 9.6% better on average than a freely floating farm.
The starting location of a mission significantly influences 30-day growth, as shown in Fig.

6.3. High-growth missions are situated in the east and south of our region, aligning with
nutrient-rich areas also visible in Fig. 6.1.

Higher propulsion in real-world applications may be economically infeasible due to the
cubic increase in energy consumption with umax. Consequently, we set umax to 0.1m

s
for

subsequent investigations. We evaluate the performance of two greedy controllers under
this setting and various configurations of our long-term controllers. We aim to increase the
performance of the long-term controller operating on forecasts v̂FC and v̄ to match the best
growth achievable with true currents v. To this end, we employ the discount formulation
proposed in Sec. 6.2 for two settings (6.1) to account for increasing uncertainty over time.

As illustrated in Tab. 6.3, both the greedy and long-term controllers outperform the
floating scenario. The performance of our greedy controller, planning over a 5-day horizon,
closely matches that of the long-term controllers. Using the discounted control scheme
slightly improves the long-term controller, yielding the best overall performance.

Fig. 6.5 evaluates the floating system, the 5-day greedy, and the long-term controller
without discount (two settings: with v and v̂FC + v̄) in a 60-day scenario. The greedy
controller aims for the nearest growth region, while the long-term controller balances short-
term losses against long-term gains, as demonstrated in the sub-figure of Fig. 6.5 depicting
seaweed mass over time. The zig-zag shape of the lines is due to nocturnal respiration of
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Figure 6.3: We sample a large representative set of starting points for seaweed farms in the Pacific
to evaluate how much growth our controllers can achieve. The colorized points show the best
achievable seaweed mass after 30 days using umax = 0.1m

s .

umax planning input rel. growth abs. final seaweed mass

0.0m
s

(floating) 100% 145.29kg±100.30kg

0.1m
s

v 115.38% 166.45kg±109.67kg
v̂FC + v̄ 109.62% 159.29kg±107.46kg

0.2m
s

v 128.69% 182.04kg±115.11kg
v̂FC + v̄ 121.29% 173.72kg±112.94

0.3m
s

v 141.27% 194.98kg±117.39kg
v̂FC + v̄ 133.28% 187.01kg±116.60kg

0.4m
s

v 153.71% 206.96kg±118.34kg
v̂FC + v̄ 145.79% 199.50kg±118.09kg

0.5m
s

v 165.79% 218.10kg±118.59kg
v̂FC + v̄ 158.14% 210.78kg±117.72kg

Table 6.2: Normalized seaweed growth performance per mission (averaged) for different maximum
propulsions relative to floating.

seaweed. The greedy controller is driven out of the region, leading to mission termination
and an earlier trajectory end.
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Figure 6.4: Final seaweed mass for different levels of maximum actuation umax. We furthermore
compare the settings where different currents are available to the controller: true currents v to
forecasted currents plus averages v̂FC + v̄.

controller rel. growth abs. final seaweed mass

w/o discount (v) 100% 168.45kg±109.67kg
floating (-) 88.20% 145.29kg±99.54kg

greedy 1 hour (v̂FC + v̄) 92.24% 152.48kg±102.89kg
greedy 5 days (v̂FC) 95.19% 157.78kg±106.04kg

w/o discount (v̂FC + v̄) 95.61% 158.84kg±106.71kg
w/ discount I (v̂FC + v̄) 95.77% 159.16kg±106.62kg

w/ discount II (v̂FC + v̄) 95.77% 159.17kg±106.66kg

Table 6.3: Normalized seaweed growth performance per mission (averaged) of different controllers
with umax = 0.1m

s (normalized to the controller without discount factor given v).

6.4 Discussion

We conducted experiments over a 30-day time horizon to facilitate large-scale testing. In
this context, all our controllers substantially outperform the non-actuated floating system.
We observed that the performance of our short-term optimizing controller is nearly on par
with our long-term controllers. We attribute this to several factors: 1) the nutrient map,
and consequently, the growth map, exhibits a smooth gradient that simplifies convergence
toward a global optimum, 2) a 30-day time horizon may not adequately capture the short-
term and long-term trade-offs, and 3) for higher maximum thrust we would expect to see a
higher performance divergence since more distance can be captured but we only evaluated
greedy controllers with umax = 0.1m

s
. Since growth cycles typically span 60-90 days, long-

term planning is crucial. In such scenarios, the myopic behavior of greedy policies not only
leads them to navigate toward low-growth regions in the vicinity but also fails to account
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Figure 6.5: Long-term vs. short-term trade-off of a 60-day mission: 5-day greedy controller tries to
get to the closest growth region but drifts away, whereas long-term controllers reach a more distant
growth-richer area while compromising short-term losses. The 5-day greedy controller leaves the
region, hence the termination of the trajectory.

for being pushed out of optimal growth regions, as demonstrated in Example 6.5 over 60
days. For our large-scale evaluation, we only considered missions that remained within
the predefined region. As shown in the 60-day example 6.5, this often occurs with greedy
controllers or in the floating case. Consequently, we would likely observe a more favorable
relative performance of the long-term controllers if we accounted for the filtered missions.
We noticed a high variance in seaweed mass across all controllers, which can be attributed
to our vessels’ inability to reach optimal growth regions within 30 days for many missions.
We anticipate that for longer time horizons and increasing maximum thrust, the long-term
controller would converge toward the global maximum in the southeast of our region, leading
to reduced variance in seaweed mass. Therefore, in future work, we want to investigate
performance for longer time horizons.

6.5 Conclusion

In this chapter, we picked off from the Dynamic Programming approach for maximizing
seaweed growth in underactuated autonomous ocean farms outlined in Chapter 4. The
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method solves a running cost problem in the 2D spatial state of the system and generates
a value function. In this chapter, we first detailed how this value function can serve as
a feedback policy for growth-optimal control across all states and times. The policy can
control multiple farms and mitigate forecast errors through closed-loop operation, which is
equivalent to replanning at every time step. Furthermore, we extended our method for long-
term optimal growth beyond the 5-day forecast horizon by estimating expected growth using
seasonal average currents and initializing the DP with these values. To account for increasing
uncertainty in ocean currents, we introduced finite-time discounting into the DP PDE. Our
extensive empirical evaluation, based on realistic Pacific Ocean current scenarios over 30
days, demonstrated that our approach using only 5-day forecasts and limited propulsion
(umax = 0.1m

s
) achieved 95.8% of the best possible growth and 9.6% more growth than

letting the farms passively float. This confirms the feasibility of low-power propulsion and
optimal control to enhance seaweed growth on floating farms in real world conditions. We
further argued that long-term planning becomes even more important for time horizons over
30 days.

Future work offers multiple avenues for improvement. One possibility is to learn the
terminal reward by employing approximate value iteration [7] or a value network, as proposed
by Silver et al. [124]. This approach could implicitly learn the distribution shift between
v̂FC and v; however, it may require intensive computation for training due to the necessity of
i.i.d. samples, which could limit the number of samples taken per mission to just one [124].
Another direction is to make the discount factor state-dependent based on the uncertainty
of current predictions, which could be estimated historically or using ensemble models [127,
74]. Lastly, we plan to conduct field tests with multiple autonomous surface vehicles to
further validate our method’s practicality in real-world ocean environments.
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Part IV

Operating with Constraints
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Chapter 7

Safety for Underactuated Ocean
Vessels

This chapter is based on the paper “Stranding Risk for Underactuated Vessels in Com-
plex Ocean Currents: Analysis and Controllers” [30], written in collaboration with
Andreas Doering, Hanna Krasowski, Manan Doshi, Pierre F.J. Lermusiaux, and Claire
Tomlin.

7.1 Introduction

In Part III, we have demonstrated how to reliably operate an underactuated robotic system
in flows under significant forecast error. However, the approaches we have discussed so
far do not factor in safety aspects, although the use of ASV in unmanned and long-term
operations may pose crucial safety risks. In the event of significant damage, the ASV may
become inoperable and may be abandoned or sunk, resulting in financial losses and potential
environmental impacts. One important safety hazard is shallow waters, especially near
strong currents, as the ASV can easily strand. Another significant safety hazard is entering
a garbage patch that has a high concentration of marine debris, which can cover an area of up
to 1.6 million km2 [70] as in the case of the Great Pacific Garbage Patch (GPGP). Garbage
can get entangled in rotors of the ASV motor or damage other components, resulting in loss
of control. Furthermore, collisions with other vessels may cause damage to the ASV and
potentially endanger the crew of the other vessel. Therefore, shipping lanes are another area
of increased risk to the ASV as they are used by large fast-moving vessels.

This chapter focuses on incorporating safety constraints into the closed-loop control policy
π building on the Multi-time Reachability framework introduced in Chapter 3. While we
focus here on the risk of stranding for navigation objectives, the same technique can be used
for arbitrary objectives, such as maximizing seaweed growth and time-varying obstacles such
as ships.
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Related Work Let us start by looking at related work on safe motion planning for au-
tonomous vessels in maritime environments. Most of the existing research focuses on collision
avoidance [42, 57] and compliance with the Convention on the International Regulations for
Preventing Collisions at Sea (COLREGS) [26, 95, 153, 154, 55, 69] as safety aspects for
motion planning of autonomous vessels. For example, Zhao et al. [153] use reinforcement
learning to achieve COLREGS-compliant motion planning for encounters with multiple ves-
sels. The studies [42, 57] only look at collision avoidance and achieve this by employing
velocity obstacles. In general, this research on safe motion planning for autonomous vessels
considers fully actuated vessels. Since our vessel has restricted maneuverability due to its
underactuation, it is unnecessary to comply with the rules for power-driven vessels from the
COLREGS. Therefore, we focus on the safety specification of collision avoidance with largely
static obstacles such as shallow areas, shipping lanes, or garbage patches. The avoidance
of dynamic obstacles and forbidden regions including the coordinations of multiple vehicles
has been treated using Hamilton-Jacobi Reachability [81] and applied in real-time with un-
derwater vehicles to avoid too shallow areas [128]. Agents operating in three-dimensional
flows can evade obstacles or strong currents by utilizing the third dimension which has been
demonstrated for stratospheric balloons by [52]. They ensure safe paths by formulating
the problem as a discretized Markov Decision Process and a heuristic cost function. This
only ensures heuristic safety and relies on a realistic uncertainty distribution of stratospheric
winds, which are not available for ocean currents.

Although many articles on maritime safety consider underactuated vessels, most consider
underactuation due to non-holonomic actuation of vessels such as [98, 145, 80, 15]. In this
thesis, we focus on underactuated systems that have a maximum propulsion that is less than
the magnitude of forecasted flow and often also the forecast error, posing severe challenges
for the safety of ASVs.

Robust MPC approaches can guarantee safety under disturbances by ensuring that the
system is always in a state from which it can reach a robust control invariant set within a
finite time horizon [9, 68]. In this robust control-invariant set, there always exists a control
input that ensures that the system can stay in this set indefinitely. However, in our problem
setting with underactuated vessels and imperfect, deterministic ocean current forecasts, no
such control invariant set exists; hence robust control with realistic bounds is infeasible.

We make two main contributions: First, we perform an empirical evaluation of stranding
risk for free-floating vessels in the Northeast Pacific. Second, we present our methods of
Hamilton-Jacobi Multi-Time Reachability (HJ-MTR) with re-planning on two timescales
for safe motion planning of underactuated ASV in a setting with realistic ocean currents
and daily forecasts. Furthermore, we evaluate our controller with several baseline controllers
over a large set of simulated missions.

We structure the chapter as follows: we define our problem statement in Sec. 7.2 and
motivate the need for a safety controller with a stranding study in Sec. 7.3. In Sec. 7.4
we introduce our method and summarize HJ-MTR. We present our extensive simuation
experiments in Sec. 7.5 and discuss them in Sec. 7.6. We conclude and present future work
in 7.6.
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7.2 Problem Statement

We now define the problem of collision avoidance for underactuated vessels by introducing
the flow model, the vessel model, and the representation of obstacles. We then introduce
the notion of stranding as our key performance measure.

System Dynamics, Obstacles and Target

We consider moving in a general time-varying non-linear flow field v(x, t)→ Rn, with x ∈ Rn

representing the spatial state, t ∈ [0, T ] the time and n the dimension of the spatial domain.
In our case, n = 2 as we regard an ASV operating on the ocean surface. We denote the
actuation signal by u from a bounded set U ∈ Rnu with nu the dimension of the control.
Let ξ(s) ∈ Rn denote the position of our ASV at time s. To recap from Chapter 2.1, our
model for the dynamics of the ASV is given by

ξ̇(s) = f(ξ(s),u(s), s) (7.1)

= v(ξ, s) + g(u,x, t) ∀s ∈ [0, T ], (7.2)

Here, the actuation u corresponds to the relative velocity g(u,x, t) of the ASV with respect
to the ocean. Therefore, the absolute velocity of the vehicle is given by the vector sum of
the ocean currents at the location of the vehicle and the relative velocity of the vehicle with
respect to the currents. The maximum actuation of the vessel is limited to ||g(u,x, t)||2 ≤
umax. We define the target and obstacle as sets T ∈ Rn and O ∈ Rn respectively. We assume
that these sets are not time dependent. However, note that the methods presented can be
extended to time-dependent cases by the algorithm described in [31].

Problem Setting

The agents goal is to navigate safely and reliably from a start state x0 at the start time t0 to a
target region T ∈ Rn. We employ the same empirical definition of reliability as [141] defining
it as the success rate of a controller navigating from x0 at t0 to T within the maximum
allowed time Tmax, over a representative set of start-target missions {x0, t0, T } ∈ M. We
define stranding as an agent entering the obstacle set O before Tmax. We then quantify safety
as the stranding rate of a controller over the same set of missions. We define stranding as
entering waters with depth less than−150m. This is application-specific and can be extended
to include other entering obstacles such as garbage patches or areas with high traffic density.

We use the oceanographic systems of HYCOM [20] and Copernicus [35], similar to prior
research [141]. Each of the systems offers a 5- to 10-day ocean current forecast based on their
models with daily updates. They also offer a so-called hindcast with higher accuracy, which
is assimilated from further data and published several days later. For a realistic simulation
of real-world operations, the forecasted currents v̂FC received by the vessel need to differ
from the true currents v by the forecast error δ, which needs to be comparable to empirical
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forecast errors of the oceanographic system. If the true currents are known a priori and there
exists a trajectory that prevents stranding, our method guarantees safety. However, we are
interested in realistic settings with a complex empirical distribution of forecast errors δ(x, t)
and severe underactuation, e.g. in our experiments ||g(u,x, t)||2 = 0.1m s−1 ≪ RMSE(δ) ≈
0.2m s−1 and currents ||max(v)||2 ≈ 1.4m s−1 where safety despite worst-case forecast errors
is impossible. Hence, in Sec. 7.5 we evaluate the performance of our method empirically over
a large set of missions M in realistic settings with currents and forecasted currents similar
to realistic currents and forecasts V. We evaluate the performance in terms of reliability
and safety based on the identity functions ISuc, IObs that evaluate to 1 if any state along the
trajectory ξ

u(·)
t0,x0

(t) is in the sets T and O, respectively, and to 0 otherwise:

E x0, t ∼M︸ ︷︷ ︸
initial condition

; v, v̂FC ∼ V︸ ︷︷ ︸
real and forecasted

ocean currents

{ISuc, IObs}︸ ︷︷ ︸
Success and Stranding

(7.3)

7.3 Stranding Study

To illustrate the need for our safety controller, we analyze the rate of stranding for free-
floating vessels off the coast of California and Mexico between N15◦ and N40◦ and W160◦

and W105◦. We define entering an area with a depth of less than 150m as stranding, due
to operational needs of some ASV.

The stranding study can be conducted analytically or experimentally. Here, we perform
it empirically by sampling 10 000 missions. Each mission consists of a uniformly sampled
starting location in the region investigated, outside the stranding area, and a uniformly
sampled starting time. We simulate the trajectories over a time horizon of 10 and 90 days,
using Copernicus data for the year 2022. We observe that 1.67% missions strand within 10
days and 5.04% strand within 90 days. In Figure 7.1 we show the spatial distribution of the
stranding rate over 90 days. We can only count the strandings that occur in the defined
region, as we stop the simulation for platforms leaving the regarded region, which occurred
for 1.78% missions within 10 days and 18.75% within 90 days.

7.4 Safe Hamilton Jacobi Controller

The forecasts provided by the available ocean forecasting systems are deterministic. This
prohibits us from applying probabilistic methods that would require a realistic distribution
of currents [73]. Ocean current forecasts exhibit a distribution shift to real currents; e.g.,
for HYCOM data [20] the global forecast error for speed is RMSE(δ) = 0.2m s−1 with a
vector correlation [27] decreasing over the 5-day forecast horizon [94]. For an underactuated
vessel with ||max(g(u,x, t))||2 = 0.1m s−1 there exists no control that is robust against a
disturbance of d = 0.2m s−1. Hence we choose to not use robust control but to ensure safety
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Figure 7.1: Rate of passively-floating vessels stranding, which we define as entering waters
with depth less than −150m. 5.04% of 10 000 simulated vessels that start in the region
strand within 90 days. Some vessels float over 20◦ before stranding.

despite forecast errors by replanning on two timescales. First, we compute the value function
daily as we receive new forecasts using HJ-MTR [31].

Second, we use the value function as closed-loop control policy as explained in chapters
5 and 6. This means that for every time step, e.g. 10min, we re-plan by taking the spatial
gradient of the value function at x to obtain the time-optimal control from the state x
onward. This is necessary because the true currents v differ from the forecasted currents
v̂FC , thus at each step we will be in a spatial state x different from that anticipated.

Multi-Time HJ Reachability for Closed-Loop Control

For the sake of completeness of the chapter and focusing on the relevant aspects we summarize
the relevant aspects of the HJ-MTR which has been introduced in detail in chapter 3.

We first define a modified dynamical system fa such that the state x of the vessel becomes
frozen when it hits either the target or an obstacle.

ξ̇ = fa(ξ,u, s) =

{
0, ξ ∈ O ∪ T
v(ξ, s) + u(s), otherwise.

. (7.4)

We define the modified loss function l(ξ, s) such that we earn a reward based on how early
we reach the target:

l(ξ, s) =

{
−1, ξ ∈ T and ξ �∈ Os

0, otherwise.
(7.5)

Finally, we define the terminal cost function lterm(ξ) to be infinitely high if the ASV termi-
nates in an obstacle and is equal to the distance from the target set otherwise.

lterm(ξ) =

{
∞, ξ ∈ OT

d(ξ, T ), otherwise.
. (7.6)
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Finally, we obtain the Hamilton-Jacobi PDE which lets us solve for the value function:

∂J∗(x0, t)

∂t
=


1, x0(t) ∈ T ∩ (Ot)c

0, x0(t) ∈ Ot
−v(x, t)− umax ∥∇xJ

∗∥2 , otherwise.

J∗(x0, T ) =

{
∞, x0 ∈ OT
d(x0, T ), otherwise.

. (7.7)

This value function J∗ subsequently allows us to compute a feedback policy for this system
given by

πv̂FC
(x0, t) = argmin

u
[∇xJ

∗(x0, t) · f(x0,u, t)] ∀x0 ̸∈ (Ot∪) , (7.8)

= − ∇xJ
∗(x0, t)

∥∇xJ∗(x0, t)∥2
umax (7.9)

This policy guarantees safety when the value function was computed with the true cur-
rents v. However, in realistic settings with only forecasts v̂FC available, we apply πv̂FC

closed-loop which is equivalent to replanning at every time step. Applying this policy in
closed-loop (see Fig. 7.3) means we take the time-optimal control at each state, which is
equivalent to full time horizon replanning at each time step.

We introduce the safe Time-to-Reach (TTR) map D∗, which is easier to interpret and
can be easily computed from the value function.

D∗(x, t) = T + J∗(x, t)− t, ∀(x, t) s.t., J∗(x, t) ≤ 0 (7.10)

We illustrate the interpretability of the safe TTR in Fig. 7.2. If D∗(x, t) is e.g. 3, it means
that a vessel starting at x at time t can reach the target in 3 time units when following the
optimal control (Eq. (7.8)). We solve the HJ-MTR in periodic intervals to update the safe
TTR value function D∗. In our work, we solve it once per day upon receiving new forecasts
similar to [141].

In summary, there are three core advantages of our method compared to classical MPC
with non-linear programming. We can guarantee time-optimality in non-linear dynamics over
the full time horizon when the currents are accurate. We require very low online computation
to extract the gradient at each step. In case the vessel cannot reach the destination, the
optimal control will attempt to minimize the terminal distance to the target, while non-linear
programming would not provide us with a trajectory in such a case.

7.5 Experimental Results

We conduct experiments to ascertain that our method of using HJ-MTR with obstacles is
capable of reaching the target without colliding with obstacles despite forecast errors. We
simulate a large number of missions on realistic ocean currents and compare the performance
of our control schema to baseline methods.
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Figure 7.2: Trajectory of our method in analytical currents evading obstacle. The safe
Time-to-Reach map spares out obstacle and areas where an underactuated agent is inevitably
pushed into the obstacle.

Experimental Set-Up

Our experiments investigate the stranding rate and reliability of several controllers for navi-
gating a two-dimensional ASV with fixed magnitude, holonomic actuation of ||g(u,x, t)||2 =
||u||2 = 0.1m s−1. The control input is the angle θ for steering the ASV in ocean currents
v(x, t) ∈ [0m s−1, 1.4m s−1], which the vessel uses to reach its target region. Additionally,
we describe how we ascertain the realism of our ocean forecast simulation and the creation
of our obstacle sets, and the generation of a representative set of missions. Subsequently, we
explain our baseline methods and evaluation metrics.

Realistic Ocean Forecast Simulation In a real-world setting, a vessel can receive the
most recent forecast in regular intervals, e.g. daily, and provide it to the control methods to
perform replanning. We use ocean current hindcast data from Copernicus [35] and HYCOM
[20] for the region off the coast of California and Mexico between N15◦ and N40◦ and W160◦

and W105◦.
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Figure 7.3: Our method for safe navigation is based on re-planning on two timescales: 1)
compute safe Time-to-Reach map D∗ daily as new forecasts become available; 2) For every
timestep, e.g., 10 min, we extract u∗ from π(x, t), which is a policy equivalent to re-planning.
This is necessary, as the real currents v(x, t) differ from the forecasted currents v ̸= v̂, thus,
we will be in a different spatial state x than anticipated. Further motivation is provided in
the lower left image which displays the stranding rate of free-floating vessels over 10 days.

We simulate the system dynamics based on the hindcast as the true flow v(x, t) using
Copernicus hindcasts and use a series of 5 days of HYCOM hindcasts as forecasts for plan-
ning. It should be noted that, unlike HYCOM, Copernicus incorporates tidal currents into
its forecasts. We want to ensure a realistic simulation of the forecast error δ. This forecast
error can be measured with various metrics such as RMSE, vector correlation, and separa-
tion distance [35, 20]. In our simulations, these are on average 0.18m s−1 RMSE, which is
close to the validation RMSE of 0.19m s−1 of the HYCOM forecast error [94]. We measured
0.63 vector correlation compared to 0.64 for HYCOM [94] and 0.62 for Copernicus [35], each
measured at t = 71 h, with a value of 2 representing perfect correlation and 0 no correlation.
Thus, our simulation setup represents realistic situations well.

Obstacles derived from Bathymetry The bathymetry data we use is the GEBCO 2022
grid [41]. It is a continuous global terrain grid with a resolution of 15′′. We coarsen it to the
same resolution as the current data 5′ by using the maximum in each grid cell to overestimate
the elevation in each grid cell. Furthermore, we precompute a distance map corresponding to
the minimum distance to obstacle areas of depth under 150m for each cell of the grid. This
is done by employing a Breadth-First-Search starting in the obstacle area with a distance of
zero and exploring outwards. We use this distance as a switching condition for our baseline
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controller switching controller (Switch-MTR-no-Obs).

Large Representative Set of Missions We generate a representative set of 1146 start-
target missions M with the following procedure. We uniformly sample target points xT ,center
spatially in the region introduced in Sec. 7.3. We reject points with a minimum distance
below 0.5◦ to the boundary of the region or with a distance from obstacles below 0.025◦. We
want to generate missions with a higher risk of stranding, hence we limited the maximum dis-
tance from an obstacle to 3◦. We then uniformly sample the final times tT for a time horizon
of 10 days using data from 2022. To validate that each mission is feasible for MTR-no-Obs,
introduced in [141], given the true currents we calculate the backward reachable tube (BRT)
using HJ-MTR from xTcenter at tT . We then sample a start position from the BRT so we can
be sure that it is fundamentally possible for the ASV to reach the target within 5-9 days.
Finally, we define the target region T as a circular region with radius rT = 0.1◦ around
xT ,center. Note that the introduction of obstacles increases the difficulty of the mission and
renders some of these missions infeasible, as they can block a desired path.

Controllers It has been shown that navigating from start to target with an underactuated
ASV can be successfully done by hitchhiking ocean currents [128, 141]. However, their
controller MTR-no-Obs does not incorporate safety aspects into its value function. Our
work seeks to extend its capabilities by incorporating collision avoidance into planning [81].
Therefore, we compare the performance of several controllers to the baseline presented in
[141]. The first controller is the Passive Floating Controller (Floating), with an actuation of
u = 0. It is the same as we used in Sec. 7.3 and serves as a lower bound on performance to
show how complex it is to safely complete the missions. The second controller is a reactive
safety controller, meaning that it does not reason about currents for safety. Instead, it is a
switching controller with switching condition being the distance to the closest obstacle. If the
distance is below a threshold, the safety controller takes over and actuates with full actuation
away from the obstacle, i.e. in the direction of the largest distance to the obstacles. We set
the threshold to 20 km. Once the distance from the obstacles is greater than the threshold,
the navigation controller MTR-no-Obs takes over again. This is a simple method that adds
safety functionality to the baseline controller MTR-no-Obs. Our MTR is the controller we
presented in detail in Sec. 7.4. There are two ablations of the MTR. The switching controller
with obstacles (Switch-MTR) is a switching controller that uses MTR for navigation. The
switching condition is the same as for the MTR-no-Obs. The last controller that we examine
is the MTR with small disturbance (SmallDist-MTR), which is the MTR controller with
an unrealistically low disturbance of d = 0.05m s−1. As explained in Sec. 7.4 in a realistic
setting with δ = 0.2m s−1 we cannot be robust with an actuation of only umax = 0.1m s−1.

Evaluation Metrics We define our key metric stranding rate as the rate of a controller
entering the obstacle set O over the set of missions M. We further evaluate the reliability,
defined as the success rate of a controller over the set of missions M [141].
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Experimental Results

We evaluate the controllers performances over ||M|| = 1146 start-target missions and run the
simulation for Tmax = 240 h. If the ASV collides with an obstacle, we terminate the mission
and count it as stranded, if it reaches the target region within Tmax we count it as success,
if it does neither we count it as timeout. In complex flows with forecast errors and in close
proximity to obstacles, our controller MTR has a stranding rate of only 0.96%, compared to
4.71% of the baseline MTR-no-Obs (Table 7.1).

Next, we evaluate whether the stranding rate of our controllers is lower than the baseline
of MTR-no-Obs in a statistically significant manner by performing a one-sided two-sample
z proportion test for the other controllers. Let Γ be the stranding rate of a controller and
our null hypothesis be:

H0 : ΓMTR-no-Obs = Γcontroller. (7.11)

With the alternate hypothesis:

HA : ΓMTR-no-Obs > Γcontroller. (7.12)

The stranding rate of both controllers is higher than MTR-no-Obs in a statistically significant
way with p-values Switch-MTR-no-Obs p = 2.6e−3, MTR p = 3.1e−8, Switch-MTR p =
9.3e−7, SmallDist-MTR p = 9.5e−5). Furthermore, the success rate of MTR is not reduced
by safety and even shows the highest success rate.

Table 7.1: We compare the performance of multiple controllers, the arrows indicate if high, or low
is preferred. Our MTR significantly outperforms the other controllers with respect to the stranding
rate. The ∗ marks statistically significant lower stranding rates compared to the MTR-no-Obs.

Controller Stranding Rate ↓ Success Rate ↑

MTR 0.96%∗ 37.26%
Switch-MTR 1.31%∗ 37.17%
SmallDist-MTR 1.92%∗ 33.16%
Switch-MTR-no-Obs 2.53%∗ 36.82%
MTR-no-Obs 4.71% 36.91%
Floating 4.89% 2.53%

7.6 Conclusion

We note that our controllers exhibit a lower success rate than in [141]. We believe this
is due to three differences in the setup. First, the time-to-target for each mission in [141]
is between 20-120h with Tmax = 150 h, while our sampled time-to-target is 120-216h with
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Tmax = 240 h. Hence, our missions are longer and have smaller time buffers to reach the
target. In extreme cases, their missions are expected to finish in 20 h with 130 additional
hours to reach the target before Tmax, while in the worst case, our missions can have a 216 h
mission with a buffer of 24 h. Second, the sampling is feasible for MTR-no-Obs without
considering obstacles (Sec. 7.5). Hence missions may be unfeasible for MTR-no-Obs due to
stranding on obstacles and unfeasible for the other controllers, as it may take them time to
circumvent obstacles in the path. Third, we sample missions with a maximum distance to
shore of 3◦, exposing the vessels more to tidal currents near shore.

In this chapter, we have shown that HJ-MTR with obstacles can be used to reduce the
rate of stranding even in complex flows using daily forecasts with large errors. We evaluated
our method over a large set of 5-9 day start-to-target missions distributed spatially near the
Coast of California, Hawaii, and the Baja California area and temporally across the year 2022
using realistic ocean currents. In our experiments, our method has achieved a stranding rate
of 0.96% which is significantly lower than the baseline controllers and also has a slightly higher
success rate. While we have demonstrated the ability of our method with two-dimensional
ocean currents, we emphasize that it is also applicable in a three-dimensional setting such
as underwater or in the air and objectives other than navigation. Furthermore, HJ-MTR is
able to handle dynamic constraints [31]. However, including dynamic obstacles such as ships
that move fast and change their course during the day could require a higher frequency of
replanning to account for those course changes, resulting in higher computational costs.

In the future, we plan to model zones of a potential hazard, e.g. shipping lanes and garbage
patches, as soft constraints, where instead of preventing entering altogether the agent should
minimize the time spent therein. By reducing time in shipping lanes, an ASV could avoid
many vessels. As of now, it is also unknown how underactuated ASVs would be classified
under the COLREGS and if evasion is necessary or if they should stop their propulsion to be
floated along other vessels [131, 132]. Getting the rotors of an ASV entangled in the garbage
can render it inoperable, hence it is beneficial to avoid areas with a larger density of garbage
such as the center of the GPGP, while not making the whole 1.6 million km2 [70] of the
GPGP an obstacle to avoid. We can investigate using a risk-based extension of a soft-edge
and dynamic forbidden region [81, 130].
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Chapter 8

Operating Multiple Robot Vessel in
Flows

This chapter is based on the paper “Safe Connectivity Maintenance in Underactuated
Multi-Agent Networks for Dynamic Oceanic Environments” [48], written in collabora-
tion with Nicolas Hoischen and Claire Tomlin.

8.1 Introduction

So far we only considered single agent robotics systems in this thesis. However, in many
applications, it is beneficial to operate multiple agents that communicate among each other
for various purposes, such as coordination to achieve a joint objective, to ensure internet
coverage [52], or to reduce the amount of communication needed to an external centralized
controller. Local communication often relies on limited-range systems, for example sonar or
radar, requiring agents to stay close to each other for network connectivity (see Fig. 8.1).

In Parts II and III we demonstrated that an agent can achieve its objective, be it station-
keeping of balloons or navigating in the oceans, with very little energy by going with the
flow : drifting on flows and using its small actuation strategically to nudge itself into beneficial
flows.

In this chapter, we want to bring these developed controllers to multi-agent networks
operating in complex flows. The DP approaches we have developed provide a value function
that yields optimal individual agent controls for an arbitrarily high number of agents at the
cost of a cheap gradient computation. This is especially powerful for multi-agent problems
where the objective can be decomposed into the sum of independent single agent objectives;
for example, in floating seaweed farms, the seaweed growth of each agent does not depend
on the growth of other agents [60]. Given such individual agent performance controllers,
our goal is to develop a method that ensures the safe interaction of multiple underactuated
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Figure 8.1: Our LISIC policy blends a single agent performance control input with a
flocking-based safety control input to avoid connectivity losses and collisions in a multi-
agent network, while minimally interfering with the performance objective of each agent.
This ensures safe performance in ocean environments with strong ocean currents affecting
the low-powered agents.

agents operating in complex flows. Specifically, safe interaction in terms of maintaining
network connectivity and avoiding collisions.

From the control perspective, this is challenging because of two key reasons. First, in
the underactuated setting disconnections are sometimes unavoidable as the non-linear, time-
varying flows can push agents in opposing directions. The safe interaction controller needs to
be resilient and recover connectivity after it was lost. Second, constraint satisfaction needs
to be traded off intelligently with the performance objective of each agent, as they can often
be in conflict. For example, a time-optimal controller for an agent would prefer to stay in
strong flows, whereas the safe interaction controller needs to trade this off with maintaining
connected to other agents (Fig. 8.1).

Our insight is that the structure of this problem allows us to tackle the multi-agent
problem with three different controllers in a Hierarchical Control of Multi-Agent-Systems
(H-MAS) approach (Fig. 8.1).

The literature contains various approaches that are relevant for this work. H-MAS can
be viewed from the perspective of hierarchical reinforcement learning [103], which shares
substantial similarities with our approach of breaking down complex tasks into two more
manageable subtasks. In H-MAS, agents are organized into multiple levels of hierarchy, with
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higher-level agents having more authority and control over lower-level agents, designated as
followers [33]. For instance, [83] solves path planning and ocean vehicles coordination sepa-
rately with a hierarchical leader-follower structure. Graph methods provide a solid theoret-
ical foundation for analyzing connectivity properties in distance-based control applications
[21]. Our interest is drawn to flocking techniques incorporating a single agent navigation task
via a dynamic virtual leader, the γ-agent [100], which maintain connectivity by influencing
the agents’ behavior to follow the movement of their neighbors, while avoiding collisions.
Extensions to multiple virtual leaders are proposed in [126, 125, 77] which hold promise for
the generalization of virtual leaders as performance controllers. While most of the flocking
schemes generally assume simple double integrator dynamics, adaptive flocking also emerged
to handle non-linear uncertain dynamics [148, 140, 151, 155]. More recently, Model Predic-
tive Control (MPC) has been successful in ensuring connectivity and collision-free operation
in Multi-Agent-Systems (MAS) [18].

MPC approaches to connectivity or safety [18, 139], in addition to being computationally
intensive, often assume position-invariant dynamics, which do not hold in dynamic ocean
environments. This motivates a cheaper reactive strategy approach in this context. Deter-
mining the follower position with respect to the leader in [83] requires solving an additional
optimization problem to achieve formation control, adding complexity and feasibility issues
for underactuated agents. On the other hand, adaptive and robust flocking schemes rely on
overactuated agents to overcome disturbances. Adaptive flocking in underactuated systems
has been considered using a Radial Basis Function Neural Network (RBF-NN) to approxi-
mate uncertain non-linear dynamics [106], but can easily overfit the training data, which is a
significant concern given the sparse and stochastic nature of ocean data. Existing literature
on flocking has primarily focused on tracking a reference trajectory of a virtual leader or
multiple virtual leaders. However, in complex flows, an optimal feedback control policy leads
to significantly better results than tracking a reference trajectory [141].

To address the above shortcomings, we propose a safe interaction control policy Low In-
terference Safe Interaction Controller (LISIC), blending a single agent performance controller
with a flocking-inspired safe controller. In addition to ensuring the safe operation of the net-
worked agents in terms of avoiding collisions and maintaining connectivity, our approach
also enables recoveries in case of connectivity failures. The dynamics of communication
and information sharing could then later be handled on another level with a Plug-and-Play
control scheme [1], but is not within the scope of this work. In Sec. 8.2, we introduce impor-
tant background and relevant metrics to measure connectivity in terms of time and network
topology, as well as a single agent performance trade-off. We show our results theoretically
in Sec. 8.3 and Sec. 8.4. Finally, we assess the performance of our approach by conducting
a large-scale empirical evaluation with agents that are underactuated in the sense that their
propulsion is smaller than the surrounding flows.
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8.2 Problem Formulation

In this section we first describe the systems dynamics and give a brief summary of connect-
edness in communication graphs. Then we define our problem statement and the metrics we
use to measure constraint violation.

System Dynamics

We consider a swarm of N agents and use V to describe the set of all agents. The dynamics
for each agent i ∈ V are given by:

q̇i = v(qi, t) + g(qi,ui, t), t ∈ [0, T ] (8.1)

qi ∈ Rn denotes the position of agent i in the n dimensional state space, where n = 2 for a
surface vessel on the ocean. The movement of the agent i depends on the drift of the sur-
rounding flow v(qi, t) and the bounded control ui ∈ U ∈ Rnu where nu is the dimensionality
of the control. Let the agent trajectory resulting from Eq. (8.1) be described by ξi with
ξi(t) the state qi at t. For the global system of all N agents, we use q = [q⊤

1 , q
⊤
2 , . . . , q

⊤
N ]

⊤,
u = [u⊤

1 ,u
⊤
2 , . . . ,u

⊤
N ]

⊤, and ξ respectively to describe the state, control, and trajectory.

Communication Graph Preliminaries

The network topology of our Multi-Agent-Systems with state q can be represented with a
graph abstraction in order to model interactions among agents. The communication graph
G(t) can be built from a set of finite vertices V = {1, 2 . . . N} representing individual agents
and a time-varying set of edges E(t) ⊆ {(i, j) ∈ (V × V), j ̸= i} representing direct commu-
nication between agents. We focus on undirected graphs implying that information can flow
between agents in both directions. We further assume that only neighbors that are spa-
tially close with respect to a distance measure d(qi, qj) can communicate directly with each
other. Given an upper communication threshold Rcom, the pair of vertices i, j is connected
by an edge d(qi, qj) < Rcom ⇐⇒ (i, j) ∈ E(t). The graph G(t) is said to be connected
if there exists an undirected path between every pair of distinct vertices. We can analyze
the connectivity of the graph with its Laplacian matrix L which is a symmetric and positive
semidefinite matrix based on the adjacency and the degree matrix that we define next. The
adjacency matrix A(t) is a binary matrix n × n that encodes which vertices are connected
to each other A(G(t)) = [aij(t)] ∈ {0, 1} with aij(t) = 1 ⇐⇒ (i, j) ∈ E(t).

The valency or degree of a vertex i is denoted by deg(i, t) and represents the number
of its incident edges, which is the row sum of the adjacency matrix deg(i, t) =

∑N
j=1Aij(t).

The degree matrix D is then defined as the diagonal matrix D(G(t)) = diag (deg(i, t)). The
Laplacian matrix L can then be inferred as L(G(t)) = D(G(t))−A(G(t), which is a symmetric
and positive semidefinite matrix. The eigenvalues of L let us measure the connectivity of
the graph. In particular, the second smallest eigenvalue λ2(L(G(t)) is commonly called
the algebraic connectivity or Fiedler value of the network and captures the robustness of the
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network to link failures. The graph G(t) is connected only if and only if it is strictly positive,
that is, λ2(L(G(t))) > 0 [93, 18, 149].

Problem Statement

We focus on multi-agent problems where the joint objective is the sum of independent ob-
jectives Pi which can be sketched as:

min
π

N∑
i=1

Pi(ξi,ui(·)) (8.2)

s.t. ∀ t ∈ [t0, T ]

ξ̇(t) = v(ξ(t), t) + π(ξ(t)) global dynamics Eq. (8.1)

d(ξi(t), ξj(t)) > Rcoll (i, j) ∈ V × V, i ̸= j (8.3)

λ2(L(G(ξ(t), Rcom))) > 0 (8.4)

The goal is to find the control policy π. The agents are coupled in only two constraints:
the collision constraint (Eq. (8.3)) where d(qi, qj) represents the distance between agent i
and j and Rcoll the minimum safe distance, and second, in maintaining a graph where all
agents are connected to each other based on the communication range Rcom (Eq. (8.4)). Our
insight is that in these settings we can decompose the problem and handle the objectives
and constraints on different levels with (1) a performance controller πperf for each agent, (2)
a safety controller πsafe, and (3) a low-interference safe interaction controller πLISIC trading
off the two (Fig. 8.1).

The performance controller of an agent i minimizes its (πperf )i = argminπi Pi(ξi,ui(·))
only considering its own dynamics qi (Eq. (8.1)). πperf can be an arbitrary control policy,
from a fixed control signal to a feedback controller based on learning or dynamic programming
(Sec. 8.5). In challenging settings like ours with nonlinear, time-varying dynamics, it is easier
to design single agent feedback controllers than solving the coupled multi-agent problem,
e.g. for time-optimal navigation, reference tracking, or optimizing seaweed growth [60]. The
safety controller πsafe, determines the control for all agents to ensure that the interaction
constraints are satisfied (Eq. (8.3), (8.4)). Lastly, based on the control inputs uperf and
usafe from the respective policies, the safe interaction controller decides the agents final
control inputs u = πLISIC(uperf ,usafe). To achieve good performance, the safe interaction
controller should not interfere too much with uperf while still ensuring connectivity and
avoiding collisions.

In this work, we focus on designing πsafe and πLISIC for an arbitrary πperf . In Sec. 8.4
we prove that our method guarantees constraint satisfaction under certain conditions on the
maximum magnitude of the control U and the flow field velocities v across the agents. Addi-
tionally, we test how our method performs in realistic ocean currents where these conditions
are not always met and quantify constraint violations with the metrics we define below.
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Constraint Violation Metrics

As in some settings it is impossible to guarantee constraint satisfaction, we now define the
metrics we use to evaluate how much the constraints are violated in our experiments in Sec.
8.5. A collision occurs between any of the agents in the swarm if ∃t ∈ [0, T ] at which Eq.
(8.3) is violated. We denote this with the collision indicator Icoll ∈ {0, 1}.

To measure various aspects of losing connectivity, we use three metrics. First, for a binary
measure, if disconnections occur, we define the disconnection indicator Idisconn ∈ {0, 1} which
is 1 if ∃t ∈ [0, T ] at which Eq. (8.4) is violated and zero otherwise.

As we are also interested in the networks’ robustness against connectivity losses or link
failures, we additionally measure the minimum Fiedler value over time, the higher the more
robust the communication network (Sec. 8.2):

λmin2 = min
t∈[0,T ]

λ2(L(G(ξ(t), Rcom)) (8.5)

Lastly, it often matters for how long an agent is isolated from all other agents. Therefore,
we introducing a new measure that we call IPM

IPM =
1

T

∫ T

t=0

M(deg(i, t) = 0) dt (8.6)

where M(deg(i, t) = 0) counts the number of disconnected vertices, which corresponds to
the number of zeros in the diagonal of the graph degree matrix D(G(ξ(t), Rcom) (Sec. 8.2).

In our simulations, we empirically compare the constraint violation of different controllers
over a large, representative set of missions M by evaluating the collision rate Eq(t0),t0∼M [Icoll],
the disconnection rate Eq(t0),t0∼M [Idisconn], as well as the distributions of IPM and λmin2 . In our
setting where the performance objectives Pi are the minimum time-to-target for each agent i,
the connectivity constraint often leads to a trade-off with the performance objective. Hence,
we also quantify the degradation of the performance controller by quantifying the minimum
distance the swarm center got to the target area T during the mission time t ∈ [0, T ] as
dmin(T ).

8.3 Method

Our method tackles the multi-agent problem with a hierarchical control approach. The low
interference safe interaction controller πLISIC ensures performance and safe control based on
an arbitrary performance controller πperf and a safety controller πsafe (see Fig. 8.1). We
first introduce our flocking-inspired safety controller based on potential functions and then
detail our design for πLISIC . For ease of understanding, we assume holonomic actuation
g(x, u, t) = u, but note that the method can be generalized.
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Flocking-Inspired Safety Controller

The sole objective of the safety controller is to ensure adequate distances between agents
such that their communication graph is connected and that they do not collide with each
other. We are inspired by the reactive flocking approaches for achieving ideal inter-agent
distances without prescribing a formation. Hence, we design our safety controller πsafe based
on the gradients of a potential function ψ.

To explain the principle, let us first focus on just two agents i and j that are connected
and are at an inter-agent distance

∥∥qij∥∥2
=

∥∥qi − qj
∥∥
2
. Consider the following bowl shaped

potential function

ψconnected(
∥∥qij∥∥2

) =
κRcom∥∥qij∥∥2

(
Rcom −

∥∥qij∥∥2

) , (8.7)

where κ > 0 is a tuning factor to adjust the bell shape (see left of Rcom in Fig. 8.2).
Let the safety controllers for i be ∇qi

ψconnected(
∥∥qij∥∥2

) and for j ∇qj
ψconnected(

∥∥qji)∥∥2
=

−∇qi
ψconnected(

∥∥qij∥∥2
). When those two agents are getting too close

∥∥qij∥∥2
→ 0 the potential

ψ(
∥∥qij∥∥2

) goes to infinite, so the gradient-controllers are a strong repulsive force that pushes
them away from each other. Conversely, when the two connected agents are at risk of losing
their communication link

∥∥qij∥∥2
→ Rcom then ψ(

∥∥qij∥∥2
) → inf which means the gradient-

controllers result in a strong attractive force that brings them closer again. For multiple
agents, the control becomes the sum of gradient potential terms of the other agents, and the
magnitude of the gradients helps prioritize the critical inter-agent distances qij.

When the agents are disconnected, which is sometimes unavoidable in underactuated
settings where strong flows push them apart, we want them to reconnect. Therefore, our
final potential function is augmented with a second term that accounts for agents outside
their communication range Rcom to encourage achieving connectivity between disconnected
agents [146]. This results in our final potential function ψ(z) : R≥0 → R>0 that is also
visualized in Fig. 8.2:

ψ
(∥∥qij∥∥2

)
= σij

κRcom∥∥qij∥∥2

(
Rcom −

∥∥qij∥∥2

)︸ ︷︷ ︸
for connected agents

+ (1− σij)
√(∥∥qij∥∥2

−Rcom + ϵ
)︸ ︷︷ ︸

for disconnected agents

.

(8.8)

where σij is an edge indicator similar to aij in Sec. 8.2 but with an hysteresis parameter ϵ
defined below in (8.9). Hence, ψ

(∥∥qij∥∥2

)
switches between two terms to determine whether

the pair of agents (i, j) is within the communication range (σij = 1) or disconnected (σij = 0
)[146]. The hysteresis mechanism avoids constant switching of the dynamical network with
multiple agents for edges close to Rcom and helps preserve connectivity in reactive control
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schemes [54].

σij[t] =


0, if

(
(σij [t

−] = 0) ∩
(∥∥qij∥∥ ≥ Rcom − ε

))
∪
(
(σij [t

−] = 1) ∩
(∥∥qij∥∥ ≥ Rcom

))
,

1, if
(
(σij [t

−] = 1) ∩
(∥∥qij∥∥ < Rcom

))
∪
(
(σij [t

−] = 0) ∩
(∥∥qij∥∥ < Rcom − ε

))
,

(8.9)

where ϵ > 0 is the switching threshold inducing a hysteresis in the process of adding new
links to the flock.

Our approach yields a relatively low attraction force for agents far outside of their com-
munication range. This is a design choice in the context of underactuated agents in a dynamic
oceanic environment, where remote flock members can experience strong divergent flows and
direct connectivity may be infeasible or undesirable to achieve.

The final safe interaction controller for each agent i with maximum propulsion Umax,i is
then defined as

(πsafe)i(q) = −
∑N

j=1∇qi
ψ
(∥∥qij∥∥2

)∥∥∥∑N
j=1∇qi

ψ
(∥∥qij∥∥2

)∥∥∥
2

Umax,i (8.10)

Low Interference Safe Interaction Controller

For our πLISIC that trades off the performance inputs uperf with the safety inputs usafe we
propose an approach that weights these control vector inputs for each agent i depending on
the risk of losing connectivity or colliding.1

ui = (πLISIC)i(uperf ,usafe) = c
(1)
i usafei + c

(2)
i uperfi , ∀i ∈ V (8.11)

where c
(1)
i and c

(2)
i are weighting factors. Note that usafei =(πsafe)i(q) depends on the other

agents positions to guarantee safe interactions.
When collisions or connectivity losses are imminent, ui should be able to rapidly tend

to usafei to prioritize safety over performance, i.e. c
(1)
i → 1 and c

(2)
i → 0 (Fig. 8.1 B, C).

Conversely, when the network is well connected and there is low danger of collisions, ui
should align with uperfi to have low interference with the agent’s performance control, i.e.

c
(1)
i → 0 and c

(2)
i → 1 (Fig. 8.1 A).

Hence, we defined a weighting function α(q) : RN → [0, 1] such that c
(1)
i = α(q) and

c
(2)
i = 1 − α(q). 8.5. This function α(q) measures the urgency of ui to converge to usafei

and we define it as

c
(1)
i = α

∥∥∥∥∥
N∑
j=1

∇qi
ψ
(∥∥qij∥∥2

)∥∥∥∥∥
2

 (8.12)

1For ease of understanding we derive the controller assuming holonomic actuation g(x,u,t) = u but note
that it can be extended to more general actuations.
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Figure 8.2: Augmented potential function, with two terms to account for agents within the
communication range and agents outside the communication range Rcom. A high κ parameter
is shown to increase the steepness of the slope around Rcom

2
, depending how achieving the

exact ideal distance is valued

The function α can be thought as a monotonically increasing safety activation function taking
values between [0, 1] depending on the (unbounded) magnitude of it’s argument. From the

definition of ψ
(∥∥qij

∥∥
2

)
in (8.8), lim‖qij‖2

→0 ψ
(∥∥qij

∥∥
2

)
= ∞ and lim‖qij‖2

→Rcom
ψ
(∥∥qij

∥∥
2

)
=

∞. Hence, in critical situations
∥∥∥∑N

j=1∇qi
ψ
(∥∥qij

∥∥
2

)∥∥∥
2
becomes very large so that c

(1)
i satu-

rates to 1 and c
(2)
i to 0, thus prioritizing the network safety for the concerned agents i ∈ V

i.e. ui → usafe
i , over the individual objectives of each agent uperf

i .
In other words, ψ

(∥∥qij

∥∥
2

)
has a contractivity property for agent inter-distances at

the boundary of the safe set, defined by 0 and Rcom, similarly to Control Barrier Func-
tions (CBFs) [2]. With this design, we ensure that agents moving from a disconnected
state σij = 0 to a connected state σij = 1, experience a strong attracting gradient usafe

i to
avoid escaping the communication range again. From Fig. 8.2 it is also clear that when
the network is close to being ideally connected, the gradient norm of the potential function∥∥∥∑N

j=1 ∇qi
ψ
(∥∥qij

∥∥
2

)∥∥∥
2
is low, so that the agent is’ control input is dominated by the per-

formance controller since c
(1)
i → 0 and c

(2)
i → 1.
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8.4 Theoretical Analysis

In this section, we analyze the conditions under which our safe interaction controller is able
to maintain connectivity and avoid collisions. Here we sketch out the proof, which can be
found in full length in the Appendix A and the Master Thesis of Nicolas Hoischen [47].

Energy-based analysis and LaSalle’s invariance principle are commonly utilized to obtain
analytical guarantees for flocking. These methods establish the stability of the system and
demonstrate that the flock converges to a lattice structure while preventing inter-agent col-
lisions, as demonstrated in [100]. The collective structural dynamics can be derived using
a moving referential [100] with respect to the flock centroid qc. The relative coordinates
are given by q̃i = qi − qc and q̃ij = q̃i − q̃j = qij. Therefore, ψ

(∥∥qij∥∥2

)
= ψ

(∥∥q̃ij∥∥2

)
,

and the total tension energy or potential energy for the structural dynamics in the relative
coordinates yields

H(q̃) =
1

2

N∑
i=1

N∑
j=1
j ̸=i

ψ
(∥∥q̃ij∥∥2

)
(8.13)

A possible approach, although conservative, is to show that a global tension energy decrease
of the system Ḣ =

∑n
i=1 Ḣi ≤ 0 can be achieved by guaranteeing local tension energy

decrease ∀i ∈ V . Assume that G(t) switches at time tl for l = 0, 1, 2 . . . and Ḣ ≤ 0 on
each [tl, tl+1). Then, at the switching time k, H(tk) = H(t−k ) + ψ (∥Rcom − ϵ∥) [146]. As the
graph topology becomes fixed after a certain time and only a finite number of maximum
edges can be added, the energy can be shown to be bounded for any subsequent time. The
time-derivative of Hi along the trajectory of agent i yields

Ḣi = ˙̃q⊤
i

N∑
j=1
j ̸=i

∇q̃i
ψ
(∥∥q̃ij∥∥2

)
(8.14)

where we exploited the relation ∇qi
ψ
(∥∥qij∥∥2

)
= −∇qj

ψ
(∥∥qij∥∥2

)
. Substituting ˙̃qi = q̇i− q̇c

into Eq. (8.14) and by applying the Cauchy–Schwarz inequality after some iterations, we
obtain that Ḣi ≤ 0 holds if:∥∥∥c(2)i uperfi (qi) + v (qi)− Ave (q̇Ni)

∥∥∥
2
≤ c

(1)
i Umax,i (8.15)

where Ave (·) denotes the average and the set Ni = V \ {i} the neighboring agents of i. The
dynamics of the other agents are also defined by their surrounding flow and their individual
control inputs such that Ave (q̇Ni) = Ave (v(qNi)) + Ave (uNi).
The agents do not necessarily need to be overactuated despite strong flows to achieve a
local energy decrease (Ḣi ≤ 0). If the currents experienced by agent i are of magnitude
and direction similar to the average current experienced by neighboring agents, then v (qi)
compensates Ave (v(qNi)) and Eq. (8.15) can be fulfilled even if ∥v (qi)∥2 > Umax,i. The
neighboring flocking control inputs Ave (uNi) also help to account for the current difference
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term v (qi)−Ave (v(qNi)). If ∥v (qi)− Ave v(qNi)∥2 ≫ Umax,i, satisfying Eq. (8.15) becomes
challenging, which can occur if agents experience strong divergent currents. Under these
assumptions, we can show that Ḣ ≤ 0, which allows us to bound the maximum energy
and apply LaSalle’s Invariance Principle [146], [140], thus ensuring that no collisions or
disconnections occur, since ψ(

∥∥qij∥∥2
)→ ∞ when

∥∥qij∥∥2
→ 0 or

∥∥qij∥∥2
→ Rcom. Condition

Eq. (8.15) is sufficient but not necessary to guarantee Ḣ < 0, as negative local energies can
compensate for positive ones.

8.5 Simulation Study

In the following section, the proposed flocking control scheme is evaluated on realistic ocean
currents. We use Multi-Time HJR as a single agent performance controller, since it generates
one value function yielding the time-optimal control for all agents at once [141].

Experimental Set-Up

We study the effectiveness of different controllers in maneuvering a two-dimensional ASV
with holonomic actuation of fixed thrust magnitude ∥u∥2 = 0.1 m/s. The control input
in this context is the thrust angle θ. We consider a group of identical n = 30 ASVs with
omnidirectional communication capabilities, navigating in strong ocean currents v(q, t) ∈
[0.3m/s, 2m/s], where each agent aims to reach a common predefined target, so that the
group objective can be considered as the center of the flock reaching the target. In the
following, we describe the creation of simulation experiments in a realistic ocean environment
and how we obtain a large set of missions to best illustrate trade-offs between single-agent
performance and flock connectivity maintenance.

Realistic Simulation of Ocean Conditions We focus on the Gulf of Mexico region
(Fig. 8.3), as it presents interesting and challenging currents. As explained in Chapter 2.2,
we employ two sources of ocean current data that we refer to as HYCOM hindcast [20] and
Copernicus hindcast [35] which we use as forecast for realistic scenarios. The ocean cur-
rent data and the forecast error introduced are particularly relevant to the multi-time HJ
reachability controller, as it uses the forecasted currents to plan on, which impacts the per-
formance of the time-optimal nominal controller. We propose two settings to investigate our
approach, namely (a) performance HJR planning on hindcast and multi-agent simulation on
hindcasts (HC-HC) and (b) performance HJR planning on forecast and multi-agent simula-
tion on hindcasts (FC-HC). The first allows us to assess performance in an idealized setting
where true flows are known, whilst the second reflects a realistic application in dynamic
ocean environments.

Large Representative Set of Missions We assume that all agents start a navigation
mission to a target region T at the same time t0. The navigation objective is to drive the
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Figure 8.3: We sample a large set of missions |M| = 1000 in the Gulf of Mexico that are
spatially and temporally representative of realistic scenarios.

ASVs from their start states (q1(t0) . . . qn(t0)) to T in the maximum allowed time Ttimeout.
The target T is defined as a circular region with center coordinates qT and fixed radius
rT = 0.1◦ around it. To obtain a diverse set of missionsM, the starting times t0 are uniformly
sampled between April 2022 and December 2022. Ttimeout is set to 144 h, and the starting
points are sampled so that agents can reach the target in [72, 144]h. This ensures that
missions are feasible with true flow data and temporally representative of realistic scenarios.
To prevent stranding, we impose a minimum distance of 111km between the target area
and the land and a minimum distance of 40km between each ASV’s initial position and the
land. We generated a total of |M| = 1000 missions of initially connected and collision-free
networks ( see Fig. 8.3).

Baseline controllers

We build on recent work that proposed a reliable multi-time HJR controller for underactu-
ated agents utilizing complex flows [141]. This approach directly extends to multiple agents
with little extra computation, and the feedback controller for agent i can be obtained from
an optimal value function J ∗ at time t as ui(t)

∗ = argminui∈U g(qi,ui, t) · ∇qi
J ∗(qi, t).

All evaluated controllers use the multi-time HJR formulation for single-agent performance
control. Our baseline scheme, called HJR-Baseline, involves each agent only utilizing its
time-optimal performance control HJR without considering multi-agent interactions. Thus
our baseline also provides a good likelihood estimation of collisions and communication losses
if each agent were to rely solely on its performance control. In addition, we define a second
baseline controller from [108], denoted as HJR-Reactive. This controller operates in three
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modes: achieveConnectivity, maintainConnectivity, and GoToGoal, which are
selected based on the ASVs’ relative positions. The maintainConnectivity and GoTo-
Goal modes employ a general navigation function for each agent, which we instantiate to
our HJR performance controller. This approach is easily integrated with the time-optimal
control HJR, and the reactive control term can be implemented in a decentralized manner.

Finally, we define our LISIC as HJR-Flocking with the safe interaction controller Eq.
(8.10), where we also implement HJR as the single agent performance controller uperfi . The
trade-off between each agent’s navigational objective and the safe network interaction can
be tuned with two parameters. First, the shape of the potential function (Fig. 8.2) can
be more or less flat around the ideal distance Rcom/2. In this application, we set κ = 2.

Furthermore, we now detail our weighting scheme for c
(
i1) and c

(
i2) via the definition of α

Eq. (8.12) as a softmax-like function

c
(i)
1 =

e∥
∑n

j=1 ∇qiψ(∥qij∥2)∥2

e∥
∑n

j=1 ∇qiψ(∥qij∥2)∥2 + eρ
, ∀i ∈ V . (8.16)

where the parameter ρ ≥ 0 can be adjusted to achieve faster saturation of the gradient term
of the potential function usafei (q).

Additional Evaluation Metrics

The upper connectivity bound Rcom in Eq. (8.4) and Eq. (8.9) is set to 9km, which cor-
responds approximately to radio communication capabilities for ASV and we set the lower
collision threshold from Eq. (8.3) to Rcoll = 100m, such that the ASVs would still have
some margin in real conditions. Moreover, we also set the edge hysteresis parameter from
Eq. (8.9) to ϵ = 300m. We use the Euclidean norm to measure the distances between agents
d(qi, qj) and the minimum flock center distance to the target dmin(T ).

Numerical results

The results when the true currents are known (HC-HC) and in the realistic scenario where
only forecasts are available (FC-HC) are presented in Table 8.1. Both HJR-Flocking and
HJR-Reactive exhibit superior performance in terms of connectivity and collision metrics
compared to the baseline HJR. Thus, we conduct statistical testing to compare HJR-Reactive
and HJR-Flocking. Regarding disconnection and collision rate, we perform a one-sided two-
sample z proportion test for HJR-Flocking against HJR-Reactive.

Let Γ be the rate of collision or disconnection over M with the null hypothesis be-
ing H0 : ΓHJR-Flocking = ΓHJR-Reactive to reject in favor of the alternative hypothesis HA :
ΓHJR-Flocking < ΓHJR-Reactive. HJR-Flocking is statistically significantly better than HJR-Reactive
at avoiding disconnections in both (HC-HC) and (FC-HC) scenarios, with p-values of p =
6.3e−69 and p = 1.7e−114, respectively. However, it is not significantly better than HJR-Reactive
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Figure 8.4: IPM. Left evaluated on the set of all missions M, right on the missions where
HJR-Flocking failed only. Due to its low IPM, HJR-Flocking typically has both a low
disconnection time and a low number of disconnected agents.

at avoiding collisions. To compare the means over |M| of µ(IPM) and µ(λmin2 ) for connec-
tivity and dmin (T ) for the performance trade-off, we performe a Welch’s t-test due to the
unequal variances of HJR-Reactive and HJR-Flocking. HJR-Flocking leads to statistically
significantly better results for network connectivity with p < 1e−30 for µ(IPM) and µ(λmin2 )
for both (HC-HC) and (FC-HC) scenarios. Due to its higher value of µ(λmin2 ), HJR-Flocking
is more robust against disconnections; see Fig. 8.5 and should be the preferred control choice
for communication maintenance.

Moreover, we plot the IPM for the three controllers in Fig. 8.4 for two cases, (1) the IPM
evaluated on the full set of missions |M| (2) on a subset of missions where flocking failed to
maintain connectivity. Among the three controllers evaluated, HJR-Flocking has the lowest
IPM. Taking into account the missions where HJR-Flocking failed to maintain connectivity,
it still achieves a shorter disconnection time or fewer disconnected agents than the HJR-
Baseline, but it is not as distinguishable from the HJR-Reactive controller. Interestingly,
HJR-Reactive yields a statistically significantly better outcome for the objective trade-off
µ (dmin (T )) with p-values p < 1e−40 in both (HC-HC) and (FC-HC). Finally, Fig. 8.6
illustrates a navigation mission, comparing a naive multi-agent approach (HJR-Baseline) to
our safe interaction controller, HJR-Flocking.
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Figure 8.5: The minimum Fiedler value λmin2 can be used as a graph connectivity mea-
sure. HJR-Flocking has the highest minimum Fiedler value, which ensures better robustness
against connectivity failures.

Figure 8.6: Comparison of the HJR-Baseline with the low interference safe interaction con-
troller HJR-Flocking. HJR-Flocking (right) guarantees communication through the full
length of the mission, avoids collisions and ensures that all agent reach the target.
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Coll. Disconn. µ(IPM) ↓ µ(λmin2 ) ↑ µ (dmin (T )) ↓

πperf plans on true flows

HJR-Baseline 68.5% 50.1% 0.37 0.39 0 km
HJR-Reactive 0% 44.8% 0.19 0.42 0.14 km∗

HJR-Flocking 0.7% 9.9%∗ 0.05∗ 1.15∗ 5.90 km

πperf plans on forecast

HJR-Baseline 39.1 % 70.5% 0.92 0.23 10.55 km
HJR-Reactive 0% 58% 0.23 0.30 10.84 km∗

HJR-Flocking 0.7% 9.9%∗ 0.043∗ 1.15∗ 13.96 km

Table 8.1: We compare the performance of multiple controllers in two forecast settings. The
∗ marks a statistically significant better performance of either HJR-Reactive or HJR-Flocking
for the connectivity metrics µ(IPM), µ(λmin2 ) and the performance metric dmin (T ). Re-
garding the collision rate (Coll.) and disconnection rate (Disconn.), ∗ denotes a statistically
significant conclusion that HJR-Flocking leads to a lower collision or disconnection rate re-
spectively.

Discussion

It is clear that HJR-Flocking outperforms HJR-Reactive and the HJR-Baseline in terms of
connectivity metrics. Interestingly, HJR-Flocking leads to a slightly higher collision rate
in Table 8.1 than HJR-Reactive. We believe that it is mainly due to two reasons: (1) In
HJR-Reactive the expected risk of collisions is inherently lower as each agent can achieve
connectivity with a maximum amount of two other agents while HJR-Flocking achieves a
similar structure to a lattice configuration [100] (2) In our example, all agents navigate to the
same target, which also increases the risk of collisions, as it is a common implicit regularizer.
We expect improvement in terms of collision rate for application to autonomous ASVs, where
each agent maximizes an objective along its trajectory [60]. The discrepancy between the
performance trade-off with each agent target reaching objective dmin (T ) in Table 8.1 is
less noticeable in the (FC-HC) setting, since the HJR performance is also degraded due to
stochastic error when planning on forecasts [141].

8.6 Conclusion

In this chapter, we proposed a H-MAS approach to maintain network connectivity in complex
dynamical flows while satisfying the single agent objectives when feasible. Our method blends
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a network safety controller for collisions and connectivity maintenance with a performance
control policy, which allows us to decompose a complex multi-agent problem effectively.
Our Low Interference Safe Interaction Controller prioritizes a safe control input from a
flocking-inspired potential function in critical scenarios. We showed that connectivity can
be maintained and collision avoided in underactuated agents, as long as the flow dynamics
divergence between neighboring agents can be compensated for. Our empirical results in
realistic ocean dynamics showed that our method efficiently maintains connectivity and
avoids collisions in most scenarios, while reasonably trading off with each agent’s performance
objective. Future work includes leveraging the agent’s dynamics with forecast flows to predict
future disconnections or collisions using predictive methods [18]. We anticipate that these
methods will perform well on the true flow scenario (HC-HC) but may exhibit a performance
drop when stochastic error is present as in the (FC-HC) scenario. It will be interesting to
evaluate whether the additional computational cost of predictive methods pays off.
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Part V

Conclusion and Future Directions
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Chapter 9

Conclusion

The primary objective of this dissertation was to explore the potential of operating under-
actuated robotic systems by going with the flow : letting the system drift in natural flows
in the oceans and skies and strategically using a small engine to change flows when benefi-
cial. Compared to using powerful engines for operation, this paradigm requires 2-3 orders
of magnitude less power and energy and hence enables applications that were prohibitively
expensive before, e.g., floating seaweed farms for Carbon Dioxide Removal (CDR), floating
solar farms, long duration and active monitoring of the oceans and atmosphere. Throughout
this thesis we have developed techniques that tackle the four key challenges of this paradigm:
(a) the severe underactuation of the system with respect to the surrounding flows, (b) only
coarse, deterministic forecasts are available, (c) the large forecast error that is often larger
than the propulsion of the system, and (d) the limited forecast horizon of 5-10 days when
the control objective can be over months.

In part II, we focused on establishing optimal control strategies when the flows are known.
We developed these strategies based on dynamic programming principles and introduced two
formulations. First, Multi-Time Reachability, which is particularly suited for analysis and
navigation of systems in time-varying dynamics. Second, we introduce how we can maximize
seaweed growth without state augmentation by formulating the objective as a running cost
in the 2D spatial state.

In part III, we addressed the challenge of operating with short-term deterministic fore-
casts to achieve long-term objectives. We saw that the dynamic programming formulations
from Part II can be used as closed-loop control policy that is equivalent to replanning at
every step. This frequent replanning makes the methods reliable despite forecast errors and
allowed us to navigate with a 82.3% success rate over 5 day missions. Furthermore, we
proposed a method to account for long-term objectives beyond the forecast horizon by es-
timating the expected cost-to-go using historical averages and discounting future costs. We
validated these extensions in experiments to maximize seaweed growth over 30 days, where
our method achieved 95.77% of the best possible growth.

In part IV, we turned to the question how we can satisfy constraints while operating
underactuated systems in strong flows. For that we first evaluated the risk of stranding and
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then demonstrated that by incorporating land as obstacles in the Multi-Time Reachability
formulation, we can reduce the 10-day risk of stranding from 4% to below 1%. Lastly, we
investigated operating fleets of underacted systems with the constraint to stay connected in
a local mesh network while avoiding collisions and achieving their performance objectives.
Our hierarchical control framework can guarantee safety under mild conditions on the flow
and reduced collisions to below 1% and disconnections to below 10% for 30 agents operating
in realistic flows in the Gulf of Mexico.

In conclusion, this dissertation represents a significant step towards enabling underactu-
ated robotic systems to operate in the oceans and skies with ultra-low power by going with
the flow. Our research has shown that by taking advantage of natural flows rather than
disregarding them or treating them as disturbances, it is feasible to achieve efficient and
reliable operation while drastically reducing energy consumption. We are convinced that
this will enable a host of new applications that would otherwise be prohibitively expensive
to operate with powerful engines.
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Chapter 10

Ongoing and Future Directions

Several ongoing and future directions are promising to further improve the performance of
underactuated systems that operate by going with the flow.

Real World Validation Tests A crucial next step will be testing these methods in real
applications. For that, we are currently conducting ocean trials with floating seaweed farms
of the company Phykos [40]. These trials will further validate the realism of the simulation
studies and potentially surface issues that were not considered yet. Figure 10.1 shows a
picture of a recent trial at Ocean Beach, San Francisco.

Figure 10.1: Launching an autonomous seaweed vessel using the methods developed in this
thesis at Ocean Beach for real world validation tests.
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Learning About the Currents Online The methods in this thesis were developed us-
ing only short-term deterministic flow forecasts and using frequent replanning to mitigate
the forecast error. Another possible approach to handle flow uncertainty is to utilize the
information available by operating in the flows. When drifting with the flow, it is possible
to infer the true flows at the system location. Using the history of these flow measurements,
it is possible to use techniques from data assimilation to improve the forecast and thereby
improve operating performance. There are two different approaches for this depending on
the forecasts available. If only deterministic forecasts are available, data assimilation meth-
ods are a form of interpolation. Together with the Master Student Killian Kempf, we found
that using a combination of a 3D Gaussian Process and a Unet Neural Network it is possible
to reduce the forecast error around the platform by up to 35% RMSE and achieve an R2
value of 0.413 [58]. For details on this method, we refer to the thesis [58]. If a distribution
of forecasts is available, for example in the form of probabilistic ensembles from classical
numerical prediction systems or neural surrogate models [104], methods can be developed
to compute a posterior distribution that assimilates the measurements while still providing
a measure of uncertainty. These improved forecasts, be they in the form of a deterministic
forecast or a probabilistic ensemble, can then be used to regularly replan with. An open
research question is how to best plan with probabilistic ensembles.

Deep Reinforcement Learning The promise of Deep Reinforcement Learning in this
application is that it can learn to hedge against flow uncertainty from experience without
needing an explicit distribution of flows. Deep RL can build on the techniques we introduced
in this dissertation. For example in the Master Thesis of Jerome Jeannin [53], we used the
value function of Multi-time Reachability (Chapter 3) and the improved forecasts [58] as
inputs for an RL algorithm. The value function naturally lends itself as a dense reward
signal as progress on it signals progress towards the target. We found a small but significant
improvement compared to directly using the value function as closed-loop policy (Chapter
5). Another recent result showed that in simple, analytical current flows using a transformer
architecture the RL policy network is able to directly use the measurements to hedge against
uncertainty [24]. Further exploration of this approach of combining learning with classical
techniques seems promising for improving performance.

Partially Observable Markov Decision Process The most principled way for sequen-
tial decision making under uncertainty with incoming measurements is formulating the prob-
lem as Partially Observable Markov Decision Process (POMDP). This formulation naturally
blends information gathering with reward-maximizing actions. Assuming a probabilistic en-
semble for the flow distribution and an observation model, one can formulate operating in
flows as POMDP thereby anticipating future measurements compared to control approach
based on the separation principle where data assimilation and replanning are treated inde-
pendent.
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Appendix A

Proof of Stability for Multi-Robot
Fleets

Here we give the full proof of stability for our multi-agent controller developed in Chapter
8 under mild conditions on the flows. By stability in this setting we means collision avoid-
ance and connectivity maintenance. This proof is taken from the Master Thesis of Nicolas
Hoischen [48].

Potential Function Gradients

As preperation for our proof we first derive the gradients of the potential function Eq. (8.8).
Given

∥∥qij∥∥2
the Euclidean norm where qij = (xi − xj)

⊤, the gradient w.r.t to qi can be

computed as ∇qi
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=
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Let us derive the gradient of the potential function ∇qi
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From there, it can also be inferred that:
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since ∇qj
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Following a similar reasoning than for the first term, observe that:

∇qi
ψ
(∥∥qij∥∥) = −∇qj

ψ
(∥∥qij∥∥) = ∇qij

ψ
(∥∥qij∥∥) (A.4)

Stability Analysis

Within this section, we examine under which conditions our safe interaction controller enables
to sustain connectivity and avert collisions. Especially, we prove under certain assumptions
on the flows that:

Theorem 1. Consider a system of N agents governed by the dynamics defined in Chapter
8 Eq. (8.1) with holonomic actuation g(q,u, t) = u, each steered by the LISIC policy Eq.
(8.11). Under the assumption regarding the flow dynamics and maximum actuation in Eq.
(A.16c), then:

i. Each agent approaches a configuration that is the local minimum of its potential function∑N
j=1
j ̸=i
∇qi

ψ
(∥∥qij∥∥2

)
i.e. the safe interaction input contribution of each agent in Eq.

(8.10) approaches a local minimum.

ii. Inter-agents collisions are avoided

Proof. Energy-based analysis and LaSalle’s invariance principle are commonly utilized to
obtain analytical guarantees for flocking. These methods establish the stability of the system
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and demonstrate that the flock converges to a lattice structure while preventing inter-agent
collisions, as demonstrated in [100]. Given the potential function in Eq. (8.8), we can infer
the the collective potential function or total tension energy as:

H(q) =
1

2

N∑
i=1

N∑
j=1
j ̸=i

ψ
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)
(A.5)

With the assumption of linear navigational feedback, the structural and translational
dynamics can be decoupled [100]. However, if the navigational feedback is nonlinear, it is
not possible to simply decompose the nominal controller into decoupled components with-
out linearizing uperf around a local neighborhood. As the agents have complex nonlinear
dynamics, this approach is not feasible, and instead, a coupled form of structural dynamics
is expressed. Specifically, we use a moving referential with respect to the flock centroid qc.
The relative coordinates are given by q̃i = qi − qc and q̃ij = q̃i − q̃j = qij.

It follows that ψ
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= ψ
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. Thus, the potential energy for the structural

dynamics in the relative coordinates yields:
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Finally, using the system dynamics in Eq. (8.1) and assuming holonomic actuation
(ui = g(qi,ui, t)), the dynamics in the relative coordinates can be expressed as:

˙̃qi = q̇i − q̇c (A.7a)
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We can now compute the time-derivative of H along the trajectories of the agents as:

Ḣ =
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We can exploit the gradient relation result ∇qi
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of Eq. (A.4) to
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˙̃q⊤
j ∇q̃ij

ψ
(∥∥q̃ij∥∥) (A.9b)

(A.4)
=

N∑
i=1

N∑
j=1
j ̸=i

˙̃q⊤
i ∇q̃i

ψ
(∥∥q̃ij∥∥)+ N∑

j=1

N∑
i=1
i̸=j

˙̃q⊤
j ∇q̃j

ψ
(∥∥q̃ij∥∥) (A.9c)

= 2
N∑
i=1

N∑
j=1
j ̸=i

˙̃q⊤
i ∇q̃i

ψ
(∥∥q̃ij∥∥) (A.9d)

where we also used the symmetry of the potential function ψ(
∥∥q̃ij∥∥2

) = ψ(
∥∥q̃ji∥∥2

). Then,
substituting Eq. (A.9d) back into Eq. (A.8):

Ḣ =
N∑
i=1

N∑
j=1
j ̸=i

˙̃q⊤
i ∇q̃i

ψ
(∥∥q̃ij∥∥) (A.10)

A possible approach, although conservative, is to show that a global tension energy
decrease of the system Ḣ =

∑N
i=1 Ḣi ≤ 0 can be achieved by guaranteeing local tension

energy decrease ∀i ∈ V . Assume that G(t) switches at time tl for l = 0, 1, 2 . . . and Ḣ ≤ 0
on each [tl, tl+1). Then, at switching time k, H(tk) = H(t−k ) + ψ (∥Rcom − ϵ∥) [146]. As the
graph topology becomes fixed after a certain time and only a finite number of maximum
edges can be added, the energy can be shown to be bounded for any subsequent time. The
time-derivative of Hi along the trajectory of agent i yields:

Ḣi = ˙̃q⊤
i

N∑
j=1
j ̸=i

∇q̃i
ψ
(∥∥q̃ij∥∥2

)
︸ ︷︷ ︸

ϕi

(A.11)

where to simplify notations for the rest of our development we introduce ϕi =∑N
j=1
j ̸=i
∇q̃i

ψ
(∥∥q̃ij∥∥2

)
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Energy Analysis Substituting Eq. (A.7e) in the expression for Ḣi in Eq. (A.11):

Ḣi = ˙̃q⊤
i ϕi (A.12a)

(A.7e)
=

N − 1

N
(ui + v (qi))−

1

N

N∑
l=1
l ̸=i

q̇l


⊤

ϕi (A.12b)

(8.11)
=

N − 1

N

(
c
(1)
i usafei + c

(2)
i uperfi + v (qi)

)
− 1

N

N∑
l=1
l ̸=i

q̇l


⊤

ϕi (A.12c)

=

N − 1

N

(
c
(2)
i uperfi + v (qi)

)
− 1

N

N∑
l=1
l ̸=i

q̇l


⊤

ϕi +
N − 1

N
c
(1)
i

(
usafei

)⊤
ϕi (A.12d)

Recall our safe interaction policy usafei = (πsafe)i(q) where replacing ϕi =∑N
j=1
j ̸=i
∇qi

ψ
(∥∥qij∥∥2

)
in Eq. (8.10) yields:

usafei = − ϕi

∥ϕi∥2
Umax,i

Therefore: (
usafei

)⊤
ϕi = −∥ϕi∥2 Umax,i (A.13)

To bound Ḣi, A.12d can be reformulated using the inner product

Ḣi = −

〈
N − 1

N

(
c
(2)
i uperfi + v (qi)

)
− 1

N

N∑
l=1
l ̸=i

q̇l , ϕi

〉
− N − 1

N
c
(1)
i ∥ϕi∥2 Umax,i (A.14a)

≤

∣∣∣∣∣∣∣
〈
N − 1

N

(
c
(2)
i uperfi + v (qi)

)
− 1

N

N∑
l=1
l ̸=i

q̇l , ϕi

〉∣∣∣∣∣∣∣−
N − 1

N
c
(1)
i ∥ϕi∥2 Umax,i (A.14b)

Cauchy−Schwarz
≤

∥∥∥∥∥∥∥
N − 1

N

(
c
(2)
i uperfi + v (qi)

)
− 1

N

N∑
l=1
l ̸=i

q̇l

∥∥∥∥∥∥∥
2

∥ϕi∥2 −
N − 1

N
c
(1)
i ∥ϕi∥2 Umax,i

(A.14c)

So Ḣi can be expressed as

Ḣi ≤


∥∥∥∥∥∥∥
N − 1

N

(
c
(2)
i uperfi + v (qi)

)
− 1

N

N∑
l=1
l ̸=i

q̇l

∥∥∥∥∥∥∥
2

− N − 1

N
c
(1)
i Umax,i

 ∥ϕi∥2︸ ︷︷ ︸
≥0

(A.15)
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Then, a local tension energy decrease Ḣi ≤ 0 can be guaranteed from Eq. (A.15) if∥∥∥∥∥∥∥
N − 1

N

(
c
(2)
i uperfi (qi) + v (qi)

)
− 1

N

N∑
l=1
l ̸=i

q̇l

∥∥∥∥∥∥∥
2

≤ N − 1

N
c
(1)
i Umax,i (A.16a)

⇔

∥∥∥∥∥∥∥c(2)i uperfi (qi) + v (qi)−
1

N − 1

N∑
l=1
l ̸=i

q̇l

∥∥∥∥∥∥∥
2

≤ c
(1)
i Umax,i (A.16b)

⇔

∥∥∥∥∥∥∥c(2)i uperfi (qi) + v (qi)− Ave
(
q̇Ni

)︸ ︷︷ ︸
Ave (v(qNi))+Ave (uNi)

∥∥∥∥∥∥∥
2

≤ c
(1)
i Umax,i (A.16c)

where Ave (·) denotes the average and the set Ni = V \ {i} the neighboring agents of i. The
dynamics of the other agents are also defined by their surrounding flow and their individual
control inputs such that Ave

(
q̇Ni

)
= Ave

(
v(qNi

)
)
+ Ave (uNi

). As the other agents also
apply the LISIC policy Eq. (8.11):

Ave
(
q̇Ni

)
=

1

N − 1

N∑
j=1
j ̸=i

(
v(qj) + c

(1)
j usafej + c

(2)
j uperfj (qj)

)
(A.17)

Since c
(1)
i ∈ [0, 1], c

(1)
i Umax ≤ Umax then the maximum control input that can be applied

is bounded by Umax > 0. In the overactuated setting, the condition Eq. (A.16c) could be
satisfied independently of the possible scenarios for currents v(qi) and neighbor dynamics
Ave

(
q̇Ni

)
.

Nevertheless, the agents do not necessarily need to be overactuated despite strong flows to
achieve a local energy decrease (Ḣi ≤ 0). If the currents experienced by agent i are of similar
magnitude and direction to the average current experienced by the neighboring agents, then
v (qi) compensates Ave (v(qNi)) and Eq. (A.16c) can be fulfilled even if ∥v (qi)∥2 > Umax,i.
The neighboring flocking control inputs Ave (uNi) also helps accounting for the current dif-
ference term v (qi)−Ave (v(qNi)). If ∥v (qi)− Ave v(qNi)∥2 ≫ Umax,i, satisfying Eq. (A.16c)
becomes challenging, which can happen if agents experience strong divergent currents.

To illustrate this behavior, consider the case where an agent i is about to lose commu-
nication with the rest of the flock or to collide with one of the other members. Then, the
potential function ψ

(∥∥qij∥∥2

)
tends to very large values (see Fig. 8.2). Therefore, by defi-

nition of our weighting function α(q) in Eq. (8.12), the weighted coefficients c
(1)
i → 1 and

c
(2)
i → 0 and Eq. (A.16c) asymptotically yields:∥∥v (qi)− Ave

(
q̇Ni

)∥∥
2
≤ Umax (A.18a)

⇔
∥∥v (qi)− Ave

(
v(qNi

)
)
− Ave (uNi

)
∥∥
2
≤ Umax (A.18b)
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where we assumed that all agents are identical in terms of hardware design so that they also
share the same maximum thrust Umax. Therefore if the currents experienced by agent i are
of similar magnitude and direction than the average currents experienced by the neighboring
agents v (qi)− Ave

(
v(qNi

)
)
would tend to cancel out, while (uNi

) cannot exceed Umax.
When the ideal spacing is achieved in the opposite scenario, the safe interaction con-

troller’s weighting function α(q) gives priority to the performance controller, resulting in

c
(1)
i → 0 and c

(2)
i → 1. If the performance control input is applied alone and does not disturb

the ideal flock configuration, the energy of Hi should not increase. In such cases, ϕi will
asymptotically approach zero, and Ḣi = 0, as shown in equation (A.15).

Discussion 1. The analysis presented applies to any platform and is supported by the finding
that if every agent undergoes a decrease in local energy Ḣi ≤ 0, then it can be ensured that
there will be a decrease in global energy as well. Note that condition Eq. (A.16c) is sufficient
but not necessary to guarantee Ḣ < 0, as negative local energies can compensate for positive
ones.

LISIC Stability Now that the proposed flocking law has been proven to generate an
energy decrease under certain assumptions, we can derive the implication for the graph
connectivity. Following the reasoning of [146], assume that the Graph G(t) switches at
time tl for l = 0, 1, 2 . . ., such that the graph topology is invariant within each of the non-
empty bounded and non-overlapping time intervals [tl, tl+1). Under the assumption that the
previously highlighted conditions for an energy decrease can be satisfied, then

H(t) ≤ H(t0) <∞, ∀t ∈ [t0, t1) (A.19)

since Ḣ ≤ 0 and assuming the initial energy H(t0) is finite. As the potential function
ψ
(∥∥qij∥∥2

)
tends to ∞ whenever

∥∥qij∥∥2
→ Rcom no existing edges will be lost at time

t1. Nevertheless, new edges might be added at switching time t1, t2 etc. Without loss of
generality, assume that N1 new links are added at t1. The maximum of edges that can be
added is Nmax =

N(N−1)
2

where N is the number of agents and clearly 0 ≤ N1 ≤ Nmax. Then

H(t1) = H(t0) +N1ψ (∥Rcom − ϵ∥) <∞ (A.20)

where ϵ appears from the hysteresis process for adding edges in Eq. (8.9). A similar discussion
can be led for tl, l = 2, 3, . . . and it can be concluded that under the assumption of an initial
finite energy H(t0) and ∥ui∥ ≥ L, ∀i ∀t that H(tl) is bounded. This implies that

H(t) < H(tl−1) <∞ t ∈ [tl−1, tl], l = 1, 2, . . . (A.21)

Therefore, no edges will be lost at switching times and if G(t0) is connected then G(t) will
stay connected ∀t > 0. As time evolves, the interaction network G(t) eventually becomes
fixed for t ≥ tl, i.e. when there are no more edges to add and the graph is complete. As the
energy is still minimized, the graph should converge to a lattice configuration, achieving the
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optimal distance between agents, defined as the minimum of the potential function ψ
(∥∥qij∥∥2

)
i.e. Rcom

2
. Precisely, the energy can be bounded by Hmax = H(t0) + Nmaxψ (∥Rcom − ϵ∥),

assuming no edges are lost and Eq. (A.21) holds. Therefore, for t ≥ 0 there must be a set
such that

Ω =
{
q̃ ∈ RNn | H(q̃) ≤ Hmax

}
(A.22)

with N the number of agents and n the number of coordinates considered to describe the
agent positions, H(q̃) the total potential energy and assuming Eq. (A.16c) can be satisfied
at all time and for all agents. Then LaSalle Invariance Principle can be applied [140], to
show that the trajectories of the agent converge to the largest invariant set inside the region
defined by

Γ =
{
q̃ ∈ RNn | Ḣ(q̃) = 0

}
(A.23)

In summary, we have shown that the total tension energy of the system decreases under
assumption Eq. (A.16c). This is evident from the fact that Ḣ =

∑N
i=1 Ḣi =

∑N
i=1

˙̃q⊤
i ϕi as

stated in Eq. (A.11). In the steady state of the network configuration, where Ḣ = 0, this
can be achieved if ϕi = 0 for all agents i ∈ V , i.e.

∑N
j=1
j ̸=i
∇q̃i

ψ
(∥∥q̃ij∥∥2

)
= 0.

In other words, this proves that the potential energy of the system, guided by the control
law in Eq. (8.11), decreases until reaching a fixed network configuration (steady-state) in
the moving frame, which corresponds to a minimum of each agent’s local potential function.
This establishes part i. of Theorem 1. As an implication for the LISIC policy, this means
that low interference is achieved with each agent’s performance controller, as long as the
flock structure is not disturbed.

Moreover, collisions can also be avoided under the previous assumptions. Indeed,
limqij→0 ψ

(∥∥qij∥∥2

)
= ∞ would contradict Eq. (A.22) with H(q̃) ≤ Hmax. This proves

part ii. of Theorem 1.
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