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Abstract

Design Methodologies and Automated Generation of Ultra High Speed Wireline SerDes
Transmitters

by

Ayan Biswas

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Vladimir Stojanović, Chair

With the ever increasing bandwidth demand in high performance computing, network and
communications, machine learning applications, etc, wireline data transfer between multiple
chips on the same package has been doubling in per-lane data rate every 3-4 years. The
challenging design complexity of the analog and mixed signal front-end circuits necessitates
the use of automated process portable layout generators and closed loop design scripts to
reduce the turn-around time from circuit design to tape-outs in advanced FinFET technology
nodes.

To that end, this thesis introduces new feature improvements in the Berkeley Analog Gen-
erator (BAG) 3++, which is an open source framework for automating process portable
circuit generation and encoding closed loop design methodologies. Then the thesis presents
the design of a 160 Gbps NRZ transmitter (TX) targeting low loss (∼3dB) ultra short reach
channels for die-to-die data transfer, with 2 tap FFE for pre-equalization. Some major
challenges in this effort are the design of a high speed 8:1 mux stage using inductor-based
peaking topologies, and a novel method of creating the 1 UI delayed data stream for the FFE
precursor using the available octature clock phases. The TX is taped out in Intel16 process
as a part of a complete 160 Gbps NRZ transceiver design, and tested in loopback mode by
serially transmitting data to the receiver over a 8.5 mm differential channel on package.
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Chapter 1

Berkeley Analog Generator (BAG)
3++

1.1 Overview and Development History

Since the invention of the first monolithic integrated circuit chip by Robert Noyce at Fairchild
Semiconductor in 1959, the design of integrated circuits (ICs) has taken multiple quantum
leaps to span a multi-billion dollar industry today. The number of transistors on a chip went
from tens to billions, while the technology node advanced from µm to nm scale to accom-
modate multi-functional multi-core processors in single chips. This significantly increases
the design and layout complexity, and number of necessary engineer-hours to successfully
tape-out a new design.

University of California, Berkeley (UCB) has been at the forefront of integrated circuit
design efforts over the years, including the development of SPICE (Simulated Program with
Integrated Circuit Emphasis) by Laurence Nagel and Prof Donald Pederson at the Electronics
Research Laboratory in 1973. All modern analog and mixed signal (AMS) simulation tools
(Spectre, NgSpice, HSpice, etc) have their roots in the SPICE project.

On the layout front, engineers advanced from hand drawing layouts using opaque tapes
and films to using IC layout editor software. Currently, the most widely used industry
standard EDA (electronic design automation) tool, specifically for analog and mixed signal
designs, is Cadence’s Virtuoso Design Suite that provides layout and schematic editors,
simulation environment and waveform viewers, and integration with various other verification
tools. In the Virtuoso Layout Editor, one can draw polygons and instantiate custom pcells
(programmable cells) manually to complete the top level layout, or even use the proprietary
SKILL language to program parts of the layout process.

While digital IC design has been streamlined over the years to take Verilog code as in-
put and create complete layouts using automatic placement and routing (PnR) algorithms
to optimize the timing margins on critical design paths, creating automatic PnR tools for
analog and mixed signal designs still remains a challenge because of the additional com-

http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/
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plexities like matched / common centroid transistor layout, passive elements like inductors,
resistors, capacitors, etc. Human layout engineers learn these critical layout design tricks
through years of experience, but it is difficult to encode all these rules into an automatic
PnR program and get comparable performance to a human created design. Recent advances
in AI (artificial intelligence) have resulted in some promising initial efforts (ALIGN (Analog
Layout, Intelligently Generated from Netlists, MAGICAL (Machine Generated Analog IC
Layout), etc.), but a lot of ground still remains to be covered.

At the Berkeley Wireless Research Center (BWRC) at UCB, researchers took a different
approach to this problem, focusing on automated design generation rather than automatic
generation. The core idea is to enable AMS designers to encode the layout strategy and
design methodology in Python into the Berkeley Analog Generator (BAG) framework. The
first publicly released version was BAG 2 [1], developed by Eric Chang, Jaeduk Han and
others, and its versatility was demonstrated through the design of high performance ADCs
and SerDes transceivers.

1.2 Core principle of BAG

In traditional AMS design flow, engineers share frozen IP (intellectual property) instances
with other design teams. These instances are provided as black boxes and only expose the
I/O (input and output) terminals while hiding the internal implementation details. These
also usually come with fixed form factors and locations of the I/O terminals that cannot
be modified to optimize the performance of the top level design that is integrating the IP
instance, which can often limit the re-usability. The major motivation of BAG is to allow
the re-use of the circuit design methodology rather than a frozen IP instance. An instance in
BAG ideally comes with parametrized layout and schematic generators, and a top level design
script that can take target specifications as input, run necessary simulations, post process
the simulation results, and do some iterative optimization to produce a final design instance
that satisfies the goal. It is important to note that none of these steps are ‘automatic’,
instead the designer has complete control over every single step in the process, from setting
up the required measurement procedures, to defining the location of every single device and
wire used in the layout. This also allows the design to be process-portable, i.e. the circuit
can be re-designed in a new technology node or process development kit (PDK) since the
core design method remains the same. Hence, the main advantage of using BAG over a
traditional design flow is being able to leverage computer resources to speed up the iterative
design and verification process. BAG interfaces heavily with Virtuoso, making it easier to
adopt for traditional AMS designers.

As shown in Fig 1.1, the target performance specifications and the design engineer’s
‘brain’ (i.e. the design methodology) is encoded in the circuit generator (which covers layout
and schematic generators as well as measurement and design scripts). The BAG framework
takes this circuit generator(s), reads in the PDK collateral technology files provided by the
foundry (including simulation models of all available devices, pcell and standard cell libraries,

https://align-analoglayout.github.io/ALIGN-public/
https://align-analoglayout.github.io/ALIGN-public/
https://github.com/magical-eda/MAGICAL
https://github.com/magical-eda/MAGICAL


CHAPTER 1. BERKELEY ANALOG GENERATOR (BAG) 3++ 3

Figure 1.1: Overview of Berkeley Analog Generator (BAG) framework

etc), interfaces with industry standard and / or open source design tools (e.g. Cadence
Virtuoso Design Suite, parasitic extraction tools like StarRC, QRC, etc, electromagnetic
simulation tools like EMX, verification tools like Calibre, ICV, PVS, etc) and ideally outputs
a verified design instance ready for tapeout or for integration in a higher level of hierarchy.

1.3 Improvements in BAG 3.0 and BAG 3++

While the core principle of the BAG framework remains the same, the implementation details
have changed over the years based on feedback from multiple engineers to alleviate various
issues with the API (application programming interface). One major update in transitioning
to BAG 3.0 from BAG 2 was moving the back-end from Python to C++ to speed-up var-
ious layout geometry manipulation and netlisting calls. BAG 3.0 was developed primarily
by Eric Chang at BWRC and at Blue Cheetah Analog Design Inc. (BCA). Subsequently,
at BWRC, I led a research team to develop and open source BAG 3++ with more fea-
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ture improvements and bug fixes. The current documentation for BAG 3++ is available
at https://bag3-readthedocs.readthedocs.io/en/latest/, but it is still under active
development as of August 2023.

The major changes in BAG 3.0 and BAG 3++ over BAG 2 are summarized in the
following subsections:

Updates for Generators

Layout and schematic generators have undergone significant updates, with the back-end
being entirely shifted to C++ that allowed many new exciting features to be implemented
while simultaneously enabling faster run times. One major speed bottleneck in BAG 2
was interfacing to Virtuoso using the SKILL interface. This is now resolved by various
workarounds mentioned later.

Some of the features are highlighted below.

1. Device-under-test (DUT) generators

a) Layout generators:

• Generated layouts are more compact than BAG 2, by allowing the designer
to explicitly define the location of substrate rows and columns instead of
automatically placing extra redundant taps for every subcell which would
increase the area overhead.

• Special generalized routing routines (e.g. connect_via_stack(), multiple
resistor routing methods, etc) are available to ease the routing methods in
layout generators and remove lots of boiler-plate code.

• Partial layouts can be generated from the top level layout. This feature
is detailed more in future chapters, where it’s used to create subcells for
electromagnetic simulations, and also to speed up circuit simulation steps by
selectively omitting certain blocks.

• BAG exports the generated layout directly to the GDS format, which can
then be streamed in to Virtuoso. This is faster than SKILL calls to draw
the layout in Virtuoso, since the layout geometry computation is handled in
Python and C++.

• Manual layouts can be exported as GDS and then dropped into the BAG
layouts as blackboxes. This allows users to place any manually edited subcell
layout, or some standard cell layouts provided by the PDK, directly in the
top level layout. Users need to provide information about the overall size and
location of all I/O terminals of the blackboxed cell to BAG, as well as any
top level routing wires for collision checking at upper levels of hierarchy.

b) Schematic generators: BAG stores an internal representation of the entire circuit
hierarchy tree, and can emit various netlist formats from it. For the Virtuoso

https://bag3-readthedocs.readthedocs.io/en/latest/
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representation, it still relies on SKILL calls to manipulate template schematics
into final generated schematics. Hence this step is slow and only recommended
for debugging purposes, while the much faster direct netlist generation feature is
used for closed loop design and measurement scripts.

c) Behavioral model generators: Using the internal representation of the circuit hi-
erarchy, BAG can also emit behavioral models using user provided models of the
leaf cells. In a traditional AMS flow, users write a top level behavioral model
of the entire system, and may unintentionally miss certain key aspects of the
circuits or miss some last minute schematic changes during the tapeout process.
Generating a hierarchical behavioral model using BAG ensures that the model
always accurately represents the schematic. A key application of this feature is
highlighted in Chapter 6.

2. Testbench (TB) generators:

a) GenericTB: All the generic testbenches available in Spectre are now available as
Python classes in BAG (e.g. DCTB, ACTB, TranTB, SPTB, PSSTB etc. for DC, AC,
transient, s parameter, periodic steady state analyses respectively, among others).
Users are recommended to directly configure these existing classes instead of cre-
ating new custom testbenches, since these generic classes are fully parametrized
and reconfigurable based on the application.

b) Harnesses: One major limitation of BAG 2 was that it used to allow one TB
to have only one DUT in addition to various analogLib library components for
input stimulus, loading, etc. But designers often require multiple DUTs in the
same TB to determine the effect of different subcells interfacing with each other,
before the top level has been completely assembled. BAG 3++ enables this by
introducing the concept of harnesses. In BAG terminology, each TB still has
one DUT, which is the main subcell being tested, but allows users to instantiate
multiple harnesses, which are other subcells for driving or loading the main DUT.

c) nport: s-parameter files from electromagnetic (EM) simulations can be instanti-
ated in the TB using the nport component from analogLib library. This enables
the circuit simulation of inductors, channel models, etc.

d) VerilogA: BAG 3++ introduces VerilogA integration in testbenches. Any com-
ponents from the ahdlLib library or any custom VerilogA module can now be
directly instantiated in the TB, to serve as input stimulus, load, AMS model of
any complex sub system, etc. as needed by the application. In particular, this
allows the efficient encoding of many complex input stimuli that were previously
provided using pwlf (piecewise linear function) files only.
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Updates for Measurement API

The measurement API in BAG 2 used to be intimidatingly difficult to use, and slow be-
cause of the Virtuoso ADEXL / Maestro Interface. As a result, most users used only the
automated layout and schematic generation features in BAG 2, while ignoring the measure-
ment aspect completely and doing traditional simulation testbenches in Virtuoso. Hence, a
major motivation for BAG 3.0 and BAG 3++ was the development of a more user friendly
measurement API. Some major highlights are summarized below.

1. SimAccess: This is a Python class that takes the DUT and harness netlists created
from BAG’s internal circuit representation, natively writes a Spectre simulation netlist
of the TB using the DUT and harness netlists, directly executes Spectre on the com-
mand line with user specified additional arguments, and formats the Spectre output
data into a special SimData class in BAG for further post processing. As a result it
completely avoids the ADEXL interface and is just limited by the Spectre runtime. It
supports three different spectre output formats (psfxl, psfbin, nutbin) which have their
individual pros and cons.

a) psfxl: This is the default Spectre output format used in Virtuoso. It can be
processed only using Cadence’s proprietary Simulation Results Reader (SRR)
program, and is the slowest among the three options. However, it covers every
simulation setting available in Spectre.

b) psfbin: This used to be the default Spectre output format in Virtuoso before
psfxl was created. BAG uses the libpsf program to parse this. While this is faster
than SRR, it has been found to error for certain transient simulations with large
number of saved outputs. BAG 3++ is configured to use this option by default.

c) nutbin: This is a SPICE output format, so it works for Spectre as well as other
SPICE variants. This is parsed natively in BAG’s NutBinParser class and is the
fastest among the three options. However, the nutbin format doesn’t support some
advanced Spectre features like multithreading and multiprocessing, and multiple
sidebands in PAC (periodic AC) simulations.

2. EmSimAccess: This is a Python class that can take a GDS file, run EMX on it and
return the output s parameter file, along with optional subsequent post processing.
BAG 3++ introduces this class for automated characterization of magnetic passives in
a top level design script (as elaborated in Chapter 2) or for stand-alone cases.

3. GatherHelper: This class uses Python’s asyncio feature to enable launching multi-
ple asynchronous subprocesses in parallel (e.g. parallel simulation and measurements
across different PVT variations, etc). It can also leverage LSF queues for better server
utilization.

https://pypi.org/project/libpsf/
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Design Scripts

Design scripts were another seldom used BAG 2 feature because of its intimidating mea-
surement API. It’s much more user friendly now and comes with a built-in configurable
optimization routine.

1. DesignerBase: This is the base Python class for writing any design script. It can
be used to generate multiple instances of the DUT with varying parameters, launch
parallel measurement scripts on each of them, converge on a design based on target
specifications, and run sign-off verification measurements of the final design. Usually
design scripts fall in one of two different categories:

• Iterative / serial design scripts: As illustrated in Fig 1.2, these start off with
some initial design parameters derived analytically based on the target speci-
fications and the device characteristics of the PDK. After post processing the
measurement results of the DUT and comparing with the target, its parameters
are tweaked based on some algorithm defined by the user to create a new DUT for
re-measurements. This process continues to iterate until the measurement results
meet the target. This type of design scripts is suitable mostly for designs with a
single optimization variable.

Choose
Target Specs

Compute
parameters
from specs

Generate
DUTs

RC Ex-
traction

Simulate &
Characterize

DUTs

Do measure-
ment results
meet specs?

Final design
instance

Tweak
parameters
based on
failure

directionGDS

SPF

Yes

No

Figure 1.2: Flowchart for Iterative / Serial Design Script
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• Parallel design scripts: For designs with multiple optimization variables, it is
usually very difficult to analytically determine the best next step in the iterative
design script process. Hence parallel design scripts follow a different strategy by
allowing the user to define a constrained search space. Multiple DUTs are created
by drawing parameters from the search space, and then the measurement results
are compared to find the optimal DUT based on the target specifications.

2. OptDesigner: This is a special subclass of DesignerBase, created by my collaborator
Paul Kwon, that implements parallel design scripts explained above. As illustrated
in Fig 1.3, it first iterates over the user specified design space to create a large char-
acterization database, by sweeping the design and simulation variables, and returns
a multi-dimensional interpolator across the measurement results. Then it uses the
target specifications and constraints provided by the user and optimizes across the
interpolator using scipy.optimize() to converge to the optimal design.

Choose
Design Space

Generate
DUTs

RC Ex-
traction

Simulate &
Characterize

DUTs

Interpolate
Measurement

Results

Choose
Target Specs

Optimization
Algorithm

GDS

SPF

NumPy arrays query
func-
tions

Figure 1.3: OptDesigner co-optimization loop

An advanced version of OptDesigner that also handles electromagnetic simulation
of magnetic passives, by exploiting the EmSimAccess and partial layout generation
features of BAG 3++, is elaborated in Chapter 2.
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Conclusion

BAG 3++ provides substantial improvements over BAG 2 in terms of usability of the Python
API, more efficient generated circuit layouts, and extensive measurement and design script-
ing abilities, while still maintaining a close integration with Virtuoso Design Suite for viewing
layouts, schematics, and waveforms (using ViVa waveform browser). Additionally the gen-
erator and measurement APIs are completely stand-alone components, hence users can run
the measurement scripts on manually created designs, or generate designs and manually
create traditional Virtuoso testbenches. This provides extreme versatility as new users can
ramp up on using specific sub features of BAG 3++ without learning all the details from the
get-go. To the best of my knowledge, among all other newer competitor generator programs
available today, BAG 3++ stands out as the most versatile automated generator framework
with the broadest coverage of AMS design flow, and integration with industry standard EDA
tools.

As part of my PhD research, I have developed and maintained BAG 3++ layout primitives
across seven widely different PDKs spanning multiple technologies (planar, SOI, FinFETs)
from multiple foundries (TSMC, Global Foundries, Intel, SkyWater). The lessons learned
from writing generators that are process portable across such a wide PDK variation helped me
to not only enable new features and improve the BAG 3++ framework, but also to optimize
the PDK specific implementations and understand how to push the circuit performance
across many different constraints and challenges.
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Chapter 2

Automated Process-portable
Electromagnetic and Circuit
Co-optimization using BAG 3++

2.1 Problem Setup

Electromagnetic (EM) simulations and optimization of magnetic passives like inductors, t-
coils, transmission lines, etc. is one of the most challenging aspects of AMS design. Even
though simple theoretical models can be used to analytically study the first order effect of
these magnetic passive circuit components, they do not capture all the higher order non
linear effects of parasitics that can critically affect the performance. A few reasons that
make EM optimization challenging are:

1. With technology scaling down to nm and sub nm processes, active device sizing has
shrunk down to the extent where parasitic resistances and capacitances have started
to become major contributors to the performance of circuits. For inductors or t-coils
with multiple turns or across multiple metal layers, side wall capacitance between the
turns or capacitance across metal layers can lower the self resonant frequency of the
inductor or t-coil, thereby reducing the benefits of using those as peaking structures
for high speed applications.

2. For ultra high speed wireline or wireless applications, the wavelength can become com-
parable to the length of long routing wires, so they have to be treated as transmission
lines, and require adequate shielding and isolation to maintain the line impedance

Zo =
√

L
C
, where L is the inductance of the transmission line and C is the parasitic

capacitance of the transmission line to the substrate or neighboring wires. This in-
troduces extra complexity in the design process since these effects are not captured in
schematic simulations, and have to be handled carefully in parasitic and EM extracted
simulations.



CHAPTER 2. AUTOMATED PROCESS-PORTABLE ELECTROMAGNETIC AND
CIRCUIT CO-OPTIMIZATION USING BAG 3++ 11

3. For narrow band applications like LC oscillators, a simple linear model of the inductor
can be useful for theoretical analysis. This is because the behavior of the inductor
can be curve-fit to a linear model with lumped components across a narrow frequency
band around the center frequency of interest. Integrand’s ModelGen tool (packaged
with EMX) can create these ‘simple’ lumped models of various magnetic passives us-
ing analogLib passive components. However, these models are not suitable for wide
band applications like extending amplifier bandwidth using peaking structures, since a
lumped circuit model cannot adequately represent the more complex higher order be-
havior of the inductor or t-coil all the way from DC to 10’s or 100’s of GHz frequencies.
So the only way of optimizing the design for wide band applications is to directly use
the s parameters from EM simulations of the magnetic passives, and adjust the layout
geometry based on knowledge gained from experience and trial-and-error.

The unavailability of simple analytical models of the magnetic passives, and reliance on
trial-and-error to perform EM optimization, makes this a perfect candidate for demonstrating
the power of design scripts in BAG 3++, particularly the OptDesigner class described in
Chapter 1. Designers can define a constrained search space for the active device parameters
and also the magnetic passives parameters (like width of turns, spacing between turns, shape
of the inductor or t-coil, radius in X and Y directions) based on floorplanning restrictions,
PDK design rules, first-pass analysis, and prior experience. Then the OptDesigner class will
create multiple DUTs spanning all the parameter combinations from the user defined search
space, and simulate and measure each of them to create a large characterization database.
The database stores the results in the form of NumPy arrays and can be interpolated to
predict the performance of other intermediate parameter combinations in the search space
that were not explicitly characterized. Then the optimization algorithm can traverse through
the interpolated results to pick a DUT that satisfies the target specifications.

The characterization step is the most time consuming and can take on the order of hours
to days depending upon the complexity of the design and measurements, and the size of the
constrained search space. However, since the entire process is fully configurable and auto-
mated in BAG 3++, users can just launch the characterization in the background, thereby
reducing the number of active engineer-hours needed for the design process. Once the char-
acterization is completed, the database is cached, and can be queried instantaneously for
the subsequent optimization step. Hence, if the search space does not change, multiple opti-
mization iterations can be performed for different target specifications by just querying the
cached database to get the optimal DUT and then running a final set of sign-off verification
measurements on it. This significantly increases the designers’ productivity by leveraging
computer resources to handle the computational and time expensive trial-and-error steps.
Since both the active device sizing as well as the magnetic passives sizing can be swept in
the search space, this allows simultaneous EM and circuit co-optimization.

The BAG 2 framework was previously used to design inductors by querying an EM
characterization database to achieve the desired inductor quality factor for an LC oscillator
application [12]. However, this optimized the inductor in isolation from the rest of the cir-
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cuit, thereby ignoring the effect of the routing parasitics from the inductor leads to the active
devices. BAG 3++ drastically improves on this by doing EM and circuit co-optimization,
in a more user friendly, readable and reusable setup, that makes it more suitable for wide-
band applications. Prior work [4] has also used the EM derived s-parameters to directly
optimize the desired circuit performance by iterating on the dimensions of the on-chip in-
ductive peaking structures, signifying the relevance of this problem. BAG 3++ provides a
publicly available open source process-portable framework to perform this EM and circuit
co-optimization by interfacing with industry standard EDA tools.

This chapter demonstrates the co-optimization process in BAG 3++ by designing an
output driver stage topology for 130 Gbps non-return-to-zero (NRZ) signalling. The process
portability is demonstrated by running the optimizer in two drastically different technology
nodes: Intel’s 16 nm FinFET process and Global Foundries’ 45 nm SPCLO process.

2.2 Advanced OptDesigner with Electromagnetic

Simulations

The OptDesigner class illustrated in Fig 1.3 can only perform circuit optimization using
Spectre simulation of schematic or parasitic extracted netlists. To enable electromagnetic
simulation of magnetic passives, it was modified to the new advanced version in Fig 2.1.

Choose
Design Space

Generate
DUTs (No
Magnetics)

Generate
DUTs (Only
Magnetics)

RC Ex-
traction

EM Sim-
ulation

Simulate &
Characterize

DUTs

Interpolate
Measurement

Results

Choose
Target Specs

Optimization
Algorithm

GDS GDS

SPF S-Param

NumPy arrays query
func-
tions

Figure 2.1: OptDesigner co-optimization loop
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There is a new parallel path (in yellow) to the non-magnetic DUT generation and parasitic
extraction path (in blue). This new path deals with the generation and EM simulation of
the magnetic passives. The core operation of OptDesigner remains identical, but it can now
use both the extracted parasitic netlists and the s-parameter files from the EM simulation
for the Spectre simulation step.

2.3 Ultra High Speed Output Driver

Circuit Topology and Testbench

The schematic of the DUT and TB is shown in Fig 2.2.

DUT for extraction

DUT for EM

Vincm +∆V Vincm −∆V

Vtail

50Ω

VDD

50Ω

VDD

80 fF

VDD

50Ω

VDD

80 fF

VDD

50Ω

VDD

simplified
ESD, channel

traces

simplified
receiver

termination

Figure 2.2: Testbench schematic, highlighting the partial DUTs used for RC extraction and
EM simulation in Fig 2.1

The driver is an nmos differential pair with a 50Ω resistor load and shunt peaking induc-
tors. The resistors isolate the parasitic capacitance of the shunt peaking inductors from the
high frequency output node, thereby removing them from the total output capacitance that
has to be equalized by shunt peaking. The load is represented by the 80 fF capacitors which
are a simplified lumped model of ESD and channel traces for the purpose of this demonstra-
tion. In a real design scenario, this can be replaced by the real channel s parameter model for
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more accurate simulation results. The transistors and resistors of the output driver (boxed
in blue) form the sub DUT for the parasitic extraction step, while the inductors (boxed in
yellow) form the sub DUT for the EM simulation step in Fig 2.1.

Partial Layout Generation in BAG 3++

One crucial aspect for creating the sub DUTs for the two parallel paths in OptDesigner is
the partial layout generation capability of BAG 3++. As mentioned earlier, if the inductors
are generated in isolation, the effect of the inductor lead routing to the rest of the circuit
will not be captured in the simulations. In a high speed application (130 Gbps NRZ with
Nyquist frequency of 65GHz), the parasitic effects of the routing can significantly impact
the output driver performance, so it is crucial to account for that effect.

BAG 3++ allows users to generate the partial layouts by omitting some components
while still preserving the top level routing wires, power grid, etc. Hence the partial layout
of the shunt peaking inductors generated by BAG 3++ includes the lead routing of the
inductors to the non-magnetic components of the circuit along with any top level power
grid. This ensures that their EM effects are included in the s parameters which will be used
in the subsequent Spectre simulation step.

Fig 2.3 shows the overall layout of the DUT from Fig 2.2 in the Intel16 process. Fig 2.4
shows the two partial layouts of the sub DUTs that will be used in the two parallel paths in
OptDesigner.

Figure 2.3: Full layout of the Output Driver DUT from Fig 2.2
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(a) sub DUT for parasitic extraction (b) sub DUT for EM simulaion

Figure 2.4: Partial layouts of the Output Driver sub DUTs

As seen in the layout figure above, the sub DUT for EM simulation preserves the inductor
lead routing to the non magnetic components, and other top level routing and power grid,
to include their effects in the s parameters.

Measurement Setup and Design script

The MeasurementManager class in BAG 3++ is the base measurement class in Python that
can be used to configure any of the available GenericTB testbench subclasses. As illustrated
in the schematic in Fig 2.2, the output driver testbench sets up a transient noise simulation
using a VerilogA random input bit stream module with differential 0.8Vpp. The Spectre
simulation results are then analyzed using the EyeAnalysis class, which is a native post
processing class in BAG 3++ that can create eye diagrams from transient simulation results
and report the eye width and height.

The configuration settings of the OptDesigner class for this output driver are shown
in Table 2.1. It should be noted that there is a distinction between design variables and
simulation variables. Design variables refer to layout parameters that cannot be changed
after tape-out, hence these have to be optimized across all PVT variations. Simulation
variables refer to bias points that can be set using on-chip or off-chip calibration options like
DACs (digital-to-analog converters), hence these can be separately optimized for each PVT
corner.

For the purpose of this demonstration, the design variables are the number of fingers of
the differential pair (seg gm) and the tail transistor (seg tail) on the blue path, and the radius
of the inductor for the yellow path of Fig 2.1, while all other layout parameters are kept
constant at some specific values to prune the search space. The simulation variables are the
bias points for the input common mode of the differential pair (Vincm), and the gate of the tail
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Table 2.1: OptDesigner Input Specifications

Parameters Sweep / Target values
Corners TT@25 ◦C, SS@−40 ◦C, FF@125 ◦C

Design
variables

seg gm 56, 64, 72, 80
seg tail 56, 64, 72, 80
radius (reso-
lution units)

18000, 22000, 26000, 30000

Simulation
variables

Vincm (V) 0.65, 0.7, 0.75, 0.8
Vtail (V) 0.65, 0.7, 0.75, 0.8

Speed 7.7 ps UI (130 Gbps)
Goal Maximize eye height

Constraints Eye width ≥ 5.7 ps (0.75 UI)

transistor (Vtail). Since there are 4 values being swept for each of the variables, this implies
that there will be 43 = 64 design points characterized at 42 = 16 simulation settings across
3 PVT corners, resulting in a total of 3072 simulations to create the full characterization
database. As mentioned before, the characterization database stores results as NumPy arrays
which can then be interpolated to predict the performance of other intermediate design and
simulation points in the span of the search space.

2.4 Results

The OptDesigner class converges to fixed design parameters and corner-specific simulation
parameters, as summarized in Table 2.2. The full design space characterization has a 7 hour
runtime for each technology node, using distributed parallel processing on the BWRC server
system. The characterization database is then cached, so that subsequent optimization runs
for various target specifications by querying the database are instantaneous.

From the table, it can be seen that the design converged to using the largest allowed sizes
of the transistors to maximize the eye height in both technology nodes, since there were no
constraints specified for the power consumption. It picked a smaller inductor radius in the
SOI process presumably because the layout parasitics are larger there, which reduce the self
resonant frequency of larger sized inductors, thereby decreasing the equalization effect from
the inductance. For the FinFET process, the optimal inductor radius size is not among the
ones that were explicitly characterized in Table 2.1, showing the effect of interpolation across
the NumPy arrays. The trend of the eye height across PVT variations is different in the two
technology nodes because of PDK specific characteristics.

The complete layouts of the optimal DUTs in the two technology nodes based on the
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Table 2.2: OptDesigner Results at VDD = 1V

Technology node 16 nm FinFET 45 nm SOI
Corners TT,25 SS,-40 FF,125 TT,25 SS,-40 FF,125

Results
Eye height
(V)

0.649 0.703 0.567 0.631 0.582 0.680

Eye width
(ps)

7.19 7.30 7.10 6.93 7.01 6.89

Average cur-
rent (mA)

18.3 19.5 18.5 21.1 17.0 26.5

Design
variables

seg gm 80 80
seg tail 80 80
radius (reso-
lution units)

21768 18000

Simulation
variables

Vincm (V) 0.681 0.744 0.681 0.771 0.771 0.800
Vtail (V) 0.730 0.800 0.730 0.794 0.794 0.800

results in Table 2.2 are shown in Fig 2.5.

10 µm

(a) 16 nm FinFET

15 µm

(b) 45 nm SOI

Figure 2.5: Optimal layouts based on Table 2.2

Fig 2.6 shows the corresponding eye diagrams for the TT@25 ◦C corner, using the bias
conditions from Table 2.5. It can be seen that while the achieved eye heights are similar,
the SOI process exhibits a more noisy eye, implying that the parasitics are larger and the
performance is gain-bandwidth limited.
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(a) 16 nm FinFET (b) 45 nm SOI

Figure 2.6: Eye diagrams for TT@25 ◦C corner based on Table 2.2

Conclusion

It has been demonstrated that the fully automated EM and circuit co-optimization routine
OptDesigner in BAG 3++ can use parametrized partial layout generation, followed by
simultaneous EM simulation of magnetic structures and parasitic extraction of the remaining
circuit, to design an ultra-high speed driver stage in two vastly different technology nodes.
All the generators and scripts used in this chapter are open sourced and publicly available
in the bag3 analog GitHub repository.

https://github.com/ucb-art/bag3_analog/blob/without_OA/src/bag3_analog/design/drv_shunt_peak.py
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Chapter 3

SerDes Transmitter Datapath

3.1 Background

SerDes (Serializer - Deserializer) links originated from communication over fiber optic and
coaxial links. Around the 1980’s to late 1990’s, it started being adopted for chip-to-chip
(C2C) communication on PCBs and backplanes, and subsequently die-to-die (D2D) com-
munication, replacing parallel links. The major advantage of SerDes over parallel links was
that communication between two dies could now happen over one or two fibers instead of a
parallel bus of fibers. Fig 3.1 shows a simplified diagram of a full SerDes link.

Figure 3.1: Overview of SerDes
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In today’s age, SerDes IP is ubiquitous in all SoCs (system on-chips) and data centers for
high speed wireline I/O. Depending on the specific application, SerDes links can be classified
into a few different categories based on the channel length (reach), the target data-rates and
acceptable BERs (bit error rates). Fig 3.2 shows the different types of SerDes reaches.

Figure 3.2: Different SerDes Reaches

Some common examples of SerDes applications are shown in Fig 3.3.

• Multi-chip packages (MCPs) use short reach SerDes for D2D interconnects and medium
or long reach SerDes for C2C wireline data transfer.

• In massive MIMO arrays [6], appropriate reach SerDes is used to transfer data received
by each user to the baseband processing units.

With the increasing bandwidth demand in high performance computing, networking and
communications, machine learning applications, etc, industry trends show that wireline I/O
has been doubling every 3-4 years, as illustrated in Fig 3.4 [3]. FinFET technology nodes have
enabled SerDes transceivers to take advantage of process technology scaling and improve the
data rate by gradually adopting digital - style architectures in the AMS components. Higher
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(a) Multi chip package (b) Scalable Massive MIMO [6]

Figure 3.3: Common SerDes applications

cut-off frequencies, lower and more reliable parasitics make FinFETs much more attractive
than mature planar technologies for ultra high speed applications.

Figure 3.4: Wireline I/O trends [3]



CHAPTER 3. SERDES TRANSMITTER DATAPATH 22

Another approach to enable higher SerDes data-rates is using 4 level pulse-amplitude-
modulation (PAM4) signalling rather than NRZ, as shown in Fig 3.5. For the same Nyquist
frequency, PAM4 doubles the data-rate and provides better spectral efficiency. However, it
causes a ∼ 9.5 dB degradation in SNR (signal-to-noise ratio) since the vertical eye opening
is only 1

3
of a NRZ data eye, hence linearity and inter symbol interference (ISI) effects make

the design of the equalization network extremely challenging.

Figure 3.5: NRZ and PAM4 signalling waveforms and eye diagrams

Currently the state-of-the-art SerDes transmitters available in literature are a 224 Gbps
PAM4, 112 Gbps NRZ transmitter with 8 tap FFE in 10 nm FinFET from Intel Labs [5]
and a 200 Gbps PAM4, 100 Gbps NRZ transmitter with 5 tap FFE in 28 nm planar process
from BWRC [13].

In recent years, there is a renewed interest in parallel links (e.g. UCIe, BoW) particu-
larly for short reach applications. These allow higher shoreline bandwidth density because
of densely packed bumps. Nevertheless, SerDes links still remain an exciting field of re-
search. Additionally, the knowledge of the link budget analysis, circuit design methodolo-
gies, equalization techniques, etc are equally applicable in serial and parallel links design and
optimization.

3.2 Motivation and Goals

FFE (feed forward equalizer) taps are used in SerDes transmitters (TX) and receivers (RX)
for equalizing pre cursor ISI, while post cursor ISI is generally equalized using DFE (decision
feedback equalizer) taps in the receiver. However, as data rates start to scale beyond 112
Gbps NRZ (56GHz Nyquist frequency), it becomes increasingly difficult and near infeasible
to close the DFE timing on the receiver. Hence alternative post cursor ISI cancellation
techniques that rely on feed forward architectures only (i.e. no feedback) are being explored
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in SerDes receiver research to alleviate the feedback-induced latency bottleneck. At BWRC,
1 tap feedforward MLSE (maximum likelihood sequence estimation) architectures are being
explored for 160 Gbps NRZ signalling (80GHz Nyquist frequency). Since the hardware
implementation of the MLSE equalization scheme becomes significantly more complicated
for PAM4 signalling, the focus is on just NRZ signalling in test chips for now.

Testing the receiver requires a corresponding 160 Gbps NRZ transmitter, which is the
circuit design focus of this thesis. The target channel for the full transceiver system is
an ultra short reach 8.5mm differential channel on the organic substrate package, that is
estimated to have ∼ 3 dB loss at the Nyquist frequency of 80GHz. Based on link budget
calculations, this channel can be equalized by 2 taps of FFE (1 main cursor and 1 pre cursor)
on the transmitter and 1 tap MLSE based post cursor equalization on the receiver. This sets
the top level target specifications of the transmitter as summarized in Table 3.1.

Table 3.1: Comparison of Current Goal with State-of-the-Art Transmitter Architectures

Specs JSSC 2022,
Kim et al [5]

JSSC 2022,
Wang et al [13]

Current Goal

Technology
node

10 nm FinFET 28 nm planar 16 nm FinFET

Data-rate
(Gbps)

224 Gbps PAM4,
112 Gbps NRZ

200 Gbps PAM4,
100 Gbps NRZ

160 Gbps NRZ

Nyquist
frequency
(GHz)

56 50 80

Equalization
technique

8 tap FFE 5 tap FFE 2 tap FFE

The target Nyquist frequency for this TX is higher than the current state-of-the-art,
and there will be significant design challenges to achieve this goal. The estimated shoreline
bandwidth density is comparable to state-of-the-art wireline I/O parallel links with standard
packaging, as shown in Table 3.2.

The shoreline bandwidth density of the current work is estimated as follows:

• The C4 bump pitch is 245 µm.

• Assume that 4 transceivers can be packed at the die edge.

• Each transceiver requires GSSGSSG bumps, with the edge G shared with the adjacent
transceiver.

• There is no bump overhead for clock signals since clock forwarding architecture is not
used.
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Table 3.2: Comparison of Shoreline Bandwidth Density

Package Architecture Shoreline bandwidth
density (Gbps / mm)

Advanced
AIB 256 - 1024

UCIe advanced 165 - 1317

Standard
UCIe standard 28 - 224

BoW 100 - 1000+
Current work ∼ 200

• Total number of bump pitches for 4 transceivers is 6× 4 + 1 = 25.

• Aggregate data-rate at the edge (in Gbps) is 160 × 2 (bi-directional) ×4 (number of
transceivers) = 1280.

• Hence shoreline bandwidth density is 1280 Gbps
25×245µm = ∼ 209 Gbps / mm

Theoretical Analysis using Process Parameters

This subsection studies the theoretical feasibility of the data-rate target based on the intrinsic
gain-bandwidth (GBW) limit of the technology.

Consider an nmos input common source (CS) amplifier stage, as shown in Fig 3.6.

VDD

Vin

Vout

Figure 3.6: Schematic of nmos input common source (CS) amplifier

In the Intel 16 nm process, the fastest nmos is the ‘ultra low threshold voltage’ (ulvt)
variant which has an operating frequency limit of fT = 300GHz. The gate-to-drain capaci-
tance CGD is comparable to the gate-to-source capacitance CGS, hence γ = CGD

CGS
≈ 1. Hence
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if we consider the CS amplifier of Fig 3.6 driving an identical copy of itself (fanout of 1,
i.e. FO1), then the theoretical GBW is fT

1+γ
≈ 150GHz. Traditional analytical expressions

for small signal gain and bandwidth are mostly suitable for frequency ranges which are at
least a decade below fT , since parasitics start to dominate the behavior at higher frequen-
cies. Since our target Nyquist bandwidth of 80GHz is well beyond fT

10
and in the vicinity of

the maximum available GBW of the technology, various higher order non-idealities make it
extremely challenging to get any voltage gain ≥ 1 at the ultra high speed stages of the TX.

3.3 Literature Review

Let’s analyze the transmitter datapath architecture from the 2 state-of-the-art designs in
Table 3.1 to get some ideas about the design of the individual components.

(a) Kim et al [5] (b) Wang et al [13]

Figure 3.7: Comparison of State-of-the-Art Transmitter Architectures

Some key take-aways of the first design [5] are:

• There is a 1 UI pulse generator based 4:1 high speed multiplexer as the pre-driver stage
using quadrature rate clocking.

• The separate output driver stage employs a 9th order Bessel LC filter to equalize the
necessary ESD capacitors before connecting to the output pads.

• The 8 tap FFE is implemented entirely in digital PnR flow rather than AMS.

Some key take-aways of the second design [13] are:

• The 1 UI pulse generator based 4:1 high speed multiplexer using quadrature rate clock-
ing is the output driver stage.
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• A simple t-coil is used to equalize the large parasitic capacitance (∼ 420 fF) at the
output pad.

• The 5 tap FFE is implemented in the AMS domain.

3.4 Proposed Transmitter Datapath Architecture

With the learnings from the literature review and a few other considerations, the following
decisions were adopted for the 160 Gbps transmitter design:

1. The same clocking network architecture will be shared in the transmitter and the
receiver. This implies that the serialization ratio in the TX has to match the deserial-
ization ratio in the RX.

2. For the test-chip, 20GHz differential clocks will be taken as external input rather than
having a complete on-chip PLL. This slightly simplifies the design challenges for the
test chip by avoiding the extra jitter from the PLL in addition to the existing jitter
from supply and clock distribution.

3. The external differential 20GHz clocks go into an octature generator and will also be
divided down to the necessary lower clock frequencies. Because of this, the high speed
multiplexer in the TX has to be 8:1 instead of 4:1. A 4:1 multiplexer (mux) outputting
160 Gbps NRZ data stream would require quadrature 40GHz clocks which would be
difficult to reliably generate and distribute on-chip. While this decision simplifies the
clock network, it further complicates the TX datapath design.

4. Using a 1 UI pulse generator based 8:1 high speed mux as the final driver stage would
make the parasitic capacitances at the output node too large to be equalized, so instead
there will be a separate 8:1 mux pre-driver stage and a final output driver stage. The
design and optimization of this high speed 8:1 mux is explored in more details in the
Chapter 4.

5. The ESD requirements at the output pads can be relaxed from the usual CDM rules,
because this transceiver is targeting ultra short reach on-package D2D applications,
and the TX output or RX input will never be exposed to off-chip connectors. This
slightly relaxes the load capacitance of the output driver stage. Since designing a
complete 9th order Bessel LC filter is extremely difficult, we instead used co-planar
waveguide (CPW) and an asymmetric t-coil to equalize the load capacitance.

6. The two FFE taps are implemented in AMS domain using a novel strategy involving
the octature clock phases, as explored in more details in Chapter 5.

The complete transmitter datapath architecture is shown in Fig 3.8.
The various components of the datapath are explained below.
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Figure 3.8: Complete Transmitter Datapath Architecture

1. The input to the datapath is a parallel bus of width 128, with each lane running at
1.25GHz, coming from an on-chip PRBS (pseudo random bit sequence) generator or
some user defined data pattern provided using the scan chain.

2. The input goes into 16 shift register based 8:1 serializers, clocked by quadrature 10GHz
clocks. The 16 output bits are retimed using an array of flip-flops after some long
routing, and then go through a 2:1 mux to create 8 dual rate 20 Gbps data streams.
These then go through an array of single-ended to differential converters (se2diff) to
create 16 differential 20 Gbps data streams.

3. The 16 differential 20 Gbps data streams go to two high speed 8:1 muxes to create
the differential 160 Gbps data streams for h0 (main cursor) and h−1 (pre-cursor) by
utilizing the octature 20GHz clocks. The cursor selection scheme at this interface is
elaborated in Chapter 5, and the high speed 8:1 mux design is presented in Chapter 4.

4. The two FFE cursors are combined using the final output driver stage and sent to the
output pads through CPW and t-coils.

5. All the blocks colored in black deal with 1.25GHz data. Blocks colored in red deal
with 10GHz data, while those in green deal with 20GHz or higher frequency data.

The complete transmitter clock network architecture, designed by my collaborator Yi-
Hsuan Shih, is shown in Fig 3.9, and follows the same color encoding as Fig 3.8. As mentioned
before, external clock input is taken in this test chip to avoid the design effort of making an
on-chip PLL, which will exist in a real system. This thesis will not cover details about the
design and optimization of the clock network components.

The combined layout of the TX datapath and clock network, fully generated and mea-
sured by BAG 3++, is shown in Fig 3.10 with annotations of the datapath and clock com-
ponents from figures 3.8 and 3.9. The top level power grid is not shown in the figure for
better legibility.
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Figure 3.9: Complete Transmitter Clock Network Architecture

Figure 3.10: BAG 3++ Generated Transmitter Layout with annotated components

The complete TX datapath top level, with CPW and t-coils designed by my collaborator
Kunmo Kim, is shown in Fig 3.11. Top level power grid is again removed for better visibility.
This thesis will not cover details about the design and optimization of the CPW and t-coils.

The die photograph is shown in Fig 3.12. The transmitter datapath is marked in a green
box while the receiver (RX) datapath is marked in a red box, showing the GSSGSSG bumps
needed for RX outputs and TX inputs at the edge of the die. The extra bumps to the left
of the red box and to the right of the green box are for 20GHz external clock inputs for the
RX and TX respectively.
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Figure 3.11: Manually Integrated Transmitter Datapath Top Level Layout

Figure 3.12: Die photograph
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3.5 Package Overview for Testing

The organic substrate package, designed by my collaborator Bob Zhou, houses three dies
to allow different testing modes of the transmitter and receiver. The balls-up overview and
the real photograph of the die attached package is shown in Fig 3.13. The different testing
modes are as follows:

1. Loopback mode: The TX on die 2 transmits data to the RX on die 1 over the 8.5mm
differential on-package channel, estimated to have ∼ 3 dB loss at the Nyquist frequency
of 80GHz. The TX on die 1 and the RX on die 2 are deactivated and not tested.

2. Stand-alone TX testing mode: The TX outputs from die 3 can be directly probed
from the probe pads, and eye diagrams can be observed in a high speed oscilloscope or
signal analyzer.

3. Stand-alone RX testing mode: External signal generators can be used to feed
data input directly to the RX on die 3 through the solder balls using W (1.85mm)
connectors on the PCB.

(a) Photograph of Die attached Package (b) Balls-up overview of the MCP

Figure 3.13: Organic Substrate Package

The PCB design and lab measurements are elaborated in Chapter 7.
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Chapter 4

Design Optimization of High Speed
8:1 Multiplexer

4.1 Motivation

As discussed in Chapter 3, the motivation for the high speed 8:1 multiplexer (mux) can be
summarized as follows:

• A 4:1 mux for 160 Gbps data-rate NRZ operation would require quadrature 40GHz
clock phases, which is extremely difficult to reliably generate and distribute across
PVT variations, device mismatches, etc.

• Instead, the clock network provides octature 20GHz clock phases, so the high speed
mux stage has to be 8:1.

The inputs for the 8:1 mux are 16 differential 20 Gbps data streams which are clocked
using the octature 20GHz phases. There are two major sub-parts for the mux design:

1. Designing the 1 UI pulse generator

2. Designing the peaking architecture for extending the bandwidth

4.2 1 UI Pulse Generator Design and Optimization

Let’s analyze the 1 UI pulse generator architectures used in literature for high speed 4:1 mux
designs. Fig 4.1 shows two different architecture styles.

Some key takeaways of the first design [2] are:

• The current pulse Iout occurs, i.e. the data input Din is sampled, when both input
clock phases CKin,1 and CKin,2 are low.
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(a) Chen et al [2] (b) Kim et al [5]

Figure 4.1: 1 UI Pulse Generator Architecture Options

• The rising edge of VR, i.e. the falling edge of CKin,2, independently controls the rising
edge of the current pulse Iout.

• The falling edge of VF , i.e. the rising edge of CKin,1, independently controls the falling
edge of the current pulse Iout.

• If transistors M6 and M7 are in saturation, then the output resistance is given by
Rout ≈ gm7ro7ro6.

Some key takeaways of the second design [5] are:

• The current pulse Iout occurs, i.e. the data input D is sampled, when both input clock
phases CK4 0 and CK4 90 are low.

• The falling edge of CK4 90 independently controls the rising edge of the current pulse
Iout.

• The rising edge of CK4 0 independently controls the falling edge of the current pulse
Iout.

• If transistor M2 is in saturation, then the output resistance is given by Rout ≈ ro2.

It is clear that the 2 architectures are conceptually similar. They use different phases of
the quadrature clock to control the rising and falling edges of the 1 UI current pulse. This
muxing strategy has an additional jitter attenuation advantage, as analyzed in [5]. Since
the jitter on the rising edge of the current pulse is uncorrelated from the jitter on the falling
edge of the pulse which occurs due to a different quadrature phase, the averaging of the
uncorrelated jitter improves the differential pulse jitter by a factor of 1√

2
.

For the 160 Gbps NRZ transmitter design, the first 1 UI pulse generator architecture is
chosen because of the higher output resistance, to improve the small signal gain of this high
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speed mux stage. Instead of two different phases of quadrature clock in the previous designs,
two different phases of octature clock will be chosen for each 1 UI pulse generator such that
their ‘low’ states overlap for exactly 1 UI.

4.3 Peaking Topology for Bandwidth Extension

The first order RC bandwidth of eight 1 UI pulse generator units driving the output driver
stage is lower than the desired Nyquist frequency of 80GHz, hence inductive peaking topolo-
gies have to be explored to extend the bandwidth. Kim et al [5] uses active inductors to
extend the bandwidth at the output node of the 4:1 mux, as shown in Fig 4.1b.

There are 2 major disadvantages for using active inductors in the 160 Gbps NRZ TX
design in the Intel16 technology node.

1. In this process, the active inductor has a self resonant frequency lower than 80GHz,
and essentially becomes a capacitor at the higher frequencies.

2. Active inductors inherently increase bandwidth by trading off gain, since the impedance
looking into the source of M3 in Fig 4.1b is given by Zin ≈ 1

gm3
+ sRon,4

ωT3
. As explained in

the theoretical analysis in Chapter 3, it is already extremely challenging to get a gain
≥ 1 at the high speed stages because of the technology parameters. Hence trading off
the gain even further using active inductors is not a viable option.

This implies that passive on-chip inductors have to be used for the peaking topology.
The new challenge is dealing with the large parasitic capacitance of these inductors which
can significantly reduce the perceived bandwidth extension advantage by lowering the self
resonant frequency.

Literature Review of Passive Inductive Peaking Topologies

The four most common inductive peaking topologies are represented in Fig 4.2 taken from
[4] with some capacitor annotations.

Extensive theoretical analysis about these topologies from [7], [8], [11], [9], [10] can be
summarized as follows:

• Without peaking, BW = 1
RC

• With inductive shunt peaking, BW = 1.8
RC

• With symmetric t-coil peaking, assuming damping factor of 1√
2
, BW = 2.83

RC

At first glance, it may seem like t-coil peaking is the best peaking option for all applications,
but that is misleading, and we need to fully understand the details. One major drawback of
the theoretical analysis is that it often ignores the parasitic capacitances associated with the
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VDD

(a) Shunt peaking

VDD

(b) Shunt-series peaking

VDD

(c) Shunt and double series peaking

VDD

(d) Bridged t-coil peaking

Figure 4.2: Common Peaking Topologies

metal wires of the inductor or t-coil, which are annotated in red in Fig 4.2. As the induc-
tor shapes and sizes, coupling ratio between multiple inductors, etc. is modified based on
theoretical analysis, the parasitic capacitances change as well and can alter the performance
resulting in very different results from what was predicted by theory. In older technology
nodes, device parasitics used to be 1 or more orders of magnitude larger than wire para-
sitics, so this omission resulted in negligible errors. However, in advanced nm scale FinFET
technology nodes, device scaling has made their parasitics comparable to wire parasitics, so
it becomes extremely crucial to take the wire parasitics effect into account. In some cases,
adding the inductors may even do more harm than good if the parasitic capacitances com-
pletely nullify any bandwidth extension advantages and instead end up increasing the load
capacitance more than the initial value. One common example application where a practical
design is more important than a theoretical design, is the use of asymmetric t-coils instead of
symmetric t-coils for equalizing the ESD at the pad connections. These asymmetric t-coils
are designed through multiple simulation iterations and trial-and-error since theoretically
analyzing the behavior becomes impractically difficult.
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The small signal bandwidth may not always be the main objective function that needs to
be maximized for every application. Since the bandwidth extension using peaking topologies
always comes at the expense of increased latency, some other factors may become more crucial
objective functions instead.

The effectiveness of the different peaking topologies also depends on the distribution of
the load capacitances across the inductor network. [4] shows that a bridged t-coil is most
effective when the output node has the largest lumped capacitance, while the same t-coil
with opposite polarity coupling coefficient is more preferable if the driver side capacitance
starts to dominate.

[4] also shows examples where the objective function for a particular application may
be something other than just the small signal bandwidth. A CML (current mode logic)
buffer or amplifier stage, that works predominantly in the small signal mode of operation,
should be optimized for maximally flat group delay response, which is usually achieved using
the bridged t-coil topology. On the other hand, a logic stage like a CML latch should be
optimized for minimum settling error since it exhibits large signal mode operation with rail-
to-rail input and output swings, which can be achieved using the shunt and double series
peaking topology.

Another important factor while choosing a peaking topology is the optimization of the
entire system as a whole rather than optimizing every single sub cell. Again, as shown in
[4], a 2:1 CML multiplexer with shunt peaking on the first stage and shunt and double series
peaking on the second stage provided the best overall performance of the multiplexer rather
than optimizing each stage in isolation.

All these considerations convince us that the most reliable way of designing inductive
peaking topologies is by running some automated program that can leverage computer
resources to perform iterations and optimize the application specific objective function.
While [4] presents their design optimization routine for on-chip inductive structures, we
have presented our open source, automated, process portable electromagnetic and circuit
co-optimization routine with BAG 3++ to handle this exact problem in Chapter 2.

4.4 Optimizing the Design of the 8:1 mux

After running many experiments, the following lessons were learned, and helped to prune
the search space for the co-optimization routine to arrive at the optimal design:

1. For any inductive peaking topology that has a shunt inductor branch, e.g. cases a, b,
c in Fig 4.2, it is better to swap the position of the inductor and the resistor. Then
the resistor isolates the parasitic capacitance of the inductor (which is usually higher
than the parasitic capacitance of the resistor) from the high speed signal nodes.

2. It can be better to avoid using the top metal layer for the inductor or t-coil, and instead
use the second layer from the top, for a few reasons:
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• The second layer may have a smaller minimum allowed width from the design
rules, which results in lower substrate capacitance as compared to the top layer
which usually has larger minimum allowed width, despite the larger distance to
the substrate. This effect was observed in [4] as well.

• The second layer may be thinner than the much thicker top metal layer, resulting
in lower side wall capacitance between inductor turns on the second layer.

These factors depend heavily on the exact metal stack in the technology node, and need
to be verified from simulations and measurements based on the PDK characteristics.

3. The objective function for the 8:1 mux design is maximizing the eye height at the
input of the output driver stage. It was found that the shunt-series topology provided
the best performance for this application. The schematic of the 8:1 mux stage with
shunt-series peaking and driving the final Gm stage, is shown in Fig 4.3. The coloring
follows the style from Fig 2.1 and Fig 2.2, where the circuits in the blue boxes form
the sub DUT for parasitic extraction, whereas the circuits in the yellow boxes form the
sub DUT for electromagnetic simulation.

Differential shunt inductors with shared port

x8 x8

Pseudo-differential pulse generators and resistors

gm stage for FFE

Differential series
inductors

VR

VF0

VR

VF1

VDD

Vtail

Figure 4.3: Schematic of 8:1 multiplexer with shunt-series peaking inductors
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4. To optimize the area of the overall transmitter floorplan in Fig 3.10, rectangular induc-
tors are used instead of octagonal to achieve maximum inductance in minimum area.
The inductors are tapped at the top and bottom edges to reduce the length of the
routing wires to the leads, thereby minimizing the additional parasitic capacitances
from routing. Fig 4.4 shows the optimized layouts of the differential series and shunt
inductors on the GM0 layer.

(a) Differential Series Inductors (b) Differential Shunt Inductors

Figure 4.4: Optimized BAG 3++ generated layouts of inductors for peaking of 8:1 mux

Results

The maximum differential peak-to-peak swing at the input of the output driver stage is ∼
320mV at two PVT variations (TT@25 ◦C with VDD = 1V, SS@−40 ◦C with VDD = 0.9V).
At FF@125 ◦C with VDD = 1.05V, the swing reduces to ∼ 240mV, possibly because of lower
output resistance of the 1 UI pulse generators. We expect > 99.9% yield at TT@25 ◦C from
the Intel foundry.
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Chapter 5

Datapath Timing at Clock Crossing
Interfaces

5.1 Problem setup

The most challenging timing in the transmitter datapath happens at the input of the high
speed 8:1 muxes. There are 8 data streams at dual rate 10GHz (i.e. 20 Gbps NRZ) at
the end of the complete 128:8 serialization (consisting of the eight 8:1 shift register based
serialization followed by 2:1 muxing in Fig 3.8) which get converted to 16 differential data
streams by the single-ended to differential (se2diff) converter. These 8 data streams (and
their complementary counterparts) are on different phases of the quadrature 10GHz clocks,
and become inputs to the two 8:1 muxes. The octature 20GHz clocks are the ‘select’ signals
for the 8:1 muxes, and have to be intelligently chosen to sample the data onto the 1 UI
pulse generator circuits of the 8:1 muxes, simultaneously creating two FFE cursor streams
h0 (main cursor) and h−1 (pre cursor) on the two paths, where h0 is delayed from h−1 by 1 UI
= 6.25 ps. Hence there is a very small margin of error for aligning the octature 20GHz clock
edges with the input data streams while maintaining adequate setup and hold time margins.
Not only is the logic timing quite tricky for the two 8:1 muxes, but the analog propagation
delay across logic gates and routing parasitics also need to be taken into account for the data
and clock edge alignment.

5.2 Alignment of Data and Clock Edges

Ideal Scenario (no propagation delay)

Let’s first consider the ideal situation where there is no propagation delay (Verilog-style
behavior) and figure out the logic timing to create the data streams for the 2 FFE cursors.
We first need to closely analyze which of the eight 10GHz input data streams are on which
phases of the quadrature 10GHz clocks.
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Since this clock crossing interface is the most challenging part of the transmitter datapath
with regards to timing margins, we start by assigning the quadrature clock phases to the
data streams in the way that works best for this interface. Then we configure the clock
phases on all the previous stages of the serializer to enforce the desired behavior.

Let’s name the eight 20 Gbps data streams as d0 to d7. The complementary eight data
streams will follow the same logic, so we focus on only the true data phases for now. The
quadrature 10GHz clock phases will be referred to as clk100, clk1090, clk10180, and clk10270.
Since the last two phases are complementary versions of the first two, we will focus on only
clk100 and clk1090 in the subsequent discussion.

The octature 20GHz clock phases will be referred to as clk200, clk2045, . . . , clk20315.
Phase rotators and reset synchronizers in the clock network in Fig 3.9 ensure that the rising
edge of clk200 aligns with the rising and falling edges of clk100 and clk10180.

Assign d0, d1, d2, d3 to the clock phase clk100, i.e. these four dual rate data streams
update on both rising and falling edge of clk100. Similarly, d4, d5, d6, d7 are assigned to the
clock phase clk1090, i.e. these four dual rate data streams update on both rising and falling
edge of clk1090. This is illustrated in Fig 5.1, where the red clock waveforms are at 10GHz
and the green clock waveforms are at 20GHz, following the color convention from Fig 3.8.

Figure 5.1: Timing diagram at clock crossing interface: Ideal scenario

Now let’s consider the ideal alignment of the h−1 and h0 cursors relative to the quadrature
10GHz clock phases. Assign d0 to h−1 2 UI after the first falling edge of clk100. In Fig 5.1,
this is referring to the UI corresponding to the first blue shaded column. This means that
there is a 2 UI setup time margin for d0 to be sampled by the 8:1 mux for h−1 after it became
available at a clock edge. The 8:1 mux for h0 then samples d0 in the next UI when h−1 is
sampling d1.



CHAPTER 5. DATAPATH TIMING AT CLOCK CROSSING INTERFACES 40

Following this logic, d3 is assigned to h0 just 1 UI before it will get a new value at the
first rising edge of clk100. In Fig 5.1, this is referring to the UI corresponding to the second
blue shaded column. This means that there is a 1 UI hold time margin for d3 to be sampled
by the 8:1 mux for h0 before it gets refreshed by the next clock edge.

By the exact same argument, d4 is sampled by the 8:1 mux for h−1 2 UI after it became
available at the first falling edge of clk1090, and d7 is sampled by the 8:1 mux for h0 1 UI
before it gets refreshed by the first rising edge of clk1090 in Fig 5.1. Hence this scheme
provides 2 UI setup time and 1 UI hold time margin for creating h0 and h−1 from the eight
input data streams.

In Chapter 4, it was mentioned that each 1 UI pulse generator in the 8:1 mux samples
the input data when both of its clock inputs are ‘low’. Based on that information and the
green octature waveforms in the timing diagram, we can infer that d0 is sampled for h−1

by the pair of clk20135 and clk20270 in the UI represented by the first blue shaded column.
In the UI represented by the second blue shaded column, the pair of clk20315 and clk2090
samples d4 for h−1 and d3 for h0.

Working through all the other UIs, we can construct Table 5.1 to show which 20GHz
clock phase pairs sample all the data streams d0, . . . , d7 for the main cursor and pre cursor.

Table 5.1: Pairs of 20GHz clock phases to create FFE cursor data streams (ideal)

h−1 h0

d0 clk20135, clk20270 clk20180, clk20315
d1 clk20180, clk20315 clk20225, clk200
d2 clk20225, clk200 clk20270, clk2045
d3 clk20270, clk2045 clk20315, clk2090
d4 clk20315, clk2090 clk200, clk20135
d5 clk200, clk20135 clk2045, clk20180
d6 clk2045, clk20180 clk2090, clk20225
d7 clk2090, clk20225 clk20135, clk20270

Hence we have determined the correct clock and data alignment for the ideal scenario with
no propagation delay. It is worth noting that this scheme cannot be indefinitely extended
for more number of FFE taps, since we will run out of UIs for setup and hold time margins.

Real scenario

Based on simulations of extracted netlists, it is found that there is an average of ∼24 ps
clk-to-q delay from a rising or falling edge of the quadrature 10GHz clock phase at the 2:1
mux stage to the data settling to a steady value at the output of the se2diff stage, with a
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∼1.8 ps spread across PVT variations. Since 1 UI = 6.25 ps, 24 ps ± 0.9 ps corresponds to a
4 UI propagation delay until the data d0, . . . , d7 is ready to be sampled after a rising or
falling edge of clk100 or clk1090 in the timing diagram of Fig 5.1.

This implies that the pair of 20GHz clock phases that selected d4 originally, will now
select d0 instead. Based on this, we can reconstruct Table 5.2 to show which 20GHz clock
phase pairs sample all the data streams d0, . . . , d7 for the main cursor and pre cursor, once
propagation delay is taken into account, by shifting the contents of Table 5.1 by 4 UI.

Table 5.2: Pairs of 20GHz clock phases to create FFE cursor data streams (real)

h−1 h0

d0 clk20315, clk2090 clk200, clk20135
d1 clk200, clk20135 clk2045, clk20180
d2 clk2045, clk20180 clk2090, clk20225
d3 clk2090, clk20225 clk20135, clk20270
d4 clk20135, clk20270 clk20180, clk20315
d5 clk20180, clk20315 clk20225, clk200
d6 clk20225, clk200 clk20270, clk2045
d7 clk20270, clk2045 clk20315, clk2090

Any additional UI shifts, due to PVT variations or clock phase misalignment, can be
calibrated using the 4 UI phase rotators, denoted by the 2 muxes before the C2MOS divider
in the TX clock network architecture in Fig 3.9.

5.3 Verification of clock and data alignment from

extracted simulations

It is extremely crucial to verify the octature 20GHz clock phase selection using rigorous
circuit simulations. While behavioral modelling can help to verify the logic in the ideal
scenario, only extracted simulations can verify the behavior taking the analog propagation
delay into account.

The most rigorous and reliable verification method is to run a transient simulation of the
entire extracted transmitter with datapath and clock network. However, that will make the
simulation time be prohibitively long, so a more efficient alternative approach is necessary
that has a more reasonable simulation time without sacrificing the rigor and reliability of
the verification step.

One approach is to extract the sub cells in isolation, and then tying them up in the
testbench (DUT and harnesses feature in BAG 3++ described in Chapter 1), with additional



CHAPTER 5. DATAPATH TIMING AT CLOCK CROSSING INTERFACES 42

lumped resistors and capacitors to model the parasitics because of routing between the sub
cells. The Intel16 PDK provides pcells (e.g. rcint in the intel22prim library) that model
the distribution of parasitic capacitance and resistance of various metal layers with user
specified widths, lengths, surrounding metal grid, etc. While this is a great strategy during
the initial design stage when the top level layout has not been assembled yet, it is still
attempting to predict the routing parasitics of the real design.

The partial layout generation feature of BAG 3++ provides the most reliable way of
running these verification simulations. In Chapters 2 and 4, this feature was used to divide
a DUT layout into a magnetic passives only sub DUT for electromagnetic simulations and
another non-magnetic sub DUT for parasitic extraction. Now we see the second major
application of this feature. The layout of the entire transmitter can be generated by omitting
all the components except the ones whose interface is being analyzed, while still retaining
all the top level routing and power grid. This ensures that the extracted netlist captures
the true parasitics of the routing at the interface of the sub cells, and yet have reasonable
simulation times by excluding other subcells that are not crucial for the particular interface
verification.

Example 1: Datapath Timing Verification at Clock Crossing
Interface

Fig 5.2 shows the partial layout generated for this datapath timing verification step. The
only subcells that are generated are the 2:1 mux stage, se2diff stage, and high speed 8:1 mux
stages from the transmitter datapath architecture in Fig 3.8, and all the top level interface
routing is preserved. The power grid is not shown in the figure for visibility, but is present
for the actual simulation.

(a) Complete Transmitter Layout from Fig 3.10 (b) Partial layout

Figure 5.2: Partial Layout for Datapath Timing Verification at Clock Crossing Interface
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The testbench and the measurement details of this timing verification application are
summarized as follows:

1. Inputs:

• Clock: Instead of square wave clock waveforms, buffered sinusoidal waveforms
are used for both the quadrature 10GHz and octature 20GHz clocks to account
for worst case low pass filtering from the clock distribution network.

• Data: 16 constant data input streams are provided as input to the 8 bit 2:1 mux.
This is assuming that the 16 outputs of the earlier low speed 128:16 serializer have
been retimed by the flop stage after the long routing, and have settled before they
get sampled onto the 2:1 mux.

2. Outputs: output data streams of the two high speed 8:1 muxes

3. Verify: Across all PVT variations, the following should hold true:

• The output data pattern should correctly match the muxed / serialized version
of the 16 input data streams for both the high speed 8:1 muxes

• The output data stream from the 8:1 mux for h0 should be exactly 1 UI delayed
from the corresponding data stream for h−1

This measurement reliably verifies the operation of the novel timing technique for creating
the two data streams for the FFE taps, as introduced in Fig 5.1 and Table 5.2.

Example 2: Verification of Clock Phase Alignment

It is important to verify that the quadrature 10GHz and octature 20GHz clock phases can
be aligned correctly across PVT variations using the available calibration options via the
phase rotator. As mentioned earlier, the rising edge of clk200 must align with the rising and
falling edges of clk100 and clk10180 for the timing technique in Fig 5.1 to operate successfully.

Fig 5.3 shows the partial layout generated for this verification. The only generated
subcells are the C2MOS divider, corresponding CCDL (current controlled delay line) and
buffers, and the div8 stage from Fig 3.9, and all the top level interface routing is preserved.
The power grid, not shown in the figure for visibility, is present for the actual simulation.

The testbench and measurement details for this application are summarized as follows:

1. Inputs:

• Clock: Instead of square wave clock waveforms, buffered sinusoidal waveforms
are provided for the octature 20GHz clocks to account for worst case low pass
filtering from the clock distribution network.

• Control: Reset signal and current DAC control signals are provided for the
CCDL and div8 stages.
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(a) Complete Transmitter Layout from Fig 3.10 (b) Partial layout

Figure 5.3: Partial Layout for Datapath Timing Verification at Clock Crossing Interface

2. Outputs:

• Quadrature 10GHz clocks

• 1.25GHz clock

3. Verify: Across all PVT variations, it should be possible to achieve the desired clock
phase alignment using the available calibration knobs.

This measurement reliably verifies the alignment of the clock phases at the interface of
the clock network and the datapath of the transmitter.
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Chapter 6

Design and Verification of
Miscellaneous TX Datapath
Components

Chapters 4 and 5 discussed the design and optimization of two of the most challenging
components of the 160 Gbps NRZ transmitter datapath. This chapter covers the design
challenges and verification procedures of some of the other equally important components in
the datapath.

6.1 Verification of Output Driver Stage Design

Problem setup

The output driver stage has to be designed and optimized simultaneously with the coplanar
waveguide (CPW) and t-coils at the output pad of the transmitter (TX), along with the
passive front-end at the input of the receiver (RX). The signal transmitted by the driver
needs to travel across the on-package channel and preserve a large enough amplitude at the
input of the track-and-hold (T&H) circuits at the receiver. Hence the target specifications
of the driver are set by the channel characteristics and the RX T&H design, as well as link
model analysis, making this design optimization step a collaborative effort with the passive
frontend and the receiver designers.

Chapter 3 mentions that the transmitter will be tested in both the loopback mode as well
as the stand-alone TX mode by direct probing of the output. However, the output driver
stage is optimized specifically for the loopback mode test, since that is the main target
application of the entire 160 Gbps NRZ transceiver project.
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Testbench Setup

Fig 6.1 shows the testbench for measuring the performance of the Gm cells of the output
driver. The TX components are enclosed in a green box and the RX components are enclosed
in a red box, following the color coding scheme from Fig 3.12.

Figure 6.1: Testbench for Transmitter Output Driver Design

The different components of the testbench are explained below, starting from the right:

1. The final load is a 1 port s parameter file that models the input impedance of the
RX T&H circuits, designed by my collaborator Paul Kwon. The objective function of
the output driver design is to maximize the differential amplitude at the T&H inputs
tnh_p and tnh_m.

2. The block before the T&H is a 4 port s parameter file that models the entire passive
front-end of the receiver, including the routing of the input pads through the t-coil,
CPW, high-pass filter (HPF) to the T&H inputs. Note that the presence of a HPF
implies that the RX is AC coupled, so the DC bias point at tnh_p and tnh_m are set
by local bias connections. Since s parameters are inherently small signal modelling at
a specific bias point, the information about the exact DC biasing point at the T&H
inputs is not captured in this testbench. This is ok for the purpose of this simulation
since we are only interested in the differential amplitude at tnh_p and tnh_m. The
inputs to this block are rx_p and rx_m.

3. The channel is modeled by a 4 port s parameter file derived by HFSS electromagnetic
simulation of the 8.5mm differential channel on the package, with ∼3 dB loss at the
Nyquist frequency of 80GHz, as shown in Fig 3.13. The inputs to the channel are tx_p
and tx_m which are transmitted by the TX.



CHAPTER 6. DESIGN AND VERIFICATION OF MISCELLANEOUS TX DATAPATH
COMPONENTS 47

4. Instead of lumping the entire passive network on the TX side into a single 4 port s
parameter file, similar to what’s done on the RX, we extract separate 8 port and 3
port s parameter files from electromagnetic (EM) simulations of the CPW and t-coil
respectively. mid_p and mid_m are the connections from the CPW to the 2 t-coils.
Extensive simulations confirm that the CPW and the differential t-coils are designed
to have proper isolation, so the individual EM simulations are not losing any accuracy
by not modelling the mutual coupling. By creating individual s parameter files for the
passive network sub components, we can place the extracted netlists of the termination
resistors and ESD in the testbench (not shown in Fig 6.1), and optimize their values
and location as well. All the magnetic passives (CPW and t-coil) on the TX and RX
passive front-end were designed by my collaborator Kunmo Kim.

5. The parasitic extracted netlist of the Gm cells for the 2 FFE taps is the main DUT
in this testbench. The current outputs i_outp0 and i_outm0 for h0, and current
outputs i_outp1 and i_outm1 for h−1 are summed in the CPW with appropriate sign.
Traditionally the Gm cell for the precursor tap h−1 is designed to be smaller than the
Gm cell for the main cursor tap h0. However, in this design, the same sized Gm cell is
used for both to save some design time and effort. The FFE co-efficient magnitude is
programmed by adjusting the gate voltage of the tail transistor in Gm cell using voltage
DACs. This also allows for some redundancy in the sense that one can easily program
which Gm cell is used for which cursor in case there are some device mismatches or
unexpected channel characteristics during lab testing.

Fig 6.2 shows the simulated waveforms from the testbench. We perform a pulse response
test in transient analysis rather than viewing eye diagrams with PRBS input, because the
pulse response provides more information about the full system characteristics. The different
signals in the figure are interpreted below.

1. Inputs: Chapter 3 mentions that the maximum differential peak-to-peak swing at
the input of the Gm cells is 320mV. In the output driver testbench, one Gm cell is
de-activated, and the other one is given a 1 UI = 6.25 ps triangular pulse input, with
a conservative 300mV differential peak-to-peak swing and 1 UI rise and fall time, as
represented by v_inp and v_inm.

2. TX outputs: The transmitted signals tx_p and tx_m show some attenuation as ex-
pected, since it wasn’t possible to achieve a gain ≥ 1 at the driver stage. Some very
weak reflections are visible on the TX output pads after a full round trip on the channel.
This shows that the termination at the RX input pads is not perfect.

3. RX inputs: The received signals rx_p and rx_m show further attenuation and some
ripples after travelling through the channel. No reflections are visible at the RX input
pads, which means the reflections got completely attenuated. Hence the termination
is good enough for this application.
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Figure 6.2: Waveforms from Transmitter Output Driver Simulation

4. T&H inputs: The common mode voltage at tnh_p and tnh_m is wrong, and the DC
offset between the two nodes is misleading, as expected from the loss of DC bias info
in the s parameter representation of the HPF. With the correct DC bias configuration,
there is no systematic DC offset between the two inputs of the T&H circuits. The
pulse has a differential amplitude of ∼63mV. This means that differential h0 ≈ 63mV.
Based on statistical analysis of the receiver topology, taking into account the gain and
noise (voltage + timing) of each stage, residual ISI (inter-symbol interference), DAC
offsets, and this T&H input pulse waveform, it is estimated that there is a timing
margin of ∼0.5 UI at the target BER = 10−12. This timing margin analysis does not
include the effects of phase misalignment, common mode issues, etc. It is assumed that
the margin is large enough to accommodate those extra errors.

The output driver stage consumes ∼10mA current during active operation.

6.2 Complete Transmitter Logic Verification

The logic of the entire transmitter needs to be verified all the way from the PRBS or user
specified input upto the outputs at the TX pad in Fig 3.8, to ensure that the correct clock
phases were selected for the various intermediate data streams at various stages on the dat-
apath. Chapter 5 mentioned that the clock phase assignment happened at the most critical
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clock crossing interface at the input of the high speed 8:1 mux. That assignment determined
the phase selection for all the previous mux, retimer, shift register based serializer, and PRBS
stages.

While we need to run a transient simulation with the extracted netlist of the entire
transmitter datapath for this verification step, we need to be sure that it needs to be run
only once because of its prohibitively long run-time. In order to enable quick iterations for
debugging the overall TX logic before the final verification, we need to use behavioral models
with significantly faster run-times.

Behavioral Modelling Overview with BAG 3++

As briefly discussed in Chapter 1, BAG 3++ can generate a hierarchical behavioral model
of the system based on its internal schematic representation. This is advantageous for two
major reasons:

1. If a top level non-hierarchical behavioral model is created for a complicated system,
there is a risk of missing certain key elements in the model which were introduced in
the schematic later during the tapeout cycle. For example, if an odd number of buffers
were inserted in the datapath for some reason (delay matching / shortening a critical
path for timing closure / etc.), the new output is now an inverted version of the original
output. This can be easily missed in the behavioral model, and hence the model and
the true circuit go out of sync.

2. By generating a behavioral model directly from the schematic generator, some logic
verification simulations can be done much faster in Verilog for iterative debugging
purposes. In SystemVerilog models, we can also include the information about analog
propagation delay of various cells, to make the latency more realistic and closely match-
ing with schematic or extracted circuit simulations. This feature is taken advantage of
in this section to debug any errors in the overall TX datapath logic.

The behavioral modelling in BAG 3++ works as follows:

• Users provide the behavioral models of the leaf cells (e.g. digital logic gates, analog
cells, etc).

• BAG 3++ constructs the hierarchical behavioral model of the top level cells using the
connection information from schematic generators.

• Sequential elements like memory cells (latch, flop) can also be hierarchically assembled
by BAG 3++ from the combinatorial models of the leaf cells (tristate inverter, nand,
nor, etc).

• Since the behavioral model is generated based on the schematic hierarchy, that also
determines the behavioral hierarchy. The layout hierarchy does not necessarily have to
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be same, in case a different hierarchy makes more sense from a floorplanning point of
view. For example, consider the case of a CS amplifier driving another CS amplifier.
From a behavioral modelling point of view, the hierarchy should be a top level with
two CS amplifier leaf cells. However, from a layout point of view, it is better to create
a ‘mos’ array with the transistors from both amplifiers, and a separate ‘res’ array with
the resistors from both amplifiers, and assemble those at the top level. This allows for
a more compact layout since the transistor and resistor boundary design rules apply
only once each around the whole array instead of around each amplifier cell. This is
illustrated in Fig 6.3.

(a) Schematic and Modelling Hierarchy (b) Layout Hierarchy

Figure 6.3: Different Hierarchies for Layout vs Schematic and Behavioral Model

TX Verification: Behavioral Model and Extracted Simulation

The TX datapath logic is debugged and verified using the following steps:

1. First we write the behavioral models of all the leaf cells, annotated with their individual
propagation delays, and then generate the hierarchical behavioral model of the entire
datapath using BAG 3++.

2. We create a Verilog testbench to run a transient simulation by providing all the nec-
essary clock stimuli and digital calibration signals, with a PRBS input data pattern.

3. Multiple iterations are done to debug errors in the logic, especially the reset syn-
chronization for the shift register based serializers, until the transmitted data pattern
perfectly matches the input data pattern. Each Verilog simulation has a run-time of 1
or 2 seconds, allowing us to do multiple rounds of debugging.
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4. Now we recreate the exact same transient simulation in a Spectre testbench, with the
same stimuli for clock, control signals, and the same input data pattern.

5. We generate the top level TX datapath layout using BAG 3++ and get the parasitic
extracted netlist (taking care to replace the magnetic passives with EM extracted s
parameter files), and run one long transient simulation. This has a run-time of a few
hours to a day or more.

6. We verify that the output data pattern from the Spectre simulation perfectly matches
the output data pattern from the Verilog simulation, which in turn matches with the
input data pattern. This is the fastest way to debug and verify the overall TX datapath
logic.

Fig 6.4 shows the h0 and h−1 data streams before the final combination stage from the
Spectre extracted simulation on the top, and the SystemVerilog simulation on the bottom.
We clearly see the exact same data pattern in the window enclosed by the black boxes, as
well as the 1 UI delay between h0 and h−1. Note that the voltage swing in the Spectre
simulation is worse than what was presented earlier in this thesis. This is because this logic
verification step was performed prior to optimizing the high speed 8:1 mux stage and output
driver stage to improve the swing.

Figure 6.4: TX Logic Verification from Extracted (top) and Behavioral (bottom) Simulations
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6.3 Floorplan Iterations using BAG 3++

The use of the BAG 3++ framework played a major role in the design and optimization of
the entire 160 Gbps NRZ transceiver project. The layout re-use and automation features
saved significant design time and effort across the board, while the automated measurement
and design scripts allowed us to perform crucial debugging and verification steps much faster
than what would be possible in a traditional AMS flow.

The entire low speed shift register based 128:16 serializer was generated by the same
generator scripts that were used in [13]. Generators for many circuit components, like voltage
DACs, logic gates, etc. were used in both the transmitter and receiver with appropriate
parameters. The clock network was intentionally kept the same in the TX and RX to
encourage and allow generator re-use.

In the transmitter datapath design, automated layout generation allowed multiple itera-
tions of the overall floorplan, including placement and routing of the large series and shunt
peaking inductors, to optimize the area and performance metrics. Fig 6.5 shows a few wildly
different floorplan iterations before we converged on the final design. The change from ver-
sion 2 to 3 was mainly driven by debugging the TX datapath logic described in the previous
section, while the subsequent versions were mainly related to optimizing the design of the
peaking inductors.

Figure 6.5: TX Datapath Floorplan Iterations in BAG 3++
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Chapter 7

Results

7.1 Simulation Results

The energy efficiency from extracted simulations for the 160 Gbps NRZ transmitter is very
promising as compared to the two state-of-the-art transmitter designs in literature. Table
7.1 is the updated version of Table 3.1 with the simulated energy efficiency number.

Table 7.1: Comparison of Current Goal with State-of-the-Art Transmitter Architectures

Specs JSSC 2022,
Kim et al [5]

JSSC 2022,
Wang et al [13]

Current Goal

Technology
node

10 nm FinFET 28 nm planar 16 nm FinFET

Data-rate
(Gbps)

224 Gbps PAM4,
112 Gbps NRZ

200 Gbps PAM4,
100 Gbps NRZ

160 Gbps NRZ

Nyquist
frequency
(GHz)

56 50 80

Equalization
technique

8 tap FFE 5 tap FFE 2 tap FFE

Energy
Efficiency (pJ /

bit)

1.88 (with PLL);
1.74 (without

PLL)

9.18 (excluding
DSP & PLL)

2 (simulated, no
PLL)

The power breakdown from simulation results is shown in Table 7.2.
It can be seen that the highest power consuming sub-components in the TX are:
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Table 7.2: Transmitter Power Breakdown from Simulation Results

TX Sub-block Power Consumption
(mW)

Output driver 10
2× High speed 8:1 mux 10

2:1 mux stage and retimers 30
low speed serializers 70

Clock network 200
Total 320

• the clock network, including octature generator, dividers, current controlled delay lines,
buffers, and clock distribution network (Fig 3.9)

• the shift register based serializers with local clock buffering.

7.2 PCB Design

In section 3.5, it was mentioned that the 160 Gbps NRZ transceiver will be tested in three
modes: loopback, stand-alone TX, and stand-alone RX. Hence the PCB (printed circuit
board) needs to be able to support all three modes of testing.

The most stringent requirement for the PCB material comes from the stand-alone RX
testing mode. Unlike the stand-alone TX which is connected to probe pads on the package,
the stand-alone RX has its inputs connected to solder balls. This means the external signal
generator has to feed data signals onto the PCB, which then get routed to the package. Hence
the PCB prepreg dielectric should have very low dissipation factor (Df) to avoid signal loss
at high frequencies. The most commonly used cheap PCB dielectric is FR4 (flame retardant
4), which has a high Df of 0.02 that is not suitable for our application. The dielectric with
the lowest Df available from the PCB manufacturing company Sierra Circuits was Astra MT
(MegTron) 77 with a Df of 0.0015, which is what we opted for. The recommended 6 layer
stack-up from Sierra is shown in Fig 7.1. Only the top and bottom prepreg use the MT77
dielectric while the core dielectric is FR4 (FR-370HR is Sierra’s code number for FR4).

We decided to divide the PCB into two types of boards, namely the ‘main’ board and
the ‘auxiliary’ board. The boards were manufactured by Sierra Circuits, and then all the
components were assembled by DigiCom Electronics.

1. Main: This PCB houses the triple die attached package (Fig 3.13), the supply regu-
lation collateral, and the connectors for external clock and data inputs.

2. Aux: This PCB houses the level shifters for communicating with the FPGA.
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Figure 7.1: Recommended 6 layer PCB stack-up

Main PCB Design

We wish to re-use each package for all three testing modes, hence the main PCB has con-
nectors and routing to enable all of them. The front and back views of the main PCB are
shown in Fig 7.2 and the various components are elaborated below:

(a) Front view (b) Back view

Figure 7.2: 3D views of Main PCB from Altium Designer

1. The cyan square in the front view is the triple die attached package. The yellow squares
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in the cyan square denote the locations of the 3 dies. Based on Fig 3.13, it is clear
that die 3 is on the west, and dies 1 and 2 are on the east.

2. Since the TX on die 2 and the RX on die 1 are used for the loopback mode test, the
relevant connectors are placed on the east side in the front view.

• four ‘K’ (2.92mm) connectors for external differential 20GHz clock inputs to the
TX and RX

• four edge SMA connectors for viewing the divided 1.25GHz differential clock
outputs from the TX and RX

• two 2× 6 headers for bringing in the level shifted FPGA signals for the TX and
RX from the auxiliary PCB into the main PCB

• one 2×4 header for bringing in external bias current from SMUs (source measure
unit) for TX and RX

3. Since the TX and RX on die 3 are used for stand-alone testing modes, the relevant
connectors are placed on the west side in the front view.

• two ‘W’ (1.85mm) connectors for external differential data input to the RX

• four ‘K’ (2.92mm) connectors for external differential 20GHz clock inputs to the
TX and RX

• four edge SMA connectors for viewing the divided 1.25GHz differential clock
outputs from the TX and RX

• one 2× 6 header for bringing in the level shifted FPGA signals for both TX and
RX from the auxiliary PCB into the main PCB

• one 2×4 header for bringing in external bias current from SMUs (source measure
unit) for TX and RX

4. The north side in the front view of the min PCB is kept clear so that the triangular
probe head can be brought in without any collisions or obstructions to land on the
probe pads for the outputs of the TX on die 3.

5. The south side in the front view on the PCB has LDOs, potentiometers and supply
decap for each of the six supplies on the package (AVDD and DVDD for each of the
three dies). The power regulation needs to be on the main PCB to ensure clean supplies
for the dies. If power regulation were on the auxiliary PCB instead, it would need to
be cleaned again after landing on the main PCB.

6. The back view of the main PCB shows the local supply decap for all 6 power domains
placed directly under the package. There are also inductors for improving the input
impedance of the external bias currents.
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During lab testing, we realized that the main PCB size was too large which made it
impossible to properly place under the microscope at the probe station, so some components
had to be depopulated from some of the main PCBs to allow for a good fit. In hindsight,
creating two different variants of the main PCB, with one variant supporting the loopback
and the stand-alone RX testing, and the second variant supporting the stand-alone TX
probing, would have made the PCBs easier to design and cheaper to manufacture as the
area could be significantly reduced. The major motivation to have one combined main PCB
was to re-use each package for all 3 testing modes, but we ended up hacking some main
PCBs anyway for probing.

Auxiliary PCB Design

Fig 7.3 shows the front view of the much simpler auxiliary (aux) PCB. There are no compo-
nents on the back-side. This boards needs to support only scan signals which are at 1MHz
or lower, so the low Df Astra MT77 dielectric is not necessary for this PCB. Nevertheless,
since the large panels used to manufacture the main PCBs had left-over unused areas, Sierra
Circuits recommended using the same stack-up for the aux PCB.

Figure 7.3: 3D view of Auxiliary PCB from Altium Designer

Each of the three dies on the package require the following set of components on the aux
PCB, in addition to supply decap network:

• one 2× 6 header for receiving the scan signals from the FPGA

• one level shifter to convert the 3.3V domain FPGA signals to the regulated DVDD
domain on the main PCB
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• one 2× 6 header for send the level shifted scan signals to the main PCB

• one 2× 4 header for the ‘enable’ signal of the level shifter

7.3 Lab Testing Setup & Measurement Results

For the FPGA (field programmable gate array), we chose the OpalKelly XEM 7001. It comes
with an easy-to-use Python API for programming the various necessary functions for the
transceiver setup and testing.

There were two main testing setups in the lab, relevant to the transmitter:

1. Probing Setup: This is shown in Fig 7.4, where the red arrows represent the ribbon
connections between the FPGA, aux PCB, and main PCB, and the blue triangle rep-
resents the probe head. Note that the main PCB in this figure has some components
depopulated for fitting under the microscope in the probe station. Unfortunately we
could not get any results from this setup since the computer at the BWRC probe
station stopped working, and we could not load the software for operating the probe
station components.

Figure 7.4: Setup of PCBs and FPGA for stand-alone TX probing

https://opalkelly.com/products/xem7001/
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2. Loopback Setup: This is shown in Fig 7.5, where the red arrows represent the ribbon
connections between the FPGA, aux PCB, and main PCB.

Figure 7.5: Setup of PCBs and FPGA for loopback testing

This setup provided the following results:

a) The scan chain was verified to be fully functional after power-up.

b) Current consumption from AVDD and DVDD matched the expected numbers
from extracted simulations, in both idle and active modes.

c) The clock network on the transmitter side is verified to be working by looking
at the output divided clock waveform. Using the manual calibration knobs, we
varied the quadrature 10GHz clock phase that is chosen to create the divided
clock, to verify that all the clock phases are alive.

• In the free running situation (no external differential 20GHz clock injection),
the octature phase generator locks to 22.4GHz, which is apparent from the
fact that the divided clock frequency is 1.4GHz in Fig 7.6.

• With external differential 20GHz clock injection, the divided clock frequency
is exactly 1.25GHz in Fig 7.7, as expected from the design.

• With external differential 10GHz clock injection, the divided clock frequency
is almost exactly 625MHz in Fig 7.8, as expected from the division ratio.
This case was a pleasant surprise since we didn’t expect that the octature
generator would be able to lock to half of its free running frequency. Indeed,
we can see that the divided clock waveform is not a perfect sinusoid in this
case and has some higher order harmonics.
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Figure 7.6: Output Divided Clock (Free Running)

Figure 7.7: Output Divided Clock (20GHz Injection)
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Figure 7.8: Output Divided Clock (10GHz Injection)

d) Unfortunately we could not make any further progress in this test setup, because
the clock network on the receiver had severe phase mismatch issues that made
the receiver datapath essentially inoperable at the target frequency. Hence the
loopback test could not be performed to evaluate the transmitter datapath per-
formance.
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Chapter 8

Conclusion

8.1 Thesis Contribution

The major focus of my PhD research has been the automation of AMS (Analog & Mixed
Signal) design using generators and design scripts, with particular focus on ultra high speed
wireline design. To that end, this thesis mentions substantial contributions to the develop-
ment and maintenance of the Berkeley Analog Generator (BAG) framework, as well as efforts
to push the boundary of achievable data rate and energy efficiency in wireline communication
systems.

A significant portion of my early PhD years were focused on ramping up on BAG. My
unquenchable curiosity to always find out how anything ‘really’ works, meant that I would
never be satisfied with just being a BAG user who only deals with the user facing API to
create generators and design scripts, and remains oblivious to the back-end implementation.
I absolutely needed to know the core principles and implementation details of every single
feature, so that I can then add newer features, improve on the existing framework, debug
issues that many users were often content with working around, and even challenge and
modify some outdated conventions which didn’t make logical sense to me.

With the great power of being a BAG developer, came the great responsibility of setting
up and maintaining BAG workspaces in a wide variety of technology nodes, ranging all the
way from sub µm planar nodes to nm FinFET nodes, from multiple different foundries.
Having access to all these technologies gave me exposure to a wide variety of design rules
and device characteristics, and ultimately made me a better AMS designer as I learned the
core design methodologies for AMS circuits that can be transferred across different PDKs.
It also gave me the opportunity to interact with and get feedback from multiple researchers
working on different projects, which helped to not only improve the BAG framework but
also added to my own circuit design knowledge.

Of course, a new AMS design framework that challenges the traditional design flow, will
be accepted and adopted widely only if we can design IP blocks that have similar or better
performance than existing designs, with lower manual design effort. To that end, my research
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team targeted the design of the ultra high speed 160 Gbps NRZ transceiver, which is faster
than any wireline communication system that has ever been demonstrated.

Due to unfortunate supply-chain delays with dies, package and PCB manufacturing that
interfered with our PhD timelines, and the eventual equipment failure in the lab, we didn’t
succeed in demonstrating a fully working transceiver. However, we did get some promising
results, learned many valuable lessons, and even helped Intel harden their 16 nm FinFET
process through years of feedback and collaboration.

Some critical take-aways from the transmitter datapath design are summarized below:

• It would have been preferable to use different analog supply domains. A nominal
1V supply domain for the CMOS stages (to avoid exceeding gate breakdown voltages
during full swing operation), and a separate higher (e.g. 1.5V) supply domain for the
high speed CML stages, like the 8:1 mux or the output driver, would allow us to get
larger gain-bandwidth and voltage swings at the frontend. Unfortunately the package
design and bump map were fixed about a year prior to the design optimization efforts,
so it wasn’t possible to accommodate more supply domains when the need arose.

• Design of magnetic peaking structures is extremely challenging, especially in advanced
technology nodes, because of the higher order parasitic effects that are not accounted
for in theoretical analysis. While inductive peaking still remains a very promising
and useful bandwidth extension technique, converging to the optimal design is a very
difficult task that should be handled by some automated optimization framework, as
highlighted in [4]. This aspect of the transmitter datapath design gave birth to an
entirely new feature in BAG 3++: the electromagnetic simulation support. Significant
time and efforts were spent on implementing the EmSimAccess class and the advanced
OptDesigner with EM just for the purpose of designing the high speed 8:1 mux stage.

• While many semesters of efforts went into the design of the transceiver, a dispropor-
tionately small amount of time and effort was put into planning for lab testing. Some
of the issues we faced in the lab, like the shortcomings that highlighted the benefit of
separate PCBs for the probing vs no-probing test modes, could have been alleviated if
we had planned ahead better from the very beginning of the project.

Despite the issues, the thesis still makes a very meaningful contribution to the field of
wireline communications research, as well as design automation. It explores and challenges
the limits of high data rates feasible in a technology node. It shows that automation frame-
works can be used to design high performance energy efficient circuits. As elaborated in
Chapters 4, 5, 6, various aspects of the BAG 3++ framework, like closed loop design scripts,
behavioral modelling, etc, were instrumental in the design and verification process. Gener-
ators and measurement scripts for various sub-blocks developed for this project are already
being re-used by other researchers in newer SerDes and data converter projects at BWRC.
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8.2 Future of Wireline SerDes Transmitters

The main reason why serial links became popular over parallel links back in the 80’s and
90’s was the efficiency of transferring data across a single wire instead of a bus of wires.
This drove serial links research to achieve higher and higher data-rates over the years, which
was also helped by technology scaling benefits. However, with device scaling finally slowing
down at the single digit nm nodes, it looks like the gain bandwidth limit of technology nodes
has finally been reached at the AMS front-end circuits, making it difficult or infeasible to
increase the single lane data-rate any further. Higher order modulation schemes like PAM-
4 instead of NRZ increase the spectral efficiency at the expense of lower SNR, stringent
linearity constraints, and more complicated equalization schemes. That is why parallel links
are seeing a resurgence in popularity, with AIB (Advanced Interface Bus), UCIe (Universal
Chiplet Interconnect Express), BoW (Bunch of Wires) protocols becoming more mainstream.
Even though these interfaces use a parallel bus of wires with lower data rate on individual
lanes, advanced packaging techniques allow extremely dense packing of the interfaces at tight
bump pitches, which makes the aggregate shoreline bandwidth density higher than serial
links. The parallel links also use single ended signalling instead of differential signalling in
standard SerDes, which can reduce the power consumption by almost 50%. Hence, most
wireline communications research will probably shift to parallel links more and more in the
coming years, and / or explore optical I/O solutions.

8.3 Future of Automated Generators and

Closed-Loop Design Scripts

Automation of layout generation and circuit measurements is causing a paradigm shift in
the traditional AMS design industry. While digital PnR flows have been automated for
many years, researchers are finally getting promising breakthroughs in AMS automation
now. Different variants and spin-offs of BAG have already been adopted to various extents in
industries and universities around the world along with their own in-house automation tools,
e.g. the MOSAIC (Modular Open Source Analog IC Design) collaboration. Especially with
the recent AI boom, various research teams are already exploring AMS design optimization
using AI. Thus it is absolutely essential for AMS designers to start adopting generator based
design methodologies immediately, or face the risk of falling behind in today’s fast-paced
industry. Automated generators and closed loop design scripts are definitely here to stay
and advance further over the coming years, highlighting the relevance of this thesis.
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