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Abstract

Reinforcement Learning from Static Datasets:
Algorithms, Analysis, and Applications

by

Aviral Kumar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

Reinforcement learning (RL) provides a formalism for learning-based control. By attempt-
ing to learn behavioral policies that can optimize a user-specified reward function, RL
methods have been able to acquire novel decision-making strategies that can outperform
the best humans even with highly complex dynamics and even when the space of all
possible outcomes is huge (e.g., robotic manipulation, chip floorplanning). Yet RL has
had a limited applicability compared to standard machine learning (ML) in real-world
scenarios. Why? The central issue with RL is that it relies crucially on running large
amounts of trial-and-error active data collection for learning policies. Unfortunately
though, in the real world, active data collection is generally very expensive (e.g., running
wet lab experiments for drug design), and/or dangerous (e.g., robots operating around
humans), and accurate simulators are hard to build. Overall, this means that while RL
carries the potential to broadly unlock ML in real-world decision-making problems, we
are unable to realize this potential via current RL techniques.

To realize this potential of RL, in this dissertation, we develop an alternate paradigm that
aims to utilizes static datasets of experience for learning policies. Such a “dataset-driven”
paradigm broadens the applicability of RL to a variety of decision-making problems where
historical datasets already exist or can be collected via domain-specific strategies. It also
brings the scalability and reliability benefits that modern supervised and unsupervised
ML methods enjoy into RL. That said, instantiating this paradigm is challenging as it
requires reconciling the static nature of learning from a dataset with the traditionally
active nature of RL, which results in challenges of distributional shift, generalization, and
optimization. After theoretically and empirically understanding these challenges, we
develop algorithmic ideas for addressing thee challenges and discuss several extensions
to convert these ideas into practical methods that can train modern high-capacity neural
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network function approximators on large and diverse datasets. Finally, we show how the
techniques can enable us to pre-train generalist policies for real robots and video games
and enable fast and efficient hardware accelerator design.
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1
I N T R O D U C T I O N

Reinforcement learning (RL) provides a mathematical formalism for learning-based
control. Specifically, reinforcement learning techniques can automatically discover and
acquire near-optimal behavior (often referred to as policies), which optimizes a user-
specified reward function. The reward function defines what a policy should do, and an
RL algorithm automatically determines how to do it. Devising RL algorithms has been an
active area of research ever since the development of dynamic programming algorithms
for optimal control in the 1960s [25]. Over the last decade, the introduction of effective
high-capacity deep neural network function approximators into RL, along with effective
algorithms for training them, has allowed RL methods to attain excellent results along a
wide range of domains [321, 202, 232, 203, 298, 160], often producing policies that match
or outperform the best known control strategy for the downstream task.

Despite these promising results, reinforcement learning methods have had limited appli-
cability in a number of other decision-making and control problems in the real world.
This is because traditional reinforcement learning techniques that have been developed for
a few decades now typically subscribe to an online learning paradigm: these techniques
involve iteratively collecting experience by actively interacting with an environment in
a trial-and-error fashion, and then using that experience to improve the policy [312]. In
many settings, this sort of online interaction is impractical, either because data collec-
tion is expensive (e.g., in robotics, drug design, education, power grid management, or
healthcare) and dangerous (e.g., in autonomous driving, power grid management, or
healthcare). One option to circumvent the need for active interaction is to instead build
simulators for the target problem and then run RL in simulation for discovering the
optimal behaviors. Even though this approach is practically feasible, it tends to perform
poorly when accurate simulators are hard to build (e.g., modelling the interaction between
a drug and a pathogen or that between humans and robots).

An alternate approach that we take in this dissertation is to build a “dataset-driven”
paradigm for RL that can incorporate static, previously-collected datasets for making
effective decisions. Since the success of supervised and unsupervised machine learning
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methods across a range of practically relevant problems over the past decade can in large
part be attributed to the development of scalable dataset-driven learning methods, which
continue to reliably improve as they are trained with more and higher-quality data, one
would also expect that such a dataset-driven paradigm for RL will enjoy these appealing
properties. Put in other words, such a dataset-driven paradigm for RL bears the promise
of translating progress in collecting datasets and advances in deep learning, directly to
generalizable and powerful decision-making engines.

Previously 
collected datasets

Real-world

ob
se

rv
at
io
n

ac
tio

n

Step 1: Train policy to 
synthesize actions

Step 2: Deploy 
learned policy in 

the real-world

Figure 1: The offline RL paradigm.

That said, instantiating this paradigm presents a
challenge as it requires reconciling the passive na-
ture of a static dataset with traditional RL tech-
niques and objective functions, which critically rely
on actively collecting experience for improving the
underlying policy. While prior work shows that the
class of off-policy RL algorithms, which we briefly
review in Chapter 2, can suffice for this fully offline
setting as well [192, 43, 234, 235], these classical tech-
niques often require restrictive assumptions that do
not hold with high-dimensional control problems
and realistic datasets. As we will discuss in Chap-
ter 3, in realistic decision-making problems, the
inability to actively collect experience often mani-
fests in the form of several challenges pertaining to distributional shift, generalization,
and optimization. These challenges are perhaps the most evident in the fully “offline”
setting, where we are not allowed access to any form of active interaction. Function
approximators such as deep neural networks generally exacerbate these issues, since func-
tion approximation increases the vulnerability of the learning algorithm to pathologies
from distributional shift and incorrect generalization.

Concretely, in this dissertation we provide a theoretical and empirical foundation to
the problem of utilizing static datasets in reinforcement learning, especially relevant
within the context of realistic datasets. We perform empirical studies to isolate the various
challenges when learning policies via RL in a fully offline manner, followed by developing
algorithmic techniques to address these challenges. Then, we develop techniques to scale
up these algorithmic ideas to leverage the generalization benefits offered by highly-
expressive function approximators, especially when provided with diverse and multi-task
datasets from a rich set of RL problems. We also develop techniques that enable rapid
fine-tuning of an offline initialization learned from the static dataset, with a limited
amount of active interaction. Finally, we demonstrate the efficacy of these algorithmic
ideas in the context of two real-world decision-making problems in hardware accelerator
design (i.e., chip design) and real robot control.
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Organization. After a brief disscussion of notation and the problem statement in Chap-
ter 2 (based on Levine et al. [204]), we make the following contributions:

• In Chapter 3, we empirically analyze the behavior of traditional RL algorithms in
the offline learning setting and isolate the challenges of distributional shift and
overfitting. This work appeared previously as Fu et al. [90].

• In Chapter 4, we develop an initial algorithm to circumvent the challenge of dis-
tributional shift by restricting the learned policy to lie within the support of the
data-collection policy. This work was published previously as Kumar et al. [179].

• In Chapter 5, we develop an approach for learning policies from static data, that
we call conservative value estimation. Conservative estimation of value functions
dispenses with the need to restrict the learned policy to within the support of
the data-collection policy, enabling bigger performance improvements, while still
addressing the challenge of distributional shift. We also instantiate our approach
into concrete model-free and model-based algorithms. This chapter consists of
content from work previously published as Kumar et al. [181], Yu et al. [367].

• In Chapter 6, we develop explicit regularization techniques that enable the approach
from Chapter 5 to utilize high-capacity neural network architectures. This chapter
is based on works previously published as Kumar et al. [183, 185].

• In Chapter 7, we develop automatic data sharing and reward labeling strategies
that boost the performance of the approach from Chapter 5, when learning from
multi-task and unlabeled datasets. This chapter consists of work that was published
as Yu et al. [366, 368].

• In Chapter 8, we develop a method that enables sample-efficient online fine-tuning
of offline policy initializations learned by the approach in Chapter 5. This chapter is
primarily based on work that previously appears as Nakamoto et al. [244].

• In Chapter 9, we present an application of the techniques from Chapters 5, 6, and
8 to the problem of incorporating broad prior data for boosting generalization of
robotic skill learning, with only a handful of task-specific rollouts. This chapter
consists of work that was previously published as Kumar et al. [188].

• In Chapter 10, we present an application of the techniques from Chapter 5 to the
problem of hardware accelerator design. This chapter consists of work that was
published as Kumar et al. [177].

We conclude with a discussion of current approaches and promising future directions in
developing reinforcement learning algorithms that can incorporate static datasets.
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Part I

P R O B L E M S TAT E M E N T A N D C H A L L E N G E S
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2
P R O B L E M S TAT E M E N T A N D P R E L I M I N A R I E S

Abstract
In this chapter, we will discuss our notion and background definition, followed by a
discussion of the problem statement of offline reinforcement learning (RL).

2.1 reinforcement learning preliminaries

In this section, we will define reinforcement learning (RL) concepts, following standard
definitions [314]. RL addresses the problem of learning to control a dynamical system.
The dynamical system is fully defined by a fully-observed or partially-observed Markov
decision process (MDP). We only consider problems where the dnynamical system is
defined by a fully-observed MDP in this dissertation.

Definition 2.1.1 (Markov decision process). A Markov decision process is defined as a tuple
M = (S , A, T, d0, r, g), where S is a set of states s 2 S , which may be either discrete or
continuous (i.e., multi-dimensional vectors), A is a set of actions a 2 A, which similarly can be
discrete or continuous, T defines a conditional probability distribution of the form T(st+1|st, at)

that describes the dynamics of the system,1 d0 defines the initial state distribution d0(s0), r :
S ⇥A! R defines a reward function, and g 2 (0, 1] is a scalar discount factor.

The final goal in a reinforcement learning problem is to learn a policy, which defines
a distribution over actions conditioned on states, p(at|st). From these definitions, we
can derive the trajectory distribution. The trajectory is a sequence of states and actions

1 We will sometimes use time subscripts (i.e., st+1 follows st), and sometimes “prime” notation (i.e., s0 is the
state that follows s). Explicit time subscripts can help clarify the notation in finite-horizon settings, while
“prime” notation is simpler in infinite-horizon settings where absolute time step indices are less meaningful.
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of length H, given by t = (s0, a0, . . . , sH, aH), where H may be infinite. The trajectory
distribution pp for a given MDP M and policy p is given by

pp(t) = d0(s0)
H

’
t=0

p(at|st)T(st+1|st, at).

The reinforcement learning objective, J(p), can then be written as an expectation under
this trajectory distribution:

J(p) = Et⇠pp(t)

"
H

Â
t=0

gtr(st, at)

#
. (2.1.1)

When H is infinite, it is typical to consider the expected reward under the g-discounted
stationary distribution of the learned policy. Formally, we can refer to the marginals of
the trajectory distribution pp(t). We will use dp(s) to refer to the overall state visitation
frequency, averaged over the time steps, and dp

t (st) to refer to the state visitation frequency
at time step t. Alternatively, we can consider the undiscounted expected reward under
the stationary distribution of the Markov chain (st, at) defined by p(at|st)T(st+1|st, at),
under ergodicity assumptions. For discussions in this dissertation, we will consider the
discounted marginal setting for simplicity.

Next, we will briefly summarize some types reinforcement learning algorithms and
present definitions. At a high level, all standard reinforcement learning algorithms follow
the same basic learning loop: the agent interacts with the MDP M by using some sort
of behavior policy, which may or may not match p(a|s), by observing the current state st,
selecting an action at, and then observing the resulting next state st+1 and reward value
rt = r(st, at). This may repeat for multiple steps, and the agent then uses the observed
transitions (st, at, st+1, rt) to update its policy. This update might also utilize previously
observed transitions. We will use D = {(si

t, ai
t, si

t+1, ri
t)} to denote the set of transitions

that are available for the agent to use for updating the policy (“learning”), which may
consist of either all transitions seen so far, or some subset thereof.

Dynamic Programming with Function Approximators
One way to optimize the reinforcmeent learning objective relies on the following observa-
tion: if we can accurately estimate a state or state-action value function, then it is easy to
then recover a near-optimal policy. A value function provides an estimate of the expected
cumulative reward that will be obtained by following some policy p(at|st) when starting
from a given state st, in the case of the state-value function Vp(st), or when starting from
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a state-action tuple (st, at), in the case of the state-action value function Qp(st, at). We
can define these value functions as:

Vp
(st) = Et⇠pp(t|st)

"
H

Â
t0=t

gt0�tr(st, at)

#

Qp
(st, at) = Et⇠pp(t|st,at)

"
H

Â
t0=t

gt0�tr(st, at)

#
.

From this, we can derive recursive definitions for value functions:

Vp
(st) = Eat⇠p(at|st) [Qp

(st, at)]

Qp
(st, at) = r(st, at) + gEst+1⇠T(st+1|st,at) [Vp

(st+1)] .

We can combine these two equations to express the Qp(st, at) in terms of Qp(st+1, at+1):

Qp
(st, at) = r(st, at) + gEst+1⇠T(st+1|st,at),at+1⇠p(at+1|st+1)

[Qp
(st+1, at+1)] . (2.1.2)

We can also express these in terms of the Bellman operator for the policy p, which we
denote Bp. For example, Equation (2.1.2) can be written as Qp = BpQp, where Qp (with
abuse of notation) now denotes the Q-function Qp represented as a vector of length
|S|⇥ |A|. Before moving on to deriving learning algorithms based on these definitions,
we briefly discuss some properties of the Bellman operator. This Bellman operator has a
unique fixed point that corresponds to the true Q-function for the policy p(a|s), which
can be obtained by repeating the iteration Qp

k+1 = BpQp
k , and it can be shown that

limk!• Qp
k = Qp, which obeys Equation (2.1.2) [314]. The proof for this follows from the

observation that Bp is a contraction in the `• norm [191].

Based on these definitions, we can derive two commonly used algorithms based on
dynamic programming: Q-learning and actor-critic methods. To derive Q-learning,
we express the policy implicitly in terms of Q as p(at|st) = d(at = arg max Q(st, at)),
and only learn the Q-function Q(st, at). By substituting this (implicit) policy into the
above dynamic programming equation, we obtain the following condition on the optimal
Q-function:

Q?
(st, at) = r(st, at) + gEst+1⇠T(st+1|st,at)


max
at+1

Q?
(st+1, at+1)

�
. (2.1.3)

We can again express this as Q = B?Q in vector notation, where B? now refers to the
Bellman optimality operator. Note however that this operator is not linear, due to the
maximization on the right-hand side in Equation (2.1.3). To turn this equation into
a learning algorithm, we can minimize the difference between the left-hand side and
right-hand side of this equation with respect to the parameters of a parametric Q-function
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estimator with parameters f, Qf(st, at). There are a number of variants of this Q-learning
procedure, including variants that fully minimize the difference between the left-hand side
and right-hand side of the above equation at each iteration, commonly referred to as fitted
Q-iteration [72, 277], and variants that take a single gradient step, such as the original
Q-learning method [337]. The commonly used variant in deep reinforcement learning is a
kind of hybrid of these two methods, employing a replay buffer [212] and taking gradient
steps on the Bellman error objective concurrently with data collection [232]. We write out
a general recipe for Q-learning methods in Algorithm 1.

Algorithm 1 Generic Q-learning (includes FQI and DQN as special cases)
1: initialize f0
2: initialize p0(a|s) = eU (a) + (1� e)d(a = arg maxa Qf0(s, a)) . Use e-greedy

exploration
3: initialize replay buffer D = ∆ as a ring buffer of fixed size
4: initialize s ⇠ d0(s)
5: for iteration k 2 [0, . . . , K] do
6: for step s 2 [0, . . . , S� 1] do
7: a ⇠ pk(a|s) . sample action from exploration policy
8: s0 ⇠ p(s0|s, a) . sample next state from MDP
9: D  D [ {(s, a, s0, r(s, a))} . append to buffer, purging old data if buffer too

big
10: end for
11: fk,0  fk
12: for gradient step g 2 [0, . . . , G� 1] do
13: sample batch batch ⇢ D . B = {(si, ai, s0i, rt)}
14: estimate error E(B, fk,g) = Âi

⇣
Qfk,g � (ri + g maxa0 Qfk(s0, a0))

⌘2

15: update parameters: fk,g+1  fk,g � arfk,gE(B, fk,g)

16: end for
17: fk+1  fk,G . update parameters
18: end for

Classic Q-learning can be derived as the limiting case where the buffer size is 1, and
we take G = 1 gradient steps and collect S = 1 transition samples per iteration, while
classic fitted Q-iteration runs the inner gradient descent phase to convergence (i.e.,
G = •), and uses a buffer size equal to the number of sampling steps S. Note that
many modern implementations also employ a target network, where the target value
ri + g maxa0 Qfk(s0, a0) actually uses fL, where L is a lagged iteration (e.g., the last k
that is a multiple of 1000). Note that these approximations violate the assumptions
under which Q-learning algorithms can be proven to converge. However, recent work
suggests that high-capacity function approximators, which correspond to a very large set
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Q, generally do tend to make this method convergent in practice, yielding a Q-function
that is close to Qp [90, 329].

Algorithm 2 Generic off-policy actor-critic
1: initialize f0
2: initialize q0
3: initialize replay buffer D = ∆ as a ring buffer of fixed size
4: initialize s ⇠ d0(s)
5: for iteration k 2 [0, . . . , K] do
6: for step s 2 [0, . . . , S� 1] do
7: a ⇠ pqk(a|s) . sample action from current policy
8: s0 ⇠ p(s0|s, a) . sample next state from MDP
9: D  D [ {(s, a, s0, r(s, a))} . append to buffer, purging old data if buffer too

big
10: end for
11: fk,0  fk
12: for gradient step g 2 [0, . . . , GQ � 1] do
13: sample batch batch ⇢ D . B = {(si, ai, s0i, rt)}
14: estimate error E(B, fk,g) = Âi

⇣
Qfk,g � (ri + gEa0⇠pk(a0|s0)Qfk(s0, a0))

⌘2

15: update parameters: fk,g+1  fk,g � aQrfk,gE(B, fk,g)

16: end for
17: fk+1  fk,GQ . update Q-function parameters
18: qk,0  qk
19: for gradient step g 2 [0, . . . Gp � 1] do
20: sample batch of states {si} from D
21: for each si, sample ai ⇠ pqk,g(a|si) . do not use actions in the buffer!
22: for each (si, ai), compute Â(si, ai) = Qfk+1(si, ai)�Ea⇠pk,g(a|si)

[Qfk+1(si, a)]

23: rqk,g J(pqk,g) ⇡
1
Nrqk,g log pqk,g(si, ai)Â(si, ai)

24: qk,g+1  qk,g + aprqk,g J(pqk,g)

25: end for
26: qk + 1 qk,Gp

. update policy parameters
27: end for

Actor-Critic Algorithms
Actor-critic algorithms employ both a parameterized policy and a parameterized value
function, and use the value function to provide training signal for the policy. Typically,
the learned value function is used to provide a better estimate of policy performance (or
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advantage Â(s, a)) in a policy gradient objective. There are a number of different variants
of actor-critic methods, including on-policy variants that directly estimate Vp(s) [171],
and off-policy variants that estimate Qp(s, a) via a parameterized state-action value
function Qp

f (s, a) [125, 124, 134].

We will focus on the latter class of algorithms, since they can be easily extended to the
offline setting. The basic design of such an algorithm is a straightforward combination
of the ideas in dynamic programming and policy gradients. Unlike Q-learning, which
directly attempts to learn the optimal Q-function, actor-critic methods aim to learn the
Q-function corresponding to the current parameterized policy pq(a|s), which must obey
the equation

Qp
(st, at) = r(st, at) + gEst+1⇠T(st+1|st,at),at+1⇠pq(at+1|st+1)

[Qp
(st+1, at+1)] .

As before, this equation can be expressed in vector form in terms of the Bellman operator
for the policy, Qp = BpQp, where Qp denotes the Q-function Qp represented as a vector
of length |S|⇥ |A|. We can now instantiate a complete algorithm based on this idea,
shown in Algorithm 2.

For more details, we refer the reader to standard textbooks and prior works [312, 171].
Actor-critic algorithms are closely related with another class of methods that frequently
arises in dynamic programming, called policy iteration (PI) [191]. Policy iteration consists
of two phases: policy evaluation and policy improvement. The policy evaluation phase
computes the Q-function for the current policy p, Qp, by solving for the fixed point
such that Qp = BpQp. This can be done via gradient updates, analogously to line 15
in Algorithm 2. The next policy iterate is then computed in the policy improvement
phase, by choosing the action that greedily maximizes the Q-value at each state, such that
pk+1(a|s) = d(a = arg maxa Qpk(s, a)), or by using a gradient based update procedure
as is employed in Algorithm 2 on line 24. In the absence of function approximation
(e.g., with tabular representations) policy iteration produces a monotonically improving
sequence of policies, and converges to the optimal policy. Policy iteration can be obtained
as a special case of the generic actor-critic algorithm in Algorithm 2 when we set GQ = •
and Gp = •, when the buffer D consists of each and every transition of the MDP.

Model-Based Reinforcement Learning
Model-based reinforcement learning is a general term that refers to a broad class of
methods that utilize explicit estimates of the transition or dynamics function T(st+1|st, at),
parameterized by a parameter vector y, which we will denote Ty(st+1|st, at). There is
no single recipe for a model-based reinforcement learning method. Some commonly
used model-based reinforcement learning algorithms learn only the dynamics model
Ty(st+1|st, at), and then utilize it for planning at test time, often by means of model-
predictive control (MPC) [318] with various trajectory optimization methods [239, 49].
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Other model-based reinforcement learning methods utilize a learned policy pq(at|st) in
addition to the dynamics model, and employ backpropagation through time to optimize
the policy with respect to the expected reward objective [60]. Yet another set of algorithms
employ the model to generate “synthetic” samples to augment the sample set available to
model-free reinforcement learning methods. The classic Dyna algorithm uses this recipe
in combination with Q-learning and one-step predictions via the model from previously
seen states [313], while a variety of recently proposed algorithms employ synthetic model-
based rollouts with policy gradients [257, 156] and actor-critic algorithms [148].

Comparison of different types of RL methods. One might wonder how these different
classes of reinforcement learning methods compare with each other. In practice, value-
based RL methods that use pproximate dynamic programming (Q-learning and actor-
critic) train Q-functions to match non-stationary target values, resulting in an optimization
problem different from standard supervised learning. This results in error propagation, a
phenomenon that we discuss theoretically and empirically in Chapter 4 when learning
value functions. On the other hand, training a model of the transition dynamics is a
supervised learning problem, which can be tackled using well-studied tools in empirical
risk minimization theoretically and benefits directly from advances in supervised deep
learning in practice. That said, trajectory rollouts in model-based RL algorithms diverge
from rollouts in the ground-truth model over longer horizons, once errors in fitting the
model compound together over steps of a trajectory. This is further exacerbated when the
policy aims to optimize the cumulative reward under the learned model, as we elaborate
theoretically and empirically in Chapter 5. From a theoretical standpoint, value-based RL
methods based on approximate dynamic programming require stronger assumptions of
completeness in order to learn a policy effectively, although model-based RL methods do
not require this sort of an assumption (see Sun et al. [310] for a detailed discussion of
when model-based RL methods can perform better).

2.2 problem statement : offline reinforcement learning

The offline reinforcement learning problem can be defined as a dataset-driven formulation
of the RL problem. The end goal is still to optimize the objective in Equation (2.1.1).
However, the agent no longer has the ability to interact with the environment and
collect additional transitions using the behavior policy. Instead, the learning algorithm
is provided with a static dataset of transitions, D = {(si

t, ai
t, si

t+1, ri
t)}, and must learn

the best policy it can using this dataset. This formulation more closely resembles the
standard supervised learning problem statement, and we can regard D as the training set
for the policy. In essence, offline reinforcement learning requires the learning algorithm
to derive a sufficient understanding of the dynamical system underlying the MDP M
entirely from a fixed dataset, and then construct a policy p(a|s) that attains the largest
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possible cumulative reward when it is actually used to interact with the MDP. We will use
pb to denote the distribution over states and actions in D, such that we assume that the
state-action tuples (s, a) 2 D are sampled according to s ⇠ dpb(s), and the actions are
sampled according to the behavior policy, such that a ⇠ pb(a|s).

The offline reinforcement learning problem can be approached using algorithms from
many categories of examples discussed above, and in principle any off-policy RL algo-
rithm could be used as an offline RL algorithm. For example, a simple offline RL method
can be obtained simply by using Q-learning without additional online exploration, using
D to pre-populate the data buffer. This corresponds to changing the initialization of D in
Algorithm 1, and setting S = 0. However, as we will discuss in subsequent chapters, not
all such methods are effective in the offline setting.

We will also consider an extension of the offline reinforcement learning problem, where
the goal is to first learn an offline policy initialization, followed by fine-tuning the learned
policy with limited amounts of online, actively-collected data. We will define a bit of
terminology and notation for this problem in Chapter 8, which studies this problem.
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3
C H A L L E N G E S I N O F F L I N E R E I N F O R C E M E N T L E A R N I N G

Abstract
In this chapter, we aim to understand challenges in learning policie from offline data.
To this end, we empirically study the behavior of a class of standard RL methods when
training on a static, offline dataset. In principle, off-policy RL methods should be
able to leverage experience collected from prior policies for sample-efficient learning.
However, as we illustrate in this chapter, in practice, commonly used off-policy RL
methods from Chapter 2 based on Q-learning and actor-critic are incredibly sensitive
to both the dataset distribution and quantity. Building on these insights from our
empirical study, we identify two main challenges in the offline setting: distributional
shift and sampling error. In the subsequent chapters, we develop techniques to handle
distributional shift (Chapters 4, 5) and briefly, sampling error (Chapter 6), progressing
towards reliable and easy-to-use offline RL methods.

3.1 introduction

In principle, off-policy reinforcement learning (RL) methods from Chapter 2 provide
an effective way to learn optimal policies from static data: by learning value-functions,
Q-learning and actor-critic algorithms, can learn optimal policies from even sub-optimal
offline data. By attempting to isolate practical problems that hinder the usability of off-
policy RL methods in learning from entirely static data, we wish to highlight challenges
in offline RL. Specifically, we focus on answering the following questions:

(1) What is the effect of distributional shift?
The standard formulation of Q-learning and actor-critic prescribes a learning procedure
that must make accurate counterfactul predictions about on states and actions visited by
the learned policy. In general, the distribution of the learned policy will always be very
different from that of the behavioral policy, and the difference will only be exacerbated
for a correctly functioning algorithm that is able to find a policy close to the optimal
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policy for the problem. We perform controlled experiments to investigate the amount
of distributional shift and its impact on performance, observing that deviating away
from the distributions of states and actions in the offline dataset can lead to significant
instability over the course of learning.

(2) What is the effect of sampling error?
In general, it is impossible to precisely infer the true underlying dynamical system using
just a finite amount of offline data. This means that akin to standard supervised learning,
off-policy RL algorithms that reuse a static dataset for learning would also overfit to the
training data. To what extent, does this overfitting hurt performance? We experimentally
show that overfitting exists in practice by performing ablation studies on the number
of gradient steps utilized for learning, and by demonstrating that oracle based early
stopping techniques can be used to improve performance of Q-learning algorithms.

3.2 experimental setup

While it is definitely possible to study challenges with off-policy RL methods in offline
RL on common deep RL benchmark tasks (e.g., OpenAI Gym [262] environments), these
tasks do not necessarily provide us with the ability to compute oracle solutions and
isolate challenges individually. Therefore, we perform our study in a “unit-testing”
setup, consisting of gridworld and other tabular environments with varying difficulty
levels, where it is possible to compute oracle solutions and control for different factors
independently.

For our study, we selected eight tabular domains, each with different qualitative attributes,
including: gridworlds of varying sizes and observations, blind Cliffwalk [286], discretized
Pendulum and Mountain Car based on OpenAI Gym [262], and a sparsely connected
graph. We discuss each domain in detail below:

• Gridworlds. The Gridworld environment is an NxN grid with randomly placed
walls. The reward is proportional to Manhattan distance to a goal state (1 at the goal,
0 at the initial position), and there is a 5% chance the agent travels in a different
direction than commanded. We vary two parameters: the size (16⇥ 16 and 64⇥ 64),
and the state representations. We use a one-hot representation, an (X, Y) coordinate
tuple (represented as two one-hot vectors), and a random representation, a vector
drawn from N (0, 1)N, where N is the width or height of the Gridworld. The
random observation significantly increases the challenge of function approximation,
as significant state aliasing occurs.

• Cliffwalk: Cliffwalk is a toy example from Schaul et al. [286]. It consists of a
sequence of states, where each state has two allowed actions: advance to the next
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state or return to the initial state. A reward of 1.0 is obtained when the agent reaches
the final state. Observations consist of vectors drawn from N (0, 1)16.

• InvertedPendulum and MountainCar: InvertedPendulum and MountainCar are
discretized versions of continuous control tasks found in OpenAI gym [262], and
are based on problems from classical RL literature. In the InvertedPendulum task,
an agent must swing up an pendulum and hold it in its upright position. The state
consists of the angle and angular velocity of the pendulum. Maximum reward is
given when the pendulum is upright. The observation consists of the sin and cos of
the pendulum angle, and the angular velocity. In the MountainCar task, the agent
must push a vehicle up a hill, but the hill is steep enough that the agent must gather
momentum by swinging back and forth within a valley in order to reach the top.
The state consists of the position and velocity of the vehicle.

• SparseGraph: The SparseGraph environment is a 256-state graph with randomly
drawn edges. Each state has two edges, each corresponding to an action. One state
is chosen as the goal state, where the agent receives a reward of one.

In order to provide consistent metrics across domains, we normalize returns and errors
involving Q-functions by the returns of the expert policy p⇤ on each environment.

3.3 impact of distributional shift

Off-policy RL methods applied to the offline RL problem would typically attempt to
learn an optimal policy, even though the static dataset may not be generated from an
optimal policy. As a result, one issue that emerges is that of distributional shift: while these
methods train a model of the value-function and the policy only using state-action tuples
from the data, upon deployment, these models will need to make correct predictions
on states and actions sampled from a different distribution of the learned policy. In
general, models trained via machine learning are not robust when the distribution of
inputs changes, indicating that distributional shift can be a challenge for off-policy RL
methods. Is distributional shift a challenge in offline RL?

Indeed, theoretically, the effects of distributional shift have been quantified using the
notion of a concentrability coefficient [235], a constant typically� 1, which provides a
worst-case error bound on the performance of an off-policy RL method due to distribu-
tional shift. To evaluate if this challenge persists empirically as well, we will analyze
Q-learning methods for various choices of data distributions in this section.

A crucial design decision we must make is to consider setups that do not confound
distributional shift with access to limited data. Therefore, for our study, we provide the
underlying algorithm oracle access to all state-action transitions in the MDP, but vary the
distribution over state-action pairs from which these transitions are sampled.
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3.3.1 What Are the Best Data Distributions Without Sampling Error?

Figure 2: Normalized returns plotted against
normalized entropy for different weighting dis-
tributions. All experiments assume access to all
state-action pairs with a 256x256 Q-network. We
see a general trend that high-entropy distribu-
tions lead to greater performance, corroborating
the uniformity hypothesis.

We begin by studying the effect of data dis-
tributions when disentangled from sampling
error. We run Q-learning with an ablation over
various Q-function network architectures and
data distributions and report our aggregate re-
sults in Fig. 2. Unif(s, a), Replay(s, a) (using a
replay buffer consisting of data from a mixture
of policies with different degrees of optimal-
ity), and Prioritized(s, a) (weighting induced
by prioritized experience replay [286]) consis-
tently result in the highest returns across all
architectures. On the other hand, relatively
“narrow” data distributions, such as those in-
duced the optimal policy (p⇤) or only using a
mixture of a few policies (Replay(10)) results in
poor performance. We believe that these results
favor the uniformity hypothesis: intuitively, the
best distributions spread weight across a larger
support of the state-action space, reducing the amount of possible distributional shift. On
the other hand, less-uniform distributions, such as the state-action distribution induced
by the optimal policy, present multiple avenues to deviate away from the offline data
distribution, resulting in larger distributional shift.

To summarize, this indicates that narrow data distributions lead to worse performance
compared to higher-entropy data distributions, indicating that distributional shift can
have a significant impact on the performance of off-policy RL in the offline setting.

3.4 impact of sampling error and overfitting

Figure 3: Samples vs. returns. More
samples yields better performance.

So far, we have observed that the performance of off-
policy RL algorithms based on Q-learning can be quite
sensitive to the distribution of the offline data, even
when all the transition tuples in the MDP are provided
to the algorithm, and only the weighting over these
samples is varied. In this section, we aim to study a
distinct question: we investigate the performance of off-
policy Q-learning when the offline dataset is of a finite
size and may not contain all transitions in the MDP. To
address any confounders from distributional shift, we
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(a) On-policy validation losses
for varying amounts of on-policy
data (or replay buffer), averaged
across environments and seeds.
Note that sampling from the re-
play buffer has lower on-policy
validation loss, despite bias from
distribution shift.

(b) Normalized returns plotted
over training iterations (32 sam-
ples per iteration), for different
ratios of gradient steps per sam-
ple. We observe that intermedi-
ate values of gradient steps work
best, and too many gradient steps
hurt performance.

(c) Normalized returns plotted
over training iterations (32 sam-
ples are taken per iteration), for
different early stopping methods.
We observe that using proper
early stopping can result in a
modest performance increase.

provide the underlying Q-learning algorithm oracle access to collecting data from the
current snapshot of the learned policy. While this sort of active data collection is not
possible in the offline RL problem setting, this simplification allows us to more carefully
localize the challenges of overfitting and sampling error.

We analyze several key points that relate to sampling error. First, we show that Q-learning
is prone to overfitting, and this overfitting has a real impact on performance.

3.4.1 Quantifying Overfitting

We first quantify the amount of overfitting during training, by varying the number of
samples. In order provide comparable validation errors across different experiments, we
fix a reference sequence of Q-functions, Q1, ..., QN, obtained during an arbitrary run of
Q-learning. We then retrace the training sequence, and minimize the projection error
Pµ(Qt) at each training iteration, using varying amounts of on-policy data or sampling
from a replay buffer. We measure the validation error (the expected Bellman error) at
each iteration under the on-policy distribution, plotted in Figure 4a. We note the obvious
trend that more samples leads to significantly lower validation loss.

Next, Figure 3 shows the relationship between number of samples and returns. We
see that more samples leads to improved learning speed and a better final solution.
Despite overfitting being an issue, larger architectures still perform better because the
bias introduced by smaller architectures dominates. This observation indicate that the
nature of overfitting in RL is likely significantly different from that of supervised learning:
while overfitting in supervised learning can bne controlled by regulating model capacity,
off-policy RL methods likely need to rely on alternative techniques to control overfitting.
We made some progress towards understanding this questions in Li et al. [209].
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3.4.2 Does Compensating for Overfitting Improve Performance?

Finally, to confirm our hypotheses regarding overfitting, we now wish to understand if
compensating for overfitting does lead to improved performance. One common technique
for reducing overfitting is to utilize early stopping methods to mitigate overfitting without
reducing model size. In order to understand whether early stopping criteria can reduce
overfitting, we employ oracle stopping rules to provide an “upper bound” on the best
potential improvement. We try two criteria for setting the number of gradient steps: the
expected Bellman error and the expected returns of the greedy policy (oracle returns). We
implement both methods by minimizing the TD-error to convergence, and retroactively
selecting the intermediate Q-function which is judged best by the evaluation metric. Using
oracle stopping metrics results in a modest boost in performance in tabular domains
(Fig. 4c). Thus, we believe that there is promise in further improving such early-stopping
methods for reducing overfitting in deep RL algorithms.

To summarize, we can draw a few conclusions from our experiments in this section. First,
overfitting is indeed an issue with Q-learning, and too many gradient steps or too few
samples can lead to poor performance. Second, although overfitting is a problem, large
architectures are still preferred, because the bias from function approximation outweighs
the increased overfitting from using large models.

Finally, we also remark that attempting to learn optimal policies from a static offline
dataset will present both distributional shift and overfitting challenges together, and we
would expect these to be tightly coupled with each other in the following sense: the
inability to correclty identify the underlying MDP from finite samples in the offline dataset
will induce errors in policy optimization, and these errors would then be exacerbated in
the next step of learning as the learned policy deviates from the training data. This will
also be evident in the theoretical results that we will present in subsequent chapters.
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4
R E S T R I C T I N G A C T I O N S E L E C T I O N F O R P O L I C Y L E A R N I N G

Abstract
As we observed in Chapter 3, commonly used off-policy RL based on Q-learning can
be highly sensitive to the data distribution, and are able to only make limited progress
without collecting additional on-policy data. As a first step towards more robust
off-policy algorithms that can be effective for offline RL, in this chapter, we identify
bootstrapping error as a key source of instability in current methods. Bootstrapping
error arises due to bootstrapping from actions that lie outside of the training data
distribution, and it accumulates via the Bellman backup operator. We theoretically an-
alyze bootstrapping error, and demonstrate how carefully constraining action selection
in the Bellman backup can mitigate it. Based on our analysis, we propose a practical
algorithm, bootstrapping error accumulation reduction (BEAR). We demonstrate that
BEAR is able to learn robustly from different data distributions, including random
and suboptimal offline data, on a range of control tasks.

4.1 introduction

While state-of-the-art off-policy RL methods (e.g., [125, 236, 159, 75]) have demonstrated
sample-efficient performance on complex tasks in robotics [159] and in simulation [325],
we show that these methods fail completely to learn when presented with arbitrary offline
datasets, corroborating our findings on simpler diagnostic tasks from Chapter 3. Since
this issue persists even when the off-policy data comes from effective expert policies,
which in principle should address any exploration challenge [55, 95, 90]. In this chapter,
we aim to understand the root cause behind this inability and then develop an off-policy
RL method that can learn effectively from static, offline datasets.

We find that a crucial challenge in applying value-based methods to off-policy scenarios
arises in the bootstrapping process employed, when Q-functions are evaluated on out
of out-of-distribution action inputs for computing the backup when training from off-
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Figure 5: Performance of SAC on HalfCheetah-v2 (return (left) and log Q-values (right)) with off-policy
expert data w.r.t. number of training samples (n). Note the large discrepancy between returns (which are
negative) and log Q-values (which have large positive values), which is not solved with additional samples.

policy data. This may introduce errors in the Q-function and the algorithm is unable to
collect new data in order to remedy those errors, making training unstable and divergent.
We will first formalize and analyze the reasons for instability and poor performance
when learning from off-policy data. Then, we will show that, through careful action
selection, error propagation through the Q-function can be mitigated. We will then
propose a principled algorithm called bootstrapping error accumulation reduction (BEAR)
to control bootstrapping error in practice, which uses the notion of support-set matching
to prevent error accumulation. Finally, through systematic experiments, we will show
the effectiveness of our method on continuous-control MuJoCo Gym tasks, with a variety
of off-policy datasets: generated by a random, suboptimal, or optimal policies. BEAR is
consistently robust to the training dataset, matching or exceeding the state-of-the-art in
all cases, whereas existing algorithms only perform well for specific datasets.

4.2 out-of-distribution actions in q-learning

Building upon the discoveries presented in Chapter 3, we have observed that Q-learning
methods frequently struggle to learn from static, off-policy data, particularly in high-
dimensional tasks. This difficulty is evident in Figure 5. As outlined in the discussion
of Chapter 3, the primary cause of this instability lies in the challenges of handling
distributional shift and statistical error. However, a crucial question remains: which factor
plays a more significant role in this example? Furthermore, what mechanism underlies
the emergence of this instability?

First of all, note that increasing the size of the static dataset does not rectify the problem
(compare n = 1M vs n = 1000), suggesting the issue in this setting is largely due
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to distributional shift. We can understand the source of this instability by examining
the form of the Bellman backup. Although minimizing the mean squared Bellman
error corresponds to a supervised regression problem, the targets for this regression are
themselves derived from the current Q-function estimate. The targets are calculated by
maximizing the learned Q-values with respect to the action at the next state. However, the
Q-function estimator is only reliable on inputs from the same distribution as its training
set. As a result, naı̈vely maximizing the value may evaluate the Q̂ estimator on actions
that lie far outside of the training distribution, resulting in pathological values that incur
large error. We refer to these actions as out-of-distribution (OOD) actions.

Formally, let zk(s, a) = |Qk(s, a) � Q⇤(s, a)| denote the total error at iteration k of Q-
learning, and let dk(s, a) = |Qk(s, a) � BQk�1(s, a)| denote the current Bellman error.
Then, we have zk(s, a)  dk(s, a) + g maxa0 Es0 [zk�1(s0, a0)]. In other words, errors from
(s0, a0) are discounted, then accumulated with new errors dk(s, a) from the current
iteration. We expect dk(s, a) to be high on OOD states and actions, as errors at these
state-actions are never directly minimized while training.

To mitigate bootstrapping error, we can restrict the policy to ensure that it output actions
that lie in the support of the training distribution. This is distinct from previous work [149]
which implicitly constrains the distribution of the learned policy to be close to the behavior
policy, similarly to behavioral cloning [284]. While this is sufficient to ensure that actions
lie in the training set with high probability, it is overly restrictive. For example, if the
behavior policy is close to uniform, the learned policy will behave randomly, resulting
in poor performance, even when the data is sufficient to learn a strong policy (see
Figure 6 for an illustration). Formally, this means that a learned policy p(a|s) has positive
density only where the density of the behaviour policy b(a|s) is more than a threshold
(i.e., 8a, b(a|s)  # =) p(a|s) = 0), instead of a closeness constraint on the value of
the density p(a|s) and b(a|s). Our analysis instead reveals a tradeoff between staying
within the data distribution and finding a suboptimal solution when the constraint is too
restrictive. Our analysis motivates us to restrict the support of the learned policy, but
not the probabilities of the actions lying within the support. This avoids evaluating the
Q-function estimator on OOD actions, but remains flexible in order to find a performant
policy. Our proposed algorithm leverages this insight.

4.3 formal analysis and distribution-constrained backups

In this section, we define and analyze a backup operator that restricts the set of policies
used in the maximization of the Q-function, and we derive performance bounds which
depend on the restricted set. This provides motivation for constraining policy support to
the data distribution, allowing us to address the issue discussed above. We begin with
the definition of a distribution-constrained operator:
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Definition 4.3.1 (Distribution-constrained operators). Given a set of policies P, the
distribution-constrained backup operator is defined as:

BPQ(s, a)
def
= E

⇥
R(s, a) + g max

p2P
ET(s0|s,a)

⇥
V(s0)

⇤ ⇤
V(s) def

= max
p2P

Ep[Q(s, a)] .

This backup operator satisfies properties of the standard Bellman backup, such as conver-
gence to a fixed point, as discussed in Appendix B.1. To analyze the (sub)optimality of
performing this backup under approximation error, we first quantify two sources of error.
The first is a suboptimality bias. The optimal policy may lie outside the policy constraint
set, and thus a suboptimal solution will be found. The second arises from distribution
shift between the training distribution and the policies used for backups. This formalizes
the notion of OOD actions. To capture suboptimality in the final solution, we define a
suboptimality constant, which measures how far p⇤ is from P.

Definition 4.3.2 (Suboptimality constant). The suboptimality constant is defined as:

a(P) = max
s,a

|BPQ⇤(s, a)� BQ⇤(s, a)|.

Next, we define a concentrability coefficient [235], which quantifies how far the visitation
distribution generated by policies from P is from the training data distribution. This
constant captures the degree to which states and actions are out of distribution.

Assumption 4.3.3 (Concentrability). Let r0 denote the initial state distribution, and
µ(s, a) denote the distribution of the training data over S ⇥A, with marginal µ(s) over S .
Suppose there exist coefficients c(k) such that for any p1, ...pk 2 P and s 2 S :

r0Pp1 Pp2 ...Ppk(s)  c(k)µ(s),

where Ppi is the transition operator on states induced by pi. Then, define the concentrability
coefficient C(P) as

C(P)
def
= (1� g)

2
•

Â
k=1

kgk�1c(k).

To provide some intuition for C(P), if µ was generated by a single policy p, and P = {p}
was a singleton set, then we would have C(P) = 1, which is the smallest possible value.
However, if P contained policies far from p, the value could be large, potentially infinite
if the support of P is not contained in p. Now, we bound the performance of approximate
distribution-constrained Q-iteration:
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Theorem 4.3.4. Suppose we run approximate distribution-constrained value iteration with
a set constrained backup BP. Assume that d(s, a) � maxk |Qk(s, a) � BPQk�1(s, a)|
bounds the Bellman error. Then,

lim
k!•

Er0 [|Vpk(s)�V⇤(s)|]  g

(1� g)2


C(P)Eµ[max

p2P
Ep[d(s, a)]] +

1� g

g
a(P)

�

Proof. See Appendix B.2, Theorem B.2.1

This bound formalizes the tradeoff between keeping policies chosen during backups
close to the data (captured by C(P)) and keeping the set P large enough to capture
well-performing policies (captured by a(P)). When we expand the set of policies P, we
are increasing C(P) but decreasing a(P). An example of this tradeoff, and how a careful
choice of P can yield superior results, is given in a tabular gridworld example in Fig. 6,
where we visualize errors accumulated during distribution-constrained Q-iteration for
different choices of P.

Finally, we motivate the use of support sets to construct P. We are interested in the case
where Pe = {p | p(a|s) = 0 whenever b(a|s) < e}, where b is the behavior policy (i.e.,
P is the set of policies that have support in the probable regions of the behavior policy).
Defining Pe in this way allows us to bound the concentrability coefficient:

Theorem 4.3.5. Assume the data distribution µ is generated by a behavior policy b. Let µ(s)
be the marginal state distribution under the data distribution. Define Pe = {p | p(a|s) =

0 whenever b(a|s) < e} and let µPe be the highest discounted marginal state distribution
starting from the initial state distribution r and following policies p 2 Pe at each time step
thereafter. Then, there exists a concentrability coefficient C(Pe) which is bounded:

C(Pe)  C(b) ·
⇣

1 +
g

(1� g) f (e)
(1� e)

⌘

where f (e)
def
= mins2S ,µPe (s)>0[µ(s)] > 0.

Proof. See Appendix B.2, Theorem B.2.2

Qualitatively, f (e) is the minimum discounted visitation marginal of a state under
the behaviour policy if only actions which are more than e likely are executed in the
environment. Thus, using support sets gives us a single lever, e, which simultaneously
trades off the value of C(P) and a(P). Not only can we provide theoretical guarantees,
we will see in our experiments (Sec. 4.5) that constructing P in this way provides a simple
and effective method for implementing distribution-constrained algorithms.
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Figure 6: Visualized error propagation in Q-learning for various choices of the constraint set P: un-
constrained (top row) distribution-constrained (middle), and constrained to the behavior policy (policy-
evaluation, bottom). Triangles represent Q-values for actions that move in different directions. The task
(left) is to reach the bottom-left corner (G) from the top-left (S), but the behaviour policy (visualized as
arrows in the task image, support state-action pairs are shown in black on the support set image) travels
to the bottom-right with a small amount of e-greedy exploration. Dark values indicate high error, and
light values indicate low error. Standard backups propagate large errors from the low-support regions
into the high-support regions, leading to high error. Policy evaluation reduces error propagation from
low-support regions, but introduces significant suboptimality bias, as the data policy is not optimal. A
carefully chosen distribution-constrained backup strikes a balance between these two extremes, by confining
error propagation in the low-support region while introducing minimal suboptimality bias.

Intuitively, this means we can prevent an increase in overall error in the Q-estimate by
selecting policies supported on the support of the training action distribution, which
would ensure roughly bounded projection error dk(s, a) while reducing the suboptimality
bias, potentially by a large amount. Bounded error dk(s, a) on the support set of the
training distribution is a reasonable assumption when using highly expressive function
approximators, such as deep networks, especially if we are willing to reweight the
transition set [286, 90]. We further elaborate on this point in Appendix B.3.

4.4 bootstrapping error accumulation reduction (bear)

We now propose a practical actor-critic algorithm (built on the framework of TD3 [96]
or SAC [125]) that uses distribution-constrained backups to reduce accumulation of
bootstrapping error. The key insight is that we can search for a policy with the same
support as the training distribution, while preventing accidental error accumulation. Our
algorithm has two main components. Analogous to BCQ [96], we use K Q-functions and
use the minimum Q-value for policy improvement, and design a constraint which will
be used for searching over the set of policies Pe, which share the same support as the
behavior policy. Both of these components will appear as modifications of the policy
improvement step in actor-critic style algorithms. We also note that policy improvement
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can be performed with the mean of the K Q-functions, and we found that this scheme
works as good in our experiments.

We denote the set of Q-functions as: Q̂1, · · · , Q̂K. Then, the policy is updated to maximize
the conservative estimate of the Q-values within Pe:

pf(s) := max
p2Pe

Ea⇠p(·|s)


min

j=1,..,K
Q̂j(s, a)

�

In practice, the behavior policy b is unknown, so we need an approximate way to constrain
p to P. We define a differentiable constraint that approximately constrains p to P, and
then approximately solve the constrained optimization problem via dual gradient descent.
We use the sampled version of maximum mean discrepancy (MMD) [114] between the
unknown behavior policy b and the actor p because it can be estimated based solely on
samples from the distributions. Given samples x1, · · · , xn ⇠ P and y1, · · · , ym ⇠ Q, the
sampled MMD between P and Q is given by:

MMD2
({x1, · · · , xn}, {y1, · · · , ym}) =

1
n2 Â

i,i0
k(xi, xi0)�

2
nm Â

i,j
k(xi, yj) +

1
m2 Â

j,j0
k(yj, yj0).

Here, k(·, ·) is any universal kernel. In our experiments, we find both Laplacian and
Gaussian kernels work well. The expression for MMD does not involve the density of
either distribution and it can be optimized directly through samples. Empirically we
find that, in the low-intermediate sample regime, the sampled MMD between P and Q
is similar to the MMD between a uniform distribution over P’s support and Q, which
makes MMD roughly suited for constraining distributions to a given support set. (See
Appendix B.3.3 for numerical simulations justifying this approach).

Putting together, the optimization problem in the policy improvement step is

pf := max
p2D|S|

Es⇠DEa⇠p(·|s)


min

j=1,..,K
Q̂j(s, a)

�
s.t. Es⇠D[MMD(D(s), p(·|s))]  #

(4.4.1)

where # is an approximately chosen threshold. We choose a threshold of # = 0.05 in our
experiments. The algorithm is summarized in Algorithm 3.

How does BEAR connect with distribution-constrained backups described in Section
4.1? Step 5 of the algorithm restricts pf to lie in the support of b. This insight is
formally justified in Theorems 4.1 & 4.2 (C(P#) is bounded). Computing distribution-
constrained backup exactly by maximizing over p 2 P# is intractable in practice. As an
approximation, we sample Dirac policies in the support of b (Alg 1, Line 5) and perform
empirical maximization to compute the backup. As the maximization is performed over
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a narrower set of Dirac policies ({dai} ✓ P#), the bound in the above Theorem still holds.
Empirically, we show in Section 4.5 that this approximation is sufficient to outperform
previous methods. This connection is briefly discussed in Appendix B.3.2.

Algorithm 3 Q-learning variant of BEAR (BEAR)
1: Dataset D, target network rate t, batch size N, sampled actions for MMD n, minimum l
2: Initialize Q-ensemble {Qqi}K

i=1, actor pf, multiplier a, target networks {Qq0i
}K

i=1, and a target
actor pf0 , with f0  f, q0i  qi

3: for all t in {1, . . . , N} do
4: Sample mini-batch of transitions (s, a, r, s0) ⇠ D
5: Q-update:
6: Sample p action samples, {ai ⇠ pf0(·|s0)}

p
i=1

7: Define y(s, a) := maxai [l minj=1,..,K Qq0j
(s0, ai) + (1� l) maxj=1,..,K Qq0j

(s0, ai)]

8: 8i, qi  arg minqi(Qqi(s, a)� (r + gy(s, a)))2

9: Policy-update:
10: Sample actions {âi ⇠ pf(·|s)}m

i=1 and {aj ⇠ D(s)}n
j=1.

11: Update f, a by minimizing Equation 4.4.1 with Lagrange multiplier a.
12: Update Target Networks: q0i  tqi + (1� t)q0i ; f0  tf + (1� t)f0

13: end for

In summary, the actor is updated towards maximizing the Q-function while still being
constrained to remain in the valid search space defined by Pe. The Q-function uses
actions sampled from the actor to then perform distribution-constrained Q-learning, over
a reduced set of policies. At test time, we sample p actions from pf(s) and the Q-value
maximizing action out of these is executed in the environment. Implementation and other
details are present in Appendix B.4.

4.5 experimental evaluation of bear

In our experiments, we study how BEAR performs when learning from static offline data
on a variety of continuous control benchmark tasks. We evaluate our algorithm in three
settings: when the dataset D is generated by (1) a completely random behavior policy, (2)
a partially trained, medium scoring policy, and (3) an optimal policy. Condition (2) is of
particular interest, as it captures many common use-cases in practice, such as learning
from imperfect demonstration data (e.g., of the sort that are commonly available for
autonomous driving [99]), or reusing previously collected experience during off-policy
RL. We compare our method to several prior methods: a baseline actor-critic algorithm
(TD3), the BCQ algorithm [95], which aims to address a similar problem, as discussed
in Section 4.2, KL-control [150] (which solves a KL-penalized RL problem similarly to
maximum entropy RL), a static version of DQfD [138], and a behavior cloning (BC)
baseline, which simply imitates the data distribution. This serves to measure whether
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Figure 7: Average performance of BEAR, BCQ, Naı̈ve RL and BC on medium-quality data averaged over 5
seeds. BEAR outperforms both BCQ and Naı̈ve RL. Average return over the training data is indicated by
the magenta line. One step on the x-axis corresponds to 1000 gradient steps.

each method actually performs effective RL, or simply copies the data. We report the
average evaluation return over 5 seeds of the policy given by the learned algorithm, in the
form of a learning curve as a function of number of gradient steps taken by the algorithm.
These samples are only collected for evaluation, and are not used for training.

4.5.1 Performance on Medium-Quality Data

We first discuss the evaluation of condition with “mediocre” data (2), as this condition
resembles the settings where we expect training on offline data to be most useful. We
collected one million transitions from a partially trained policy, so as to simulate imperfect
demonstration data or data from a mediocre prior policy. In this scenario, we found
that BEAR consistently outperforms BCQ [95] and a naı̈ve off-policy RL baseline (TD3)
(by large margins), as shown in Figure 7. This scenario is the most relevant from an
application point of view, as access to optimal data may not be feasible, and random data
might have inadequate exploration to efficient learn a good policy. We also evaluate the
accuracy with which the learned Q-functions predict actual policy returns. These trends
are provided in Appendix B.5. Our KL-control baseline uses automatic temperature
tuning [125]. We find that KL-control usually performs similar or worse to BC, whereas
DQfD tends to diverge, and often exhibits a huge variance across different runs (for
example, HalfCheetah-v2 environment).

4.5.2 Performance on Random and Optimal Datasets

In Figure 9, we show the performance of each method when trained on data from a
random policy (top) and a near-optimal policy (bottom). In both cases, our method BEAR
achieves good results, consistently exceeding the average dataset return on random data,
and matching the optimal policy return on optimal data. Naı̈ve RL also often does well on
random data. For a random data policy, all actions are in-distribution, since they all have
equal probability. This is consistent with our hypothesis that OOD actions are one of the
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Figure 8: Performance of BEAR, BCQ, Naı̈ve RL and BC on medium-quality (left) and random (right) data
in the Humanoid-v2 environment. Note that BEAR outperforms prior methods.

main sources of error in off-policy learning on static datasets. The prior BCQ method [95]
performs well on optimal data but performs poorly on random data, where the constraint
is too strict. These results show that BEAR is more robust to the dataset composition, and
can learn consistently in a variety of settings. We find that KL-control and DQfD can be
unstable in these settings. Finally, in Figure 8, we show that BEAR outperforms other
considered prior methods in the challenging Humanoid-v2 environment as well, in two
cases – Medium-quality data and random data.

4.6 related work

Errors arising from inadequate sampling, distributional shift, and function approximation
have been rigorously studied as “error propagation” in approximate dynamic program-
ming (ADP) [27, 234, 79, 288]. These works often study how Bellman errors accumulate
and propagate to nearby states via bootstrapping. In this chapter, we build upon tools
from this analysis to show that performing Bellman backups on static datasets leads
to error accumulation due to out-of-distribution values. Our approach is motivated as
reducing the rate of propagation of error propagation between states.

BEAR constrains actor updates so that the actions remain in the support of the training
dataset. Several works have explored similar ideas in the context of off-policy learning
learning in online settings. Kakade and Langford [158] shows that large policy updates
can be destructive, and propose a conservative policy iteration scheme which constrains
actor updates to be small for provably convergent learning. Grau-Moya et al. [112] use a
learned prior over actions in the maximum entropy RL framework [201] and justify it as
a regularizer based on mutual information. However, none of these methods use static
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Figure 9: Average performance of BEAR, BCQ, Naı̈ve RL and BC on random data (top row) and optimal
data (bottom row) over 5 seeds. BEAR is the only algorithm capable of learning in both scenarios. Naı̈ve
RL cannot handle optimal data, since it does not illustrate mistakes, and BCQ favors a behavioral cloning
strategy (performs quite close to behavior cloning in most cases), causing it to fail on random data. Average
return over the training dataset is indicated by the dashed magenta line.

datasets. Importance Sampling based distribution re-weighting [236, 102, 270, 225] has
also been explored primarily in the context of off-policy policy evaluation.

Most closely related to our approach is batch-constrained Q-learning (BCQ) [95] and
SPIBB [193], which also discuss instability arising from previously unseen actions. Fuji-
moto et al. [95] show convergence properties of an action-constrained Bellman backup
operator in tabular, error-free settings. We prove stronger results under approximation
errors and provide a bound on the suboptimality of the solution. This is crucial as it drives
the design choices for a practical algorithm. As a consequence, although we experimen-
tally find that [95] outperforms standard Q-learning methods when the off-policy data
is collected by an expert, BEAR outperforms [95] when the off-policy data is collected
by a suboptimal policy, as is common in real-life applications. SPIBB [193], like BEAR,
is an algorithm based on constraining the learned policy to the support of a behavior
policy. However, the authors of SPIBB do not extend safe performance guarantees from
the batch-constrained case to the relaxed support-constrained case, and do not study
high-dimensional control tasks.

4.7 discussion and limitations

In this chapter, we theoretically and empirically analyzed how error propagates in
offline RL due to the use of out-of-distribution actions for computing the target values
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in the Bellman backup. Our experiments suggest that this source of error is one of
the primary issues afflicting off-policy RL: increasing the number of samples does not
appear to mitigate the degradation issue (Figure 5), and training with naı̈ve RL on data
from a random policy, where there are no out-of-distribution actions, shows much less
degradation than training on data from more focused policies (Figure 9). Armed with
this insight, we develop a method for mitigating the effect of out-of-distribution actions,
which we call BEAR. BEAR constrains the backup to use actions that have non-negligible
support under the data distribution, but without being overly conservative in constraining
the learned policy. We observe experimentally that BEAR achieves good performance
across a range of tasks, and across a range of dataset compositions, learning well on
random, medium-quality, and expert data.

Limitations. A limitation of BEAR, and also other approaches that perform constrained-
action selection, is that they can be overly conservative compared to methods that aim to
constrain state-distributions directly and, even, methods that utilize conservative value
estimation, especially with datasets collected from mixtures of sub-optimal policies. In the
next chapter, we will present a principle for conservative value-estimation and develop
model-based and model-free offline RL algorithms based on this principle, which we find
leads to better performance across a broader range of tasks.

Theoretically, while our analysis demonstrates that support-matching based on distri-
butional backups can perform better than policy-constrained backups, unfortunately,
developing an efficient practical method for support matching in high-dimensional contin-
uous action spaces is still an open question. Additionally, there is also room to formally
characterize the gap between support-matching and policy-constrained backups. We
make progress towards this open question in a follow-up manuscript [300].
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5
C O N S E RVAT I V E VA L U E F U N C T I O N E S T I M AT I O N

Abstract
In Chapters 3 and 4, we discussed how standard off-policy RL methods can fail in
offline RL and how restricting action selection can provide for a first approach to tackle
distributional shift in offline RL. While this approach does attain promising empirical
performance, methods based on this principle tend to be restrictive, constraining
the learned policy to the behavioral policy even when the Q-function on out-of-
distribution actions are not erroneously large to inhibit effective policy learning.
In this chapter, we present a paradigm called conservative value function estimation,
which aims to address these limitations by learning a value-function such that the
expected value of a policy under this value-function lower-bounds its true value.
We discuss two concrete variants of this paradigm: a model-free variant, called
conservative Q-learning (CQL) [181], and a model-based variant, called conservative
offline model-based policy optimization (COMBO) [366]. Both of these variants can be
implemented by augmenting the standard temporal-difference error objective with a
Q-value regularizer, on top of model-based and model-free Q-learning and actor-critic
algorithms. We will also theoretically show that this paradigm produces conservative
value functions, that lower bound the ground-truth value of the current policy, and
policies, that enjoy safe policy improvement.

5.1 model-free conservative value function estimation

Directly utilizing existing value-based off-policy RL algorithms in an offline setting
generally results in poor performance, due to issues with bootstrapping from out-of-
distribution actions [179, 95] and overfitting [90, 179, 6]. This typically manifests as
erroneously optimistic value function estimates (observe the erroneously high Q-values in
Figure 5). If we can instead learn a conservative estimate of the value function, which pro-
vides a lower bound on the true values, this overestimation problem could be addressed.
We propose a novel method for learning such conservative Q-functions via a simple

32



modification to standard value-based RL algorithms. The key idea behind our method is
to minimize values under an appropriately chosen distribution over state-action tuples.
Our theoretical analysis of conservative Q-learning shows that the expected value of this
Q-function under the policy lower-bounds the true policy value. We also empirically
validate this observation and demonstrate the robustness of our approach to Q-function
estimation error. Our practical algorithm uses these conservative estimates for policy
evaluation and offline RL. CQL can be implemented as a modification on top of a number
of standard, online RL algorithms [122, 51], simply by adding the CQL regularization
terms to the Q-function update. In our experiments, we demonstrate the efficacy of CQL
for offline RL, in domains with complex dataset compositions, where prior methods
are typically known to perform poorly [86] and domains with high-dimensional visual
inputs [22, 6].

5.1.1 The Conservative Value Estimation Paradigm

In this section, we develop a conservative value-estimation paradigm, such that the
expected value of a policy under the learned Q-function lower-bounds its true value.
Lower-bounded Q-values prevent the over-estimation that is common in offline RL
settings due to OOD actions and approximation error [179]. We start with developing
this paradigm in the context of model-free policy evaluation, which can be used by itself
as an off-policy evaluation procedure, or integrated into a complete model-free offline RL
algorithm, that we call conservative Q-learning (CQL), as we will discuss in Section 5.1.3.
Finally, we will extend this algorithm to the model-based setting in Section 5.2.

5.1.2 Conservative Off-Policy Evaluation

We aim to estimate the value Vp(s) of a target policy p given access to a dataset, D,
generated by following a behavior policy pb(a|s). Because we are interested in preventing
overestimation of the policy value, we learn a conservative, lower-bound Q-function by
additionally minimizing Q-values alongside a standard Bellman error objective. Our
choice of penalty is to minimize the expected Q-value under a particular distribution
of state-action pairs, µ(s, a). Since standard Q-function training does not query the
Q-function value at unobserved states, but queries the Q-function at unseen actions, we
restrict µ to match the state-marginal in the dataset, such that µ(s, a) = dpb(s)µ(a|s).
This gives rise to the iterative update for training the Q-function:

Q̂k+1  arg min
Q

a Es⇠D,a⇠µ(a|s) [Q(s, a)] +
1
2

Es,a⇠D

⇣
Q(s, a)� B̂pQ̂k

(s, a)

⌘2
�

, (5.1.1)

In Theorem 5.1.1, we show that the resulting Q-function, Q̂p limk!• Q̂k, lower-bounds
Qp at all s 2 D, a 2 A. However, we can substantially tighten this bound if we are only
interested in estimating Vp(s). If we only require that the expected value of the Q̂p
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under p(a|s) lower-bound Vp, we can improve this by introducing an additional Q-value
maximization term on the data, pb(a|s), resulting in (changes from Eq. 5.1.1 in red):

Q̂k+1  arg min
Q

a ·
⇣

Es⇠D,a⇠µ(a|s) [Q(s, a)]�Es⇠D,a⇠p̂b(a|s) [Q(s, a)]

⌘

+
1
2

Es,a,s0⇠D

⇣
Q(s, a)� B̂pQ̂k

(s, a)

⌘2
�

. (5.1.2)

In Theorem 5.1.2, we show that, while the resulting Q-value Q̂p may not be a point-wise
lower-bound, we have Ep(a|s)[Q̂p(s, a)]  Vp(s) when µ(a|s) = p(a|s). Intuitively, since
Equation 5.1.2 maximizes Q-values under the behavior policy p̂b, Q-values for actions
that are likely under p̂b might be overestimated, and hence Q̂p may not lower-bound
Qp pointwise. While in principle the maximization term can utilize other distributions
besides p̂b(a|s), we prove in Appendix C.4.2 that the resulting value is not guaranteed
to be a lower bound for other distribution besides p̂b(a|s), though other distributions
besides p̂b(a|s) can still yield a lower bound if the Bellman error is also re-weighted to
come from the distribution chosen to maximize the expected Q-value.

Theoretical Analysis
We first note that Equations 5.1.1 and 5.1.2 use the empirical Bellman operator, B̂p, instead
of the actual Bellman operator, Bp. Following [254, 146, 251], we use concentration
properties of B̂p to control this error. Formally, for all s, a 2 D, with probability � 1� d,
|B̂p � Bp|(s, a)  Cr,T,dp

|D(s,a)|
, where Cr,T,d is a constant dependent on the concentration

properties (variance) of r(s, a) and T(s0|s, a), and d 2 (0, 1). For simplicity, we assume
that p̂b(a|s) > 0, 8a 2 A , 8s 2 D. Let 1p

|D|
denote a vector of size |S||A| containing

square root inverse counts for each state-action pair, except when D(s, a) = 0, in which
case the corresponding entry is a very large but finite value d � 2Rmax

1�g .

Theorem 5.1.1. For any µ(a|s) with µ ⇢ p̂b, with probability � 1� d, Q̂p (the Q-function
obtained by iterating Equation 5.1.1) satisifies, 8s 2 D, a:

Q̂p
(s, a)  Qp

(s, a)� a

"

(I � gPp
)
�1 µ

p̂b

#
(s, a) +

"
(I � gPp

)
�1 Cr,T,dRmax

(1� g)
p

|D|

#
(s, a).

Thus, if a is sufficiently large, then Q̂p(s, a)  Qp(s, a), 8s 2 D, a. When B̂p = Bp, any
a > 0 guarantees Q̂p(s, a)  Qp(s, a), 8s 2 D, a 2 A.

Next, we show that Equation 5.1.2 lower-bounds the expected value under the policy
p, when µ = p. We also show that Equation 5.1.2 does not lower-bound the Q-value
estimates pointwise. For this result, we abuse notation and assume that 1p

|D|
refers to a
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vector of inverse square root of only state counts, with a similar correction as before used
to handle the entries of this vector at states with zero counts.

Theorem 5.1.2 (Equation 5.1.2 results in a tighter lower bound). The value of the policy
under the Q-function from Equation 5.1.2, V̂p(s) = Ep(a|s)[Q̂p(s, a)], lower-bounds the
true value of the policy obtained via exact policy evaluation, Vp(s) = Ep(a|s)[Qp(s, a)],
when µ = p, according to:

V̂p
(s)  Vp

(s)� a

"

(I � gPp
)
�1

Ep

"
p

p̂b
� 1

##
(s) +

"
(I � gPp

)
�1 Cr,T,dRmax

(1� g)
p

|D|

#
(s).

8s 2 D. Thus, if a > Cr,T Rmax
1�g · maxs2D

1
|
p

|D(s)|
·
h
Âa p(a|s)( p(a|s)

p̂b(a|s)) � 1)

i�1
, 8s 2

D, V̂p(s)  Vp(s), with probability � 1� d. When B̂p = Bp, then any a > 0 guarantees
V̂p(s)  Vp(s), 8s 2 D.

The analysis presented above assumes that no function approximation is used in the Q-
function, meaning that each iterate can be represented exactly. We can further generalize
the result in Theorem 5.1.2 to the case of both linear function approximators and non-
linear neural network function approximators, where the latter builds on the neural
tangent kernel (NTK) framework [145]. We present these results in Theorem C.4.1 and
Theorem C.4.2 in Appendix C.4.1.

In summary, we showed that the basic CQL evaluation in Equation 5.1.1 learns a Q-
function that lower-bounds the true Q-function Qp, and the evaluation in Equation 5.1.2
provides a tighter lower bound on the expected Q-value of the policy p. For suitable a,
both bounds hold under sampling error and function approximation. We also note that
as more data becomes available and |D(s, a)| increases, the theoretical value of a that is
needed to guarantee a lower bound decreases, which indicates that in the limit of infinite
data, a lower bound can be obtained by using extremely small values of a. Next, we will
extend on this result into a complete RL algorithm.

5.1.3 Conservative Q-Learning for Offline Policy Optimization

We now present a general approach for model-free offline policy learning, which we refer
to as conservative Q-learning (CQL). As discussed in Section 5.1.2, we can obtain Q-values
that lower-bound the value of a policy p by solving Equation 5.1.2 with µ = p. How
should we utilize this for policy optimization? We could alternate between performing
full off-policy evaluation for each policy iterate, p̂k, and one step of policy improvement.
However, this can be expensive. Alternatively, since the policy p̂k is typically derived from
the Q-function, we could instead choose µ(a|s) to approximate the policy that would
maximize the current Q-function iterate, thus giving rise to an online algorithm.
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We can formally capture such online algorithms by defining a family of optimization
problems over µ(a|s), presented below, with modifications from Equation 5.1.2 marked in
red. An instance of this family is denoted by CQL(R) and is characterized by a particular
choice of regularizer R(µ):

min
Q

max
µ

a
⇣

Es⇠D,a⇠µ(a|s) [Q(s, a)]�Es⇠D,a⇠p̂b(a|s) [Q(s, a)]

⌘

+
1
2

Es,a,s0⇠D

⇣
Q(s, a)� B̂pk Q̂k

(s, a)

⌘2
�

+ R(µ) (CQL(R)) . (5.1.3)

Variants of CQL
To demonstrate the generality of the CQL family of objectives, we discuss two specific in-
stances within this family that are of special interest, and we evaluate them empirically in
Section 4.5. If we choose R(µ) to be the KL-divergence against a prior distribution, r(a|s),
i.e., R(µ) = �DKL(µ, r), then we get µ(a|s) µ r(a|s) · exp(Q(s, a)) (for a derivation, see
Appendix C.1). Frist, if r = Unif(a), then the first term in Equation 5.1.3 corresponds to
a soft-maximum of the Q-values at any state s and gives rise to the following variant of
Equation 5.1.3, called CQL(H):

min
Q

aEs⇠D

"
log Â

a
exp(Q(s, a))�Ea⇠p̂b(a|s) [Q(s, a)]

#
+

1
2

Es,a,s0⇠D

⇣
Q� B̂pk Q̂k

⌘2
�

. (5.1.4)

Second, if r(a|s) is chosen to be the previous policy p̂k�1, the first term in Equation 5.1.4
is replaced by an exponential weighted average of Q-values of actions from the chosen
p̂k�1(a|s). Empirically, we find that this variant can be more stable with high-dimensional
action spaces (e.g., Table 2) where it is challenging to estimate log Âa exp via sampling
due to high variance. In Appendix C.1, we discuss an additional variant of CQL, drawing
connections to distributionally robust optimization [245]. We will discuss a practical
instantiation of a CQL deep RL algorithm in Section 5.1.5. CQL can be instantiated as
either a Q-learning algorithm (with B⇤ instead of Bp in Equations 5.1.3, 5.1.4) or as an
actor-critic algorithm.

Theoretical Analysis of CQL
Next, we will theoretically analyze CQL to show that the policy updates derived in this
way are indeed “conservative”, in the sense that each successive policy iterate is optimized
against a lower bound on its value. For clarity, we state the results in the absence of
finite-sample error, in this section, but sampling error can be incorporated in the same
way as Theorems 5.1.1 and 5.1.2, and we discuss this in Appendix C.3. Theorem 5.1.3
shows that CQL(H) learns Q-value estimates that lower-bound the actual Q-function
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under the action-distribution defined by the policy, pk, under mild regularity conditions
(slow updates on the policy).

Theorem 5.1.3 (CQL learns lower-bounded Q-values). Let pQ̂k(a|s) µ exp(Q̂k(s, a))

and assume that DTV(p̂k+1, pQ̂k)  # (i.e., p̂k+1 changes slowly w.r.t to Q̂k). Then, the
policy value under Q̂k, lower-bounds the actual policy value, V̂k+1(s)  Vk+1(s) 8s 2 D if

EpQ̂k (a|s)

"
pQ̂k(a|s)
p̂b(a|s) � 1

#
� max

a s.t. p̂b(a|s)>0

 
pQ̂k(a|s)
p̂b(a|s)

!
· #.

The LHS of this inequality is equal to the amount of conservatism induced in the value,
V̂k+1 in iteration k + 1 of the CQL update, if the learned policy were equal to soft-optimal
policy for Q̂k, i.e., when p̂k+1 = pQ̂k . However, as the actual policy, p̂k+1, may be different,
the RHS is the maximal amount of potential overestimation due to this difference. To get
a lower bound, we require the amount of underestimation to be higher, which is obtained
if # is small, i.e. the policy changes slowly.

Our final result shows that CQL Q-function update is “gap-expanding”, by which we
mean that the difference in Q-values at in-distribution actions and over-optimistically
erroneous out-of-distribution actions is higher than the corresponding difference under
the actual Q-function. This implies that the policy pk(a|s) µ exp(Q̂k(s, a)), is constrained
to be closer to the dataset distribution, p̂b(a|s), thus the CQL update implicitly prevents
the detrimental effects of OOD action and distribution shift, which has been a major
concern in offline RL settings [179, 95].

Theorem 5.1.4 (CQL is gap-expanding). At iteration k, CQL expands the gap in expected
Q-values under the data pb(a|s) and µk, such that for large enough values of ak, we have that
8s 2 D, Epb(a|s)[Q̂k(s, a)]�Eµk(a|s)[Q̂k(s, a)] > Epb(a|s)[Qk(s, a)]�Eµk(a|s)[Qk(s, a)].

When function approximation or sampling error makes OOD actions have higher learned
Q-values, CQL backups are expected to be more robust, in that the policy is updated using
Q-values that prefer in-distribution actions. As we will empirically show in Appendix C.2,
prior offline RL methods that do not explicitly constrain or regularize the Q-function may
not enjoy such robustness properties.

To summarize, we showed that the CQL algorithm learns lower-bound Q-values with
large enough a, meaning that the final policy attains at least the estimated value. We also
showed that the Q-function is gap-expanding, meaning that it should only ever over-estimate
the gap between in-distribution and OOD actions, preventing OOD actions.
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5.1.4 Robust / Safe Policy Improvement Guarantees

In Section 5.1.2 we proposed novel objectives for Q-function training such that the
expected value of a policy under the resulting Q-function lower bounds the actual
performance of the policy. In Section 5.1.3, we used the learned conservative Q-function
for policy improvement. In this section, we show that this procedure actually optimizes a
well-defined objective and provide a safe policy improvement result for CQL, along the
lines of Theorems 1 and 2 in Laroche et al. [193].

To begin with, we define empirical return of any policy p, J(p, M̂), which is equal to
the discounted return of a policy p in the empirical MDP, M̂, that is induced by the
transitions observed in the dataset D, i.e. M̂ = {s, a, r, s0 2 D}. J(p, M) refers to the
expected discounted return attained by a policy p in the actual underlying MDP, M. In
Theorem 5.1.5, we first show that CQL (Equation 5.1.2) optimizes a well-defined penalized
RL empirical objective. All proofs are found in Appendix C.4.4.

Theorem 5.1.5. Let Q̂p be the fixed point of Equation 5.1.2 in the tabular setting. Then the
policy, p⇤ obtained by maximizing the expected values under the CQL Q-function can be
expressed as: p⇤(a|s) arg maxp J(p, M̂)� a 1

1�gEs⇠dp
M̂

(s)
⇥
DCQL(p, p̂b)(s)

⇤
, where

DCQL(p, pb)(s) := Âa p(a|s) ·
⇣

p(a|s)
pb(a|s) � 1

⌘
.

Intuitively, Theorem 5.1.5 says that CQL optimizes the return of a policy in the empirical
MDP, M̂, while also ensuring that the learned policy p is not too different from the
behavior policy, p̂b via a penalty that depends on DCQL. Note that this penalty is
implicitly introduced by virtue by the gap-expanding (Theorem 5.1.4) behavior of CQL.
Next, building upon Theorem 5.1.5 and the analysis of CPO [3], we show that CQL
provides a z-safe policy improvement over p̂b.

Theorem 5.1.6. Let p⇤(a|s) be the policy obtained in Theorem 5.1.5. Then, the policy
p⇤(a|s) is a z-safe policy improvement over p̂b in the actual MDP M, i.e., J(p⇤, M) �
J(p̂b, M)� z with high probability 1� d, where z =

O
✓

g

(1� g)2

◆
Es⇠dp⇤

M̂
(s)

" p
|A|p

|D(s)|

q
DCQL(p⇤, p̂b)(s) + 1

#
�

�
J(p⇤, M̂)� J(p̂b, M̂)

�
| {z }

� a
1�g E

s⇠dp⇤
M̂

(s)[
DCQL(p⇤,p̂b)(s)]

The expression of z in Theorem 5.1.6 consists of two terms: the first term captures the
decrease in policy performance in M, that occurs due to the mismatch between M̂ and
M, also referred to as sampling error. The second term captures the increase in policy
performance due to CQL in empirical MDP, M̂. The policy p⇤ obtained by optimizing p
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against the CQL Q-function improves upon the behavior policy, p̂b for suitably chosen
values of a. When sampling error is small, i.e., |D(s)| is large, then smaller values of a
are enough to provide an improvement over the behavior policy.

To summarize, CQL optimizes a well-defined, penalized empirical RL objective, and
performs high-confidence safe policy improvement over the behavior policy. The extent
of improvement is negatively influenced by higher sampling error, which decays as more
samples are observed.

5.1.5 Practical Conservative Q-Learning Algorithm

Algorithm 4 Conservative Q-Learning (both variants)
1: Initialize Q-function, Qq, and optionally a policy, pf.
2: for all step t in {1, . . . , N} do
3: Train the Q-function using GQ gradient steps on objective from Equation 5.1.4
4: qt := qt�1 � hQrqCQL(R)(q)

5: (Use B⇤ for Q-learning, Bpft for actor-critic)
6: (only with actor-critic) Improve policy pf via Gp gradient steps on f with SAC-

style entropy regularization:
7: ft := ft�1 + hpEs⇠D,a⇠pf(·|s)[Qq(s, a)�log pf(a|s)]
8: end for

We now describe two practical offline deep reinforcement learning methods based on CQL:
an actor-critic variant and a Q-learning variant. Pseudocode is shown in Algorithm 7,
with differences from conventional actor-critic algorithms (e.g., SAC [122]) and deep
Q-learning algorithms (e.g., DQN [232]) in red. Our algorithm uses the CQL(H) (or
CQL(R) in general) objective from the CQL framework for training the Q-function Qq,
which is parameterized by a neural network with parameters q. For the actor-critic
algorithm, a policy pf is trained as well. Our algorithm modifies the objective for the
Q-function (swaps out Bellman error with CQL(H)) or CQL(r) in a standard actor-critic
or Q-learning setting, as shown in Line 3. As discussed in Section 5.1.3, due to the explicit
penalty on the Q-function, CQL methods do not use a policy constraint, unlike prior
offline RL methods [179, 343, 296, 204]. Hence, we do not require fitting an additional
behavior policy estimator, simplifying our method.

Implementation details. Our algorithm requires an addition of only 20 lines of code on
top of standard implementations of soft actor-critic (SAC) [122] for continuous control
experiments and on top of QR-DQN [51] for the discrete control. The tradeoff factor, a is
is fixed at constant values described in Appendix C.6 for gym tasks and discrete control
and is automatically tuned via Lagrangian dual gradient descent for other domains. We
use default hyperparameters from SAC, except that the learning rate for the policy was
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chosen from {3e-5, 1e-4, 3e-4}, and is less than or equal to the Q-function, as dictated by
Theorem 5.1.3. Elaborate details are provided in Appendix C.6.

5.1.6 Related Work

We now briefly discuss prior work in offline RL and off-policy evaluation, comparing and
contrasting these works with our approach.

Off-policy evaluation (OPE). Several different paradigms have been used to perform off-
policy evaluation. Earlier works [268, 260, 269] used per-action importance sampling on
Monte-Carlo returns to obtain an OPE return estimator. Recent approaches [217, 102, 237,
373] use marginalized importance sampling by directly estimating the state-distribution
importance ratios via some form of dynamic programming [204] and typically exhibit less
variance than per-action importance sampling at the cost of bias. Because these methods
use dynamic programming, they can suffer from OOD actions [204, 102, 128, 237]. In
contrast, the regularizer in CQL explicitly addresses the impact of OOD actions due to its
gap-expanding behavior, and obtains conservative value estimates.

Offline RL. Prior methods have attempted to solve the offline RL problem by constraining
the learned policy to be “close” to the behavior policy, for example as measured by KL-
divergence [149, 343, 259, 296], Wasserstein distance [343], or MMD [179]. Most of these
methods require a separately estimated model to the behavior policy, pb(a|s) [95, 179, 343,
149, 296, 299], and are thus limited by their ability to accurately estimate the unknown
behavior policy [241], which might be especially complex in settings where the data is
collected from multiple sources [204]. In contrast, CQL does not require estimating the
behavior policy. Prior work has explored some forms of Q-function penalties [138, 331],
but only in the standard online RL setting with demonstrations. Luo et al. [219] learn a
conservatively-extrapolated value function by enforcing a linear extrapolation property
over the state-space, and a learned dynamics model to obtain policies for goal-reaching
tasks. Kakade and Langford [157] proposed the CPI algorithm, that improves a policy
conservatively in online RL.

Alternate prior approaches to offline RL estimate some sort of uncertainty to determine the
trustworthiness of a Q-value prediction [179, 6, 204], typically using uncertainty estimation
techniques from exploration in online RL [254, 146, 253, 36]. These methods have not been
generally performant in offline RL [95, 179, 204] due to the high-fidelity requirements of
uncertainty estimates in offline RL [204]. Robust MDPs [144, 261, 316, 248] have been a
popular theoretical abstraction for offline RL, but tend to be highly conservative in policy
improvement. We expect CQL to be less conservative since CQL does not underestimate
Q-values for all state-action tuples. Works on high confidence policy improvement [322]
provides safety guarantees for improvement but tend to be conservative. The gap-
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expanding property of CQL (Theorem 5.1.4), is related to how gap-increasing Bellman
backup operators [23, 218] are more robust to estimation error in online RL.

Theoretical results. Our theoretical results (Theorems 5.1.5, 5.1.6) are related to prior
work on safe policy improvement [193, 261], and a direct comparison to Theorems 1 and
2 in Laroche et al. [193] suggests similar quadratic dependence on the horizon and an
inverse square-root dependence on the counts. Our bounds improve over the •-norm
bounds in Petrik et al. [261].

5.1.7 Experimental Evaluation of CQL

We compare CQL to prior offline RL methods on a range of domains and dataset
compositions, including continuous and discrete action spaces, state observations of
varying dimensionality, and high-dimensional image inputs. We first evaluate actor-critic
CQL, using CQL(H) from Algorithm 7, on continuous control datasets from the D4RL
benchmark [86]. We compare to: prior offline RL methods that use a policy constraint –
BEAR [179] and BRAC [343]; SAC [122], an off-policy actor-critic method that we adapt
to offline setting; and behavioral cloning (BC). The code and instructions for reproducing
our results can be found at: https://github.com/young-geng/JaxCQL. Please refer to this
repository and the latest D4RL for future comparisons. D4RL-v0 is deprecated.

Task Name SAC BC BEAR BRAC-p BRAC-v CQL
halfcheetah-medium-v2 -4.3 42.6 38.6 44.0 51 48.4 ± 0.3
walker2d-medium-v2 0.9 75.3 33.2 72.7 81.3 82.0 ± 1.0
hopper-medium-v2 0.8 52.9 47.6 31.2 86.6 71.8 ± 2.5
halfcheetah-medium-expert-v2 1.8 55.2 51.7 43.8 44.0 87.3 ± 0.2
walker2d-medium-expert-v2 1.9 52.5 10.8 -0.3 111.6 106.1 ± 7.2
hopper-medium-expert-v2 1.6 107.5 4.0 1.1 79.0 109.2 ± 3.6
halfcheetah-medium-replay-v2 -2.4 36.6 36.2 47.6 45.3 47.0 ± 0.2
hopper-medium-replay-v2 3.5 18.1 25.3 0.7 96.2 93.8 ± 2.8
walker2d-medium-replay-v2 1.9 26.0 10.8 -0.3 85.0 86.2 ± 0.2
Total 5.7 466.7 - - 680.0 731.8

Table 1: Performance of CQL and prior methods on gym domains from D4RL, on the normalized
return metric, averaged over 3 seeds. Note that CQL performs similarly or better than the best
prior method with simple datasets, and outperforms prior methods with complex distributions
(“–medium-replay”, “–medium-expert”).

Gym domains. Results for the gym domains are shown in Table 1. The results for BEAR,
BRAC, SAC, and BC are based on numbers reported by Fu et al. [86]. We find that
across the board, on both the datasets generated by a single mediocre policy, marked as “-
medium” and the datasets generated by mixing together experience from multiple policies
(“-medium-replay” and “-medium-expert”), that are more likely to be encountered in
practical problems, CQL outperforms prior methods.
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Adroit tasks. The more complex Adroit [274] tasks in D4RL require controlling a 24-
DoF robotic hand, using limited data from human demonstrations. These tasks are
substantially more difficult than the gym tasks in terms of both the dataset composition
and high dimensionality. Prior offline RL methods generally struggle to learn meaningful
behaviors on these tasks, and the strongest baseline is BC. As shown in Table 2, CQL
variants are the only methods that improve over BC, attaining scores that are 2-9x those of
the next best offline RL method. CQL(r) with r = p̂k�1 (the previous policy) outperforms
CQL(H) on a number of these tasks, due to the higher action dimensionality resulting in
higher variance for the CQL(H) importance weights.

Domain Task Name BC SAC BEAR BRAC-p BRAC-v CQL(H) CQL(r)

AntMaze

antmaze-umaze-v2 54.6 0.0 73.0 50.0 70.0 94.0 -
antmaze-umaze-diverse-v2 45.6 0.0 61.0 40.0 70.0 47.3 -
antmaze-medium-play-v2 0.0 0.0 0.0 0.0 0.0 62.4 -
antmaze-medium-diverse-v2 0.0 0.0 8.0 0.0 0.0 74.3 -
antmaze-large-play-v2 0.0 0.0 0.0 0.0 0.0 34.2 -
antmaze-large-diverse-v2 0.0 0.0 0.0 0.0 0.0 40.7 -
Total (antmazes) 100.2 0.0 - - - 352.9 -

Adroit

pen-human 34.4 6.3 -1.0 8.1 0.6 37.5 55.8
hammer-human 1.5 0.5 0.3 0.3 0.2 4.4 2.1
door-human 0.5 3.9 -0.3 -0.3 -0.3 9.9 9.1
relocate-human 0.0 0.0 -0.3 -0.3 -0.3 0.20 0.35
pen-cloned 56.9 23.5 26.5 1.6 -2.5 39.2 40.3
hammer-cloned 0.8 0.2 0.3 0.3 0.3 2.1 5.7
door-cloned -0.1 0.0 -0.1 -0.1 -0.1 0.4 3.5
relocate-cloned -0.1 -0.2 -0.3 -0.3 -0.3 -0.1 -0.1

Kitchen
kitchen-complete 33.8 15.0 0.0 0.0 0.0 43.8 31.3
kitchen-partial 33.8 0.0 13.1 0.0 0.0 49.8 50.1
kitchen-undirected 47.5 2.5 47.2 0.0 0.0 51.0 52.4

Table 2: Normalized scores of all methods on AntMaze, Adroit, and kitchen domains from D4RL,
averaged across 4 seeds. On the harder mazes, CQL is the only method that attains non-zero
returns, and is the only method to outperform simple behavioral cloning on Adroit tasks with
human demonstrations. We observed that the CQL(r) variant, which avoids importance weights,
trains more stably, with no sudden fluctuations in policy performance over the course of training,
on the higher-dimensional Adroit tasks.

AntMaze. These tasks require composing parts of suboptimal trajectories to form more
optimal policies for reaching goals on a MuJoco Ant robot. Prior methods make some
progress on the simpler U-maze, but only CQL is able to make meaningful progress on
the much harder medium and large mazes, outperforming prior methods.

Kitchen tasks. Next, we evaluate CQL on the Franka kitchen domain [119] from D4RL [91].
The goal is to control a 9-DoF robot to manipulate multiple objects (microwave, kettle,
etc.) sequentially, in a single episode to reach a desired configuration, with only sparse
0-1 completion reward for every object that attains the target configuration. These tasks
are especially challenging, since they require composing parts of trajectories, precise
long-horizon manipulation, and handling human-provided teleoperation data. As shown
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in Table 2, CQL outperforms prior methods in this setting, and is the only method that
outperforms behavioral cloning, attaining over 40% success rate on all tasks.

Offline RL on Atari games1. Lastly, we evaluate a discrete-action Q-learning variant
of CQL (Algorithm 7) on offline, image-based Atari games [22]. We compare CQL to
REM [6] and QR-DQN [51] on the five Atari tasks (Pong, Breakout, Qbert, Seaquest and
Asterix) that are evaluated in detail by Agarwal et al. [6], using the dataset released by
the authors.

Figure 10: Performance of CQL, QR-DQN and REM as a function of training steps (x-axis) in setting (1)
when provided with only the first 20% of the samples of an online DQN run. Note that CQL is able to
learn stably on 3 out of 4 games, and its performance does not degrade as steeply as QR-DQN on Seaquest.

Following the evaluation protocol of Agarwal et al. [6], we evaluated on two types of
datasets, both of which were generated from the DQN-replay dataset, released by [6]: (1)
a dataset consisting of the first 20% of the samples observed by an online DQN agent and
(2) datasets consisting of only 1% and 10% of all samples observed by an online DQN
agent (Figures 6 and 7 in [6]). In setting (1), shown in Figure 10, CQL generally achieves
similar or better performance throughout as QR-DQN and REM. When only using only
1% or 10% of the data, in setting (2) (Table 3), CQL substantially outperforms REM and
QR-DQN, especially in the harder 1% condition, achieving 36x and 6x times the return of
the best prior method on Q*bert and Breakout, respectively.

Analysis of CQL. Finally, we perform empirical evaluation to verify that CQL indeed
lower-bounds the value function, thus verifying Theorems 5.1.2, Appendix C.4.1 em-
pirically. To this end, we estimate the average value of the learned policy predicted by
CQL, Es⇠D[V̂k(s)], and report the difference against the actual discounted return of the
policy pk in Table 4. We also estimate these values for baselines, including the minimum
predicted Q-value under an ensemble [122, 97] of Q-functions with varying ensemble
sizes, which is a standard technique to prevent overestimed Q-values [97, 122, 129] and
BEAR [179], a policy constraint method. The results show that CQL learns a lower bound
for all three tasks, whereas the baselines are prone to overestimation. We also evaluate
a variant of CQL that uses Equation 5.1.1, and observe that the resulting values are
lower (that is, underestimate the true values) as compared to CQL(H). This provides
empirical evidence that CQL(H) attains a tighter lower bound than the point-wise bound

1 Results for CQL on more Atari games, with varied dataset compositions can be found in Appendix F of
DR3 (Kumar et al. ICLR 2022), available at the following arXiv URL: https://arxiv.org/abs/2112.04716
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Task Name QR-DQN REM CQL(H)
Pong (1%) -13.8 -6.9 19.3
Breakout 7.9 11.0 61.1
Q*bert 383.6 343.4 14012.0
Seaquest 672.9 499.8 779.4
Asterix 166.3 386.5 592.4
Pong (10%) 15.1 8.9 18.5
Breakout 151.2 86.7 269.3
Q*bert 7091.3 8624.3 13855.6
Seaquest 2984.8 3936.6 3674.1
Asterix 189.2 75.1 156.3

Table 3: CQL, REM and QR-DQN in setting (1) with 1% data (top), and 10% data (bottom). CQL
outperforms prior methods with 1% data, and usually attains better performance with 10% data.

Figure 11: COMBO learns a conservative value function by utilizing both the offline dataset as well as
simulated data from the model. Crucially, COMBO does not require uncertainty quantification, and the
value function learned by COMBO is a tighter lower-bound of the true value compared to CQL. This
enables COMBO to steer the agent towards higher value states compared to CQL, which may steer towards
sub-optimal states as illustrated in the figure.

in Equation 5.1.1, as per Theorem 5.1.2. We also present an empirical analysis to show
that Theorem 5.1.4, that CQL is gap-expanding, holds in practice in Appendix C.2.

Task Name CQL(H) CQL (Eqn. 5.1.1) Ensemble(2) Ens.(4) Ens.(10) Ens.(20) BEAR
hopper-medium-expert -43.20 -151.36 3.71e6 2.93e6 0.32e6 24.05e3 65.93
hopper-mixed -10.93 -22.87 15.00e6 59.93e3 8.92e3 2.47e3 1399.46
hopper-medium -7.48 -156.70 26.03e12 437.57e6 1.12e12 885e3 4.32

Table 4: Difference between predicted policy values and the true policy value for CQL, a variant
of CQL that uses Equation 5.1.1, the minimum of an ensemble of varying sizes, and BEAR [179]
on three D4RL datasets. CQL is the only method that lower-bounds the actual return (i.e., has
negative differences), and CQL(H) is much less conservative than CQL (Eqn. 5.1.1).

5.2 model-based conservative value function estimation

In Section 5.1, we discussed conservative Q-learning, a model-free algorithm that learns
conservative value functions on offline datasets. An alternative way to use offline data is to
first attempt to estimate the dynamics of the underlying task, followed by training control
policies via planning or explicit policy optimization. Empirically, in the standard RL
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problem setting, model-based RL algorithms have achieved better generalization [313, 147],
especially in multi-task settings [365]. Specifically, one performant recipe for model-based
RL is to utilize an estimated or learned dynamics model to generate data for a downstream
model-free control pipeline, such as one based on Q-learning [147].

Despite appealing properties of model-based RL, existing model-based methods still
suffer from similar problems in the offline setting: any learned model of the environment
dynamics is bound to make erroneous predictions on states or actions that are unlikely
to appear within the support of the training dataset, and inevitably, downstream policy
optimization will exploit these errors to produce policies that appear performant under
the learned model, but fail to act reliably when deployed. To address this issue, existing
offline model-based RL algorithms [166, 365] rely on precise quantifying uncertainty
in predictions made by the learned dynamics model. However, as we show in Sec-
tion 5.2.2, obtaining calibrated uncertainty estimates can be extremely difficult, especially
for complex datasets with deep network models.

To alleviate the need for calibrated uncertainty estimation, in this section, we develop
a new model-based offline RL algorithm, building on conservative value estimation
paradigm. Our approach, conservative offline model-based policy optimization (COMBO),
retains the benefits of model-based algorithms while removing the reliance on uncertainty
estimation. COMBO first learns a dynamics model using the offline dataset. Subsequently,
it employs an actor-critic method where the value function is learned using both the
offline dataset as well as synthetically generated data from the model. Crucially, this
value function is trained via a variant of conservative optimization, that penalizes the
value function on state-action tuples that are visited by the policy by simulating the
learned model, but are not in the support of the offline dataset. Using the theoretical
tools from Section 5.1, we theoretically show that for any policy, the Q-function learned
with COMBO is a lower bound of the true Q-function, making it a good surrogate for
policy optimization. We also theoretically show that the Q-function learned by COMBO
represents a tighter lower bound of the true Q-function when the model bias is low
compared to prior model-free algorithms like CQL [181]. Thus, as a consequence of
optimizing a tighter lower bound, COMBO has the potential to learn higher rewarding
policies compared to prior model-free algorithms. This is illustrated in Figure 11.

Finally, in our experiments, we find that COMBO matches or exceeds the state-of-the-
art results in commonly studied benchmark tasks for offline RL. Specifically, COMBO
achieves the highest score in 9 out of 12 continuous control domains from the D4RL [92]
benchmark suite, while the next best algorithm achieves the highest score in only 3 out of
the 12 domains. We also show that COMBO achieves the best performance in tasks that
require out-of-distribution generalization and outperforms previous offline model-based
RL methods on this image-based robotic manipulation task.
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Figure 12: We visualize the fitted linear regression line between the model error and two uncertainty
quantification methods maximum learned variance over the ensemble (denoted as Max Var) on two tasks
that test the generalization abilities of offline RL algorithms (halfcheetah-jump and ant-angle). We show
that Max Var struggles to predict the true model error. Such visualizations indicates that uncertainty
quantification is challenging with deep neural networks and could lead to poor performance in model-
based offline RL in settings where out-of-distribution generalization is needed. In the meantime, COMBO
addresses this issue by removing the burden of performing uncertainty quantification.

5.2.1 Additional Notation for Model-Based RL

Typical model-based offline RL algorithms use the given dataset D to train a dynamics
model bT using maximum likelihood estimation as: minbT E(s,a,s0)⇠D

h
log bT(s0|s, a)

i
. A

reward model r̂(s, a) can also be learned similarly. Once a model has been learned, we
can construct the learned MDP cM = (S , A, bT, r̂, µ0, g), which has the same state and
action spaces, but uses the learned dynamics and reward function.

We will use Dmodel is a dataset obtained by simulating the current policy using the learned
dynamics model. Specifically, at each iteration, MBPO [147], a model-based online RL
algorithm that we build off of performs k-step rollouts using bT starting from state s 2 D
with a particular rollout policy µ(a|s), adds the model-generated data to Dmodel, and
optimizes the policy with a batch of data sampled from D [Dmodel where each datapoint
in the batch is drawn from D with probability f 2 [0, 1] and Dmodel with probability
1� f .

5.2.2 Analysis: Uncertainty Calibration in Offline Model-Based RL

In this section, we first analyze the efficacy of uncertainty estimation in existing model-
based offline RL approaches. Specifically, we perform empirical evaluations to study
whether uncertainty quantification with deep neural networks, especially in the setting
of dynamics model learning, is challenging and could cause problems with uncertainty-
based model-based offline RL methods such as MOReL [166] and MOPO [365]. We pick
tasks where the underlying model-based offline RL method is required to produce policies
that need to go further away from the data distribution to obtain good performance. In
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our evaluations, we consider maximum learned variance over the ensemble (denoted as
Max Var) maxi=1,...,N kSi

q(s, a)kF (used in MOPO).

We consider two tasks halfcheetah-jump and ant-angle (more details about the task in
Appendix C.8.4). We normalize both the model prediction error and the uncertainty
estimates to be within scale [0, 1] and performs linear regression that learns the mapping
between the uncertainty estimates and the true model error. As shown in Figure 12,
on both tasks, Max Var is unable to accurately predict the true model error, suggesting
that uncertainty estimation used by offline model-based methods is not accurate and
might be the major factor that results in its poor performance. On the other hand, our
approach, COMBO, alleviates the need for accurate uncertainty quantification by viewing
model-based offline RL from the lens of conservative value function learning.

5.2.3 Conservative Offline Model-Based Policy Optimization

Our goal in this section is to develop a model-based offline RL algorithm that enables
optimizing a lower bound on the policy performance, but without requiring uncertainty
quantification. We achieve this by extending conservative Q-learning, from the previous
section, into the model-based setting. Our algorithm, summarized in Algorithm 5,
alternates between a conservative policy evaluation step and a policy improvement step,
which we outline below.

Conservative Policy Evaluation: Given a policy p, an offline dataset D, and a learned
model of the MDP M̂, the goal in this step is to obtain a conservative estimate of Qp.
To achieve this, we penalize the Q-values evaluated on data drawn from a particular
state-action distribution that is more likely to be out-of-support while pushing up the
Q-values on state-action pairs that are trustworthy, which is implemented by repeating
the following recursion:

min
Q

b
⇣

Es,a⇠r(s,a)[Q(s, a)]�Es,a⇠D [Q(s, a)]

⌘
+

1
2

Es,a,s0⇠d f

⇣
Q(s, a)� bBpQ̂k

(s, a))

⌘2
�

. (5.2.1)

Here, r(s, a) and d f are sampling distributions that we can choose. Model-based algo-
rithms allow ample flexibility for these choices while providing the ability to control the
bias introduced by these choices. For r(s, a), we make the following choice:

r(s, a) = dp
cM(s)p(a|s),

where dp
cM

(s) is the discounted marginal state distribution when executing p in the

learned model cM. Samples from dp
cM

(s) can be obtained by rolling out p in cM. Similarly,
d f is an f�interpolation between the offline dataset and rollouts from the model:

dµ
f (s, a) := f d(s, a) + (1� f ) dµ

cM
(s, a),
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Algorithm 5 COMBO: Conservative Model Based Offline Policy Optimization

Require: Offline dataset D, rollout distribution µ(·|s), learned dynamics model bTq , initialized
policy and critic pf and Qy.

1: Train the probabilistic dynamics model bTq(s0, r|s, a) = N (µq(s, a), Sq(s, a)) on D.
2: Initialize the replay buffer Dmodel  ?.
3: for i = 1, 2, 3, · · · , do
4: Perform rollouts by drawing samples from µ and bTq starting from states in D. Add model

rollouts to Dmodel.

5: Conservatively evaluate the policy by solving eq. 5.2.1 to obtain Q̂
pi

f

y using data sampled
from D [Dmodel.

6: Improve policy under state marginal of d f by solving eq. 5.2.2 to obtain pi+1
f .

7: end for

where f 2 [0, 1] is the ratio of the datapoints drawn from the offline dataset as defined
in Section 5.2.1 and µ(·|s) is the rollout distribution used with the model, which can be
modeled as p or a uniform distribution. For brevity, we also denote d f := dµ

f .

Under such choices of r and d f , we push down Q-values on state-action tuples from
model rollouts and push up Q-values on the real state-action pairs from the offline
dataset. When updating Q-values with the Bellman backup, we use a mixture of both the
model-generated data and the real data, similar to Dyna [313]. Note that in comparison
to CQL and other model-free algorithms, COMBO learns the Q-function over a richer set
of states beyond the states in the offline dataset. This is made possible by performing
rollouts under the learned dynamics model, denoted by dµ

cM
(s, a). We will show in

Section 5.2.4 that the Q function learned by repeating the recursion in Equation 5.2.1
provides a lower bound on the true Q function, without the need for explicit uncertainty
estimation. Furthermore, we will theoretically study the advantages of using synthetic
data from the learned model, and characterize the impacts of model bias.

Policy improvement using a conservative critic: After learning a conservative critic Q̂p,
we improve the policy as:

p0  arg max
p

Es⇠r,a⇠p(·|s)
⇥
Q̂p

(s, a)
⇤

(5.2.2)

where r(s) is the state marginal of r(s, a). When policies are parameterized with neural
networks, we approximate the arg max with a few steps of gradient descent. In addition,
entropy regularization can also be used to prevent the policy from becoming degenerate
if required [126]. In Section 5.2.4.2, we show that the resulting policy is guaranteed to
improve over the behavior policy.

Practical implementation details. Our practical implementation largely follows MOPO,
with the key exception that we perform conservative policy evaluation as outlined in
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this section, rather than using uncertainty-based reward penalties. Following MOPO, we
represent the probabilistic dynamics model using a neural network, with parameters q,
that produces a Gaussian distribution over the next state and reward: bTq(st+1, r|s, a) =

N (µq(st, at), Sq(st, at)). The model is trained via maximum likelihood. For training
the conservative critic, which is the major distinction between COMBO and MOPO, the
fixed constant b is tuned with an offline cross-validation scheme for all low-dimensional
continuous control tasks and is decided with a limited number of rollouts in the actual
environment in the vision-based environments. We set the ratio f = 0.5 to have an
equal split between model rollouts and data from the offline dataset. For conservative
policy evaluation (eq. 5.2.1) and policy improvement (eq. 5.2.2), we augment r with states
sampled from the offline dataset, which shows more stable improvement in practice.
Additional details about practical implementation are provided in Appendix C.8.1.

5.2.4 Theoretical Analysis of COMBO

In this section, we theoretically analyze a simplified variant of COMBO and show that,
like CQL, it continues to optimize a lower-bound on the expected return of the learned
policy. The specific simplification we consider is a Bellman backup operator that considers
a mixture of the model-free and model-based Bellman backup operator, with a weight
f . The lower bound for COMBO that we show is close to the actual policy performance
(modulo sampling error) when the policy’s state-action marginal distribution is in support
of the state-action marginal of the behavior policy and conservatively estimates the
performance of a policy otherwise. By optimizing the policy against this lower bound,
COMBO guarantees policy improvement beyond the behavior policy. Furthermore, we use
these insights to discuss cases when COMBO is less conservative compared to CQL.

5.2.4.1 COMBO Optimizes a Lower Bound
We first show that training the Q-function using Equation 5.2.1 produces a Q-function
such that the expected off-policy policy improvement objective [58] computed using this
learned Q-function lower-bounds its actual value. We will reuse notation for d f and d
from Section 5.2.3. Assuming that the Q-function is tabular, the Q-function found by
approximate dynamic programming in iteration k, can be obtained by differentiating
Equation 5.2.1 with respect to Qk (see App. C.7 for details):

Q̂k+1
(s, a) = ( bBpQk

)(s, a)� b
r(s, a)� d(s, a)

d f (s, a)
. (5.2.3)

Equation 5.2.3 effectively applies a penalty that depends on the three distributions
appearing in the COMBO critic training objective (Equation 5.2.1), of which r and d f are
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free variables that we choose in practice as discussed in Section 5.2.3. For a given iteration
k of Equation 5.2.3, we further define the expected penalty under r(s, a) as:

n(r, f ) := Es,a⇠r(s,a)

"
r(s, a)� d(s, a)

d f (s, a)

#
. (5.2.4)

Next, we will show that the Q-function learned by COMBO lower-bounds the actual
Q-function under the initial state distribution µ0 and any policy p. We also show that
the asymptotic Q-function learned by COMBO lower-bounds the actual Q-function of
any policy p with high probability for a large enough b � 0, which we include in
Appendix C.7.2. Let M represent the empirical MDP which uses the empirical transition
model based on raw data counts. The Bellman backups over the dataset distribution
d f in equation 5.2.1 can be interpreted as an f�interpolation of the backup operator in
the empirical MDP (denoted by Bp

M) and the backup operator under the learned model
cM (denoted by Bp

cM
). The empirical backup operator suffers from sampling error, but

is unbiased in expectation, whereas the model backup operator induces bias but no
sampling error. We assume that all of these backups enjoy concentration properties with
concentration coefficient Cr,T,d, dependent on the desired confidence value d (details in
Appendix C.7.2). This is a standard assumption in literature [194]. Now, we state our
main results below.

Theorem 5.2.1. For large enough b, we have Es⇠µ0,a⇠p(·|s)[Q̂p(s, a)]  Es⇠µ0,a⇠p(·|s)[Qp(s, a)],
where µ0(s) is the initial state distribution. Furthermore, when es is small, such as in the large
sample regime, or when the model bias em is small, a small b is sufficient to guarantee this
condition along with an appropriate choice of f .

The proof for Theorem 5.2.1 can be found in Appendix C.7.2. Finally, while Kumar et al.
[181] also analyze how regularized value function training can provide lower bounds on
the value function at each state in the dataset [181] (Proposition 3.1-3.2), our result shows
that COMBO is less conservative in that it does not underestimate the value function at every state
in the dataset like CQL (Remark C.7.5) and might even overestimate these values. Instead
COMBO penalizes Q-values at states generated via model rollouts from r(s, a). While
it is challenging to argue that that either COMBO or CQL attains the tightest possible
lower-bound on return, in our final result of this section, we discuss a sufficient condition
for the COMBO lower-bound to be tighter than CQL.
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Theorem 5.2.2 (CQL vs COMBO). Let Dp
COMBO := Es,a⇠dM(s),p(a|s)

⇥
Q̂p(s, a)

⇤
and

Dp
CQL := Es,a⇠dM(s),p(a|s)

h
Q̂p

CQL(s, a)

i
denote the average values on the dataset under the

Q-functions learned by COMBO and CQL respectively. Then, Dp
COMBO � Dp

CQL, if:

Es,a⇠r(s,a)

"
p(a|s)
pb(a|s)

#
�Es,a⇠dM(s),p(a|s)

"
p(a|s)
pb(a|s)

#
 0. (⇤)

Proposition 5.2.2 indicates that COMBO will be less conservative than CQL when the
action probabilities under learned policy p(a|s) and the probabilities under the behavior
policy pb(a|s) are closer together on state-action tuples drawn from r(s, a) (i.e., sampled
from the model using the policy p(a|s)), than they are on states from the dataset and
actions from the policy, dM(s)p(a|s). COMBO’s objective (Equation 5.2.1) only penalizes
Q-values under r(s, a), which, in practice, are expected to primarily consist of out-of-
distribution states generated from model rollouts, and does not penalize the Q-value at
states drawn from dM(s). As a result, the expression (⇤) is likely to be negative, making
COMBO less conservative than CQL.

5.2.4.2 Model-Based Safe Policy Improvement
Now that we have shown various aspects of the lower-bound on the Q-function induced
by COMBO, we provide policy improvement guarantees for the COMBO algorithm. As
mentioned earlier, we consider a simplified variant for COMBO for this result, which
utilizes a Bellman backup operator that interpolates between the model-based backup
operator and model-free backup operator, with a weight equal to the fraction f . Formally,
Proposition 5.2.3 discuss safe improvement guarantees over the behavior policy, building
on prior work [193, 181].

Theorem 5.2.3 (z-safe policy improvement). Let p̂out(a|s) be the policy obtained by
COMBO. Then, the policy p̂out(a|s) is a z-safe policy improvement over pb in the actual
MDP M, i.e., J(p̂out, M) � J(pb, M) � z, with probability at least 1� d, where z is
given by,

O
✓

g f
(1� g)2

◆
Es⇠dp̂out

M

"s
|A|

|D(s)|DCQL(p̂out, pb)

#

| {z }
:= (1)

+ O
✓

g(1� f )
(1� g)2

◆
DTV(M, cM)| {z }

:= (2)

� b
n(rp, f )� n(rb, f )

(1� g)| {z }
:= (3)

.
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The complete statement (with constants and terms that grow smaller than quadratic in
the horizon) and proof for Proposition 5.2.3 is provided in Appendix C.7.4. DCQL denotes
a notion of probabilistic distance between policies [181] which we discuss further in
Appendix C.7.4. The expression for z in Proposition 5.2.3 consists of three terms: term
(1) captures the decrease in the policy performance due to limited data, and decays as
the size of D increases. The second term (2) captures the suboptimality induced by the
bias in the learned model. Finally, as we show in Appendix C.7.4, the third term (3) is
equivalent to the improvement in policy performance as a result of running COMBO in
the empirical and model MDPs. Since the learned model is trained on the dataset D with
transitions generated from the behavior policy pb, the marginal distribution rb(s, a) is
expected to be closer to d(s, a) for pb as compared to the counterpart for the learned
policy, rp. Thus, term (3) is expected to be positive in practice, and in such cases, an
appropriate (large) choice of b will make term (3) large enough to counteract terms (1)
and (2) that reduce policy performance. We discuss this elaborately in Appendix C.7.4
(Remark C.7.8).

Further note that in contrast to Proposition 3.6 in Kumar et al. [181], note that our result
indicates the sampling error (term (1)) is reduced (multiplied by a fraction f ) when a
near-accurate model is used to augment data for training the Q-function, and similarity, it
can avoid the bias of model-based methods by relying more on the model-free component.
This allows COMBO to attain the best-of-both model-free and model-based methods, via
a suitable choice of the fraction f . To summarize, through an appropriate choice of f ,
Proposition 5.2.3 guarantees safe improvement over the behavior policy without requiring
access to an oracle uncertainty estimation algorithm.

5.2.5 Experimental Evaluation of COMBO

In our experiments, we aim to answer the follow questions: (1) Can COMBO generalize
better than previous offline model-free and model-based approaches in a setting that
requires generalization to tasks that are different from what the behavior policy solves?
(2) How does COMBO compare with prior work in tasks with high-dimensional image
observations?, (3) How does COMBO compare to prior offline model-free and model-
based methods in standard offline RL benchmarks?

To answer those questions, we compare COMBO to several prior methods. In the domains
with compact state spaces, we compare with recent model-free algorithms like BEAR [179],
BRAC [343], and the CQL [181] algorithm presented in the previous section; as well as
MOPO [365] and MOReL [166] which are two recent model-based algorithms. In addition,
we also compare with an offline version of SAC [126] (denoted as SAC-off), and behavioral
cloning (BC). In high-dimensional image-based domains, which we use to answer question
(3), we compare to LOMPO [272], which is a latent space offline model-based RL method
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Environment BatchMean BatchMax COMBO (Ours) MOPO MOReL CQL

halfcheetah-jump -1022.6 1808.6 5392.7 4016.6 3228.7 741.1
ant-angle 866.7 2311.9 2764.8 2530.9 2660.3 2473.4
sawyer-door-close 5% 100% 100% 65.8% 42.9% 36.7%

Table 5: Average returns of halfcheetah-jump and ant-angle and average success rate of sawyer-door-close

that require out-of-distribution generalization. All results are averaged over 3 random seeds. We include
the mean and max undiscounted return / success rate of the episodes in the batch data (under Batch Mean
and Batch Max, respectively) for comparison.

that handles image inputs, latent space MBPO (denoted LMBPO), similar to Janner
et al. [147] which uses the model to generate additional synthetic data, the fully offline
version of SLAC [196] (denoted SLAC-off), which only uses a variational model for state
representation purposes, and CQL from image inputs. To our knowledge, CQL, MOPO,
and LOMPO are representative of state-of-the-art model-free and model-based offline RL
methods. Hence we choose them as comparisons to COMBO. For more details of our
experimental set-up, comparisons, and hyperparameters, see Appendix C.8.

5.2.5.1 Results on tasks that require generalization
To answer question (1), we use the two environments halfcheetah-jump and ant-angle
constructed in Yu et al. [365], which requires the agent to solve a task that is different
from what the behavior policy solved. In both environments, the offline dataset is
collected by policies trained with the original reward functions of halfcheetah and ant,
which reward the halfcheetah and the ant to run as fast as possible. The behavior policies
are trained with SAC with 1M steps and we take the full replay buffer as the offline
dataset. Following Yu et al. [365], we relabel the rewards in the offline datasets to reward
the halfcheetah to jump as high as possible and the ant to run to the top corner with
a 30 degree angle as fast as possible. Following the same manner, we construct a third
task sawyer-door-close based on the environment in Yu et al. [364], Rafailov et al. [272].
In this task, we collect the offline data with SAC policies trained with a sparse reward
function that only gives a reward of 1 when the door is opened by the sawyer robot and
0 otherwise. The offline dataset is similar to the “medium-expert“ dataset in the D4RL
benchmark since we mix equal amounts of data collected by a fully-trained SAC policy
and a partially-trained SAC policy. We relabel the reward such that it is 1 when the
door is closed and 0 otherwise. Therefore, in these datasets, the offline RL methods must
generalize beyond behaviors in the offline data in order to learn the intended behaviors.
We visualize sawyer-door-close on the right in Figure 20 in Appendix C.8.5.

We present the results on the three tasks in Table 5. COMBO significantly outperforms
MOPO, MOReL and CQL, two representative model-based methods and one representa-
tive model-free methods respectively, in the halfcheetah-jump and sawyer-door-close tasks,
and achieves an approximately 8%, 4% and 12% improvement over MOPO, MOReL and
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Dataset Environment COMBO (Ours) LOMPO LMBPO SLAC-Off CQL

M-R walker walk 69.2 66.9 59.8 45.1 15.6
M walker walk 57.7 60.2 61.7 41.5 38.9
M-E walker walk 76.4 78.9 47.3 34.9 36.3
expert walker walk 61.1 55.6 13.2 12.6 43.3
M-E sawyer-door 100.0% 100.0% 0.0% 0.0% 0.0%
expert sawyer-door 96.7% 0.0% 0.0% 0.0% 0.0%

Table 6: Results for vision experiments. For the Walker task each number is the normalized score proposed
in [92] of the policy at the last iteration of training, averaged over 3 random seeds. For the Sawyer task, we
report success rates over the last 100 evaluation runs of training. For the dataset, M refers to medium, M-R
refers to medium-replay, and M-E refers to medium expert.

CQL respectively on the ant-angle task. These results validate that COMBO achieves better
generalization results in practice by behaving less conservatively than prior model-free
offline methods (compare to CQL, which doesn’t improve much) and more robustly than
prior model-based offline methods (compare to MOReL and MOPO).

5.2.5.2 Results on Image-Based Tasks
To answer question (2), we evaluate COMBO on two image-based tasks: the standard
walker (walker-walk) task from the the DM Control suite [319] and a visual door opening
environment with a Sawyer robotic arm (sawyer-door) as used in Section 5.2.5.1. For
the walker task we construct 4 datasets: medium-replay (M-R), medium (M), medium-
expert (M-E), and expert, similar to Fu et al. [92], each consisting of 200 trajectories. For
sawyer-door task we use only the medium-expert and the expert datasets, due to the
sparse reward – the agent is rewarded only when it successfully opens the door. Both
environments are visulized in Figure 20 in Appendix C.8.5. To extend COMBO to the
image-based setting, we follow Rafailov et al. [272] and train a recurrent variational model
using the offline data and use train COMBO in the latent space of this model.

We present results in Table 6. On the walker-walk task, COMBO performs in line with
LOMPO and previous methods. On the more challenging Sawyer task, COMBO matches
LOMPO and achieves 100% success rate on the medium-expert dataset, and substantially
outperforms all other methods on the narrow expert dataset, achieving an average success
rate of 96.7%, when all other model-based and model-free methods fail.

5.2.5.3 Results on the D4RL Tasks
Finally, to answer the question (3), we evaluate COMBO on the OpenAI Gym [32] domains
in the D4RL benchmark [92]2, which contains three environments (halfcheetah, hopper,
and walker2d) and four dataset types (random, medium, medium-replay, and medium-
expert). We include the results in Table 7. The numbers of BC, SAC-off, BEAR, BRAC-P
and BRAC-v are taken from the D4RL paper, while the results for MOPO, MOReL

2 Note that these results are on the older “v0” versions of the D4RL tasks, which are different from “v2”
versions. Methods attain significantly different performance numbers on v2 compared to v0.
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Dataset type Environment BC COMBO (ours) MOPO MOReL CQL SAC-off BEAR BRAC-p BRAC-v

random halfcheetah 2.1 38.8 35.4 25.6 35.4 30.5 25.1 24.1 31.2
random hopper 1.6 17.9 11.7 53.6 10.8 11.3 11.4 11.0 12.2
random walker2d 9.8 7.0 13.6 37.3 7.0 4.1 7.3 -0.2 1.9
medium halfcheetah 36.1 54.2 42.3 42.1 44.4 -4.3 41.7 43.8 46.3
medium hopper 29.0 97.2 28.0 95.4 86.6 0.8 52.1 32.7 31.1
medium walker2d 6.6 81.9 17.8 77.8 74.5 0.9 59.1 77.5 81.1
medium-replay halfcheetah 38.4 55.1 53.1 40.2 46.2 -2.4 38.6 45.4 47.7
medium-replay hopper 11.8 89.5 67.5 93.6 48.6 3.5 33.7 0.6 0.6
medium-replay walker2d 11.3 56.0 39.0 49.8 32.6 1.9 19.2 -0.3 0.9
med-expert halfcheetah 35.8 90.0 63.3 53.3 62.4 1.8 53.4 44.2 41.9
med-expert hopper 111.9 111.1 23.7 108.7 111.0 1.6 96.3 1.9 0.8
med-expert walker2d 6.4 103.3 44.6 95.6 98.7 -0.1 40.1 76.9 81.6

Table 7: Results on v0-D4RL datasets. Each number is the normalized score proposed in [92] of the policy
at the last iteration of training, averaged over 3 random seeds. We take the results of MOPO, MOReL
and CQL from their original papers and results of other model-free methods from [92]. We include the
performance of behavior cloning (BC) from offline datasets for comparison. We bold the highest score
across all methods.

and CQL are based on their respective papers [365, 181]. COMBO achieves the best
performance in 9 out of 12 settings and comparable result in 1 out of the remaining
3 settings (hopper medium-replay). As noted by Yu et al. [365] and Rafailov et al.
[272], model-based offline methods are generally more performant on datasets that are
collected by a wide range of policies and have diverse state-action distributions (random,
medium-replay datasets) while model-free approaches do better on datasets with narrow
distributions (medium, medium-expert datasets). However, in these results, COMBO
generally performs well across dataset types compared to existing model-free and model-
based approaches, suggesting that COMBO is robust to different datasets.

5.3 discussion and limitations

In this chapter, we presented an algorithmic framework for estimating value functions in
offline RL that lower bound the true policy value function. Optimizing the policy against
such as a lower bound value function results in policies that provably improve over the
behavioral policy, from the perspective of robust or safe policy improvement. Learning this
sort of a conservative value function removes the need to use policy constraints, thereby
alleviating the need to estimate the support of the behavioral policy in high-dimensional
action spaces. Empirically, we demonstrate that our practical approaches, CQL and
COMBO outperform prior offline RL methods on a wide range of offline RL benchmark
tasks, including complex control tasks and tasks with raw image observations. Externally
of work covered in this thesis, CQL has been utilized in several real-world applications:
(1) for optimizing decisions in notification systems [267], and (2) for identifying dead end
in patient treatment in healthcare [167].
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Although conservative approaches have been applied in various downstream applications,
there are still several unresolved questions that need to be addressed. Firstly, like any
machine learning method, the performance of offline RL methods heavily relies on
the values assigned to specific hyperparameters. These include the choice of the model
architecture used to represent the Q-function and, more importantly, the hyperparameter a
in CQL (and b in COMBO), which governs the strength of the conservatism regularizer. In
general, finding a universal recipe for tuning these hyperparameters is a challenging task.
However, it is possible to develop strategies to select these hyperparameters under certain
assumptions and conditions specific to the underlying offline RL problem. For instance,
our follow-up work presents an empirical approach to tuning this hyperparameter in the
context of robotic applications [184].

From a theoretical standpoint, while we show that conservative methods learn lower
bounds on the Q-function in tabular, linear, and a subset of non-linear function approxi-
mation cases, a rigorous theoretical analysis of CQL with deep neural nets is yet to be
conducted. As we discuss in Chapter 6, the implicit regularization effects of non-linear
neural net models may interact poorly with value-based RL, and understanding its
consequences for conservative methods remains an open question.
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6
O F F L I N E R L W I T H L A R G E M O D E L S

Abstract
So far, we have developed algorithmic approaches for offline RL. In practice, we would
often want to instantiate these algorithms in a way that allows them to convert large
amounts of data into performant control policies. One way to do so is by training
high-capacity neural network value functions and policies with diverse offline datasets.
In support is the observation that this kind of recipe is quite effective in supervised
learning: despite the massive over-parameterization, deep networks trained via
supervised learning are easy to optimize and exhibit excellent generalization. One
hypothesis to explain this is that overparameterized deep networks enjoy the benefits
of implicit regularization induced by stochastic gradient descent (SGD), which favors
parsimonious solutions that generalize well on test inputs. It is reasonable to surmise
that deep reinforcement learning (RL) methods could also benefit from this effect. In
this chapter, on the contrary, we illustrate that the implicit regularization effect of SGD
seen in supervised learning could, in fact, be harmful in the offline deep RL setting,
leading to poor generalization and degenerate feature representations. Our theoretical
analysis shows that when existing models of implicit regularization are applied to
temporal difference learning (TD-learning), the resulting derived regularizer favors
degenerate solutions with excessive “aliasing”. We back up these findings empirically
and propose a simple and effective explicit regularizer, called DR3, that counteracts
this undesirable effect. We then extend DR3 to a recipe that is able to successfully train
80 million parameter ResNet models entirely via offline TD-learning to outperform
variants of imitation with heterogeneous data.

6.1 introduction

Despite being massively over-parameterized, deep neural networks with billions of
parameters still learn representations that generalize well when trained with supervised
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learning. This is surprising considering the classical notions of overfitting when provided
with many parameters. A widely-held consensus is that deep networks find simple
solutions that generalize due to various implicit regularization effects [31, 341, 17, 117,
338, 210]. Does this mean that large, over-parameterized networks will also perform well
for offline RL, scaling effectively as the number of parameters is increased?

In the first part of this chapter (Section 6.2), we show that, the very same implicit
regularization effects can lead to the emergence of poor representations when training
overparameterized deep network value functions via offline RL. This often results in
the inability to improve performance with larger models and, in particular, unreliable
optimization behavior over the course of offline RL training. While there are already some
empirical studies showing that value function training via offline temporal-difference
(TD) learning leads to emergence of poor representations [182], our goal in this chapter is
to understand the cause in a simpler theoretical model and develop a potential solution.
Building on the theoretical framework developed by Blanc et al. [31], Damian et al. [52],
we characterize the implicit regularizer that arises when training deep value functions
with offline TD learning. The form of this implicit regularizer implies that offline TD-
learning would “co-adapt” the learned feature representations at state-action tuples that
appear on either side of a Bellman backup.

Practically, we illustrate that this theoretically-predicted co-adaptation phenomenon re-
sults in a higher dot product of the features of consecutive state-action tuples learned
by the Q-value network (Section 6.2.1). Training runs that exhibit feature co-adaptation
typically converge to poorly performing solutions. Even when Q-values are not overesti-
mated, prolonged training in offline RL can result in performance degradation as feature
co-adaptation increases. To mitigate this co-adaptation issue, which arises as a result of
implicit regularization, we propose an explicit regularizer that we call DR3 (Section 6.2.3).
While exactly estimating the effects of the theoretically derived implicit regularizer is
computationally difficult, DR3 provides a simple and tractable approximation that miti-
gates the issues discussed above. In practice, DR3 amounts to regularizing the features
at consecutive state-action pairs to be dissimilar in terms of their dot-product similarity.
Empirically, we find that DR3 prevents previously noted pathologies such as feature rank
collapse [182], gives methods that train for longer and improves performance relative to
the base offline RL method on benchmark problems.

Building on this approach, in the second part of this chapter (Section 6.3), we perform
a large-scale empirical study that aims to train a large model via offline conservative
Q-learning. Specifically, we train a single policy to play 40 Atari games [22], similar to Lee
et al. [199], and evaluate performance when the training dataset contains expert trajecto-
ries and when the data is sub-optimal. This problem is especially challenging due to the
diversity in dynamics, rewards, visuals, and agent embodiments across different games.
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Furthermore, the sub-optimal data setting requires the learning algorithm to “stitch
together” useful segments of sub-optimal trajectories to perform well. Our approach,
Scaled Q-learning (Scaled QL), incorporates a variant of the DR3 technique, which
normalizes features instead of using regularization to attain the same benefit without
needing a hyperparameter, in conjunction with carefully chosen neural network archi-
tectural design decisions. Scaled QL can train up to 80 million parameter ResNet [131]
models entirely via offline RL, and the performance of our approach follows a power-law
relationship between model capacity and performance, similar to various scaling studies
in supervised and unsupervised learning. In terms of absolute performance, scaled
Q-learning learns policies that attain more than 100% human-level performance on most
of the 40 games, about 2x better than prior supervised learning (SL) approaches for
learning from sub-optimal offline data (51% human-level performance).

6.2 dr3 : explicit regularization for value-based offline rl

While the “deadly-triad” [314] suggests that training value function approximators
with bootstrapping off-policy can lead to divergence, modern deep RL algorithms
have been able to successfully combine these properties [328]. However, making too
many TD updates to the Q-function in offline deep RL is known to sometimes lead
to performance degradation and unlearning, even for otherwise effective modern al-
gorithms [90, 82, 6, 182]. Such unlearning is not typically observed when training
overparameterized models via supervised learning, so what about TD learning is respon-
sible for it? We show that one possible explanation behind this pathology is the implicit
regularization induced by minimizing TD error on a deep Q-network. Our theoretical
results suggest that this implicit regularization “co-adapts” the representations of state-
action pairs that appear in a Bellman backup (we will define this more precisely below).
Empirically, this typically manifests as “co-adapted” features for consecutive state-action
tuples, even with specialized TD-learning algorithms that account for distributional shift,
and this in turn leads to poor final performance both in theory and in practice. We first
provide empirical evidence of this co-adaptation phenomenon in Section 6.2.1 (additional
evidence in Appendix D.1.1) and then theoretically characterize the implicit regulariza-
tion in TD learning, and discuss how it can explain the co-adaptation phenomenon in
Section 6.2.2.

6.2.1 Feature Co-Adaptation And Implicit Regularization

In this section, we empirically identify a feature co-adaptation phenomenon that appears
when training value functions via bootstrapping, where the feature representations of
consecutive state-action pairs exhibit a large value of the dot product f(s, a)>f(s0, a0).
Note that feature co-adaptation may arise because of high cosine similarity or because
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Figure 13: Feature dot-products f(s, a)>f(s0, a0) increase during training when backing up from
out-of-sample but in-distribution actions (TD-learning: left, Q-learning: right), though the average
Q-value converges and stays relatively constant. Using only seen state-action pairs for backups
(offline SARSA) or not performing Bellman backups (i.e., supervised regression) avoids this issue,
with stable and relatively low dot products. Left: TD-learning with high feature dot products
eventually destabilizes and produces incorrect Q-values, Right: DQN attains extremely large
feature dot products, despite a relatively stable trend in Q-values.

of high feature norms. Feature co-adaptation appears even when there is no explicit
objective to increase feature similarity.

Experimental setup. We ran supervised regression and three variants of approximate
dynamic programming (ADP) on an offline dataset consisting of 1% of uniformly-sampled
data from the replay buffer of DQN on two Atari games, previously used in Agarwal et al.
[6]. First, for comparison, we trained a Q-function via supervised regression to Monte-
Carlo (MC) return estimates on the offline dataset to estimate the value of the behavior
policy. Then, we trained variants of ADP which differ in the selection procedure for the
action a0 that appears in the target value in the TD-error. The offline SARSA variant
aims to estimate the value of the behavior policy, Qpb , and sets a0 to the actual action
observed at the next time step in the dataset, such that (s0, a0) 2 D. The TD-learning
variant also aims to estimate the value of the behavior policy, but utilizes the expectation
of the target Q-value over actions a0 sampled from the behavior policy pb, a0 ⇠ pb(·|s0).
We do not have access to the functional form of pb for the experiment shown in Figure 13
since the dataset corresponds to the behavior policy induced by the replay buffer of an
online DQN, so we train a model for this policy using supervised learning. However, we
see similar results comparing offline SARSA and TD-learning on a gridworld domain
where we can access the exact functional form of the behavior policy in Appendix D.1.5.2.
All of the methods so far estimate Qpb using different target value estimators. We also
train Q-learning, which chooses the action a0 to maximize the learned Q-function. While
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Q-learning learns a different Q-function, we can still compare the relative stability of
these methods to gain intuition about the learning dynamics. In addition to feature dot
products f(s, a)>f(s0, a0), we also track the average prediction of the Q-network over the
dataset to measure whether the predictions diverge or are stable in expectation.

Observing feature co-adaptation empirically. As shown in Figure 13 (right), the average
dot product (top row) between features at consecutive state-action tuples continuously
increases for both Q-learning and TD-learning (after enough gradient steps), whereas it
flatlines and converges to a small value for supervised regression. We might at first think
that this is simply a case of Q-learning failing to converge. However, the bottom row
shows that the average Q-values do in fact converge to a stable value. Despite this, the
optimizer drives the network towards higher feature dot products. There is no explicit
term in the TD error objective that encourages this behavior, indicating the presence of
some implicit regularization phenomenon. This implicit preference towards maximizing
the dot products of features at consecutive state-action tuples is what we call “feature
co-adaptation.”

When does feature co-adaptation emerge? Observe in Figure 13 (right) that the feature
dot products for offline SARSA converge quickly and are relatively flat, similarly to
supervised regression. This indicates that utilizing a bootstrapped update alone is not
responsible for the increasing dot-products and instability, because while offline SARSA
uses backups, it behaves similarly to supervised MC regression. Unlike offline SARSA,
feature co-adaptation emerges for TD-learning, which is surprising as TD-learning also
aims to estimate the value of the behavior policy, and hence should match offline SARSA
in expectation. The key difference is that while offline SARSA always utilizes actions
a0 observed in the training dataset for the backup, TD-learning may utilize potentially
unseen actions a0 in the backup, even though these actions a0 ⇠ pb(·|s0) are within the
distribution of the data-generating policy. This suggests that utilizing out-of-sample
actions in the Bellman backup, even when they are not out-of-distribution, critically alters
the learning dynamics. This is distinct from the more common observation in offline RL,
which attributes training challenges to out-of-distribution actions, but not out-of-sample
actions. The theoretical model developed in Section 6.2.2 will provide an explanation
for this observation with a discussion about how feature co-adaption caused due to
out-of-sample actions can be detrimental in offline RL.

6.2.2 Theoretically Characterizing Implicit Regularization in TD-Learning

Why does feature co-adaptation emerge in TD-learning and what do out-of-sample actions
have to do with it? To answer this question, we theoretically characterize the implicit
regularization effects in TD-learning. We analyze the learning dynamics of TD learning
in the overparameterized regime, where there are many different parameter vectors q
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that fully minimize the training set temporal difference error. We base our analysis of
TD learning on the analysis of implicit regularization in supervised learning, previously
developed by Blanc et al. [31], Damian et al. [52].

Background. When training an overparameterized fq(x) via supervised regression using
the squared loss, denoted by L, many different values of q will satisfy L(q) = 0 on the
training set due to overparameterization, but Blanc et al. [31] show that the dynamics
of stochastic gradient descent will only find fixed points q⇤ that additionally satisfy a
condition which can be expressed as rqR(q⇤) = 0, along certain directions (that we will
describe shortly). This function R(q) is referred to as the implicit regularizer. The noisy
gradient updates analyzed in this model have the form:

qk+1  qk � hrq L(q) + h#k, #k ⇠ N (0, M). (6.2.1)

Blanc et al. [31] and Damian et al. [52] show that some common SGD techniques fall
into this framework, for example, when the regression targets in supervised learning are
corrupted with N (0, 1) label noise, then the resulting M = Â|D|

i=1rq fq(xi)rq fq(xi)
> and

the induced implicit regularizer R is given by R(q) = Â|D|
i ||rq fq(xi)||22. Any solution

q⇤ found by Equation 6.2.1 must satisfy rqR(q⇤) = 0 along directions v 2 R|q| which
lie in the null space of the Hessian of the loss r2

q L(q⇤) at q⇤, v 2 Null(r2
q L(q⇤)). The

intuition behind the implicit regularization effect is that along such directions in the pa-
rameter space, the Hessian is unable to contract qk when running noisy gradient updates
(Equation 6.2.1). Therefore, the only condition that the noisy gradient updates con-
verge/stabilize at q⇤ is given by the condition that rR(q⇤) = 0. This model corroborates
findings [233, 52] about the solutions from SGD, which motivates our use.

Our setup. Following this framework, we analyze the fixed points of noisy TD-learning.
We consider noisy pseudo-gradient (or semi-gradient) TD updates with a general noise
covariance M:

qk+1 = qk � h

 

Â
i
rqQ(si, ai)

�
Qq(si, ai)�(ri+gQq(s0i, a0i))

�
!

| {z }
:=g(q)

+h#k, #k ⇠ N (0, M)

(6.2.2)

We use a deterministic policy a0i = p(s0i) to simplify exposition. Following Damian
et al. [52], we can set the noise model M as M = ÂirqQ(si, ai)rqQ(si, ai)

>, or utilize a
different choice of M, but we will derive the general form first. Let q⇤ denote a stationary
point of the training TD error, such that the pseudo-gradient g(q⇤) = 0. Further, we
denote the derivative of g(q) w.r.t. q as the matrix G(q) 2 R|q|⇥|q|, and refer to it as the
pseudo-Hessian: although G(q) is not actually the second derivative of any well-defined
objective, since TD updates are not proper gradient updates, as we will see it will play a
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similar role to the Hessian in gradient descent. For brevity, define G = G(q⇤), g = g(q⇤),
rG = rqG(q⇤) 2 R|q|⇥|q|⇥|q|, and let li(P) denote the i-th eigenvalue of matrix P, when
arranged in decreasing order of its (complex) magnitude |li(P)| (note that eigenvalues
can be complex for non-symmetric matrices that we encounter here).

Assumptions. To simplify analysis, we assume that matrices G and M (i.e., the noise
covariance matrix) span the same n-dimensional basis in d-dimensional space, where
d is the number of parameters and n is the number of datapoints, and n ⌧ d due to
overparameterization. We also require q⇤ to satisfy a technical criterion that requires
approximate alignment between the eigenspaces of G and the gradient of the Q-function,
without which noisy TD may not be stable at q⇤. We summarize all the assumptions in
Appendix D.3, and present the resulting regularizer below.

Theorem 6.2.1 (Implicit regularizer at TD fixed points). Under the assumptions so
far, a fixed point of TD-learning, q⇤, where Qq⇤(si, ai) = ri + gQq⇤(s0i, a0i) for every
(si, ai, s0i) 2 D is stable (atttractive) if: (1) it satisfies Re(li(G)) � 0, 8i and Re(li(G)) >
0 if |Imag(li(G))| > 0, and (2) along directions v 2 Rdim(q), v 2 Null(G), q⇤ is the
stationary point of the implicit regularizer:

RTD(q)=h
|D|

Â
i=1
rQq(si, ai)

>S⇤MrQq(si, ai)

| {z }
implicit regularizer for noisy GD

�hg
|D|

Â
i=1

tr
✓hh
rQq(s0i, a0i)

>
ii>

S⇤MrQq(si, ai)

◆

| {z }
additional term in TD learning

(6.2.3)

where (si, ai) and (s0i, a0i) denote state-action pairs that appear together in a Bellman update,
[[⇤]] denotes the stop-gradient function, which does not pass partial gradients w.r.t. q into
⇤. S⇤M is the fixed point of the discrete Lyapunov equation:

S⇤M := (I � hG)S⇤M(I � hG)
>

+ h2M.

A proof of Theorem 6.2.1 is provided in Appendix D.3. Next, we explain the intuition
behind this result and provide a proof sketch. To derive the induced implicit regularizer
for a stable fixed point q⇤ of TD error, we study the learning dynamics of noisy TD
learning (Equation 6.2.2) initialized at q⇤, and derive conditions under which this noisy
update would stay close to q⇤ with multiple updates. This gives rise to the two conditions
shown in Theorem 6.2.1 which can be understood as controlling stability in mutually
exclusive directions in the parameter space. If condition (1) is not satisfied, then even
under-parameterized TD will diverge away from q⇤, since I � hG would be a non-
contraction as the spectral radius, r(I � hG) � 1 in that case. Thus, qk � q⇤ will grow or
not decrease in some direction. When (1) is satisfied for all directions in the parameter
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space, there are still directions where both the real and imaginary parts of the eigenvalue
li(G) are 0 due to overparameterization1. In such directions, learning is governed by the
projection of the noise under the tensor rG, which appears in the Taylor expansion of
qk � q⇤ around the point q⇤:

qk+1 = qk � h

✓
g + G(qk � q⇤) +

1
2
rG[qk � q⇤, qk � q⇤]

◆
+ #k, #k ⇠ N (0, M)

(6.2.4)

=) nk+1 = (I � hG)nk �
h

2
rG[nk, nk] + #k, (6.2.5)

where we reparameterize in terms of nk := qk � q⇤. The proof shows that q⇤ is stable if it
is a stationary point of the implicit regularizer RTD (condition (2)), which ensures that
total noise (i.e., accumulated #k over iterations k) accumulated by rG does not lead to a
large deviation in nk in directions where I � hG does not contract.

Interpretation of Theorem 6.2.1. While the choice of the noise model M will change
the form of the implicit regularizer, in practice, the form of M is not known as this
corresponds to the noise induced via SGD. We can consider choices of M for interpretation,
but Theorem 6.2.1 is easy to qualitatively interpret for M such that S⇤M = I. In this case,
we find that the implicit preference towards local minima of RTD(q) can explain feature
co-adaptation. In this case, the regularizer is simpler:

RTD(q) := Â
i

||rQq(si, ai)||22 � grQq(si, ai)
>r[[Qq(s0i, a0i)]].

The first term is equal to the squared per-datapoint gradient norm, which is same as
the implicit regularizer in supervised learning obtained by Blanc et al. [31], Damian
et al. [52] with label noise. However, RTD(q) additionally includes a second term that
is equal to the dot product of the gradient of the Q-function at the current and next
states, rqQq(si, ai)

>rqQq(s0i, a0i), and thus this term is effectively maximized. When
restricted to the last-layer parameters of a neural network, this term is equal to the dot
product of the features at consecutive state-action tuples: ÂirqQq(si, ai)

>rqQq(s0i, a0i) =

Âi f(si, ai)
>f(s0i, a0i). The tendency to maximize this quantity to attain a local minimizer

of the implicit regularizer corroborates the empirical findings of increased dot product in
Section 6.2.1.

Explaining the difference between utilizing seen and unseen actions in the backup.
If all state-action pairs (s0i, a0i) appearing on the right-hand-side of the Bellman update
also appear in the dataset D, as in the case of offline SARSA (Figure 13), the preference to
increase dot products will be balanced by the affinity to reduce gradient norm (first term
of RTD(q) when S⇤M = I): for example, for offline SARSA, when (s0i, a0i) are permutations

1 To see why this is the case, note that rank(G)  |D|⌧ dim(q), and so some eigenvalues of G are 0.
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Figure 14: Even when current offline RL algorithms are initialized at a high-performing checkpoint
that attains small feature dot products, feature dot products increase with further training and the
performance degrades.

of (si, ai), RTD is lower bounded by (1 � g) Âi ||rqQq(xi)||22 and hence minimizing
RTD(q) would minimize the feature norm instead of maximizing dot products. This also
corresponds to the implicit regularizer we would obtain when training Q-functions via
supervised learning and hence, our analysis predicts that offline SARSA with in-sample
actions (i.e., when (s0, a0) 2 D) would behave similarly to supervised regression.

However, the regularizer behaves very differently when unseen state-action pairs (s0i, a0i)
appear only on the right-hand-side of the backup. This happens with any algorithm where
a0 is not the dataset action, which is the case for all deep RL algorithms that compute
target values by selecting a0 according to the current policy. In this case, we expect the
dot product of gradients at (s, a) and (s0, a0) to be large at any attractive fixed point, since
this minimizes RTD(q). This is precisely a form of co-adaptation: gradients at out-of-sample
state-action tuples are highly similar to gradients at observed state-action pairs measured by the
dot product. This observation is also supported by the analysis in Section 6.2.1. Finally,
note that the choice of M is a modelling assumption, and to derive our explicit regularizer,
later in the paper, we will make a simplifying choice of M. However, we also empirically
verify that a different choice of M, given by label noise, works well.

Why is implicit regularization detrimental to policy performance? To answer this
question, we present theoretical and empirical evidence that illustrates the adverse effects
of this implicit regularizer. Empirically, we ran two algorithms, DQN and CQL, initialized
from a high-performing Q-function checkpoint, which attains relatively small feature
dot products (i.e., the second term of RTD(q) is small). Our goal is to see if TD updates
starting from such a “good” initialization still stay around it or diverge to poorer solutions.
Our theoretical analysis in Section 6.2.2 would predict that TD learning would destabilize
from such a solution, since it would not be a stable fixed point. Indeed, as shown in
Figure 14, the policy immediately degrades, and the the dot-product similarities start
to increase. This even happens with CQL, which explicitly corrects for distributional
shift confounds, implying that the performance drop cannot be directly explained by
the typical out-of-distribution action explanations. To investigate the reasons behind
this drop, we also measured the training loss function values for these algorithms (i.e.,
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TD error for DQN and TD error + CQL regularizer for CQL) and find in Figure 14
that the loss values are generally small for both CQL and DQN. This indicates that the
preference to increase dot products is not explained by an inability to minimize TD error.
In Appendix D.1.6, we show that this drop in performance when starting from good
solutions can be effectively mitigated with our proposed Cal-QL explicit regularizer for
both DQN and CQL. Thus we find that not only standard TD learning degrades from a
good solution in favor of increasing feature dot products, but keeping small dot products
enables these algorithms to remain stable near the good solution.

To motivate why co-adapted features can lead to poor performance in TD-learning, we
study the convergence of linear TD-learning on co-adapted features. Our theoretical result
characterizes a lower bound on the feature dot products in terms of the feature norms for
state-action pairs in the dataset D, which if satisfied, will inhibit convergence:

Proposition 6.2.2 (TD-learning on co-adapted features). Assume that the features
F = [f(s, a)]s,a are used for linear TD-learning. Then, if

Â
s,a,s02D

f(s, a)
>f(s0, a0) � 1

g Â
s,a2D

f(s, a)
>f(s, a),

linear TD-learning using features F will not converge.

A proof of Proposition 6.2.2 is provided in Appendix D.4 and it relies on a stability
analysis of linear TD. While features change during training for TD-learning with neural
networks, and arguably linear TD is a simple model to study consequences of co-adapted
features, even in this simple linear setting, Proposition 6.2.2 indicates that TD-learning
may be non-convergent as a result of co-adaptation.

6.2.3 DR3: Explicit Regularization for Deep TD-Learning

Since the implicit regularization effects in TD-learning can lead to feature co-adaptation,
which in turn is correlated with poor performance, can we instead derive an explicit
regularizer to alleviate this issue? Inspired by the analysis in the previous section,
we will propose an explicit regularizer that attempts to counteract the second term in
Equation 6.2.3, which would otherwise lead to co-adaptation and poor representations.
The explicit regularizer that offsets the difference between the two implicit regularizers is
given by: D(q) = Âi trace

⇥
S⇤>M rqQq(si, ai)rqQq(s0i, a0i)

>⇤, which represents the second
term of RTD(q). Note that we drop the stop gradient on Qq(s0i, a0i) in D(q), as it performs
slightly better in practice (Table 39), although as shown in that Table, the version with
the stop gradient also significantly improves over the base method. The first term of
RTD(q) corresponds to the regularizer from supervised learning. Our proposed method,
DR3, simply combines approximations to D(q) with various offline RL algorithms. For
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any offline RL algorithm, Alg, with objective LAlg(q), the training objective with DR3 is
given by: L(q) := LAlg(q) + c0D(q), where c0 is the DR3 coefficient. See Appendix D.5.3
for details on how we tune c0 in this paper.

Practical version of DR3. In order to practically instantiate DR3, we need to choose a
particular noise model M. In general, it is not possible to know beforehand the “correct”
choice of M (Equation 6.2.2), even in supervised learning, as this is a complicated function
of the data distribution, neural network architecture and initialization. Therefore, we
instantiate DR3 with two heuristic choices of M: (i) M induced by label noise studied in
prior work for supervised learning and for which we need to run another, separate fixed-
point computation for M, and (ii) a simpler alternative that sets S⇤M = I. We find that both
of these variants generally perform well empirically (Figure 18), and improve over the
base offline RL method, and so we utilize (ii) in practice due to low computational costs.
Additionally, because computing and backpropagating through per-example gradient
dot products is slow, we instead approximate D(q) with the contribution only from the
last layer parameters (i.e. ÂirwQq(si,ai)>rwQq (s0i ,a0i)

), similarly to tractable Bayesian neural

nets. As shown in Appendix D.1.4, the practical version of DR3 performs similarly to the
label-noise version.

Explicit DR3 regularizer : Rexp(q) = Â
i2D

f(si, ai)
>f(s0i, a0i). (6.2.6)

Feature normalization instead of regularization. In many problems, it may be more
convenient to completely avoid the hyperparameter that weights the explicit DR3 reg-
ularizer from Equation 6.2.6 and yet attain a similar boost in performance. To this end,
we propose to regularize the magnitude of the learned features of the state-action pair
(or state) by introducing a “normalization” layer in the Q-network. This layer forces
the learned features to have an `2 norm of 1 by construction. As we will discuss in the
second part of this chapter, we found that this layer speeds up learning, resulting in
better performance, without needing to tune the hyperparameter associated with the
regularization variant of DR3.

6.2.4 Experimental Evaluation of DR3

Our experiments aim to evaluate the extent to which DR3 improves performance in
offline RL in practice, and to study its effect on prior observations of rank collapse. To
this end, we investigate if DR3 improves offline RL performance and stability on three
offline RL benchmarks: Atari 2600 games with discrete actions [6], continuous control
tasks from D4RL [92], and image-based robotic manipulation tasks [303]. Following
prior work [92, 116], we evaluate DR3 in terms of final offline RL performance after a
given number of iterations. Additionally, we report training stability, which is important
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in practice as offline RL does not admit cheap validation of trained policies for model
selection. To evaluate stability, we train for a large number of gradient steps (2-3x longer
than prior work) and either report the average performance over the course of training or
the final performance at the end of training. We expect that a stable method that does not
unlearn with more gradient steps, should have better average performance, as compared
to a method that attains good peak performance but degrades with more training. See
Appendix D.5 for further details.

Offline RL on Atari 2600 games. We compare DR3 to prior offline RL methods on a set
of offline Atari datasets of varying sizes and quality, akin to Agarwal et al. [6], Kumar
et al. [182]. We evaluated on three datasets: (1) 1% and 5% samples drawn uniformly at
random from DQN replay; (2) a dataset with more suboptimal data consisting of the first
10% samples observed by an online DQN. Following Agarwal et al. [7], we report the
interquartile mean (IQM) normalized scores across 17 games over the course of training
in Figure 16 and report the IQM average performance in Table 8. Observe that combining
DR3 with modern offline RL methods (CQL, REM) attains the best final and average
performance across the 17 Atari games tested on, directly improving upon prior methods
across all the datasets. When DR3 is used in conjunction with REM, it prevents severe
unlearning and performance degradation with more training. CQL + DR3 improves by
20% over CQL on final performance and attains 25% better average performance. While
DR3 is not unequivocally “stable”, as its performance also degrades relative to the peak
it achieves (Figure 16), it is more stable relative to base offline RL algorithms. We also
compare DR3 to the srank(F) penalty proposed to counter rank collapse [182]. Directly
taking median normalized score improvements reported by Kumar et al. [182], CQL +
DR3 improves by over 2x (31.5%) over naı̈ve CQL relative to the srank penalty (14.1%),
indicating DR3’s efficacy.

Offline RL on robotic manipulation from im-
ages. Next, we aim to evaluate the efficacy of
DR3 on two image-based robotic manipulation
tasks [303] (visualized on the right) that require
composition of skills (e.g., opening a drawer, closing a drawer, picking an obstructive
object, placing an object, etc.) over extended horizons using only a sparse 0-1 reward. As
shown in Figure 15, combining DR3 with COG improves over COG.

DR3 does not suffer from rank collapse. Prior work [182] has shown that implicit
regularization can lead to a rank collapse issue in TD-learning, preventing Q-networks
from using full capacity. To see if DR3 addresses the rank collapse issue, we follow Kumar
et al. [182] and plot the effective rank of learned features with DR3 in Figure 17 (DQN,
REM in Appendix D.1.3). While the value of the effective rank decreases during training
with naı̈ve bootstrapping, we find that rank of DR3 features typically does not collapse,
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Table 8: IQM normalized average performance (training stability) across 17 games, with 95% CIs in
parenthesis, after 6.5M gradient steps for the 1% setting and 12.5M gradient steps for the 5%, 10% settings.
Individual performances reported in Kumar et al. [183]. DR3 improves the stability over both CQL and
REM.

Data CQL CQL + DR3 REM REM + DR3

1% 43.7 (39.6, 48.6) 56.9 (52.5, 61.2) 4.0 (3.3, 4.8) 16.5 (14.5, 18.6)

5% 78.1 (74.5, 82.4) 105.7 (101.9, 110.9) 25.9 (23.4, 28.8) 60.2 (55.8, 65.1)

10% 59.3 (56.4, 61.9) 65.8 (63.3, 68.3) 53.3 (51.4, 55.3) 73.8 (69.3, 78)
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Figure 15: Performance of DR3 + COG on
two manipulation tasks using only 5% and
25% of the data used by Singh et al. [303] to
make these more challenging. COG + DR3
outperforms COG in training and attains
higher average and final performance.
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Figure 16: Normalized performance across 17 Atari games
for REM + DR3 (top), CQL + DR3 (bottom). x-axis repre-
sents gradient steps; no new data is collected. While naı̈ve
REM suffers from a degradation in performance with more
training, REM + DR3 not only remains generally stable with
more training, but also attains higher final performance.
CQL + DR3 attains higher performance than CQL. We re-
port IQM with 95% stratified bootstrap CIs [7].

despite no explicit term encouraging this. Finally, we test the robustness/sensitivity of
each layer in the learned Q-network to re-initialization [372] during training and find that
DR3 alters the features to behave similarly to supervised learning (Figure 22).

Comparing explicit regularizers for different choices of noise covariance M. Finally, we
investigate the behavior of different implicit regularizers derived via two choices of M in
Equation 6.2.3 and the corresponding explicit regularizers. While the explicit regularizer
we use in practice is a simplifying choice that works well, another choice of M is the
covariance matrix induced by label noise, which requires explicit computation of S⇤M.
Observe in Figure 18 that the explicit regularizer for our simplifying choice is not worse
than the different choice of M. This justifies utilizing our simplified, heuristic choice of
setting S⇤M = I in practice. Results on five Atari games are shown in Appendix D.1.4.
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Figure 17: Trend of effective rank, srank(F) of features F learned by the Q-function when trained with
TD error (red, “Without DR3”) and with TD error + DR3 (blue, “With DR3”) on three Atari games using
the 5% dataset. Note that DR3 alleviates rank collapse, without explicitly aiming to.

Figure 18: Comparing DR3 for our simplifying choice of M, and M induced by label noise, with base CQL
and DQN algorithms. Note that both of these penalties when applied over CQL improve performance.

6.3 scaled q-learning : large-scale study of offline q-learning
Our goal in this section is to learn a single policy that is effective at multiple Atari
games and can be fine-tuned to new games. For training, we utilize the set of 40 Atari
games used by Lee et al. [199], and for each game, we utilize the experience collected
in the DQN-Replay dataset [6] as our offline dataset. We consider two different dataset
compositions:

1. Sub-optimal dataset consisting of the initial 20% of the trajectories (10M transitions)
from DQN-Replay for each game, containing 400 million transitions overall with
average human-normalized interquartile-mean (IQM) [8] score of 51%. Since this
dataset does not contain optimal trajectories, we do not expect methods that simply
copy behaviors in this dataset to perform well. Instead, we would expect methods
that can combine useful segments of sub-optimal trajectories to perform well.
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Figure 19: An overview of the training and evaluation setup. Models are trained offline with potentially sub-
optimal data. We adapt CQL to the multi-task setup via a multi-headed architecture. The pre-trained visual
encoder is reused in fine-tuning (the weights are either frozen or fine-tuned), whereas the downstream
fully-connected layers are reinitialized and trained.

2. Near-optimal dataset, used by Lee et al. [199], consisting of all the experience (50M
transitions) encountered during training of a DQN agent including human-level
trajectories, containing 2 billion transitions with average human-normalized IQM
score of 93.5%.

Evaluation. We evaluate our method in a variety of settings as we discuss in our
experiments in Section 6.3.2. Due to excessive computational requirements of running
huge models, we are only able to run our main experiments with one seed. Prior
work [199] that also studied offline multi-game Atari evaluated models with only one
seed. That said, to ensure that our evaluations are reliable, for reporting performance, we
follow the recommendations by Agarwal et al. [8]. Specifically, we report interquartile
mean (IQM) normalized scores, which is the average scores across middle 50% of the
games, as well as performance profiles for qualitative summarization.

6.3.1 Our Approach for Scaling Offline RL

In this section, we describe the important architectural design decisions required to make
offline CQL effective in learning highly-expressive neural network policies from large
offline datasets.

Parameterization of Q-values and TD error. In the single game setting, both mean-
squared TD error and distributional TD error perform comparably online [8] and of-
fline [181, 183]. In contrast, we observed, perhaps surprisingly, that mean-squared TD
error does not scale well, and performs much worse than using a categorical distribu-
tional representation of return values [24] when we train on many Atari games. We
hypothesize that this is because even with reward clipping, Q-values for different games
often span different ranges, and training a single network with shared parameters to
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Figure 20: Offline multi-task performance on 40 games with sub-optimal data. Left. Scaled QL significantly
outperforms the previous state-of-the-art method, DT, attaining about a 2.5x performance improvement
in normalized IQM score. To contextualize the absolute numbers, we include online multi-task Impala
DQN [74] trained on 5x as much data. Right. Performance profiles [8] showing the distribution of
normalized scores across all 40 training games (higher is better). Scaled QL stochastically dominates
other offline RL algorithms and achieves superhuman performance in 40% of the games. “Behavior policy”
corresponds to the score of the dataset trajectories. Online MT DQN (5X), taken directly from Lee et al. [199],
corresponds to running multi-task online RL for 5x more data with IMPALA (details in Appendix D.8.5).

accurately predict all of them presents challenges pertaining to gradient interference
along different games [137, 363]. While prior works have proposed to use adaptive
normalization schemes [137, 189], preliminary experiments with these approaches were
not effective to close the gap.

Q-function architecture. Since large neural networks has been crucial for scaling to
large, diverse datasets in NLP and vision [e.g., 317, 34, 165], we explore using bigger
architectures for scaling offline Q-learning. We use standard feature extractor backbones
from vision, namely, the Impala-CNN architectures [74] that are fairly standard in deep RL
and ResNet 34, 50 and 101 models from the ResNet family [131]. We make modifications
to these networks following certain recommendations from robotic RL (see Chapter 9
for a detailed discussion of these changes): we utilize group normalization instead of
batch normalization in ResNets, and utilize point-wise multiplication with a learned
spatial embedding when converting the output feature map of the vision backbone into a
flattened vector which is to be fed into the feed-forward part of the Q-function.

To handle the multi-task setting, we use a multi-headed architecture where the Q-network
outputs values for each game separately. The architecture uses a shared encoder and
feedforward layers with separate linear projection layers for each game (Figure 21). The
training objective of CQL is computed using the Q-values for the game that the transition
originates from.

Feature Normalization via DR3. Our preliminary experiments with the design decisions
discussed above on a subset of games did not attain good performance. In the single-
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Figure 21: An overview of the network architecture. The key design decisions are: (1) the use of ResNet
models with learned spatial embeddings and group normalization, (2) use of a distributional representation
of return values and cross-entropy TD loss for training (i.e., C51 [24]), and (3) feature normalization to
stablize training.
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Figure 22: Comparing Scaled QL to DT on all training games on the sub-optimal dataset.

task setting, the DR3 regularizer that stabilizes training and allows the network to
better use capacity, however, as we discussed in Section 6.2, it introduces an additional
hyperparameter to tune. To alleviate this bottleneck, we utilize the normalization variant
of DR3 for our large-scale experiments, and regularize the magnitude of the learned
features of the observation to have an `2 norm of 1 by construction. We present an
ablation study analyzing this choice in Table 10 and find that indeed DR3 normalization
improves performance across the board.

To summarize, the primary modifications that enable us to scale CQL are: (1) use of
large ResNets with learned spatial embeddings and group normalization, (2) use of a
distributional representation of return values and cross-entropy loss for training (i.e.,
C51 [24]), and (3) feature normalization at intermediate layers via DR3 to prevent
feature co-adaptation (Section 6.2). We call our approach Scaled Q-learning.
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6.3.2 Experimental Evaluation

In our experiments, we study how our approach, scaled Q-learning, can simultaneously
learn from sub-optimal and optimal data collected from 40 different Atari games. We com-
pare the resulting multi-task policies to behavior cloning (BC) with same architecture as
scaled QL, and the prior state-of-the-art method based on decision transformers (DT) [44],
which utilize return-conditioned supervised learning with large transformers [199], and
have been previously proposed for addressing this task. We also study the efficacy of
the multi-task initialization produced by scaled Q-learning in facilitating rapid transfer
to new games via both offline and online fine-tuning, in comparison to state-of-the-art
self-supervised representation learning methods and other prior approaches. Our goal
is to answer the following questions: (1) How do our proposed design decisions impact
performance scaling with high-capacity models?, (2) Can scaled QL more effectively
leverage higher model capacity compared to naı̈ve instantiations of Q-learning?, (3) Do
the representations learned by scaled QL transfer to new games? We will answer these
questions in detail through multiple experiments in the coming sections, but we will first
summarize our main results below.

Main empirical findings. Our main results are summarized in Figures 20 and 23. These
figures show the performance of scaled QL, multi-game decision transformers [199]
(marked as “DT”), a prior method based on supervised learning via return conditioning,
and standard behavioral cloning baselines (marked as “BC”) in the two settings discussed
previously, where we must learn from: (i) near optimal data, and (ii) sub-optimal data
obtained from the initial 20% segment of the replay buffer (see our discussion about the
problem setup). See Figure 22 for a direct comparison between DT and BC.
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Figure 23: Offline scaled conservative Q-learning
vs other prior methods with near-optimal data and
sub-optimal data. Scaled QL outperforms the best DT
model, attaining an IQM human-normalized score of
114.1% on the near-optimal data and 77.8% on the
sub-optimal data, compared to 111.8% and 30.6% for
DT, respectively.

In the more challenging sub-optimal data
setting, scaled QL attains a performance
of 77.8% IQM human-normalized score, al-
though trajectories in the sub-optimal train-
ing dataset only attain 51% IQM human-
normalized score. Scaled QL also outper-
forms the prior DT approach by 2.5 times
on this dataset, even though the DT model
has more than twice as many parameters
and uses data augmentation, compared to
scaled QL.

In the 2nd setting with near-optimal data,
where the training dataset already contains
expert trajectories, scaled QL with 80M pa-
rameters still outperforms the DT approach
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with 200M parameters, although the gap in performance is small (3% in IQM perfor-
mance, and 20% on median performance). Overall, these results show that scaled QL is
an effective approach for learning from large multi-task datasets, for a variety of data
compositions including sub-optimal datasets, where we must stitch useful segments of
suboptimal trajectories to perform well, and near-optimal datasets, where we should
attempt to mimic the best behavior in the offline dataset.

To the best of our knowledge, these results represent the largest performance improvement
over the average performance in the offline dataset on such a challenging problem. We will
now present experiments that show that offline Q-learning scales and generalizes.
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Figure 24: Scaling trends for offline Q-learning. Observe that while the performance of scaled QL
instantiated with IMPALA architectures [74] degrades as we increase model size, the performance of scaled
QL utilizing the ResNets described in Section 6.3.1 continues to increase as model capacity increases. This
is true for both an MSE-style TD error as well as for the categorical TD error used by C51 (which performs
better on an absolute scale). The CQL + IMPALA performance numbers are from [199].

6.3.2.1 Does Offline Conservative Q-Learning Scale Favorably?
One of the primary goals of this chapter was to understand if scaled Q-learning is able
to leverage the benefit of higher capacity architectures. Recently, Lee et al. [199] found
that the performance of CQL with the IMPALA architecture does not improve with larger
model sizes and may even degrade with larger model sizes. To verify if scaled Q-learning
can address this limitation, we compare our value-based offline RL approach with a
variety of model families: (a) IMPALA family [74]: three IMPALA models with varying
widths (4, 8, 16) whose performance numbers are taken directly from Lee et al. [199]
(and was consistent with our preliminary experiments), (b) ResNet 34, 50, 101 and 152
from the ResNet family, modified to include group normalization and learned spatial
embeddings.These architectures include both small and large networks, spanning a wide
range from 1M to 100M parameters. As a point of reference, we use the scaling trends of
the multi-game decision transformer and BC approaches from Lee et al. [199].

Observe in Figure 24 that the performance of scaled Q-learning improves as the underlying
Q-function model size grows. Even though the standard mean-squared error formulation
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Figure 25: Offline fine-tuning performance on unseen games trained with 1% of held-out game’s data,
measured in terms of DQN-normalized score, following [199]. On average, pre-training with scaled QL
outperforms other methods by 82%. Furthermore, scaled QL improves over scaled QL (scratch) by 45%,
indicating that the representations learned by scaled QL during multi-game pre-training are useful for
transfer. Self-supervised representation learning (CPC, MAE) alone does not attain good fine-tuning
performance.

of TD error results in worse absolute performance than C51 (blue vs orange), for both
of these versions, the performance of scaled Q-learning increases as the models become
larger. This result indicates that value-based offline RL methods can scale favorably, and
give rise to better results, but this requires carefully picking a model family. This also
explains the findings from Lee et al. [199]: while this prior work observed that CQL with
IMPALA scaled poorly as model size increases, they also observed that the performance
of return-conditioned RL instantiated with IMPALA architectures also degraded with
higher model sizes. Combined with the results in Figure 24 above, this suggests that
poor scaling properties of offline RL can largely be attributed to the choice of IMPALA
architectures, which may not work well in general even for supervised learning methods
(like return-conditioned BC).

6.3.2.2 Can Offline RL Learn Useful Initializations that Enable Fine-Tuning?
Next, we study how multi-task training on multiple games via scaled QL can learn
general-purpose representations that can enable rapid fine-tuning to new games. We
study this question in two scenarios: fine-tuning to a new game via offline RL with a
small amount of held-out data (1% uniformly subsampled datasets from DQN-Replay [6]),
and finetuning to a new game mode via sample-efficient online RL initialized from our
multi-game offline Q-function. For finetuning, we transfer the weights from the visual
encoder and reinitialize the downstream feed-forward component (Figure 19). For both
of these scenarios, we utilize a ResNet101 Q-function trained via the methodology in
Section 6.3.1, using C51 and feature normalization.

Scenario 1 (Offline fine-tuning): First, we present the results for fine-tuning in an
offline setting: following the protocol from Lee et al. [199], we use the pre-trained
representations to rapidly learn a policy for a novel game using limited offline data
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(1% of the experience of an online DQN run). In Figure 25, we present our results for
offline fine-tuning on 5 games from Lee et al. [199], Alien, MsPacman, Space Invaders,
StarGunner and Pong, alongside the prior approach based on decision transformers
(“DT (pre-trained)”), and fine-tuning using pre-trained representations learned from state-
of-the-art self-supervised representation learning methods such as contrastive predictive
coding (CPC) [252] and masked autoencoders (MAE) [130]. For CPC performance, we
use the baseline reported in Lee et al. [199]. MAE is a more recent self-supervised
approach that we find generally outperformed CPC in this comparison. For MAE, we
first pretrained a vision transformer (ViT-Base) [65] encoder with 80M parameters trained
via a reconstruction loss on observations from multi-game Atari dataset and freeze the
encoder weights as done in prior work [346]. Then, with this frozen visual encoder,
we used the same feed forward architecture, Q-function parameterization, and training
objective (CQL with C51) as scaled QL to finetune the MAE network. We also compare
to baseline methods that do not utilize any multi-game pre-training (DT (scratch) and
Scaled QL (scratch)).

Results. Observe in Figure 25 that multi-game pre-training via scaled QL leads to
the best fine-tuning performance and improves over prior methods, including decision
transformers trained from scratch. Importantly, we observe positive transfer to new games
via scaled QL. Prior works [18] running multi-game Atari (primarily in the online setting)
have generally observed negative transfer across Atari games. We show for the first
time that pre-trained representations from Q-learning enable positive transfer to novel
games that significantly outperforms return-conditioned supervised learning methods
and dedicated representation learning approaches.

Scenario 2 (Online fine-tuning): Next, we study the efficacy of the learned representations
in enabling online fine-tuning. While deep RL agents on ALE are typically trained on
default game modes (referred to as m0d0), we utilize new variants of the ALE games
designed to be challenging for humans [223] for online-finetuning. We investigate whether
multi-task training on the 40 default game variants can enable fast online adaptation to
these never-before-seen variants. In contrast to offline fine-tuning (Scenario 1), this setting
tests whether scaled QL can also provide a good initialization for online data collection
and learning, for closely related but different tasks. Following Farebrother et al. [80], we
use the same variants investigated in this prior work: Breakout, Hero, and Freeway,
which we visualize in Figure 26 (left). To disentangle the performance gains from multi-
game pre-training and the choice of Q-function architecture, we compare to a baseline
approach (“scaled QL (scratch)”) that utilizes an identical Q-function architecture as
pre-trained scaled QL, but starts from a random initialization. As before, we also evaluate
fine-tuning performance using the representations obtained via masked auto-encoder
pre-training [130, 346]. We also compare to a single-game DQN performance attained
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Figure 26: Online fine-tuning results on unseen game variants. Left. The top row shows default variants
and the bottom row shows unseen variants evaluated for transfer: Freeway’s mode 1 adds buses, more
vehicles, and increases velocity; Hero’s mode 1 starts the agent at level 5; Breakout’s mode 12 hides all
bricks unless the ball has recently collided with a brick. Right. We fine-tune all methods except single-game
DQN for 3M online frames (as we wish to test fast online adaptation). Error bars show minimum and
maximum scores across 2 runs while the bar shows their average. Observe that scaled QL significantly
outperforms learning from scratch and single-game DQN with 50M online frames. Furthermore, scaled QL
also outperforms RL fine-tuning on representations learned using masked auto-encoders. See Figure 34 for
learning curves.

after training for 50M steps, 16⇥ more transitions than what is allowed for scaled QL, as
reported by Farebrother et al. [80].

Results. Observe in Figure 26 that fine-tuning from the multi-task initialization learned
by scaled QL significantly outperforms training from scratch as well as the single-game
DQN run trained with 16x more data. Fine-tuning with the frozen representations learned
by MAE performs poorly, which we hypothesize is due to differences in game dynamics
and subtle changes in observations, which must be accurately accounted for in order
to learn optimal behavior [57]. Our results confirm that offline Q-learning can both
effectively benefit from higher-capacity models and learn multi-task initializations that
enable sample-efficient transfer to new games.

6.3.2.3 Ablation Studies
Finally, in this section we perform controlled ablation studies to understand how crucial
the design decisions introduced in Section 6.3.1 are for the success of scaled Q-learning.
In particular, we will attempt to understand the benefits of using C51 and feature
normalization.

MSE vs C51: We ran scaled Q-learning with identical network architectures (ResNet 50
and ResNet 101), with both the conventional squared error formulation of TD error, and
compare it to C51, which our main results utilize. Observe in Table 9 that C51 leads
to much better performance for both ResNet 50 and ResNet 101 models. The boost in
performance is the largest for ResNet 101, where C51 improves by over 39% as measured
by median human-normalized score. This observation is surprising since prior work [8]
has shown that C51 performs on par with standard DQN with an Adam optimizer, which
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Table 9: Performance of Scaled QL with the standard mean-squared TD-error and C51 in the offline
40-game setting aggregated by the median human-normalized score. Observe that for both ResNet 50 and
ResNet 101, utilizing C51 leads to a drastic improvement in performance.

Scaled QL (ResNet 50) Scaled QL (ResNet 101)

with MSE 41.1% 59.5%

with C51 53.5% (+12.4%) 98.9% (+39.4%)

all of our results use. One hypothesis is that this could be the case as TD gradients would
depend on the scale of the reward function, and hence some games would likely exhibit a
stronger contribution in the gradient. This is despite the fact that our implementation of
MSE TD-error already attempts to correct for this issue by applying the unitary scaling
technique from [189] to standardize reward scales across games. That said, we still
observe that C51 performs significantly better.

Importance of feature normalization: We ran small-scale experiments with and without
feature normalization (Section 6.3.1). In these experiments, we consider a multi-game
setting with only 6 games: Asterix, Breakout, Pong, SpaceInvaders, Seaquest, and
we train with the initial 20% data for each game. We report aggregated median human-
normalized score across the 6 games in Table 10 for three different network architectures
(ResNet 34, ResNet 50 and ResNet 101). Observe that the addition of feature normalization
significantly improves performance for all the models. Motivated by this initial empirical
finding, we used feature normalization in all of our main experiments. Overall, the above
ablation studies validate the efficacy of the two key design decisions in this chapter.

Table 10: Performance of Scaled QL with and without feature normalization in the 6 game setting
reported in terms of the median human-normalized score. Observe that with models of all sizes, the
addition of feature normalization improves performance.

Scaled QL (ResNet 34) Scaled QL (ResNet 50) Scaled QL (ResNet 101)

without feature normalization 50.9% 73.9% 80.4%

with feature normalization 78.0% (+28.9%) 83.5% (+9.6%) 98.0% (+17.6%)

Additional ablations: We also conducted ablation studies for the choice of the backbone
architecture (spatial learned embeddings) in Appendix D.7.2, and observed that utilizing
spatial embeddings is better. We also evaluated the performance of scaled QL without
conservatism to test the importance of utilizing pessimism in our setting with diverse data
in Appendix D.7.3, and observe that pessimism is crucial for attaining good performance
on an average. We also provide some scaling studies for another offline RL method
(discrete BCQ) in Appendix D.7.1.
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6.3.3 Related Work

Prior works have sought to train a single generalist policy to play multiple Atari games
simultaneously from environment interactions, either using off-policy RL with online
data collection [74, 136, 307], or policy distillation [320, 280] from single-task policies.
While our work also focuses on learning such a generalist multi-task policy, it investigates
whether we can do so by scaling offline Q-learning on suboptimal offline data, analogous
to how supervised learning can be scaled to large, diverse datasets. Furthermore, prior
attempts to apply transfer learning using RL-learned policies in ALE [280, 256, 231] are
restricted to a dozen games that tend to be similar and generally require an “expert”,
instead of learning how to play all games concurrently.

Closely related to our work, recent work train Transformers [330] on purely offline
data for learning such a generalist policy using supervised learning (SL) approaches,
namely, behavioral cloning [276] or return-conditioned behavioral cloning [199]. While
these works focus on large datasets containing expert or near-human performance tra-
jectories, our work focuses on the regime when we only have access to highly diverse
but sub-optimal datasets. We find that these SL approaches perform poorly with such
datasets, while offline Q-learning is able to substantially extrapolate beyond dataset
performance (Figure 20). Even with near-optimal data, we observe that scaling up offline
Q-learning outperforms SL approaches with 200 million parameters using as few as half
the number of network parameters (Figure 24).

6.4 discussion and limitations

In the first part of this chapter, we attempted to characterize the implicit preference
of TD-learning towards solutions that maximally co-adapt gradients (or features) at
consecutive state-action tuples that appear in Bellman backup. This regularization
effect is exacerbated when out-of-sample state-action samples are used for the Bellman
backup and it can lead to poor policy performance. Inspired by the theory, we propose
a practical explicit regularizer, DR3, that yields substantial improvements in stability
and performance on a wide range of offline RL problems. We believe that this sort of
an understanding the learning dynamics of offline deep Q-learning will lead to more
robust and stable deep RL algorithms and enable predicting such instability issues, well
in advance, which can inspire cross-validation and model selection strategies. This is
an important, open challenge in offline RL, for which existing off-policy evaluation
techniques are not practically sufficient [93, 184]. A limitation of our analysis of implicit
regularization stems from the simplifying assumptions needed to tractably analyze the
learning dynamics. For instance, our analysis holds in the neighborhood of fixed points
of the temporal-difference backup, but it does not comment the learning dynamics when
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the Q-function is far away from a fixed point. We hypothesize that this limitation can be
addressed by building on techniques in Damian et al. [52] (or its follow-ups).

The second part of this chapter shows, for the first time (to the best of our knowledge),
that offline conservative Q-learning can scale to high-capacity models when trained on
large, diverse datasets. By scaling up capacity, we unlocked analogous trends to those
observed in vision and NLP. We found that scaled Q-learning trains policies that exceed
the average dataset performance and prior methods, especially when the dataset does not
contain expert trajectories. Furthermore, by training a large-capacity model on diverse
tasks, we show that Q-learning is sufficient to recover general-purpose representations
that enable rapid learning of novel tasks. Although we described an approach that is
sufficient to scale Q-learning, this is by no means optimal. The scale of the experiments
limited the number of alternatives we could explore, and we expect that future work will
greatly improve performance. For example, contrary to decision transformers (DT) [199],
we did not use data augmentation in our experiments, which we believe can provide
significant benefits. While we did a preliminary attempt to perform online fine-tuning on
an entirely new game (SpaceInvaders), we found that this did not work well for any of
the pretrained representations (see Figure 34). Addressing this is an important direction
for future work. We speculate that this challenge is related to designing methods for
learning better exploration from offline data, which is not required for offline fine-tuning.
Overall, we believe that scaled Q-learning could serve as a starting point for RL-trained
foundation models.
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7
O F F L I N E R L W I T H M U LT I - TA S K A N D U N L A B E L E D D ATA

Abstract
A natural use case of offline RL is in settings where we can pool large amounts of data
collected in various scenarios for solving different tasks, and utilize all of this data
to learn behaviors for all the tasks more effectively rather than training each one in
isolation. As we discussed in Chapter 6, part of the approach for this is via parameter
sharing, i.e., training a single multi-task policy and value function for solving all
scenarios or tasks together. A complementary question in multi-task offline RL is that
of data sharing: can we reroute data from one task to improve performance on the other
tasks, when various tasks in a multi-task problem share the underlying dynamics?
It has been noted that data sharing performs surprisingly poorly in practice. In this
chapter, we analyze data sharing empirically and find that sharing data can actually
exacerbate the distributional shift between the learned policy and the dataset, which
in turn can lead to divergence of the learned policy and poor performance. To address
this challenge, we develop a simple technique for data-sharing in multi-task offline
RL that routes data based on the improvement over the task-specific data. We call this
approach conservative data sharing (CDS), and show it can be applied with multiple
single-task offline RL methods. We further extend CDS to the setting when the reward
labels for different tasks cannot be computed during rerouting and show that it is
nonetheless effective in utilizing data across tasks.

7.1 introduction

Many realistic settings where we might want to apply offline RL involve inherently
multi-task problems, where we seek to solve multiple tasks using all available data. For
example, if our goal is to enable robots to acquire a range of different behaviors, it is
more practical to collect a modest amount of data for each desired behavior, resulting
in a large but heterogeneous dataset, rather than requiring a large dataset for every
individual skill. Indeed, many existing datasets in robotics [83, 53, 293] and offline
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RL [92] follow precisely this approach. Unfortunately, leveraging such heterogeneous
datasets presents us with two unenviable choices. On one hand, we could train each
task only on data collected specifically for that task, but such small datasets may be
inadequate for achieving good performance. On the other hand, we could combine all
the data together and use data relabeled from other tasks to improve offline training, but
this poses two crucial challenges.

First, incorporating relabeled data from other tasks into standard offline RL algorithms
would require labeling large datasets with rewards, which can be costly, especially if
human labelers must provide these rewards. Second, even if the functional form of the
reward function for the task of interest is known beforehand, and data from other tasks
are labeled with accurate reward annotations, na”ively using all this data for training
can actually often degrade performance compared to simple single-task training in
practice [162]. To address these issues, in this chapter, we aim to study data sharing with
and without reward annotations. Specifically, we aim to understand how data sharing
affects RL performance in the offline RL setting and develop a reliable and effective
method for selectively sharing data across tasks (Section 7.2). Additionally, we aim to
tackle the problem of using unlabeled data and devise an approach that still allows us
to benefit from diverse, unlabeled datasets, even when reward annotations cannot be
inferred correctly (Section 7.3).

The primary contributions of Section 7.2 are an analysis of data sharing in offline multi-
task RL and a new algorithm, conservative data sharing (CDS), for multi-task offline RL
problems. CDS relabels a transition into a given task only when it is expected to improve
performance based on a conservative estimate of the Q-function. After data sharing,
similarly to prior offline RL methods, CDS applies a standard conservative offline RL
algorithm, such as CQL [181] or BRAC [343], a policy-constraint offline RL algorithm.
Further, we theoretically analyze CDS and characterize scenarios under which it provides
safe policy improvement guarantees. Finally, we conduct extensive empirical analysis
of CDS on multi-task locomotion, multi-task robotic manipulation with sparse rewards,
multi-task navigation, and multi-task imaged-based robotic manipulation. We compare
CDS to vanilla offline multi-task RL without sharing data, to naı̈vely sharing data for
all tasks, and to existing data relabeling schemes for multi-task RL. CDS is the only
method to attain good performance across all of these benchmarks, often significantly
outperforming the best domain-specific method, improving over the next best method on
each domain by 17.5% on average.

The primary contribution of Section 7.3 is the demonstration that simply labeling unla-
beled data with a reward of zero for use in multi-task offline RL is surprisingly effective in
many cases. We perform extensive theoretical and empirical analysis to study conditions
under which this simple approach, unlabeled data sharing (UDS), would either excel or fail,

84



and we study how reweighting the relabeled data with CDS (while still using zero reward
as the label) can substantially increase the range of settings when UDS is successful.
Our empirical evaluation, conducted over various multi-task offline RL scenarios such
as locomotion, robotic manipulation from visual inputs, and ant-maze navigation shows
that this simple zero reward strategy leads to improved performance, especially when
combined with the CDS approach, even compared to methods that use more sophisticated
learning and label propagation strategies to infer rewards. Overall, we demonstrate that
an effective way to perform data sharing with unlabeled multi-task datasets in offline RL
is to use a combination of CDS and UDS approaches.

7.2 data sharing for multi-task offline reinforcement learning
7.2.1 Related Work

Multi-task RL algorithms. Multi-task RL algorithms [339, 256, 320, 74, 137, 363, 353,
357, 162, 306] focus on solving multiple tasks jointly in an efficient way. While multi-
task RL methods seem to provide a way to build general-purpose agents [162], prior
works have observed major challenges in multi-task RL, in particular, the optimization
challenge [137, 287, 363]. Beyond the optimization challenge, how to perform effective
representation learning via weight sharing is another major challenge in multi-task
RL. Prior works have considered distilling per-task policies into a single policy that
solves all tasks [280, 320, 107, 353], separate shared and task-specific modules [61], and
incorporating additional supervision [306]. Finally, sharing data across tasks emerges as
a challenge in multi-task RL, especially in the off-policy setting, as naı̈vely sharing data
across all tasks turns out to hurt performance in certain scenarios [162]. Unlike most of
these prior works, we focus on the offline setting where the challenges in data sharing
are most relevant. Methods that study optimization and representation learning issues
are complementary and can be readily combined with our approach.

Data sharing in multi-task RL. Prior works [10, 155, 265, 285, 76, 205, 162, 41] have
found it effective to reuse data across tasks by recomputing the rewards of data collected
for one task and using such relabeled data for other tasks, which effectively augments
the amount of data available for learning each task and boosts performance. These
methods perform relabeling either uniformly [162] or based on metrics such as estimated
Q-values [76, 205], domain knowledge [162], the distance to states or images in goal-
conditioned settings [10, 265, 242, 216, 309, 214, 142, 220, 356, 41], and metric learning for
robust inference in the offline meta-RL setting [207]. All of these methods either require
online data collection and do not consider data sharing in a fully offline setting, or only
consider offline goal-conditioned or meta-RL problems [41, 207]. While these prior works
empirically find that data sharing helps, we believe that our analysis in Section 7.2.3
provides the first analytical understanding of why and when data sharing can help in
multi-task offline RL and why it hurts in some cases. Specifically, our analysis reveals
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the effect of distributional shift introduced during data sharing, which is not taken into
account by these prior works. Our proposed approach, CDS, tackles the challenge of
distributional shift in data sharing by intelligently sharing data across tasks and improves
multi-task performance by effectively trading off between the benefits of data sharing
and the harms of excessive distributional shift.

7.2.2 Notation and Problem Statement

Multi-task offline RL. The goal in multi-task RL is to find a policy that maximizes
expected return in a multi-task Markov decision process (MDP), defined as M =

(S , A, P, g, {Ri, i}N
i=1), with state space S , action space A, dynamics P(s0|s, a), a dis-

count factor g 2 [0, 1), and a finite set of task indices 1, · · · , N with corresponding reward
functions R1, · · · , RN . Each task i presents a different reward function Ri, but we assume
that the dynamics P are shared across tasks. While this setting is not fully general, there
are a wide variety of practical problem settings for which only the reward changes includ-
ing various goal navigation tasks [92], distinct object manipulation objectives [347], and
different user preferences [48]. In this work, we focus on learning a policy p(a|s, i), which
in practice could be modelled as independent policies {p1(a|s), · · · , pN(a|s)} that do
not share any parameters, or as a single task-conditioned policy, p(a|s, i) with parameter
sharing. Our goal in this chapter is to analyze and devise methods for data sharing
and the choice of parameter sharing is orthogonal, and can be made independently. We
formulate the policy optimization problem as finding a policy that maximizes expected
return over all the tasks: p⇤(a|s, ·) := arg maxp Ei⇠[N]Ep(·|·,i)[Ât gtRi(st, at)].

Standard offline RL is concerned with learning policies p(a|s) using only a given static
dataset of transitions D = {(sj, aj, s0j, rj)}N

j=1, collected by a behavior policy pb(a|s),
without any additional environment interaction. In the multi-task offline RL setting,
the dataset D is partitioned into per-task subsets, D = [N

i=1Di, where Di consists of
experience from task i. While algorithms can choose to train the policy for task i
(i.e., p(·|·, i)) only on Di, in this paper, we are interested in data-sharing schemes that
correspond to relabeling data from a different task, j 6= i with the reward function
ri, and learn p(·|·, i) on the combined data. To be able to do so, we assume access
to the functional form of the reward ri, a common assumption in goal-conditioned
RL [10, 76], and which often holds in robotics applications through the use of learned
classifiers [347, 161], and discriminators [89, 42].

We assume that relabeling data Dj from task j to task i generates a dataset Dj!i, which
is then additionally used to train on task i. Thus, the effective dataset for task i after
relabeling is given by Deff

i := Di [
�
[j 6=iDj!i

�
. This notation simply formalizes data

sharing and relabeling strategies explored in prior work [76, 162]. Our aim in this paper
will be to improve on this naı̈ve strategy, which we will show leads to better results.
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Offline RL algorithms. For our analysis in this chapter, we will abstract conservative
offline RL algorithms into a generic constrained policy optimization problem [181]:

p⇤(a|s) := arg max
p

JD(p)� aD(p, pb). (7.2.1)

JD(p) denotes the average return of policy p in the empirical MDP induced by the transi-
tions in the dataset, and D(p, pb) denotes a divergence measure (e.g., KL-divergence [149,
343], MMD distance [179] or DCQL [181]) between the learned policy p and the behavior
policy pb.

In the multi-task offline RL setting with data-sharing, the generic optimization problem
in Equation 7.2.1 for a task i utilizes the effective dataset Deff

i . In addition, we define
peff

b (a|s, i) as the effective behavior policy for task i and it is given by: peff
b (a|s, i) :=

|Deff
i (s, a)|/|Deff

i (s)|. Hence, the counterpart of Equation 7.2.1 in the multi-task offline
RL setting with data sharing is given by:

8i 2 [N], p⇤(a|s, i) := arg max
p

JDeff
i

(p)� aD(p, peff
b ). (7.2.2)

We will utilize this generic optimization problem to motivate our method in Section 7.2.4.

7.2.3 When Does Data Sharing Actually Help in Offline Multi-Task RL?

Our goal is to leverage data from all tasks to learn a policy for a particular task of
interest. Perhaps the simplest approach to leveraging experience across tasks is to train
the task policy on not just the data coming from that task, but also relabeled data from
all other tasks [37]. Is this naı̈ve data sharing strategy sufficient for learning effective
behaviors from multi-task offline data? In this section, we aim to answer this question via
empirical analysis on a relatively simple domain, which will reveal interesting aspects of
data sharing. We first describe the experimental setup and then discuss the results and
possible explanations for the observed behavior. Using these insights, we will then derive
a simple and effective data sharing strategy in Section 7.2.4.

Experimental analysis setup. To assess the efficacy of data sharing, we experimentally
analyze various multi-task RL scenarios created with the walker2d environment in
Gym [32]. We construct different test scenarios on this environment that mimic practical
situations, including settings where different amounts of data of varied quality are
available for different tasks [162, 348, 302]. In all these scenarios, the agent attempts three
tasks: run forward, run backward, and jump, which we visualize in Figure 28. Following
the problem statement in Section 7.2.2, these tasks share the same state-action space
and transition dynamics, differing only in the reward function that the agent is trying
to optimize. Different scenarios are generated with varying size offline datasets, each
collected with policies that have different degrees of suboptimality. This might include,
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Dataset types / Tasks Dataset Size
Avg Return DKL(p, pb)

No Sharing Sharing All No Sharing Sharing All

medium-replay / run forward 109900 998.9 966.2 3.70 10.39
medium-replay / run backward 109980 1298.6 1147.5 4.55 12.70

medium-replay / jump 109511 1603.1 1224.7 3.57 15.89
average task performance N/A 1300.2 1112.8 3.94 12.99

medium / run forward 27646 297.4 848.7 6.53 11.78
medium / run backward 31298 207.5 600.4 4.44 10.13

medium / jump 100000 351.1 776.1 5.57 21.27
average task performance N/A 285.3 747.7 5.51 14.39

medium-replay / run forward 109900 590.1 701.4 1.49 7.76
medium / run backward 31298 614.7 756.7 1.91 12.2

expert / jump 5000 1575.2 885.1 3.12 27.5
average task performance N/A 926.6 781 2.17 15.82

Table 11: We analyze how sharing data across all tasks (Sharing All) compares to No Sharing in the
multi-task walker2d environment with three tasks: run forward, run backward, and jump. We provide
three scenarios with different styles of per-task offline datasets in the leftmost column. The second column
shows the number of transitions in each dataset. We report the per-task average return, the KL divergence
between the single-task optimal policy p and the behavior policy pb after the data sharing scheme, as
well as averages across tasks. Sharing All generally helps training while increasing the KL divergence.
However, on the row highlighted in yellow, Sharing All yields a particularly large KL divergence between
the single-task p and pb and degrades the performance, suggesting sharing data for all tasks is brittle.

for each task, a single policy with mediocre or expert performance, or a mixture of policies
given by the initial part of the replay buffer trained with online SAC [126]. We refer to
these three types of offline datasets as medium, expert and medium-replay, respectively,
following Fu et al. [92].

We train a single-task policy pCQL(a|s, i) with CQL [181] as the base offline RL method,
along with two forms of data-sharing, as shown in Table 11: no sharing of data across tasks
(No Sharing) and complete sharing of data with relabeling across all tasks (Sharing All).
In addition, we also measure the divergence term in Equation 7.2.2, D(p(·|·, i), peff

b (·|·, i)),
for p = pCQL(a|s, i), averaged across tasks by using the Kullback-Liebler divergence.
This value quantifies the average divergence between the single-task optimal policy and
the relabeled behavior policy averaged across tasks.

Analysis of results in Table 11. To begin, note that even naı̈vely sharing data is better
than not sharing any data at all on 5/9 tasks considered (compare the performance across
No Sharing and Sharing All in Table 11). However, a closer look at Table 11 suggests
that data-sharing can significantly degrade performance on certain tasks, especially in
scenarios where the amount of data available for the original task is limited, and where
the distribution of this data is narrow. For example, when using expert data for jumping
in conjunction with more than 25 times as much lower-quality (mediocre & random)
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data for running forward and backward, we find that the agent performs poorly on the
jumping task despite access to near-optimal jumping data.

Why does naı̈ve data sharing degrade performance on certain tasks despite near-optimal
behavior for these tasks in the original task dataset? We argue that the primary
reason that naı̈ve data sharing can actually hurt performance in such cases is because it
exacerbates the distributional shift issues that afflict offline RL. Many offline RL methods
combat distribution shift by implicitly or explicitly constraining the learned policy to stay
close to the training data. Then, when the training data is changed by adding relabeled
data from another task, the constraint causes the learned policy to change as well. When
the added data is of low quality for that task, it will correspondingly lead to a lower
quality learned policy for that task, unless the constraint is somehow modified. This
effect is evident from the higher divergence values between the learned policy without
any data-sharing and the effective behavior policy for that task after relabeling (e.g.,
expert+jump) in Table 11. Although these results are only for CQL, we expect that any
offline RL method would, insofar as it combats distributional shift by staying close to the
data, would exhibit a similar problem.

To mathematically quantify the effects of data-sharing in multi-task offline RL, we appeal
to safe policy improvement bounds [194, 181, 367] and discuss cases where data-sharing
between tasks i and j can degrade the amount of worst-case guaranteed improvement
over the behavior policy. Prior work [181] has shown that the generic offline RL objective
in Theorem 5.1.5 enjoys the following guarantees of policy improvement on the actual
MDP, beyond the behavior policy:

J(p⇤) � J(pb)�O(1/(1� g)
2
)Es,a⇠dp

2

4
s

D(p(·|s), pb(·|s))
|D(s)|

3

5+ a/(1� g)D(p, pb).

(7.2.3)

We will use Equation 7.2.3 to understand the scenarios where data sharing can hurt. When
data sharing modifies D = Di to D = Deff

i , which includes Di as a subset, it effectively
aims at reducing the magnitude of the second term (i.e., sampling error) by increasing the
denominator. This can be highly effective if the state distribution of the learned policy p⇤

and the dataset D overlap. However, an increase in the divergence D(p(·|s), pb(·|s)) as
a consequence of relabeling implies a potential increase in the sampling error, unless the
increased value of |Deff(s)| compensates for this. Additionally, the bound also depends
on the quality of the behavior data added after relabeling: if the resulting behavior
policy peff

b is more suboptimal compared to pb, i.e., J(peff
b ) < J(pb), then the guaranteed

amount of improvement also reduces.

To conclude, our analysis reveals that while data sharing is often helpful in multi-task
offline RL, it can lead to substantially poor performance on certain tasks as a result of
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exacerbated distributional shift between the optimal policy and the effective behavior
policy induced after sharing data.

7.2.4 CDS: Reducing Distributional Shift in Multi-Task Data Sharing

The analysis in Section 7.2.3 shows that naı̈ve data sharing may be highly sub-optimal in
some cases, and although it often does improve over no data sharing at all, it can also
lead to exceedingly poor performance. Can we devise a conservative approach that shares
data intelligently to not exacerbate distributional shift as a result of relabeling?

7.2.4.1 A First Attempt at Designing a Data Sharing Strategy

A straightforward data sharing strategy is to utilize a transition for training only if
it reduces the distributional shift. Formally, this means that for a given transition
(s, a, rj(s, a), s0) 2 Dj sampled from the dataset Dj, such a scheme would prescribe using
it for training task i (i.e., (s, a, ri(s, a), s0) 2 Deff

i ) only if:

CDS (basic): Dp
(s, a) := D(p(·|·, i), pb(·|·, i))(s)�D(p(·|·, i), peff

b (·|·, i))(s) � 0.
(7.2.4)

The scheme presented in Equation 7.2.4 would guarantee that distributional shift (i.e.,
second term in Equation 7.2.2) is reduced. Moreover, since sharing data can only increase
the size of the dataset and not reduce it, this scheme is guaranteed to not increase the
sampling error term in Equation 7.2.3. We refer to this scheme as the basic variant of
conservative data sharing (CDS (basic)).

While this scheme can prevent the negative effects of increased distributional shift, this
scheme is quite pessimistic. Even in our experiments, we find that this variant of CDS
does not improve performance by a large margin. Additionally, as observed in Table 11
(medium-medium-medium data composition) and discussed in Section 7.2.3, data sharing
can often be useful despite an increased distributional shift (note the higher values of
DKL(p, pb) in Table 11) likely because it reduces sampling error and potentially utilizes
data of higher quality for training. CDS (basic) described above does not take into
account these factors. Formally, the effect of the first term in Equation 7.2.2, JDeff(p)

(the policy return in the empirical MDP generated by the dataset) and a larger increase
in |Deff(s)| at the cost of somewhat increased value of D(p(·|s), pb(·|s) are not taken
into account. Thus we ask: can we instead design a more complete version of CDS that
effectively balances the tradeoff by incorporating all the discussed factors (distributional
shift, sampling error, data quality)?
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Figure 27: A schematic comparing CDS and CDS (basic) data sharing schemes relative to no sharing (left
extreme) and full data sharing (right extreme). While p-CDS only shares data when distributional shift is
strictly reduced, o-CDS is more optimistic and shares data when the objective in Equation 7.2.2 is larger.
Typically, we would expect that CDS shares more transitions than CDS (basic).

7.2.4.2 The Complete Version of Conservative Data Sharing (CDS)

Next, we present the complete version of our method. The complete version of CDS,
which we will refer to as CDS, for notational brevity is derived from the following
perspective: we note that a data sharing scheme can be viewed as altering the dataset
Deff

i , and hence the effective behavior policy, peff
b (a|s, i). Thus, we can directly optimize

the objective in Equation 7.2.2 with respect to peff
b , in addition to p, where peff

b belongs to
the set of all possible effective behavior policies that can be obtained via any form of data
sharing. Note that unlike CDS (basic), this approach would not rely on only indirectly
controlling the objective in Equation 7.2.2 by controlling distributional shift, but would
aim to directly optimize the objective in Equation 7.2.2. We formalize this as:

arg max
p

max
peff

b 2Prelabel

h
JDeff

i
(p)� aD(p, peff

b ; i)
i

, (7.2.5)

where Prelabel denotes the set of all possible behavior policies that can be obtained via
relabeling. The next result characterizes safe policy improvement for Equation 7.2.5 and
discusses how it leads to improvement over the behavior policy.

Proposition 7.2.1 (Characterizing safe-policy improvement for CDS.). Let p⇤(a|s) be
the policy obtained from Equation 7.2.5, and let pb(a|s) be the behavior policy for Di. Then,
w.h.p. � 1� d, p⇤ is a z-safe policy improvement over pb, i.e., J(p⇤) � J(pb)� z, where
z is given by:

z = O
✓

1
(1� g)2

◆
Es⇠dp⇤

Deff
i

2

4

vuutDCQL(p⇤, p⇤b)(s) + 1

|Deff
i (s)|

3

5�

2

64aD(p⇤, p⇤b) + J(p⇤b)� J(pb)| {z }
(a)

3

75 ,

where Deff
i ⇠ dp⇤b(s) and p⇤b(a|s) denotes the policy p 2 Prelabel that maximizes Equa-

tion 7.2.5.
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A proof and analysis of this proposition is provided in Appendix E.2, where we note that
the bound in Proposition 7.2.1 is stronger than both no data sharing as well as naı̈ve data
sharing. We show in Appendix E.2 that optimizing Equation 7.2.5 reduces the numerator
DCQL(p⇤, p⇤b) term while also increasing |Deff

i (s)|, thus reducing the amount of sampling
error. In addition, Lemma E.2.2 shows that the improvement term (a) is guaranteed to
be positive if a large enough a is chosen in Equation 7.2.5. Combining these, we find
data sharing using Equation 7.2.5 improves over both complete data sharing (which
may increase DCQL(p, pb)) and no data sharing (which does not increase |Deff

i (s)|). A
schematic comparing the two variants of CDS and naı̈ve and no data sharing schemes is
shown in Figure 27.

Optimizing Equation 7.2.5 tractably. The next step is to effectively convert Equation 7.2.5
into a simple condition for data sharing in multi-task offline RL. While directly solving
Equation 7.2.5 is intractable in practice, since both the terms depend on peff

b (a|s) (since the
first term JDeff(p) depends on the empirical MDP induced by the effective behavior policy
and the amount of sampling error), we need to instead solve Equation 7.2.5 approximately.
Fortunately, we can optimize a lower-bound approximation to Equation 7.2.5 that uses the
dataset state distribution for the policy update in Equation 7.2.5 similar to modern actor-
critic methods [58, 211, 97, 126, 181] which only introduces an additional D(p, pb) term in
the objective. This objective is given by: Es⇠Deff

i
[Ep[Q(s, a, i)]� a0D(p(·|s, i), peff

b (·|s, i))],
which is equal to the expected “conservative Q-value” Q̂p(s, a, i) on dataset states, policy
actions and task i. Optimizing this objective via a co-ordinate descent on p and peff

b

dictates that p be updated using a standard update of maximizing the conservative
Q-function, Q̂p (equal to the difference of the Q-function and D(p, peff

b ; i)). Moreover, peff
b

should also be updated towards maximizing the same expectation, Es,a⇠Deff
i

[Q̂p(s, a, i)] :=

Es,a⇠Deff
i

[Q(s, a, i)]� aD(p, peff
b ; i). This implies that when updating the behavior policy,

we should prefer state-action pairs that maximize the conservative Q-function.

Deriving the data sharing strategy for CDS. Utilizing the insights for optimizing Equa-
tion 7.2.5 tractably, we now present the effective data sharing rule prescribed by CDS.
For any given task i, we want relabeling to incorporate transitions with the highest
conservative Q-value into the resulting dataset Deff

i , as this will directly optimize the
tractable lower bound on Equation 7.2.5. While directly optimizing Equation 7.2.5 will
enjoy benefits of reduced sampling error since JDeff

i
(p) also depends on sampling error,

our tractable lower bound approximation does not enjoy this benefit. This is because
optimizing the lower-bound only increases the frequency of a state in the dataset, |Deff

i (s)|
by atmost 1. To encourage further reduction in sampling error, we modify CDS to instead
share all transitions with a conservative Q-value more than the top kth quantile of the
original dataset Di, where k is a hyperparameter. This provably increases the objective
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value in Equation 7.2.5 still ensuring that term (a) > 0 in Proposition 7.2.1, while also
reducing |Deff

i (s)| in the denominator. Thus, for a given transition (s, a, s0) 2 Dj,

CDS: (s, a, ri, s0) 2 Deff
i if Dp

(s, a) := Q̂p
(s, a, i)� Pk%

�
Q̂p

(s0, a0, i): s0, a0 ⇠ Di
 
� 0,

(7.2.6)

where Q̂p denotes the learned conservative Q-function estimate. If the condition in
Equation 7.2.6 holds for the given (s, a), then the corresponding relabeled transition,
(s, a, ri(s, a), s0) is added to Deff

i .

We summarize the pesudocode of CDS in Algorithm 6 in Appendix E.1 and include the
practical implementation details of CDS in Appendix E.3.

7.2.5 Experimental Evaluation of Conservative Data Sharing

We conduct experiments to answer six main questions: (1) can CDS prevent performance
degradation when sharing data as observed in Section 7.2.3?, (2) how does CDS compare
to vanilla multi-task offline RL methods and prior data sharing methods? (3) can CDS
handle sparse reward settings, where data sharing is particularly important due to scarce
supervision signal? (4) can CDS handle goal-conditioned offline RL settings where the
offline dataset is undirected and highly suboptimal? (5) Can CDS scale to complex visual
observations? (6) Can CDS be combined with any offline RL algorithms? Besides these
questions, we visualize CDS weights for better interpretation of the data sharing scheme
learned by CDS in Figure 37 in Appendix E.4.2.

Figure 28: Environments (from left to right):
walker2d run forward, walker2d run backward,
walker2d jump, Meta-World door open/close
and drawer open/close and vision-based pick-
place tasks in [162].

Comparisons. To answer these questions, we
consider the following prior methods. On tasks
with low dimensional state spaces, we compare
with the online multi-task relabeling approach
HIPI [76], which uses inverse RL to infer for
which tasks the datapoints are optimal and in
practice routes a transition to task with the high-
est Q-value. We adapt HIPI to the offline setting
by applying its data routing strategy to a conser-
vative offline RL algorithm. We also compare to
naı̈vely sharing data across all tasks (denoted as
Sharing All) and vanilla multi-task offline RL
method without any data sharing (denoted as No Sharing). On image-based domains, we
compare CDS to the data sharing strategy based on human-defined skills [162] (denoted
as Skill), which manually groups tasks into different skills (e.g. skill “pick” and skill

93



“place”) and only routes an episode to target tasks that belongs to the same skill. In these
domains, we also compare to HIPI, Sharing All and No Sharing. Beyond these multi-task
RL approaches with data sharing, to assess the importance of data sharing in offline RL,
we perform an additional comparison to other alternatives to data sharing in multi-task
offline RL settings. One traditionally considered approach is to use data from other tasks
for some form of “pre-training” before learning to solve the actual task. We instantiate
this idea by considering a method from Yang and Nachum [354] that conducts contrastive
representation learning on the multi-task datasets to extract shared representation be-
tween tasks and then runs multi-task RL on the learned representations. We discuss
this comparison in detail in Table 51 in Appendix E.4.3. To answer question (6), we use
CQL [181] (a Q-function regularization method) and BRAC [343] (a policy-constraint
method) as the base offline RL algorithms for all methods. We discuss evaluations of
CDS with CQL in the main text and include the results of CDS with BRAC in Table 49 in
Appendix E.4.1. For more details on setup and hyperparameters, see Appendix E.3.

Multi-task environments. We consider a number of multi-task reinforcement learning
problems on environments visualized in Figure 28. To answer questions (1) and (2),
we consider the walker2d locomotion environment from OpenAI Gym [32] with dense
rewards. We use three tasks, run forward, run backward and jump, as proposed in prior
offline RL work [365]. To answer question (3), we also evaluate on robotic manipulation
domains using environments from the Meta-World benchmark [364]. We consider four
tasks: door open, door close, drawer open and drawer close. Meaningful data sharing
requires a consistent state representation across tasks, so we put both the door and the
drawer on the same table, as shown in Figure 28. Each task has a sparse reward of 1
when the success condition is met and 0 otherwise. To answer question (4), we consider
maze navigation tasks where the temporal “stitching” ability of an offline RL algorithm is
crucial to obtain good performance. We create goal reaching tasks using the ant robot in
the medium and hard mazes from D4RL [92]. The set of goals is a fixed discrete set of
size 7 and 3 for large and medium mazes, respectively. Following Fu et al. [92], a reward
of +1 is given and the episode terminates if the state is within a threshold radius of the
goal. Finally, to explore how CDS scales to image-based manipulation tasks (question (5)),
we utilize a simulation environment similar to the real-world setup presented in [162].
This environment, which was utilized by Kalashnikov et al. [162] as a representative
and realistic simulation of a real-world robotic manipulation problem, consists of 10
image-based manipulation tasks that involve different combinations of picking specific
objects (banana, bottle, sausage, milk box, food box, can and carrot) and placing them
in one of the three fixtures (bowl, plate and divider plate) (see example task images in
Fig. 28). More environment details are in the appendix. We report the average return for
locomotion tasks and success rate for AntMaze and both manipluation environments,
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averaged over 6 and 3 random seeds for environments with low-dimensional inputs and
image inputs respectively.

Environment Dataset types / Tasks
DKL(p, pb)

No Sharing Sharing All CDS (basic) (ours) CDS (ours)

medium-replay / run forward 1.49 7.76 14.31 1.49
walker2d medium / run backward 1.91 12.2 8.26 6.09

expert / jump 3.12 27.5 13.25 2.91

Table 12: Measuring DKL(p, pb) on the walker2d environment. Sharing All degrades the performance on
task jump with limited expert data as discussed in Table 11. CDS manages to obtain a pb after data sharing
that is closer to the single-task optimal policy in terms of the KL divergence compared to No Sharing and
Sharing All on task jump (highlighted in yellow). Since CDS also achieves better performance, this analysis
suggests that reducing distribution shift is important for effective offline data sharing.

Multi-task datasets. Following the analysis in Section 7.2.3, we intentionally construct
datasets with a variety of heterogeneous behavior policies to test if CDS can provide
effective data sharing to improve performance while avoiding harmful data sharing that
exacerbates distributional shift. For the locomotion domain, we use a large, diverse
dataset (medium-replay) for run forward, a medium-sized dataset for run backward, and
an expert dataset with limited data for run jump. For Meta-World, we consider medium-
replay datasets with 152K transitions for task door close and drawer open and expert
datasets with only 2K transitions for task door open and drawer close. For AntMaze, we
modify the D4RL datasets for antmaze-*-play environments to construct two kinds of
multi-task datasets: an “undirected” dataset, where data is equally divided between
different tasks and the rewards are correspondingly relabeled, and a “directed” dataset,
where a trajectory is associated with the goal closest to the final state of the trajectory.
This means that the per-task data in the undirected setting may not be relevant to reaching
the goal of interest. Thus, data-sharing is crucial for good performance: methods that do
not effectively perform data sharing and train on largely task-irrelevant data are expected
to perform worse. Finally, for image-based manipulation tasks, we collect datasets for all
the tasks individually by running online RL [161] until the task reaches medium-level
performance (40% for picking tasks and 80% placing tasks). At that point, we merge the
entire replay buffers from different tasks creating a final dataset of 100K RL episodes
with 25 transitions for each episode.

Results on domains with low-dimensional states. We present the results on all non-
vision environments in Table 18. CDS achieves the best average performance across all
environments except that on walker2d, it achieves the second best performance, obtaining
slightly worse the other variant CDS (basic). On the locomotion domain, we observe
the most significant improvement on task jump on all three environments. We interpret
this as strength of conservative data sharing, which mitigates the distribution shift that
can be introduced by routing large amount of other task data to the task with limited
data and narrow distribution. We also validate this by measuring the DKL(p, pb) in
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Environment Tasks / Dataset type CDS (ours) CDS (basic) HIPI [76] Sharing All No Sharing

run forward / medium-replay 1057.9±121.6 968.6±188.6 695.5±61.9 701.4±47.0 590.1±48.6
walker2d run backward / medium 564.8±47.7 594.5±22.7 626.0±48.0 756.7±76.7 614.7±87.3

jump / expert 1418.2±138.4 1501.8±115.1 1603.7±146.8 885.1±152.9 1575.2±70.9
average 1013.6±71.5 1021.6±76.9 975.1±45.1 781.0±100.8 926.6±37.7

door open / expert 58.4%±9.3% 30.1%±16.6% 26.5%±20.5% 34.3%±17.9% 14.5%±12.7
door close / medium-replay 65.3%±27.7% 41.5%±28.2% 1.3%±5.3% 48.3%±27.3% 4.0%±6.1%

Meta-World [364] drawer open / medium-replay 57.9%±16.2% 39.4%±16.9% 41.2%±24.9% 55.1%±9.4% 16.0%±17.5%
drawer close / expert 98.8%±0.7% 86.3%±0.9% 62.2%±33.4% 100.0%±0% 99.0%±0.7%
average 70.1%±8.1% 49.3%±16.0% 32.8%±18.7% 59.4%±5.7% 33.4%±8.3%

large maze (7 tasks) / undirected 22.8% ± 4.5% 10.0% ± 5.9% 1.3% ± 2.3% 16.7% ± 7.0% 13.3% ± 8.6%
AntMaze [92] large maze (7 tasks) / directed 24.6% ± 4.7% 0.0% ± 0.0% 11.8% ± 5.4% 20.6% ± 4.4% 19.2% ± 8.0%

medium maze (3 tasks) / undirected 36.7% ± 6.2% 0.0% ± 0.0% 8.6% ± 3.2% 22.9% ± 3.6% 21.6% ± 7.1%
medium maze (3 tasks) / directed 18.5% ± 6.0% 0.0% ± 0.0% 8.3% ± 9.1% 12.4% ± 5.4% 17.0% ± 3.2%

Table 13: Results for multi-task locomotion (walker2d), robotic manipulation (Meta-World) and navigation
environments (AntMaze) with low-dimensional state inputs. Numbers are averaged across 6 seeds, ± the
95%-confidence interval. We include per-task performance for walker2d and Meta-World domains and the
overall performance averaged across tasks (highlighted in gray) for all three domains. We bold the highest
score across all methods. CDS achieves the best or comparable performance on all of these environments.

Task Name CDS (ours) HIPI [76] Skill [162] Sharing All No Sharing

lift-banana 53.1%±3.2% 48.3%±6.0% 32.1%±9.5% 41.8%±4.2% 20.0%±6.0%
lift-bottle 74.0%±6.3% 64.4%±7.7% 55.9%±9.6% 60.1%±10.2% 49.7%±8.7%
lift-sausage 71.8%±3.9% 71.0%±7.7% 68.8%±9.3% 70.0%±7.0% 60.9%±6.6%
lift-milk 83.4%±5.2% 79.0%±3.9% 68.2%±3.5% 72.5%±5.3% 68.4%±6.1%
lift-food 61.4%±9.5% 62.6%±6.3% 41.5%±12.1% 58.5%±7.0% 39.1%±7.0%
lift-can 65.5%±6.9% 67.8%±6.8% 50.8%±12.5% 57.7%±7.2% 49.1%±9.8%
lift-carrot 83.8%±3.5% 78.8%±6.9% 66.0%±7.0% 75.2%±7.6% 69.4%±7.6%
place-bowl 81.0%±8.1% 77.2%±8.9% 80.8%±6.9% 70.8%±7.8% 80.3%±8.6%
place-plate 85.8%±6.6% 83.6%±7.9% 78.4%±9.6% 78.7%±7.6% 86.1%±7.7%
place-divider-plate 87.8%±7.6% 78.0%±10.5% 80.8%±5.3% 79.2%±6.3% 85.0%±5.9%
average 74.8%±6.4% 71.1%±7.5% 62.3%±8.9% 66.4%±7.2% 60.8%±7.5%

Table 14: Results for multi-task vision-based robotic manipulation from [162]. Numbers are averaged
across 3 seeds, ± the 95% confidence interval. We consider 7 tasks denoted as lift-object where the goal of
each task is to lift a different object and 3 tasks denoted as place-fixture that aim to place a lifted object onto
different fixtures. CDS outperforms both a skill-based data sharing strategy [162] (Skill) and other data
sharing methods on the average success rate (highlighted in gray) and 7 out of 10 per-task success rates.

Table 12 where pb is the behavior policy after we perform CDS to share data. As shown
in Table 12, CDS achieves lower KL divergence between the single-task optimal policy
and the behavior policy after data sharing on task jump with limited expert data, whereas
Sharing All results in much higher KL divergence compared to No Sharing as discussed
in Section 7.2.3 and Table 11. Hence, CDS is able to mitigate distribution shift when
sharing data and result in performance boost.

On the Meta-World tasks, we find that the agent without data sharing completely fails
to solve most of the tasks due to the low quality of the medium replay datasets and
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the insufficient data for the expert datasets. Sharing All improves performance since
in the sparse reward settings, data sharing can introduce more supervision signal and
help training. CDS further improves over Sharing All, suggesting that CDS can not
only prevent harmful data sharing, but also lead to more effective multi-task learning
compared to Sharing All in scenarios where data sharing is imperative. It’s worth noting
that CDS (basic) performs worse than CDS and Sharing All, indicating that relabeling
data that only mitigates distributional shift is too pessimistic and might not be sufficient
to discover the shared structure across tasks.

On AntMaze, we observe that CDS performs better than Sharing All and significantly
outperforms HIPI in all four settings. Perhaps surprisingly, No Sharing is a strong
baseline, however, is outperformed by CDS with the harder undirected data. Moreover,
CDS performs on-par or better in the undirected setting compared to the directed setting,
indicating the effectiveness of CDS in routing data in challenging settings.

Results on image-based robotic manipulation domains. Here, we compare CDS to the
hand-designed Skill sharing strategy, in addition to the other methods. Given that CDS
achieves significantly better performance than CDS (basic) on low-dimensional robotic
manipulation tasks in Meta-World, we only evaluate CDS in the vision-based robotic
manipulation domains. Since CDS is applicable to any offline multi-task RL algorithm,
we employ it as a separate data-sharing strategy in [162] while keeping the model
architecture and all the other hyperparameters constant, which allows us to carefully
evaluate the influence of data sharing in isolation. The results are reported in Table 19.
CDS outperforms both Skill and other approaches, indicating that CDS is able to scale
to high-dimensional observation inputs and can effectively remove the need for manual
curation of data sharing strategies.

7.3 multi-task offline rl with unlabeled data

Figure 29: Overview of various methods dealing with unlabeled offline data. UDS is a simple method
compared to the complex reward learning approaches yet achieves effective results.

7.3.1 Related Work

RL with unlabeled data. Prior works tackle the problem of learning from data without
reward labels via either directly imitating expert trajectories [264, 279, 139], learning
reward functions from expert data using inverse RL [1, 247, 377, 84, 88, 172], or learning
a reward / value classifier that discriminates successes and failures [347, 89, 301, 77] in
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standard online RL settings. Unlike these prior works, the goal of our paper is not to
propose a sophisticated new algorithm for reward learning, but rather to study when
the simple solution of using zero as the reward label can work well from offline data.
While Singh et al. [303] also considers relabeling prior data with zero reward in the
standard, single-task offline RL setting, the key distinction is that the unlabeled data in
Singh et al. [303] cannot solve the target task and actually gets zero rewards and is thus
labeled with the true reward. Unlike Singh et al. [303], we show that UDS can surprisingly
also be effective even when the unlabeled data is incorrectly labeled with zero reward,
and discuss how it can be improved (Section 7.3.2.2). Additionally, we consider both
single-task and multi-task offline RL settings.

Data sharing. As discussed in Section 7.2.4, prior works share data based on learned
Q-values [76, 205] (including our CDS approach), domain knowledge [162], and other
structural quantities such as distance to goals in goal-conditioned settings [10, 216, 309,
214, 41], or the learned distance with robust inference in the offline meta-RL setting [207].
However, all of these either require access to the functional form of the reward for
relabling or are limited to goal-conditioned settings. In contrast, we attempt to tackle a
more general problem where reward labels are not provided for a subset of the data, and
find that a simple approach for relabeling data from other tasks with the constant zero
(or the minimal possible reward) can work well.

7.3.2 How To Use Unlabeled Data in Offline RL

Arguably the easiest approach to utilize unlabeled diverse data in offline RL is to simply
assign the lowest possible reward to all the transitions in the unlabeled data, which
we will assume to be 0 without loss of generality, and use this data for training the
underlying (multi-task) offline RL method. We will refer to this approach as unlabeled data
sharing, or UDS, in short. We will show that, although this strategy might seem simplistic,
in fact, it can work well both in theory and practice, when the dataset composition and
the task satisfies certain criteria. Not all tasks and datasets satisfy these criteria, but we
will argue that many realistic offline RL problems do satisfy them. For example, UDS
can work well in a problem where the labeled data consists of high-quality, near-expert
demonstrations, while the unlabeled data consists of mediocre or low-reward interactions
in the environment, as is often the case in robotics [348]. We will analyze the performance
of this approach theoretically in Section 7.3.2.1 and empirically in Section 7.3.4.

Although the simple UDS approach can perform well in some scenarios, relabeling with
zero reward of course also biases the learning process. We therefore further show that
reward bias can be mitigated if the unlabeled transitions are additionally reweighted,
so as to change the unlabeled data distribution (while still using a label of zero for all
unlabeled data). While such reweighting reduces the sample size, it can provide an
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overall benefit by reducing the reward bias and distributional shift. We will derive the
optimal scheme for reweighting the transitions in the unlabeled dataset that minimizes
the impact of reward bias in Section 7.3.2.2. Surprisingly, our analysis reveals that a
near-optimal solution to reducing reward bias is to combine UDS with an already existing
reweighting scheme for multi-task offline RL with full reward information. For example,
one can choose to reweight unlabeled data with the CDS scheme of Yu et al. [366], which
preferentially upweights transitions based on their conservative Q-values.

7.3.2.1 Theoretical Analysis of UDS in Offline RL
In this section, we will derive a performance bounds for UDS that allow us to understand
several cases when this simple approach still works well. These bounds are provided in the
context of the single-task offline RL problem for compactness and ease of understanding,
though these can be combined together with the analysis of CDS to provide guarantees
for multi-task offline RL with unlabeled data. We will show that the increase in the
effective dataset size can often outweigh the bias incurred from using the wrong reward in
several practical situations. We will also discuss conditions on the data composition and
the relative distributions of labeled and unlabeled data that enable UDS to be successful.
Formally, UDS trains on an effective dataset given by: Deff = DL [ {(sj, aj, s0j, 0) 2 DU}.
We now present a policy improvement guarantee for UDS below, and then analyze the
bound under special conditions. Our theoretical result builds on techniques for showing
safe policy improvement bounds [194, 181, 366].

Theorem 7.3.1 (Policy improvement guarantee for UDS). Let p⇤UDS denote the policy
learned by UDS, and let peff

b (a|s) denote the behavior policy for the combined dataset Deff.
Then with high probability � 1� d, p⇤UDS is a safe policy improvement over peff

b , i.e.,

J(p⇤UDS) � J(peff
b )� zerr +
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Table 15: Summary of scenarios where UDS is expected to work and where it is not expected to work. L
denotes the characteristics of labeled data, U denotes characteristics of unlabeled data. Limited/Abundant
refers to the relative amount of data available High-quality/medium-quality/low-quality refers to the
actual performance of the behavior policy generating the datasets. Narrow/broad refers to the relative
state coverage of the datasets that we study where high coverage can lead to low distributional shift during
offline RL. We provide intuitions on why UDS works or does not work under each scenario and refer to the
cases shown in our analysis in Section 7.3.2.1.

Scenarios UDS Intuition

L: limited + high-quality + narrow, U: abundant + low/medium-quality + broad X increase coverage (case 2 and 3)
L: limited + medium-quality + narrow, U: abundant + low/medium-quality + broad ⇥ reward bias outweighs high coverage
L: limited + high-quality + narrow, U: abundant + high-quality + narrow X identical distribution (case 1)
L: limited + low-quality + narrow, U: abundant + high-quality + narrow X increase data quality (case 2)

A proof for Theorem 7.3.1 is provided in Appendix E.5.1. Intuitively, term (a) corresponds
to the potential suboptimality incurred as a result of using the wrong reward, term
(b) corresponds to the suboptimality induced due to sampling error. Finally, term (c)
corresponds to the policy improvement in the empirical MDP induced by the transitions
in Deff that occurs as a result of offline RL. Intuitively, we expect that including more
unlabeled data will reduce the sampling error (b) and potentially increase how much we
can improve the policy (c), while potentially increasing the reward bias term (a). The key
question is under which conditions we would expect the increase in bias (a) to be lower
than the decrease in term (b) obtained from using the unlabeled data. We examine this
below, presenting a few common cases where we expect this tradeoff to be favorable.

(1) Unlabeled data is distributed identically as labeled data. The first case we consider
is when the distribution of state-action pairs in DL is identical to the distribution of state-
action pairs in the unlabeled dataset DU. This can arise in many application domains,
such as in robotics [348, 53], where a large amount of offline data is available, but only
a limited uniformly-selected fraction of it can be annotated with rewards. In this case,
the fraction f (s, a) takes on identical values for all state-action pairs, and term (a) simply
reverts to be a difference between the performance of the effective behavior policy and
the learned policy, in the empirical MDP. Since offline RL algorithms would improve over
the effective behavior policy in the empirical MDP, this term is negative and hence, no
additional suboptimality is incurred in the reward bias term. Moreover, the sampling
error term (b) reduces when more data is utilized. Thus, in this case, UDS improves
performance due to an increase in the dataset size |Deff(s)|, without incurring a cost due
to the wrong reward.

(2) Quality of the unlabeled dataset. In practice, we are often provided with a small
amount of high-quality reward annotated demonstration data, and a lot of unlabeled prior
data of low or mediocre quality. In this case, assigning a low reward to the transitions in
the unlabeled dataset does not negatively affect policy performance significantly because
the bias due to wrong reward is low (due to low-quality of labeled data) and reduces
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sampling error (term (b)). On the other hand, when the unlabeled data is of high quality
and large in size compared to the labeled dataset, even then the performance of the policy
J(p⇤UDS) can be improved by using this unlabeled set since UDS improves J(peff

b ).

(3) Large unlabeled datasets for long-horizon tasks. Another scenario when UDS
relabeling will be beneficial to do compared to not using the unlabeled data at all is in
long-horizon tasks (large value of 1/(1� g)), where a lot of unlabeled data is available,
while the labeled dataset, DU is relatively very small. Define H =

1
1�g ; then in the case

that |Deff(s)| = W(H2)|DL(s)|, the sampling error term (term (b)) will consist of one less
factor of 1/(1� g) when utilizing unlabeled data, compared to when it is not. Since the
sampling error grows quadratically in the horizon, whereas the reward bias only grow
linearly, a reduction in this term by increasing |Deff(s)| (i.e., denominator) can improve
compared to only using the labeled data, DL. Thus, even though the rewards may be
biased, the addition of large amounts of unlabeled, diverse data in long-horizon tasks
can help despite the reward bias incurred.

We empirically verify that UDS indeed helps in the special cases discussed above in
Section 7.3.4. However, there are also cases where UDS does not help because of large
suboptimality induced due to term (a). In Table 15, we present a summary of the scenarios
under which we expect UDS will help or hurt performance. As an example of the latter,
when the amount of unlabeled data, DU is not very large compared to the labeled dataset,
such that a decrease in sampling error does not outweigh the suboptimality induced
by reward bias, we should not expect UDS to attain very good performance, which we
empirically show in Appendix E.6.2. To handle such cases, our key idea is to re-weight
the unlabeled dataset before using it for offline RL training reduce the sampling error
and reward bias.

7.3.2.2 Reducing Reward Bias via CDS
As discussed above, one way to reduce the suboptimality induced due to reward bias is
by preferentially reweighting transitions in the unlabeled data. We would hope that such
a scheme can provide a favorable bias-sampling error tradeoff, even though it reduces
sample size. In this section, we will derive an optimized reweighting scheme that attains
a favorable tradeoff. Intuitively, this optimized scheme suggests that reweighting must
reduce distributional shift against the state-action marginal of the policy obtained by
running offline RL on only the transitions in the labeled data. This scheme intuitively
matches the conservative data sharing (CDS) method from the previous section. We
now show that CDS reduces reward bias, controls distributional shift that appears in the
numerator of sampling error, and increases the sample size.

Formally, we will derive this reweighting scheme from the perspective of optimizing
the effective behavior policy, peff

b induced by the dataset D after preferentially sharing
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transitions from the unlabeled data, so as to minimize reward bias and sampling error,
while improving the dataset quality. For understanding purposes, we begin by deriving
the choice of peff

b that reduces only the reward bias component:

Theorem 7.3.2 (Optimized reward bias reduction). The optimal effective behavior policy
that minimizes the bias (a) in Theorem 7.3.1, RewardBias(p, peff

b ), satisfies

bd bpeff
b (s, a) µ

q
dL(s, a)dp(s, a),

where dp denotes the state-action marginal of a policy p, and dL(s, a) denotes the density of
state-action pair (s, a) under the labeled dataset.

A proof of Theorem 7.3.2 is provided in Appendix E.5.2. The expression implies that
the state-action marginal of the effective behavior policy (i.e., the rebalanced dataset
distribution) must place mass on state-action tuples that are both likely to under the
learned policy dp and appear frequently in the distribution induced by the labeled dataset
bdL. However, note that Theorem 7.3.2 only accounts for the reward bias and not the other
terms pertaining to sampling error and the performance of the effective behavior policy
that appear in Theorem 7.3.1. To address both of these issues, in our next theoretical result,
Theorem 7.3.3, we derive the reweighting distribution that controls all the terms.

Theorem 7.3.3 (Optimized reweighting unlabeled data; Informal). The optimal effec-
tive behavior policy that maximizes a lower bound on J(peff

b )� [(a) + (b)] in Theorem 7.3.1

satisfies d bpeff
b (s, a) = p⇤(s, a), where:

p⇤ = arg min
p2D|S||A| Â

s,a
C1

bdp(s, a)p
p(s, a)

+ C2| bdL(s, a)|
bdp(s, a)

p(s, a)
,

where C1, C2 are universal positive constants that depend on the sizes of the datasets.

A proof of Theorem 7.3.3 along with a more formal statement listing the constants C1 and
C2 is provided in in Appendix E.5.3. The first term in the optimization objective of p⇤
appearing above arises from the sampling error term, while the second term corresponds
to the reward bias term in Theorem 7.3.1. The optimal solution for p⇤ must place high
density on (s, a) pairs where bdp(s, a) is high, because this would reduce the objective in
the optimization problem above. This corroborates the analysis of Yu et al. [366], which
shows that utilizing a reweighting scheme that reduces distributional shift (i.e., makes
p(a|s)/bpeff

b (a|s) or equivalently, as we find, making bdp(s, a)/ bdpeff
b (s, a) smaller) will

control sampling error, and give rise to performance benefits. In addition, as also shown
in Theorem 7.3.2, the reward bias term is also controlled when low distributional shift
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Table 16: Results on single-task environments hopper and AntMaze from the D4RL [92] benchmark. The
numbers are averaged over three random seeds. We only bold the best-performing method that does not
have access to the true reward for relabeling. UDS outperforms No Sharing in three out of the four settings
while achieving competitive performances compared to Sharing All in all the settings. CDS+UDS further
improves over UDS in three out of four settings.

Oracle Methods
Environment Labeled data Unlabeled data CDS+UDS UDS No Sharing Reward Pred. VICE RCE CDS Sharing All

D4RL hopper expert random 81.5 78.6 77.1 67.6 n/a n/a 83.3 86.1
expert medium 78.3 64.4 77.1 51.7 n/a n/a 82.5 64.6

D4RL AntMaze expert medium-play 82.6 82.7 17.2 0.0 0.0 0.0 83.5 83.1
expert large-play 47.1 33.1 0.7 0.0 0.0 0.0 46.1 50.2

appears. This means that rebalancing the dataset to control distributional shift between
the learned policy bdp(s, a) and bdpeff

b (s, a) is effective in unlabeled settings as well.

While the scheme derived above can, in principle, be implemented exactly in practice,
it would require computing state-marginals. Since, computing state marginals accu-
rately in an offline setting has been an outstanding challenge, we instead can utilize a
reweighting scheme that corrects for distributional shift approximately without needing
state-marginals. One of such methods is conservative data sharing (CDS) [366] that can
be implemented without requiring additional components beyond the machinery of the
offline RL method. Formally, CDS is given by:

Deff
i = Di [ ([j 6=i{(sj, aj, s0j, ri) 2 Dj!i : Dp

(s, a) � 0}),

where sj, aj, s0j denote the transition from Dj, ri denotes the reward of sj, aj, s0j relabeled
for task i, p denotes the task-conditioned policy p(·|·, i), Dp(sj, aj) is the condition that
shares data only if the expected conservative Q-value of the relabeled transition exceeds
the top k-percentile of the conservative Q-values of the original data. In our experiments
and analysis in Section 7.3.3, we find that utilizing CDS improves performance over simply
training with UDS in a number of domains supporting the theoretical analysis.

7.3.2.3 Why Can We Expect UDS to Outperform Reward Prediction Methods?
While we have discussed various conditions where we would expect UDS (with or without
various reweighting methods) to improve final performance over an approach that does
not utilize the unlabeled data, it is also instructive to consider how it comes to a method
that instead trains an approximate reward function, brf(s, a) using the labeled data, and
then uses this approximate reward to annotate the unlabeled data. In our experiments,
we will show, perhaps surprisingly that UDS often outperforms prior reward learning
methods. In this section, we provide some intuition for why. First, we note the following
generic expression for reward bias (term (a) in Theorem 7.3.1) for any approach:

RewardBias(p, peff
b ) =

Âs,a D
⇣
bdpb

eff
, bdp

⌘
· Dr(s, a)

1� g
,
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where Dr(s, a) is the error in the reward applied to the unlabeled data, such that
Dr(s, a) = (1� f (s, a))r(s, a) for UDS, and Dr(s, a) = r(s, a) � brf(s, a) for a reward
prediction method. Note that while for UDS, 8 s, a, Dr(s, a) � 0, this is not necessarily
the case for a generic reward prediction method.

UDS. Since Dr(s, a) � 0 for all state-action tuples, state-action pairs that appear more
frequently under the learned policy compared to the effective behavior policy, i.e., when
D
⇣
bdpb

eff
, bdp

⌘
< 0, contribute to reducing the suboptimality from reward bias.

Reward prediction. When Dr(s, a) = r(s, a)�brf(s, a), Dr(s, a) may not be positive on
all state-action tuples, and thus reward prediction methods fail to reduce the contribution
of such state-action pairs in term (a). Since policy optimization will seek out those policies
that maximize bdp(s, a) on state-action pairs with high rewards, state-action pairs where
D( bdpeff

b , bdp) < 0 (i.e., state-action pairs that appear more under the learned policy) are
likely to also have Dr(s, a) < 0. This “exploitation” inhibits the correction of reward bias
and provides an explanation for why reward prediction approaches may still not perform
well due to overestimation errors in the reward function.

7.3.3 Experimental Evaluation of UDS and CDS+UDS

In our experiments, we aim to evaluate whether the theoretical potential for simple
minimum-reward relabeling to attain good results is reflected in benchmark tasks and
more complex offline RL settings. In particular, we will study: (1) can UDS match or
exceed the performance of sophisticated reward inference methods and methods with
oracle reward functions in simulated locomotion and navigation tasks? (2) can combining
with CDS further improve the results achieved by UDS?, (3) how does UDS behave with
and without combining with an optimized reweighting strategy in multi-task offline RL
settings?, (4) under which conditions does UDS work and not work and does optimizing
for reweighting via CDS help?

Comparisons. We evaluate multiple approaches alongside with UDS and CDS+UDS:
No Sharing, which uses the labeled data only without using any of the unlabeled data,
Reward Predictor, which is trained via supervised classification or regression to directly
predict the reward in sparse and dense reward settings respectively, VICE [89] and
RCE [77], inverse RL methods only applicable to sparse reward settings, that learn either
a reward or Q-function classifier from both the labeled data and unlabeled data (treated
as negatives) and then annotate the unlabeled data with the learned classifier, In the
multi-task setting, we modify VICE and RCE accordingly by extracting transitions with
reward labels equal to 1 and treating these datapoints as positives to learn the classifier for
each task. We also train No Sharing, Reward Predictor, VICE and RCE, but adapt them
to the offline setting using CQL, i.e. the same underlying offline RL method as in UDS
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and CDS+UDS. For more details on experimental set-up and hyperparameter settings,
please see Appendix E.11. We also include evaluations of our methods under different
quality of the relabeled data in Appendix E.7 and comparisons to model-based offline RL
approaches in Appendix E.9 and prior methods [354, 355] that leverage unlabeled data
for representation learning instead of sharing directly in Appendix E.10.

Datasets and tasks. To answer questions (1) and (2), we perform empirical evaluations
on two state-based single-task locomotion datasets. To answer question (3), we further
evaluate all methods on three state-based multi-task datasets that consist of robotic
manipulation, navigation and locomotion domains respectively and one image-based
multi-task manipulation dataset from Section 7.2.5.

Single-task domains & datasets. We adopt two environments: hopper and the AntMaze
from the D4RL benchmark [92] for evaluation in the single-task setting. For the hopper
environment, we consider two scenarios where we have 10k labeled data from the
hopper-expert and 1M unlabeled transitions from the hopper-random datasets and
hopper-medium datasets respectively. This setup is resembles practical problems where
unlabeled data is of low-quality and even, irrelevant to the target task. For AntMaze,
following the setup in [355], we use 10k expert transitions as the labeled data and the
entire datasets of large-play and medium-play as the unlabeled data.

Table 17: We perform an empirical analysis on the single-task environment hopper from D4RL [92]
benchmark to test the sensitivity of UDS under the data quality and data coverage for both the labeled
task data and unlabeled data. The numbers are averaged over ten random seeds. We bold the best method
without true reward relabeling. UDS outperforms No Sharing in 5 out of 6 settings while achieving
competitive performances compared to Sharing All in 5 out of 6 settings. CDS+UDS is able to further
improve over UDS significantly in such a setting and also outperforms UDS in 5 out of 6 settings in general.

Oracle Methods
Environment Labeled data type / size Unlabeled data type / size CDS+UDS UDS No Sharing CDS Sharing All

(a) expert / 10k transitions random / 1M transitions 82.1 78.8 77.1 83.3 86.1
(b) expert / 10k transitions medium / 1M transitions 78.1 64.8 77.1 82.5 64.6
(c) expert / 10k transitions expert / 990k transitions 106.1 108.4 77.1 106.6 112.3

D4RL hopper (d) medium / 10k transitions random / 1M transitions 33.2 9.9 28.7 41.2 38.9
(e) medium / 10k transitions expert / 1M transitions 108.9 106.7 28.7 111.1 107.5
(f) random / 10k transitions medium / 1M transitions 63.5 47.1 9.6 92.3 69.8
(g) random / 10k transitions expert / 1M transitions 101.2 95.9 9.6 110.9 102.8

Multi-task domains & datasets. We consider several multi-task domains. The first set of
domains are from Section 7.2.5. We also evaluate on the multi-task walker environment
with dense rewards, which we will discuss in detail in Appendix E.8. In addition, we test
multi-task offline RL methods with UDS in the multi-task visual manipulation domain,
which provides a realistic scenario, of the sorts we will encounter in robotic settings in
practice. In this domain, there are 10 tasks with different combinations of object-oriented
grasping, with 7 objects (banana, bottle, sausage, milk box, food box, can and carrot),
as well as placing the picked objects onto one of three fixtures (bowl, plate and divider
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plate). For domains except the walker environment, we use binary rewards, where 1
denotes the successful completion of the task and 0 corresponds to failure. For details,
see Appendix E.11.2.

Table 18: Results for multi-task robotic manipulation (Meta-World) and navigation environments (AntMaze)
with low-dimensional state inputs. Numbers are averaged across 6 seeds, ± the 95%-confidence interval.
We take the results of No Sharing, Sharing All and CDS, directly from [366]. We bold the best-performing
method that does not have access to the true rewards for relabeling. We include per-task performance
for Meta-World domains and the overall performance averaged across tasks (highlighted in gray) for all
three domains. Both CDS+UDS and UDS outperforms prior vanilla multi-task offline RL approach (No
Sharing) and reward learning methods (Reward Predictor, VICE and RCE) while performing competitively
compared to oracle reward relabeling methods.

Oracle Methods
Environment Tasks CDS+UDS UDS VICE RCE No Sharing Reward Pred. CDS Sharing All

door open 61.3%±7.9% 51.9%±25.3% 0.0%±0.0% 0.0%±0.0% 14.5%±12.7% 0.0%±0.0% 58.4%±9.3% 34.3%±17.9%
door close 54.0% ±42.5% 12.3%±27.6% 66.7%%±47.1% 0.0%±0.0% 4.0%±6.1% 99.3%±0.9% 65.3%±27.7% 48.3%±27.3%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 0.0%±0.0% 0.0%±0.0% 16.0%±17.5% 13.3%±18.9% 57.9%±16.2% 55.1%±9.4%
drawer close 99.3%±0.7% 99.6%±0.7% 19.3%±27.3% 2.7%±1.7% 99.0%±0.7% 50.3%±35.8% 99.0%±0.7% 98.8%±0.7%
average 71.2% ± 11.3% 56.4%±12.8% 21.5%±0.7% 0.7%±0.4% 33.4%±8.3% 41.0%±11.9% 70.1%±8.1% 59.4%±5.7%

AntMaze medium (3 tasks) 31.5%±3.0% 26.5%±9.1% 2.9%±1.0% 0.0%±0.0% 21.6%±7.1% 3.8%±3.8% 36.7%±6.2% 22.9%±3.6%
large (7 tasks) 18.4%±6.1% 14.2%±3.9% 2.5%±1.1% 0.0%±0.0% 13.3% ± 8.6% 5.9%±4.1% 22.8% ± 4.5% 16.7% ± 7.0%

Table 19: Results for multi-task imaged-based robotic manipulation domains in [366]. Numbers are
averaged across 3 seeds, ± the 95% confidence interval. UDS outperforms No Sharing in 7 out of 10 tasks
as well as the average task performance, while performing comparably to Sharing All. CDS+UDS further
improves the performance of UDS and outperforms No Sharing in all of the 10 tasks.

Task Name CDS+UDS UDS No Sharing CDS (oracle) Sharing All (oracle)

lift-banana 55.9%±11.7% 48.6%±5.1% 20.0%±6.0% 53.1%±3.2% 41.8%±4.2%
lift-bottle 72.9%±12.8% 58.1%±3.6% 49.7%±8.7% 74.0%±6.3% 60.1%±10.2%
lift-sausage 74.3%±8.3% 66.8% ± 2.7% 60.9%±6.6% 71.8%±3.9% 70.0%±7.0%
lift-milk 73.5%±6.7% 74.5%±2.5% 68.4%±6.1% 83.4%±5.2% 72.5%±5.3%
lift-food 66.3%±8.3% 53.8%±8.8% 39.1%±7.0% 61.4%±9.5% 58.5%±7.0%
lift-can 64.9%±7.1% 61.0%±6.8% 49.1%±9.8% 65.5%±6.9% 57.7%±7.2%
lift-carrot 84.1%±3.6% 73.4%±5.8% 69.4%±7.6% 83.8%±3.5% 75.2%±7.6%
place-bowl 83.4%±3.6% 77.6%±1.6% 80.3%±8.6% 81.0%±8.1% 70.8%±7.8%
place-plate 86.2%±1.8% 78.7%±2.2% 86.1%±7.7% 85.8%±6.6% 78.7%±7.6%
place-divider-plate 89.0%±2.2% 80.2%±2.2% 85.0%±5.9% 87.8%±7.6% 79.2%±6.3%
average 75.0%±3.3% 67.3%±0.8% 60.8%±7.5% 74.8% ±6.4% 66.4%±7.2%

7.3.3.1 Results of Empirical Evaluations
Results of Question (1) and (2). We evaluate each method on the single-task hopper and
AntMaze domains. As shown in Table 16, we find that UDS outperforms No Sharing in 3
out of the 4 settings and reward learning methods in all the settings. We hypothesize that
reward learning methods underperform because reward predictors are unable to achieve
reasonable generalization ability in the limited labeled data setting. Note that UDS even
achieves competitive performance as the oracle Sharing All method. Furthermore, an
optimized reweighting scheme, i.e., CDS+UDS, is able to improve over UDS in each case,
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including cases where UDS fails to improve over No Sharing, indicating a large reward
bias. These results testify to the effectiveness of optimizing for reweighting when dealing
with unlabeled data. Note that on the AntMaze domain, CDS+UDS performs comparably
to the recent approach [355] that performs representation learning on the offline dataset
first and then run offline training leveraging the learned representation. CDS+UDS also
outperforms all the prior methods with learned representations discussed in [355].

Results of Question (3). Observe in Table 18 that UDS outperforms naı̈ve multi-task
offline RL without data sharing and reward learning methods, suggesting that leveraging
unlabeled data with our simple method UDS can boost offline RL performance in both
multi-task manipulation and navigation domains. Since reward learning approaches
obtain similar or worse results compared to No Sharing, which we suspect could be due
to erroneous predictions on unseen transitions in the multi-task data, we only compare
our methods to No Sharing and the oracle methods in the image-based experiments.
As shown in Table 19, UDS outperforms No Sharing in 7 out of 10 tasks as well as the
average task performance by a significant margin. Therefore, UDS is able to effectively
leverage unlabeled data from other tasks and achieves potentially surprisingly strong
results compared to more sophisticated methods that handle unlabeled offline data. We
also find that CDS+UDS further improves upon the performance of UDS, which indicates
that optimizing for reweighting via CDS+UDS can actually work well.

Finally, note that, CDS+UDS and UDS attain performance competitive with their oracle
counterparts, CDS and Sharing All, that assume access to full reward information, both
in Tables 18 & 19. This is potentially very surprising, and one could hypothesize that this
might be because most transitions in the unlabeled dataset were actually failures, and
hence, were labeled correctly by UDS. However, to the contrary, our diagnostic analysis in
Table 55, Appendix E.7 reveals that the unlabeled data does not consist entirely of failures;
in fact, around 60% of the unlabeled data succeeds at the task of interest, indicating
that the rewards are wrong for more than half the unlabeled data. In spite of this, UDS
and CDS+UDS perform well. This indicates that UDS can be effective in removing the
dependence of functional form of reward functions, which is often costly, without much
loss in the performance and CDS+UDS can boost performance by reducing the bias.

7.3.4 Empirical Analysis of UDS and CDS+UDS

To answer question (4), we analyze UDS and CDS+UDS on several offline RL problems
designed to test robustness and sensitivity to the data coverage and the data quality
on the single-task hopper domain. To create these instances, we consider 7 different
combinations of data quality (hopper-expert, hopper-medium or hopper-random) and
amount of labeled and unlabeled data labeled as (a)-(g) in Table 17. In Appendix E.6.1,
we present results for a similar analysis in the multi-task Meta-World setting. We evaluate
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UDS, CDS+UDS and No Sharing in each case, and also present results for CDS and
Sharing All approaches which assume access to the actual reward, for understanding.
Additionally, we conduct an ablation that compares UDS and CDS+UDS to reward
learning methods in settings where the labeled data size and quality are varied, which is
included in Appendix E.6.3.

When the labeled data is of expert-level, adding unlabeled random or medium data (cases
a and b in Table 17) should only increase coverage, since the labeled data only consists
of expert transitions. Moreover, the reward bias induced due to incorrect labeling of
rewards on the medium unlabeled data should not hurt, since the 10k expert transitions
retain their correct labels, and the medium/random data should only serve as negatives,
provided the annotated rewards on this data are worse than the rewards in the expert
data. Therefore, we expect the benefits of coverage to outweigh any reward bias; as seen
in Table 17, we find that UDS indeed helps compared to No Sharing. In particular, in
those two cases, UDS approaches the oracle Sharing All method.

Since reward bias is exacerbated when the unlabeled data is of higher quality and present
in large amounts (cases e, f, g), it is reasonable to surmise that UDS will perform worse
in such scenarios. However, on the contrary, in settings: random labeled data with
medium or expert unlabeled data and medium labeled data with expert unlabeled data,
we find that even though the rewards on the unlabeled transitions are incorrect, the
addition of unlabeled data into training improves performance. This is because a higher
quality unlabeled data improves the performance of the effective behavior policy, thereby
improving performance for a conservative offline RL method. This result validates
Theorem 7.3.1. We also conduct an ablation that varies the amount of unlabeled data in
Appendix E.6.2. This ablation shows that the benefit of UDS reduces as the we reduce the
amount of unlabeled data, which confirms our theory.

In the case where labeled data is medium and unlabeled data is random (case d), we
find that UDS hurts compared to No Sharing. This is because the labeled data as well as
unlabeled data are both low-medium quality and medium data already provides decent
coverage (not as high as random data, but not as low as expert data). Therefore, in
this case, we believe that the addition of unlabeled data neither provides trajectories
of good quality that can help improve performance, nor does it significantly improve
coverage, and only hurts by incurring reward bias. We therefore believe that UDS may not
help in such cases where the coverage does not improve, and added data is not so high
quality, which also agrees with our theoretical analysis. Furthermore, in the case where
the labeled and unlabeled data are both expert (case c), UDS performs close to oracle
methods CDS and Sharing All, which confirms the insights derived from Section 7.3.2.1
that UDS does not introduce bias when the labeled and unlabeled data have the same
distribution and hence should perform well.
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Finally, note that CDS+UDS is able to improve over UDS in 5 out of 6 settings in hopper,
suggesting that CDS+UDS gains benefit from reducing the reward bias as well as the
sampling error shown in Section 7.3.2.

7.4 discussion and limitations

In this chapter, we studied the problem of data sharing in multi-task offline RL, when
presented with diverse, unlabeled data. We developed approaches to tackle two facets
of this problem: (i) learning to selectively reweight multi-task data to guarantee a
performance improvement, and (ii) learning in the presence of no reward annotations.
Our approaches CDS and UDS are theoretically-motivated and lead to significant boost
in performance in several multi-task problem scenarios, where we must learn from
diverse datasets. We provide a theoretical and empirical analysis in simplified setups
to understand the conditions under which our approaches can work and find that, in
general, when reward annotations are not present, combining CDS and UDS together can
be performant. We also showed that UDS can also be utilized for effectively incorporating
unlabeled data in single-task offline RL settings. Overall, we believe that this chapter
justifies the effectiveness of simple methods for using unlabeled and multi-task data in
offline RL and shed light on directions for future work that can better control the reward
bias and enjoy better policy performance.

While CDS and UDS provide an initial way to incorporate diverse, multi-task datasets
in offline RL, these approaches do not tackle several other challenges that often come
with real datasets. For instance, a running assumption in this chapter is that the state and
action spaces for transitions in the task-specific data and the diverse data are identical,
but this assumption is not specified in many practical problems, an example of which is
incorporating diverse human videos for downstream robotic control. From a theoretical
standpoint, takeaways from our analyis can be improved to show policy optimality
guarantees. We leave these as avenues for future work.
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8
O N L I N E R L F I N E - T U N I N G O F O F F L I N E R L

Abstract
A compelling use case of offline RL is to obtain a policy initialization from existing
datasets followed by fast online fine-tuning with limited interaction. However, a num-
ber of offline RL methods tend to behave poorly during fine-tuning. In this chapter,
we study the fine-tuning problem in the context of conservative value estimation
methods and we devise an approach for learning an effective initialization from offline
data that also enables fast online fine-tuning capabilities. Our approach, calibrated
Q-learning (Cal-QL), accomplishes this by learning a conservative value function
initialization that underestimates the value of the learned policy from offline data,
while also ensuring that the learned Q-values are at a reasonable scale. We refer to
this property as calibration, and define it mathematically as providing a lower bound
on the true value function of the learned policy and an upper bound on the value of
some other (suboptimal) reference policy, which may simply be the behavior policy.
We show that a conservative offline RL algorithm that also learns a calibrated value
function leads to effective online fine-tuning, enabling us to take the benefits of offline
initializations in online fine-tuning.

8.1 introduction

Modern machine learning successes follow a common recipe: pre-training models on
general-purpose, Internet-scale data, followed by fine-tuning the pre-trained initialization
on a limited amount of data for the task of interest [132, 62]. How can we translate
such a recipe to sequential decision-making problems? A natural way to instantiate this
paradigm is to utilize offline RL for initializing value functions and policies from static
datasets, followed by online fine-tuning to improve this initialization with limited active
interaction. If successful, such a recipe might enable effective online RL with much fewer
samples than current methods that learn from scratch.
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Many algorithms for offline RL have been applied to online fine-tuning. Empirical results
across such works suggest a counter-intuitive trend: policy initializations obtained from
more effective offline RL methods tend to exhibit worse online fine-tuning performance,
even within the same task (see Table 2 of [176] & Figure 4 of [345]). On the other end,
online RL methods training from scratch (or RL from demonstrations [331], where the
replay buffer is seeded with the offline data) seem to improve online at a significantly
faster rate. But these online methods require actively collecting data by rolling out policies
from scratch, which inherits similar limitations to naı̈ve online RL methods in problems
where data collection is expensive or dangerous. Overall, these results suggest that it
is challenging to devise an offline RL algorithm that both acquires a good initialization
from prior data and also enables efficient fine-tuning.
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Figure 30: We study offline RL pre-training followed
by online RL fine-tuning. Some prior offline RL meth-
ods tend to exhibit slow performance improvement
in this setting (yellow), resulting in worse asymptotic
performance. Others suffer from initial performance
degradation once online fine-tuning begins (red), re-
sulting in a high cumulative regret. We develop an
approach that “calibrates” the value function to attain
a fast improvement with a smaller regret (blue).

How can we devise a method to learn an
effective policy initialization that also im-
proves during fine-tuning? We have shown
that one can learn a good offline initial-
ization by optimizing the policy against a
conservative value function obtained from
an offline dataset. But, as we show in Sec-
tion 8.4.1, conservatism alone is insufficient
for efficient online fine-tuning. Conserva-
tive methods often tend to “unlearn” the
policy initialization learned from offline
data and waste samples collected via on-
line interaction in recovering this initializa-
tion. We find that the “unlearning” phe-
nomenon is a consequence of the fact that
value estimates produced via conservative
methods can be significantly lower than
the ground-truth return of any valid policy.
Having Q-value estimates that do not lie on a similar scale as the return of a valid policy
is problematic. Because once fine-tuning begins, actions executed in the environment
for exploration that are actually worse than the policy learned from offline data could
erroneously appear better, if their ground-truth return value is larger than the learned
conservative value estimate. Hence, subsequent policy optimization will degrade the
policy performance until the method recovers.

If we can ensure that the conservative value estimates learned using the offline data are
calibrated, meaning that these estimates are on a similar scale as the true return values,
then we can avoid the unlearning phenomenon caused by conservative methods (see the
formal definition in 8.4.1). Of course, we cannot enforce such a condition perfectly, since
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it would require eliminating all errors in the value function. Instead, we devise a method
for ensuring that the learned values upper bound the true values of some reference policy
whose values can be estimated more easily (e.g., the behavior policy), while still lower
bounding the values of the learned policy. Though this does not perfectly ensure that the
learned values are correct, we show that it still leads to sample-efficient online fine-tuning.
Thus, our practical method, calibrated Q-learning (Cal-QL), learns conservative value
functions that are “calibrated” against the behavior policy, via a simple modification to
existing conservative methods.

The main contribution of this chapter is Cal-QL, a method for acquiring an offline
initialization that facilitates online fine-tuning. Cal-QL aims to learn conservative value
functions that are calibrated with respect to a reference policy (e.g., the behavior policy).
Our analysis of Cal-QL shows that Cal-QL attains stronger guarantees on cumulative
regret during fine-tuning. In practice, Cal-QL can be implemented on top of conservative
Q-learning [181], a prior offline RL method, without any additional hyperparameters. We
evaluate Cal-QL across a range of benchmark tasks from [92], [303] and [240], including
robotic manipulation and navigation. We show that Cal-QL matches or outperforms the
best methods on all tasks, in some cases by 30-40%.

8.2 related work

Several prior works suggest that online RL methods typically require a large number of
samples [297, 333, 362, 157, 371, 120, 208] to learn from scratch. We can utilize offline data
to accelerate online RL algorithms. Prior works do this in a variety of ways: incorporating
the offline data into the replay buffer of online RL [283, 331, 138, 308], utilizing auxiliary
behavioral cloning losses with policy gradients [273, 163, 376, 375], or extracting a high-
level skill space for downstream online RL [119, 9]. While these methods improve the
sample efficiency of online RL from scratch, as we will also show in our results, they do
not eliminate the need to actively roll out poor policies for data collection.

To address this issue, a different line of work first runs offline RL for learning a good
policy and value initialization from the offline data, followed by online fine-tuning [241,
175, 221, 21, 342, 200, 228]. These approaches typically employ offline RL methods based
on policy constraints or pessimism [95, 296, 118, 105, 175, 303, 200] on the offline data,
then continue training with the same method on a combination of offline and online data
once fine-tuning begins [238, 166, 365, 181, 35]. Although pessimism is crucial for offline
RL [152, 47], using pessimism or constraints for fine-tuning [241, 175, 221] slows down
fine-tuning or leads to initial unlearning, as we will show in Section 8.4.1. In effect, these
prior methods either fail to improve as fast as online RL or lose the initialization from
offline RL. We aim to address this limitation by understanding some conditions on the
offline initialization that enable fast fine-tuning.
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Our approach is most related to methods that utilize a pessimistic offline RL algorithm
for offline training but incorporate exploration in fine-tuning [200, 228, 342]. In contrast
to these works, our method aims to learn a better offline initialization that enables
standard online fine-tuning. Our approach fine-tunes naı̈vely without ensembles [200] or
exploration [228] and, as we show in our experiments, this alone is enough to outperform
approaches that employ explicit optimism during data collection.

8.3 problem statement and additional notation

Given access to an offline dataset D = {(s, a, r, s0)} collected using a behavior policy
pb, we aim to first train a good policy and value function using the offline dataset
D alone, followed by an online phase that utilizes online interaction in M. Our goal
during fine-tuning is to obtain the optimal policy with the smallest number of online
samples. This can be expressed as minimizing the cumulative regret over rounds of
online interaction:

Reg(K) := Es⇠r

K

Â
k=1

h
V?

(s)�Vpk
(s)

i
. (8.3.1)

8.4 when can offline rl initializations enable fast online fine-tuning?

A starting point for offline pre-training and online fine-tuning is to simply initialize the
value function with one that is produced by an existing offline RL method and then
perform fine-tuning. However, we empirically find that initializations learned by many
offline RL algorithms can perform poorly during fine-tuning. We will study the reasons
for this poor performance for the subset of conservative methods to motivate and develop
our approach for online fine-tuning, calibrated Q-learning.

8.4.1 Empirical Analysis
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Figure 31: Multiple prior offline RL al-
gorithms suffer from difficulties during
fine-tuning including poor asymptotic
performance and initial unlearning.

Offline RL followed by online fine-tuning typically
poses non-trivial challenges for a variety of meth-
ods. While analysis in prior work [241] notes chal-
lenges for a subset of offline RL methods, in Figure 31,
we evaluate the fine-tuning performance of a variety
of prior offline RL methods (CQL [181], IQL [175],
TD3+BC [94], AWAC [241]) on a particular diagnostic
instance of a visual pick-and-place task with a distrac-
tor object and sparse binary rewards [303], and find
that all methods struggle to attain the best possible
performance, quickly. More details about this task are
in Appendix F.4.
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While the offline Q-function initialization obtained from all methods attains a similar (nor-
malized) return of around 0.5, they suffer from difficulties during fine-tuning: TD3+BC,
IQL, AWAC attain slow asymptotic performance and CQL unlearns the offline initial-
ization, followed by spending a large amount of online interaction to recover the offline
performance again, before any further improvement. This initial unlearning appears in
multiple tasks as we show in Appendix F.8. In this work, we focus on developing effective
fine-tuning strategies on top of conservative value estimation methods like CQL. To do
so, we next study the potential reason behind the initial unlearning in CQL.
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Figure 32: The evolution of the average Q-value and the
success rate of CQL over the course of offline pre-training and
online fine-tuning. Fine-tuning begins at 50K steps. The red-
colored part denotes the period of performance recovery which
also coincides with the period of Q-value adjustment.

Why does CQL unlearn initially?
To understand why CQL unlearns
initially, we inspect the learned Q-
values averaged over the dataset
in Figure 32. Observe that the Q-
values learned by CQL in the of-
fline phase are much smaller than
their ground-truth value (as ex-
pected), but these Q-values dras-
tically jump and adjust in scale
when fine-tuning begins. In fact,
we observe that performance re-
covery (red segment in Figure 32)
coincides with a period where the range of Q-values changes to match the true range.
This is as expected: as a conservative Q-function experiences new online data, actions
much worse than the offline policy on the rollout states appear to attain higher rewards
compared to the highly underestimated offline Q-function, which in turn deceives the
policy optimizer into unlearning the initial policy. We illustrate this idea visually in
Figure 33. Once the Q-function has adjusted and the range of Q-values closely matches
the true range, then fine-tuning can proceed normally, after the dip.

To summarize, our empirical analysis indicates that methods existing fine-tuning methods
suffer from difficulties such as initial unlearning or poor asymptotic performance. In par-
ticular, we observed that conservative methods can attain good asymptotic performance,
but “waste” samples to correct the learned Q-function. Thus, we attempt to develop a
fine-tuning method that builds on top of an existing conservative method, CQL.

8.4.2 Conditions on the Offline Initialization that Enable Fast Fine-Tuning

Our observations from the preceding discussion motivate two conclusions in regard
to the offline Q-initialization for fast fine-tuning: (a) methods that learn conservative
Q-functions can attain good asymptotic performance, and (b) if the learned Q-values
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closely match the range of ground-truth Q-values on the task, then online fine-tuning
does not need to devote samples to unlearn and then recover the offline initialization.
One approach to formalize this intuition of Q-values lying on a similar scale as the
ground-truth Q-function is via the requirement that the conservative Q-values learned
by the conservative method must be lower-bounded by the Q-value of a sub-optimal
reference policy. This will prevent conservatism from learning overly small Q-values. We
will refer to this property as “calibration” with respect to the reference policy.

Definition 8.4.1 (Calibration). An estimated Q-function Qp
q for a given policy p is said to

be calibrated with respect to a reference policy µ if:

Ea⇠p [Qp
q (s, a)] � Ea⇠µ [Qµ

(s, a)] := Vµ
(s), 8s 2 D. (8.4.1)

If the learned Q-function Qp
q is calibrated with respect to a policy µ that is worse than p,

it would prevent unlearning during fine-tuning that we observed in the case of CQL. This
is because the policy optimizer would not unlearn p in favor of a policy that is worse
than the reference policy µ upon observing new online data as the expected value of p
is constrained to be larger than Vµ: Ea⇠p

⇥
Qp

q (s, a)
⇤
� Vµ(s). Our practical approach

Cal-QL will enforce calibration with respect to a policy µ whose ground-truth value,
Vµ(s), can be estimated reliably without bootstrapping error (e.g., the behavior policy
induced by the dataset). This is the key idea behind our method (as we will discuss next)
and is visually illustrated in Figure 33.

8.5 cal-ql : calibrated q-learning

Our approach, calibrated Q-learning (Cal-QL) aims to learn a conservative and calibrated
value function initializations from an offline dataset. To this end, Cal-QL builds on CQL
from Chapter 5 and then constrains the learned Q-function to produce Q-values larger
than the Q-value of a reference policy µ per Definition 8.4.1. In principle, our approach
can utilize many different choices of reference policies, but for developing a practical
method, we simply utilize the behavior policy as our reference policy.

Calibrating CQL. We can constrain the learned Q-function Qp
q to be larger than Vµ via a

simple change to the CQL training objective from Chapter 5: masking out the push down
of the learned Q-value on out-of-distribution (OOD) actions in CQL if the Q-function
is not calibrated, i.e., if Ea⇠p

⇥
Qp

q (s, a)
⇤
 Vµ(s). Cal-QL modifies the CQL regularizer,

R(q) in this manner:

Es⇠D,a⇠p [max (Qq(s, a), Vµ
(s))]�Es,a⇠D [Qq(s, a)] , (8.5.1)

where the changes from standard CQL are depicted in red. As long as a in CQL is large,
for any state-action pair where the learned Q-value is smaller than Qµ, the Q-function
in Equation 8.5.1 will upper bound Qµ in a tabular setting. Of course, as with any
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practical RL method, with function approximators and gradient-based optimizers, we
cannot guarantee that we can enforce this condition for every state-action pair, but in
our experiments, we find that Equation 8.5.1 is sufficient to enforce the calibration in
expectation over the states in the dataset.

Ca
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updateCQ
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action

learned Q-functionground truth values

Pre-trained Q-function Online fine-tuned Q-function 

action during 
exploration

bad action appears 
optimal
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Q-function
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bad action doesn’t
 appear optimal
under learned 

Q-function
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online 
update

Figure 33: Intuition behind policy unlearning with CQL and the
idea behind Cal-QL. The plot visualizes a slice of the learned Q-
function and the ground-truth values for a given state. Erroneous
peaks on suboptimal actions (x-axis) arise when updating CQL Q-
functions with online data. This in turn can lead the policy to deviate
away from high-reward actions covered by the dataset in favor of
erroneous new actions, resulting in deterioration of the pre-trained
policy. In contrast, Cal-QL corrects the scale of the learned Q-values
by using a reference value function, such that actions with worse
Q-values than the reference value function do not erroneously appear
optimal in fine-tuning.

Pseudo-code and implemen-
tation details. Our imple-
mentation of Cal-QL directly
builds on the implementa-
tion of CQL from Geng [104].
We present a pseudo-code for
Cal-QL in Algorithm 7. Addi-
tionally, we list the hyperpa-
rameters a for the CQL algo-
rithm and our baselines for
each suite of tasks in Ap-
pendix F.5. Following the pro-
tocol in prior work [175, 308],
the practical implementation
of Cal-QL trains on a mixture
of the offline data and the
new online data, weighted in
some proportion during fine-
tuning. To get Vµ(s), we can
fit a function approximator
Qµ

q or Vµ
q to the return-to-go values via regression, but we observed that also sim-

ply utilizing the return-to-go estimates for tasks that end in a terminal was sufficient for
our use case. We show in Section 8.7, how this simple change to the objective drastically
improves over prior fine-tuning results.

8.6 theoretical intuition of cal-ql

We will now analyze the cumulative regret attained over online fine-tuning, when
the value function is pre-trained with Cal-QL, and show that enforcing calibration
(Defintion 8.4.1) leads to a favorable regret bound during the online phase. Our analysis
utilizes tools from Song et al. [308], but studies the impact of calibration on fine-tuning.
We also remark that we simplify the treatment of certain aspects (e.g., how to incorporate
pessimism) as it allows us to cleanly demonstrate benefits of calibration.

Notation & terminology. In our analysis, we will consider an idealized version of Cal-QL
for simplicity. Specifically, following prior work [308] under the bilinear model [66],
we will operate in a finite-horizon setting with a horizon H. We denote the learned
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Q-function at each learning iteration k for a given (s, a) pair and time-step h by Qk
q(s, a).

For any given policy p, let Cp � 1 denote the concentrability coefficient such that Cp :=

max f2C
ÂH�1

h=0 Es,a⇠dp
h
[T fh+1(s,a)� fh(s,a)]

q
ÂH�1

h=0 Es,a⇠nh (T fh+1(s,a)� fh(s,a))2
, i.e., a coefficient that quantifies the distribution

shift between the policy p and the dataset D, in terms of the ratio of Bellman errors
averaged under p and the dataset D. Note that C represents the Q-function class and
we assume C has a bellman-bilinear rank [66] of d. We also use Cµ

p to denote the
concentrability coefficient over a subset of calibrated Q-functions w.r.t. a reference policy

µ: Cµ
p := max f2C, f (s,a)�Qµ(s,a)

ÂH�1
h=0 Es,a⇠dp

h
[T fh+1(s,a)� fh(s,a)]

q
ÂH�1

h=0 Es,a⇠nh (T fh+1(s,a)� fh(s,a))2
, which provides Cµ

p  Cp.

Similar to C, let dµ denote the bellman bilinear rank of Cµ – the calibrated Q-function
class w.r.t. the reference policy µ. Intuitively, we have Cµ ⇢ C, which implies that dµ  d.
We will use pk to denote the arg-max policy induced by Qk

q.

Intuition. We intuitively discuss how calibration and conservatism enable Cal-QL to
attain a smaller regret compared to not imposing calibration. Our goal is to bound the
cumulative regret of online fine-tuning, Âk Es0⇠r[Vp?

(s0)�Vpk
(s0)]. We can decompose

this expression into two terms:

Reg(K) =

K

Â
k=1

Es0⇠r

h
V?

(s0)�max
a

Qk
q(s0, a)

i

| {z }
(i) := miscalibration

+

K

Â
k=1

Es0⇠r

h
max

a
Qk

q(s0, a)�Vpk
(s0)

i

| {z }
(ii) := overestimation

. (8.6.1)

This decomposition of regret into terms (i) and (ii) is instructive. Term (ii) corresponds to
the amount of over-estimation in the learned value function, which is expected to be small
if a conservative RL algorithm is used for training. Term (i) is the difference between the
ground-truth value of the optimal policy and the learned Q-function and is negative if
the learned Q-function were calibrated against the optimal policy (per Definition 8.4.1).
Of course, this is not always possible because we do not know V? a priori. But note
that when Cal-QL utilizes a reference policy µ with a high value Vµ, close to V?, then
the learned Q-function Qq is calibrated with respect to Qµ per Condition 8.4.1 and term
(i) can still be controlled. Therefore, controlling this regret requires striking a balance
between learning a calibrated (term (i)) and conservative (term (ii)) Q-function. We now
formalize this intuition and defer the detailed proof to Appendix F.2.5.

Theorem 8.6.1 (Informal regret bound of Cal-QL). With high probability, Cal-QL obtains
the following bound on total regret accumulated during online fine-tuning:

Reg(K) = eO
⇣

min
�

Cµ
p? H

q
dK log (|F |), KEr[V?

(s0)�Vµ
(s0)] + H

q
dµK log (|F |)

 ⌘

where F is the functional class of the Q-function.
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Comparison to Song et al. [308]. Song et al. [308] analyzes an online RL algorithm that
utilizes offline data without imposing conservatism or calibration. We now compare
Theorem 8.6.1 to Theorem 1 of Song et al. [308] to understand the impact of these
conditions on the final regret guarantee. Theorem 1 of Song et al. [308] presents a regret
bound: Reg(K) = eO

⇣
Cp? H

p
dK log (|F |)

⌘
and we note some improvements in our

guarantee, that we also verify via experiments in Section 8.7.3: (a) for the setting where the
reference policy µ contains near-optimal behavior, i.e., V? �Vµ . O(H

p
d log (|F |) /K),

Cal-QL can enable a tighter regret guarantee compared to Song et al. [308]; (b) as we
show in Appendix F.2.2, the concentrability coefficient Cµ

p? appearing in our guarantee is
no larger than the one that appears in Theorem 1 of Song et al. [308], providing another
source of improvement; and (c) finally, in the case where the reference policy has broad
coverage and is highly sub-optimal, Cal-QL reverts back to the guarantee from [308],
meaning that Cal-QL improves upon this prior work.

8.7 experimental evaluation

The goal of our experimental evaluation is to study how well Cal-QL can facilitate
sample-efficient online fine-tuning. To this end, we compare Cal-QL with several other
state-of-the-art fine-tuning methods on a variety of offline RL benchmark tasks from
D4RL [92], Singh et al. [303], and Nair et al. [241], evaluating performance before and
after fine-tuning. We also study the effectiveness of Cal-QL on higher-dimensional tasks,
where the policy and value function must process raw image observations. Finally, we
perform empirical studies to understand the efficacy of Cal-QL with different dataset
compositions and the impact of errors in the reference value function estimation.

Figure 34: Tasks: We evaluate Cal-QL on a di-
verse set of benchmarks: AntMaze & Frankakitchen

domains from [92], Adroit tasks from [241] and a
vision-based robotic manipulation task from [188].

Offline RL tasks and datasets. We evalu-
ate Cal-QL on a number of benchmark tasks
and datasets used by prior works [175, 241]
to evaluate fine-tuning performance: (1) The
AntMaze tasks from D4RL [92] that require
controlling an ant quadruped robot to nav-
igate from a starting point to a desired goal
location in a maze. The reward is +1 if the agent reaches within a pre-specified small
radius around the goal and 0 otherwise. (2) The FrankaKitchen tasks from D4RL require
controlling a 9-DoF Franka robot to attain a desired configuration of a kitchen. To succeed,
a policy must complete four sub-tasks in the kitchen within a single rollout, and it re-
ceives a binary reward of +1/0 for every sub-task it completes. (3) Three Adroit dexterous
manipulation tasks [274, 175, 241] that require learning complex manipulation skills on
a 28-DoF five-fingered hand to (a) manipulate a pen in-hand to a desired configuration
(pen-binary), (b) open a door by unlatching the handle (door-binary), and (c) relocating a
ball to a desired location (relocate-binary). The agent obtains a sparse binary +1/0 reward
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Figure 35: Online fine-tuning after offline initialization on the benchmark tasks. The plots show the
online fine-tuning phase after pre-training for each method (except SAC-based approaches which are not
pre-trained). Observe that Cal-QL consistently matches or exceeds the speed and final performance of the
best prior method and is the only algorithm to do so across all tasks. (6 seeds)

if it succeeds in solving the task. Each of these tasks only provides a narrow offline
dataset consisting of 25 demonstrations collected via human teleoperation and additional
trajectories collected by a BC policy. Finally, to evaluate the efficacy of Cal-QL on a task
where we learn from raw visual observations, we study (4) a pick-and-place task from
prior work [303, 188] that requires learning to pick a ball and place it in a bowl, in the
presence of distractors.

Comparisons, prior methods, and evaluation protocol. We compare Cal-QL to running
online SAC [126] from scratch, as well as prior approaches that leverage offline data. This
includes naı̈vely fine-tuning offline RL methods such as CQL [181] and IQL [175], as well
as fine-tuning with AWAC [241], O3F [228] and online decision transformer (ODT) [374],
methods specifically designed for offline RL followed by online fine-tuning. In addition,
we also compare to a baseline that trains SAC [126] using both online data and offline data
(denoted by “SAC + offline data”) that mimics DDPGfD [331] but utilizes SAC instead of
DDPG. We also compare to Hybrid RL [308], a recently proposed method that improves
the sample efficiency of the “SAC + offline data” approach, and “CQL+SAC”, which first
pre-train with CQL and then run fine-tuning with SAC on a mixture of offline and online
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data without conservatism. More details of each method can be found in Appendix F.5.
We present learning curves for online fine-tuning and also quantitatively evaluate each
method on its ability to improve the initialization learned from offline data measured
in terms of (i) final performance after a pre-defined number of steps per domain and
(ii) the cumulative regret over the course of online fine-tuning. In Section 8.7.2, we run
Cal-QL with a higher update-to-data (UTD) ratio and compare it to RLPD [20], a more
sample-efficient version of “SAC + offline data”.

8.7.1 Empirical Results

We first present a comparison of Cal-QL in terms of the normalized performance before
and after fine-tuning in Table 20 and the cumulative regret in a fixed number of online
steps in Table 21. Following the protocol of [92], we normalize the average return values
for each domain with respect to the highest possible return (+4 in FrankaKitchen; +1 in
other tasks; see Appendix F.5.1 for more details).

Cal-QL improves the offline initialization significantly. Observe in Table 20 and Fig-
ure 35 that while the performance of offline initialization acquired by Cal-QL is com-
parable to that of other methods such as CQL and IQL, Cal-QL is able to improve over
its offline initialization the most by 106.9% in aggregate and achieve the best fine-tuned
performance in 9 out of 11 tasks.

Cal-QL enables fast fine-tuning. Observe in Table 21 that Cal-QL achieves the smallest
regret on 8 out of 11 tasks, attaining an average regret of 0.22 which improves over the
next best method (IQL) by 42%. Intuitively, this means that Cal-QL does not require
running highly sub-optimal policies. In tasks such as relocate-binary, Cal-QL enjoys the
fast online learning benefits associated with naı̈ve online RL methods that incorporate
the offline data in the replay buffer (SAC + offline data and Cal-QL are the only two
methods to attain a score of � 90% on this task) unlike prior offline RL methods. As
shown in Figure 35, in the kitchen and antmaze domains, Cal-QL brings the benefits of fast
online learning together with a good offline initialization, improving drastically on the
regret metric. Finally, observe that the initial unlearning at the beginning of fine-tuning
with conservative methods observed in Section 8.4.1 is greatly alleviated in all tasks (see
Appendix F.8 for details).

8.7.2 Cal-QL With High Update-to-Data (UTD) Ratio

We can further enhance the online sample efficiency of Cal-QL by increasing the number
of gradient steps per environment step made by the algorithm. The number of updates
per environment step is usually called the update-to-data (UTD) ratio. In standard online
RL, running off-policy Q-learning with a high UTD value (e.g., 20, compared to the
typical value of 1) often results in challenges pertaining to overfitting [209, 46, 20, 64].
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Task CQL IQL AWAC O3F ODT CQL+SAC Hybrid SRL SAC+od SAC Cal-QL (Ours)
large-diverse 25! 87 40! 59 00! 00 59! 28 00! 01 36! 00 ! 00 ! 00 ! 00 33! 95
large-play 34! 76 41! 51 00! 00 68! 01 00! 00 21! 00 ! 00 ! 00 ! 00 26! 90
medium-diverse 65! 98 70! 92 00! 00 92! 97 00! 03 64! 98 ! 02 ! 68 ! 00 75! 98
medium-play 62! 98 72! 94 00! 00 89! 99 00! 05 67! 98 ! 25 ! 96 ! 00 54! 97
partial 71! 75 40! 60 01! 13 11! 22 - 71! 00 ! 00 ! 07 ! 03 67! 79
mixed 56! 50 48! 48 02! 12 06! 33 - 59! 01 ! 01 ! 00 ! 02 38! 80
complete 13! 34 57! 50 01! 08 17! 41 - 21! 06 ! 00 ! 05 ! 06 22! 68
pen 55! 13 88! 92 88! 92 91! 89 - 48! 10 ! 54 ! 17 ! 11 79! 99
door 22! 88 41! 88 29! 13 04! 08 - 29! 66 ! 88 ! 39 ! 17 35! 92
relocate 06! 69 06! 45 06! 08 03! 35 - 01! 00 ! 99 ! 16 ! 00 03! 98
manipulation 50! 97 49! 81 50! 73 - - 42! 41 ! 00 ! 01 ! 01 49! 99
average 42! 71 50! 69 16! 20 44! 45 00! 02 42! 29 ! 24 ! 23 ! 04 44! 90
improvement + 71.0% + 37.7% + 23.7% + 3.0% N/A - 30.3% N/A N/A N/A + 106.9%

a

Table 20: Normalized score before & after online fine-tuning. Observe that Cal-QL improves over the best
prior fine-tuning method and attains a much larger performance improvement over the course of online
fine-tuning. The numbers represent the normalized score out of 100 following the convention in [92].

Task CQL IQL AWAC O3F ODT CQL+SAC Hybrid RL SAC+od SAC Cal-QL (Ours)
large-diverse 0.35 0.46 1.00 0.62 0.98 0.99 1.00 1.00 1.00 0.20
large-play 0.32 0.52 1.00 0.91 1.00 0.99 1.00 1.00 1.00 0.28
medium-diverse 0.06 0.08 0.99 0.03 0.95 0.06 0.98 0.77 1.00 0.05
medium-play 0.09 0.10 0.99 0.04 0.96 0.06 0.90 0.47 1.00 0.07
partial 0.31 0.49 0.89 0.78 - 0.97 0.98 0.98 0.92 0.27
mixed 0.55 0.60 0.88 0.72 - 0.97 0.99 1.00 0.91 0.27
complete 0.70 0.53 0.97 0.66 - 0.99 0.99 0.96 0.91 0.44
pen 0.86 0.11 0.12 0.13 - 0.90 0.56 0.75 0.87 0.11
door 0.36 0.25 0.81 0.82 - 0.23 0.35 0.60 0.94 0.23
relocate 0.71 0.74 0.95 0.71 - 0.86 0.30 0.89 1.00 0.43
manipulation 0.15 0.32 0.38 - - 0.61 1.00 1.00 0.99 0.11
average 0.41 0.38 0.82 0.54 0.97 0.69 0.82 0.86 0.96 0.22

Table 21: Cumulative regret averaged over the steps of fine-tuning. The smaller the better and 1.00 is the
worst. Cal-QL attains the smallest overall regret, achieving the best performance among 8 / 11 tasks.

As expected, we noticed that running Cal-QL with a high UTD value also leads these
overfitting challenges. To address these challenges in high UTD settings, we combine
Cal-QL with the Q-function architecture in recent work, RLPD [20] (i.e., we utilized layer
normalization in the Q-function and ensembles akin to [46]), that attempts to tackle
overfitting challenges. Note that Cal-QL still first pre-trains on the offline dataset using
Equation 8.5.1 followed by online fine-tuning, unlike RLPD that runs online RL right
from the start. In Figure 36, we compare Cal-QL (UTD = 20) with RLPD [20] (UTD = 20)
and also Cal-QL (UTD = 1) as a baseline. Observe that Cal-QL (UTD = 20) improves
over Cal-QL (UTD = 1) and training from scratch (RLPD).

8.7.3 Understanding the Behavior of Cal-QL

In this section, we aim to understand the behavior of Cal-QL by performing controlled
experiments that modify the dataset composition, and by investigating various metrics to
understand the properties of scenarios where utilizing Cal-QL is especially important for
online fine-tuning.
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Figure 36: Cal-QL with UTD=20. Incorporating design choices from RLPD enables Cal-QL to achieve
sample-efficient fine-tuning with UTD=20. Specifically, Cal-QL generally attains similar or higher asymptotic
performance as RLPD, while also exhibiting a smaller cumulative regret.

Effect of data composition. To understand the efficacy of Cal-QL with different data
compositions, we ran it on a newly constructed fine-tuning task on the medium-size
AntMaze domain with a low-coverage offline dataset, which is generated via a scripted
controller that starts from a fixed initial position and navigates the ant to a fixed goal
position. In Figure 37, we plot the performance of Cal-QL and baseline CQL (for
comparison) on this task, alongside the trend of average Q-values over the course of
offline pre-training (to the left of the dashed vertical line, before 250 training epochs) and
online fine-tuning (to the right of the vertical dashed line, after 250 training epochs), and
the trend of bounding rate, i.e., the fraction of transitions in the data-buffer for which the
constraint in Cal-QL actively lower-bounds the learned Q-function with the reference
value. For comparison, we also plot these quantities for a diverse dataset with high
coverage on the task (we use the antmaze-medium-diverse from [92] as a representative
diverse dataset) in Figure 37.

Observe that for the diverse dataset, both naı̈ve CQL and Cal-QL perform similarly, and
indeed, the learned Q-values behave similarly for both of these methods. In this setting,
online learning doesn’t spend samples to correct the Q-function when fine-tuning begins
leading to a low bounding rate, almost always close to 0. Instead, with the narrow dataset,
we observe that the Q-values learned by naı̈ve CQL are much smaller, and are corrected
once fine-tuning begins. This correction co-occurs with a drop in performance (solid blue
line on left), and naı̈ve CQL is unable to recover from this drop. Cal-QL which calibrates
the scale of the Q-function for many more samples in the dataset, stably transitions to
online fine-tuning with no unlearning (solid red line on left).
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Figure 37: Performance of Cal-QL with data compo-
sitions. Cal-QL is most effective with narrow datasets,
where Q-values need to be corrected at the beginning of
fine-tuning.

This suggests that in settings with nar-
row datasets (e.g., in the experiment
above and in the adroit and visual-
manipulation domains from Figure 35),
Q-values learned by naı̈ve conservative
methods are more likely to be smaller
than the ground-truth Q-function of the
behavior policy due to function approx-
imation errors. Hence utilizing Cal-
QL to calibrate the Q-function against
the behavior policy can be significantly
helpful. On the other hand, with significantly high-coverage datasets, especially in prob-
lems where the behavior policy is also random and sub-optimal, Q-values learned by
naı̈ve methods are likely to already be calibrated with respect to those of the behavior
policy. Therefore no explicit calibration might be needed (and indeed, the bounding rate
tends to be very close to 0 as shown in Figure 37). In this case, Cal-QL will revert back to
standard CQL, as we observe in the case of the diverse dataset above. This intuition is
also reflected in Theorem 8.6.1: when the reference policy µ is close to a narrow, expert
policy, we would expect Cal-QL to be especially effective in controlling the efficiency of
online fine-tuning. We also present a diagnostic study of Cal-QL when the reference value
function is estimated by fitting a neural network in Appendix F.7, and find that estimation
errors in this model of the reference function do not affect performance significantly.

8.8 discussion and limitations

In this chapter, we developed Cal-QL a method for acquiring conservative offline initial-
izations that facilitate fast online fine-tuning. Cal-QL learns conservative value functions
that are constrained to be larger than the value function of a reference policy. This form
of calibration allows us to avoid initial unlearning when fine-tuning with conservative
methods, while also retaining the effective asymptotic performance that these methods
exhibit. Our theoretical and experimental results highlight the benefit of Cal-QL in en-
abling fast online fine-tuning. While Cal-QL outperforms prior methods, we believe that
we can develop even more effective methods by adjusting calibration and conservatism
more carefully. A limitation of our work is that we do not consider fine-tuning setups
where pre-training and fine-tuning tasks are different, but this is an interesting avenue
for future work. Theoretically, our analysis can be improved via a more precise treatment
of pessimism, and this is an avenue for future work.
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9
R E A L - R O B O T P R E - T R A I N I N G

Abstract
In this chapter, we present an application of offline RL that leverages diverse robotic
datasets to achieve effective generalization in robotic learning. Specifically, we aim
to answer the question: How can we use existing diverse offline datasets along
with small amounts of task-specific data to solve new tasks? We demonstrate that
employing the end-to-end offline RL techniques discussed in earlier sections of this
dissertation can be an effective approach to address this, without the need for any
self-supervised representation learning or vision-based pre-training. Our offline
RL approach, “pre-training for robots” (PTR), aims to efficiently learn new tasks
by combining pre-training on existing robotic datasets with rapid fine-tuning on
a new task, with as few as 10 demonstrations. PTR directly utilizes conservative
Q-learning (CQL) from Chapter 5, but extends it with several crucial design decisions
that enable PTR to outperform various prior methods. To the best of our knowledge,
PTR represents the first RL method that successfully learns new tasks in a new domain
on a real WidowX robot, with limited data, effectively leveraging an existing dataset
of diverse multi-task robot data collected from various toy kitchens. Furthermore,
we demonstrate that PTR enables effective autonomous online improvement in just a
handful of trials.

9.1 introduction

In this chapter, we show that multi-task offline RL pre-training on diverse multi-task
demonstration data followed by offline RL fine-tuning on a very small number of trajecto-
ries (as few as 10 trials, maximum 15) or online fine-tuning on autonomously collected
data, can indeed be made into an effective robotic learning strategy that can significantly
outperform methods based on imitation learning as well as RL-based methods that do
not employ pre-training. This is surprising and significant, since prior work [227] has
suggested that imitation learning methods are superior to offline RL when provided
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with human demonstrations. Moreover prior RL-based pre-training and fine-tuning
methods typically require thousands of trials [303, 162, 154, 41, 197]. Our framework,
which we call PTR (pre-training for robots), is based on the CQL algorithm discussed
previously, but introduces a number of design decisions, that we show are critical for
good performance and enable large-scale pre-training. These choices include a specific
choice of architecture for providing high capacity while preserving spatial information,
the use of group normalization, and an approach for feeding actions into the model that
ensures that actions are used properly for value prediction. We experimentally validate
these design decisions and show that PTR benefits from increasing the network capacity,
even with large ResNet-50 architectures, which have never been previously shown to work
with offline RL. Our experiments utilize the Bridge Dataset [70], which is an extensive
dataset consisting of thousands of trials for a very large number of robotic manipulation
tasks in multiple environments. A schematic of PTR is shown in Figure 38.

9.2 problem statement and definitions

Problem statement. Our goal is to learn general-purpose initializations from a broad,
multi-task offline dataset and then fine-tune these initializations to specific downstream
tasks. Following the notation from Chapter 7, we denote the general-purpose offline
dataset by D, which is partitioned into k chunks. Each chunk contains several transition
typles for a given robotic task (e.g., picking and placing a given object) collected in a
given domain (e.g., a particular kitchen). See Figure 38 for an illustration. Formally,
the dataset can be represented as D = [k

i=1 (i, Di), where we denote the set of training
tasks concisely as Ttrain = [k]. Our goal is to utilize this multi-task dataset to help train
a policy for one or multiple target tasks (denoted without loss of generality as task
Ttarget = {k + 1, · · · , n}).

While the diverse prior dataset D does not contain any experience for the target tasks,
in the offline fine-tuning setting, we are provided with a very small dataset of demon-
strations D⇤ := {D⇤k+1, D⇤k+1, · · · , D⇤n} corresponding to each of the target tasks. In our
experiments, we use only 10 to 15 demonstrations for each target task, making it impos-
sible to learn the target task from this data alone, such that a method that effectively
maximizes performance for the target tasks Ttarget must leverage the prior data D. We
also study the setting where we aim to quickly fine-tune the policy learned via offline
pre-training and offline fine-tuning using limited amounts of autonomously collected
data via online real-world interaction. More details about this are in Section 9.4.6.

Tasks and domains. We use the Bridge Dataset [70] as the source of our pre-training
tasks, which we augment with a few additional tasks as discussed in Section 9.4. Our
terminology for “task” and “domain” follows Ebert et al. [70]: a task is a skill-object pair,
such as “put potato in pot” and a domain corresponds to an environment, which in the
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Offline RL Fine-tuning on Target Data + Bridge DataOffline RL Pretraining on Bridge Dataset
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Figure 38: Overview of PTR : We first perform general offline pre-training on diverse multi-task robot
data and subsequently fine-tune on one or several target tasks while mixing batches between the prior data
and the target dataset using a batch mixing ratio of t. Additionally, a separate online fine-tuning phase can
be done, where offline pre-training is done on a static dataset and an online replay buffer is collected using
rollouts in the environment. The offline and online buffers are mixed per batch with a ratio of b.

case of the Bridge Dataset consists of different toy kitchens, potentially with different
viewpoints and robot placements. We assume the new tasks and environments come
from the same training distribution, but are not seen in the prior data.

9.3 learning policies for new tasks from offline rl pre-training

To effectively solve new tasks from diverse offline datasets, a robotic learning framework
must: (1) extract useful skills out of the diverse robotic dataset, and (2) rapidly specialize
the learned skills towards an unseen target task, given only a minimal amount of expe-
rience from this target task in the form of demonstrations, or collected autonomously
by interaction. In this section, we present our framework, PTR , that provides these
benefits by training a single, highly expressive deep network via offline RL, and then
specializes it on the target task with a small amount of data. We will first present the
key components of our robotic framework in Section 9.3.1 and then discuss our novel
technical contributions, the practical design choices that are crucial, in Section 9.3.2.

9.3.1 The Components of PTR

To satisfy both requirements (1) and (2) from above, our framework uses a multi-task
offline RL approach with parameter sharing, where the policy and Q-function are condi-
tioned on a task identifier. This allows us to share a single set of weights for all possible
tasks in the diverse offline dataset, providing a general-purpose pre-training procedure
that can use diverse data. Once a policy is obtained via this multi-task pre-training
process, we adapt this policy for solving a new target task by utilizing a very small
amount of target task data or autonomously collected data. We describe the two phases,
pre-training and fine-tuning, below:
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Phase 1: Multi-task offline RL pre-training. In the first phase, PTR learns a single
Q-function and policy for all tasks i 2 Ttrain conditioned on the task identifier i, i.e.,
Qf(s, a; i) and pq(a|s, i), via multi-task offline RL. We use a one-hot task identifier that
imposes minimal assumptions on the task structure. For multi-task offline RL, we use
the conservative Q-learning (CQL) [181] algorithm. Recall that this amounts to training
the multi-task Q-function against a temporal difference error objective along with a
regularizer that explicitly minimizes the expected Q-value under the learned policy
pq(a|s; i), to prevent overestimation of Q-values for unseen actions, which can lead
to poor offline RL performance [179]. At the end of multi-task offline training phase,
we obtain a policy poff

q and Q-function Qoff
f , that are ready to be fine-tuned to a new

downstream task.

Phase 2: Offline or online fine-tuning of poff
q and Qoff

f to a target task Ttarget. In the
second phase, PTR attempts to learn a policy to solve one or more downstream tasks by
adapting poff

q , using a limited set of user-provided demonstrations that we denote D⇤,
or using a combination of target demonstration data and autonomously collected online
data. Our method for the offline fine-tuning setting is simple yet effective: we incorporate
the new target task data into the replay buffer of the very same offline multi-task CQL
algorithm from the previous phase and resume training from Phase 1. However, naı̈vely
incorporating the target task data into the replay buffer might still not be effective since
this scheme would hardly ever train on the target task data during adaptation due to
the large imbalance between the sizes of the few target demonstrations and the large
pre-training dataset. To address this imbalance, each minibatch passed to multi-task CQL
during offline fine-tuning consists of a t fraction of transitions from bridge demonstration
data and 1� t fraction of transitions from the target dataset. By setting t to be small, we
are able to prioritize multi-task CQL to look at target task data frequently, enabling it to
make progress on the downstream task without overfitting.

For the autonomous fine-tuning, we utilize a similar technique and have each mini-batch
consist of b fraction of transitions from the bridge data and the target demonstration
data, and 1� b fraction of transitions from the newly collected online data. We alternate
between collecting one trajectory and making 10 gradient steps for every single transition
collected in the environment. Utilizing a high update to the data ratio allowed us to
efficiently train the agent on newly collected online samples from rollouts.

Handling task identifiers for new tasks. The description of our system so far has
assumed that the downstream test tasks are identified via a task identifier. In practice, we
utilize a one-hot vector to indicate the index of a task. While such a scheme is simple to
implement, it is not quite obvious how we should incorporate new tasks with one-hot
task identifiers. In our experiments, we use two approaches for solving this problem: first,
we can utilize a larger one-hot encoding that incorporates tasks in both Ttrain and Ttarget,
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Figure 2: Q-function architecture for PTR . The encoder is a ResNet34 with group normalization along
with learned spatial embeddings (left). The decoder (right) is a MLP with the action vector duplicated and
passed in at each layer. A one-hot task identifier is also passed into the input of the decoder.

but not use the indices for Ttarget during pre-training. The Q-function and the policy are
trained on these placeholder task identifiers only during fine-tuning in Phase 2. Another
approach for handling new tasks is to not use unique task identifiers for every new task,
but rather “re-target” or re-purpose existing task identifiers for new target tasks in the
fine-tuning phase. PTR provides this option: we can simply assign an already existing
task identifier to the target demonstration data before fine-tuning the learned Q-function
and the policy. For example, in our experiments in Section 9.4 we re-target the put sushi
in pot task which uses orange transparent pots to instead put the sushi into a metal pot,
which was never seen during training.

An overview of our approach is shown in Figure 38. We use a value of a = 10.0 and t =

0.8 for mixing the pre-training dataset and the target dataset in most of our experiments
in the real-world, without requiring any domain-specific tuning. For online fine-tuning,
we utilized a = 0.5 to evenly mix between the online and offline datasets.

9.3.2 Important Design Choices and Practical Considerations

Even though the components discussed in Section 9.3.1 are sufficient to give rise to an
offline pre-training and fine-tuning approach, as we show in Section 5, this approach
does not lead very good results on its own. Instead, we must make some crucial design
decisions, including designing neural network architectures that can learn from diverse
data with offline RL, cross-validation metrics to identify policies we expect to be effective
after fine-tuning, and the design of the reward functions that can be used to label the
pre-training dataset. We show that making the right choices for these components
leads to significant improvement (more than 3.5x in final real-world performance; see
Appendix G.5). Thus, describing, analyzing, and evaluating these choices is a crucial part
of this work that we hope will facilitate applications of offline RL pre-training.
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Policy and Q-function architectures
Perhaps the most crucial design decision for our approach is the neural network archi-
tecture for representing poff and Qoff. Since we wish to fine-tune the policy for different
tasks, we must use high-capacity neural network models for representing the policy and
the Q-function. We experimented with a variety of standard (high-capacity) architectures
for vision-based robotic RL. This includes standard convolutional architectures [303]
and IMPALA architectures [74]. However, we observed in Figure 7 that these standard
models were unable to effectively handle the diversity of the pre-training data and
performed poorly. Then, we attempted to utilize standard ResNets [131] (ResNet-18,
Resnet-34, and their adaptations to imitation problems from Ebert et al. [70]) to represent
Qf, but faced divergence challenges similar to prior efforts that use batch normaliza-
tion [30, 29] in the Q-network. Batch normalization layers are known to be hard to
train with TD-learning [29] and, therefore, by replacing batch normalization layers with
group normalization layers [344], we were able to address such divergence issues. See
Appendix G.5 for quantitative studies comparing these choices. Unlike prior work [199],
we observed that with group normalization, we attain favorable scaling properties of
PTR : the more the parameters, the better the performance as shown in Figure 7. We
also observed that choosing an appropriate method for converting the three-dimensional
feature-map tensor produced by the ResNet into a one-dimensional embedding plays a
crucial role for learning accurate Q-functions and obtaining functioning policies. Unlike
standard ResNet architectures for supervised learning, simply utilizing global average
pooling (as used in many classification architectures) performs poorly. Instead we point-
wise multiply the learned feature-map with a 3-dimensional parameter tensor before
computing sums over the spatial dimensions which allows the network to explicitly
encode spatial information. We refer to this technique as “learned spatial embeddings”.
An illustration of this architecture is provided in Figure 2. As detailed in Appendix G.5,
Table 67, we find that utilizing this technique leads to improved performance.

Next, we found that a Q-function Qf(s, a) obtained by running naı̈ve multi-task CQL
on the demonstration data tends to not use the action input a effectively, due to strong
correlations between s and a in the data, which is almost always the case for narrow,
human demonstrations. As a result, policy improvement against such a Q-function
overfits to these correlations, producing poor policies. To resolve this issue, we modified
the architecture of Q-network to pass the action a as input to every fully-connected
layer which, as shown in Figure 2 and Appendix G.5, Table 68), greatly alleviates the
issue and significantly improves over naı̈ve CQL.

Cross-validation during offline fine-tuning
As we wish to learn task-specific policies that do not overfit to small amounts of data, we
must apply the right number of gradient steps during fine-tuning: too few gradient steps
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will produce policies that do not succeed at the target tasks, while too many gradient steps
will give policies that have likely lose the generalization ability of the pre-trained policy.
To handle this trade-off, we adopt the following heuristic as a loose guideline: we run
fine-tuning for many iterations while also plotting the learned Q-values over a held-out
dataset of trajectories from the target task as seen in Figure 3. Then for evaluation, we
pick the checkpoints that presented a Q-function with the Q-values appearing closest to
having a monotonically increasing trend in a trajectory. This is a relative guideline and
must be performed within the checkpoints observed within a run. The reason for this
heuristic choice is that a valid Q-function must be a valid estimator for discounted return,
and hence, it must increase over time-steps of a trajectory for a given task. Of course,
this heuristic does not hold for arbitrary sub-optimal offline data, but all of our data
comes from human-collected demonstrations. In principle, this heuristic can be wrapped
into a metric quantifying degree of monotonicity of the Q-value curve in Figure 3, but
in our experiments, we felt this was not necessary: as we show below, we were able to
narrow down the checkpoints to essentially one or at most, two checkpoints by just visual
inspection. Of course, designing an accurate metric would be helpful for future work.
We present two worked-out examples of our checkpoint selection strategy for two tasks
from Scenario 1 and Scenario 3 in Figure 3. Observe that checkpoints early in training
exhibit Q-values that fluctuate arbitrarily at the beginning of training, which is clearly
non-monotonic. This is because of the lack of sufficient gradient steps for fine-tuning the
target task. Once sufficient gradient steps are performed, the Q-values visibly improve
on the monotonicity property. Training further leads to much flatter Q-values, that are
visibly less monotonic.

To validate this mechanism, in Figure 4 we present a film-strip of a sample evaluation of a
good and a poor checkpoint as identified by the cross-validation strategy mentioned above.
We observe that the checkpoint with more flat Q-values fails to solve the door opening
task, whereas the one with a visibly increasing Q-value trend solves the task.

Reward specification
In this paper, we aim to pre-train on existing robotic datasets, such as the Bridge
Dataset [70], which consists of human-teleoperated demonstration data. Although the
demonstrations are all successful, they are not annotated with any reward function. Per-
haps an obvious choice is to label the last transition of each trajectory as success, and give
it a +1 binary reward. However, in several of the datasets we use, there can be a 0.5-1.0
second lag between task completion and when the episode is terminated by the data
collection. To ensure that a successful transition is not incorrectly labeled as 0, we utilized
the practical heuristic of annotating the last n = 3 transitions of every trajectory with a
reward of +1 and and annotated other states with a 0 reward. We show in Appendix G.4
that this provided the best results. In principle, more complicated methods of reward
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Figure 3: Evolution of Q-values on the target task over the process of fine-tuning with PTR . Observe
that while the learned Q-values on held-out trajectories from the dataset just at the beginning of Phase 2
(fine-tuning) do not exhibit a roughly increasing trend, we choose to evaluate those checkpoints of PTR that
exhibit a visible more increasing trend in the Q-values despite having access to only 10 demonstrations for
these target tasks.

labeling [77] could be used. However, we found the presented rule to be simple and yet
effective to learn good policies.

9.4 experimental evaluation of ptr and takeaways for robotic rl

The goal of our experiments is to validate if PTR can learn effective policies from only
a handful of user-provided demonstrations for a target task, by effectively utilizing
previously-collected robotic datasets for pre-training. We also aim to understand whether
the design decisions introduced in Section 9.3.2 are crucial for attaining good robotic
manipulation performance. To this end, we evaluate PTR in a variety of robotic manipu-
lation settings, and compare it to state of the art methods, which either do not use offline
RL or do not learn end-to-end by employing some form of visual representation learning.
We evaluate in three scenarios: (a) when the target task requires retargeting the behavior
of an existing skill, in this case changing the type of object types it interacts with, (b)
when the target task requires performing a previously observed task but this time in a
previously unseen domain, and (c) when the target task requires learning a new skill in a
new domain, by using the target demonstrations. We also perform a diagnostic study in
simulation in Appendix G.1 (Table 62).
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Over-trained Checkpoint

Selected Checkpoint
Figure 4: Performance evaluation of a selected and over-trained checkpoint of PTR . We validate our
checkpoint selection mechanism on the door opening task. An over-trained checkpoint with nearly flat
Q-values fails to solve the task, whereas a checkpoint with visibly increasing Q-values solves the task.

9.4.1 Setup and Comparisons

Real-world experimental setup. We directly utilize the publicly available Bridge Dataset
[70] for pre-training, as it provides a large number of robot demonstrations for a diverse
set of tasks in multiple domains, i.e., multiple different toy kitchens. We use the same
WidowX250 robot platform for our evaluations. The bridge dataset contains distinct tasks,
each differing in terms of the objects that the robot interacts with and the domain the
task is situated in. We assign a different task identifier to each task in the dataset for
pre-training. We also evaluate on an additional door-opening task not present in the
Bridge Dataset, where we collected demonstrations for opening and closing a variety of
doors, and test our system on new, unseen doors. More details are in Appendix G.2.
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Figure 5: Illustrations of the three real-world experimental setups we evaluate PTR on: (a) the “put
sushi in a metallic pot” task which requires retargeting, (b) the task of opening an unseen door, and (c)
fine-tuning on several novel target tasks in a held out toykitchen environment.

Comparisons. Since the datasets we use (both the pre-training bridge dataset from
[70] and the newly collected door opening data) consist of human demonstrations, as
indicated by prior work [227], the strongest prior method in this setting is behavioral
cloning (BC), which attempts to simply imitate the action of the demonstrator based
on the current state. We incorporate BC in a pipeline similar to PTR , denoted as BC
(finetune), where we first run BC on the pre-training dataset, and then finetune it using
the demonstrations on the target task using the same batch mixing as in PTR . To ensure
that our BC baselines are well-tuned, we utilize standard practices of cross-validation via
a held-out validation set to tune hyperparameters and make early stopping decisions
are we elaborate on in Appendix G.4.1. Next, to assess the importance of performing
pre-training followed by fine-tuning, we compare PTR to (i) jointly training on the pre-
training and fine-tuning data with CQL, which is equivalent to the COG approach of
Singh et al. [303], (ii) multi-task offline CQL (CQL (zero-shot)) that does not use the
target demonstrations at all, and (iii) utilizing CQL to train on target demonstrations
alone from scratch, with no pre-training data included (CQL (target data only)). We also
make the analogous comparison for BC, jointly training BC on the pre-training and target
task data from scratch (BC (joint)) which is equivalent to [70]. For fairness of comparison,
BC, CQL, and PTR (both for zero-shot, joint-training and fine-tuning) use the same exact
architecture, including our learned-spatial embedding described in Section 9.3.2.

9.4.2 Experimental Results

Method Success rate

BC (zero-shot) 0/30
BC (finetune) 0/30
CQL (zero-shot) 2/30

PTR (Ours) 14/30

Table 22: Performance of PTR for “put sushi in metallic pot” in Scenario 1. PTR substantially outperforms
BC (finetune), even though it is provided access to only demonstration data. We also show some examples
comparing some trajectories of BC and PTR in Appendix G.4.
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zero-shot Joint Training Target data only

Task PTR (Ours) BC (fine.) CQL BC COG BC CQL BC

Open Door 12/20 10/20 0/20 0/20 5/20 7/20 4/20 7/20

Table 23: Successes vs. total trials for opening a new target door in Scenario 2. PTR outperforms both BC
(finetune) and BC (joint) given access to the same data. Note that joint training is worse than finetuning
from the pre-trained initialization.

Scenario 1: Re-targeting skills for existing tasks
We utilized the subset of the bridge data with pick-and-place tasks in one toy kitchen
for pre-training, and selected the “put sushi in pot” task as our target task. This task is
depicted in the bridge dataset, but only using an orange transparent pot (see Figure 5 (a)).
In order to construct a scenario where the offline policy at the end of pre-training must
be re-targeted to act on a different object, we collected only ten demonstrations that place
the sushi in a metallic pot and used these demonstrations for fine-tuning. This scenario
is challenging since the metallic pot differs significantly from the orange transparent
pot visually. By pre-training on all pick-and-place tasks in this domain (32 tasks) and
fine-tuning on this data and 10 demonstrations, PTR is able to obtain a policy that is
re-targeted towards the metal pot. On the other hand, the policy learned by BC confuses
arbitrary patches on the tabletop with the pot. Quantitatively, observe in Table 22 that
PTR is able to complete the task with reasonable accuracy across a set of easy and hard
initial positions, whereas zero-shot and fine-tuned BC are completely unable to solve
the task. The fact that zero-shot CQL has difficulty solving the task indicates that target
demonstrations are necessary, and PTR is able to attain successful behavior with just ten
demonstrations.

Scenario 2: Generalizing to previously unseen domains
Next, we study whether PTR can adapt behaviors seen in the pre-training data to new
domains. We study a door opening task, which requires significantly more complex
maneuvers and precise control compared to the pick-and-place tasks from above. The
doors in the pre-training data exhibit different sizes, shapes, handle types and visual
appearances, and the target door (shown in Figure 5(b)) we wish to open and the
corresponding toy kitchen domain are never seen previously in the pre-training data.
Concretely, for pre-training, we used a dataset of 800 door-opening demonstrations on 12
different doors in 4 different toy kitchen domains, and we utilize 15 demonstrations on a
held-out door for fine-tuning. Table 23 shows that PTR improves over both BC baselines
and joint training with CQL (or COG). Due to the limited target data and the associated
task complexity, in order to succeed, we must effectively leverage the pre-training data to
learn a general policy that attempts to solve the task, and then specialize it to the target
door.
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BC finetuning Joint training Target data only Meta-learning

Task PTR (Ours) BC (fine.) Autoreg. BC BeT COG BC CQL BC MACAW

Take croissant from metal bowl 7/10 3/10 5/10 1/10 4/10 4/10 0/10 1/10 0/10
Put sweet potato on plate 7/20 1/20 1/20 0/20 0/20 0/20 0/20 0/20 0/20

Place knife in pot 4/10 2/10 2/10 0/10 1/10 3/10 3/10 0/10 0/10
Put cucumber in pot 5/10 0/10 1/10 0/10 2/10 1/10 0/10 0/10 0/10

Table 24: Performance of PTR and other baseline methods for new tasks in Scenario 3. Note that
PTR outperforms all other baselines including BC (finetune), BC with more expressive policy classes
(BeT [291], Auto-regressive), offline RL with no pre-training (“Target data only”) and joint training [303, 70].
PTR also outperforms few-shot gradient-based meta learning methods such as MACAW [230], which fail
to attain non-zero performance.

Interestingly, Table 23 shows that while jointly training on the pre-training and fine-
tuning data (or COG [303]) by itself does not outperform BC (joint), the pre-training
and fine-tuning approach in PTR leads to significantly better performance, improving
over the best BC approach. Since CQL (joint) is equivalent to PTR , but with no Phase 1,
this large performance gap indicates the efficacy of offline RL methods trained on large
diverse datasets at providing good initializations for learning new downstream tasks. We
believe that this finding may be of independent interest to robotic offline RL practitioners:
when utilizing multi-task offline RL, it might be better first to run multi-task pre-training
followed by fine-tuning, as opposed to jointly training from scratch.

Scenario 3: Learning to solve new tasks in new domains
Finally, we evaluate the efficacy of PTR in learning to solve a new task in a new domain.
This scenario presents a generalization requirement that is significantly more challenging
than the previously studied scenarios, since both the task and the domain are never seen
before. This task is represented via a new task identifier, and pre-training receives no
data for this task identifier, or even any data from the kitchen where this task is situated.
We pre-train on all 80 pick-and-place style tasks from the bridge dataset, while holding
out any data from the new task kitchen, and then fine-tune on 10 demonstrations for 4
target tasks independently in this new kitchen, as shown in Table 24. Methods that utilize
more expressive policy architectures (an auto-regressive policy or behavior transformers
(BeT) [291]) do not lead to improved performance compared to the standard BC (finetune)
approach, and we find that PTR outperforms these approaches. Please find more details
on the implementation of auto-regressive BC and BeT in Section G.4.1. This might appear
surprising, and perhaps just a hyper-parameter tuning artifact at first, but we present
additional qualitative and quantitative analysis aiming at understanding the reasons
behind why our offline RL-based PTR approach works better in Section 9.4.4. We also
compare to MACAW [230], an offline meta-RL method that utilizes advantage-weighted
regression [259] for gradient-based few-shot adaptation, and find that this approach is
unable to learn policies that succeed. We discuss the hyperparameter configurations
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Pre-train. rep. + BC finetune

Task PTR (Ours) R3M MAE

Take croissant from bowl 7/10 1/10 3/10
Put sweet potato on plate 7/20 0/20 1/20

Place knife in pot 4/10 0/10 0/10
Put cucumber in pot 5/10 0/10 0/10

Table 25: Performance of PTR and other pre-training methods (R3M and MAE). While both R3M [243]
and MAE [346] improve performance over BC on the target data, PTR outperforms both.

that we tried for this approach in Appendix G.3.4. Finally, observe in Table 24 that joint
training with CQL or BC, or just using target data, without any pre-training for CQL or
BC, all perform significantly worse than PTR.

9.4.3 Comparison to non-RL Visual Pre-Training Methods

We also compare PTR to approaches that utilize the diverse bridge dataset or Internet-scale
data for task-agnostic visual representation learning, followed by down-stream behavioral
cloning only on the target fine-tuning task which utilizes the representation learned
during pre-training. In particular, we compare to two approaches: R3M [243], which
utilizes the Ego4D dataset of human videos to obtain a representation, and MVP [271, 346],
which trains a masked auto-encoder [130] on the Bridge Dataset and utilizes the learned
latent space as the representation of the new image. Observe in Table 25 that, while
utilizing R3M or MAE does improve over running BC on the target data alone (compare
R3M and MAE in Table 25 to BC on target data only in Table 24), the pre-training scheme
from PTR outperforms both of these prior pre-training approaches, indicating the efficacy
of offline RL pre-training on diverse robot data in recovering useful representations for
downstream policy learning.

9.4.4 Understanding the Benefits of PTR over BC

One natural question to ask given the results in this paper is: why does utilizing an offline
RL method for pre-training and fine-tuning as in PTR outperform BC-based methods even
though the dataset is quite “BC-friendly”, consisting of only demonstrations? The answer
to this question is not obvious, especially since joint training with BC still outperforms
jointly training with CQL on both pre-training and target demonstration data (COG) in
our results in Table 24.

To understand the reason behind improvements from RL, we perform a qualitative
evaluation of the policies learned by PTR and BC (finetune) on two tasks: take croissant
from metal bowl and put cucumber in bowl in Figure 6. We find that the failure mode
of BC policies can be primarily explained as a lack of precision in locating the object, or
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a prematurely-executed grasping action. This is especially prevalent in settings where
the object of interest is farther away from the robot gripper at the initial state, and hints
at the inability of BC to prioritize learning the critical decisions (e.g., precisely moving
over the object before the grasping action) over non-critical ones (e.g., the action to take
to reach nearby the object from farther away). On the other hand, RL can learn to make
such critical decisions correctly as shown in Figure 6. We present additional rollouts in
Appendix G.2.

Qualitative Comparison of BC (finetune) and PTR

BC (finetune) 
Failure: grasps bowl instead of croissant when 

crossiant is not underneath

PTR 
Success: grasps croissant and puts by sink

Task: Take Croissant from Metal Bowl

BC (finetune) 
Failure: executes an imprecise grasp, and fails to 

locate the pot accurately

PTR 
Success: Places Cucumber in Pot

Task: Put Cucumber in Bowl

Figure 6: Qualitative successes of PTR visualized alongside failures of BC (fine-tune). As an example,
observe that while PTR is accurately able to reach to the croissant and grasp it to solve the task, BC
(finetune) is imprecise and grasps the bowl instead of the croissant resulting in failure.

Task BC (finetune) PTR AW-BC (finetune)

Cucumber 0/10 5/10 5/10
Croissant 3/10 7/10 6/10

Table 26: Performance of advantage-weighted BC on tasks from Table 24. Observe that weighting BC
using advantage estimates from the Q-function learned by PTR leads to much better performance than
standard BC (finetune), almost recovering PTR performance. This test indicates that the Q-function in
PTR allows us to be accurate on the more critical decisions, thereby preventing the failures of BC.

Next, to verify if the performance benefits can be explained by the ability of Q-learning
to prioritize critical decisions, we run a form of weighted behavioral cloning, where the
weights wf(s, a) are derived from the advantage estimates computed using a frozen Q-function
learned by PTR after fine-tuning:

wf(s, a) µ exp(Qf(s, a)�max
a0

Qf(s, a0)).

Note that this is not the same as standard advantage-weighted regression [259], which
uses Monte-Carlo return estimates for computing advantage weights instead of using
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advantages computed under a Q-function trained via PTR or CQL. As shown in Table 26,
we find that this advantage-weighted BC (AW-BC) approach performs significantly better
than BC (finetune) method and comparably to PTR, for two tasks (croissant and cucumber
from Table 24). Since AW-BC is essentially the same as BC, just with a modified weight to
indicate the importance of any transition, this performance improvement clearly indicates
the benefits of learning value functions via PTR in a pre-training then fine-tuning setting,
even when we only have demonstration data. Note that since AW-BC uses the PTR-
derived weights after fine-tuning, it cannot serve as an independent method, but rather
amounts to another way to use the PTR value function.

9.4.5 Effective Use of High-Capacity Neural Networks

Figure 7: Scaling trends for PTR on the open door
task, and average over two pick & place tasks from
Scenario 3. Note that with our design decisions, PTR is
able to effectively benefit from high capacity networks.

To understand the importance of design-
ing techniques that enable us to use high-
capacity models for offline RL, we ex-
amine the efficacy of PTR with different
neural network architectures on the open
door task from Scenario 2, and the put
cucumber in pot and take croissant out
of metallic bowl tasks from Scenario 3.
We compare to standard three-layer con-
volutional network architectures used by
prior work for Deepmind control suite
tasks (see for example, Kostrikov et al.
[174]), an IMPALA [74] ResNet that con-
sists of 15 convolutional layers spread
across a stack of 3 residual blocks, and
the ResNet 18, 34, and 50 architectures
with our proposed design decisions. Ob-
serve in Figure 7 that the performance of
smaller networks (Small, IMPALA) is significantly worse than the ResNet in the door
opening task. For the pick-and-place tasks that contain a much larger dataset, IMPALA
and ResNet18 all perform much worse than ResNet 34 and 50.

9.4.6 Autonomous Online Fine-Tuning

So far, we’ve evaluated PTR with offline fine-tuning to new tasks. However, by pre-
training representations with offline RL, we can also enable autonomous improvement
through online RL fine-tuning. In this section, we will demonstrate this benefit by showing
that an offline initialization learned by PTR pre-training can be effectively fine-tuned
autonomously with online rollouts. This procedure provides a way forward to build
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SACfD PTR (offline! online)

All positions 0%! 0% 53%! 73%
Novel OOD positions 0%! 0% 13%! 60%

Table 27: Performance before and after online fine-tuning. The success rate of the PTR pre-trained policy
is improved significantly from online fine-tuning, especially on novel out-of-distribution (OOD) initial
positions that must be learned entirely from autonomous interaction in the real world. The results are
reported as the average of 3 trials from each initial position.

self-improving robotic RL systems that bring the best of diverse robotic datasets and
learning via online interaction.

Task. For this experiment, we consider the “open door” task from Scenario 2. Our goal
is to improve the success rate of the learned policy obtained after PTR pre-training and
offline fine-tuning using autonomous online rollouts from ten initial positions. These ten
initial positions consist of five positions obtained by randomly sampling from the target
demonstrations used for offline fine-tuning, and five more challenging out-of-distribution
initial positions, that were never seen before.

Figure 8: Online fine-tuning for PTR on the open
door task. PTR improves the success rate of the pre-
trained policy from 53% to 73% (from 13% to 60% for
the harder positions), while SACfD crashes due to un-
safe behavior during exploration. We ran PTR online
fine-tuning for 2 seeds in the real world.

Reward functions. To run RL, we need
a mechanism to annotate online rollouts
with rewards. Following prior works [301,
162], we trained a neural-network binary
classifier to detect a given visual observa-
tion as a success (+1 reward) or failure (0
reward) and use it to annotate rollouts ex-
ecuted during online interaction.

Reset policy. To run online fine-tuning
autonomously without any human inter-
vention in the real world, we also need a
“reset policy” that closes the door after a
successful online rollout. To this end, we
also pre-trained a close-door policy sepa-
rately, which is used only for resetting the
door. Note that online fine-tuning only
fine-tunes the open-door policy, while the reset policy is kept fixed throughout.

Online training setup. Equipped with the reset policy and the reward classifier, we are
able to run online fine-tuning in the real world. Starting from the pre-trained policy
obtained via PTR, our method alternates between collecting a new trajectory and taking
gradient steps. The update-to-data ratio [46] is set to 10, which means that we make 10
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Figure 9: Evolution of learned behaviors during autonomous online fine-tuning of PTR starting from
one of the hard initial positions. The blue box illustrates that the offline initialization fails to grasp the
handle. After 9K steps of online interaction, it successfully grasps the handle but fails to open the door.
After 20K steps, it learns to successfully open the door.

gradient updates for every environment step. More details about our implementation
and evaluations can be found in Appendix G.6.

Results. We compare our method with a prior method that trains SAC [126] from scratch
using both online data and offline demonstrations (denoted by “SACfD”). This approach
is an improved version of DDPGfD [331] which uses a stronger off-policy RL algorithm
(SAC). We present the learning curve during the online fine-tuning in Figure 8, and
the success rates before and after fine-tuning in Table 27. As shown in Figure 8, it was
difficult to run SACfD over a long time on the robot, as the system crashes due to unsafe
actions during exploration (pictures shown in Appendix G.6). In contrast, the pre-trained
PTR policy is able to perform online exploration in a stable manner, and improve the
success rate of the pre-trained policy within 20K steps of online interaction. Specifically,
this boost in performance stems from learning to solve the task from 3/5 of the more
challenging, out-of-distribution initial positions, that were never seen before in the prior
data, as shown in Figure 9.

9.5 related work

Going beyond methods that only perform fine-tuning from a learned initialization with
online interaction [241, 175, 200] as we studied in the previous section of this dissertation,
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we consider two independent fine-tuning settings in this chapter: (1) the setting where
we do not use any online interaction and fine-tune the pre-trained policy entirely offline,
(2) the setting where a limited amount of online interaction is allowed to autonomously
acquire the skills to solve the task from a challenging initial condition. This resembles the
problem setting considered by offline meta-RL methods [207, 63, 230, 266, 213]. However,
our approach is simpler as we fine-tune the very same offline RL algorithm that we use
for pre-training, without any distinct meta updates. In our experiments, we observe that
our method, PTR, outperforms the meta-RL method of Mitchell et al. [230].

Some other prior approaches that attempt to leverage large, diverse datasets via represen-
tation learning [226, 354, 355, 243, 130, 346, 222], as well as other methods for learning
from human demonstrations, such as behavioral cloning methods with expressive policy
architectures [291]. We compare to some of these methods [346, 243] in our experiments
and find that PTR outperforms these methods. We also perform an empirical study to
identify the design decisions behind the improved performance of RL-based PTR on
demonstration data compared to BC, and find that the gains largely come from the ability
of the value function in identifying the most “critical” decisions in a trajectory.

The most closely related to our approach are prior methods that run model-free offline
RL on diverse real-world data and then fine-tune on new tasks [303, 162, 154, 41, 197].
These prior methods typically only consider the setting of online fine-tuning, whereas in
our experiments, we demonstrate the efficacy of PTR for offline fine-tuning (where we
must acquire a good policy for the downstream task using 10-15 demonstrations) as well
as online fine-tuning considered in these prior works, where we must acquire a new task
entirely via autonomous interaction in the real world.

9.6 discussion and limitations

We presented a system that uses diverse prior data for general-purpose offline RL pre-
training, followed by fine-tuning to downstream tasks. The prior data, sourced from a
publicly available dataset, consists of over a hundred tasks across ten scenes and our
policies can be fine-tuned with as few as 10 demonstrations. We show that this approach
outperforms prior pre-training and fine-tuning methods based on imitation learning. One
of the most exciting directions for future work is to further scale up this pre-training
to provide a single policy initialization, that can be utilized as a starting point, similar
to GPT3 [34]. An exciting future direction is to scale PTR up to more complex settings,
including to novel robots and incorporate training from diverse sources of robot video
data. Since joint training with offline RL was worse than pre-training and then fine-tuning
with PTR, another exciting direction for future work is to understand the pros and cons
of joint training and fine-tuning in the context of robot learning.
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10
H A R D WA R E A C C E L E R AT O R D E S I G N

Abstract
In this chapter, we utilize offline RL to the problem of designing hardware accelerators,
i.e., chips that are tailored towards improving the efficiency of running certain software
applications. For instance, TPU accelerators aim to optimize the performance of
machine learning models. While a paradigm shift towards specializing hardware is
already starting to show promising results, designers still need to spend considerable
manual effort and perform large number of time-consuming simulations to find
accelerators that can accelerate multiple target applications while obeying design
constraints. Moreover, a designer would need to typically start from scratch every
time the set of target applications or design constraints change in such a “simulation-
driven” workflow. An alternative paradigm is to use an offline approach that utilizes
logged simulation data, to architect hardware accelerators, without needing active
simulations. This is different from supervised learning: instead of predicting a
performance metric associated with an accelerator, we wish to find a new accelerator
that attains near-optimal metrics, much in the same way where we wish to find a
near-optimal policy in offline RL. In this problem, our offline RL based approach,
dubbed PRIME , not only alleviates the need to run time-consuming simulation, but
also enables data reuse and applies even when set of target applications changes.
PRIME architects accelerators for both single and multiple applications, improving
performance upon state-of-the-art simulation-driven methods by about 1.54⇥ and
1.20⇥, while reducing the total simulation time by 93% and 99%, respectively.

10.1 introduction

The death of Moore’s Law [73] has driven the growth of specialized hardware accelerators.
These specialized accelerators are tailored to specific applications [360, 275, 246, 295].
To design specialized accelerators, akin to standard online RL, designers first spend
considerable amounts of time developing simulators that closely model the real accelerator
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performance, and then optimize the accelerator using the simulator. While such simulators
can automate accelerator design, this requires a large number of simulator queries for
each new design, both in terms of simulation time and compute requirements, and this
cost increases with the size of the design space [361, 295, 135]. Moreover, most of the
accelerators in the design space are typically infeasible [135, 360] because of build errors
in silicon or compilation/mapping failures. When the target applications change or a new
application is added, the complete simulation-driven procedure is generally repeated.
To make such approaches efficient and practically viable, designers typically “bake-in”
constraints or otherwise narrow the search space, but such constraints can leave out
high-performing solutions [54, 255, 39].

An alternate approach, proposed in this chapter, is to devise an offline optimization
method, based on offline RL techniques, that only utilizes a database of previously
tested accelerator designs, annotated with measured performance metrics, to produce
new optimized designs without additional active queries to an explicit silicon or a cycle-
accurate simulator. In the context of hardware accelerator design, such an offline approach
provides three key benefits: (1) it significantly shortens the recurring cost of running large-
scale simulation sweeps, (2) it alleviates the need to explicitly bake in domain knowledge
or search space pruning, and (3) it enables data re-use by empowering the designer to
optimize accelerators for new unseen applications, by the virtue of effective generalization.
While data-driven approaches have shown promising results in biology [87, 33, 326], using
offline optimization methods to design accelerators has been challenging primarily due
to the abundance of infeasible design points [360, 135].

The key contribution of this chapter is PRIME , a conservative value-based approach to
automatically architect high-performing application-specific accelerators by using only
previously collected static data. Since the problem of accelerator design requires us to only
select one action, and not a sequence of actions, we do not need to learn a complete value
function. Instead, it suffices for PRIME to learn a conservative model of the one-step
reward or objective function from the offline dataset (e.g., latency or power consumption
of an accelerator). Then, PRIME finds high-performing application-specific accelerators
by optimizing the architectural parameters against this learned conservative model, as
shown in Figure 10. Akin to the full sequential setting, while optimizing naı̈vely trained
models of the objective function usually produces poor-performing, out-of-distribution
designs that erroneously appear optimistic [178, 33, 326], the conservative model in
PRIME gives rise to good designs. Furthermore, in contrast to prior works that discard
infeasible points [135, 326], our proposed method instead incorporates infeasible points
when learning the conservative surrogate model by treating them as additional negative
samples. During evaluation, PRIME optimizes the learned conservative model.
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Figure 10: Overview of PRIME . We use a one-time collected dataset of prior accelerator designs, including
TPU-style [361], NVDLA-style [249], and ShiDianNao-style [67] accelerators to train a conservative surrogate
model, which is used to design accelerators to meet desired goals and constraints.

Our results show that PRIME architects hardware accelerators that improve over the best
design in the training dataset, on average, by 2.46⇥ (up to 6.7⇥) when specializing for a
single application. In this case, PRIME also improves over the best conventional simulator-
driven optimization methods by 1.54⇥ (up to 6.6⇥). These performance improvements
are obtained while reducing the total simulation time to merely 7% and 1% of that of the
simulator-driven methods for single-task and multi-task optimization, respectively. More
importantly, a contextual version of PRIME can design accelerators that are jointly optimal
for a set of nine applications without requiring any additional domain information. In
this challenging setting, PRIME improves over simulator-driven methods, which tend
to scale poorly as more applications are added, by 1.38⇥. Finally, we show that the
models trained with PRIME on a set of training applications can be readily used to
obtain accelerators for unseen target applications, without any retraining on the new
application. Even in this zero-shot optimization scenario, PRIME outperforms simulator-
based methods that require re-training and active simulation queries by up to 1.67⇥. In
summary, PRIME allows us to effectively address the shortcomings of simulation-driven
approaches, it: (1) significantly reduces the simulation time, (2) enables data reuse and
enjoys generalization properties, and (3) does not require domain-specific engineering or
search space pruning.

10.2 background on hardware accelerators

The goal of specialized hardware accelerators—Google TPUs [153, 121], Nvidia GPUs [250],
GraphCore [111]—is to improve the performance of specific applications, such as machine
learning models. To design such accelerators, architects typically create a parameterized
design and sweep over parameters using simulation.

Target hardware accelerators. Our primary evaluation uses an industry-grade and highly
parameterized template-based accelerator following prior work [361]. This template
enables architects to determine the organization of various components, such as compute
units, memory cells, memory, etc., by searching for these configurations in a discrete
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design space. Some ML applications may have large memory requirements (e.g., large
language models [34]) demanding sufficient on-chip memory resources, while others
may benefit from more compute blocks. The hardware design workflow directly selects
the values of these parameters. In addition to this accelerator and to further show
the generality of our method to other accelerator design problems, we evaluate two
distinct dataflow accelerators with different search spaces, namely NVDLA-style [249]
and ShiDianNao-style [67] from Kao et al. [164] (See Section 10.6 and Appendix H.3 for a
detailed discussion; See Table 33 for results).

Figure 11: An industry-level machine learning
accelerator [361].

How does an accelerator work? We briefly ex-
plain the computation flow on our template-
based accelerators (Figure 11) and refer the
readers to Appendix H.3 for details on other
accelerators. This template-based accelerator
is a 2D array of processing elements (PEs).
Each PE is capable of performing matrix mul-
tiplications in a single instruction multiple
data (SIMD) paradigm [110]. A controller orchestrates the data transfer (both activations
and model parameters) between off-chip DRAM memory and the on-chip buffers and
also reads in and manages the instructions (e.g. convolution, pooling, etc.) for execu-
tion. The computation stages on such accelerators start by sending a set of activations
to the compute lanes, executing them in SIMD manner, and either storing the partial
computation results or offloading them back into off-chip memory. Compared to prior
works [135, 67, 164], this parameterization is unique—it includes multiple compute lanes
per each PE and enables SIMD execution model within each compute lane—and yields a
distinct accelerator search space accompanied by an end-to-end simulation framework.

10.3 problem statement, training data and evaluation protocol

Our template-based parameterization maps the accelerator, denoted as x, to a discrete de-
sign space, x = [x1, x2, · · · , xK], and each xi is a discrete-valued variable representing one
component of the microarchitectural template, as shown in Table 28 (See Appendix H.3
for the description of other accelerator search spaces studied in our work). In our context,
the accelerator x plays the same role as an action a.

An accelerator design maybe be infeasible due to various reasons, such as a compilation
failure or the limitations of physical implementation, and we denote the set of all such
feasibility criterion as Feasible(x). The feasibility criterion depends on both the target
software and the underlying hardware, and it is not easy to identify if a given x is
infeasible without running explicit simulation. We will require our design procedure to
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Table 28: The accelerator design space parameters for the primary accelerator search space targeted in this
work. The maximum possible number of accelerator designs (including feasible and infeasible designs) is
452,760,000. Cal-QL only uses a small randomly sampled subset of the search space.

Accelerator Parameter # Discrete Values Accelerator Parameter # Discrete Values

# of PEs-X 10 # of PEs-Y 10
PE Memory 7 # of Cores 7
Core Memory 11 # of Compute Lanes 10
Instruction Memory 4 Parameter Memory 5
Activation Memory 7 DRAM Bandwidth 6

not only learn the value of the objective function but also to learn to navigate through
infeasible solutions to performant feasible solutions x⇤ satisfying Feasible(x⇤) = 1.

Our training dataset D consists of a modest set of accelerators xi that are randomly
sampled from the design space and evaluated by the hardware simulator. We partition the
dataset D into two subsets, Dfeasible and Dinfeasible. Let f (x) denote the desired objective
(e.g., latency, power, etc.) we intend to optimize over the space of accelerators x. We do
not possess functional access to f (x), and the optimizer can only access f (x) values for
accelerators x in the feasible partition of the data, Dfeasible. For all infeasible accelerators,
the simulator does not provide any value of f (x). In addition to satisfying feasibility, the
optimizer must handle explicit constraints on parameters such as area and power [85]. In
our applications, we impose an explicit area constraint, Area(x)  a0, though additional
explicit constraints are also possible. To account for different constraints, we formulate
this task as a constrained optimization problem. Formally:

min
x

f (x) s.t. Area(x)  a0, Feasible(x) = 1

on D = Dfeasible [Dinfeasible = {(x1, y1), · · · , (xN, yN)} [ {x01, · · · , x0N0}
(10.3.1)

While Equation 10.3.1 may appear similar to a typical black-box optimization problem,
solving it over the space of accelerator designs is challenging due to the large number
of infeasible points, the need to handle explicit design constraints, and the difficulty in
navigating the non-smooth landscape (See Figure 12 and Figure 56 in the Appendix) of
the objective function.

What makes optimization over accelerators challenging? Compared to other domains
where model-based optimization methods have been applied [33, 326], optimizing ac-
celerators introduces a number of practical challenges. First, accelerator design spaces
typically feature a narrow manifold of feasible accelerators within a sea of infeasible
points [246, 295, 103], as visualized in Figure 12 and Appendix (Figure 57). While some
of these infeasible points can be identified via simple rules (e.g. estimating chip area
usage), most infeasible points correspond to failures during compilation or hardware
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Figure 12: Left: histogram of infeasible (right orange bar with large score values) and feasible (left cluster of
bars) data points for MobileNetEdgeTPU; Right: zoomed-in histogram (different number of bins) focused
on feasible points highlighting the variable latencies.

simulation. These infeasible points are generally not straightforward to formulate into
the optimization problem and requires simulation [295, 255, 360].

Second, the optimization objective can exhibit high sensitivity to small variations in some
architecture parameters (Figure 56b) in some regions of the design space, but remain
relatively insensitive in other parts, resulting in a complex optimization landscape. This
suggests that optimization algorithms based on local parameter updates (e.g., gradient
ascent, evolutionary schemes, etc.) may have a challenging task traversing the nearly flat
landscape of the objective, which can lead to poor performance.

Training dataset. We used an offline dataset D of (accelerator parameters, latency)
via random sampling from the space of 452M possible accelerator configurations. Our
method is only provided with a relatively modest set of feasible points ( 8000 points)
for training, and these points are the worst-performing feasible points across the pool of
randomly sampled data. This dataset is meant to reflect an easily obtainable and an
application-agnostic dataset of accelerators that could have been generated once and
stored to disk, or might come from real physical experiments. We emphasize that no
assumptions or domain knowledge about the application use case was made during
dataset collection. Table 29 depicts the list of target applications, evaluated in this work,
includes three variations of MobileNet [121, 282, 141], three in-house industry-level
models for object detection (M4, M5, M6; names redacted to prevent anonymity violation),
a U-net model [278], and two RNN-based encoder-decoder language models [113, 133,
281, 206]. These applications span the gamut from small models, such as M6, with
only 0.4 MB model parameters that demands less on-chip memory, to the medium-sized
models (� 5 MB), such as MobileNetV3 and M4 models, and large models (� 19 MB),
such as t-RNNs, hence requiring larger on-chip memory.

Evaluation protocol. To compare simulator-driven methods and our data-driven method,
we limit the number of feasible points (costly to evaluate) that can be used by any
algorithm to equal amounts. We still provide infeasible points to any method and leave it

148



Table 29: Description of applications, their domains, number of (convolutions, depth-wise convolutions,
feed-forward) XLA ops, model parameter size, instruction sizes in bytes, number of compute operations.

Name Domain # of XLA Ops (Conv, D/W, FF) Model Param Instr. Size # of Compute Ops.

MobileNetEdgeTPU Image Class. (45, 13, 1) 3.87 MB 476,736 1,989,811,168
MobileNetV2 Image Class. (35, 17, 1) 3.31 MB 416,032 609,353,376
MobileNetV3 Image Class. (32, 15, 17) 5.20 MB 1,331,360 449,219,600
M4 Object Det. (32, 13, 2) 6.23 MB 317,600 3,471,920,128
M5 Object Det. (47, 27, 0) 2.16 MB 328,672 939,752,960
M6 Object Det. (53, 33, 2) 0.41 MB 369,952 228,146,848
U-Net Image Seg. (35, 0, 0) 3.69 MB 224,992 13,707,214,848
t-RNN Dec Speech Rec. (0, 0, 19) 19 MB 915,008 40,116,224
t-RNN Enc Speech Rec. (0, 0, 18) 21.62 MB 909,696 45,621,248

up to the optimization method to use it or not. This ensures our comparisons are fair
in terms of the amount of data available to each method. However, it is worthwhile to
note that in contrast to our method where worse-quality data points from small offline
dataset are used, the simulator-driven methods have an inherent advantage because
they can steer the query process towards the points that are more likely to be better in
terms of performance. Following prior work in data-driven design [33], we evaluate each
run of a method by first sampling the top n = 256 design candidates according to the
algorithm’s predictions, evaluating all of these under the ground truth objective function
and recording the performance of the best accelerator design. The final reported results
is the median of ground truth objective values across five independent runs.

10.4 prime : architecting accelerators via conservative models

As shown in Figure 13, our method first learns a conservative surrogate model of the
optimization objective using the offline dataset. Then, it optimizes this learned model
using a discrete optimizer. The optimization process does not require access to a simulator,
nor to real-world experiments beyond the initial dataset, except when evaluating the
final top-performing n = 256 designs (Section 10.3). This is built on the principle of
conservative value estimation for offline RL from Chapter 5: while conservative value
estimation methods that we have discussed so far in this dissertation attempt to estimate
a pessimistic value-function, our approach PRIME is a special sub-case that involves a
single decision-making step (as opposed to making a sequence of decisions).

10.4.1 Learning Conservative Models Using Logged Offline Data

Our goal is to utilize a logged dataset of feasible accelerator designs labeled with the
desired performance metric (e.g., latency), Dfeasible, and additional infeasible designs,
Dinfeasible to learn a mapping fq : X ! R, that maps the accelerator configuration x to
its corresponding metric y. This learned surrogate model can then be optimized by the
optimizer. While a straightforward approach for learning such a mapping is to train it
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Figure 13: Overview of PRIME which trains a conservative model fq(xi) using Equation 10.4.2. Our
neural net model for fq(x) utilizes two transformer layers [330], and a multi-headed architecture
which is pooled via a soft-attention layer.

via supervised regression (which is equivalent to standard temporal-difference learning
for value estimation in one-step decision-making problems, where an episode terminates
as soon as one action is performed and a terminal reward is collected), by minimizing
the mean-squared error Exi,yi⇠D[( fq(xi)� yi)

2], as we have seen in this dissertation and
in other prior works [178], such predictive models can arbitrarily overestimate the value
of an unseen input xi. This can cause the optimizer to find a solution x⇤ that performs
poorly in the simulator but looks promising under the learned model. We empirically
validate this overestimation hypothesis and find it to confound the optimizer in on our
problem domain as well (See Figure 58 in Appendix).

To prevent overestimated values at unseen inputs from confounding the optimizer, we
follow the conservative value estimation recipe from Chapter 5 (specifically, Equation 5.1.2)
and train fq(x) with an additional term that explicitly maximizes the function value fq(x)

at out-of-distribution x values. Note that instead of minimizing the value fq(x) on unseen
x, we maximize this value because the problem in Equation 10.3.1 requires us to find the
minimum of the ground-truth function. Such unseen designs x are “negative mined” by
running a few iterations of a stochastic optimization procedure that aims to maximize
fq in the inner loop. In the context of this single-step decision-making problem, this
procedure is analogous to adversarial training [109]. Equation 10.4.1 formalizes this
objective:

q⇤ := arg min
q

L(q) := Exi,yi⇠Dfeasible

h
( fq(xi)� yi)

2
i
� aEx�i ⇠Opt( fq)

⇥
fq(x�i )

⇤
. (10.4.1)

x�i denotes the negative samples produced from an optimizer Opt(·) that attempts to
maximize the current learned objective model, fq. We will discuss our choice of Opt in
the Appendix H.2.

10.4.2 Incorporating Design Constraints by Training on Infeasible Points

While conservative value estimation methods provide us with a recipe for optimizing
Equation 10.4.1 via a conservative surrogate model, this is not enough when optimizing
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over accelerators, as we will also show empirically (Appendix H.1.1). This is because while
explicitly minimizing for out-of-distribution designs constrains the design procedure
to the data, it does not provide any information about accelerator design constraints.
Fortunately, this information can be provided by infeasible points, Dinfeasible. The training
procedure in Equation 10.4.1 provides a simple way to do incorporate such infeasible
points: we simply incorporate x0i ⇠ Dinfeasible as additional out-of-distribution samples
and maximize the prediction at these points. This gives rise to our final objective:

min
q

Linf
(q) := L(q)� bEx0i⇠Dinfeasible

⇥
fq(x0i)

⇤
(10.4.2)

10.4.3 Optimizing Multiple Applications and Zero-Shot Design

One of the central benefits of an offline learning approach is that it enables learning
powerful models that generalize over the space of applications, potentially being effective
for new unseen application domains. In our experiments, we evaluate PRIME on
designing accelerators for multiple applications denoted as k = 1, · · · , K, jointly or for a
novel unseen application. In this case, we utilized a dataset D = {D1, · · · , DK}, where
each Dk consists of a set of accelerator designs, annotated with the latency value and the
feasibility criterion for a given application k. While there are a few overlapping designs in
different parts of the dataset annotated for different applications, most of the designs only
appear in one part. To train a single conservative model fq(·) for multiple applications,
we extend the training procedure in Equation 10.4.2 to incorporate context vectors ck 2 Rd

for various applications driven by a list of application properties in Table 29. A context
vector is akin to a state in the context of full sequential reinforcement learning.

The learned function in this setting is now conditioned on the context fq(x, ck). We
train fq via the objective in Equation 10.4.2, but in expectation over all the contexts and
their corresponding datasets: minq Ek⇠[K]

⇥
Linf

k (q)
⇤
. Once such a contextual model is

learned, we can either optimize the average models across a set of contexts {ci, c2, · · · , cn}
to obtain an accelerator that is optimal for multiple applications simultaneously on an
average (“multi-model” optimization), or optimize this contextual model for a novel
context vector, corresponding to an unseen application (“zero-shot” generalization). In
this case, PRIME is not allowed to train on any data corresponding to this new unseen
application. While such zero-shot generalization might appear surprising at first, note
that the context vectors are not simply one-hot vectors, but consist of parameters with
semantic information, which the conservative model can generalize over.

Learned conservative model optimization. Prior work [360] has shown that the most
effective optimizers for accelerator design are meta-heuristic/evolutionary optimizers. We
therefore choose to utilize, firefly [358, 359, 215] to optimize our conservative model. This
algorithm maintains a set of optimization candidates (a.k.a. “fireflies”) and jointly update
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them towards regions of low objective value, while adjusting their relative distances
appropriately to ensure multiple high-performing, but diverse solutions. We discuss
additional details in Appendix H.2.1.

Cross validation: which model and checkpoint should we evaluate? Similarly to
supervised learning, models trained via Equation 10.4.2 can overfit, leading to poor
solutions. Thus, we require a procedure to select which hyperparameters and checkpoints
should actually be used for the design. This is crucial, because we cannot arbitrarily
evaluate as many models as we want against the simulator. While effective methods for
model selection have been hard to develop in offline reinforcement learning [326, 327],
we devised a simple scheme using a validation set for choosing the values of a and
b (Equation 10.4.2), as well as which checkpoint to utilize for generating the design.
For each training run, we hold out the best 20% of the points out of the training set
and use them only for cross-validation as follows. Typical cross-validation strategies in
supervised learning involve tracking validation error (or risk), but since our model is
trained conservatively, its predictions may not match the ground truth, making such
validation risk values unsuitable for our use case. Instead, we track Kendall’s ranking
correlation between the predictions of the learned model fq(xi) and the ground truth
values yi (Appendix H.2) for the held-out points for each run and then pick values of a, b
and the checkpoint that attain the highest validation ranking correlation. We present the
pseudo-code for PRIME (Algorithm 9) and implementation details in Appendix H.2.1.

10.5 related work

Optimizing hardware accelerators has become more important recently. Prior works [258,
143, 311, 246, 50, 170, 19, 13, 135, 332, 352] mainly rely on expensive-to-query hardware
simulators to navigate the search space and/or target single-application accelerators. For
example, HyperMapper [246] targets compiler optimization for FPGAs by continuously
interacting with the simulator in a design space with relatively few infeasible points.
Mind Mappings [135], optimizes software mappings to a fixed hardware provided access
to millions of feasible points and throws away infeasible points during learning. MAG-
Net [332] uses a combination of pruning heuristics and online Bayesian optimization to
generate accelerators for image classification models in a single-application setting. Au-
toDNNChip [352] uses two-level online optimization to generate customized accelerators
for ASIC and FPAG platforms. In contrast, PRIME , does not only learn a conservative
model of the objective function from offline data but can also leverage information from
infeasible points and can work with just a few thousand feasible points. In addition, we
devise a contextual version of PRIME that is effective in designing accelerators that are
jointly optimized for multiple applications, different from prior work. Finally, to our
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knowledge, our work, is the first to demonstrate generalization to unseen applications for
accelerator design, outperforming state-of-the-art online methods.

A popular approach for solving black-box optimization problems is model-based op-
timization (MBO) [305, 292, 304]. Most of the classical MBO methods fail to scale to
high-dimensions, and have been extended with neural networks [305, 304, 168, 101, 100,
12, 11, 229]. While these methods work well in the active setting, they are susceptible to
out-of-distribution inputs [327] in the offline, data-driven setting. To prevent this, many
methods for offline model-based optimization constrain the optimizer to the manifold
of valid, in-distribution inputs [33, 78, 178]. However, modeling the manifold of valid
inputs can be challenging for accelerators. PRIME dispenses with the need for generative
modeling, while still avoiding out-of-distribution inputs. PRIME takes a conservative
value estimation approach. However, unlike these approaches, PRIME can handle con-
straints by learning from infeasible data. In addition, while prior works in this area
mostly restricted their design problem to a single application, we show that PRIME is
effective for multi-application optimization and zero-shot generalization.

10.6 experimental evaluation

Figure 14: Comparing the total simu-
lation time of PRIME (for PRIME this
is the total time for a forward-pass
through the trained model on a CPU)
and evolutionary method on Mo-
bileNetEdgeTPU. PRIME only re-
quires about 7% of the total simula-
tion time of the online method.

Our evaluations aim to answer the following questions:
Q(1) Can PRIME design accelerators tailored for a given
application that are better than the best observed con-
figuration in the training dataset, and comparable to
or better than state-of-the-art simulation-driven meth-
ods under a given simulator-query budget? Q(2) Does
PRIME reduce the total simulation time compared to
other methods? Q(3) Can PRIME produce hardware
accelerators for a family of different applications? Q(4)
Can PRIME trained for a family of applications extrapo-
late to designing a high-performing accelerator for a new,
unseen application, thereby enabling data reuse? Ad-
ditionally, we ablate various properties of PRIME (Ap-
pendix H.1.6) and evaluate its efficacy in designing accel-
erators with distinct dataflow architectures and a larger
search space (up to 2.5⇥10114 candidates).

Baselines and comparisons. We compare PRIME against three online optimization
methods that actively query the simulator: (1) evolutionary search with the firefly
optimizer [360] (“Evolutionary”), which is the shown to outperform other online methods
for accelerator design; (2) Bayesian Optimization (“Bayes Opt”) [108], (3) MBO [11]. In
all the experiments, we grant all the methods the same number of feasible points. Note
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Table 30: Optimized objective values (i.e., latency in milliseconds) obtained by various methods for the task
of learning accelerators specialized to a given application. Lower latency is better. From left to right: our
method, online Bayesian optimization (“Bayes Opt”), online evolutionary algorithm (“Evolutionary”), and
the best design in the training dataset. On average (last row), Cal-QL improves over the best in the dataset
by 2.46⇥ (up to 6.69⇥ in t-RNN Dec) and outperforms best online optimization methods by 1.54⇥ (up to
6.62⇥ in t-RNN Enc). The best accelerator configurations identified is highlighted in bold.

Online Optimization
Application PRIME Bayes Opt Evolutionary MBO D (Best in Training)

MobileNetEdgeTPU 298.50 319.00 320.28 332.97 354.13
MobileNetV2 207.43 240.56 238.58 244.98 410.83
MobileNetV3 454.30 534.15 501.27 535.34 938.41
M4 370.45 396.36 383.58 405.60 779.98
M5 208.21 201.59 198.86 219.53 449.38
M6 131.46 121.83 120.49 119.56 369.85
U-Net 740.27 872.23 791.64 888.16 1333.18
t-RNN Dec 132.88 771.11 770.93 771.70 890.22
t-RNN Enc 130.67 865.07 865.07 866.28 584.70
Geomean of PRIME ’s Improvement 1.0⇥ 1.58⇥ 1.54⇥ 1.61⇥ 2.46⇥

that our method do not get to select these points, and use the same exact offline points
across all the runs, while the online methods can actively select which points to query,
and therefore require new queries for every run. “D(Best in Training)” denotes the best
latency value in the training dataset used in PRIME . We also present ablation results
with different components of our method removed in Appendix H.1.6, where we observe
that utilizing both infeasible points and negative sampling are generally important for
attaining good results. Appendix H.1.1 presents additional comparisons P3BO [12], a
state-of-the-art method studied in the context of biological sequence design.

Architecting application-specific accelerators. We first evaluate PRIME in designing
specialized accelerators for each of the applications in Table 29. We train a conservative
model using the method in Section 10.4 on the logged dataset for each application
separately. The area constraint a (Equation 10.3.1) is set to a = 29 mm2, a realistic
budget for accelerators [360]. Table 30 summarizes the results. On average, the best
accelerators designed by PRIME outperforms the best accelerator configuration in the
training dataset (last row Table 30), by 2.46⇥. PRIME also outperforms the accelerators
in the best online method by 1.54⇥ (up to 5.80⇥ and 6.62⇥ in t-RNN Dec and t-RNN
Enc, respectively). Moreover, perhaps surprisingly, PRIME generates accelerators that are
better than all the online optimization methods in 7/9 domains, and performs on par in
several other scenarios (on average only 6.8% slowdown compared to the best accelerator
with online methods in M5 and M6). These results indicates that offline optimization
of accelerators using PRIME can be more data-efficient compared to online methods
with active simulation queries. To answer Q(2), we compare the total simulation time of
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Table 31: Optimized average latency (the lower, the better) across multiple applications (up to ten
applications) for PRIME and best online algorithms (Evolutionary, MBO). Each row show the (Best,
Median) of average latency across five runs. The geometric mean of PRIME ’s improvement over other
methods (last row) indicates that PRIME is at least 21% better.

Applications Area PRIME (Ours) Evolutionary (Online) MBO (Online)

MobileNet (EdgeTPU, V2, V3) 29 mm2 (310.21, 334.70) (315.72, 325.69) (342.02, 351.92)
MobileNet (V2, V3), M5, M6 29 mm2 (268.47, 271.25) (288.67, 288.68) (295.21, 307.09)
MobileNet (EdgeTPU, V2, V3), M4, M5, M6 29 mm2 (311.39, 313.76) (314.31, 316.65) (321.48, 339.27)
MobileNet (EdgeTPU, V2, V3), M4, M5, M6, U-Net, t-RNN-Enc 29 mm2 (305.47, 310.09) (404.06, 404.59) (404.06, 412.90)
MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN-Enc 100 mm2 (286.45, 287.98) (404.25, 404.59) (404.06, 404.94)
MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN (Dec, Enc) 29 mm2 (426.65, 426.65) (586.55, 586.55) (626.62, 692.61)
MobileNet (EdgeTPU, V2, V3), M4, M5, M6, U-Net, t-RNN (Dec, Enc) 100 mm2 (383.57, 385.56) (518.58, 519.37) (526.37, 530.99)
Geomean of PRIME ’s Improvement — (1.0⇥, 1.0⇥) (1.21⇥, 1.20⇥) (1.24⇥, 1.27⇥)

PRIME and the best evolutionary approach from Table 30 on the MobileNetEdgeTPU
domain. On average, not only that PRIME outperforms the best online method that we
evaluate, but also considerably reduces the total simulation time by 93%, as shown in
Figure 14. Even the total simulation time to the first occurrence of the final design that is
eventually returned by the online methods is about 11⇥ what PRIME requires to fine a
better design. This indicates that data-driven PRIME is much more preferred in terms of
the performance-time trade-off. The fact that our offline approach PRIME outperforms
the online evolutionary method (and also other state-of-the-art online MBO methods; see
Table 70) is surprising, and we suspect this is because online methods get stuck early-on
during optimization, while utilizing offline data allows us PRIME to find better solutions
via generalization (see Appendix H.2.1.1).

Figure 15: Comparing the total simu-
lation time needed by PRIME and on-
line methods on seven models (Area
 100mm2) . PRIME only requires
about 1%, 6%, and 0.9% of the to-
tal simulation time of Evolutionary,
MBO, and Bayes Opt, respectively, al-
though PRIME outperforms the best
online method by 41%.

Architecting accelerators for multiple applications. To
answer Q(3), we evaluate the efficacy of the contextual
version of PRIME in designing an accelerator that attains
the lowest latency averaged over a set of application do-
mains. As discussed previously, the training data used
does not label a given accelerator with latency values cor-
responding to each application, and thus, PRIME must
extrapolate accurately to estimate the latency of an accel-
erator for a context it is not paired with in the training
dataset. This also means that PRIME cannot simply
return the accelerator with the best average latency and
must run non-trivial optimization. We evaluate our
method in seven different scenarios (Table 31), compris-
ing various combinations of models from Table 29 and
under different area constraints, where the smallest set
consists of the three MobileNet variants and the largest
set consists of nine models from image classification, object detection, image segmentation,
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and speech recognition. This scenario is also especially challenging for online methods
since the number of jointly feasible designs is expected to drop significantly as more
applications are added. For instance, for the case of the MobileNet variants, the training
dataset only consists of a few (20-30) accelerator configurations that are jointly feasible
and high-performing (Appendix H.2.2—Figure 54).

Table 31 shows that, on average, PRIME finds accelerators that outperform the best
online method by 1.2⇥ (up to 41%). While PRIME performs similar to online methods
in the smallest three-model scenario (first row), it outperforms online methods as the
number of applications increases and the set of applications become more diverse. In
addition, comparing with the best jointly feasible design point across the target appli-
cations, PRIME finds significantly better accelerators (3.95⇥). Finally, as the number
of model increases the total simulation time difference between online methods and
PRIME further widens (Figure 15). These results indicate that PRIME is effective in
designing accelerators jointly optimized across multiple applications while reusing the
same dataset as for the single-task, and scales more favorably than its simulation-driven
counterparts. Appendix H.1.4 expounds the details of the designed accelerators for nine
applications, comparing our method and the best online method.

Accelerating previously unseen applications (“zero-shot” optimization). Finally, we
answer Q(4) by demonstrating that our data-driven offline method, PRIME enables
effective data reuse by using logged accelerator data from a set of applications to design
an accelerator for an unseen new application, without requiring any training on data
from the new unseen application(s). We train a contextual version of PRIME using a set
of “training applications” and then optimize an accelerator using the learned model with
different contexts corresponding to “test applications,” without any additional query to
the test application dataset. Table 32 shows, on average, PRIME outperforms the best
online method by 1.26⇥ (up to 66%) and only 2% slowdown in 1/4 cases. Note that
the difference in performance increases as the number of training applications increases.
These results show the effectiveness of PRIME in the zero-shot setting (more results in
Appendix H.1.5).

Applying PRIME on other accelerator architectures and dataflows. Finally, to assess
the the generalizability of PRIME to other accelerator architectures [164], we evaluate
PRIME to optimize latency of two style of dataflow accelerators—NVDLA-style and
ShiDianNao-style—across three applications (Appendix H.3 details the methodology).
As shown in Table 33, PRIME outperforms the online evolutionary method by 6% and
improves over the best point in the training dataset by 3.75⇥. This demonstrates the
efficacy of PRIME with different dataflows and large design spaces.
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Table 32: Optimized objective values (i.e., latency in milliseconds) under zero-shot setting. Lower latency
is better. From left to right: the applications used to train the surrogate model in Cal-QL the target
applications for which the accelerator is optimized for, the area constraint of the accelerator, Cal-QL’s (best,
median) latency, and best online method’s (best, median) latency. Cal-QL does not use any additional
data from the target applications. On average (last row), Cal-QL yields optimized accelerator for target
applications (with zero query to the target applications’ dataset) with 1.26⇥ (up to 1.66⇥) lower latency
over the best online method. The best accelerator configurations identified is highlighted in bold.

Train Applications Test Applications Area PRIME (Ours) Evolutionary (Online)

MobileNet (EdgeTPU, V3) MobileNetV2 29 mm2 (311.39, 313.76) (314.31, 316.65)
MobileNet (V2, V3), M5, M6 MobileNetEdge, M4 29 mm2 (357.05, 364.92) (354.59, 357.29)
MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN Enc U-Net, t-RNN Dec 29 mm2 (745.87, 745.91) (1075.91, 1127.64)
MobileNet (EdgeTPU, V2, V3),M4, M5, M6, t-RNN Enc U-Net, t-RNN Dec 100 mm2 (517.76, 517.89) (859.76, 861.69)
Geomean of PRIME ’s Improvement — — (1.0⇥, 1.0⇥) (1.24⇥, 1.26⇥)

Table 33: Optimized objective values (i.e. total number of cycles) for two different dataflow architectures,
NVDLA-style [249] and ShiDianNao-style [67], across three classes of applications. The maximum search
space for the studied accelerators are ⇡ 2.5⇥10114. PRIME generalizes to other classes of accelerators with
larger search space and outperforms the best online method by 1.06⇥ and the best data seen in training by
3.75⇥ (last column). The best accelerator configurations is highlighted in bold.

Applications Dataflow PRIME Evolutionary (Online) D (Best in Training)

MobileNetV2 NVDLA 2.51⇥107 2.70⇥107 1.32⇥108

MobileNetV2 ShiDianNao 2.65⇥107 2.84⇥107 1.27⇥108

ResNet50 NVDLA 2.83⇥108 3.13⇥108 1.63⇥109

ResNet50 ShiDianNao 3.44⇥108 3.74⇥108 2.05⇥109

Transformer NVDLA 7.8⇥108 7.8⇥108 1.3⇥109

Transformer ShiDianNao 7.8⇥108 7.8⇥108 1.5⇥109

Geomean of PRIME ’s Improvement — 1.0⇥ 1.06⇥ 3.75⇥

10.7 discussion

In this work, we present a data-driven offline optimization method, PRIME to auto-
matically architect hardware accelerators. Our method learns a conservative model of
the objective function by leveraging infeasible data points to better model the desired
objective function of the accelerator using a one-time collected dataset of accelerators,
thereby alleviating the need for time-consuming simulation. Our results show that, on
average, our method outperforms the best designs observed in the logged data by 2.46⇥
and improves over the best simulator-driven approach by about 1.54⇥. In the more
challenging setting of designing accelerators jointly optimal for multiple applications or
for new, unseen applications, zero-shot, PRIME outperforms simulator-driven methods
by 1.2⇥, while reducing the total simulation time by 99%. The efficacy of PRIME high-
lights the potential for utilizing the logged offline data in an accelerator design pipeline.
While PRIME outperforms the online methods we utilize, in principle, a strong online
method can be devised by running PRIME in the inner loop. Our goal is to not advocate
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that offline methods must replace online methods, but that training a strong offline
optimization algorithm on offline datasets of low-performing designs can be a highly
effective ingredient in hardware accelerator design.
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11
C O N C L U S I O N

Over the course of various chapters in this dissertation, we have attempted to develop a
“tool-box” for utilizing static datasets in reinforcement learning. In Part I of this thesis,
we began by understanding the challenges in the offline RL setting by running diagnostic
experiments in a “unit-testing” framework, followed by developing an initial offline RL
approach, BEAR, which restricted policy learning to the support of the offline data in
Part II. Refining this approach, we then developed the paradigm of conservative value
estimation and instantiated it into two algorithms: model-free CQL and model-based
COMBO. We found that CQL and COMBO attain state-of-the-art empirical results. The
efficacy of this paradigm is reflected in the use of CQL by external practitioners to tackle
a variety of real-world decision-making problems.

Building on the foundations provided by the principle of conservative value estimation,
in Part III of this dissertation we developed approaches that make it possible to utilize
offline RL effectively with high-capacity models and diverse datasets. We saw how
the implicit regularization of stochastic gradient descent, which is widely believed to
aid generalization of over-parameterized deep neural networks in supervised learning,
can hurt when learning value functions in the offline setting. Building on this insight,
we proposed the explicit DR3 regularizer that alleviates pathologies due to implicit
regularization in offline RL and showed that in conjunction with the ResNet architectures,
DR3 enables offline Q-learning to scale well to high-capacity models. Then, we turned
our attention to the problem of maximally utilizing diverse data and proposed the CDS
approach for intelligently relabeling data in multi-task offline RL problems and extended
it via the UDS approach to deal with scenarios when reward annotations are hard to
obtain during data sharing. We also developed Cal-QL, a method that extends CQL to
make it effective at fast online fine-tuning, after offline training. Finally, in Part IV of
this dissertation, we utilized the aforementioned algorithmic advancements to tackle
decision-making problems in two application domains.

open problems . Zooming out, the tools discussed in this dissertation and several
other works in the field of RL with static datasets provide an effective starting point
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for building broadly deployable decision-making systems, but there are still several
questions that I believe are important to address towards attaining this goal. Here, I
discuss some questions that I especially find the most compelling to address.

Foundation models for decision-making that use multi-modal data. The mantra in
modern ML is that larger and more diverse the dataset, the better the performance.
However, problem-specific datasets for many sequential decision-making problems (e.g.,
protein design, human-AI interaction) are much smaller and narrow as well. We can
attempt to tackle this issue by incorporating multi-modal datasets from other sources
(e.g., language annotations of proteins for protein design). But this is tricky as it requires
a departure from the standard RL paradigm since multi-modal datasets often do not
satisfy several pre-conditions needed for RL, e.g., no transitions, no rewards, no sequential
structure. It is also unclear if ways to incorporate multi-modal data from supervised
learning alone are sufficient for decision-making. Some of our initial works [366, 368, 9],
including UDS from Chapter 7 take initial steps towards this goal, but nonetheless,
it is important for future work to study questions pertaining to extracting rewards,
representations and structures from multi-modal data using insights from self-supervised
learning and pre-training. Perhaps a particularly interesting initial step in the current
research atmosphere is developing reinforcement learning methods that can utilize
initializations provided by multi-modal pre-trained foundation models.

Understanding and building reliable and easy-to-tune RL methods. One of the major
reasons behind the widespread adoption of supervised and unsupervised ML in real-
world systems is that these methods behave consistently and are easy to tune, greatly
reducing the need to deploy imperfect models. To enable a broad real-world deployment
of RL, we need to ensure RL enjoys similar benefits. This entails a continued effort on
understanding and analyzing the failures and learning dynamics of offline RL building
on our insights in Chapter 6; designing theoretically sound recipes for tuning design
decisions in offline RL, equivalently to cross-validation in standard machine learning;
understanding which RL algorithms must be used when the underlying problem satisfies
specific certain structural conditions; to list a few. Some of my work [184, 186] tackles
questions of this sort using tools from optimization and statistical machine learning,
but a complete solution is still missing and a promising avenuew for future work. I
believe that the next generation of reinforcement learning algorithms will be methods that
come equipped with protocols or “workflows” for practitioners to use them effectively.
Ultimately, success towards this goal comes down to the usability of techniques in the
real world, and hence we believe that it would be especially important to study these
questions while being grounded in real-world applications.

Robustness and adaptability in the rapidly-changing real world. Upon deployment, RL
algorithms that train on static datasets must not just run the learned policy, but they must
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also perceive and adapt to the current state of the real world (for e.g., understand the
intent of users around them) while exhibiting safe and robust behavior. They also need
to tackle implicit biases and heterogeneity in experience they will gather. For example,
a drug discovery method must learn to neutralize a new pathogen in the least amount
of trials while being safe for consumption at every step in the process; a recommender
system should not promote unethical content and amplify biases in society just to attain
a higher click-through-rate. This presents a challenge as we need to develop offline
RL algorithms that not only leverage static datasets to learn policies, but also to learn
strategies that are adaptive and exhibit safe behavior. One potential avenue to study these
questions could be to build on my initial work [28, 9] and utilize insights from areas such
as robustness, adaptation, and meta learning.

Advancing real-world applications. An important, but overlooked factor in RL algorithms
research is iterating on real-world problems alongside algorithmic research. In general, the
RL problem is often intractable, and indeed, this is evident from a number of theoretical
results showing hardness of RL. This also means that making long-term progress in RL
needs to be grounded on a set of real-world problems, with representative properties.
Some promising avenues for future work includes problems in computer architecture [81],
robotic manipulation, and also problems understudied in the context of RL such as
optimizing drug designs, which requires building easy-to-tune algorithms capable of
learning from multi-modal datasets. Another interesting problem in modern-day context
is that of fine-tuning deep learning models to make them amenable for safe interaction
with humans (human-AI interaction), which requires easy-to-use RL algorithms that
can leverage static data while also exhibiting rapid adaptation. Another example is the
problem of making decisions in electrical systems (e.g., power grids, HVAC systems [340])
to control climate change, using historical data, safe and robustly deployable methods.
It would also be very valuable to bring the insights from these domains back to the
algorithms community by building benchmarks that serve as milestones to guide research
in the years to come.
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A
A P P E N D I X : C H A L L E N G E S I N O F F L I N E R E I N F O R C E M E N T
L E A R N I N G

a.1 benchmark tabular domains

We evaluate on a benchmark of 8 tabular domains, selected for qualitative differ-
ences.

Gridworlds. The Gridworld task is an NxN grid with randomly placed walls. The reward
is proportional to Manhattan distance to a goal state (1 at the goal, 0 at the initial position),
and there is a 5% chance the agent travels in a different direction than commanded. We
vary two parameters: the size (16⇥ 16 and 64⇥ 64), and the state representations. We
use a “one-hot” representation, an (X, Y) coordinate tuple (represented as two one-hot
vectors), and a “random” representation, a vector drawn from N (0, 1)N, where N is
the width or height of the Gridworld. Random observations significantly increase the
difficulty, as significant state aliasing occurs.

Cliffwalk: Cliffwalk is a toy example from Schaul et al. [286]. It consists of a sequence
of states, where each state has two allowed actions: advance to the next state or return
to the initial state. A reward of 1.0 is obtained when the agent reaches the final state.
Observations consist of vectors drawn from N (0, 1)16.

InvertedPendulum and MountainCar: InvertedPendulum and MountainCar are dis-
cretized versions of continuous control tasks found in OpenAI gym [262], and are based
on problems from classical RL literature. In the InvertedPendulum task, an agent must
swing up an pendulum and hold it in its upright position. The state consists of the angle
and angular velocity of the pendulum. Maximum reward is given when the pendulum
is upright. The observation consists of the sin and cos of the pendulum angle, and the
angular velocity. In MountainCar, the agent must push a vehicle up a hill, but the hill is
steep that the agent must gather momentum by swinging back and forth within a valley
to reach the top. The state consists of the position and velocity of the vehicle.

195



SparseGraph: The SparseGraph environment is a 256-state graph with randomly drawn
edges. Each state has two edges, each corresponding to an action. One state is chosen as
the goal state, where the agent receives a reward of one.
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B
A P P E N D I X : R E S T R I C T I N G A C T I O N S E L E C T I O N F O R P O L I C Y
L E A R N I N G

b.1 distribution-constrained backup operator

In this section, we analyze properties of the constrained Bellman backup operator, defined
as:

BPQ(s, a)
def
= E

⇥
r(s, a) + g max

p2P
ET(s0|s,a)

⇥
V(s0)

⇤ ⇤

where
V(s) def

= max
p2P

Ep[Q(s, a)].

Such an operator can be reduced to a standard Bellman backup in a modified MDP. We
can construct an MDP M0 from the original MDP M as follows:

• The state space, discount, and initial state distributions remain unchanged from M.

• We define a new action set A0 = P to be the choice of policy p to execute.

• We define the new transition distribution p0 as taking one step under the chosen
policy p to execute and one step under the original dynamics T: T0(s0|s, p) =

Ep[T(s0|s, a)].

• Q-values in this new MDP, QP(s, p) would, in words, correspond to executing policy
p for one step and executing the policy which maximizes the future discounted
value function in the original MDP M thereafter.

Under this redefinition, the Bellman operator BP is mathematically the same operation
as the Bellman operator under M0. Thus, standard results from MDP theory carry over -
i.e. the existence of a fixed point and convergence of repeated application of BP to said
fixed point.
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b.2 error propagation

In this section, we provide proofs for Theorem 4.3.4 and Theorem 4.3.5.

Theorem B.2.1. Suppose we run approximate distribution-constrained value iteration with a
set constrained backup BP. Assume that d(s, a) � maxk |Qk(s, a)� BPQk�1(s, a)| bounds the
Bellman error. Then,

lim
k!•

Er0 [|Vk(s)�V⇤(s)|]  g

(1� g)2


C(P)Eµ[max

p2P
Ep[d(s, a)]] +

1� g

g
a(P)

�

Proof. We first begin by introducing VP, the fixed point of BP. By the triangle inequality,
we have:

Er0 [|Vk(s)�V⇤(s)|] = Er0 [|Vk(s)�VP
(s) + VP

(s)�V⇤(s)|]
 Er0 [|Vk(s)�VP

(s)|]
| {z }

L1

+ Er0 [|VP
(s)�V⇤(s)|]

| {z }
L2

First, we note that maxp Ep[d(s, a)] provides an upper bound on the value error:

|Vk(s)� BPVk�1(s)| = | max
p

Ep[Qk(s, a)]�max
p

Ep[BpQk�1(s, a)]|

 max
p

Ep[|Qk(s, a)� BpQk�1(s, a)|]

 max
p

Ep[d(s, a)]

We can bound L1 with

L1 
2g

(1� g)2 [C(P)]Eµ[max
p2P

Ep[d(s, a)]]

by direct modification of the proof of Theorem 3 of Farahmand et al. [79] or Theorem
1 of Munos [235] with k = 1 (p = 1), but replacing V⇤ with VP and B with BP, as BP

is a contraction and VP is its fixed point. An alternative proof involves viewing BP

as a backup under a modified MDP (see Appendix B.1), and directly apply Theorem
1 of Munos [235] under this modified MDP. A similar bound also holds true for value
iteration with the BP operator which can be analysed on similar lines as the above proof
and Munos [235].

To bound L2, we provide a simple `•-norm bound, although we could in principle apply
techniques used to bound L1 to get a tighter distribution-based bound.

VP �V⇤ = BPVP � BV⇤

 BPVP � BPV⇤ + BPVP � BV⇤

 gVP �V⇤ + a(P)
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Thus, we have VP �V⇤  a
1�g . Because the maximum is greater than the expectation,

L2 = Er0,p[|VP(s)�V⇤(s)|]  VP �V⇤.

Adding L1 and L2 completes the proof.

Theorem B.2.2. Assume the data distribution µ is generated by a behavior policy b, such that
µ(s, a) = µb(s, a). Let µ(s) be the marginal state distribution under the data distribution. Let
us define Pe = {p | p(a|s) = 0 whenever b(a|s) < e}. Then, there exists a concentrability
coefficient C(Pe) is bounded as:

C(Pe)  C(b) ·
⇣

1 +
g

(1� g) f (e)
(1� e)

⌘

where f (e)
def
= mins2S ,µP(s)>0[µ(s)].

Proof. For notational clarity, we refer to Pe as P in this proof. The term µP is the highest
discounted marginal state distribution starting from the initial state distribution r and
following policies p 2 P. Formally, it is defined as:

µP
def
= max

{pi}i : 8 i, pi2P
(1� g)

•

Â
m=1

mgm�1r0Pp1 · · · Ppm

Now, we begin the proof of the theorem. We first note, from the definition of P,
8 s 2 S 8 p 2 P, p(a|s) > 0 =) b(a|s) > e. This suggests a bound on the total
variation distance between b and any p 2 P for all s 2 S , DTV(b(·|s)||p(·|s))  1� e.
This means that the marginal state distributions of b and P, are bounded in total variation
distance by: DTV(µb||µP)  g

1�g (1� e), where µP is the marginal state distribution as
defined above. This can be derived from Schulman et al. [289], Appendix B, which bounds
the difference in returns of two policies by showing the state marginals between two
policies are bounded if their total variation distance is bounded.

Further, the definition of the set of policies P implies that 8 s 2 S , µP(s) > 0 =)
µb(s) � f (e), where f (e) > 0 is a constant that depends on e and captures the minimum
visitation probability of a state s 2 S when rollouts are executed from the initial state
distribution r while executing the behaviour policy b(a|s), under the constraint that only
actions with b(a|s) � e are selected for execution in the environment. Combining it with
the total variation divergence bound, maxs ||µb(s)� µP(s)||  g

1�g (1� e), we get that

sup
s2S

µP(s)
µb(s)

 1 +
g

(1� g) f (e)
(1� e)
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We know that, C(P)
def
= (1� g)2 Â•

k=1 kgk�1c(k) is the ratio of the marginal state visitation
distribution under the policy iterates when performing backups using the distribution-
constrained operator and the data distribution µ = µb. Therefore,

C(Pe)

C(b)

def
= sup

s2S

µP(s)
µb(s)

 1 +
g

(1� g) f (e)
(1� e)

b.3 additional details regarding bear

In this appendix, we address several remaining points regarding the support matching
formulation of BEAR, and further discuss its connections to prior work.

b.3.1 Why can we choose actions from Pe, the support of the training distribution, and need not
restrict action selection to the policy distribution?

In Section 4.3, we designed a new distribution-constrained backup and analyzed its
properties from an error propagation perspective. Theorems 4.3.4 and 4.3.5 tell us that, if
the maximum projection error on all actions within the support of the train distribution
is bounded, then the worst-case error incurred is also bounded. That is, we have a bound
on maxp2Pe Ep[dk(s, a)]. In this section, we provide an intuitive explanation for why
action distributions that are very different from the training policy distributions, but still
lie in the support of the train distribution, can be chosen without incurring large error. In
practice, we use powerful function approximators for Q-learning, such as deep neural
networks. That is, dk(s, a) is the Bellman error for one iteration of Q-iteration/Q-learning,
which can essentially be viewed as a supervised regression problem with a very expressive
function class. In this scenario, we expect a bounded error on the entire support of the
training distribution, and we therefore expect approximation error to depend less on the
specific density of a datapoint under the data distribution, and more on whether or not
that datapoint is within the support of the data distribution. I.e., any point that is within
the support would have a comparatively low error, due to the expressivity of the function
approximator.

Another justification is that, a different version of the Bellman error objective renormalizes
the action-distributions to the uniform distribution by applying an inverse behavior policy
density weighting. For example, [15, 14] use this variant of Bellman error:

Qk+1 = argminQ

N

Â
i=1,ai⇠b(·|si)

1
b (ai|si)

✓
Q (si, ai)�


r(s, a) + g max

a02A
Qk

�
si+1, a0

��◆2

This implies that this form of Bellman error mainly depends upon the support of the
behaviour policy b (i.e. the set of action samples sampled from b with a high-enough
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probability which we formally refer to as b(a|s) � e in the main text). In a scenario when
this form of Bellman error is being minimized, dk(s, a) is defined as

dk(s, a) =
1

b(a|s) |Qk(s, a)� BQk�1(s, a)|

The overall error, hence, incurred due to error propagation is expected to be insensitive to
distribution change, provided the support of the distribution doesn’t change. Therefore,
all policies p 2 Pe incur the same amount of propagated error (|Vk � VP|) whereas
different amount of suoptimality biases – suggesting the existence of a different policy in
Pe which propagates the same amount of error while having a lower suboptimality bias.
However, in practice, it has been observed that using the inverse density weighting under
the behaviour policy doesn’t lead to substantially better performance for vanilla RL (not
in the setting with purely off-policy, static datasets), so we use the unmodified Bellman
error objective.

Both of these justifications indicate that bounded dk(s, a) is reasonable to expect under
in-support action distributions.

b.3.2 Details on connection between BEAR and distribution-constrained backups

Distribution-constrained backups perform maximization over a set of policies Pe which
is defined as the set of policies that share the support with the behaviour policy. In the
BEAR-QL algorithm, pf is maximized towards maximizing the expected Q-value for each
state under the action distribution defined by it, while staying in-support (through the
MMD constraint). The maximization step biases pf towards the in-support actions which
maximize the current Q-value. By sampling multiple Dirac-delta action distributions -
dai - and then performing an explicit maximum over them for computing the target is a
stochastic approximation to the distribution-constrained operator. What is the importance
of training the actor to maximize the expected Q-value? We found empirically that
this step is important as without this maximization step and high-dimensional action
spaces, it is likely to require many more samples (exponentially more, due to curse of
dimensionality) to get the correct action that maximizes the target value while being
in-support. This is hard and unlikely, and in some experiments we tried with this variant,
we found it to lead to suboptimal solutions. At evaluation time, we use the Q-function as
the actor. The same process is followed. Dirac-delta action distribution candidates dai are
sampled, and then the action ai that is gives the empirical maximum over the Q-function
values is the action that is executed in the environment.

b.3.3 How effective is the MMD constraint in constraining supports of distributions?

In Section 4.4, we argued in favour of the usage of the sampled MMD distance be-
tween distributions to search for a policy that is supported on the same support as the
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train distribution. Revisiting the argument, in this section, we argue, via numerical
simulations, the effectiveness of the MMD distance between two probability distribu-
tions in constraining the support of the distribution being learned, without constraining
the distribution density function too much. While, MMD distance computed exactly
between two distribution functions will match distributions exactly and that explains
its applicability in 2-sample tests, however, with a limited number of samples, we
empirically find that the values of the distance computed using samples from two
d-dimensional Gaussian distributions with diagonal covariance matrices: P def

= N (µP, SP)

and Q def
= N (µQ, SQ) is roughly equal to the distance computed using samples from

Ua(P)
def
= [ Uniform(µ1

P ± aS1,1
P )]⇥ · · ·⇥ [ Uniform(µd

P ± aSd,d
P )] and Q. This means that

when minimizing the distance to train distribution Q, the gradient signal would push Q
towards a uniform distribution supported on P’s support as this solution exhibits a lower
MMD value – which is the objective we are optimizing.

Figure 16 shows an empirical comparison of MMD(P, Q) when Q = P, computed by
sampling n-samples from P, and MMD(Ua(P), Q) (also when Q = P) computed by
sampling n-samples from Ua(P). We observe that distance computed using limited
samples can, in fact, be higher between a distribution and itself as compared to a uniform
distribution over a distribution’s support and itself. In Figure 16, note that for smaller
values of n and appropriately chosen a (mentioned against each figure, the support of
the uniform distribution), the estimator for (Ua(P), P) can provide lower estimates than
the value of the estimator for (P, P). This observation suggests that when the number of
samples is not enough to sample infer the distribution shape, density-agnostic distances
like MMD can be used as optimization objectives to push distributions to match supports.
Subfigures (c) and (d) shows the increase in MMD distance as the support of the uniform
distribution is expanded.

b.4 additional experimental details

data collection. We trained behavior policies using the Soft Actor-Critic algo-
rithm [125]. In all cases, random data was generated by running a uniform at random
policy in the environment. Optimal data was generated by training SAC agents in all
4 domains until convergence to the returns mentioned in Figure 9. Mediocre data was
generated by training a policy until the return value marked in each of the plots in
Figure 7. Each of our datasets contained 1e6 samples. We used the same datasets for
evaluating different algorithms to maintain uniformity across results.

choice of kernels . In our experiments, we found that the choice of the kernel
is an important design decision that needs to be made. In general, we found that
a Laplacian kernel k(x, y) = exp(

�||x�y||
s ) worked well in all cases. Gaussian kernel

k(x, y) = exp(
�||x�y||2

2s2 ) worked quite well in the case of optimal dataset. For the Laplacian
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kernel, we chose s = 10.0 for Cheetah, Ant and Hopper, and s = 20.0 for Walker.
However, we found that s = 20.0 worked well for all environments in all settings. For
the Gaussian kernel, we chose s = 20.0 for all settings. Kernels often tend to not provide
relevant measurements of distance especially in high-dimensional spaces, so one direction
for future work is to design right kernels. We further experimented with a mixture of
Laplacian kernel with different bandwidth parameters s (1.0, 10.0, 50.0) on Hopper-v2
and Walker2d-v2 where we found that it performs comparably and sometimes is better
than a simple Laplacian kernel, probably because it is able to track supports upto different
levels of thresholds due to multiple kernels.

more details about the algorithm . At evaluation time, we find that using the
greedy maximum of the Q-function over the support set of the behaviour policy (which
can be approximated by sampling multiple Dirac-delta policies dai from the policy pf

and performing a greedy maximization of the Q-values over these Dirac-delta policies)
works best, better than unrolling the learned actor pf in the environment. This was
also found useful in [95]. Another detail about the algorithm is deciding which samples
to use for computing the objective. We train a parameteric model pdata which fits a
tanh-Gaussian distribution to a given the states s, pdata(·|s) = tanh N (µ(·|s), s(·|s))
and then use this to sample a candidate n actions for computing the MMD-distance,
meaning that MMD is computed between a1, · · · , aN ⇠ pdata and pf. We find the latter
to work better in practice. Also, computing the distance between actions before applying
the tanh transformation work better, and leads to a constraint, that perhaps provides
stronger gradient signal – because tanh saturates very quickly, after which gradients
almost vanish.

other hyperparameters . Other hyperparameters include the following – (1) The
variance of the Gaussian s2 /(standard deviation of) Laplacian kernel s: We tried a
variance of 10, 20, and 40. We found that 10 and 20 worked well across Cheetah, Hopper
and Ant, and 20 worked well for Walker2d; (2) The learning rate for the Lagrange
multiplier was chosen to be 1e-3, and the log of the Lagrange multiplier was clipped
between [�5, 10] to prevent instabilities; (3) For the policy improvement step, we found
using average Q works better than min Q for Walker2d. For the baselines, we used BCQ
code from the official implementation accompanying [95], TD3 code from the official
implementation accompanying [96] and the BC baseline was the VAE-based behaviour
cloning baseline also used in [95]. We evaluated on 10 evaluation episodes (which were
separate from the train distribution) after every 1000 iterations and used the average score
and the variance for the plots.

b.5 additional experimental results

In this section, we provide some extra plots for some extra experiments. In Figure 17 we
provide the difference between learned Q-values and Monte carlo returns of the policy in
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the environment. In Figure 18 we provide the trends of comparisons of Q-values learned
by BEAR and BCQ in three environments.
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(a) N (0, 0.1), U (�0.1, 0.1) (b) N (0, 1.0), U (�1.5, 1.5)

(c) N (0, 1.0), U (�2.0, 2.0)

(d) N (0, 1.0), U (�4.0, 4.0)

Figure 16: Comparing MMD distance between a 1-d Gaussian distribution (P) and itself (P), and a uniform
distribution over support set of the P and the distribution P. The parameters of the Gaussian distribution (P)
and the uniform distribution being considered are mentioned against each plot. (’Self’ refers to (P, P) and
’Uniform’ refers to (P, U (P)).) Note that for small values of n ⇡ 1� 10, the with the Uniform distribution
is slightly lower in magnitude than the between the distribution P and itself (sub-figures (a), (b) and (c)).
For (d), as the support of this uniform distribution is enlarged, this leads to an increase in the value of
MMD in the uniform approximation case – which suggests that a near-local minimizer for the distance can
be obtained by making sure that the distribution which is being trained in this process shares the same
support as the other given distribution.
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Figure 17: The trend of the difference between the Q-values and Monte-Carlo returns: Q�MC returns for
2 environments. Note that a high value of Q�MC corresponds to more overestimation. In these plots,
BEAR-QL is more well behaved than BCQ. In Walker2d-v2, BCQ tends to diverge in the negative direction.
In the case of Ant-v2, although roughly the same, the difference between Q values and Monte-carlo
returns is slightly lower in the case of BEAR suggestion no risk of overestimation. (This corresponds to
medium-quality data.)
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Figure 18: The trends of Q-values as a function of number of gradient steps taken in case of 3 environments.
BCQs Q-values tend to be more unstable (especially in the case of Walker2d, where they diverge in the
negative direction) as compared to BEAR. This corresponds to medium-quality data.
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C
A P P E N D I X : C O N S E RVAT I V E VA L U E F U N C T I O N E S T I M AT I O N

Model-Free Conservative Value Estimation

c.1 discussion of cql variants

We derive several variants of CQL in Section 5.1.3. Here, we discuss these variants on
more detail and describe their specific properties. We first derive the variants: CQL(H),
CQL(r), and then present another variant of CQL, which we call CQL(var). This third
variant has strong connections to distributionally robust optimization [245].

CQL(H). In order to derive CQL(H), we substitute R = H(µ), and solve the optimization
over µ in closed form for a given Q-function. For an optimization problem of the
form:

max
µ

Ex⇠µ(x)[ f (x)] + H(µ) s.t. Â
x

µ(x) = 1, µ(x) � 0 8x,

the optimal solution is equal to µ⇤(x) =
1
Z exp( f (x)), where Z is a normalizing factor.

Plugging this into Equation 5.1.3, we exactly obtain Equation 5.1.4.

CQL(r). In order to derive CQL(r), we follow the above derivation, but our regularizer is
a KL-divergence regularizer instead of entropy.

max
µ

Ex⇠µ(x)[ f (x)] + DKL(µ||r) s.t. Â
x

µ(x) = 1, µ(x) � 0 8x.

The optimal solution is given by, µ⇤(x) =
1
Z r(x) exp( f (x)), where Z is a normaliz-

ing factor. Plugging this back into the CQL family (Equation 5.1.3), we obtain the
following objective for training the Q-function (modulo some normalization terms):
minQ aEs⇠dpb (s)

h
Ea⇠r(a|s)

h
Q(s, a)

exp(Q(s,a))

Z0

i
�Ea⇠pb(a|s) [Q(s, a)]

i
+

1
2Es,a,s0⇠D

h�
Q� Bpk Q̂k�2

i
.(C.1.1)

CQL(var). Finally, we derive a CQL variant that is inspired from the perspective of
distributionally robust optimization (DRO) [245]. This version penalizes the variance in
the Q-function across actions at all states s, under some action-conditional distribution
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of our choice. In order to derive a canonical form of this variant, we invoke an identity
from Namkoong and Duchi [245], which helps us simplify Equation 5.1.3. To start, we
define the notion of “robust expectation”: for any function f (x), and any empirical
distribution P̂(x) over a dataset {x1, · · · , xN} of N elements, the “robust” expectation
defined by:

RN(P̂) := max
µ(x)

Ex⇠µ(x)[ f (x)] s.t. Df (µ(x), P̂(x))  d

N
,

can be approximated using the following upper-bound:

RN(P̂)  Ex⇠P̂(x)
[ f (x)] +

s
2d varP̂(x)

( f (x))

N
, (C.1.2)

where the gap between the two sides of the inequality decays inversely w.r.t. to the
dataset size, O(1/N). By using Equation C.1.2 to simplify Equation 5.1.3, we obtain an
objective for training the Q-function that penalizes the variance of Q-function predictions
under the distribution P̂.

min
Q

1
2

Es,a,s0⇠D

⇣
Q� Bpk Q̂k

⌘2
�

+ aEs⇠dpb (s)

2

4

s
varP̂(a|s) (Q(s, a))

dpb(s)|D|

3

5

+ aEs⇠dpb (s)

h
EP̂(a|s)[Q(s, a)]�Epb(a|s)[Q(s, a)]

i
(C.1.3)

The only remaining decision is the choice of P̂, which can be chosen to be the inverse
of the empirical action distribution in the dataset, P̂(a|s) µ 1

D̂(a|s) , or even uniform over

actions, P̂(a|s) = Unif(a), to obtain this variant of variance-regularized CQL.

c.2 discussion of gap-expanding behavior of cql backups

In this section, we discuss in detail the consequences of the gap-expanding behavior of
CQL backups over prior methods based on policy constraints that, as we show in this
section, may not exhibit such gap-expanding behavior in practice. To recap, Theorem 5.1.4
shows that the CQL backup operator increases the difference between expected Q-value
at in-distribution (a ⇠ pb(a|s)) and out-of-distribution (a s.t. µk(a|s)

pb(a|s) << 1) actions. We
refer to this property as the gap-expanding property of the CQL update operator.

Function approximation may give rise to erroneous Q-values at OOD actions. We start
by discussing the behavior of prior methods based on policy constraints [179, 95, 149, 343]
in the presence of function approximation. To recap, because computing the target value
requires Ep[Q̂(s, a)], constraining p to be close to pb will avoid evaluating Q̂ on OOD
actions. These methods typically do not impose any further form of regularization on
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the learned Q-function. Even with policy constraints, because function approximation
used to represent the Q-function, learned Q-values at two distinct state-action pairs are
coupled together. As prior work has argued and shown [4, 90, 180], the “generalization”
or the coupling effects of the function approximator may be heavily influenced by the
properties of the data distribution [90, 180]. For instance, Fu et al. [90] empirically
shows that when the dataset distribution is narrow (i.e. state-action marginal entropy,
H(dpb(s, a)), is low [90]), the coupling effects of the Q-function approximator can give
rise to incorrect Q-values at different states, though this behavior is absent without
function approximation, and is not as severe with high-entropy (e.g. Uniform) state-
action marginal distributions.

In offline RL, we will shortly present empirical evidence on high-dimensional MuJoCo
tasks showing that certain dataset distributions, D, may cause the learned Q-value at an
OOD action a at a state s, to in fact take on high values than Q-values at in-distribution
actions at intermediate iterations of learning. This problem persists even when a large
number of samples (e.g. 1M) are provided for training, and the agent cannot correct these
errors due to no active data collection.

Since actor-critic methods, including those with policy constraints, use the learned
Q-function to train the policy, in an iterative online policy evaluation and policy improve-
ment cycle, the errneous Q-function may push the policy towards OOD actions, especially
when no policy constraints are used. Of course, policy constraints should prevent the
policy from choosing OOD actions, however, as we will show that in certain cases, policy
constraint methods might also fail to prevent the effects on the policy due to incorrectly
high Q-values at OOD actions.

How can CQL address this problem? As we show in Theorem 5.1.4, the difference
between expected Q-values at in-distribution actions and out-of-distribution actions is
expanded by the CQL update. This property is a direct consequence of the specific nature
of the CQL regularizer – that maximizes Q-values under the dataset distribution, and
minimizes them otherwise. This difference depends upon the choice of ak, which can
directly be controlled, since it is a free parameter. Thus, by effectively controlling ak, CQL
can push down the learned Q-value at out-of-distribution actions as much is desired,
correcting for the erroneous overestimation error in the process.

Empirical evidence on high-dimensional benchmarks with neural networks. We next
empirically demonstrate the existence of of such Q-function estimation error on high-
dimensional MuJoCo domains when deep neural network function approximators are
used with stochastic optimization techniques. In order to measure this error, we plot the
difference in expected Q-value under actions sampled from the behavior distribution,
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a ⇠ pb(a|s), and the maximum Q-value over actions sampled from a uniformly random
policy, a ⇠ Unif(a|s). That is, we plot the quantity

D̂k
= Es,a⇠D

"
max

a01,··· ,a0N⇠Unif(a0)
[Q̂k

(s, a0)]� Q̂k
(s, a)

#
(C.2.1)

over the iterations of training, indexed by k. This quantity, intuitively, represents an
estimate of the “advantage” of an action a, under the Q-function, with respect to the
optimal action maxa0 Q̂k(s, a0). Since, we cannot perform exact maximization over the
learned Q-function in a continuous action space to compute D, we estimate it via sampling
described in Equation C.2.1.

We present these plots in Figure 19 on two datasets: hopper-expert and hopper-medium.
The expert dataset is generated from a near-deterministic, expert policy, exhibits a
narrow coverage of the state-action space, and limited to only a few directed trajectories.
On this dataset, we find that D̂k is always positive for the policy constraint method
(Figure 19(a)) and increases during training – note, the continuous rise in D̂k values,
in the case of the policy-constraint method, shown in Figure 19(a). This means that
even if the dataset is generated from an expert policy, and policy constraints correct
target values for OOD actions, incorrect Q-function generalization may make an out-of-
distribution action appear promising. For the more stochastic hopper-medium dataset,
that consists of a more diverse set of trajectories, shown in Figure 19(b), we still observe
that D̂k > 0 for the policy-constraint method, however, the relative magnitude is smaller
than hopper-expert.

In contrast, Q-functions learned by CQL, generally satisfy D̂k < 0, as is seen and these
values are clearly smaller than those for the policy-constraint method. This provides
some empirical evidence for Theorem 5.1.4, in that, the maximum Q-value at a randomly
chosen action from the uniform distribution the action space is smaller than the Q-value
at in-distribution actions.

On the hopper-expert task, as we show in Figure 19(a) (right), we eventually observe
an “unlearning” effect, in the policy-constraint method where the policy performance
deteriorates after a extra iterations in training. This “unlearning” effect is similar to
what has been observed when standard off-policy Q-learning algorithms without any
policy constraint are used in the offline regime [179, 204], on the other hand this effect is
absent in the case of CQL, even after equally many training steps. The performance in
the more-stochastic hopper-medium dataset fluctuates, but does not deteriorate.

To summarize this discussion, we concretely observed the following points via empirical
evidence:

• CQL backups are gap expanding in practice, as justified by the negative D̂k values
in Figure 19.
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Figure 19: Dk as a function of training iterations for hopper-expert and hopper-medium datasets. Note that
CQL (left) generally has negative values of D, whereas BEAR (right) generally has positive D values, which
also increase during training with increasing k values.

• Policy constraint methods, that do not impose any regularization on the Q-function
may observe highly positive D̂k values during training, especially with narrow data
distributions, indicating that gap-expansion may be absent.

• When D̂k values continuously grow during training, the policy might eventually
suffer from an unlearning effect [204], as shown in Figure 19(a).

c.3 theorem proofs

In this section, we provide proofs of the theorems in Sections 5.1.2 and 5.1.3. We first
redefine notation for clarity and then provide the proofs of the results in the main
paper.

Notation. Let k 2 N denote an iteration of policy evaluation (in Section 5.1.2) or Q-
iteration (in Section 5.1.3). In an iteration k, the objective – Equation 5.1.2 or Equation 5.1.3
– is optimized using the previous iterate (i.e. Q̂k�1) as the target value in the backup. Qk

denotes the true, tabular Q-function iterate in the MDP, without any correction. In an
iteration, say k + 1, the current tabular Q-function iterate, Qk+1 is related to the previous
tabular Q-function iterate Qk as: Qk+1 = BpQk (for policy evaluation) or Qk+1 = Bpk Qk

(for policy learning). Let Q̂k denote the k-th Q-function iterate obtained from CQL. Let
V̂k denote the value function, V̂k := Ea⇠p(a|s)[Q̂k(s, a)].

A note on the value of a. Before proving the theorems, we remark that while the
statements of Theorems 5.1.2, 5.1.1 and C.4.1 (we discuss this in Appendix C.4) show that
CQL produces lower bounds if a is larger than some threshold, so as to overcome either
sampling error (Theorems 5.1.2 and 5.1.1) or function approximation error (Theorem C.4.1).
While the optimal ak in some of these cases depends on the current Q-value, Q̂k, we can
always choose a worst-case value of ak by using the inequality Q̂k  2Rmax/(1� g), still
guaranteeing a lower bound. If it is unclear why the learned Q-function Q̂k should be
bounded, we can always clamp the Q-values if they go outside

h
�2Rmax

1�g , 2Rmax
1�g

i
. We first

prove Theorem 5.1.1, which shows that policy evaluation using a simplified version of
CQL (Equation 5.1.1) results in a point-wise lower-bound on the Q-function.
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Proof of Theorem 5.1.1
We start by analyzing Q̂k by setting the derivative of Equation 5.1.1 to 0:

8 s, a 2 D, k, Q̂k+1
(s, a) = B̂pQ̂k

(s, a)� a
µ(a|s)

p̂b(a|s) . (C.3.1)

Now, since, µ(a|s) > 0, a > 0, p̂b(a|s) > 0, we observe that at each iteration we underes-
timate the next Q-value iterate, i.e. Q̂k+1  B̂pQ̂k.

Accounting for sampling error. Note that so far we have only shown that the Q-values
are upper-bounded by the the “empirical Bellman targets” given by, B̂pQ̂k. In order to
relate Q̂k to the true Q-value iterate, Qk, we need to relate the empirical Bellman operator,
B̂p to the actual Bellman operator, Bp. In Appendix C.4.3, we show that if the reward
function r(s, a) and the transition function, T(s0|s, a) satisfy “concentration” properties,
meaning that the difference between the observed reward sample, r (s, a, r, s0) 2 D)
and the actual reward function r(s, a) (and analogously for the transition matrix) is
bounded with high probability, then overestimation due to the empirical Backup operator
is bounded. Formally, with high probability (w.h.p.) � 1� d, d 2 (0, 1),

8Q, s, a 2 D,
��B̂pQ(s, a)� BpQ(s, a)

��  Cr,T,dRmax

(1� g)
p

|D(s, a)|
.

Hence, the following can be obtained, w.h.p.:

Q̂k+1
(s, a) = BpQ̂k

(s, a)  BpQ̂k
(s, a)� a

µ(a|s)
p̂b(a|s) +

Cr,T,dRmax

(1� g)
p

|D(s, a)|
. (C.3.2)

Now we need to reason about the fixed point of the update procedure in Equation C.3.1.
The fixed point of Equation C.3.1 is given by:

Q̂p  BpQ̂p � a
µ(a|s)

p̂b(a|s) +
Cr,T,dRmax

(1� g)
p

|D(s, a)|

=) Q̂p  (I � gPp
)
�1

"
R� a

µ

p̂b
+

Cr,T,dRmax

1� g)
p

|D

#

Q̂p
(s, a)  Qp

(s, a)� a

"

(I � gPp
)
�1

"
µ

p̂b

##
(s, a)+

"
(I � gPp

)
�1 Cr,T,dRmax

(1� g)
p

|D|

#
(s, a),

thus proving the relationship in Theorem 5.1.1.

In order to guarantee a lower bound, a can be chosen to cancel any potential overesti-
mation incurred by Cr,T,dRmax

(1�g)

p
|D|

. Note that this choice works, since (I � gPp)�1 is a matrix
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with all non-negative entries. The choice of a that guarantees a lower bound is then given
by:

a · min
s,a

"
µ(a|s)

p̂b(a|s)

#
� max

s,a

Cr,T,dRmax

(1� g)
p

|D(s, a)|

=) a � max
s,a

Cr,T,dRmax

(1� g)
p

|D(s, a)|
· max

s,a

"
µ(a|s)

p̂b(a|s)

#�1

.

Note that the theoretically minimum possible value of a decreases as more samples
are observed, i.e., when |D(s, a)| is large. Also, note that since, Cr,T,dRmax

(1�g0
p

|D|
⇡ 0, when

B̂p = Bp, any a � 0 guarantees a lower bound. And so choosing a value of a = 0 is
sufficient in this case.

Next, we prove Theorem 5.1.3 that shows that the additional term that maximizes the
expected Q-value under the dataset distribution, D(s, a), (or dpb(s)pb(a|s), in the absence
of sampling error), results in a lower-bound on only the expected value of the policy at a
state, and not a pointwise lower-bound on Q-values at all actions.

Proof of Theorem 5.1.2
We first prove this theorem in the absence of sampling error, and then incorporate
sampling error at the end, using a technique similar to the previous proof. In the tabular
setting, we can set the derivative of the modified objective in Equation 5.1.2, and compute
the Q-function update induced in the exact, tabular setting (this assumes B̂p = Bp) and
pb(a|s) = p̂b(a|s)).

8 s, a, k Q̂k+1
(s, a) = BpQ̂k

(s, a)� a

"
µ(a|s)

pb(a|s) � 1

#
. (C.3.3)

Note that for state-action pairs, (s, a), such that, µ(a|s) < pb(a|s), we are infact adding a
positive quantity, 1� µ(a|s)

pb(a|s) , to the Q-function obtained, and this we cannot guarantee a

point-wise lower bound, i.e. 9 s, a, s.t. Q̂k+1(s, a) � Qk+1(s, a). To formally prove this,
we can construct a counter-example three-state, two-action MDP, and choose a specific
behavior policy p(a|s), such that this is indeed the case.

The value of the policy, on the other hand, V̂k+1 is underestimated, since:

V̂k+1
(s) := Ea⇠p(a|s)

h
Q̂k+1

(s, a)

i
= BpV̂k

(s)� aEa⇠p(a|s)

"
µ(a|s)

pb(a|s) � 1

#
. (C.3.4)
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and we can show that DCQL(s) := Âa p(a|s)
h

µ(a|s)
pb(a|s) � 1

i
is always positive, when

p(a|s) = µ(a|s). To note this, we present the following derivation:

DCQL(s) := Â
a

p(a|s)
"

µ(a|s)
pb(a|s) � 1

#

= Â
a

(p(a|s)� pb(a|s) + pb(a|s))
"

µ(a|s)
pb(a|s) � 1

#

= Â
a

(p(a|s)� pb(a|s))
"

p(a|s)� pb(a|s)
pb(a|s

#
+ Â

a
pb(a|s)

"
µ(a|s)

pb(a|s) � 1

#

= Â
a

"�
p(a|s)� pb(a|s)

�2

pb(a|s)

#

| {z }
�0

+ 0 since, Â
a

p(a|s) = Â
a

pb(a|s) = 1.

Note that the marked term, is positive since both the numerator and denominator
are positive, and this implies that DCQL(s) � 0. Also, note that DCQL(s) = 0, iff
p(a|s) = pb(a|s). This implies that each value iterate incurs some underestimation,
V̂k+1(s)  BpV̂k(s).

Now, we can compute the fixed point of the recursion in Equation C.3.4, and this gives us
the following estimated policy value:

V̂p
(s) = Vp

(s)� a

2

66664
(I � gPp

)
�1

| {z }
non-negative entries

Ep

"
p

pb
� 1

#

| {z }
�0

3

77775
(s),

thus showing that in the absence of sampling error, Theorem 5.1.2 gives a lower bound. It
is straightforward to note that this expression is tighter than the expression for policy
value in Proposition 5.1.2, since, we explicitly subtract 1 in the expression of Q-values
from the previous proof.

Incorporating sampling error. To extend this result to the setting with sampling error,
similar to the previous result, the maximal overestimation at each iteration k, is bounded
by Cr,T,dRmax

1�g . The resulting value-function satisfies (w.h.p.), 8s 2 D,

V̂p
(s)  Vp

(s)� a

"

(I � gPp
)
�1

Ep

"
p

p̂b
� 1

##
(s) +

"
(I � gPp

)
�1 Cr,T,dRmax

(1� g)
p

|D|

#
(s)
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thus proving the theorem statement. In this case, the choice of a, that prevents overesti-
mation w.h.p. is given by:

a � max
s,a2D

Cr,TRmax

(1� g)
p

|D(s, a)|
· max

s2D

"

Â
a

p(a|s)
 

p(a|s)
p̂b(a|s)) � 1

!#�1

.

Similar to Theorem 5.1.1, note that the theoretically acceptable value of a decays as the
number of occurrences of a state action pair in the dataset increases. Next we provide a
proof for Theorem 5.1.3.

Proof of Theorem 5.1.3
In order to prove this theorem, we compute the difference induced in the policy value,
V̂k+1, derived from the Q-value iterate, Q̂k+1, with respect to the previous iterate BpQ̂k.
If this difference is negative at each iteration, then the resulting Q-values are guaranteed
to lower bound the true policy value.

Ep̂k+1(a|s)[Q̂
k+1

(s, a)] = Ep̂k+1(a|s)

h
BpQ̂k

(s, a)

i
�Ep̂k+1(a|s)

"
pQ̂k(a|s)
p̂b(a|s) � 1

#

= Ep̂k+1(a|s)

h
BpQ̂k

(s, a)

i
�EpQ̂k (a|s)

"
pQ̂k(a|s)
p̂b(a|s) � 1

#

| {z }
underestimation, (a)

+ Â
a

⇣
pQ̂k(a|s)� p̂k+1

(a|s)
⌘

| {z }
(b), DTV(pQ̂k ,p̂k+1)

pQ̂k(a|s)
p̂b(a|s)

If (a) has a larger magnitude than (b), then the learned Q-value induces an underesti-
mation in an iteration k + 1, and hence, by a recursive argument, the learned Q-value
underestimates the optimal Q-value. We note that by upper bounding term (b) by

DTV(pQ̂k , p̂k+1) · maxa
pQ̂k (a|s)
p̂b(a|s) , and writing out (a) ¿ upper-bound on (b), we obtain the

desired result.

Finally, we show that under specific choices of a1, · · · , ak, the CQL backup is gap-
expanding by providing a proof for Theorem 5.1.4.

Proof of Theorem 5.1.4 (CQL is gap-expanding)
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For this theorem, we again first present the proof in the absence of sampling error, and
then incorporate sampling error into the choice of a. We follow the strategy of observing
the Q-value update in one iteration. Recall that the expression for the Q-value iterate at
iteration k is given by:

Q̂k+1
(s, a) = Bpk

Q̂k
(s, a)� ak

µk(a|s)� pb(a|s)
pb(a|s) .

Now, the value of the policy µk(a|s) under Q̂k+1 is given by:

Ea⇠µk(a|s)[Q̂
k+1

(s, a)] = Ea⇠µk(a|s)[Bpk
Q̂k

(s, a)]� ak µT
k

 
µk(a|s)� pb(a|s)

pb(a|s)

!

| {z }
:=D̂k,�0, by proof of Theorem 5.1.2.

Now, we also note that the expected amount of extra underestimation introduced at
iteration k under action sampled from the behavior policy pb(a|s) is 0, as,

Ea⇠pb(a|s)[Q̂
k+1

(s, a)] = Ea⇠pb(a|s)[Bpk
Q̂k

(s, a)]� ak pb
T

 
µk(a|s)� pb(a|s)

pb(a|s)

!

| {z }
=0

.

where the marked quantity is equal to 0 since it is equal since pb(a|s) in the numerator
cancels with the denominator, and the remaining quantity is a sum of difference between
two density functions, Âa µk(a|s)� pb(a|s), which is equal to 0. Thus, we have shown
that,

Epb(a|s)[Q̂k+1(s, a)]�Eµk(a|s)[Q̂k+1(s, a)] = Epb(a|s)[Bpk Q̂k(s, a)]�Eµk(a|s)[Bpk Q̂k(s, a)]� akD̂k.

Now subtracting the difference, Epb(a|s)[Qk+1(s, a)]�Eµk(a|s)[Qk+1(s, a)], computed un-
der the tabular Q-function iterate, Qk+1, from the previous equation, we obtain that

Ea⇠pb(a|s)[Q̂
k+1

(s, a)]�Epb(a|s)[Q
k+1

(s, a)] = Eµk(a|s)[Q̂
k+1

(s, a)]�Eµk(a|s)[Q
k+1

(s, a)]

+ (µk(a|s)� pb(a|s))T
h
Bpk

⇣
Q̂k �Qk

⌘
(s, ·)

i

| {z }
(a)

�akD̂k.

Now, by choosing ak, such that any positive bias introduced by the quantity (µk(a|s)�
pb(a|s))T(a) is cancelled out, we obtain the following gap-expanding relationship:

Ea⇠pb(a|s)[Q̂
k+1

(s, a)]�Epb(a|s)[Q
k+1

(s, a)] > Eµk(a|s)[Q̂
k+1

(s, a)]�Eµk(a|s)[Q
k+1

(s, a)]
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for, ak satisfying,

ak > max

0

@
(pb(a|s)� µk(a|s))T

h
Bpk �Q̂k �Qk� (s, ·)

i

D̂k
, 0

1

A ,

thus proving the desired result.

To avoid the dependency on the true Q-value iterate, Qk, we can upper-bound Qk by
Rmax
1�g , and upper-bound (pb(a|s)� µk(a|s))TBpk Qk(s, ·) by DTV(pb, µk) · Rmax

1�g , and use
this in the expression for ak. While this bound may be loose, it still guarantees the
gap-expanding property, and we indeed empirically show the existence of this property
in practice in Appendix C.2.

To incorporate sampling error, we can follow a similar strategy as previous proofs: the
worst case overestimation due to sampling error is given by Cr,T,dRmax

1�g . In this case, we
note that, w.h.p.,

���B̂pk
⇣

Q̂k �Qk
⌘
� Bpk

⇣
Q̂k �Qk

⌘��� 
2 · Cr,T,dRmax

1� g
.

Hence, the presence of sampling error adds DTV(p̂b, µk) · 2·Cr,T,dRmax
1�g to the value of ak, giv-

ing rise to the following, sufficient condition on ak for the gap-expanding property:

ak > max

0

@
(pb(a|s)� µk(a|s))T

h
Bpk �Q̂k �Qk� (s, ·)

i

D̂k
+ DTV(p̂b, µk) · 2 · Cr,T,dRmax

1� g
, 0

1

A ,

concluding the proof of this theorem.

c.4 additional theoretical analysis

In this section, we present a theoretical analysis of additional properties of CQL. For
ease of presentation, we state and prove theorems in Appendices C.4.1 and C.4.2 in the
absence of sampling error, but as discussed extensively in Appendix C.3, we can extend
each of these results by adding extra terms induced due to sampling error.

c.4.1 CQL with Linear and Non-Linear Function Approximation

Theorem C.4.1. Assume that the Q-function is represented as a linear function of given state-
action feature vectors F, i.e., Q(s, a) = wTF(s, a). Let D = diag

�
dpb(s)pb(a|s)

�
denote

the diagonal matrix with data density, and assume that FTDF is invertible. Then, the ex-
pected value of the policy under Q-value from Eqn 5.1.2 at iteration k + 1, Edpb (a)

[V̂k+1(s)] =
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Edpb (s),p(a|s)[Q̂
k+1(s, a)], lower-bounds the corresponding tabular value, Edpb (s)[V

k+1(s)] =

Edpb (s),p(a|s)[Q
k+1(s, a)], if

ak � max

0

B@
DT

h
F
�

FTDF
��1 FT � I

i �
(BpQ̂k)(s, a)

�

DT
h

F (FTDF)
�1 FT

i ⇣
D
h

p(a|s)�pb(a|s)
pb(a|s)

i⌘ , 0

1

CA .

The choice of ak in Theorem C.4.1 intuitively amounts to compensating for overestimation
in value induced if the true value function cannot be represented in the chosen linear
function class (numerator), by the potential decrease in value due to the CQL regularizer
(denominator). This implies that if the actual value function can be represented in the
linear function class, such that the numerator can be made 0, then any a > 0 is sufficient
to obtain a lower bound. We now prove the theorem.

Proof. In order to extend the result of Theorem 5.1.2 to account for function approximation,
we follow the similar recipe as before. We obtain the optimal solution to the optimization
problem below in the family of linearly expressible Q-functions, i.e. Q := {Fw|w 2
Rdim(F)}.

ak ·
⇣

Edpb (s),µ(a|s) [Q(s, a)]�Edpb (s),pb(a|s) [Q(s, a)]

⌘
+

1
2

ED

⇣
(Q� BpQ̂k

)(s, a)

⌘2
�

.

By substituting Q(s, a) = wTF(s, a), and setting the derivative with respect to w to be 0,
we obtain,

a Â
s,a

dpb(s) ·
�
(µ� pb)(a|s)

�
F(s, a) + Â

s,a
dpb(s)pb(a|s)

⇣
(Q� BpQ̂k

)(s, a)

⌘
F(s, a) = 0.

By re-arranging terms, and converting it to vector notation, defining D = diag(dpb(s)pb(s)),
and referring to the parameter w at the k-iteration as wk we obtain:

⇣
FTDF

⌘
wk+1

= FTD
⇣
BpQ̂k

⌘

| {z }
LSTD iterate

� akFTdiag
⇥
dpb(s) · (µ(a|s)� pb(a|s))

⇤
| {z }

underestimation

.

Now, our task is to show that the term labelled as “underestimation” is indeed negative
in expectation under µ(a|s) (This is analogous to our result in the tabular setting that
shows underestimated values). In order to show this, we write out the expression for the
value, under the linear weights wk+1 at state s, after substituting µ = p,

V̂k+1
(s) := p(a|s)TFwk+1 (C.4.1)

= p(a|s)T F
⇣

FTDF
⌘�1

FTD
⇣
BpQ̂k

⌘

| {z }
value under LSTD-Q [191]

�akp(a|s)TF
⇣

FTDF
⌘�1

FTD

"
p(a|s)� pb(a|s)

pb(a|s)

#
.

(C.4.2)
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Now, we need to reason about this additional penalty term. Defining, PF:=F(FT DF)
�1FT D as

the projection matrix onto the subspace of features F, we need to show that the product
that appears as a penalty is positive: p(a|s)TPF

h
p(a|s)�pb(a|s)

pb(a|s)

i
� 0. In order to show

this, we compute minimum value of this product optimizing over p. If the minimum
value is 0, then we are done.

Let’s define f (p) = p(a|s)TP
F


p(a|s)�pb(a|s)
pb(a|s)

�, our goal is to solve for minp f (p). Setting

the derivative of f (p) with respect to p to be equal to 0, we obtain (including Lagrange
multiplier h that guarantees Âa p(a|s) = 1,

⇣
PF+PFT

⌘ " p(a|s)
pb(a|s)

#
= PF~1+h~1.

By solving for h (using the condition that a density function sums to 1), we obtain that
the minimum value of f (p) occurs at a p⇤(a|s), which satisfies the following condition,

⇣
PF+PFT

⌘ "p⇤(a|s)
pb(a|s)

#
=

⇣
PF+PFT

⌘
~1.

Using this relation to compute f , we obtain, f (p⇤) = 0, indicating that the minimum
value of 0 occurs when the projected density ratio matches under the matrix (PF+PFT)

is

equal to the projection of a vector of ones,~1. Thus,

8 p(a|s), f (p) = p(a|s)TPF

"
p(a|s)� pb(a|s)

pb(a|s)

#
� 0.

This means that: 8 s, V̂k+1(s)  V̂k+1
LSTD-Q(s) given identical previous Q̂k values. This

result indicates, that if ak � 0, the resulting CQL value estimate with linear function
approximation is guaranteed to lower-bound the value estimate obtained from a least-
squares temporal difference Q-learning algorithm (which only minimizes Bellman error
assuming a linear Q-function parameterization), such as LSTD-Q [191], since at each
iteration, CQL induces a lower-bound with respect to the previous value iterate, whereas
this underestimation is absent in LSTD-Q. Also note that we can also apply an inductive
argument.

So far, we have only shown that the learned value iterate, V̂k+1(s) lower-bounds the value
iterate obtained from LSTD-Q, 8 s, V̂k+1(s)  V̂k+1

LSTD-Q(s). But, our final aim is to prove
a stronger result, that the learned value iterate, V̂k+1, lower bounds the exact tabular
value function iterate, Vk+1, at each iteration. The reason why our current result does not
guarantee this is because function approximation may induce overestimation error in the
linear approximation of the Q-function.
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In order to account for this change, we make a simple change: we choose ak such that the
resulting penalty nullifes the effect of any over-estimation caused due to the inability to
fit the true value function iterate in the linear function class parameterized by F. Formally,
this means:

Edpb (s)

h
V̂k+1

(s)
i
 Edpb (s)

h
V̂k+1

LSTD-Q(s)
i
� akEdpb (s)[ f (p(a|s))]

 Edpb (s)

h
Vk+1

(s)
i
�Edpb (s)

h
V̂k+1

LSTD-Q(s)�Vk+1
(s)

i
� akEdpb (s)[ f (p(a|s))]

| {z }
choose ak to make this negative

 Edpb (s)

h
Vk+1

(s)
i

And the choice of ak in that case is given by:

ak � max

0

@
Edpb (s)

h
V̂k+1

LSTD-Q(s)�Vk+1(s)
i

Edpb (s)[ f (p(a|s))] , 0

1

A

� max

0

B@
DT

h
F
�

FTDF
��1 FT � I

i �
(BpQ̂k)(s, a)

�

DT
h

F (FTDF)
�1 FT

i ⇣
D
h

p(a|s)�pb(a|s)
pb(a|s)

i⌘ , 0

1

CA .

Finally, we note that since this choice of ak induces under-estimation in the next iterate,
V̂k+1 with respect to the previous iterate, V̂k, for all k 2 N, by induction, we can claim
that this choice of a1, · · · , ak is sufficient to make V̂k+1 lower-bound the tabular, exact
value-function iterate. Vk+1, for all k, thus completing our proof.

We can generalize Theorem C.4.1 to non-linear function approximation, such as neural
networks, under the standard NTK framework [145], assuming that each iteration k is
performed by a single step of gradient descent on Equation 5.1.2, rather than a complete
minimization of this objective. As we show in Theorem C.4.2, CQL learns lower bounds
in this case for an appropriate choice of ak.

Theorem C.4.2 (Extension to non-linear function approximation). Assume that the Q-
function is represented by a general non-linear function approximator parameterized by q, Qq(s, a).
let D = diag(dpb(s)pb(a|s)) denote the matrix with the data density on the diagonal, and
assume that rqQT

q DrqQq is invertible. Then, the expected value of the policy under the Q-
function obtained by taking a gradient step on Equation 5.1.2, at iteration k + 1 lower-bounds the
corresponding tabular function iterate if:

Proof. Our proof strategy is to reduce the non-linear optimization problem into a linear
one, with features F (in Theorem C.4.1) replaced with features given by the gradient of
the current Q-function Q̂k

q with respect to parameters q, i.e. rqQ̂k. To see, this we start by
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writing down the expression for Q̂k+1
q obtained via one step of gradient descent with step

size h, on the objective in Equation 5.1.2.

qk+1
= qk � hak

⇣
Edpb (s),µ(a|s)

h
rqQ̂k

(s, a)

i
�Edpb (s),pb(a|s)

h
rqQ̂k

(s, a)

i⌘

� hEdpb (s),pb(a|s)

h⇣
Q̂k � BpQ̂k

⌘
(s, a) ·rqQ̂k

(s, a)

i
.

Using the above equation and making an approximation linearization assumption on the
non-linear Q-function, for small learning rates h << 1, as has been commonly used by
prior works on the neural tangent kernel (NTK) in deep learning theory [145] in order to
explain neural network learning dynamics in the infinite-width limit, we can write out
the expression for the next Q-function iterate, Q̂k+1

q in terms of Q̂k
q as [4, 145]:

Q̂k+1
q (s, a) ⇡ Q̂k

q(s, a) +

⇣
qk+1 � qk

⌘T
rqQ̂k

q(s, a) (under NTK assumptions)

= Q̂k
q(s, a)� hakEdpb (s0),µ(a0|s0)

h
rqQ̂k

(s0, a0)TrqQ̂k
(s, a)

i

+ hakEdpb (s0),pb(a0|s0)

h
rqQ̂k

(s0, a0)TrqQ̂k
(s, a)

i

� hEdpb (s0),pb(a0|s0)

h⇣
Q̂k � BpQ̂k

⌘
(s0, a0) ·rqQ̂k

(s0, a0)TrqQ̂k
(s, a)

i
.

To simplify presentation, we convert into matrix notation, where we define the |S||A|⇥
|S||A| matrix, Mk =

�
rqQ̂k�TrqQ̂k, as the neural tangent kernel matrix of the Q-function

at iteration k. Then, the vectorized Q̂k+1 (with µ = p) is given by,

Q̂k+1
= Q̂k� hak MkD

"
p(a|s)� pb(a|s)

pb(a|s)

#
+ hMkD

⇣
BpQ̂k � Q̂k

⌘
.

Finally, the value of the policy is given by:

V̂k+1 := p(a|s)TQ̂k
(s, a) + hp(a|s)MkD

⇣
BpQ̂k � Q̂k

⌘

| {z }
(a) unpenalized value

(C.4.3)

� hakp(a|s)T MkD

"
p(a|s)� pb(a|s)

pb(a|s)

#

| {z }
(b) penalty

. (C.4.4)

Term marked (b) in the above equation is similar to the penalty term shown in Equa-
tion C.4.2, and by performing a similar analysis, we can show that (b) � 0. Again similar
to how V̂k+1

LSTD-Q appeared in Equation C.4.2, we observe that here we obtain the value
function corresponding to a regular gradient-step on the Bellman error objective.
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Again similar to before, term (a) can introduce overestimation relative to the tabular
counterpart, starting at Q̂k: Qk+1 = Q̂k � h

�
BpQ̂k � Q̂k�, and we can choose ak to

compensate for this potential increase as in the proof of Theorem C.4.1. As the last step,
we can recurse this argument to obtain our final result, for underestimation.

c.4.2 Choice of Distribution to Maximize Expected Q-Value in Equation 5.1.2

In Section 5.1.2, we introduced a term that maximizes Q-values under the dataset
dpb(s)pb(a|s) distribution when modifying Equation 5.1.1 to Equation 5.1.2. Theo-
rem 5.1.2 indicates the “sufficiency” of maximizing Q-values under the dataset distri-
bution – this guarantees a lower-bound on value. We now investigate the neccessity of
this assumption: We ask the formal question: For which other choices of n(a|s) for
the maximization term, is the value of the policy under the learned Q-value, Q̂k+1

n
guaranteed to be a lower bound on the actual value of the policy?

To recap and define notation, we restate the objective from Equation 5.1.1 below.

Q̂k+1  arg min
Q

a Es⇠dpb (s),a⇠µ(a|s) [Q(s, a)] +
1
2

Es,a,s0⇠D

⇣
Q(s, a)� BpQ̂k

(s, a)

⌘2
�

. (C.4.5)

We define a general family of objectives from Equation 5.1.2, parameterized by a distribu-
tion n which is chosen to maximize Q-values as shown below (CQL is a special case, with
n(a|s) = pb(a|s)):

Q̂k+1
n  arg min

Q
a ·

⇣
Es⇠dpb (s),a⇠µ(a|s) [Q(s, a)]�Es⇠dpb (s),a⇠n(a|s) [Q(s, a)]

⌘

+
1
2

Es,a,s0⇠D

⇣
Q(s, a)� BpQ̂k

(s, a)

⌘2
�

. (n-CQL) (C.4.6)

In order to answer our question, we prove the following result:

Theorem C.4.3 (Necessity of maximizing Q-values under pb(a|s).). For any policy p(a|s),
any a > 0, and for all k > 0, the value of the policy., V̂k+1

n under Q-function iterates from
n�CQL, Q̂k+1

n (s, a) is guaranteed to be a lower bound on the exact value iterate, V̂k+1, only if
n(a|s) = pb(a|s).

Proof. We start by noting the parametric form of the resulting tabular Q-value iterate:

Q̂k+1
n (s, a) = BpQ̂k

n(s, a)� ak
µ(a|s)� n(a|s)

pb(a|s) . (C.4.7)

The value of the policy under this Q-value iterate, when distribution µ is chosen to be the
target policy p(a|s) i.e. µ(a|s) = p(a|s) is given by:

V̂k+1
n (s) := Ea⇠p(a|s)

h
Q̂k+1

n (s, a)

i
= Ea⇠p(a|s)

h
BpQ̂k

n(s, a)

i
� ak p(a|s)T

✓
p(a|s)� n(a|s)

pb(a|s)

◆
.

(C.4.8)
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We are interested in conditions on n(a|s) such that the penalty term in the above equation
is positive. It is clear that choosing n(a|s) = pb(a|s) returns a policy that satisfies the
requirement, as shown in the proof for Theorem 5.1.2. In order to obtain other choices
of n(a|s) that guarantees a lower bound for all possible choices of p(a|s), we solve the
following concave-convex maxmin optimization problem, that computes a n(a|s) for
which a lower-bound is guaranteed for all choices of µ(a|s):

max
n(a|s)

min
p(a|s)

Â
a

p(a|s) ·
 

p(a|s)� n(a|s)
pb(a|s)

!

s.t. Â
a

p(a|s) = 1, Â
a

n(a|s) = 1, n(a|s) � 0, p(a|s) � 0.

We first solve the inner minimization over p(a|s) for a fixed n(a|s), by writing out the
Lagrangian and setting the gradient of the Lagrangian to be 0, we obtain:

8a, 2 · p⇤(a|s)
pb(a|s) �

n(a|s)
pb(a|s) � z(a|s) + h = 0,

where z(a|s) is the Lagrange dual variable for the positivity constraints on p(a|s), and
h is the Lagrange dual variable for the normalization constraint on p. If p(a|s) is full
support (for example, when it is chosen to be a Boltzmann policy), KKT conditions imply
that, z(a|s) = 0, and computing h by summing up over actions, a, the optimal choice of
p for the inner minimization is given by:

p⇤(a|s) =
1
2

n(a|s) +
1
2

pb(a|s). (C.4.9)

Now, plugging Equation C.4.9 in the original optimization problem, we obtain the
following optimization over only n(a|s):

max
n(a|s)

Â
a

pb(a|s) ·
 

1
2
� n(a|s)

2pb(a|s)

!
·
 

1
2

+
n(a|s)

2pb(a|s)

!
s.t. Â

a
n(a|s) = 1, n(a|s) � 0.

(C.4.10)
Solving this optimization, we find that the optimal distribution, n(a|s) is equal to pb(a|s).
and the optimal value of penalty, which is also the objective for the problem above is
equal to 0. Since we are maximizing over n, this indicates for other choices of n 6= pb, we
can find a p so that the penalty is negative, and hence a lower-bound is not guaranteed.
Therefore, we find that with a worst case choice of p(a|s), a lower bound can only be
guaranteed only if n(a|s) = pb(a|s). This justifies the necessity of pb(a|s) for maximizing
Q-values in Equation 5.1.2. The above analysis doesn’t take into account the effect of
function approximation or sampling error. We can, however, generalize this result to
those settings, by following a similar strategy of appropriately choosing ak, as previously
utilized in Theorem C.4.1.
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c.4.3 CQL with Empirical Dataset Distributions

The results in Sections 5.1.2 and 5.1.3 account for sampling error due to the finite size
of the dataset D. In our practical implementation as well, we optimize a sample-based
version of Equation 5.1.2, as shown below:

Q̂k+1  arg min
Q

a ·
 

Â
s2D

Ea⇠µ(a|s) [Q(s, a)]� Â
s2D

Ea⇠pb(a|s) [Q(s, a)]

!

+
1

2|D| Â
s,a,s02D

⇣
Q(s, a)� B̂pQ̂k

(s, a)

⌘2
�

, (C.4.11)

where B̂p denotes the “empirical” Bellman operator computed using samples in D as
follows:

8s, a 2 D,
⇣
B̂pQ̂k

⌘
(s, a) = r + g Â

s0
T̂(s0|s, a)Ea0⇠p(a0|s0)

h
Q̂k

(s0, a0)
i

, (C.4.12)

where r is the empirical average reward obtained in the dataset when executing an action
a at state s, i.e. r =

1
|D(s,a)| Âsi,ai inD 1si=s,ai=a · r(s, a), and T̂(s0|s, a) is the empirical

transition matrix. Note that expectation under p(a|s) can be computed exactly, since it
does not depend on the dataset. The empirical Bellman operator can take higher values
as compared to the actual Bellman operator, Bp, for instance, in an MDP with stochastic
dynamics, where D may not contain transitions to all possible next-states s0 that can be
reached by executing action a at state s, and only contains an optimistic transition.

We next show how the CQL lower bound result (Theorem 5.1.2) can be modified to
guarantee a lower bound even in this presence of sampling error. To note this, following
prior work [146, 253], we assume concentration properties of the reward function and the
transition dynamics:

Assumption C.4.4. 8 s, a 2 D, the following relationships hold with high probability, � 1� d

|r� r(s, a)|  Cr,dp
|D(s, a)|

, ||T̂(s0|s, a)� T(s0|s, a)||1 
CT,dp

|D(s, a)|
.

Under this assumption, the difference between the empirical Bellman operator and the
actual Bellman operator can be bounded:
���
⇣
B̂pQ̂k

⌘
�
⇣
BpQ̂k

⌘��� =

�����(r� r(s, a)) + g Â
s0

�
T̂(s0|s, a)� T(s0|s, a)

�
Ep(a0|s0)

h
Q̂k

(s0, a0)
i�����

 |r� r(s, a)| + g

�����Âs0
�
T̂(s0|s, a)� T(s0|s, a)

�
Ep(a0|s0)

h
Q̂k

(s0, a0)
i�����

 Cr,d + gCT,d2Rmax/(1� g)p
|D(s, a)|

.
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This gives us an expression to bound the overestimation due to sampling error, as a
function of a constant, Cr,T,d that can be expressed as a function of Cr,d and CT,d, and
depends on d via a

p
log(1/d) dependency. This is similar to how prior works have

bounded the sampling error due to an empirical Bellman operator [253, 146].

c.4.4 Safe Policy Improvement Guarantee for CQL

In this section, we prove a safe policy improvement guarantee for CQL (and this analysis
is also applicable in general to policy constraint methods with appropriate choices of
constraints as we will show). We define the empirical MDP, M̂ as the MDP formed by the
transitions in the replay buffer, M̂ = {s, a, r, s0 2 D}, and let J(p, M̂) denote the return
of a policy p(a|s) in MDP M̂. Our goal is to show that J(p, M) � J(p̂b, M)� #, with
high probability, where # is a small constant. We start by proving that CQL optimizes a
penalized RL objective in the empirical MDP, M̂.

Lemma C.4.5. Let Q̂p be the fixed point of Eq. 5.1.2, then p⇤(a|s) := arg maxp Es⇠r(s)[V̂p(s)]
is equivalently obtained by solving:

p⇤(a|s) arg max
p

J(p, M̂)� a
1

1� g
Es⇠dp

M̂
(s)

⇥
DCQL(p, p̂b)(s)

⇤
, (C.4.13)

where DCQL(p, p̂b)(s) := Âa p(a|s) ·
⇣

p(a|s)
p̂b(a|s) � 1

⌘
.

Proof. Q̂p is obtained by solving a recursive Bellman fixed point equation in the empirical
MDP M̂, with an altered reward, r(s, a)� a

h
p(a|s)
p̂b(a|s) � 1

i
, hence the optimal policy p⇤(a|s)

obtained by optimizing the value under the CQL Q-function equivalently is characterized
via Equation C.4.13.

Now, our goal is to relate the performance of p⇤(a|s) in the actual MDP, M, to the perfor-
mance of the behavior policy, pb(a|s). To this end, we prove the following theorem:

Theorem C.4.6. Let p⇤(a|s) be the policy obtained by optimizing Equation C.4.13. Then the
performance of p⇤(a|s) in the actual MDP M satisfies,

J(p⇤, M) � J(p̂b, M) (C.4.14)
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Proof. The proof for this statement is divided into two parts. The first part involves
relating the return of p⇤(a|s) in MDP M̂ with the return of p̂b in MDP M̂. Since, p⇤(a|s)
optimizes Equation C.4.13, we can relate J(p⇤, M̂) and J(p̂b, M̂) as:

J(p⇤, M̂)� aEs⇠dp
M̂

(s)
⇥
DCQL(p⇤, pb)(s)

⇤
� J(p̂b, M̂)� 0 = J(p̂b, M̂).

The next step involves using concentration inequalities to upper and lower bound J(p⇤, M̂)

and J(p⇤, M) and the corresponding difference for the behavior policy. In order to do so,
we prove the following lemma, that relates J(p, M) and J(p, M̂) for an arbitrary policy p.
We use this lemma to then obtain the proof for the above theorem.

Lemma C.4.7. For any MDP M, an empirical MDP M̂ generated by sampling actions according
to the behavior policy p̂b(a|s) and a given policy p,
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�� 
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Proof. To prove this, we first use the triangle inequality to clearly separate reward and
transition dynamics contributions in the expected return.

��J(p, M̂)� J(p, M)
�� =

1
1� g

�����Âs,a
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We first use concentration inequalities to upper bound D1(s). Note that under concen-
tration assumptions, and by also using the fact that E[D1(s)] = 0 (in the limit of infinite
data), we get:

|D1(s)| Â
a

p(a|s)|rM̂(s, a)� rM(s, a)| Â
a

p(a|s) Cr,dp
|D(s)| · |D(a|s)|

=
Cr,dp
|D(s)| Â

a

p(a|s)q
p̂b(a|s)

,

where the last step follows from the fact that |D(s, a)| = |D(s)| · p̂b(a|s).
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Next we bound the second term. We first note that if we can bound ||dp
M̂ � dp

M||1, (i.e., the
total variation between the marginal state distributions in M̂ and M, then we are done,
since |rM(s, a)|  Rmax and p(a|s)  1, and hence we bound the second term effectively.
We use an analysis similar to Achiam et al. [3] to obtain this total variation bound. Define,
G = (I � gPp

M)�1 and arG = (I � gPp
M̂)�1 and let D = Pp

M � Pp
M̂. Then, we can write:

dp
M̂ � dp

M = (1� g)(arG� G)r,

where r(s) is the initial state distribution, which is assumed to be the same for both the
MDPs. Then, using Equation 21 from Achiam et al. [3], we can simplify this to obtain,

dp
M � dp

M̂ = (1� g)gGDarGµ = garGDdp
M̂

Now, following steps similar to proof of Lemma 3 in Achiam et al. [3] we obtain,
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Hence, we can bound the second term by:
�����Âs
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To finally obtain DCQL(p, pb)(s) in the bound, let a(s, a) := p(a|s)p
p̂b(a|s)

. Then, we can write

DCQL(p, p̂b)(s) as follows:

DCQL(s) = Â
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p(a|s)2
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Combining these arguments together, we obtain the following upper bound on |J(p, M)�
J(p, M̂)|,

��J(p, M̂)� J(p, M)
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The proof of Theorem C.4.6 is then completed by using the above Lemma for bounding
the sampling error for p⇤ and then upper bounding the sampling error for p̂b by the
corresponding sampling error for p⇤, hence giving us a factor of 2 on the sampling
error term in Theorem C.4.6. To see why this is mathematically correct, note that
DCQL(p̂b, p̂b)(s) = 0, hence

q
DCQL(p⇤, p̂b)(s) + 1 �

q
DCQL(p̂b, p̂b)(s) + 1, which

means the sampling error term for p⇤ pointwise upper bounds the sampling error for p̂b,
which justifies the factor of 2.

c.5 extended related work

In this section, we discuss related works to supplement Section 4.6. Specifically, we
discuss the relationships between CQL and uncertainty estimation and policy-constraint
methods.

relationship to uncertainty estimation in offline rl . A number of prior
approaches to offline RL estimate some sort of epistemic uncertainty to determine the
trustworthiness of a Q-value prediction [179, 95, 6, 204]. The policy is then optimized
with respect to lower-confidence estimates derived using the uncertainty metric. However,
it has been empirically noted that uncertainty-based methods are not sufficient to prevent
against OOD actions [95, 179] in and of themselves, are often augmented with policy
constraints due to the inability to estimate tight and calibrated uncertainty sets. Such loose
or uncalibrated uncertainty sets are still effective in providing exploratory behavior in
standard, online RL [254, 253], where these methods were originally developed. However,
offline RL places high demands on the fidelity of such sets [204], making it hard to
directly use these methods.

how does cql relate to prior uncertainty estimation methods? Typical
uncertainty estimation methods rely on learning a pointwise upper bound on the Q-
function that depends on epistemic uncertainty [146, 253] and these upper-confidence
bound values are then used for exploration. In the context of offline RL, this means
learning a pointwise lower-bound on the Q-function. We show in Section 5.1.2 that, with
a naı̈ve choice of regularizer (Equation 5.1.1), we can learn a uniform lower-bound on the
Q-function, however, we then showed that we can improve this bound since the value
of the policy is the primary quantity of interest that needs to be lower-bounded. This
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implies that CQL strengthens the popular practice of point-wise lower-bounds made by
uncertainty estimation methods.

can we make cql dependent on uncertainty? We can slightly modify CQL
to make it be account for epistemic uncertainty under certain statistical concentration
assumptions. Typical uncertainty estimation methods in RL [254, 146] assume the applica-
bility of concentration inequalities (for example, by making sub-Gaussian assumptions on
the reward and dynamics), to obtain upper or lower-confidence bounds and the canonical

amount of over- (under-) estimation is usually given by, O
✓

1p
n(s,a)

◆
, where n(s, a) is the

number of times a state-action pair (s, a) is observed in the dataset. We can incorporate
such behavior in CQL by modifying Equation 5.1.3 to update Bellman error weighted by
the cardinality of the dataset, |D|, which gives rise to the following effective Q-function
update in the tabular setting, without function approximation:

Q̂k+1
(s, a) = BpQ̂k

(s, a)� a
µ(a|s)� pb(a|s)

n(s, a)
! BpQ̂k

(s, a) as n(s, a)! •.

In the limit of infinite data, i.e. n(s, a)! •, we find that the amount of underestimation
tends to 0. When only a finite-sized dataset is provided, i.e. n(s, a) < N, for some N, we
observe that by making certain assumptions, previously used in prior work [146, 254]
on the concentration properties of the reward value, r(s, a) and the dynamics function,
T(s0|s, a), such as follows:

||r̂(s, a)� r(s, a)||  Crp
n(s, a)

and ||T̂(s0|s, a)� T(s0|s, a)||  CTp
n(s, a)

,

where Cr and CT are constants, that depend on the concentration properties of the MDP,
and by appropriately choosing a, i.e. a = W(n(s, a)), such that the learned Q-function
still lower-bounds the actual Q-function (by nullifying the possible overestimation that
appears due to finite samples), we are still guaranteed a lower bound.

c.6 additional experimental setup and implementation details

In this section, we discuss some additional implementation details related to our method.
As discussed in Section 5.1.5, CQL can be implemented as either a Q-learning or an
actor-critic method. For our experiments on D4RL benchmarks [86], we implemented
CQL on top of soft actor-critic (SAC) [122], and for experiments on discrete-action Atari
tasks, we implemented CQL on top of QR-DQN [51]. We experimented with two ways
of implementing CQL, first with a fixed a, where we chose a = 5.0, and second with a
varying a chosen via dual gradient-descent. The latter formulation automates the choice
of a by introducing a “budget” parameter, t, as shown below:

min
Q

max
a�0

a

 
Es⇠dpb (s)

"
log Â

a
exp(Q(s, a))�Ea⇠pb(a|s) [Q(s, a)]

#
� t

!
+TD-Error. (C.6.1)
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Equation C.6.1 implies that if the expected difference in Q-values is less than the specified
threshold t, a will adjust to be close to 0, whereas if the difference in Q-values is higher
than the specified threshold, t, then a is likely to take on high values, and thus more
aggressively penalize Q-values. We refer to this version as CQL-Lagrange, and we
found that this version drastically outperforms the fixed a version on the more complex
AntMazes.

Choice of a. Our experiments in Section 4.5 use either a fixed penalty value a = 5.0 or
the Lagrange version to automatically tune a during training. For our experiments, across
D4RL Gym MuJoCo domains, we choose a fixed value at a = 5.0. For the other D4RL
domains (Franka Kitchen and Adroit), we chose t = 5.0. And for our Atari experiments,
we used a fixed penalty, with a = 1.0 chosen uniformly for Table 3 (with 10% data),
a = 4.0 chosen uniformly for Table 3 (with 1% data), and a = 0.5 for Figure 10.1

Computing log Âa exp(Q(s, a). CQL(H) uses log-sum-exp in the objective for training
the Q-function (Equation 5.1.4). In discrete action domains, we compute the log-sum-exp
exactly by invoking the standard tf.reduce logsumexp() (or torch.logsumexp()) functions
provided by autodiff libraries. In continuous action tasks, CQL(H) uses importance
sampling to compute this quantity, where in practice, we sampled 10 action samples at
every state s from a uniform-at-random Unif(a) and 10 action samples from the current
policy, p(a|s) and used these alongside importance sampling to compute it as follows
using N = 10 action samples:

log Â
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On some domains, we observe that choosing higher values of N is better, since it is
more effective in covering the space of Q-values and prevents overestimation. We can
also choose to incorporate actions sampled from the policy at the next state into the
computation of the log-sum-exp, however, this is not something that is necessarily
needed.

Hyperparameters. For the updated results on the latest D4RL-v2 tasks, we used the CQL
implementation at https://github.com/young-geng/CQL. We used a policy learning rate
of 1e-4 and a critic learning rate of 3e-4 for the actor-critic version of CQL. This is to ensure

1 For a standard DQN-style method that utilizes the mean-squared error backup, please the hyperparameters
in: https://arxiv.org/abs/2112.04716. Notably, with a DQN-style architecture, a = 0.1 is generally a good
choice, across the board on all Atari games.
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that the actor learning rate is smaller than the critic learning rate, which is required as
per Theorem 5.1.3. Following the convention set by D4RL [86], we report the normalized,
smooth average undiscounted return over 3 seeds for in our results in Section 4.5. The
other hyperparameters we evaluated on during our preliminary experiments, and might
be helpful guidelines for using CQL are as follows:

• Lagrange threshold t and a. For the Gym-MuJoCo tasks, we used a = 5.0, for the
antmaze tasks, we used t = 1.0.

• Number of gradient steps. We evaluated our method on varying number of gradient
steps. Since CQL generally uses a reduced policy learning rate (1e-4), we trained
CQL methods for 1M gradient steps. For a number of the gym tasks (e.g., hopper
and walker tasks), we find that CQL is trained in about 500k gradient steps, while
for the halfcheetah tasks, they take 1M steps and are still improving. For instance
on the halfcheetah-medium-expert dataset, we find that training for longer can give
rise to better performance (e.g., ⇡ 11k in return as compared to ⇡ 9k as reported.
Due to a lack of a proper valdiation error metric for offline Q-learning methods,
deciding the number of gradient steps dynamically has been an open problem in
offline RL [204]. Different prior methods choose the number of steps differently. For
our experiments, we used 1M gradient steps for all D4RL domains, and followed
the convention from Agarwal et al. [6], to report returns after 5x gradient steps of
training for the Atari results in Table 3.

• Choice of backup. Instead of using an actor-critic version of CQL, we can instead
also use an approximate max-backup for the Q-function in a continuous control
setting. Similar to prior work [179], we sample 10 actions from the current policy
at the next state s0, called a1, · · · a10 ⇠ p(a0|s0) and generate the target values for
the backup using the following equation: r(s, a) + g maxa1,··· ,a10 Q(s0, a0). This is
different from the standard actor-critic backup that performs an expectation of the
Q-values Q(s0, a0) at the next state under the policy’s distribution p(a0|s0). We used
this backup for the Antmaze domains.

• Reward function. For Antmaze tasks, we found it useful to not utilize a reward
function of 0 and 1, but rather use shifted and scaled versions of these rewards. We
used �5 and 5 as the two levels. This does not leak any form of domain knowledge
into the rewards, but rather it enables the Q-function to propagate +5 faster into
the initial states. On the other hand, a 0/1 reward is unable to propagate +1 into
the Q-function at the initial state. To observe this, note that the change in the
Q-function at the initial state-action pair due to a +1 at the end of a length 1000
trajectory is g1000⇥ 1 = 4e� 5, which is negligible. Understanding how the choice
of the reward function affects optimization and error propagation in Q-learning is a
subject of future work.
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Other hyperparameters, were kept identical to SAC on the D4RL tasks, including the
twin Q-function trick, soft-target updates, etc. We did observe that larger the size of the
Q-network (3 or 4 hidden layers, compared to 2 hidden layers typically used by SAC), the
better the performance. In the Atari domain, we based our implementation of CQL on
top of the QR-DQN implementation provided by Agarwal et al. [6]. We did not tune any
parameter from the QR-DQN implementation released with the official codebase with
[6].

Model-Based Conservative Value Estimation

c.7 combo proofs from section 5 .2 .4

In this section, we provide proofs for theoretical results in Section 5.2.4. Before the proofs,
we note that all statements are proven in the case of finite state space (i.e., |S| < •) and
finite action space (i.e., |A| < •) we define some commonly appearing notation symbols
appearing in the proof:

• PM and rM (or P and r with no subscript for notational simplicity) denote the
dynamics and reward function of the actual MDP M

• PM and rM denote the dynamics and reward of the empirical MDP M generated
from the transitions in the dataset

• PcM and r cM denote the dynamics and reward of the MDP induced by the learned
model cM

We also assume that whenever the cardinality of a particular state or state-action pair in
the offline dataset D, denoted by |D(s, a)|, appears in the denominator, we assume it is
non-zero. For any non-existent (s, a) /2 D, we can simply set |D(s, a)| to be a small value
< 1, which prevents any bound from producing trivially • values.

c.7.1 A Useful Lemma and Its Proof

Before proving our main results, we first show that the penalty term in equation 5.2.3 is
positive in expectation. Such a positive penalty is important to combat any overestimation
that may arise as a result of using .

Lemma C.7.1 ((Interpolation Lemma). For any f 2 [0, 1], and any given r(s, a) 2 D|S||A|,
let d f be an f-interpolation of r and D, i.e., d f (s, a) := f d(s, a) + (1� f )r(s, a). For a given
iteration k of Equation 5.2.3, we restate the definition of the expected penalty under r(s, a) in
Eq. 5.2.4:

n(r, f ) := Es,a⇠r(s,a)

"
r(s, a)� d(s, a)

d f (s, a)

#
.
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Then n(r, f ) satisfies, (1) n(r, f ) � 0, 8r, f , (2) n(r, f ) is monotonically increasing in f for a
fixed r, and (3) n(r, f ) = 0 iff 8 s, a, r(s, a) = d(s, a) or f = 0.

Proof. To prove this lemma, we use algebraic manipulation on the expression for quantity
n(r, f ) and show that it is indeed positive and monotonically increasing in f 2 [0, 1].

n(r, f ) = Â
s,a

r(s, a)

✓
r(s, a)� d(s, a)

f d(s, a) + (1� f )r(s, a)

◆

= Â
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r(s, a)

✓
r(s, a)� d(s, a)

r(s, a) + f (d(s, a)� r(s, a))
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(C.7.1)
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◆2
� 0

8 f 2 [0, 1]. (C.7.2)

Since the derivative of n(r, f ) with respect to f is always positive, it is an increasing
function of f for a fixed r, and this proves the second part (2) of the Lemma. Using this
property, we can show the part (1) of the Lemma as follows:

8 f 2 (0, 1], n(r, f ) � n(r, 0) = Â
s,a

r(s, a)
r(s, a)� d(s, a)

r(s, a)
= Â

s,a
(r(s, a)� d(s, a))

= 1� 1 = 0. (C.7.3)

Finally, to prove the third part (3) of this Lemma, note that when f = 0, n(r, f ) = 0 (as
shown above), and similarly by setting r(s, a) = d(s, a) note that we obtain n(r, f ) = 0.
To prove the only if side of (3), assume that f 6= 0 and r(s, a) 6= d(s, a) and we will show
that in this case n(r, f ) 6= 0. When d(s, a) 6= r(s, a), the derivative dn(r, f )

d f > 0 (i.e., strictly
positive) and hence the function n(r, f ) is a strictly increasing function of f . Thus, in
this case, n(r, f ) > 0 = n(r, 0) 8 f > 0. Thus we have shown that if r(s, a) 6= d(s, a) and
f > 0, n(r, f ) 6= 0, which completes our proof for the only if side of (3).

c.7.2 Proof of Proposition 5.2.1

Before proving this proposition, we provide a bound on the Bellman backup in the
empirical MDP, BM. To do so, we formally define the standard concentration properties
of the reward and transition dynamics in the empirical MDP, M, that we assume so as to
prove Proposition C.7.1. Following prior work [253, 146, 181], we assume:

Assumption C.7.2. 8 s, a 2M, the following relationships hold with high probability, � 1� d

|rM(s, a)� r(s, a)|  Cr,dp
|D(s, a)|

, ||PM(s0|s, a)� P(s0|s, a)||1 
CP,dp

|D(s, a)|
.
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Under this assumption and assuming that the reward function in the MDP, r(s, a) is
bounded, as |r(s, a)|  Rmax, we can bound the difference between the empirical Bellman
operator, BM and the actual MDP, BM,

���
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⇣
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 Cr,d + gCP,d2Rmax/(1� g)p
|D(s, a)|

.

Thus the overestimation due to sampling error in the empirical MDP, M is bounded
as a function of a bigger constant, Cr,P,d that can be expressed as a function of Cr,d
and CP,d, and depends on d via a

p
log(1/d) dependency. For the purposes of proving

Proposition C.7.3, we assume that:
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Next, we provide a bound on the error between the bellman backup induced by the
learned dynamics model and the learned reward, B cM, and the actual Bellman backup,
BM. To do so, we note that:
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where D(P, PcM) is the total-variation divergence between the learned dynamics model
and the actual MDP. Now, we show that the asymptotic Q-function learned by COMBO
lower-bounds the actual Q-function of any policy p with high probability for a large
enough b � 0. We will use Equations E.2.3 and C.7.6 to prove such a result.

Proposition C.7.3 (Asymptotic lower-bound). Let Pp denote the Hadamard product of the
dynamics P and a given policy p in the actual MDP and let Sp := (I� gPp)�1. Let D denote the
total-variation divergence between two probability distributions. For any p(a|s), the Q-function
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obtained by recursively applying Equation 5.2.3, with B̂p = f Bp
M + (1� f )Bp

cM
, with probability

at least 1� d, results in Q̂p that satisfies:

8s, a, Q̂p
(s, a)  Qp

(s, a)� b ·
"

Sp

"
r� d

d f

##
(s, a) + f

"
Sp

"
Cr,T,dRmax

(1� g)
p

|D|

##
(s, a)

+ (1� f )


Sp

|r� r cM| + 2gRmax

1� g
D(P, PcM)

��
(s, a).

Proof. We first note that the Bellman backup B̂p induces the following Q-function iterates
as per Equation 5.2.3,

Q̂k+1
(s, a) =

⇣
B̂pQ̂k

⌘
(s, a)� b

r(s, a)� d(s, a)

d f (s, a)

= f
⇣
Bp

MQ̂k
⌘

(s, a) + (1� f )
⇣
Bp

cMQ̂k
⌘

(s, a)� b
r(s, a)� d(s, a)

d f (s, a)

=

⇣
BpQ̂k

⌘
(s, a)� b

r(s, a)� d(s, a)

d f (s, a)
+ (1� f )

⇣
B cM

pQ̂k � BpQ̂k
⌘

(s, a)

+ f
⇣
BM

pQ̂k � BpQ̂k
⌘

(s, a)

Q̂k+1 
⇣
BpQ̂k

⌘
� b

r� d
d f

+ (1� f )

|r cM � rM| +

2gRmaxD(P, PcM)

1� g

�
+

f Cr,T,dRmax

(1� g)
p

|D|

Since the RHS upper bounds the Q-function pointwise for each (s, a), the fixed point
of the Bellman iteration process will be pointwise smaller than the fixed point of the
Q-function found by solving for the RHS via equality. Thus, we get that

Q̂p
(s, a)  SprM| {z }

=Qp(s,a)

�b

"
Sp

"
r� d

d f

##
(s, a) + f

"
Sp

"
Cr,T,dRmax

(1� g)
p

|D|

##
(s, a)

+ (1� f )


Sp

|r� r cM| + 2gRmax

1� g
D(P, PcM)

��
(s, a),

which completes the proof of this proposition.

Next, we use the result and proof technique from Proposition C.7.3 to prove Corollary 5.2.1,
that in expectation under the initial state-distribution, the expected Q-value is indeed a
lower-bound.

Corollary C.7.4 (Corollary 5.2.1 restated). For a sufficiently large b, we have a lower-bound that
Es⇠µ0,a⇠p(·|s)[Q̂p(s, a)]  Es⇠µ0,a⇠p(·|s)[Qp(s, a)], where µ0(s) is the initial state distribution.
Furthermore, when es is small, such as in the large sample regime; or when the model bias em is
small, a small b is sufficient along with an appropriate choice of f .
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Proof. To prove this corollary, we note a slightly different variant of Proposition C.7.3. To
observe this, we will deviate from the proof of Proposition C.7.3 slightly and will aim
to express the inequality using B cM, the Bellman operator defined by the learned model
and the reward function. Denoting (I � gPcM)�1 as Sp

cM
, doing this will intuitively allow

us to obtain b (µ(s)p(a|s))T
⇣

Sp
cM

h
r�d
d f

i⌘
(s, a) as the conservative penalty which can

be controlled by choosing b appropriately so as to nullify the potential overestimation
caused due to other terms. Formally,

Q̂k+1
(s, a) =

⇣
B̂pQ̂k

⌘
(s, a)� b

r(s, a)� d(s, a)

d f (s, a)
=

⇣
Bp

cMQ̂k
⌘

(s, a)� b
r(s, a)� d(s, a)

d f (s, a)

+ f
⇣
Bp

M � Bp
cMQ̂k

⌘
(s, a)

| {z }
:=D(s,a)

By controlling D(s, a) using the pointwise triangle inequality:

8s, a,
���Bp

MQ̂k � Bp
cMQ̂k

��� 
���BpQ̂k � Bp

cMQ̂k
���+

���Bp
MQ̂k � BpQ̂k

��� , (C.7.7)

and then iterating the backup Bp
cM

to its fixed point and finally noting that r(s, a) =⇣
(µ · p)TSp

cM

⌘
(s, a), we obtain:

Eµ,p[Q̂p
(s, a)]  Eµ,p[Qp

cM(s, a)]� b Er(s,a)

"
r(s, a)� d(s, a)

d f (s, a)

#
+ terms independent of b.

(C.7.8)
The terms marked as “terms independent of b” correspond to the additional positive
error terms obtained by iterating

���BpQ̂k � Bp
cM

Q̂k
��� and

���Bp
MQ̂k � BpQ̂k

���, which can be
bounded similar to the proof of Proposition C.7.3 above. Now by replacing the model
Q-function, Eµ,p[Qp

cM
(s, a)] with the actual Q-function, Eµ,p[Qp(s, a)] and adding an

error term corresponding to model error to the bound, we obtain that:

Eµ,p[Q̂p
(s, a)]  Eµ,p[Qp

(s, a)]+ terms independent of b� b Er(s,a)

"
r(s, a)� d(s, a)

d f (s, a)

#

| {z }
=n(r, f )>0

.

(C.7.9)
Hence, by choosing b large enough, we obtain the desired lower bound guarantee.

Remark C.7.5 (COMBO does not underestimate at every s 2 D unlike CQL.). Before con-
cluding this section, we discuss how the bound obtained by COMBO (Equation C.7.9) is
tighter than CQL. CQL learns a Q-function such that the value of the policy under the re-
sulting Q-function lower-bounds the true value function at each state s 2 D individually (in
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the absence of no sampling error), i.e., 8s 2 D, V̂p
CQL(s)  Vp(s), whereas the bound in

COMBO is only valid in expectation of the value function over the initial state distribution, i.e.,
Es⇠µ0(s)[V̂p

COMBO(s)]  Es⇠µ0(s)[Vp(s)], and the value function at a given state may not be a
lower-bound. For instance, COMBO can overestimate the value of a state more frequent in the
dataset distribution d(s, a) but not so frequent in the r(s, a) marginal distribution of the policy
under the learned model cM. To see this more formally, note that the expected penalty added in the
effective Bellman backup performed by COMBO (Equation 5.2.3), in expectation under the dataset
distribution d(s, a), en(r, d, f ) is actually negative:

en(r, d, f ) = Â
s,a

d(s, a)
r(s, a)� d(s, a)

d f (s, a)
= �Â

s,a
d(s, a)

d(s, a)� r(s, a)

f d(s, a) + (1� f )r(s, a)
< 0,

where the final inequality follows via a direct application of the proof of Lemma C.7.1. Thus,
COMBO actually overestimates the values at atleast some states (in the dataset) unlike CQL.

c.7.3 Proof of Proposition 5.2.2

In this section, we will provide a proof for Proposition 5.2.2, and show that the COMBO
can be less conservative in terms of the estimated value. To recall, let Dp

COMBO :=
Es,a⇠dM(s),p(a|s)

⇥
Q̂p(s, a

⇤
and let Dp

CQL := Es,a⇠dM,p(a|s)
h

Q̂p
CQL(s, a)

i
. From Kumar

et al. [181], we obtain that Q̂p
CQL(s, a) := Qp(s, a) � b

p(a|s)�pb(a|s)
pb(a|s) . We shall derive

the condition for the real data fraction f = 1 for COMBO, thus making sure that
d f (s) = dpb(s). To derive the condition when Dp

COMBO � Dp
CQL, we note the following

simplifications:

Dp
COMBO � Dp

CQL (C.7.10)

=) Â
s,a

dM(s)p(a|s)Q̂p
(s, a) �Â

s,a
dM(s)p(a|s)Q̂p

CQL(s, a) (C.7.11)

=) b Â
s,a

dM(s)p(a|s)
 

r(s, a)� dpb(s)pb(a|s)
dpb(s)pb(a|s)

!
(C.7.12)

 b Â
s,a

dM(s)p(a|s)
 

p(a|s)� pb(a|s)
pb(a|s)

!
. (C.7.13)
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Now, in the expression on the left-hand side, we add and subtract dpb(s)p(a|s) from the
numerator inside the paranthesis.

Â
s,a

dM(s, a)

 
r(s, a)� dpb(s)pb(a|s)

dpb(s)pb(a|s)

!
(C.7.14)

= Â
s,a

dM(s, a)

 
r(s, a)� dpb(s)p(a|s) + dpb(s)p(a|s)� dpb(s)pb(a|s)

dpb(s)pb(a|s)

!
(C.7.15)

= Â
s,a

dM(s, a)
p(a|s)� pb(a|s)

pb(a|s)
| {z }

(1)

+ Â
s,a

dM(s, a) · r(s)� dpb(s)
dpb(s)

· p(a|s)
pb(a|s) (C.7.16)

The term marked (1) is identical to the CQL term that appears on the right in Equa-
tion C.7.12. Thus the inequality in Equation C.7.12 is satisfied when the second term above
is negative. To show this, first note that dpb(s) = dM(s) which results in a cancellation.
Finally, re-arranging the second term into expectations gives us the desired result. An
analogous condition can be derived when f 6= 1, but we omit that derivation as it will be
hard to interpret terms appear in the final inequality.

c.7.4 Proof of Proposition 5.2.3

To prove the policy improvement result in Proposition 5.2.3, we first observe that using
Equation 5.2.3 for Bellman backups amounts to finding a policy that maximizes the return
of the policy in the a modified “f-interpolant” MDP which admits the Bellman backup
p, and is induced by a linear interpolation of backups in the empirical MDP M and the
MDP induced by a dynamics model cM and the return of a policy p in this effective
f-interpolant MDP is denoted by J(M, cM, f , p). Alongside this, the return is penalized
by the conservative penalty where rp denotes the marginal state-action distribution of
policy p in the learned model cM.

Ĵ( f , p) = J(M, cM, f , p)� b
n(rp, f )

1� g
. (C.7.17)

We will require bounds on the return of a policy p in this f-interpolant MDP, J(M, cM, f , p),
which we first prove separately as Lemma C.7.6 below and then move to the proof of
Proposition 5.2.3.

Lemma C.7.6 (Bound on return in f-interpolant MDP). For any two MDPs, M1 and M2,
with the same state-space, action-space and discount factor, and for a given fraction f 2 [0, 1],
define the f-interpolant MDP M f as the MDP on the same state-space, action-space and with the
same discount as the MDP with dynamics: PM f := f PM1 + (1� f )PM2 and reward function:
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rM f := f rM1 + (1� f )rM2 . Then, given any auxiliary MDP, M, the return of any policy p in
M f , J(p, M f ), also denoted by J(M1, M2, f , p), lies in the interval:

⇥
J(p, M)� a, J(p, M) + a

⇤
, where a is given by:

a =
2g(1� f )
(1� g)2 RmaxD

�
PM2 , PM

�
+

g f
1� g

���Edp
Mp

h⇣
Pp

M � Pp
M1

⌘
Qp

M

i���

+
f

1� g
Es,a⇠dp

Mp[|rM1(s, a)� rM(s, a)|] + 1� f
1� g

Es,a⇠dp
Mp[|rM2(s, a)� rM(s, a)|].

(C.7.18)

Proof. To prove this lemma, we note two general inequalities. First, note that for a fixed
transition dynamics, say P, the return decomposes linearly in the components of the
reward as the expected return is linear in the reward function:

J(P, rM f ) = J(P, f rM1 + (1� f )rM2) = f J(P, rM1) + (1� f )J(P, rM2).

As a result, we can bound J(P, rM f ) using J(P, r) for a new reward function r of the
auxiliary MDP, M, as follows

J(P, rM f ) = J(P, f rM1 + (1� f )rM2) = J(P, r + f (rM1 � r) + (1� f )(rM2 � r)

= J(P, r) + f J(P, rM1 � r) + (1� f )J(P, rM2 � r)

= J(P, r) +
f

1� g
Es,a⇠dp
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⇥
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⇤

+
1� f
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Es,a⇠dp
M(s)p(a|s)

⇥
rM2(s, a)� r(s, a)

⇤
.

Second, note that for a given reward function, r, but a linear combination of dynamics,
the following bound holds:

J(PM f , r) = J( f PM1 + (1� f )PM2 , r)

= J(PM + f (PM1 � PM) + (1� f )(PM2 � PM), r)

= J(PM, r)� g(1� f )
1� g

Es,a⇠dp
M(s)p(a|s)

h⇣
Pp

M2
� Pp

M

⌘
Qp

M

i

� g f
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Es,a⇠dp
M(s)p(a|s)

h⇣
Pp

M � Pp
M1

⌘
Qp

M

i

2


J(PM, r) ±
✓

g f
(1� g)

���Es,a⇠dp
M(s)p(a|s)

h⇣
Pp

M � Pp
M1

⌘
Qp

M

i���

+
2g(1� f )Rmax

(1� g)2 D(PM2 , PM)

◆�
.
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To observe the third equality, we utilize the result on the difference between returns of
a policy p on two different MDPs, PM1 and PM f from Agarwal et al. [5] (Chapter 2,
Lemma 2.2, Simulation Lemma), and additionally incorporate the auxiliary MDP M
in the expression via addition and subtraction in the previous (second) step. In the
fourth step, we finally bound one term that corresponds to the learned model via the
total-variation divergence D(PM2 , PM) and the other term corresponding to the empirical
MDP M is left in its expectation form to be bounded later.

Using the above bounds on return for reward-mixtures and dynamics-mixtures, proving
this lemma is straightforward:

J(M1, M2, f , p) := J(PM f , f rM1 + (1� f )rM2) = J( f PM1 + (1� f )PM2 , rM f )

2
h

J(PM f , rM) ±

✓
f

1� g
Es,a⇠dp

Mp[|rM1(s, a)� rM(s, a)|] + 1� f
1� g

Es,a⇠dp
Mp[|rM2(s, a)� rM(s, a)|]

◆

| {z }
:=DR

3

7775
,

where the second step holds via linear decomposition of the return of p in M f with
respect to the reward interpolation, and bounding the terms that appear in the reward
difference. For convenience, we refer to these offset terms due to the reward as DR.
For the final part of this proof, we bound J(PM f , rM) in terms of the return on the
actual MDP, J(PM, rM), using the inequality proved above that provides intervals for
mixture dynamics but a fixed reward function. Thus, the overall bound is given by
J(p, M f ) 2 [J(p, M)� a, J(p, M) + a], where a is given by:

a =
2g(1� f )
(1� g)2 RmaxD

�
PM2 , PM

�
+

g f
1� g

���Edp
Mp

h⇣
Pp

M � Pp
M1

⌘
Qp

M

i���+ DR. (C.7.19)

This concludes the proof of this lemma.

Finally, we prove Theorem 5.2.3 that shows how policy optimization with respect to
Ĵ( f , p) affects the performance in the actual MD by using Equation C.7.17 and building
on the analysis of pure model-free algorithms from Kumar et al. [181]. We restate a more
complete statement of the theorem below and present the constants at the end of the
proof.

Theorem C.7.7 (Formal version of Proposition 5.2.3). Let p̂out(a|s) be the policy obtained by
COMBO. Then, the policy pout(a|s) is a z-safe policy improvement over pb in the actual MDP
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M, i.e., J(pout, M) � J(pb, M)� z, with probability at least 1� d, where z is given by (where
rb(s, a) := d

pb

cM
(s, a)):

O
✓

g f
(1� g)2

◆"
Es⇠dpout

M

"s
|A|

|D(s)| (DCQL(pout, pb) + 1)

##

+ O
✓

g(1� f )
(1� g)2

◆
DTV(PM, PcM)� b

n(rpout , f )� n(rb, f )
(1� g)

.

Proof. We first note that since policy improvement is not being performed in the same
MDP, M as the f-interpolant MDP, M f , we need to upper and lower bound the amount
of improvement occurring in the actual MDP due to the f-interpolant MDP. As a result
our first is to relate J(p, M) and J(p, M f ) := J(M, cM, f , p) for any given policy p.

Step 1: Bounding the return in the actual MDP due to optimization in the f-interpolant
MDP. By directly applying Lemma C.7.6 stated and proved previously, we obtain the
following upper and lower-bounds on the return of a policy p:

J(M, cM, f , p) 2 [J(p, M)� a, J(p, M) + a] ,

where a is shown in Equation C.7.18. As a result, we just need to bound the terms
appearing the expression of a to obtain a bound on the return differences. We first note
that the terms in the expression for a are of two types: (1) terms that depend only on
the reward function differences (captured in DR in Equation C.7.19), and (2) terms that
depend on the dynamics (the other two terms in Equation C.7.19).

To bound DR, we simply appeal to concentration inequalities on reward (Assump-
tion C.7.2), and bound DR as:

DR :=
f

1� g
Es,a⇠dp

Mp[|rM1(s, a)� rM(s, a)|] + 1� f
1� g

Es,a⇠dp
Mp[|rM2(s, a)� rM(s, a)|]

 Cr,d
1� g

Es,a⇠dp
Mp

"
1p

D(s, a)

#
+

1
1� g

||RM � R cM|| := Du
R.

Note that both of these terms are of the order of O(1/(1� g)) and hence they don’t
figure in the informal bound in Theorem 5.2.3 in the main text, as these are dominated
by terms that grow quadratically with the horizon. To bound the remaining terms in
the expression for a, we utilize a result directly from Kumar et al. [181] for the empirical
MDP, M, which holds for any policy p(a|s), as shown below.

g

(1� g)

���Es,a⇠dp
M(s)p(a|s)

h⇣
Pp

M � Pp
M1

⌘
Qp

M

i���

 2gRmaxCP,d
(1� g)2 Es⇠dp

M(s)

" p
|A|p

|D(s)|

q
DCQL(p, pb)(s) + 1

#
.
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Step 2: Incorporate policy improvement in the f-inrerpolant MDP. Now we incorporate
the improvement of policy pout over the policy pb on a weighted mixture of cM and
M. In what follows, we derive a lower-bound on this improvement by using the fact
that policy pout is obtained by maximizing Ĵ( f , p) from Equation C.7.17. As a direct
consequence of Equation C.7.17, we note that

Ĵ( f , pout) = J(M, cM, f , pout)� b
n(rp, f )

1� g
� Ĵ( f , pb) = J(M, cM, f , pb)� b

n(rb, f )
1� g

(C.7.20)

Following Step 1, we will use the upper bound on J(M, cM, f , p) for policy p = pout and
a lower-bound on J(M, cM, f , p) for policy p = pb and obtain the following inequality:

J(pout, M)� b
n(rp, f )

1� g
�

n
J(pb, M)� b

n(rb, f )
1� g

� 4g(1� f )Rmax
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s⇠d
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M

"s
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|D(s)|

#

| {z }
:=(^)

�Du
R

o
.

The term marked by (⇤) in the above expression can be upper bounded by the concentra-
tion properties of the dynamics as done in Step 1 in this proof:

(⇤)  4g f CP,dRmax

(1� g)2 Es⇠dpout
M (s)

" p
|A|p

|D(s)|

q
DCQL(pout, pb)(s) + 1

#
. (C.7.21)

Finally, using Equation C.7.21, we can lower-bound the policy return difference as:

J(pout, M)� J(pb, M) � b
n(rp, f )

1� g
� b

n(rb, f )
1� g

� 4g(1� f )Rmax

(1� g)2 D(PM, PcM)� (⇤)� Du
R.

Plugging the bounds for terms (a), (b) and (c) in the expression for z where J(pout, M)�
J(pb, M) � z, we obtain:

z =

✓
4 f gRmaxCP,d

(1� g)2

◆
Es⇠dpout

M (s)

" p
|A|p

|D(s)|

q
DCQL(pout, pb)(s) + 1

#
+ (^)� Du

R

+
4(1� f )gRmax

(1� g)2 D(PM, PcM)� b
n(rp, f )

1� g
+ b

n(rb, f )
1� g

. (C.7.22)
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Remark C.7.8 (Interpretation of Proposition 5.2.3). Now we will interpret the theoretical
expression for z in Equation C.7.22, and discuss the scenarios when it is negative. When the
expression for z is negative, the policy pout is an improvement over pb in the original MDP, M.

• First note that we have never used the fact that the learned model PcM is close to the actual
MDP, PM on the states visited by the behavior policy pb in our analysis. We will use
this fact now: in practical scenarios, n(rb, f ) is expected to be smaller than n(rp, f ), since
n(rb, f ) is directly controlled by the difference and density ratio of rb(s, a) and d(s, a):

n(rb, f )  n(rb, f = 1) = Âs,a d
pb

cM
(s, a)

⇣
d

pb

cM
(s, a)/d

pb

M(s, a)� 1
⌘2

by Lemma C.7.1
which is expected to be small for the behavior policy pb in cases when the behavior policy
marginal in the empirical MDP, d

pb

M(s, a), is broad. This is a direct consequence of the fact
that the learned dynamics integrated with the policy under the learned model: P

pb

cM
is closer

to its counterpart in the empirical MDP: P
pb

M for pb. Note that this is not true for any other
policy besides the behavior policy that performs several counterfactual actions in a rollout and
deviates from the data. For such a learned policy p, we incur an extra error which depends
on the importance ratio of policy densities, compounded over the horizon and manifests as
the DCQL term (similar to Equation C.7.21, or Lemma D.4.1 in Kumar et al. [181]). Thus,
in practice, we argue that we are interested in situations where n(rp, f ) > n(rb, f ), in
which case by increasing b, we can make the expression for z in Equation C.7.22 negative,
allowing for policy improvement.

• In addition, note that when f is close to 1, the bound reverts to a standard model-free policy
improvement bound and when f is close to 0, the bound reverts to a typical model-based
policy improvement bound. In scenarios with high sampling error (i.e. smaller |D(s)|), if
we can learn a good model, i.e., D(PM, PcM) is small, we can attain policy improvement
better than model-free methods by relying on the learned model by setting f closer to 0.
A similar argument can be made in reverse for handling cases when learning an accurate
dynamics model is hard.

c.8 experimental details for combo

In this section, we include all details of our empirical evaluations of COMBO.

c.8.1 Practical algorithm implementation details

model training . In the setting where the observation space is low-dimensional, as
mentioned in Section 5.2.3, we represent the model as a probabilistic neural network that
outputs a Gaussian distribution over the next state and reward given the current state
and action:

bTq(st+1, r|s, a) = N (µq(st, at), Sq(st, at)).
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We train an ensemble of 7 such dynamics models following [147] and pick the best 5
models based on the validation prediction error on a held-out set that contains 1000
transitions in the offline dataset D. During model rollouts, we randomly pick one
dynamics model from the best 5 models. Each model in the ensemble is represented
as a 4-layer feedforward neural network with 200 hidden units. For the generalization
experiments in Section 5.2.5.1, we additionally use a two-head architecture to output the
mean and variance after the last hidden layer following [365].

In the image-based setting, we follow Rafailov et al. [272] and use a variational model
with the following components:

Image encoder: ht = Eq(ot)

Inference model: st ⇠ qq(st|ht, st�1, at�1)

Latent transition model: st ⇠ bTq(st|st�1, at�1)

Reward predictor: rt ⇠ pq(rt|st)

Image decoder: ot ⇠ Dq(ot|st).

(C.8.1)

We train the model using the evidence lower bound:

max
q

T�1

Â
t=0

h
Eqq [log Dq(ot+1|st+1)]

i
�Eqq

h
DKL[qq(ot+1, st+1|st, at)kbTqt(st+1, at+1)]

i

At each step t we sample a latent forward model bTqt from a fixed set of K models
[bTq1 , . . . , bTqK ]. For the encoder Eq we use a convolutional neural network with kernel size
4 and stride 2. For the Walker environment we use 4 layers, while the Door Opening task
has 5 layers. The Dq is a transposed convolutional network with stride 2 and kernel sizes
[5, 5, 6, 6] and [5, 5, 5, 6, 6] respectively. The inference network has a two-level structure
similar to Hafner et al. [127] with a deterministic path using a GRU cell with 256 units
and a stochastic path implemented as a conditional diagonal Gaussian with 128 units.
We only train an ensemble of stochastic forward models, which are also implemented as
conditional diagonal Gaussians.

policy optimization. We sample a batch size of 256 transitions for the critic and
policy learning. We set f = 0.5, which means we sample 50% of the batch of transitions
from D and another 50% from Dmodel. The equal split between the offline data and
the model rollouts strikes the balance between conservatism and generalization in our
experiments as shown in our experimental results in Section 5.2.5. We represent the Q-
networks and policy as 3-layer feedforward neural networks with 256 hidden units.
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For the choice of r(s, a) in Equation 5.2.1, we can obtain the Q-values that lower-bound
the true value of the learned policy p by setting r(s, a) = dp

cM
(s)p(a|s). However, as

discussed in [181], computing p by alternating the full off-policy evaluation for the policy
p̂k at each iteration k and one step of policy improvement is computationally expensive.
Instead, following [181], we pick a particular distribution y(a|s) that approximates
the the policy that maximizes the Q-function at the current iteration and set r(s, a) =

dp
cM

(s)y(a|s). We formulate the new objective as follows:

Q̂k+1  arg min
Q

b
⇣

Es⇠dp
cM

(s),a⇠y(a|s)[Q(s, a)]�Es,a⇠D [Q(s, a)]

⌘

+
1
2

Es,a,s0⇠d f

⇣
Q(s, a)� bBpQ̂k

(s, a))

⌘2
�

+ R(y), (C.8.2)

where R(y) is a regularizer on y. In practice, we pick R(y) to be the�DKL(y(a|s)kUnif(a))

and under such a regularization, the first term in Equation C.8.2 corresponds to computing
softmax of the Q-values at any state s as follows:

Q̂k+1  arg min
Q

max
y

b

 
Es⇠dp

cM
(s)

"
log Â

aQ(s,a)

#
�Es,a⇠D [Q(s, a)]

!

+
1
2

Es,a,s0⇠d f

⇣
Q(s, a)� bBpQ̂k

(s, a))

⌘2
�

. (C.8.3)

We estimate the log-sum-exp term in Equation C.8.3 by sampling 10 actions at every state
s in the batch from a uniform policy Unif(a) and the current learned policy p(a|s) with
importance sampling following [181].

c.8.2 Hyperparameter Selection for COMBO

In this section, we discuss the hyperparameters that we use for COMBO. In the D4RL
and generalization experiments, our method are built upon the implementation of
MOPO provided at: https://github.com/tianheyu927/mopo. The hyperparameters used
in COMBO that relates to the backbone RL algorithm SAC such as twin Q-functions
and number of gradient steps follow from those used in MOPO with the exception of
smaller critic and policy learning rates, which we will discuss below. In the image-based
domains, COMBO is built upon LOMPO without any changes to the parameters used
there. For the evaluation of COMBO, we follow the evaluation protocol in D4RL [92]
and a variety of prior offline RL works [181, 365, 166] and report the normalized score
of the smooth undiscounted averaged return over 3 random seeds for all environments
except sawyer-door-close and sawyer-door where we report the average success rate over 3
random seeds.

We now list the additional hyperparameters as follows.

• Rollout length h. We perform a short-horizon model rollouts in COMBO similar to
Yu et al. [365] and Rafailov et al. [272]. For the D4RL experiments and generalization
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experiments, we followed the defaults used in MOPO and used h = 1 for walker2d
and sawyer-door-close, h = 5 for hopper, halfcheetah and halfcheetah-jump, and
h = 25 for ant-angle. In the image-based domain we used rollout length of h = 5
for both the the walker-walk and sawyer-door-open environments following the same
hyperparameters used in Rafailov et al. [272].

• Q-function and policy learning rates. On state-based domains, we searched over
{1e� 4, 3e� 4} for the Q-function learning rate and {1e� 5, 3e� 5, 1e� 4} for the
policy learning rate. We found that 3e� 4 for the Q-function learning rate (also
used previously in Kumar et al. [181]) and 1e� 4 for the policy learning rate (also
recommended previously in Kumar et al. [181] for gym domains) work well for
almost all domains except that on walker2d where a smaller Q-function learning
rate of 1e� 4 and a correspondingly smaller policy learning rate of 1e� 5 works
the best. In the image-based domains, we followed the defaults from prior work
[272] and used 3e� 4 for both the policy and Q-function.

• Conservative coefficient b. We searched over {0.5, 1.0, 5.0} for b, which correspond
to low conservatism, medium conservatism and high conservatism. A larger b
would be desirable in more narrow dataset distributions with lower-coverage of
the state-action space that propagates error in a backup whereas a smaller b is
desirable with diverse dataset distributions. On the D4RL experiments, we found
that b = 0.5 works well for halfcheetah agnostic of dataset quality, while on hopper
and walker2d, we found that the more “narrow” dataset distributions: medium
and medium-expert datasets work best with larger b = 5.0 whereas more “diverse”
dataset distributions: random and medium-replay datasets work best with smaller b
(b = 0.5 for walker2d and b = 1.0 for hopper) which is consistent with the intuition.
On generalization experiments, b = 1.0 works best for all environments. In the
image-domains we use b = 0.5 for the medium-replay walker-walk task and and
b = 1.0 for all other domains, which again is in accordance with the impact of b on
performance.

• Choice of r(s, a). We first decouple r(s, a) = r(s)r(a|s) for convenience. As
discussed in Appendix C.8.1, we use r(a|s) as the soft-maximum of the Q-values
and estimated with log-sum-exp. For r(s), we searched over {dp

cM
, r(s) = d f }. We

found that dp
cM

works better the hopper task in D4RL while d f is better for the rest
of the environments. For the remaining domains, we found r(s) = d f works well.

• Choice of µ(a|s). For the rollout policy µ, we searched {Unif(a), p(a|s)}, i.e.
the set that contains a random policy and a current learned policy. We found
that µ(a|s) = Unif(a) works well on the hopper task in D4RL and also in the
ant-angle generalization experiment. For the remaining state-based environments,
we discovered that µ(a|s) = p(a|s) excels. In the image-based domain, we found
that µ(a|s) = Unif(a) works well in the walker-walk domain and µ(a|s) = p(a|s) is
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better for the sawyer-door environment. We observed that µ(a|s) = Unif(a) behaves
less conservatively and is suitable to tasks where dynamics models can be learned
fairly precisely.

• Choice of Backup. Following CQL [181], we use the standard deterministic backup
for COMBO.

• Choice of f . For the ratio between model rollouts and offline data f , we searched
{0.5, 0.8}. We found that f = 0.8 works well on the medium and medium-expert in
the walker2d task in D4RL. For the remaining tasks, we find f = 0.5 works well.

c.8.3 Automatic Hyperparameter Selection Rule for COMBO

It is common in prior work on offline RL to select various hyperparameters using online
policy rollouts [365, 166, 16, 198]. Requiring online rollouts to tune hyperparameters
contradicts the main aim of offline RL, which is to learn entirely from offline data. There-
fore, we attempted to devise an automated rule for tuning important hyperparameters
such as b and f in a fully offline manner in COMBO. We search over a discrete set of
hyperparameters for each task as dicussed above, and use the value of the regularization
term Es,a⇠r(s,a)[Q(s, a)]�Es,a⇠D[Q(s, a)] (shown in Eq. 5.2.1) to evaluate the hyperpa-
rameters. This automated rule picks the hyperparameter setting which achieves the lowest
regularization objective, which indicates that the Q-values on unseen model-predicted
state-action tuples are not overestimated.

Below, we provide additional experimental validation showing the effiacy of this auto-
matic hyperparameter selection rule from above. As shown in Table 34, 35, 36 and 37,
the above proposed automatic hyperparameter selection rule is able to pick the hyperpa-
rameters b, µ(a|s), r(s) and f and that correspond to the best policy performance based
on the regularization value.

c.8.4 Details of generalization environments

For halfcheetah-jump and ant-angle, we follow the same environment used in MOPO. For
sawyer-door-close, we train the sawyer-door environment in https://github.com/rlworkgroup/
metaworld with dense rewards for opening the door until convergence. We collect 50000
transitions with half of the data collected by the final expert policy and a policy that
reaches the performance of about half the expert level performance. We relabel the reward
such that the reward is 1 when the door is fully closed and 0 otherwise. Hence, the offline
RL agent is required to learn the behavior that is different from the behavior policy in a
sparse reward setting. We provide the datasets in the following anonymous link2.

2 The datasets of the generalization environments are available at the following link: https://drive.google.

com/file/d/1pn6dS5OgPQVp ivGws-tmWdZoU7m LvC/view?usp=sharing.
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Task b = 0.5 b = 0.5 b = 5.0 b = 5.0
performance regularizer value performance regularizer value

halfcheetah-medium 54.2 -778.6 40.8 -236.8
halfcheetah-medium-replay 55.1 28.9 9.3 283.9
halfcheetah-medium-expert 89.4 189.8 90.0 6.5
hopper-medium 75.0 -740.7 97.2 -2035.9
hopper-medium-replay 89.5 37.7 28.3 107.2
hopper-medium-expert 111.1 -705.6 75.3 -64.1
walker2d-medium 1.9 51.5 81.9 -1991.2
walker2d-medium-replay 56.0 -157.9 27.0 53.6
walker2d-medium-expert 10.3 -788.3 103.3 -3891.4

Table 34: We include our automatic hyperparameter selection rule of b on a set of representative D4RL
environments. We show the policy performance (bold with the higher number) and the regularizer value
(bold with the lower number). Lower regularizer value consistently corresponds to the higher policy return,
suggesting the effectiveness of our automatic selection rule.

Task µ(a|s) = Unif(a) µ(a|s) = Unif(a) µ(a|s) = p(a|s) µ(a|s) = p(a|s)
performance regularizer value performance regularizer value

hopper-medium 97.2 -2035.9 52.6 -14.9
walker2d-medium 7.9 -106.8 81.9 -1991.2

Table 35: We include our automatic hyperparameter selection rule of µ(a|s) on the medium datasets in the
hopper and walker2d environments from D4RL. We follow the same convention defined in Table 34 and
find that our automatic selection rule can effectively select µ offline.

c.8.5 Details of image-based environments

We visualize our image-based environments in Figure 20. We use the standard walker-walk
environment from Tassa et al. [319] with 64⇥ 64 pixel observations and an action repeat
of 2. Datasets were constructed the same way as Fu et al. [92] with 200 trajectories each.
For the sawyer-door we use 128⇥ 128 pixel observations. The medium-expert dataset
contains 1000 rollouts (with a rollout length of 50 steps) covering the state distribution
from grasping the door handle to opening the door. The expert dataset contains 1000
trajectories samples from a fully trained (stochastic) policy. The data was obtained from
the training process of a stochastic SAC policy using dense reward function as defined in
Yu et al. [364]. However, we relabel the rewards, so an agent receives a reward of 1 when
the door is fully open and 0 otherwise. This aims to evaluate offline-RL performance in a
sparse-reward setting. All the datasets are from [272].
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Task r(s) = dp
M̂ r(s) = dp

M̂ r(s) = d f r(s) = d f
performance regularizer value performance regularizer value

hopper-medium 97.2 -2035.9 56.0 -6.0
walker2d-medium 1.8 14617.4 81.9 -1991.2

Table 36: We include our automatic hyperparameter selection rule of r(s) on the medium datasets in the
hopper and walker2d environments from D4RL. We follow the same convention defined in Table 34 and
find that our automatic selection rule can effectively select r offline.

Task f = 0.5 f = 0.5 f = 0.8 f = 0.8
performance regularizer value performance regularizer value

hopper-medium 97.2 -2035.9 93.8 -21.3
walker2d-medium 70.9 -1707.0 81.9 -1991.2

Table 37: We include our automatic hyperparameter selection rule of f on the medium datasets in the
hopper and walker2d environments from D4RL. We follow the same convention defined in Table 34 and
find that our automatic selection rule can effectively select f offline.

c.9 comparing combo to the naive combination of cql and mbpo

In this section, we stress the distinction between COMBO and a direct combination of two
previous methods CQL and MBPO (denoted as CQL + MBPO). CQL+MBPO performs
Q-value regularization using CQL while expanding the offline data with MBPO-style
model rollouts. While COMBO utilizes Q-value regularization similar to CQL, the effect is
very different. CQL only penalizes the Q-value on unseen actions on the states observed
in the dataset whereas COMBO penalizes Q-values on states generated by the learned
model while maximizing Q values on state-action tuples in the dataset. Additionally,
COMBO also utilizes MBPO-style model rollouts for also augmenting samples for training
Q-functions.

To empirically demonstrate the consequences of this distinction, CQL + MBPO performs
quite a bit worse than COMBO on generalization experiments (Section 5.2.5.1) as shown
in Table 38. The results are averaged across 6 random seeds (± denotes 95%-confidence
interval of the various runs). This suggests that carefully considering the state distribution,
as done in COMBO, is crucial.

Environment BatchMean BatchMax COMBO(Ours) CQL+MBPO

halfcheetah-jump -1022.6 1808.6 5392.7±575.5 4053.4±176.9
ant-angle 866.7 2311.9 2764.8±43.6 809.2±135.4
sawyer-door-close 5% 100% 100%±0.0% 62.7%±24.8%

Table 38: Comparison between COMBO and CQL+MBPO on tasks that require out-of-distribution gen-
eralization. Results are in average returns of halfcheetah-jump and ant-angle and average success rate of
sawyer-door-close. All results are averaged over 6 random seeds, ± the 95%-confidence interval.
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Figure 20: Our image-based environments: The observations are 64⇥ 64 and 128⇥ 128 raw RGB images
for the walker-walk and sawyer-door tasks respectively. The sawyer-door-close environment used in in
Section 5.2.5.1 also uses the sawyer-door environment.
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D
A P P E N D I X : O F F L I N E R L W I T H L A R G E M O D E L S

d.1 additional visualizations and experiments for dr3

In this section, we provide visualizations and diagnostic experiments evaluating vari-
ous aspects of feature co-adaptation and the DR3 regularizer. We first provide more
empirical evidence showing the presence of feature co-adaptation in modern deep of-
fline RL algorithms. We will also visualize DR3 inspired from the implicit regularizer
term in TD-learning alleviates rank collapse discussed in Kumar et al. [182]. We will
compare the efficacies of the explicit regularizer induced for different choices of the
noise covariance matrix M (Equation 6.2.3), understand the effect of dropping the stop
gradient term in ou practical regularizer and finally, perform diagnostic experiments
visualizing if the Q-networks learned with DR3 resemble more like neural networks
trained via supervised learning, measured in terms of sensitivity and robustness to layer
reinitialization [372].

d.1.1 More Empirical Evidence of Feature Co-Adaptation

In this section, we provide more empirical evidence demonstrating the existence of the
feature co-adaptation issue in modern offline RL algorithms such as DQN and CQL. As
shown below in Figure 21, while the average dataset Q-value for both CQL and DQN
exhibit a flatline trend, the dot product similarity for consecutive state-action tuples
generally continues to increase throughout training and does not flatline. While DQN
eventually diverges in Seaquest, the dot products increase with more gradient steps even
before divergence starts to appear.
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Figure 21: Demonstrating feature co-adaptation on five Atari games with standard offline DQN and
CQL, averaged over 3 seeds. Observe that the feature dot products continue to rise with more training for
both CQL and DQN, indicating the presence of co-adaptation. On the other hand, the average Q-values
exhibit a converged trend, except on Seaquest. Further, note that the dot products continue to increase for
CQL even though CQL explicitly corrects for out-of-distribution action inputs.

d.1.2 Layer-wise structure of a Q-network trained with DR3

To understand if DR3 indeed makes Q-networks behave as if they were trained via
supervised learning, utilizing the empirical analysis tools from Zhang et al. [372], we
test the robustness/sensitivity of each layer in the learned network to re-initialization,
while keeping the other layers fixed. This tests if a particular layer is critical to the
predictions of the learned neural network and enables us to reason about generalization
properties [372, 40]. We ran CQL and REM and saved all the intermediate checkpoints.
Then, as shown in Figure 22, we first loaded a checkpoint (x-axis), and computed policy
performance (shaded color; colorbar) by re-initializing a given layer (y-axis) of the network
to its initialization value before training for the same run.

Note in Figure 22, that while almost all layers are absolutely critical for the base CQL
algorithm, utilizing DR3 substantially reduces sensitivity to the latter layers in the Q-
network over the course of training. This is similar to what Zhang et al. [372] observed
for supervised learning, where the initial layers of a network were the most critical, and
the latter layers primarily performed near-random transformations without affecting the
performance of the network. This indicates that utilizing DR3 alters the internal layers of
a Q-network trained with TD to behave closer to supervised learning.
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Figure 22: CQL vs CQL + DR3 and REM vs REM + DR3. Average robustness of the learned Q-function
to re-initialization of all layers to different checkpoints over the course of training created based on the
protocol from Zhang et al. [372]. The colors in the heatmap indicate performance of the reinitialized
checkpoint, normalized w.r.t. the checkpoint without any change to layers. Note that while CQL and
REM are more sensitive (i.e., less robust) to reinitialization of all the layers especially the last layer, CQL
+ DR3 and REM + DR3 behave closer to supervised learning, in the sense that they are more robust to
reinitialization of layers of the network, especially the last layer.
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d.1.3 Rank Collapse is Alleviated With DR3

Figure 23: Comparing the feature ranks for CQL and CQL + DR3. Observe that utilizing DR3 successfully
alleviates the rank collapse issue noted in prior work without explicitly correcting for it.

Prior work [182] has shown that implicit regularization in TD-learning can lead to a
feature rank collapse phenomenon in the Q-function, which hinders the Q-function from
using its full representational capacity. Such a phenomenon is absent in supervised
learning, where the feature rank does not collapse. Since DR3 is inspired by mitigating
the effects of the term in the implicit regularizer (Equation 6.2.3) that only appears in
the case of TD-learning, we wish to understand if utilizing DR3 also alleviates rank
collapse. To do so, we compute the effective rank srankd(f) metric of the features learned
by Q-functions trained via CQL and CQL with DR3 explicit regularizer. As shown in
Figure 23, for the case of five Atari games, utilizing DR3 alleviates the rank collapse
issue completely (i.e., the ranks do not collapse to very small values when CQL + DR3
is trained for long). We do not claim that the ranks with DR3 are necessarily higher,
and infact as we show below, a higher srank of features may not always imply a better
solution. The fact that DR3 can prevent rank collapse is potentially surprising, because
no term in the practical DR3 regularizer explicitly aims to increase rank: feature dot
products can be made smaller while retaining low ranks by simply rescaling the feature
vectors. But, as we observe, utilizing DR3 enables learning features that do not exhibit
collapsed ranks, thus we hypothesize that correcting for appropriate terms in RTD(q) can
address some of the previously observed pathologies in TD-learning.
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Figure 24: Performance and srank values for DQN and DQN + DR3. Observe that the srank values
increase for DQN + DR3, while they collapse for DQN on Asterix, Seaquest and SpaceInvaders with more
training. Thus, DQN + DR3 does not suffer from a sudden rank collapse. However, a higher srank does not
imply a better return, and so while initially DQN does have a high rank, DQN + DR3 performs superiorly.

We now investigate the feature ranks of a Q-network trained when DR3 is applied in
conjunction with a standard DQN and REM [6] on the Atari domains. We plot the values
of srankd(f), the feature dot products and the performance of the algorithm for DQN
in Figure 24 and for REM in Figure 25. In the case of DQN, we find that unlike the
base DQN algorithm for which feature rank does begin to collapse with more training,
the srank for DQN + DR3 is increasing. We also note that DQN + DR3 attains a better
performance compared to DQN, throughout training.
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Figure 25: Comparing the performance and srank values for REM and REM + DR3. Observe that while
REM + DR3 outperforms REM, the srank values attained by REM are much larger than REM + DR3, and
none of these ranks have collapsed. Thus, while REM + DR3 maintains non-collapsed features, for the
case of REM, it reduces the value of srank and attains better performance. This does not contradict the
observations from Kumar et al. [182] as we discuss in the text.

However, we note that the opposite trend is true for the case of REM: while REM + DR3
attains a better performance than REM, adding DR3 leads to a reduction in the srank value
compared to base REM. At a first glance, this might seem contradicting Kumar et al. [182],
but this is not the case: to our understanding, Kumar et al. [182] establish a correlation
between extremely low rank values (i.e., rank collapse) and poor performance, but this
does not mean that all high rank features will lead to good performance. We suspect
that since REM trains a multi-headed Q-function with shared features and randomized
target values, it is able to preserve high-rank features, but this need not mean that these
features are useful. In fact, as shown in Figure 26, we find that the base REM algorithm
does exhibit feature co-adaptation. This case is an example where the srank metric from
Kumar et al. [182] may not indicate poor performance.
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Figure 26: Feature dot products for REM and REM + DR3 on log scale. REM does suffer from feature
co-adaptation despite high-rank features.
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Table 39: Normalized interquartile mean performance with 95% stratified bootstrap CIs [7] across 17 Atari
games of REM, REM + D0(F) (Stop gradient in DR3), REM + DR3 after 6.5M gradient steps for the 1%
setting and 12.5M gradient steps for the 5%, 10% settings. Observe that REM + D0(f) also improves over the
base REM method significantly, by about 130%, even though D0(f) is generally comparable and somewhat
worse than the DR3 regularizer used in the main paper.

Data REM REM + D0(F) REM+DR3

1% 4.0 (3.3, 4.8) 15.0 (13.4, 16.6) 16.5 (14.5, 18.6)

5% 25.9 (23.4, 28.8) 55.5 (50.8, 59.8) 60.2 (55.8, 65.1)

10% 53.3 (51.4, 55.3) 67.7 (64.7, 71.3) 73.8 (69.3, 78)

d.1.4 Induced Implicit Regularizer: Theory And Practice

In this section, we compare the performance of our practical DR3 regularizer to the
regularizers (Equation 6.2.3) obtained for different choices of M, such as M induced by
noise, studied in previous work, and also evaluate the effect of dropping the stop gradient
function from the practical version of our regularizer.

Empirically comparing the explicit regularizers for different noise covariance matrices,
M. The theoretically derived regularizer (Equation 6.2.3) suggests that for a given choice
of M, the following equivalent of feature dot products should increase over the course of
training:

DM(q) := Â
s,a2D

trace
h
S⇤MrQ(s, a)rQ(s0, a0)>

i
. (Generalized dot products) (D.1.1)

We evaluate the efficacy of the explicit regularizer that penalizes the generalized dot
products, DM(q), in improving the performance of the policy, with the goal of identifying
if our practical method performs similar to this regularizer on generalized dot prod-
ucts.. While S⇤M must be explicitly computed by running fixed point iteration for every
parameter iterate q found during TD-learning – which makes this method significantly
computationally expensive1, we evaluated it on five Atari games for 50 ⇥ 62.5k gradient
steps as a proof of concept. As shown in Figure 27, the DR3 penalty with the choice
of M which corresponds to label noise, and the dot product DR3 penalty, which is our
main practical approach in this paper generally perform similarly on these domains,
attaining almost identical learning curves on 4/5 games, and clearly improving over the
base algorithm. This hints at the possibility of utilizing other noise covariance matrices to
derive an explicit regularizer. Deriving more computationally efficient versions of the
regularizer for a general M and identifying the best choice of M are subject to future
work.

1 In our implementation, we run 20 steps of the fixed-point computation of S as shown in Theorem 6.2.1 for
each gradient step on the Q-function, and this increases the runtime to about 8 days for 50 iterations on a
P100 GPU.
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Figure 27: Comparing the performance of explicit penalties for two different choices of the covariance
matrix M. Observe that in all the five games the DR3 regularizer derived for the choice of M from Blanc
et al. [31] also leads to a substantial increase in performance over the base algorithm, and in four of five
games, DR3 (label-noise) works just as well as DR3.

Effect of stop gradient. Finally, we investigate the effect of utilizing a stop gradient in the
DR3 regularizer. We run a variant of DR3: D0(f) = Âs,a,s0 f(s, a)>[[f(s0, a0)]], with the
stop gradient on the second term (s0, a0) and present a comparison to the one without
the stop gradient in Table 39 for REM as the base offline method, averaged over 17 games.
Note that this version of DR3, with the stop gradient, also improves upon the baseline
offline RL method (i.e., REM) by 130%. While this performs largely similar, but somewhat
worse than the complete version without the stop gradient, these results do indicate that
utilizing D0(f) can also lead to significant gains in performance.

d.1.5 Understanding Feature Co-Adaptation Some More

In this section, we present some more empirical evidence to understand feature co-
adaptation. The three factors we wish to study are: (1) the effect of target update
frequency on feature co-adaptation; (2) understand the trend in normalized similarities
and compare these to the trend in dot products; and (3) understand the effect of out-on-
sample actions in TD-learning and compare it to offline SARSA on a simpler gridworld
domain. We answer these questions one by one via experiments aiming to verify each
hypothesis.
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Figure 28: Comparing the feature dot products for various target update delays, where a smaller
N implies a faster update and a larger N corresponds to a slower target update. Observe that while
slower updates to the target network may reduce co-adaptation, very slow target updates may still lead to
excesssive co-adaptation.

d.1.5.1 Effect of Target Update Frequency on Feature Co-Adaptation

We studied the effect of target update frequency on feature co-adaptation, on some
gridworld domains from Fu et al. [90]. We utilized the grid16smoothobs environment,
where the goal of the agent is to navigate from the center of a 16⇥ 16 gridworld maze to
one of its corners while avoiding obstacles and “lava” cells. The observations provided
to the RL algorithm are given by a high-dimensional random transformation of the
(x, y) coordinates, smoothed over neighboring cells in the gridworld. We sampled an
offline dataset of 256 transitions and trained a Q-network with two hidden layers of size
(1024, 1024) via fitted Q-iteration (FQI) [277].

We evaluated the feature dot products for Q-functions trained with a varying target
update frequencies, given generically as: updating the target network using a hard target
update once per N gradient steps, where N takes on values N = 5, 10, 50, 100, 200, 500,
and present the results in Figure 28 (left), averaged over 3 random seeds. Thee feature dot
products initially decrease from N = 5 to N = 10, because the target network is updated
slower, but then starts to rapidly increase when when the target network is slowed down
further to N = 50 and N = 200 in one case and N = 500 in the other case. We also
evaluated the feature dot products when using CQL as the base offline RL algorithm. As
shown in Figure 28 (right), while CQL does reduce the absolute range of the feature dot
products, slow target updates with N = 500 still lead to the highest feature dot products
as training progresses.

Takeaway: While it is intuitive to think that a slower target network might alleviate co-
adaptation, we see that this is not the case empirically with both FQI and CQL, suggesting
a deeper question that is an interesting avenue for future study.
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d.1.5.2 Gridworld Experiments Comparing TD-learning And Offline SARSA

To supplement the analysis in Section 6.2.1, we ran some experiments in the grid-
world domains from Fu et al. [90]. In this case, we used the grid16smoothsparse and
grid16randomsparse domains, which present challenging navigation tasks in a maze un-
der a 0-1 sparse reward signal, provided at the end of the trajectory. Additionally, the
observations available to the offline RL agent do not consist of the raw (x, y) locations of
the agent in the maze, but rather high-dimensional randomly chosen transformations of
(x, y) in the case of grid16randomsparse, which are additionally smoothed locally around
a particular state to obtain grid16smoothsparse.

Since our goal is to compare feature co-adaptation in TD-learning and offline SARSA, we
consider a case where we evaluate a “mixed” behavior policy that chooses the optimal
action with a probability of 0.7 at a given state, and chooses a random, suboptimal action
with 0.3. We then generate a dataset of size 256 transitions and train offline SARSA and
TD-learning on this data. While SARSA backups the next action observed in the offline
dataset, TD-learning computes a full expectation of the Q-function Ea0⇠pb(·|s0) [Q(s0, a0)]
under the behavior policy for computing Bellman backup targets. The behavior policy is
fully known to the TD-learning agent. Our Q-network consists of two hidden layers of
size (1024, 1024) as before.

Figure 29: Comparing the feature dot products for TD-learning
and offline SARSA, used to compute the value of the behavior
policy using a dataset of size 256 on two gridworld domains.
Observe that the feature dot products are higher in the case of
TD-learning compared to offline SARSA.

We present the trends in the fea-
ture dot products for TD-learning
and offline SARSA in Figure 29,
averaged over three seeds. Ob-
serve that the trends in the dot
product values for TD-learning
and offline SARSA closely follow
each other for the initial few gra-
dient steps, soon, the dot prod-
ucts in TD-learning start growing
faster. In contrast, the dot prod-
ucts for SARSA either saturate or
start decreasing. The only dif-
ference between TD-learning and
SARSA is the set of actions used
to compute Bellman targets – while the actions used for computing Bellman backup
targets in SARSA are in-sample actions and are observed in the dataset, the actions
used by TD-learning may be out-of-sample, but are still within the distribution of the
data-generating behavior policy. This supports our empirical evidence in the main paper
showing that out-of-sample actions can lead to feature co-adaptation.
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d.1.5.3 Feature Co-Adaptation and Normalized Feature Similarities

Note that we characterized feature co-adaptation via the dot products of features. In
this section, we explore the trends in other notions of similarity, such as cosine similarity
between f(s, a) and f(s0, a0) which measures the dot product of feature vectors at
consecutive state-action tuples after normalization. Formally,

cos(f(s, a), f(s0, a0)) :=
f(s, a)>f(s0, a0)

||f(s, a)||2 · ||f(s0, a0)||2
.

We plot the trend in the cosine similarity with and without DR3 for five Atari games
in Figure 30 with CQL, DQN and REM, and for three MuJoCo tasks in Figure 31. We
find that the cosine similarity is generally very high on the Atari domains, close to 1, and
not indicative of performance degradation. On the Ant and Walker2d MuJoCo domains,
we find that the cosine similarity first rises up close to 1 and roughly saturates there.
On the Hopper domain, the cosine similarity even decreases over training. However we
observe that the feature dot products are increasing for all the domains. Applying DR3
in both cases improves performance (as shown in earlier Appendix), and generally gives
rise to reduced cosine similarity values, though it can also increase the cosine similarity
values occasionally. Furthermore, even when the cosine similarities were decreasing for
the base algorithm (e.g., in the case of Hopper), addition of DR3 reduced the feature
dot products and helped improve performance. This indicates that both the norm and
directional alignment are contributors to the co-adaptation issue, which is what DR3 aims
to fix and independently directional alignment does not indicate poor performance.
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Figure 31: Cosine similarities of CQL and CQL + DR3 on MuJoCo domains. Note that the cosine
similarities of CQL grow to 1 and roughly stabilize for Ant and Walker2d, but start decreasing for Hopper,
despite the “oscillating” trend of performance on Hopper. This means that cosine similarity need not
imply poor performance, and DR3 can improve performance even when cosine similarity of base CQL is
decreasing. We also notice that DR3 does actually reduce cosine similarity.
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Figure 30: Cosine similarities of DQN, DQN + DR3, REM, REM + DR3 and CQL, CQL + DR3. Note
that DQN, REM and CQL attain close to 1 cosine similarities, and addition of DR3 does reduce the cosine
similarities of consecutive state-action features.
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d.1.6 Stability of DR3 From a Good Solution

In this appendix, we study the trend of CQL + DR3 when starting learning from a
good initialization, which was studied in Figure 14. As shown in Figure 32, while
the performance for baseline CQL degrades significantly (from 5000 at initialization on
Asterix, performance degrades to ⇠2000 by 100 iterations for base CQL), whereas the
performance of DR3 only moves from 5000 to ⇠4300. A similar trend holds for Breakout.
This means that the addition of DR3 does stabilize the learning relative to the baseline
algorithm. Please note that we are not claiming that DR3 is unequivocally stable, but that
improves stability relative to the base method.
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Figure 32: Running CQL + DR3 and CQL in the setup of Figure 14 to evaluate the stability of CQL
+ DR3 when starting training from a good solution. Observe that the performance of base CQL decays
quickly from the good solution, but CQL + DR3 is relatively more stable.
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Figure 33: Running DQN + DR3 and DQN in the setup of Figure 14 to evaluate the stability of DQN +
DR3 when starting training from a good solution. Observe that the performance of base DQN decays
quickly from the good solution, but DQN + DR3 is relatively more stable.

d.2 related works

In this section, we briefly review some related works, and in particular, try to connect
feature co-adaptation and implicit regularization to various interesting results pertaining
to RL lower-bounds with function approximation and self-supervised learning.

d.2.1 Brief Summary of Related Work

Prior analyses of the learning dynamics in RL has focused primarily on analyzing error
propagation in tabular or linear settings [e.g. 43, 68, 349, 335, 336, 79, 56], understanding
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instabilities in deep RL [4, 26, 180, 329] and deriving weighted TD updates that enjoy
convergence guarantees [224, 225, 315], but these methods do not reason about implicit
regularization or any form of representation learning. Ghosh and Bellemare [106] focuses
on understanding the stability of TD-learning in underparameterized linear settings,
whereas our focus is on the overparameterized setting, when optimizing TD error and
learning representations via SGD. Kumar et al. [182] studies the learning dynamics of
Q-learning and observes that the rank of the feature matrix, F, drops during training.
While this observation is related, our analysis characterizes the implicit preference of
learning towards feature co-adaptation (Theorem 6.2.1) on out-of-sample actions as the
primary culprit for aliasing. Additionally, while the goal of our work is not to increase
srank(F), utilizing Cal-QL not only outperforms the srank(F) penalty in Kumar et al.
[182] by more than 100%, but it also alleviates rank collapse, with no apparent term that
explicitly enforces high rank values. Somewhat related to DR3, Durugkar and Stone
[69], Pohlen et al. [263] heuristically constrain gradients of TD to prevent changes in
target Q-values to prevent divergence. Contrary to such heuristic approaches, DR3 is
inspired from a theoretical model of implicit regularization, and does not prevent changes
in target values, but rather reduces feature dot products.

d.2.2 Extended Related Work

Lower-bounds for offline RL. Zanette [369] identifies hard instances for offline TD
learning of linear value functions when the provided features are “aliased”. Note that
this work does not consider feature learning or implicit regularization, but their hardness
result relies heavily on the fact the given linear features are aliased in a special sense.
Aliased features utilized in the hard instance inhibit learning along certain dimensions
of the feature space with TD-style updates, necessitating an exponential sample size for
near-accurate value estimation, even under strong coverage assumptions. A combination
of Zanette [369]’s argument, which provides a hard instance given aliased features, and
our analysis, which studies the emergence of co-adapted/similar features in the offline
deep RL setting, could imply that the co-adaptation can lead to failure modes from
the hard instance, even on standard offline RL problems, when provided with limited
data.

Connections to self-supervised learning (SSL). Several modern self-supervised learning
methods [115, 45] can be viewwed as utilizing some form of bootstrapping where different
augmentations of the same input (x + Aug1, x + Aug2) serve as consecutive state-action
tuples that appear on two sides of the backup. If we may extrapolate our reasoning of
feature co-adaptation to this setting, it would suggest that performing noisy updates on
a self-supervised bootstrapping loss will give us feature representations that are highly
similar for consecutive state-action tuples, i.e., the representations for f(x + Aug1)

>f(x +

Aug2) will be high. Intuitively, an easy way for obtaining high feature dot products is for
f(·) to capture only that information in ·, which is agnostic to data augmentation, thus
giving rise to features that are invariant to transformations. This aligns with what has
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been shown in self-supervised learning [323, 324]. Another interesting point to note is that
while such an explanation would indicate that highly co-adapted features are beneficial
in SSL, such features can be adverse in value-based RL as discussed in Section 6.2.

Preventing divergence in deep TD-learning. Finally, we discuss Achiam et al. [4] which
proposes to pre-condition the TD-update using the inverse the neural tangent kernel [145]
matrix so that the TD-update is always a contraction, for every qk found during TD-
learning. Intuitively, this can be overly restrictive in several cases: we do not need to
ensure that TD always contracts, but that is eventually stabilizes at good solution over long
periods of running noisy TD updates, Our implicit regularizer (Equation‘6.2.3) derives
this condition, and our theoretically-inspired Cal-QL regularizer shows that empirically,
it suffices to penalize the dot product similarity in practice.

d.3 proofs for dr3

In this section, we will derive our implicit regularizer RTD(q) that emerges when per-
forming TD updates with a stochastic noise model with covariance matrix M. We first
introduce our notation that we will use throughout the proof, then present our assump-
tions and finally derive the regularizer. Our proof utilizes the analysis techniques from
Blanc et al. [31] and Damian et al. [52], which analyze label-noise SGD for supervised
learning, however key modifications need to be made to their arguments to account for
non-symmetric matrices that emerge in TD learning. As a result, the form of the resulting
regularizer is very different. To keep the proof concise, we will appeal to lemmas from
these prior works which will allow us to bound certain concentration terms.

d.3.1 Notation

The noisy TD-learning update for training the Q-function is given by:

qk+1 = qk � h

 

Â
i
rqQ(si, ai)

�
Qq(si, ai)�(ri+gQq(s0i, a0i))

�
!

| {z }
:=g(q)

+h#k, #k ⇠ N (0, M)

(D.3.1)

where g(q) denotes the parameter update. Note that g(q) is not a full gradient of a scalar
objective, but it is a form of a “pseudo”-gradient or “semi”-gradient. Let #k denote an
i.i.d.random noise that is added to each update. This noise is sampled from a zero-mean
Gaussian random variable with covariance matrix M, i.e., N (0, M).

Let q⇤ denote a point in the parameter space such that in the vicinity of q⇤, g(q)  C, for
a small enough C. Let G(q) denote the derivative of g(q) w.r.t. q: G(q) = rqg(q) and let
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rG(q) denote the third-order tensor r2
qg(q). For notation clarity, let G = G(q⇤),rG =

rG(q⇤). Let ei denote the signed TD error for a given transition (si, ai, s0i) 2 D at q⇤:

ei = Qq⇤(si, ai)� (ri + gQq⇤(s0i, a0i)). (D.3.2)

Since q⇤ is a fixed point of the training TD error, ei = 0. Following Blanc et al. [31], we will
assume that the learning rate in gradient descent, h, is small and we will ignore terms that
scale as O(h1+d), for d > 0. Our proof will rely on using a reference Ornstein-Uhlenbeck
(OU) process which the TD parameter iterates will be compared to. Let zk denote the k-th
iterate of an OU process, which is defined as:

zk+1 = (I � hG)zk + h#k, #k ⇠ N (0, M) (D.3.3)

We will drop q from rq to indicate that the gradient is being computed at q⇤, and drop
(si, ai) from Q(si, ai) and instead represent it as Qi for brevity; we will represent Q(s0i, a0i)
as Q0i. We assume that r2Qi is L2-Lipschitz and r3Qi is L3-Lipschitz throughout the
parameter space Q.

d.3.2 Proof Strategy

For a given point q⇤ to be an attractive fixed point of TD-learning, our proof strategy
would be to derive the condition under which it mimics a given OU noise process, which
as we will show stays close to the parameter q⇤. This condition would then be interpreted
as the gradient of a “induced” implicit regularizer. If the point q⇤ is not a stationary
point of this regularizer, we will show that the movement q is large when running the
noisy TD updates, indicating that the regularizer, at least in part guides the dynamics
of TD-learning. To show this, we would write out the gradient update, isolate some
terms that will give rise to the implicit regularizer, and bound the remaining terms using
contraction and concentration arguments. The contraction arguments largely follow prior
work (though with key exceptions in handling contraction with asymmetric and complex
eigenvalue matrices), while the form of the implicit regularizer is different. Finally, we
will interpret the resulting update over large timescales to show that learning is indeed
guided by the implicit regularizer.

d.3.3 Assumptions and Conditions

Next, we present some key assumptions we will need for the proof. Our first assumption
is that the matrix G 2 Rd⇥d is of maximal rank possible, which is equal to the number
of datapoints n and n ⌧ d, the dimensionality of the parameter space. Crucially, this
assumption do not imply that G is of full rank – it cannot be, because we are in the
overparameterized regime.

Assumption D.3.1 (G spans an n-dimensional basis.). Assume that the matrix G spans
n-possible directions in the parameter space and hence, attains the maximal possible rank it can.
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The second condition we require is that the matrices ÂirQirQ>i and M share the same
n-dimensional basis as matrix G:

Assumption D.3.2. ÂirQirQ>i , M, and G span identical n-dimensional subspaces.

This is a technical condition that is required. If this condition is not met, as we will show
the learning dynamics of noisy TD will not be a contraction in certain direction in the
parameter space and TD-learning will not stabilize at such a solution q⇤. We will utilize a
stronger version of this statement for TD-learning to converge, and we will discuss this
shortly.

d.3.4 Lemmas Used In The Proof

Next, we present some lemmas that would be useful for proving the theoretical re-
sult.

Lemma D.3.3 (Expressions for the first and and second-order derivatives of g(q).). The
following definitions and expansions apply to our proof:

G(q⇤) = Â
i
r2Qiei + Â

i
rQi(rQi � grQ0i)

>

rG(q⇤)[v, v] = 2 Â
i
r2Qivv>(rQi � grQ0i) + Â

i
tr
⇣
(r2Qi � gr2Q0i)vv>

⌘
rQi

+r3Qiei

Lemma D.3.3 presents a decomposition of the matrix G and the directional derivative
of the third order tensor rG[v, v] in directions v and v, which will appear in the Taylor
expansion layer. Note that at q⇤ since ei = 0, the first term in G(q⇤) and the third term
in rG(q⇤)[v, v] vanish. Lemma D.3.4 derives a fixed-point recursion for the covariance
matrix of the total noise accumulated in the OU-process with covariance matrix M and
this will appear in our proof.

Lemma D.3.4 (Covariance of the random noise process zk). Let zk denote the OU process
satisfying: zk+1 = (I � hG)zk + h#k, where #k ⇠ N (0, M), where M < 0. Then, zk+1 ⇠
N (0, S), where S satisfies the discrete Lyapunov equation:

S⇤M = (I � hG)S⇤M(I � hG)
>

+ h2M.

Proof. For the OU process, zk+1 = (I � hG)zk + h#k, since #k is a Gaussian random
variable, by induction so is zk+1, and therefore the covariance matrix of zk+1 is given by:

Sk+1 := (I � hG)Sk(I � hG>) + h2M. (D.3.4)

Solving for the fixed point for Sk gives the desired expression.
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In our proofs, we will require the following contraction lemmas to tightly bound the
magnitude of some zero-mean terms that will appear in the noisy TD update under
certain scenarios. Unlike the analysis in Damian et al. [52] and Blanc et al. [31] for
supervised learning with label noise, where the contraction terms like (I � hG)kG are
bounded by ⇡ 1

kh intuitively because I � hG is a contraction in the subspace spanned by
matrix G. However, this is not true for TD-learning directly since terms like (I � hG)kS
appear for a different matrix S. Therefore, TD-learning will diverge from q⇤ unless
matrices G and M have their corresponding eigenvectors assigned to the top eigenvalues
be approximately “aligned”. We formalize this definition next, and then provide a proof
of the concentration guarantee.

Definition D.3.5 ((w, C0)-alignment). Given a positive semidefinite matrix A, let A =

UALAU>A denote its eigendecomposition. Without loss of generality assume that the eiegen-
values are arranged in decreasing order, i.e., 8i > j, LA(i)  LA(j). Given another matrix B, let
B = UBLBUH

B denote its complex eigendecomposition, where eigenvalues in LB are arranged in
decreasing order of their complex magnitudes, i.e., 8i > j, |LB(i)|  |LB(j)|. Then the matrix
pair (A, B) is said to be (w, C0)-aligned if |UH

B (i)UA(i)|  w and if 8 i, LA(i)  C0|LB(i)| for
a constant C0.

If two matrices are (w, C0)-aligned, this means that the corresponding eigenvectors when
arranged in decreasing order of eigenvalue magnitude roughly align with each other, per
the definition of alignment above. This condition would be crucial while deriving the
implicit regularizer as it will quantify the rate of contraction of certain terms that define
the neighborhood that the iterates of noisy TD-learning will lie in with high probability.
We will operate in the setting when the matrix G and ÂirQirQ>i are (w, C0)-aligned
with each other, and matrix M and G are also (w, C0)-aligned (note that we can consider
w0, C00), which will not change our bounds and therefore we go for less notational clutter).
Next we utilize this notion of alignment to show a particular contraction bound that
extends the weak contraction bound in Damian et al. [52].

Lemma D.3.6. Assume we are given a matrix G such that |li(I � hG)|  r0 < 1 for all li such
that li 6= 0. Let G = ULUH be the complex eigenvalue decomposition of G (since almost every
matrix is complex-diagonalizable). For a positive semi-definite matrix S that is (w, C0)-aligned
with G, if S = USLSU>S is its eigenvalue decomposition, the following contraction bound holds:

||(I � hG)
kS|| = O

✓
wC0
hk

◆
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Proof. To prove this statement, we can expand (I � hG) using its eigenvalue decomposi-
tion only in the subspace that is jointly shared by G and M, and then utilize the definition
of w-alignment to bound the terms.

||(I � hG)
kS|| = ||(I � hULUH

)
kUSLSU>S || (D.3.5)

=

���
���(UUH � hULUUH

)
kUSLSU>S

���
��� (D.3.6)

= U (I � hL)
k UHUSLSU>S (D.3.7)

 w · || (I � hL)
k || · LS (D.3.8)

 w · C0 ·
✓

max
i

|1� hL(i)|k|L(i)|
◆

(D.3.9)

Now we need to solve for the inner maximization term. When L(i) is not complex for
any i, the term above is . 1/hk by applying the result from Damian et al. [52], but when
L(i) is complex, this bound can only hold under certain conditions. To note when this
quantity is bounded, we expand |1� hx|k for some complex number x = r(cos q + i sin q):

|1� hx|k = |(1� hr cos q) + ihr sin q| (D.3.10)

=

q
(1� hr cos q)

2
+ h2r2 sin2 q

�k
=

⇣
1 + h2r2 � 2hr cos q

⌘k/2

(D.3.11)

=) |1� hx|k|x| =

⇣
1 + h2r2 � 2hr cos q

⌘k/2
r (D.3.12)

. 1
hk

if h  min
i

Re(L(i))
|L(i)| and • otherwise. (D.3.13)

Plugging back the above expression in the bound above completes the proof.

The proof of Lemma D.3.6 indicates that unless the learning rate h and the matrix G are
such that the |li(I � hG)|  r < 1 in directions spanned by matrix S, such an expression
may not converge. This is expected since the matrix I � hG will not contract in directions
of non-zero eigenvalues if the real part r cos q is negative or zero. Additionally, we note
that under Definition D.3.5, we can extend several weak-contraction bounds from Damian
et al. [52] (Lemmas 9-14 in Damian et al. [52]) to our setting.

Next, Lemma D.3.7 shows that the OU noise iterates are bounded with high probability
when Definition D.3.5 holds:

Lemma D.3.7 (zk is bounded with high probability). With probability atleast 1� d and under
Definition D.3.5, ||zk||  nw

p
hC0 log 1

d = O(
p

h).

Proof. To prove this lemma, we first bound the trace of the covariance matrix Sk+1 and
then apply high probability bounds on the Martingale norm concentration. The trace

269



of the covariance matrix Sk+1 can be bounded as follows (all the equations below are
restricted to the dimensions of non-zero eigenvalues of G):

tr [Sk+1] = Â
jk

tr
h
(I � hG)

jM(I � hG>)
j
i

(D.3.14)

= Â
jk

tr
h
(UUH � hULUH

)
jM(UUH � hULUH

)
j
i

(D.3.15)

= Â
jk

tr
h
U(I � hL)

jUHUMLMU>MU(I � hL)
jUH

i
(D.3.16)

= Â
jk

nw2C0tr
h
|I � hL|j · |L| · |I � hL|j

i
(D.3.17)

 nw2C0 Â
jk

n · max
l

(|1� hl|2j · |l|)  hn2C0w2 (D.3.18)

Now, we can apply Corollary 1 from Damian et al. [52] to obtain a bound on ||zk|| as

with high probability, atleast 1� d, ||zk|| 
q

2tr(S) log 1
d = nw

p
hC0 log 1

d .

d.3.5 Main Proof of Theorem 6.2.1

In this section, we present the main proof of Theorem 6.2.1. The proof involves two
components: (1) the part where we derive the regularizer, and (2) bounding additional
terms via concentration inequalities. Part (1) is specific to TD-learning, while a lot of the
machinery for part (2) is directly taken from prior work [52] and Blanc et al. [31]. We
focus on part (1) here.

Our strategy is to analyze the learning dynamics of noisy TD updates that originate at q⇤.
In a small neighborhood around q⇤, we can expand the noisy TD update (Equation 6.2.2)
using Taylor’s expansion around q⇤ which gives:

qk+1 = qk � hg(qk) + h#k, #k ⇠ N (0, M) (D.3.19)

=) qk+1 = qk � h
⇣

g + G(qk � q⇤)� h

2
G[qk � q⇤, qk � q⇤]

⌘
+ h#k + O(h||qk � q⇤||3).

(D.3.20)

Denoting nk := qk � q⇤, using the fact that ||g(q⇤)||  C, we find that nk can be written
as:

nk+1 = (I � hG)nk + #k +
h

2
G[nk, nk] + O(h||nk||3 + hC) (D.3.21)

Since the OU process zk stays in the vicinity of the point q⇤, and follows a similar recursion
to the one above, our goal would be to design a regularizer so that Equation D.3.21 closely
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follows the OU process. Thus, we would want to bound the difference between the
variable nk and the variable zk, denoted as rk to be within a small neighborhood:

rk+1 = nk+1 � zk+1 = (I � hG)(nk � zk)rk
+

1
2

G[nk, nk] + O(h||nk||3 + hC).

We can write down an expression for rk summing over all the terms:

rk+1 = �h

2 Â
jk

(I � hG)
k�jrG[nk, nk]

term (a)

+ Â
jk

(I � hG)
j
h
O(h||nk||3 + hC)

i

term (b)

.

(D.3.22)
Term (a) in the above equation is the one that can induce a displacement in rk as k
increases and would be used to derive the regularizer, whereas term (b) primarily consists
of terms that concentrate to 0. We first analyze term (a) and then we will analyze the
concentration terms later.

To analyze term (a), note that the term rG[nk, nk], by Lemma D.3.3, only depends on nk
via the covariance matrix nkn>k . So we will partition this term into two terms: (i) a term
that utilizes the asymptotic covariance matrix of the OU process and (ii) errors due to a
finite k and stochasticity that will concentrate.

2⇥ (a) = h Â
jk

(I � hG)
k�jrG[nk, nk] (D.3.23)

= Â
jk

(I � hG)
k�jrG[z⇤, z⇤] + Â

jk
(I � hG)

k�jrG([nk, nk]� [z⇤, z⇤]), (D.3.24)

The first term is a “bias” term and doesn’t concentrate to 0, and will give rise to the
regularizer. We can break this term using Lemma D.3.3 as:

rG[z⇤, z⇤] =2 Â
i
r2QiS⇤M(rQi � grQ0i) + Â

i
tr
h
(r2Qi � gr2Q0i)S⇤M

i
rQi (D.3.25)

The regularizer RTD(q) is the function such that:

rqRTD(q) = Â
i
r2QiS⇤M(rQi � grQ0i) (D.3.26)

=) RTD(q) = Â
i
rQiS⇤MrQ>i � g Â

i
trace

⇣
S⇤MrQi[[rQ0i]]

>
⌘

, (D.3.27)

where [[·]] denotes the stop gradient operator. If the point q⇤ is a stationary point of
the regularizer RTD(q), then Equations D.3.26 and D.3.27 imply that the first term of
Equation D.3.25 must be 0. Therefore in this case to show that q⇤ is attractive, we need to
show that the other terms in Equations D.3.25, D.3.24 and term (b) in Equation D.3.22
concentrate around 0 and are bounded in magnitude. The remaining part of the proof
shown in Appendix D.3.7 provides these details, but we first summarize the main
takeaways in the proof to conclude the argument.
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d.3.6 Summary of the Argument

We will show how to concentrate terms in Equation D.3.26 besides the regularizer largely
following the techniques from prior work, but we first summarize the entire proof. The
overall update to the vector rk which measures the displacement between the parameter
vector qk � q⇤ and the OU-process zk can be written as follows, and it is governed by the
derivative of the implicit regularizer (modulo error terms):

rk+1 = �h

2 Â
jk

(I � hG)
k�jrqRTD(q⇤) + O

⇣p
ht · poly(C, L2, L3, w, C0)

⌘
. (D.3.28)

An important detail to note here is that since the regularizer consists of S⇤M and the
size of S⇤M (i.e, its eigenvalues), as shown in Lemma D.3.7 depends on one factor of h.
So, effectively the first term in Equation D.3.28 does depend on two factors of h. Using
Equation D.3.28, we can write the deviation between q⇤ and qk as:

nk+1 = zk+1 �
h

2 Â
jk

(I � hG)
k�jrqRTD(q⇤) + O

⇣p
ht · poly(C, L2, L3, w, C0)

⌘
. (D.3.29)

The OU process zk converges to q⇤ in the subspace spanned by G, since the condition
r(I � hG) < 1 is active in this subspace (if the condition that r(I � hG) < 1 in the
subspace spanned by G is not true, then as Ghosh and Bellemare [106] show, TD can
diverge). Now, given G satisfies this spectral radius condition, zk would converge to q⇤

within a timescale of O
⇣

1
h

⌘
within this subspace, which as Blanc et al. [31] put it is the

strength of the “mean-reversion” term. On the remaining directions (note that d � n),
the dynamics is guided by the regularizer, although with a smaller weight of h2.

d.3.7 Additional Proof Details: Concentrating Other Terms

We first concentrate the terms in Equation D.3.25. The cumulative effect of the second
term in Equation D.3.25 is given by:

h Â
jk

(I � hG)
j�krQitr

h
(r2Qi � gr2Q0i)S⇤M

i
(D.3.30)

 h Â
jk

(I � hG)
j�krQi · O (L2(1 + g)s)  O

 
h

s
k
h

w0C0L2(1 + g)s

!
, (D.3.31)

which follows from the fact that r2Qi is L2-Lipschitz, and using Lemma D.3.6 for
contracting the remaining terms.

Next, we turn to concentrating the second term in Equation D.3.24. This term corresponds
to the contribution of difference between the empirical covariance matrix nkn>k and the
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asymptotic covariance matrix z⇤z⇤>. We expand this term below using the form of G
from Lemma D.3.3, and bound it one by one.

Â
jk

(I � hG)
k�jrG([nk, nk]� [z⇤, z⇤]) (D.3.32)

= Â
jk

Â
i
(I � hG)

k�jr2Qi

⇣
nknk � z⇤z⇤>

⌘
(rQi � grQ0i) + O

⇣p
hkw0C0L2(1 + g)s

⌘

(D.3.33)

Now, we note that the term Dk+1 := nk+1n>k+1 � z⇤z⇤> can itself be written as a recur-
sion:

Dk+1 = (I � hG)(Dk)(I � hG)
>

+ (I � hG)zk#> + #z>k (I � hG)
>

Ak
+ ##> � hMBk

(D.3.34)

Expanding the term Dk+1 in terms of a summation over k, and plugging it into the
expression from Equation D.3.33 we get

Â
i

Â
jk

(I � hG)
k�jr2Qi(I � hG)

jD0(I � hG>)
j (D.3.35)

+ Â
i

Â
jk

Â
pj

(I � hG)
k�jr2Qi(I � hG)

j�p�1
(Ap + Bp)(I � hG>)

j�p�1

Now by noting that if G and rQi are (w, C0)-aligned, then so are G> and rQi, we
can finish the proof by repeating the calculations used by Damian et al. [52] (Appendix
B, Equations 67-73) to bound the terms in Equation D.3.35 by O(

p
hk), but with an

additional factor of w2C2
0.

Term (b) in Equation D.3.22. When C is small enough, we can bound the term (b) using
O(

p
hk), similar to Damian et al. [52].

d.4 proof of proposition 6 .2 .2

In this section, we will prove Proposition 6.2.2. First, we refer to Proposition 3.1 in Ghosh
and Bellemare [106], which shows that TD-learning is stable and converges if and only if
the matrix Mf = F>(F� gF0) has eigenvalues with all positive real entries. Now note
that if,

Â
s,a

f(s, a)
>f(s, a)  g Â

s,a,s0
f(s0, a0)>f(s, a) (D.4.1)

=) trace
⇣

F>F
⌘
 gtrace

⇣
F>F0

⌘
(D.4.2)

=) trace
h
F>

�
F� gF0

�i
 0. (D.4.3)
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Since the trace of a real matrix is the sum of real components of eigenvalues, if for a given
matrix M, trace(M)  0, then there exists atleast one eigenvalue li such that Re(li)  0.
If li < 0, then the learning dynamics of TD would diverge, while if li = 0 for all i, then
learning will not contract towards the TD fixed point. This concludes the proof of this
result.

d.5 experimental details of applying dr3

In this section, we discuss the practical experimental details and hyperparameters in
applying our method, DR3 to various offline RL methods. We first discuss an overview
of the offline RL methods we considered in this paper, and then provide a discussion of
hyperparameters for DR3.

d.5.1 Background on Various Offline RL Algorithms

In this paper, we consider four base offline RL algorithms that we apply DR3 on. These
methods are detailed below:

REM. Random ensemble mixture [6] is an uncertainty-based offline RL algorithm uses
multiple parameterized Q-functions to estimate the Q-values. During the Bellman backup,
REM computes a random convex combination of the target Q-values and then trains the Q-
function to match this randomized target estimate. The randomized target value estimate
provides a robust estimate of target values, and delays unlearning and performance
degradation that we typically see with standard DQN-style algorithms in the offline
setting. For instantiating REM, we follow the instantiation provided by the authors and
instantiate a multi-headed Q-function with 200 heads, each of which serves as an estimate
of the target value. These multiple heads branch off the last-but-one layer features of the
base Q-network. The objective for REM is given by:

min
q

Es,a,r,s0⇠D

"
Ea1,...,aK⇠D

" 

Â
k

ak
k(s, a)� r� g max

a0
Â
k

ak
k(s0, a0)

!##
(D.5.1)

where ll denotes the Huber loss while PD denotes the probability distribution over the
standard (K 1)-simplex.

CQL. Conservative Q-learning [181] is an offline RL algorithm that learns a conservative
value function such that the estimated performance of the policy under this learned
value function lower-bounds its true value. CQL modifies the Q-function training to
incorporate a term that minimizes the overestimated Q-values in expectation, while
maximizing the Q-values observed in the dataset, in addition to standard TD error. This
CQL regularizer is typically multiplied by a coefficient a, and we pick a = 0.1 for all
our Atari experiments following Kumar et al. [182] and a = 5.0 for all our kitchen and
antmaze D4RL experiments. Using yk(s, a) to denote the target values computed via
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the Bellman backup (we use actor-critic backup for D4RL experiments and the maxa0
backup for standard Q-learning in our Atari experiments following Kumar et al. [181]),
the objective for training CQL is given by:

a

 
Es⇠D

"
log Â

a
exp(Q(s, a))

#
�Es,a⇠D [Q(s, a)]

!
+

1
2
Es,a,s0⇠D

h
(Q(s, a)� yk(s, a))

2
i
.

For Atari, we utilize the standard convolutional neural network from Agarwal et al.
[6], Kumar et al. [182] with 3 convolutional layers borrowed from the nature DQN
network and then a hidden feedforward layer of size 512.

COG. COG [303] is an algorithmic framework for utilizing large, unlabeled datasets
of diverse behavior to learn generalizable policies via offline RL. Similar to real-world
scenarios where large unlabeled datasets are available alongside limited task-specific data,
the agent is provided with two types of datasets. The task-specific dataset consists of
behavior relevant for the task, but the prior dataset can consist of a number of random
or scripted behaviors being executed in the same environment/setting. The goal in this
task is to actually stitch together relevant and overlapping parts of different trajectories
to obtain a good policy that can work from a new initial condition that was not seen in
a trajectory that actually achieved the reward. COG utilizes CQL as the base offline RL
algorithm, and following Singh et al. [303], we fix the hyperparameter a = 1.0 in the CQL
part for both base COG and COG + DR3. All other hyperparameters including network
sizes, etc are kept fixed as the prior work Singh et al. [303] as well.

d.5.2 Tasks and Environments Used

Atari 2600 games used. For all our experiments, we used the same set of 17 games utilized
by Kumar et al. [182] to test rank collapse. In the case of Atari, we used the 5 standard
games (Asterix, Qbert, Pong, Seaquest, Breakout) for tuning the hyperparameters,
a strategy followed by several prior works [116, 6, 182]. The 17 games we test on are:
Asterix, Qbert, Pong, Seaquest, Breakout, Double Dunk, James Bond, Ms. Pacman,
Space Invaders, Zaxxon, Wizard of Wor, Yars’ Revenge, Enduro, Road Runner,
BeamRider, Demon Attack, Ice Hockey.

Following Agarwal et al. [7], we report interquartile mean (IQM) normalized scores across
all runs as mean scores can be dominated by performance on a few outlier tasks while
median is independent of performance on all except 1 task – zero score on half of the
tasks would not affect the median. IQM which corresponds to 25% trimmed mean and
considers the performance on middle 50% of the runs. IQM interpolates between mean
and median, which correspond to 0% and almost 50% trimmed means across runs.

Robotic manipulation tasks from COG [303]. These tasks consist of a 6-DoF WidowX
robot, placed in front of two drawers and a larger variety of objects. The robot can open
or close a drawer, grasp objects from inside the drawer or on the table, and place them
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Table 40: Hyperparameters used by the offline RL Atari agents in our experiments. Following Agarwal
et al. [6], the Atari environments used by us are stochastic due to sticky actions, i.e. there is a 25% chance
at every time step that the environment will execute the agents previous action again, instead of the new
action commanded. We report offline training results with same hyperparameters over 5 random seeds of
the offline dataset, game simulator and network initialization.

Hyperparameter Setting (for both variations)

Sticky actions Yes
Sticky action probability 0.25
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Reward clipping [-1, 1]
Terminal condition Game Over
Max frames per episode 108K
Discount factor 0.99
Mini-batch size 32
Target network update period every 2000 updates
Training environment steps per iteration 250K
Update period every 4 environment steps
Evaluation e 0.001
Evaluation steps per iteration 125K
Q-network: channels 32, 64, 64
Q-network: filter size 8⇥ 8, 4⇥ 4, 3⇥ 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512

anywhere in the scene. The task here consists of taking an object out of a drawer. A
reward of +1 is obtained when the object has been taken out, and zero otherwise. There
are two variants of this domain: (1) in the first variant, the drawer starts out closed,
the top drawer starts out open (which blocks the handle for the lower drawer), and an
object starts out in front of the closed drawer, which must be moved out of the way
before opening, and (2) in the second variant, the drawer is blocked by an object, and
this object must be removed before the drawer can be opened and the target object can
be grasped from the drawer. The prior data for this environment is collected from a
collection of scripted randomized policies. These policies are capable of opening and
closing both drawers with 40-50% success rates, can grasp objects in the scene with about
a 70% success rate, and place those objects at random places in the scene (with a slight
bias for putting them in the tray).
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d.5.3 The DR3 Regularizer Coefficient

We utilize identical hyperparameters of the base offline RL algorithms when DR3 is used,
where the base hyper-parameters correspond to the ones provided in the corresponding
publications. DR3 requires us to tune the additional coefficient c0, that weights the DR3
explicit regularizer term. In order to find this value on our domains, we followed the
tuning strategy typically followed on Atari, where we evaluated four different values
of c0 2 {0.001, 0.01, 0.03, 0.3} on 5 games (Asterix, Seaquest, Breakout, Pong and
SpaceInvaders) on the 5% replay dataset settings, picked c0 that wprked best on just
these domains, and used it to report performance on all 17 games, across all dataset
settings (1% replay and 10% initial replay) in Section 6.2.4. This protocol is standard in
Atari and has been used previously in Agarwal et al. [6], Gulcehre et al. [116], Kumar et al.
[182] in the context of offline RL. The value of the coefficient found using this strategy
was c0 = 0.001 for REM and c0 = 0.03 for CQL.

d.6 full results for dr3

Table 41: Normalized interquartile mean (IQM) final performance (last iteration return) of CQL,
CQL + DR3, REM and REM + DR3 after 6.5M gradient steps for the 1% setting and 12.5M gradient
steps for the 5%, 10% settings. Intervals in brackets show 95% CIs computed using stratified
percentile bootstrap [7]

.

Data CQL CQL + DR3 REM REM + DR3

1% 44.4 (31.0, 54.3) 61.6 (39.1, 71.5) 0.0 (-0.7, 0.1) 13.1 (9.9, 18.3)

5% 89.6 (67.9, 98.1) 100.2 (90.6, 102.7) 3.9 (3.1, 7.6) 74.8 (59.6, 84.4)

10% 57.4 (53.2, 62.4) 67.0 (62.8, 73.0) 24.9 (15.0, 29.1) 72.4 (65.7, 81.7)
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d.7 additional results for scaled q-learning
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Figure 34: Learning curves for online fine-tuning on unseen game variants. The dotted horizontal line
shows the performance of a single-game DQN agent trained for 50M frames (16x more data than our
methods). See Figure 26 for visualization of the variants.
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Figure 35: Offline scaled conservative Q-learning vs other prior methods with near-optimal data. Scaled
QL outperforms the best DT model, attaining an IQM human-normalized score of 114.1% and a median
human-normalized score of 98.9% compared to 111.8% and 78.2% for DT, respectively.

d.7.1 Results for Scaling Discrete-BCQ

To implement discrete BCQ, we followed the official implementation from Fujimoto
et al. [98]. We first trained a model of the behavior policy, bpb(a|s), using an architecture
identical to that of the Q-function, using negative log-likelihood. Then, following Fujimoto
et al. [98], we updated the Bellman backup to only perform the maximization over actions
that attain a high likelihood under the probabilities learned by the behavior policy, as
shown below:

y(s, a) := r(s, a) + g max
a0 :bpb(a0|s0)�t·maxa00 bpb(a00|s0)

Q(s0, a0),
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Figure 36: Performance of scaling CQL and BCQ in terms of IQM human-normalized score. We perform
this comparison on the six-game setting for 100 epochs (note that these results are after 2x longer training
than other ablations in Table 10). Observe that for discrete-BCQ the performance improves from ResNet 34
to ResNet 50, indicating that it does scale favorably as network capacity increases.

where t is a hyperparameter. To tune the value of t, we ran a preliminary initial sweep
over t = {0.05, 0.1, 0.3}. When using C51 in our setup, we had to use a smaller CQL a
of 0.05 (instead of 0.1 for the MSE setting from Kumar et al. [183]), possibly because a
discrete representation of Q-values used by C51 is less prone to overestimation. Therefore,
in the case of discrete-BCQ, we chose to perform an initial sweep over t values that were
smaller than or equal to (i.e., less conservative) the value of t = 0.3 used in Fujimoto et al.
[98].

Since BCQ requires an additional policy network, it imposes a substantial memory
overhead and as such, we performed a sweep for initial 20 iterations to pick the best
t. We found that in these initial experiments, t = 0.05 performed significantly worse,
but t = 0.1 and t = 0.3 performed similarly. So, we utilized t = 0.3 for reporting these
results.

We ran these scaling experiments with ResNet 34 and ResNet 50 in the six-game setting
and report human-normalized IQM performance after 100 epochs = 6.25M gradient
steps in Figure 36. We also present the results for CQL on the side for comparisons.
Observe that we find favorable scaling trends for BCQ: average performance over all
games increases as the network size increases, indicating that other offline RL algorithms
such as BCQ can scale as we increase network capacity.
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d.7.2 Ablation for Backbone Architecture

In this section, we present some results ablating the choice of the backbone architecture.
For this ablation, we ablate the choice of the spatial embedding while keeping group
normalization fixed in both cases. We perform this study for the 40-game setting. Observe
that using the learned spatial embedding results in better performance, and improves in
27 out of 40 games compared to not using the learned embeddings.
Table 43: Ablations for the backbone architecture in the 40-game setting with ResNet 101. Observe that
learned spatial embeddings leads to around 80% improvement in performance.

Scaled QL without backbone Scaled QL w/ backbone

Median human-normalized score 54.9% 98.9%
IQM human-normalized score 68.9% 114.1%

Num. games with better performance 13 / 40 27 / 40

Regarding the choice of group normalization vs batch normalization, note that we have
been operating in a setting where the size of the batch per device / core is only 4.
Particularly, we use Cloud TPU v3 accelerators with 64 / 128 cores, and bigger batch
sizes than 4 do not fit in memory, especially for larger-capacity ResNets. This means that
if we utilized batch normalization, we would be computing batch statistics over only 4
elements, which is known to be unstable even for standard computer vision tasks, for
example, see Figure 1 in Wu and He [344].

d.7.3 Results for Scaled QL Without Pessimism

In Table 44, we present the results of running scaled Q-learning with no conservatism,
i.e., by setting the value of a in CQL training to 0.0 in the six game setting. We utilize the
entire DQN-replay dataset [6] for each of these six games that would be present in the
full 40-game dataset, to preserve the per-game dataset diversity.

Observe that while utilizing no conservatism does still learn, the performance of scaled
QL without conservatism is notably worse than standard scaled QL. Interestingly, on
Asterix, the performance without pessimism is better than performance with pessimism,
whereas, the use of pessimism in SpaceInvaders and Seaquest leads to at least 2x
improvement in performance.

We also present some results without pessimism in the complete 40-game setting in
Table 45. Unlike the smaller six game setting, we find a much larger difference between
no pessimism (without CQL) and utilizing pessimism via CQL. In particular, we find that
in 6 games, not using pessimism leads to slightly better performance, but this strategy
hurts in all other games, giving rise to an agent that performs worse than random in
many of these 34 games. This indicates that pessimism is especially deisrable as the
diversity of tasks increases.
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Table 44: Performance of scaled QL with and without conservatism in terms of IQM human-normalized
score in the six-game setting for 100 epochs (2x longer training compared to other ablations in Table 10)
performed with a ResNet 50. Observe that utilizing conservatism via CQL is beneficial. We also present
per-game raw scores in this table. Observe that while in one games no pessimism with such data can
outperform CQL, we do find that overall, conservatism performs better.

Scaled QL without CQL Scaled QL w/ CQL

Asterix 38000 35200
Breakout 322 410
Pong 12.6 19.8
Qbert 13800 15500
Seaquest 1378 3694
SpaceInvaders 1675 3819

IQM human-normalized score 188.3% 223.4%

Table 45: Scaled QL with and without conservatism in terms of IQM human-normalized score in the
40-game setting with ResNet 101. Observe that utilizing conservatism via CQL is still beneficial.

Scaled QL without CQL Scaled QL w/ CQL

Median human-normalized score 11.1% 98.9%
IQM human-normalized score 13.5% 114.1%

Num. games with better performance 6 / 40 34 / 40

d.8 implementation details and hyper-parameters

In this section, we will describe some of the implementation details behind our method
and will provide implementation details for our approach, including the details of the
network architectures, the details of feature normalization and the details of our training
and evaluation protocol.

d.8.1 Network Architecture

In our primary experiments, we consider variants of ResNet architectures for scaled
Q-Learning. The vision backbone in these architectures mimic the corresponding ResNet
architectures from He et al. [131], however, we utilize group normalization [344] (with a
group size of 4) instead of batch normalization, and instead of applying global mean pool-
ing to aggregate the outputs of the ResNet, we utilize learned spatial embeddings [188],
that learn a matrix that point-wise multiplies the output feature map of the ResNet. The
output volume is then flattened to be passed as input to the feed-forward part of the
network. The feed-forward layer part of the network begins with a layer of size 2048, and
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then applies layer norm on the network. After this we apply 3 feed-forward layers with
hidden dimension 1024 and ReLU activations, to obtain the image representation

Then, we apply feature normalization to the representation, by applying a normalization
layer which divides the representation of a given observation by its `2 norm. Note that
we do pass gradients through this normalization term. Now, this representation is passed
into different heads that are supposed to predict the Q-values. The total number of heads
is equal to the number of games we train on. Each head consists of a linear layer that
maps the 1024-dimensional normalized representation to a vector of K elements, where
K = |A| (i.e., the size of the action space) for the standard real-valued parameterization
of Q-values, and K = |A|⇥ 51 for C51. The network does not apply any output activation
in either case, and the Q-values are treated as logits for C51.

d.8.2 Details of C51

For the main results in the chapter, we utilize C51. The main hyperparameter in C51
is the size of the support set of Q-values. Unlike the paper from Bellemare et al. [24]
which utilizes a support set of [�10, 10], we utilize a support set of [�20, 20] to allow
for flexibility of CQL: Applying the CQL regularizer can underestimate or overestimate
Q-values, and this additional flexibility aids such scenarios. Though, we still utilize only
51 atoms in our support set, and the average dataset Q-value in our training runs is
generally always smaller, around ⇠ 8� 9.

d.8.3 Training and Evaluation Protocols and Hyperparameters

We utilize the initial 20% (sub-optimal) and 100% (near-optimal) datasets from Agarwal
et al. [6] for our experiments. These datasets are generated from runs of standard online
DQN on stochastic dynamics Atari environments that utilize sticky actions, i.e. there is
a 25% chance at every time step that the environment will execute the agents previous
action again, instead of the new action commanded. The majority of the training details
are identical to a typical run of offline RL on single-game Atari. We discuss the key
differences below.

We trained our ResNet 101 network for 10M gradient steps with a batch size of 512. The
agent hasn’t converged yet, and the performance is still improving gradually. When
training on multiple games, we utilize a stratified batch sampling scheme with a total
batch size of 512. To obtain the batch at any given training iteration, we first sample 128
game indices from the set all games (40 games in our experiments) with replacement,
and then sample 4 transitions from each game. This scheme does not necessarily produce
an equal number of transitions from each game in a training batch, but it does make sure
that all games are seen in expectation throughout training.
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Table 46: Hyperparameters used by multi-game training. Here we report the key hyperparameters used
by the multi-game training. The differences from standard single-game training are highlighted in red.

Hyperparameter Setting (for both variations)

Eval Sticky actions No
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Reward clipping [-1, 1]
Terminal condition Game Over
Max frames per episode 108K
Discount factor 0.99
Mini-batch size 512
Target network update period every 2000 updates
Training environment steps per iteration 62.5k
Update period every 1 environment steps
Evaluation e 0.001
Evaluation steps per iteration 125K
Learning rate 0.0002
n-step returns (n) 3
CQL regularizer weight a 0.1 for MSE, 0.05 for C51

Since we utilize a larger batch size, that is 16 times larger than the standard batch size
of 32 on Atari, we scale up the learning rate from 5e� 05 to 0.0002, but keep the target
network update period fixed to the same value of 1 target update per 2000 gradient steps
as with single-task Atari. We also utilize n-step returns with n = 3 by default, with both
our MSE and C51 runs.

Evaluation Protocol. Even though we train on Atari datasets with sticky actions, we
evaluate on Atari environments that do not enable sticky actions following the protocol
from Lee et al. [199]. This allows us to be comparable to this prior work in all of
our comparisons, without needing to re-train their model, which would have been too
computationally expensive. Following standard protocols on Atari, we evaluate a noised
version of the policy with an epsilon-greedy scheme, with #eval = 0.001. Following the
protocol in Castro et al. [38], we compute average return over 125K training steps.

d.8.4 Fine-Tuning Protocol

For offline fine-tuning we fine-tuned the parameters of the pre-trained policy on the new
domain using a batch size of 32, and identical hyperparameters as those used during
pre-training. We utilized a = 0.05 for fine-tuning, but with the default learning rate
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of 5e� 05 (since the batch size was the default 32). We attempted to use other CQL a
values {0.07, 0.02, 0.1} for fine-tuning but found that retaining the value of a = 0.05 for
pre-training worked the best. For reporting results, we reported the performance of the
algorithm at the end of 300k gradient steps.

For online fine-tuning, we use the C51 algorithm [24], with n-step= 3 and all other
hyperparameters from the C51 implementation in the Dopamine library [38]. We swept
over two learning rates, {1e� 05, 5e� 05} for all the methods and picked the best learning
rate per-game for all the methods. For the MAE implementation, we used the Scenic
library [59] with the typical configuration used for ImageNet pretraining, except using
84⇥ 84⇥ 4 sized Atari observations, instead of images of size 224⇥ 224⇥ 3. We train the
MAE for 2 epochs on the entire multi-task offline Atari dataset and we observe that the
reconstruction loss plateaus to a low value.

d.8.5 Details of Multi-Task Impala DQN

The “MT Impala DQN” comparison in Figures 20 & 23 is a multi-task implementation of
online DQN, evaluated at 5x many gradient steps as the size of the sub-optimal dataset.
This comparison is taken directly from Lee et al. [199]. To explain this baseline briefly,
this baseline runs C51 in conjunction with n-step returns with n = 4, with an IMPALA
architecture that uses three blocks with 64, 128, and 128 channels. This baseline was
trained with a batch size of 128 and update period of 256.

284



d.9 raw training scores for different methods

Table 47: Raw scores on 40 training Atari games in the sub-optimal multi-task Atari dataset (51% human-
normalized IQM). Scaled QL uses the ResNet-101 architecture.

Game DT (200M) DT (40M) Scaled QL (80M) BC (80M) MT Impala-DQN* Human

Amidar 72.9 82.2 33.1 14.5 629.8 1719.5
Assault 392.9 124.7 1380.8 1060.0 1338.7 742.0
Asterix 1518.8 2256.2 9967.3 745.3 2949.1 8503.3
Atlantis 10525.0 13125.0 485200.0 2494.1 976030.4 29028.1
BankHeist 13.1 15.6 18.6 87.6 1069.6 753.1
BattleZone 3750.0 7687.5 8500.0 1550.0 26235.2 37187.5
BeamRider 1535.8 1397.5 5856.5 327.2 1524.8 16926.5
Boxing 71.4 74.2 95.2 95.4 68.3 12.1
Breakout 38.8 38.2 351.1 274.7 32.6 30.5
Carnival 993.8 791.2 199.3 792.7 2021.2 3800.0
Centipede 2645.4 3026.9 2711.4 2260.8 4848.0 12017.0
ChopperCommand 1006.2 1093.8 752.2 336.7 951.4 7387.8
CrazyClimber 85487.5 86050.0 122933.3 121394.4 146362.5 35829.4
DemonAttack 2269.7 1049.4 14229.8 765.8 446.8 1971.0
DoubleDunk -14.5 -20.2 -12.4 -13.6 -156.2 -16.4
Enduro 336.5 266.2 2297.6 638.7 896.3 860.5
FishingDerby 15.9 16.8 13.7 -88.1 -152.3 -38.7
Freeway 16.2 20.5 24.4 0.1 30.6 29.6
Frostbite 1014.4 776.2 2324.5 234.8 2748.4 4334.7
Gopher 1137.5 1251.2 1041.0 231.5 3205.6 2412.5
Gravitar 237.5 193.8 260.3 248.8 492.5 3351.4
Hero 6741.2 6295.3 4011.9 7485.8 26568.8 30826.4
IceHockey -8.8 -11.1 -3.7 -10.8 -10.4 0.9
Jamesbond 378.1 312.5 58.7 7.1 264.6 302.8
Kangaroo 1975.0 2687.5 5796.6 307.1 7997.1 3035.0
Krull 6913.8 4377.5 9333.7 9585.3 8221.4 2665.5
KungFuMaster 17575.0 14743.8 24320.0 15778.6 29383.1 22736.3
NameThisGame 4396.9 4502.5 6759.6 2756.8 6548.8 8049.0
Phoenix 3560.0 2813.8 12770.0 762.9 3932.5 7242.6
Pooyan 1053.8 1394.7 1264.5 718.7 4000.0 4000.0
Qbert 8371.9 5917.2 14877.9 5759.6 4226.5 13455.0
Riverraid 6191.9 4265.6 9602.7 6657.2 7306.6 17118.0
Robotank 14.9 12.8 17.4 5.7 9.2 11.9
Seaquest 781.9 512.5 1021.8 113.9 1415.2 42054.7
TimePilot 2512.5 2700.0 767.3 3841.1 -883.1 5229.2
UpNDown 5288.8 5456.2 35541.3 8395.2 8167.6 11693.2
VideoPinball 1277.4 1953.1 40.0 2650.3 85351.0 17667.9
WizardOfWor 237.5 881.2 107.0 495.3 975.9 4756.5
YarsRevenge 11867.4 10436.8 11482.4 17755.5 18889.5 54576.9
Zaxxon 287.5 337.5 1.4 0.0 -0.1 9173.3
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Table 48: Raw scores on 40 training Atari games in the near-optimal multi-task Atari dataset. Scaled QL
uses the ResNet 101 architecture.

Game DT (200 M) DT (40M) BC (200M) MT Impala-DQN* Scaled QL (80M) Human

Amidar 101.5 1703.8 101.0 629.8 21.0 1719.5
Assault 2385.9 1772.2 1872.1 1338.7 3809.6 742.0
Asterix 14706.3 4575.0 5162.5 2949.1 34278.9 8503.3
Atlantis 3105342.3 304931.2 4237.5 976030.4 881980.0 29028.1
BankHeist 5.0 40.0 63.1 1069.6 33.9 753.1
BattleZone 17687.5 17250.0 9250.0 26235.2 8812.5 37187.5
BeamRider 8560.5 3225.5 4948.4 1524.8 10301.0 16926.5
Boxing 95.1 92.1 90.9 68.3 99.5 12.1
Breakout 290.6 160.0 185.6 32.6 415.0 30.5
Carnival 2213.8 3786.9 2986.9 2021.2 926.1 3800.0
Centipede 2463.0 2867.5 2262.8 4848.0 3168.2 12017.0
ChopperCommand 4268.8 3337.5 1800.0 951.4 832.2 7387.8
CrazyClimber 126018.8 113425.0 123350.0 146362.5 140500.0 35829.4
DemonAttack 23768.4 3629.4 7870.6 446.8 56318.3 1971.0
DoubleDunk -10.6 -12.5 -1.5 -156.2 -13.1 -16.4
Enduro 1092.6 770.8 793.2 896.3 2345.8 860.5
FishingDerby 11.8 19.2 5.6 -152.3 23.8 -38.7
Freeway 30.4 32.8 29.8 30.6 31.9 29.6
Frostbite 2435.6 934.4 782.5 2748.4 3566.4 4334.7
Gopher 9935.0 3827.5 3496.2 3205.6 3776.9 2412.5
Gravitar 59.4 75.0 12.5 492.5 262.3 3351.4
Hero 20408.8 19667.2 13850.0 26568.8 20470.6 30826.4
IceHockey -10.1 -5.2 -8.3 -10.4 -1.5 0.9
Jamesbond 700.0 712.5 431.2 264.6 483.6 302.8
Kangaroo 12700.0 11581.2 12143.8 7997.1 2738.6 3035.0
Krull 8685.6 8295.6 8058.8 8221.4 10176.9 2665.5
KungFuMaster 15562.5 16387.5 4362.5 29383.1 25808.3 22736.3
NameThisGame 9056.9 7777.5 7241.9 6548.8 11647.0 8049.0
Phoenix 5295.6 4744.4 4326.9 3932.5 5264.0 7242.6
Pooyan 2859.1 1191.9 1677.2 4000.0 2020.1 4000.0
Qbert 13734.4 12534.4 11276.6 4226.5 15946.0 13455.0
Riverraid 14755.6 11330.6 9816.2 7306.6 18494.8 17118.0
Robotank 63.2 50.9 44.6 9.2 53.2 11.9
Seaquest 5173.8 3112.5 1175.6 1415.2 414.1 42054.7
TimePilot 2743.8 3487.5 1312.5 -883.1 4220.5 5229.2
UpNDown 16291.3 9306.9 10454.4 8167.6 55512.9 11693.2
VideoPinball 1007.7 9671.4 1140.8 85351.0 285.7 17667.9
WizardOfWor 187.5 687.5 443.8 975.9 301.6 4756.5
YarsRevenge 28897.9 25306.3 20738.9 18889.5 24393.9 54576.9
Zaxxon 275.0 4637.5 50.0 -0.1 2.1 9173.3
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E
A P P E N D I X : O F F L I N E R L W I T H M U LT I - TA S K A N D U N L A B E L E D
D ATA

Conservative Data Sharing

e.1 pseudocode of cds

We present the summary of the pseudocode of CDS in Algorithm 6.

Algorithm 6 CDS: Conservative Data Sharing

Require: Multi-task offline dataset [N
i=1Di.

1: Randomly initialize policy pq(a|s, i).
2: for k = 1, 2, 3, · · · , do
3: Initialize Deff  {}
4: for i = 1, · · · , N do
5: Deff

i = Di [ {(sj, aj, s0j, ri) 2 Dj!i : Dp(s, a) � 0} using Eq. 7.2.6 (CDS).
6: end for
7: Improve policy using samples from Deff to obtain pk+1

q .
8: end for

e.2 analysis of cds

In this section, we will analyze the key idea behind our method CDS (Section 7.2.4) and
show that the abstract version of our method (Equation 7.2.5) provides better policy
improvement guarantees than naı̈ve data sharing and that the practical version of our
method (Equation 7.2.6) approximates Equation 7.2.5 resulting in an effective practical
algorithm.
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e.2.1 Analysis of the Algorithm in Equation 7.2.5

We begin with analyzing Equation 7.2.5, which is used to derive the practical variant
of our method, CDS. We build on the analysis of safe-policy improvement guarantees
of conventional offline RL algorithms [194, 181] and show that data sharing using CDS
attains better guarantees in the worst case. To begin the analysis, we introduce some
notation and prior results that we will directly compare to.

notation and prior results . Let pb(a|s) denote the behavior policy for task i
(note that index i was dropped from pb(a|s; i) for brevity). The dataset, Di is generated
from the marginal state-action distribution of pb, i.e., D ⇠ dpb(s)pb(a|s). We define dp

D
as the state marginal distribution introduced by the dataset D under p. Let DCQL(p, q)
denote the following distance between two distributions p(x) and q(x) with equal support
X :

DCQL(p, q) := Â
x2X

p(x)

✓
p(x)

q(x)
� 1

◆
.

Unless otherwise mentioned, we will drop the subscript “CQL” from DCQL and use D
and DCQL interchangeably. Prior works [181] have shown that the optimal policy p⇤i that
optimizes Equation 7.2.1 attains a high probability safe-policy improvement guarantee,
i.e., J(p⇤i ) � J(pb)� zi, where zi is:

zi = O
✓

1
(1� g)2

◆
E

s⇠d
p⇤i
Di

2

4
s

DCQL(p⇤i , pb)(s) + 1
|Di(s)|

3

5+ aD(p⇤i , pb). (E.2.1)

The first term in Equation E.2.1 corresponds to the decrease in performance due to
sampling error and this term is high when the single-task optimal policy p⇤i visits rarely
observed states in the dataset Di and/or when the divergence from the behavior policy
pb is higher under the states visited by the single-task policy s ⇠ dp⇤i

Di
.

Let JD(p) denote the return of a policy p in the empirical MDP induced by the transitions
in the dataset D. Further, let us assume that optimizing Equation 7.2.5 gives us the
following policies:

p⇤(a|s), p⇤b(a|s) := arg max
p,pb2Prelabel

JDeff
i

(p)� aD(p, pb)
| {z }

:= f (p,pb;Deff
i )

, (E.2.2)

where the optimized behavior policy p⇤b is constrained to lie in a set of all policies
that can be obtained via relabeling, Prelabel, and the dataset, Deff

i is sampled according
to the state-action marginal distribution of p⇤b, i.e., Deff

i ⇠ dp⇤b(s, a). Additionally, for
convenience, define, f (p1, p2; D) := JD(p1)� aD(p1, p2) for any two policies p1 and p2,
and a given dataset D.
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We now show the following result for CDS:

Proposition E.2.1 (Proposition 7.2.1 restated). Let p⇤(a|s) be the policy obtained by optimizing
Equation 7.2.5, and let pb(a|s) be the behavior policy for Di. Then, w.h.p. � 1� d, p⇤ is a z-safe
policy improvement over pb, i.e., J(p⇤) � J(pb)� z, where z is given by:

z = O
✓

1
(1� g)2

◆
Es⇠dp⇤

Deff
i

2

4

vuutDCQL(p⇤, p⇤b)(s) + 1

|Deff
i (s)|

3

5�

2

64aD(p⇤, p⇤b) + J(p⇤b)� J(pb)| {z }
(a)

3

75 ,

where Deff
i ⇠ dp⇤b(s) and p⇤b(a|s) denotes the policy p 2 Prelabel that maximizes Equation 7.2.5.

Proof. To prove this proposition, we shall quantify the lower-bound on the improvement
in the policy performance due to Equation E.2.2 in the empirical MDP, and the potential
drop in policy performance in the original MDP due to sampling error, and combine the
terms to obtain our bound. First note that for any given policy p, and a dataset Deff

i with
effective behavior policy pb(a|s), the following bound holds [181]:

J(p) � JDeff
i

(p)�O
✓

1
(1� g)2

◆
Es⇠dp

Deff
i

2

4

vuutDCQL(p, p⇤b)(s) + 1

|Deff
i (s)|

3

5 , (E.2.3)

where the O(·) notation hides constants depending upon the concentration properties
of the MDP [194] and 1� d, the probability with which the statement holds. Next, we
provide guarantees on policy improvement in the empirical MDP. To see this, note that
the following statements on f (p1, p2; D) are true:

8p0 2 Prelabel, f (p⇤, p⇤b; Deff
i ) � f (p0, p0, Deff

i ) (E.2.4)

=) 8p0 2 Prelabel, JDeff
i

(p⇤)� aD(p⇤, p⇤b) � JDeff
i

(p0). (E.2.5)

And additionally, we obtain:

8p0 2 Prelabel, f (p⇤, p⇤b; Deff
i ) � f (p⇤, p0; Deff

i ), (E.2.6)

=) 8p0 2 Prelabel, D(p⇤, p⇤b)  D(p⇤, p0). (E.2.7)

Utilizing E.2.5, we obtain that:

JDeff
i

(p⇤)� JDeff
i

(pb) � aD(p⇤, p⇤b) +

⇣
JDeff

i
(p⇤b)� JDeff

i
(pb)

⌘
(E.2.8)

⇡ aD(p⇤, p⇤b) +

⇣
J(p⇤b)� J(pb)

⌘
, (E.2.9)

where ⇡ ignores sampling error terms that do not depend on distributional shift measures
like DCQL because p⇤b and pb are behavior policies which generated the complete and part

289



of the dataset, and hence these terms are dominated by and subsumed into the sampling
error for p⇤. Combining Equations E.2.3 (by setting p = p⇤) and E.2.8, we obtain the
following safe-policy improvement guarantee for p⇤: J(p⇤)� J(pb) � z, where z is given
by:

z = O
✓

1
(1� g)2

◆
Es⇠dp⇤

Deff
i

2

4

vuutDCQL(p⇤, p⇤b)(s) + 1

|Deff
i (s)|

3

5�

2

664aD(p⇤, p⇤b) + J(p⇤b)� J(pb)| {z }
(a)

3

775 ,

which proves the desired result.

Proposition E.2.1 indicates that when optimizing the behavior policy with Equation 7.2.5,
we can improve upon the conventional safe-policy improvement guarantee (Equation E.2.1)
with standard single-task offline RL: not only do we improve via DCQL(p⇤, p⇤b), since,
DCQL(p⇤, p⇤b)  DCQL(p⇤, pb), which reduces sampling error, but utilizing this policy p⇤b
also allows us to improve on term (a), since Equation E.2.2 optimizes the behavior policy
to be close to the learned policy p⇤ and maximizes the learned policy return JDeff

i
(p⇤) on

the effective dataset, thus providing us with a high lower bound on J(p⇤b). We formalize
this insight as Lemma E.2.2 below:

Lemma E.2.2. For sufficiently large a, JDeff
i

(p⇤b) � JDeff
i

(pb) and thus (a) � 0.

Proof. To prove this, we note that using standard difference of returns of two policies, we
get the following inequality: JDeff

i
(p⇤b) � JDeff

i
(p⇤)� C Rmax

1�g DTV(p⇤, p⇤b). Moreover, from
Equation E.2.5, we obtain that: JDeff

i
(p⇤)� aD(p⇤, p⇤b) � JDeff

i
(pb). So, if a is chosen such

that:
CRmax

1� g
DTV(p⇤, p⇤b)  aD(p⇤, p⇤b), (E.2.10)

we find that:

JDeff
i

(p⇤b) � JDeff
i

(p⇤)� C
Rmax

1� g
DTV(p⇤, p⇤b) � JDeff

i
(p⇤)� aD(p⇤, p⇤b) � JDeff

i
(pb),

implying that (a) � 0. For the edge cases when either DTV(p⇤, p⇤b) = 0 or DCQL(p⇤, p⇤b) =

0, we note that p⇤(a|s) = p⇤b(a|s), which trivially implies that JDeff
i

(p⇤b) = JDeff
i

(p⇤) �
JDeff

i
(pb), because p⇤ improves over pb on the dataset. Thus, term (a) is positive for

large-enough a and the bound in Proposition E.2.1 gains from this term additionally.

Finally, we show that the sampling error term is controlled when utilizing Equation 7.2.5.
We will show in Lemma E.2.3 that the sampling error in Proposition E.2.1 is controlled
to be not much bigger than the error just due to variance, since distributional shift is
bounded with Equation 7.2.5.
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Lemma E.2.3. If p⇤ and p⇤b obtained from Equation 7.2.5 satisfy, DCQL(p⇤, p⇤b)  #⌧ 1, then:
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1
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"s
1
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#

| {z }
:=sampling error w/o distribution shift

.

(E.2.11)

Proof. This lemma can be proved via a simple application of the Cauchy-Schwarz in-
equality. We can partition the first term as a sum over dot products of two vectors such
that:

($) = Â
s

r
dp⇤

Deff
i

(s)(DCQL(p⇤, p⇤b)(s) + 1)

vuut dp⇤

Deff
i

(s)

|Deff
i (s)|



vuuut
 

Â
s

dp⇤

Deff
i

(s)(DCQL(p⇤, p⇤b)(s) + 1)

!
·

0

@Â
s

dp⇤

Deff
i

(s)

|Deff
i (s)|

1

A

=

vuutEs⇠dp⇤
Deff

i

h
DCQL(p⇤, p⇤b)(s) + 1

i
Es⇠dp⇤

Deff
i

"
1

|Deff
i (s)|

#

 (1 + #)0.5Es⇠dp⇤
Deff

i

"s
1

|Deff
i (s)|

#
,

where we note that Es⇠dp⇤
Deff

i

h
DCQL(p⇤, p⇤b)(s)

i
= DCQL(p⇤, p⇤b)  # (based on the given

information in the Lemma) and that
q

Âi wi
1
xi
 Âi wi

1p
xi

for xi, wi > 0 and Âi wi = 1,
via Jensen’s inequality for concave functions.

To summarize, combining Lemmas E.2.2 and E.2.3 with Proposition E.2.1, we conclude
that utilizing Equation 7.2.5 controls the increase in sampling error due to distributional
shift, and provides improvement guarantees on the learned policy beyond the behavior
policy of the original dataset. We also briefly now discuss the comparison between CDS
and complete data sharing. Complete data sharing would try to reduce sampling error
by increasing |Deff

i (s)|, but then it can also increase distributional shift, DCQL(p⇤, p⇤b)
as discussed in Section 7.2.3. On the other hand, CDS increases the dataset size while
also controlling for distributional shift (as we discussed in the analysis above), making it
enjoy the benefits of complete data sharing and avoiding its pitfalls, intuitively. On the
other hand, no data sharing will just incur high sampling error due to limited dataset
size.
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e.2.2 From Equation 7.2.5 to Practical CDS (Equation 7.2.6)

The goal of our practical algorithm is to convert Equation 7.2.5 to a practical algorithm
while retaining the policy improvement guarantees derived in Proposition E.2.1. Since our
algorithm does not utilize any estimator for dataset counts |Deff

i (s)|, and since we operate
in a continuous state-action space, our goal is to retain the guarantees of increased return
of p⇤b, while also avoiding sampling error.

With this goal, we first need to relax the state-distribution in Equation 7.2.5: while
both JDeff

i
(p) and DCQL(p, pb) are computed as expectations under the marginal state-

distribution of policy p(a|s) on the MDP defined by the dataset Deff
i , for deriving a

practical method we relax the state distribution to use the dataset state-distribution dp⇤b

and rewrite the objective in accordance with most practical implementations of actor-critic
algorithms [58, 2, 126, 97, 211] below:

(Practical Eq. 7.2.5) max
p

max
pb2Prelabel

Es⇠Deff
i

[Ea⇠p(a|s)[Q(s, a)]� aD(p(·|s), pb(·|s))]

(E.2.12)
This practical approximation in Equation E.2.12 is even more justified with conservative
RL algorithms when a large a is used, since a larger a implies a smaller value for D(p⇤, p⇤b)

found by Equation 7.2.5, which in turn means that state-distributions dp⇤b and dp⇤ are
close to each other [290]. Thus, our policy improvement objective optimizes the policies p

and pb by maximizing the conservative Q-function: Q̂p(s, a) = Q(s, a)� a
⇣

p(a|s)
pb(a|s) � 1

⌘
,

that appears inside the expectation in Equation E.2.12. While optimizing the policy p
with respect to this conservative Q-function Q̂p(s, a) is equivalent to a standard policy
improvement update utilized by most actor-critic methods [97, 126, 181], we can optimize
Q̂p(s, a) with respect to pb 2 Prelabel by relabeling only those transitions (s, a, r0i, s0) 2
Dj!i that increase the expected conservative Q-value Es⇠Deff

i

h
Ea⇠pb(·|s)

⇥
Q̂p(s, a)

⇤i
. Note

that we relaxed the expectation a ⇠ p(a|s) to a ⇠ pb(a|s) in this expectation, which can
be done upto a lower-bound of the objective in Equation E.2.12 for a large a, since the
resulting policies p and pb are close to each other.

The last step in our practical algorithm is to modify the solution of Equation E.2.12 to
still retain the benefits of reduced sampling error as discussed in Proposition E.2.1. To do
so, we want to relabel as many points as possible, thus increasing |Deff

i (s)|, which leads
to reduced sampling error. Since quantifying |Deff

i (s)| in continuous state-action spaces
will require additional machinery such as density-models, we avoid these for the sake
of simplicity, and instead choose to relabel every datapoint (s, a) 2 Dj!i that satisfies
Qp(s, a; i) � Es,a⇠Di [Q̂

p(s, a; i)] � 0 to task i. These datapoints definitely increase the
conservative Q-value and hence increase the objective in Equation E.2.12 (though do not
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globally maximize it), while also enjoying properties of reduced sampling error (Proposi-
tion E.2.1). This discussion motivates our practical algorithm in Equation 7.2.6.

e.3 experimental details

In this section, we provide the training details of CDS in Appendix E.3.1 and also
include the details on the environment and datasets that we use for the evaluation in
Appendix E.3.2. We also compare CDS to an offline RL with pretrained representations
from multi-task datasets method [354].

e.3.1 Training details

The pseudocode of CDS is summarized in Algorithm 6 in Appendix E.1. The complete
variant of CDS can be directly implemented using the rule in Equation 7.2.6 with conser-
vative Q-value estimates obtained via any offline RL method that constrains the learned
policy to the behavior policy. For implementing CDS (basic), we reparameterize the
divergence D in Equation 7.2.4 to use the learned conservative Q-values. This is especially
useful for our implementation since we utilize CQL as the base offline RL method, and
hence we do not have access to an explicit divergence. In this case, Dp(s, a) can be
redefined as, Dp(s, a) :=

Es0⇠Di
⇥
Ea0⇠p[Q̂(s0, a0, i)]�Ea00⇠Di [Q̂(s0, a00, i)]

⇤
�
�
Ea0⇠p[Q̂(s, a0, i)]�Q(s, a, i)

�
,

(E.3.1)

Equation E.3.1 can be viewed as the difference between the CQL [181] regularization
term on a given (s, a) and the original dataset for task i, Di. This CQL regularization
term is equal to the divergence between the learned policy p(·|s) and the behavior policy
pb(·|s), therefore Equation E.3.1 practically computes Equation 7.2.4.

Note that both variants of CDS train a policy, p(a|s; i), either conditioned on the task
i (i.e., with weight sharing) or a separate p(a|s) policy for each task with no weight
sharing, using the resulting relabeled dataset, Deff

i . Next, we discuss the training details
of the complete version of CDS.

Our practical implementation of CDS optimizes the following objectives for training the
critic and the policy:

Q̂k+1  arg min
Q̂

Ei⇠[N]

h
b
⇣

Ej⇠[N]

h
Es⇠Dj,a⇠µ(·|s,i)

⇥
wCDS(s, a; j! i)Q̂(s, a, i)

⇤

�Es,a⇠Dj

⇥
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⇤i⌘

+
1
2

Ej⇠[N],(s,a,s0)⇠Dj


wCDS(s, a; j! i)

⇣
Q̂(s, a, i)� bBpQ̂k

(s, a, i)
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��

,

and p  arg max
p0

Ei⇠[N]

h
Ej⇠[N],s⇠Dj,a⇠p0(·|s,i)

⇥
wCDS(s, a; j! i)Q̂p

(s, a, i)
⇤i

,
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where b is the coefficient of the CQL penalty on distribution shift, µ is a wide sampling
distribution as in CQL and bB is the sample-based Bellman operator.

To compute the relabeling weight wCDS(s, a; j! i) := s
⇣

D(s,a;j!i)
t

⌘
, we need to pick the

value of the temperature term t. Instead of tuning t manually, we follow the the adaptive
temperature scaling scheme from [180]. Specifically, we compute an exponential running
average of D(s, a; j! i) with decay 0.995 for each task and use it as t. We additionally
clip the adaptive temperature term with a minimum and maximum threshold, which
we tune manually. For multi-task halfcheetah, walker2d and ant, we clip the adaptive
temperature such that it lies within [10, •], [5, •] and [10, 25] respectively. For the multi-
task Meta-Wold experiment, we use [1, 50] for the clipping. For multi-task Antmaze, we
used a range of [10, •] for all the domains. We do not clip the temperature term on
vision-based domains.

For state-based experiments, we use a stratified batch with 128 transitions for each task
for the critic and policy learning. For each task i, we sample 64 transitions from Di and
another 64 transitions from [j 6=iDj!i, i.e. the relabeled datasets of all the other tasks.
When computing D(s, a; j! i), we only apply the weight to relabeled data on multi-task
Meta-World environments and multi-task vision-based robotic manipulation tasks while
also applying the weight to the original data drawn from Di with 50% chance for each
task i 2 [N] in the remaining domains.

We use CQL [181] as the base offline RL algorithm. On state-based experiments, we
mostly follow the hyperparameters provided in prior work [181]. One exception is that on
the multi-task ant domain, we set b = 5.0 and on the other two locomotion environments
and the multi-task Meta-World domain, we use b = 1.0. On multi-task AntMaze, we use
the Lagrange version of CQL, where the multiplier b is automatically tuned against a
pre-specific constraint value on the CQL loss equal to t = 5.0. We use a policy learning
rate 1e� 4 and a critic learning rate 3e� 4 as in [181]. On the vision-based environment,
instead of using the direct CQL algorithm, we follow [41] and sample unseen actions
according to the soft-max distritbution of the Q-values and set its Q target value to
0. This algorithm can be viewed the version of CQL with b = 1.0 in Eq.1 in [181], i.e.
removing the term of negative expected Q-values on the dataset. We follow the other
hyperparameters from prior work [161, 41, 162].

For the choice architectures, in the domains with low-dimensional state inputs, we use
3-layer feedforward neural networks with 256 hidden units for both the Q-networks
and the policy. We append a one-hot task vector to the state of each environment. For
the vision-based experiment, our Q-network architecture follows from multi-headed
convolutional networks used in MT-Opt [162]. For the observation input, we use images
with dimension 472⇥ 472⇥ 3 along with additional state features (gstatus, gheight) as well
as the one-hot task vector as in [162]. For the action input, we use Cartesian space
control of the end-effector of the robot in 4D space (3D position and azimuth angle) along
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with two discrete actions for opening/closing the gripper and terminating the episode
respectively. More details can be found in [161, 162].

e.3.2 Environment and dataset details

In this subsection, we discuss the details of how we set up the multi-task environment
and how we collect the offline datasets. We want to acknowledge that all datasets with
state inputs use the MIT License.

Multi-task locomotion domains. We construct the environment by changing the reward
function in [32]. On the halfcheetah environment, we follow [365] and set the reward
functions of task run forward, run backward and jump as r(s, a) = max{vx, 3}� 0.1 ⇤ kak2

2,
r(s, a) = �max{vx, 3}� 0.1 ⇤ kak2

2 and r(s, a) = �0.1 ⇤ kak2
2 + 15 ⇤ (z� init z) respectively

where vx denotes the velocity along the x-axis and z denotes the z-position of the half-
cheetah and init z denotes the initial z-position. Similarly, on walker2d, the reward
functions of the three tasks are r(s, a) = vx � 0.001 ⇤ kak2

2, r(s, a) = �vx � 0.001 ⇤ kak2
2

and r(s, a) = �kvxk � 0.001 ⇤ kak2
2 + 10 ⇤ (z � init z) respectively. Finally, on ant, the

reward functions of the three tasks are r(s, a) = vx � 0.5 ⇤ kak2
2 � 0.005 ⇤ contact-cost,

r(s, a) = �vx� 0.5 ⇤ kak2
2� 0.005 ⇤ contact-cost and r(s, a) = �kvxk� 0.5 ⇤ kak2

2� 0.005 ⇤
contact-cost + 10 ⇤ (z� init z).

On each of the multi-task locomotion environment, we train each task with SAC [126]
for 500 epochs. For medium-replay datasets, we take the whole replay buffer after the
online SAC is trained for 100 epochs. For medium datasets, we take the online single-task
SAC policy after 100 epochs and collect 500 trajectories with the medium-level policy. For
expert datasets, we take the final online SAC policy and collect 5 trajectories with it for
walker2d and halfcheetah and 20 trajectories for ant.

Meta-World domains. We take the door open, door close, drawer open and drawer close
environments from the open-sourced Meta-World [364] repo1. We put both the door and
the drawer on the same scene to make sure the state space of all four tasks are shared.
For offline training, we use sparse rewards for each task by replacing the dense reward
defined in Meta-World with the success condition defined in the public repo. Therefore,
each task gets a reward of 1 if the task is fully completed and 0 otherwise.

For generating the offline datasets, we train each task with online SAC using the dense
reward defined in Meta-World for 500 epochs. For medium-replay datasets, we take the
whole replay buffer of the online SAC until 150 epochs. For the expert datasets, we run
the final online SAC policy to collect 10 trajectories.

AntMaze domains. We take the antmaze-medium-play and antmaze-large-play datasets
from D4RL [92] and convert the datasets into multi-task datasets in two ways. In the
undirected version of these tasks, we split the dataset randomly into equal sized partitions,

1 The Meta-World environment can be found at the public repo https://github.com/rlworkgroup/metaworld
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and then assign each partition to a particular randomly chosen task. Thus, the task data
observed in the data for each task is largely unsuccessful for the particular task it is
assigned to and effective data sharing is essential for obtaining good performance. The
second setting is the directed data setting where a trajectory in the dataset is marked to
belong to the task corresponding to the actual end goal of the trajectory. A sparse reward
equal to +1 is provided to an agent when the current state reaches within a 0.5 radius of
the task goal as was used default by Fu et al. [92].

Vision-based robotic manipulation domains. Following MT-Opt [162], we use sparse
rewards for each task, i.e. reward 1 for success episodes and 0 otherwise. We define
successes using the success detectors defined in [162]. To collect data for vision-based
experiments, we train a policy for each task individually by running QT-Opt [161] with
default hyperparameters until the task reaches 40% success rate for picking skills and
80% success rate for placing skills. We take the whole replay buffer of each task and
combine all of such replay buffers to form the multi-task offline dataset with total 100K
episodes where each episode has 25 transitions.

e.4 visualizations , comparisons and additional experiments

In this section, we perform diagnostic and ablation experiments to: (1) understand the
efficacy of CDS when applied with other base offline RL algorithms, such as BRAC [343],
(2) visualize the weights learned by CDS to understand if the weighting scheme induced
by CDS corresponds to what we would intuitively expect on different tasks, and (3)
compare CDS to a prior approach that performs representation learning from offline
multi-task datasets and then runs vanilla multi-task RL algorithm on top of the learned
representations. We discuss these experiments next.

e.4.1 Applying CDS with BRAC [343], A Policy-Constraint Offline RL Algorithm

We implemented CDS on top of BRAC which is different from CQL that penalizes Q-
functions. BRAC computes the divergence D(p, pb) in Equation 7.2.1 explicitly and
penalizes the reward function r(s, a) with this value in the Bellman backups. To apply
CDS to BRAC, we need to compute a conservative estimate of the Q-value as discussed in
Section 7.2.4.2. While the Q-function from CQL directly provides us with this conservative
estimate, BRAC does not directly learn a conservative Q-function estimator. Therefore,
for BRAC, we compute this conservative estimate by explicitly subtracting KL divergence
between the learned policy p(a|s) and the behavior policy pb on state-action tuples
(s, a) from the learned Q-function’s prediction. Formally, this means that we utilize
Q̂(s, a) := Q(s, a)� aDKL(p(a|s), pb(a|s)) as our conservative Q-value estimate for BRAC.
Given these conservative Q-value estimate, CDS weights can be computed directly using
Equation 7.2.6.

296



Environment Tasks / Dataset type BRAC + CDS (ours) BRAC + No Sharing BRAC + Sharing All

door open / expert 44.0%±3.0% 35.0%±25.9% 38.0%±2.2%
door close / medium-replay 32.5% ± 5.0% 5.0% ± 8.6% 8.6% ± 3.4%

Meta-World [364] drawer open / medium-replay 28.5%±3.5% 21.8%±5.6% 0.0% ± 0.0%
drawer close / expert 100%±0.0% 100.0%±0.0% 99.0%±0.7%
average 52.5%±7.4% 22.5%±13.3% 40.0%±5.0%

Table 49: Applying CDS on top of BRAC. Note that CDS + BRAC imrpoves over both BRAC + Sharing All
and BRAC + No sharing, indicating that CDS is effective over other offline RL algorithms such as BRAC as
well. The ± values indicate the value of the standard deviation of runs, and results are averaged over three
seeds.

We evaluated BRAC + CDS on the Meta-World tasks and compared it to BRAC + Sharing
All and BRAC + No Sharing. We present the results in Table 49. We use ± to denote
the 95%-confidence interval. As observed below, BRAC + CDS significantly outperforms
BRAC with Sharing All and BRAC with No sharing. This indicates that CDS is effective
on top of BRAC.

e.4.2 Analyzing CDS weights for Different Scenarios

Next, to understand if the weights assigned by CDS align with our expectation for which
transitions should be shared between tasks, we perform diagnostic analysis studies on
the weights learned by CDS on the Meta-World and Antmaze domains.

On the Meta-World environment, we would expect that for a given target task, say
Drawer Close, transitions from a task that involves a different object (door) and a different
skill (open) would not be as useful for learning. To understand if CDS weights reflect this
expectation, we compare the average CDS weights on transitions from all the other tasks
to two target tasks, Door Open and Drawer Close, respectively and present the results
in Table 50. We sort the CDS weights in the descending order. As shown, indeed CDS
assigns higher weights to more related tasks and thus shares data from those tasks. In
particular, the CDS weights for relabeling data from the task that handles the same object
as the target task are much higher than the weights for tasks that consider a different
object.

For example, when relabeling to the target task Door Open, datapoints from task Door
Close are assigned with much higher weights than those from either task Drawer Open
or task Drawer Close. This suggests that CDS filters the irrelevant transitions for learning
a given task.

On the AntMaze-large environment, with undirected data, we visualize the CDS weight
for the various tasks (goals) in the form of a heatmap and present the results in Figure 37.
To generate this plot, we sample a set of state-action pairs from the entire dataset for all
tasks, and then plot the weights assigned by CDS as the color of the point marker at the
(x, y) locations of these state-action pairs in the maze. Each plot computes the CDS weight
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Relabeling Direction CDS weight

door close! door open 0.46
drawer open! door open 0.10
drawer close! door open 0.02

drawer open! drawer close 0.35
door open! drawer close 0.26
door close! drawer close 0.22

Table 50: On the Meta-World domain, we visualize the CDS weights of data relabeled from other tasks to
the two target tasks door open and drawer close shown in the second row and third row respectively. We
sort the CDS weights for relabeled tasks to a particular target task in the descending order. As shown in
the table, CDS upweights tasks that are more related to the target task, e.g. manipulating the same object.

Figure 37: A visualization of the weights assigned by CDS to various transitions in the antmaze dataset for
six target goals (indicated by ⇥ clustered by their spatial location. Note that CDS up-weights transitions
spatially close to the target goal (indicated in the brighter yellow color), matching our expectation.

corresponding to the target task (goal) indicated by the red ⇥ in the plot. As can be seen
in Figure 37, CDS assigns higher weights to transitions from nearby goals as compared
to transitions from farther away goals. This matches our expectation: transitions from
nearby (x, y) locations are likely to be the most useful in learning a particular target task
and CDS chooses to share these transitions to the target task.

e.4.3 Comparison of CDS with Other Alternatives to Data Sharing: Utilizing Multi-Task
Datasets for Learning Pre-Trained Representations

Finally, we aim to empirically verify how other alternatives to data sharing perform on
multi-task offline RL problems. One simple approach to utilize data from other tasks
is to use this data to learn low-dimensional representations that capture meaningful

298



Environment Tasks / Dataset type CDS (ours) No Sharing Offline Petraining [354]

door open / expert 58.4%±9.3% 14.5%±12.7% 48.0%±40.0%
door close / medium-replay 65.3%±27.7% 4.0%±6.1% 9.5%±8.4%

Meta-World [364] drawer open / medium-replay 57.9%±16.2% 16.0%±17.5% 1.3% ± 1.4%
drawer close / expert 98.8%±0.7% 99.0%±0.7% 96.0%±0.9%
average 70.1%±8.1% 33.4%±8.3% 38.7%±11.1%

Table 51: Comparison between CDS and Offline Pretraining [354] that pretrains the representation from
the multi-task offline data and then runs multi-task offline RL on top of the learned representation on
the Meta-World domain. Numbers are averaged across 6 seeds, ± the 95%-confidence interval. CDS
significantly outperforms Offline Pretraining.

information about the environment initially in a pre-training phase and then utilize these
representations for improved multi-task RL without any specialized data sharing schemes.
To assess the efficacy of this alternate approach of using multi-task offline data, in Table 51,
we performed an experiment on the Meta-World domain that first utilizes the data from
all the tasks to learn a shared representation using the best method, ACL [354] and then
runs standard offline multi-task RL on top of this representation. We denote the method
as Offline Pretraining. We include the average task success rates of all tasks in the table
below. While the representation learning approach improves over standard multi-task
RL without representation learning (No Sharing) consistent with the findings in [354],
we still find that CDS with no representation learning outperforms this representation
learning approach by a large margin on multi-task performance, which suggests that
conservative data sharing is more important than pure pretrained representation from
multi-task datasets in the offline multi-task setting. We finally remark that in principle,
we could also utilize representation learning approaches in conjunction with data sharing
strategies and systematically characterizing this class of hybrid approaches is a topic of
future work.
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Unlabeled Data Sharing

e.5 missing proofs

In this section, we will theoretically analyze UDS and other reweighting schemes to better
understand when these approaches can perform well. We will first discuss our notation,
then present our theoretical results, then discuss the intuitive explanations of these results,
and finally, provide proofs of the theoretical results.

e.5.1 Performance Guarantee for UDS

We first restate Proposition 7.3.1 below for convenience, and we then provide a proof of
the result.

Theorem E.5.1 (Policy improvement guarantee for UDS; restated.). Let p⇤UDS denote the
policy learned by UDS, and let peff

b (a|s) denote the behavior policy for the combined dataset Deff.
Then with high probability � 1� d, p⇤UDS is a safe policy improvement over peff

b , i.e.,

J(p⇤UDS) � J(peff
b )� zerr +

a

1� g
D(p⇤UDS, peff

b )

| {z }
(c): policy improvement

,

where: zerr =

Âs,a

⇣
bdpb

eff
(s, a)� bdp⇤UDS(s, a)

⌘
· (1� f (s, a)) · r(s, a)

1� g| {z }
(a): reward bias

+ O
✓

g

(1� g)2

◆
2

64

vuutDCQL(p⇤UDS, peff
b )(s)

|Deff(s)|

3

75

| {z }
(b): sampling error

,

where we use the notation f (s, a) := |DL(s,a)|
|Deff(s,a)| .

Proof. We start with the loss decomposition of the improvement of the learned policy
relative to the behavior policy with the affine transformation g:

J(p)� J(pb) := J(p)� bJ(p)| {z }
(i)

+ bJ(p)� bJ(pb)| {z }
(ii)

+ bJ(pb)� J(pb)| {z }
(iii)

.

Now we will discuss how to bound each of the terms: terms (i) and (ii) correspond
to the divergence between the empirical policy return and the actual return. While
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usually, this difference depends on the sampling error and distributional shift, in our
case, it additionally depends on the reward bias induced on the unlabeled data and the
transformation g. We first discuss the terms that contribute to this reward bias.

bounding the reward bias . Denote the effective reward of a particular transition
(s, a, r, s0) 2 Deff, as breff, which considers contributions from both the reward br(s, a)

observed in dataset DL, and the contribution of 0 reward from the relabeled dataset:

breff
(s, a) =

|D(s, a)| ·br(s, a) + |Deff(s, a) \ D(s, a)| · 0
|Deff(s, a)|

(E.5.1)

Define f (s, a) := |D(s,a)|
|Deff(s,a)| for notation compactness. Equation E.5.1 can then be used to

derive the following difference against the true rewards:

breff
(s, a)� r(s, a) = f (s, a) (br(s, a)� r(s, a)) + (1� f (s, a)) · (0� r(s, a)) (E.5.2)

 f (s, a) · Cr,dp
|D(s, a)|

� (1� f (s, a)) · r(s, a), (E.5.3)

where the last step follows from the fact that the ground-truth reward r(s, a) 2 [0, 1].
Now, we lower bound the reward bias as follows:

breff
(s, a)+� r(s, a) = f (s, a) · (br(s, a)� r(s, a)) + (1� f (s, a)) · (�r(s, a)) (E.5.4)

� � f (s, a) · Cr,dp
|D(s, a)|

� (1� f (s, a)) · r(s, a),

where the last step follows from the fact that r(s, a)  1.

upper bounding bJ (p ) � J (p ) . Next, using the upper and lower bounds on the
reward bias, we now derive an upper bound on the difference between the value of
a policy computed under the empirical MDP and the actual MDP. To compute this
difference, we follow the following steps

bJ(p)� J(p) =
1

1� g Â
s,a

⇣
bdp
Deff(s)p(a|s)breff

(s, a)� dp
(s)p(a|s)r(s, a)

⌘
(E.5.5)

=
1

1� g Â
s,a

bdp
Deff(s)p(a|s)

⇣
breff

(s, a)� r(s, a)

⌘

| {z }
:=D1

+
1

1� g Â
s,a

⇣
bdp
Deff(s)� dp

(s)
⌘

p(a|s)r(s, a)

| {z }
:=D2

Following Kumar et al. [181] (Theorem 3.6), we can bound the second term D2 using:

|D2| 
gCP,d
1� g

Es⇠ bdp
Deff (s)

" p
|A|p

|Deff(s)|

q
D(p, bpeff

b )(s) + 1

#
. (E.5.6)
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To upper bound D1, we utilize the reward upper bound from Equation E.5.2:

D1 = Â
s

bdp
Deff(s)

 

Â
a

p(a|s)
⇣
breff

(s, a)� r(s, a)

⌘!
(E.5.7)

 Â
s bdp

Deff (s) Âa f (s,a)
Cr,dp
|D(s)|

p(a|s)p
p̂b(a|s)

| {z }
=D01

�Â
s,a

bdp
Deff(s)p(a|s) [(1� f (s, a)) · r(s, a)]

| {z }
:=D4

. (E.5.8)

Combining the results so far, we obtain, for any policy p:

J(p) � bJ(p)� |D2|
1� g

� |D01|
1� g

+
D4

1� g
. (E.5.9)

lower bounding bJ (p ) � J (p ) . To lower bound this quantity, we follow the step
shown in Equation E.5.5, and lower bound the term D2 by using the negative of the RHS
of Equation E.5.6, and lower bound D1 by upper bounding its absolute value as shown
below:

D1 = Â
s

bdp
Deff(s)

 

Â
a

p(a|s)
⇣
breff

(s, a)� r(s, a)

⌘!
(E.5.10)

� Â
s bdp

Deff (s) Âa f (s,a)
Cr,dp
|D(s)|

p(a|s)p
p̂b(a|s)

| {z }
=D01

+ Â
s

bdp
Deff(s) Â

a
p(a|s) · (1� f (s, a))r(s, a). (E.5.11)

This gives rise to the complete lower bound:

bJ(p) � J(p)� |D2|
1� g

� 1
1� g Â

s,a

bdp
Deff

i
(s)p(a|s)(1� f (s, a))r(s, a)� D01

1� g
. (E.5.12)

policy improvement term (ii). Finally, the missing piece that needs to be bounded
is the policy improvement term (ii) in the decomposition of J(p)� J(pb). Utilizing the
abstract form of offline RL, we note that term (ii) is lower bounded as:

term (ii) � a

1� g
D(p, pb). (E.5.13)

putting it all together . To obtain the final expression of Proposition 7.3.1, we put
all the parts together, and include some simplifications to obtain the final expression. The
bound we show is relative to the effective behavior policy peff

b . Applying Equation E.5.12
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for term (i) on policy p, Equation E.5.13 for term (ii), and Equation E.5.9 for the behavior
policy peff

b , we obtain the following:

J(p)� J(peff
b ) = J(p)� bJ(p) + bJ(p)� bJ(peff

b ) + bJ(peff
b )� J(peff

b )

� � 2gCP,d
(1� g)2 Es⇠ bdp

Deff (s)

" p
|A|p

|Deff(s)|

q
D(p, bpeff

b )(s) + 1

#
� 2Cr,d

1� g
Es,a⇠ bdp

Deff

"
f (s, a)p
|D(s, a)|

#

� 1
1� g

 
E

s,a⇠d
pb

eff

Deff

[(1� f (s, a)) r(s, a)]

!
+

1
1� g

Es,a⇠ bdp
Deff

[(1� f (s, a)) · r(s, a)]

+
a

1� g
D(p, peff

b ).

Note that in the second step above, we upper bound the quantities D01 and D2 correspond-
ing to peff

b with twice the expression for policy p. This is because the effective behavior
policy peff

b consists of a mixture of the original behavior policy p̂b with the additional
data, and thus the new effective dataset consists of the original dataset Di as its part.
Upper bounding it with twice the corresponding term for p is a valid bound, though a
bit looser, but this bound suffices for our interpretations.

For our analysis purposes, we will define the suboptimality induced in the bound due to
reward bias for a given u and v as:

RewardBias(p, peff
b ) (E.5.14)

= � 1
1� g

"
Es,a⇠ bdp

Deff
[(1� f (s, a)) · r(s, a)]�

 
E

s,a⇠d
pb

eff

Deff

[(1� f (s, a)) r(s, a)]

!#

(E.5.15)

Thus, we obtain the desired bound in Proposition 7.3.1.

e.5.2 When is Reward Bias Small? Proof of Theorem 7.3.2

Next, we wish to understand when the reward bias in Equation E.5.14 is small. Concretely,
we wish to search for effective behavior policies such that the dataset induced by them
attains a small reward bias. Therefore we provide a proof for Theorem 7.3.2 in this
section.

Proof. We can express the reward bias as:

RewardBias(p, peff
b ) := � 1

1� g Â
s,a

✓
bdp
Deff(s, a)� bdpb

eff

Deff (s, a)

◆
· (1� f (s, a)) · r(s, a),
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Now, since our goal is to minimize the reward bias with respect to the effective behavior
policy, we minimize the expression for suboptimality induced due to reward bias, shown
above with respect to peff

b . Before performing the differentiation step, we note the

following simplification (we drop the Deff from the notation in d
pb

eff

Deff to make the notation
less cluttered below):

min
peff

b

RewardBias(p, peff
b ) (E.5.16)

:= min
peff

b

�
⇣
bJ(p)� bJ(peff

b )

⌘
+

1
(1� g)

Â
s,a

r(s, a) f (s, a)

✓
bdp
Deff(s, a)� d

pb
eff

Deff (s, a)

◆

= min
peff

b

� bJ(p) + bJ(peff
b ) +

1
(1� g)|Deff| Â

s,a
|D(s, a)|r(s, a)

 
bdp(s, a)

bdpeff
b (s, a)

� 1

!

= min
peff

b

bJ(peff
b ) +

1
(1� g)|Deff| Â

s,a
|D(s, a)|r(s, a)

 
bdp(s, a)

bdpeff
b (s, a)

� 1

!
. (E.5.17)

Now, since we can express the entire objective in Equation E.5.17 as a function of
bdpb

eff
since bJ(peff

b ) = Âs,a
bdpb

eff
(s, a)r(s, a), we can compute and set the derivative of

Equation E.5.17 with respect to bdpb
eff

(s, a) as 0 while adding down the constraints that
pertain to the validity of p. This gives us:

bdp
(s, a) µ

s
|D(s, a)| · bdp(s, a)

|Deff|
.

Substituting |D(s, a)| = bdL(s, a) · |DL| we obtain the desired result.

e.5.3 When is The Bound in Theorem 7.3.1 Tightest?: Proof of Theorem 7.3.3

In this section, we will formally state and provide a proof for Theorem 7.3.3. To prove this
result, we first compute an upper bound on the error terms (a) and (b) in Theorem 7.3.3,
and show that the optimized distribution shown in Theorem 7.3.3 emerges as a direct
consequence of optimizing this bound. To begin, we compute a different upper bound on
sampling error than the one used in Theorem 7.3.3. Defining the sampling error for a
policy p as the difference in return in the original and the empirical MDPs Dsampling =

bJ(p)� J(p), we obtain the following Lemma:

Lemma E.5.2 (Upper bound on sampling error in terms of bdp(s, a)). We can upper bound
sampling error term as follows:

Dsampling 
gCP,d

(1� g)2
p

|D| Â
s,a

bdp(s, a)q
bdpeff

b (s, a)

. (E.5.18)
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Proof. For this proof, we will derive a bound on the sampling error, starting from scratch,
but this time only in terms of the state-action marginals:

Dsampling =
1

1� g Â
s,a

⇣
bdp

(s, a)� dp
(s, a)

⌘
· r(s, a)

Note that we can bound Dsampling by upper bounding the total variation between marginal
state-action distributions in the empirical and actual MDPs, i.e., || bdp � dp||1, since
|rM(s, a)|  Rmax. and hence we bound the second term effectively. Our analysis
is similar to Achiam et al. [3]. Define, G = (I � gPp)�1 and arG = (I � gbPp)�1. Then,

bdp � dp
= (1� g)(arG� G)r,

where r(s) is the initial state distribution. Then we can use the derivation in proof of
Theorem 3.6 in Kumar et al. [181] or Equation 21 from Achiam et al. [3], to bound this
difference as

||dp � bdp||1 
g

1� g Â
s

bdp
(s)

CP,dp
|D(s)| Â

a

p(a|s)q
pb(a|s)

 gCP,d

(1� g)
p

|D| Â
s,a

bdp(s, a)q
bdpeff

b (s, a)

.

Thus the sampling error can be bounded by:

Dsampling 
gCP,d

(1� g)2
p

|D| Â
s,a

bdp(s, a)q
bdpeff

b (s, a)

,

which proves the lemma.

Theorem E.5.3 (Optimized reweighting unlabeled data). The optimal effective behav-
ior policy that maximizes a lower bound on J(peff

b ) � [(a) + (b)] in Theorem 7.3.1 satisfies:

d bpeff
b (s, a) = p⇤(s, a), where,

p⇤ = arg min
p2D|S||A| Â

s,a
C1

bdp(s, a)p
p(s, a)

+ C2|dL(s, a)|
bdp(s, a)

p(s, a)
,

where C1 and C2 are universal positive constants that depend on the sizes of the labeled and
unlabeled datasets are shown in Equation E.5.19.
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Proof. To prove this result, we will first simplify the expression containing all terms except
the policy imnprovement term in Theorem 7.3.3, so that we can then maximize the bound
to obtain the statement of our theoretical statement.

(•) := J(peff
b )� [(a) + (b)] �

J(peff
b ) +

1
1� g Â

s,a

⇣
bdp

(s, a)� bdpb
eff

(s, a)

⌘
· (1� f (s, a)) · r(s, a)� Dsampling

� J(peff
b ) +

1
1� g Â

s,a

⇣
bdp

(s, a)� bdpb
eff

(s, a)

⌘
· (1� f (s, a)) · r(s, a)

� gCP,d

(1� g)2
p

|Deff|
Â
s,a

bdp(s, a)q
bdpeff

b (s, a)

First of all we can lower bound, J(peff
b ) in terms of the return of peff

b ) in the empirical
MDP induced by the dataset Deff and an irreducible sampling error term, that grows
as O

⇣p
1/|Deff|

⌘
and does not depend on the distribution of state-action pairs in the

effective dataset, bdpeff
b (s, a), but only depends on its size. Using this result, and by

performing algebraic manipulation, we can further simplify this as:

(•) � bJ(peff
b ) + bJ(p)� bJ(peff
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,

where the last inequality follows from the fact that |r(s, a)|  1. Since |Deff| and bdpeff
b are

decoupled (one is the distribution; other is the size of the dataset), we can optimize over
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Environment Dataset type / size CDS+UDS UDS No Sharing

expert / 2k transitions 67.6% 58.8% 31.3%
Meta-World door open medium / 2k transitions 67.3% 74.2% 27.6%

medium-replay / 152k transitions 30.0% 0.0% 14.8%

Table 52: We perform an empirical analysis on the Meta-World door open task where we use varying data
quality and dataset size target task door open. We share the same dataset from the other three tasks in
the multi-task Meta-World environment, door close, drawer open and drawer close to the target task. The
numbers are averaged over three random seeds. CDS+UDS and UDS are able to outperform No Sharing in
most of the settings except that UDS fails to achieve non-zero success rate in the medium-replay dataset
with a large number of transitions. Such results suggest that CDS+UDS and UDS are robust to the data
quality of the target task and work the best in settings where the target task has limited data.

each of them independently, and hence, we find that the distribution that optimizes this
bound is given by:

p⇤ = arg min
p2D|S||A| Â

s,a
C1

bdp(s, a)p
p(s, a)

+ C2|dL(s, a)|
bdp(s, a)

p(s, a)
,

where:

C2 :=
|DL|

(1� g)|Deff|
, C1 :=

gCP,d

(1� g)2
p

|Deff|
. (E.5.19)

This proves Theorem 7.3.3.

e.6 additional empirical analysis

In this section, we perform an empirical study on the Meta-World domain to better
understand the reason that UDS and CDS+UDS work well. Our theoretical analysis
suggests that UDS will help the most on domains with limited data or narrow coverage
or low data quality. To test these conditions in practice, we perform empirical analysis on
two domains as follows.

e.6.1 Meta-World Domains

We first choose the door open task with three different combinations of dataset size and
data quality of the task-specific data with reward labels:

• 2k transitions with the expert-level performance (i.e. high-quality data with limited
sample size and narrow coverage)

• 2k transitions with medium-level performance (i.e. medium-quality data with
limited sample size and narrow coverage)
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Environment Labeled dataset type / size Unlabeled dataset type / size CDS+UDS UDS Sharing All (oracle)

random / 10k transitions expert / 10k transitions 10.1 10.0 71.9
D4RL hopper random / 10k transitions expert / 100k transitions 105.8 81.8 96.3

random / 10k transitions expert / 1M transitions 102.3 97.0 102.8

Table 53: Ablation study on the unlabeled dataset size ranging from 10k to 1M transitions in the single-task
hopper domain. We bold the best method without true reward relabeling.

• a medium-replay dataset with 152k transitions (i.e. medium-quality data with
sufficient sample size and broad coverage).

We share the same data from the other three tasks, door close, drawer open and drawer close
as in Table 18. As shown in Table 52, both UDS and CDS+UDS are able to outperform
No Sharing in the three settings, suggesting that increasing the coverage of the offline
data as suggested by our theory does lead to performance boost in wherever we have
limited good-quality data (expert), limited medium-quality data (medium) and abundant
medium-quality data (medium-replay). It’s worth noting that UDS and CDS+UDS
significantly outperform No Sharing in the limited expert and medium data setting
whereas in the medium-replay setting with broader coverage, CDS+UDS outperforms
No sharing but UDS fails to achieve non-zero success rate. Such results suggest that
UDS and CDS+UDS can yield greater benefit when the target task doesn’t have sufficient
data and the number of relabeled data is large. The fact that UDS is unable to learn on
medium-replay datasets also suggests that data sharing without rewards is less useful in
settings where the coverage of the labeled offline data is already quite broad.

e.6.2 Ablation: Dataset Size

Following the discussion in Section 7.3.4, we further study the setting where relabeled
data has higher quality than the labeled data in the single-task hopper task by varying
the amount of unlabeled data within the range of (10k, 100k, 1M) transitions. We pick
the case where labeled data is random and unlabeled data is expert for such ablation
study. As shown in Table 53, as the unlabeled (expert) dataset size decreases, the result of
UDS drops significantly whereas Sharing All retains a reasonable level of performance.
This ablation suggests that as the effective dataset size decreases, the benefit of reducing
sampling error is reduced and no longer able to outweigh the reward bias as indicated in
our theoretical analysis. Moreover, Table 53 also suggests that, in the setting with medium
unlabeled dataset size (100k transitions), CDS+UDS is able to prevent the performance
drop as seen in UDS and even outperforms Sharing All. However, CDS+UDS cannot
successfully tackle the case where there are only 10k unlabeled transitions, suggesting
that the reward bias optimized by CDS+UDS is still detrimental in the limited unlabeled
data regime.
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Env Labeled dataset type / size Unlabeled dataset type / size CDS+UDS UDS Reward Pred.
expert / 10k transitions medium / 1M transitions 78.3± 5.4 64.4±11.7 51.7 ±8.4
expert / 20k transitions medium / 1M transitions 95.5±5.4 99.2±3.1 96.7±3.6

hopper random / 10k transitions medium / 1M transitions 65.8±11.3 51.9±2.4 33.4±5.4
random / 20k transitions medium / 1M transitions 69.1±4.8 59.9±5.6 47.5±5.9

Table 54: Ablation study on comparisons between CDS+UDS/UDS and Reward Predictor with varying
labeled dataset size and quality in the single-task hopper domain. We bold the best method.

e.6.3 Comparison to Reward-Learning Methods

We performed an ablation that varies the labeled data size (10k & 20k transitions) and
quality (expert / random) for reward learning methods on D4RL hopper, with unlabeled
data being 1M hopper-medium transitions. Observe on the right, as expected, reward
learning performs better with more labeled data. Furthermore, while reward learning
works well when labeled data is high quality, it fails to perform well when labeled data is
of low quality, potentially due to the bias in reward prediction. UDS and CDS+UDS are
less sensitive to labeled data quality/size.

e.6.4 Takeaways from the empirical analysis

Given our empirical analysis in Table 17, Table 52, Table 53 and Table 54, we summarize
the applicability of UDS / CDS+UDS under different scenarios for practitioners in
Figure 38 below.

Figure 38: A tree plot that illustrates under which conditions a practitioner should run UDS over apply the
optimized reweighting scheme on top of UDS.
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Environment Tasks Oracle Success Rate of the Shared data

drawer open 47.4%
door close 99.2%

Meta-World drawer open 0.1%
drawer close 91.6%%
average 59.5%

medium maze (3 tasks) average 4.3%
AntMaze large maze (7 tasks) average 1.6%

Table 55: Success rate of the data shared from other tasks to the target task determined by the ground-truth
multi-task reward function.

e.7 additional details about data quality

We present the success rate of the data shared from other tasks to the target task computed
by the oracle multi-task reward function in both the multi-task Meta-World and AntMaze
domains in Table 55. Note that the success rate of drawer close and door close are
particularly high since for other tasks, the drawer / door is initialized to be closed and
therefore the success rate of other task data for these two tasks are almost 100% as defined
by the success condition in the public Meta-World repo. Apart from these two particularly
high success rates, the success rates of the shared data are consistently above 0% across
all tasks in both domains. This fact suggests that UDS and CDS+UDS are not relabeling
with the ground truth reward where the relabeled data are actually all failures but rather
performs the conservative bellman backups on relabeled data that is shown to be effective
empirically.

To better understand the performance of UDS under different relabeled data quality, we
evaluate the UDS under different success rates of the data relabeled from other tasks in
the multi-task Meta-World domain. Specifically, we filter out data shared from other tasks
to ensure that the success rates of the relabeled data are 5%, 50% and 90% respectively.
We compare the results of UDS on such data compositions to the performance of UDS in
Table 18 where the success rate of relabeled data is 59.6% as shown in Table 55. The full
results are in Table 56. UDS on relabeled data with 50% and 90% success rates achieves
similar results compared to original UDS whereas UDS on relabel data with 5% success
rate is significantly worse. Hence, UDS can obtain good results in settings where the
relabeled data is of high quality despite incurring high reward bias, but is not helpful
in settings where the shared data is of low quality and does not offer much information
about solving the target task.

e.8 additional empirical results for uds and cds+uds

In this section, we evaluate UDS and CDS+UDS in the multi-task locomotion setting with
dense rewards. We pick the multi-task walker environment as used in prior work [366],
which consists of three tasks, run forward, run backward and jump. The reward functions
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Environment Tasks UDS UDS-5% relabel success UDS-50% relabel success UDS-90% relabel success

drawer open 51.9%±25.3 0.0%±0.0% 57.3%±18.9% 73.3%±8.6%
door close 12.3%±27.6% 0.0%±0.0% 0.0%±0.0% 0.0%±0.0%

Meta-World drawer open 61.8%±16.3% 19.4%±27.3% 61.0%±12.7% 56.3%±20.3%
drawer close 99.6%±0.7% 66.0%±46.7% 99.7%±0.5% 100.0%±0.0%
average 56.4%±12.8% 21.4% ±16.1% 54.3% ±2.0% 57.4%±3.3%

Table 56: Performance of UDS under different actual success rates of the relabeled data.

Environment Tasks / Dataset type CDS+UDS UDS No Sharing Reward Predictor CDS (oracle) Sharing All (oracle)

run forward / medium-replay 880.1±108.8 665.0±84.9 590.1±48.6 520.7±373.6 1057.9±121.6 701.4±47.0
Multi-Task Walker run backward / medium 717.8±78.3 689.3±16.3 614.7±87.3 417.3±235.3 564.8±47.7 756.7±76.7

jump / expert 1487.7±177.6 1036.0±247.1 1575.2±70.9 583.0±432.0 1418.2±138.4 885.1±152.9
average 1028.6±76.8 796.7±106.3 926.6±37.7 506.7 ± 343.6 1013.6±71.5 781.0±100.8

Table 57: Results for multi-task walker experiment with dense rewards. We only bold the best-performing
method that does not have access to the true reward during relabeling. CDS+UDS and UDS are able to
outperform No Sharing and Reward Predictor while attaining competitive results compared to CDS and
Sharing All with oracle rewards.

of the three tasks are r(s, a) = vx � 0.001 ⇤ kak2
2, r(s, a) = �vx � 0.001 ⇤ kak2

2 and r(s, a) =

�kvxk � 0.001 ⇤ kak2
2 + 10 ⇤ (z� init z) respectively where vx denotes the velocity along

the x-axis and z denotes the z-position of the half-cheetah and init z denotes the initial
z-position. In UDS and CDS+UDS, we relabel the rewards routed from other tasks with
the minimum reward value in the offline dataset of the target task. As shown in Table 57,
CDS+UDS and UDS outperform No Sharing and Reward Predictor by a large margin
while also performing comparably to CDS and Sharing All. Therefore, CDS+UDS and
UDS are able to solve multi-task locomotion tasks with dense rewards.

e.9 comparisons of cds+uds and uds to model-based rl

In this section, we compare CDS+UDS and UDS to a recent, state-of-the-art model-based
offline RL method COMBO [367] in the Meta-World domain. We adapt COMBO to the
multi-task offline setting by learning the dynamics model on data of all tasks combined
and and performing vanilla multi-task offline training without data sharing using the
model learned with all of the data. As shown in Table 58, CDS+UDS and UDS indeed
outperform COMBO in the average task success rate. The intuition behind this is that
COMBO is unable to learn an accurate dynamics model for tasks with limited data as in
our Meta-World setting.

e.10 comparisons to pre-trained representation learning

A popular strategy to utilize large amounts of unlabeled data along with some limited
amount of labeled data in supervised learning is to utilize the unlabeled data for learning
representations, and then running supervised training on the labeled data. A similar
strategy has been utilized for RL and imitation learning in some prior work [354, 355].
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Environment Tasks CDS+UDS UDS COMBO [367]

door open 61.3%±7.9% 51.9%±25.3% 0.0%±0.0%
door close 54.0% ±42.5% 12.3%±27.6% 1.1%±1.6%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 15.7%±15.2%
drawer close 99.3%±0.7% 99.6%±0.7% 85.7%±13.3%
average 71.2% ± 11.3% 56.4%±12.8% 25.6%±6.2%

Table 58: On the multi-task Meta-World domain, we compare CDS+UDS and UDS to the model-based
offline RL method COMBO [367] that trains a dynamics model on all of the data and performs model-based
offline training using the learned model. CDS+UDS and UDS are able to outperform COMBO by a large
margin.

On the other hand, the UDS and CDS+UDS strategies take a different route of handling
unlabeled data, and it is natural to wonder how these representation learning approaches
compare to our approach, UDS, that runs offline RL with the lowest possible reward,
with an optional reweighting scheme.

To investigate this, we run experiments comparing our UDS and CDS+UDS approaches to
state-of-the-art representation learning approaches for utilizing unlabeled data. First, we
compare UDS and CDS+UDS to the ACL [354] approach on the multi-task Meta-World
domain. ACL pretrains a representation using a contrastive loss on both the labeled
and unlabeled offline datasets and then runs standard multi-task offline RL using the
pretrained representation with No Sharing. To handle the multi-task Meta-World domain,
we use the version of ACL without inputting reward labels. ACL can be viewed as an
alternative to our unlabeled sharing data scheme, which leverages unlabeled data for
representation learning rather than sharing it directly. We show the comparison to ACL
in Table 59. UDS and CDS+UDS outperform ACL in the average task performance while
ACL is only proficient on drawer-open and drawer-close, and it cannot solve door-open
or door-close. This indicates that sharing the unlabeled data, even when labeled with the
minimum possible reward is important for offline RL performance, while pretraining
representations on the whole multi-task offline dataset might have limited benefit. Also
note that, in principle, UDS / CDS+UDS are complementary to ACL and these approaches
can be combined together to further improve performance, which we leave as future
work.

We also compare the results of UDS and CDS + UDS in the single-task AntMaze medium-
play and large-play domains (shown in Table 16 in the main paper) to imitation learning
methods, TRAIL [355] and other baselines from Yang et al. [355], that also utilize unlabeled
data. These methods train a representation using the unlabeled dataset, and then run
behavioral cloning to imitate the expert trajectories, which are limited in number. For
example, the TRAIL method learns a state-conditioned action representation, by fitting
an energy-based model to the transition dynamics of the unlabeled dataset, and then
performs downstream imitation learning using the labeled expert dataset. In contrast to
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Environment Tasks CDS + UDS (ours) UDS (ours) ACL

door open 61.3%±7.9% 51.9%±25.3% 2.8%±2.0%
door close 54.0% ±42.5% 12.3%±27.6% 0.0%±0.0%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 83.2%±14.2%
drawer close 99.3%±0.7% 99.6%±0.7% 100.0%±0.0%
average 71.2% ± 11.3% 56.4%±12.8% 46.4%±3.5%

Table 59: Comparison between UDS / CDS+UDS and the ACL [354] that performs representation learning
on the unlabeled data instead of data sharing. Both UDS and CDS+UDS outperform ACL by a significant
margin in the average task result, suggesting that sharing the unlabeled data is crucial in improving the
performance of multi-task offline RL with unlabeled data compared to only using the data for learning the
representation.

these prior approaches, UDS and CDS+UDS do not make any assumptions about how
expert the labeled dataset is, and so they are not technically comparable to these imitation
learning methods directly. Moreover, any specialized representation learning objective can
also be combined with UDS and CDS+UDS to further improve performance. Nevertheless,
we hope that a direct comparison to representation learning on unlabeled data combined
with downstream imitation will provide informative insights about the potential of UDS
and CDS+UDS to effectively leverage unlabeled data. Comparing Table 16 to Figure
3 in Yang et al. [355], we find that CDS+UDS outperforms the best method from Yang
et al. [355], TRAIL, on the antmaze-medium-play task and performs a bit worse on the
antmaze-large-play task. CDS+UDS also outperforms all the other methods in Figure 3 of
[355]. Overall, this implies that UDS and CDS+UDS methods can perform comparably to
state-of-the-art representation learning approaches with downstream imitation, without
needing any specialized representation learning.

e.11 details of uds and cds+uds

In this section, we include the details of training UDS and CDS+UDS in Appendix E.11.1
as well as details on the environment and datasets used in our experiments in Ap-
pendix E.11.2.

e.11.1 Training Details

We first present our practical implementation of UDS optimizes the following objectives
for the Q-functions and the policy in the single-task offline RL setting:

Q̂k+1  arg min
Q̂

b
⇣

Es⇠DL[DU,a⇠µ(·|s)
⇥
Q̂(s, a)

⇤
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Q̂(s, a)

⇤⌘

+
1
2

E(s,a,s0)⇠DL[DU

h�
Q̂(s, a)�

�
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��2
i

,

and
p  arg max

p0
Es⇠DL[DU,a⇠p0(·|s)

⇥
Q̂p

(s, a)
⇤

,
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Moreover, CDS+UDS optimizes the following objectives for training the critic and the
policy with a soft weight:

Q̂k+1  

arg min
Q̂

b
⇣

Es⇠DL[DU,a⇠µ(·|s)
⇥
wCDS(s, a; U! L)Q̂(s, a)
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1
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h
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r(s, a) + gQ(s0, a0)

��2
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,

and
p  arg max

p0
Es⇠DL[DU,a⇠p0(·|s)

⇥
wCDS(s, a; U! L)Q̂p

(s, a)
⇤

,

where b is the coefficient of the CQL penalty on distribution shift, µ is an action sampling
distribution that covers the action bound as in CQL. On the hopper domain, when the
unlabeled data is random, we use the version of CQL that does not maximize the term
Es,a⇠DL[DU

⇥
Q̂(s, a)

⇤
to prevent overestimating Q-values on low-quality random data

and use b = 1.0. We use b = 5.0 in the other settings in the hopper domain. On the
AntMaze domain, following prior works [181, 366], we use the Lagrange version of CQL,
where the coefficient b is automatically tuned against a pre-specified constraint value on
the CQL loss equal to t = 10.0. We adopt other hyperparameters used in [366]. We adapt
the CDS weight to the single-task setting as follows: wCDS(s, a; U! L) := s

⇣
D(s,a;U!L)

t

⌘

where D(s, a; U ! L) = Q̂p(s, a)� Pk%
�
Q̂p(s0, a0): s0, a0 ⇠ DL

 
for (s, a) ⇠ DU. We use

k = 50 in all single-task domains.

Similarly in the multi-task offline RL setting, our practical implementation of UDS optimizes
the following objectives for the Q-functions and the policy:

Q̂k+1  arg min
Q̂
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We also present the objective of CDS+UDS in the multi-task task as follows:

Q̂k+1  arg min
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and

p  arg max
p0

Ei⇠[N]

h
Ej⇠[N],s⇠Dj,a⇠p0(·|s,i)

⇥
wCal�QL(s, a; j! i)Q̂p

(s, a, i)
⇤i

,

where we use k = 90 in the multi-task Meta-World domain and k = 50 in the other
multi-task domains.

To compute the weight wCDS, we pick t, i.e. the temperature term, using the exponential
running average of D(s, a; U ! L) in the single-task setting or D(s, a; j ! i) in the
multi-task setting with decay 0.995 following [366]. Following [366] again, we clip the
automatically chosen t with a minimum and maximum threshold, which we directly
use the values from [366]. We use [1, •] as the minimum and maximum threshold
for all state-based single-task and multi-task domains whereas the vision-based robotic
manipulation domain does not require such clipping.

In the single-task experiments, we use a total batch size of 256 and balance the number
of transitions sampled from DL and DU in each batch. In the multi-task experiments,
following the training protocol in [366], for experiments with low-dimensional inputs, we
use a stratified batch with 128 transitions for each task to train the Q-functions and the
policy. We also balance the numbers of transitions sampled from the original task and the
number of transitions drawn from other task data. Specifically, for each task i, we sample
64 transitions from Di and the remaining 64 transitions from [j 6=iDj!i. In CDS+UDS, for
each task i 2 [N], we only apply wCDS+UDS to data shared from other tasks on multi-task
Meta-World environments and multi-task vision-based robotic manipulation tasks while
we also apply the relabeling weight to transitions sampled from the original task dataset
Di with 50% probability in the multi-task AntMaze domain.

Regarding the choices of the architectures, for state-based domains, we use 3-layer
feedforward neural networks with 256 hidden units for both the Q-networks and the
policy. In the multi-task domains, we condition the policy and the Q-functions on a
one-hot task ID, which is appended to the input state. In domains with high-dimensional
image inputs, we adopt the multi-headed convolutional neural networks used in [162,
366]. We use images with dimension 472⇥ 472⇥ 3, extra state features (grobot status, gheight)

and the one-hot task vector as the observations similar [162, 366]. Following the set-up
in [161, 162, 366], we use Cartesian space control of the end-effector of the robot in 4D
space (3D position and azimuth angle) along with two binary actions to open/close the
gripper and terminate the episode respectively to represent the actions. For more details,
see [161, 162].

e.11.2 Experimental Details

In this subsection, we include the discussion of the details the environment and datasets
used for evaluating UDS and CDS+UDS. Note that all of our single-task datasets and
environments are from the standard benchmark D4RL [92] while all of our multi-task
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environment and offline datasets are from prior work [366]. We will nonetheless discuss
the details to make our work self-contained. We acknowledge that all datasets with
low-dimensional inputs are under the MIT License.

single-task hopper domains . We use the hopper environment and datasets from
D4RL [92]. We consider the following three datasets, hopper-random, hopper-medium and
hopper-expert. We construct the seven combinations of different data compositions using
the three datasets as discussed in Table 17. To construct the combination, we take the first
10k transitions from labeled dataset and concatenate these labeled transitions with the
entire unlabeled dataset with 1M transitions.

single-task antmaze domains . We use the AntMaze environment and datasets
from D4RL [92] where we consider two datasets, antmaze-medium-play and antmaze-
large-play. These two datasets only contain 1M sub-optimal transitions that navigates to
random or fixed locations that are different from the target task during evaluation. We
use these two datasets as unlabeled datasets. For the labeled dataset, we use 10 expert
demonstrations of solving the target task used in prior work [355].

multi-task meta-world domains . We use the door open, door close, drawer open
and drawer close environments introduced in [366] from the public Meta-World [364]
repo2. In this multi-task Meta-World environment, a door and a drawer are put on the
same scene, which ensures that all four tasks share the same state space. The environment
uses binary rewards for each task, which are adapted from the success condition defined
in the Meta-World public repo. In this case, the robot gets a reward of 1 if it solves the
target task and 0 otherwise. We use a fixed 200 timesteps for each episode and do not
terminate the episode when receiving a reward of 1 at an intermediate timestep. We
use large datasets with wide coverage of the state space and 152K transitions for the
door open and drawer close tasks and datasets with limited (2K transitions), but optimal
demonstrations for the door close and drawer open tasks.

We direct use the offline datasets constructed in [366], which are generated by training
online SAC policies for each task with the dense reward defined in the Meta-World repo
for 500 epochs. The medium-replay datasets use the whole replay buffer of the online
SAC agent until 150 epochs while the expert datasets are collected by the final online
SAC policy.

multi-task antmaze domains . Following [366], we use the antmaze-medium-play
and antmaze-large-play datasets from D4RL [92] and partitioning the datasets into multi-
task datasets in an undirected way defined in [366]. Specifically, the dataset is randomly
splitted into chunks with equal size, and then each chunk is assigned to a randomly

2 The Meta-World environment can be found at the open-sourced repo https://github.com/rlworkgroup/

metaworld
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chosen task. Therefore, under such a task construction scheme, the task data for each
task is of low success rate for the particular task it is assigned to and it is imperative for
the multi-task offline RL algorithm to leverage effective data sharing strategy to achieve
good performance. In AntMaze, we also use a binary reward, which provides the agent a
reward of +1 when the ant reaches a position within a 0.5 radius of the task goal, which is
also the reward used default by Fu et al. [92]. The terminal of an episode is set to be true
when a reward of +1 is observed. We terminate the episode upon seeing a reward of 1
with the maximum possible 1000 transitions per episode. Following [366], we modify the
datasets introduced by Fu et al. [92] by equally dividing the large dataset into different
parts for different tasks, where each task corresponds to a different goal position.

multi-task walker domains . We have presented the details of the multi-task
walker environment in Appendix E.8.

multi-task image-based robotic picking and placing domains . Following
[162, 366], we use sparse rewards for each task. That is, reward 1 is assigned to episodes
that meet the success conditions and 0 otherwise. The success conditions are defined
in [162]. We directly use the dataset used in [366]. Such a dataset is collected by first
training a policy for each individual task using QT-Opt [161] until the success rate reaches
40% and 80% for picking tasks and placing tasks respectively and then combine the
replay buffers of all tasks as the multi-task offline dataset. Note that the success rate of
placing is higher because the robot is already holding the object at the start of the placing
tasks, making the placing easier to solve. The dataset consists of a total number of 100K
episodes with 25 transitions for each episode.
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F
A P P E N D I X : O N L I N E R L F I N E - T U N I N G O F O F F L I N E R L

f.1 implementation details of cal-ql

Our algorithm, Cal-QL is illustrated in Algorithm 7.

f.1.1 Cal-QL Algorithm

We use JQ(q) to denote the conservative regularizer for the Q network update:

JQ(q) := a (Es⇠D,a⇠p [max (Qq(s, a), Qµ
(s, a))]�Es,a⇠D [Qq(s, a)])| {z }

Calibrated conservative regularizer R(q)

(F.1.1)

+
1
2

Es,a,s0⇠D
h
(Qq(s, a)� BparQ(s, a))2

i
. (F.1.2)

Algorithm 7 Cal-QL pseudo-code
1: Initialize Q-function, Qq, a policy, pf

2: for step t in {1, . . . , N} do
3: Train the Q-function using the conservative regu-

larizer in Eq. F.1.1:

qt := qt�1 � hQrq JQ(q) (F.1.3)

4: Improve policy pf with SAC-style update:

ft := ft�1 + hpEs⇠D,a⇠pf(·|s)[Qq(s, a)�log pf(a|s)]
(F.1.4)

5: end for
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f.2 regret analysis of cal-ql

We provide a theoretical version of Cal-QL in Algorithm 8. Policy fine-tuning has been
studied in different settings [351, 308, 334]. Our analysis largely adopts the settings and
results in Song et al. [308], with additional changes in Assumption F.2.1, Assumption F.2.3,
and Definition F.2.4. Note that the goal of this proof is to demonstrate that a pessimistic
functional class (Assumption F.2.1) allows one to utilize the offline data efficiently, rather
than providing a new analytical technique for regret analysis. Note that we use f instead
of Qq in the main text to denote the estimated Q function for notation simplicity.

Algorithm 8 Theoretical version of Cal-QL
1: Input: Value function class F , # total iterations K, offline dataset Dn

h of size moff for
h 2 [H � 1].

2: Initialize f 1
h (s, a) = 0, 8(s, a).

3: for k = 1, . . . , K do
4: Let pt be the greedy policy w.r.t. f k . I.e., pk

h(s) = arg maxa f k
h (s, a).

5: For each h, collect mon online tuples Dk
h ⇠ dpk

h . online data collection
6: Set f k+1

H (s, a) = 0, 8(s, a).
7: for h = H � 1, . . . 0 do . FQI with offline and online data
8: Estimate f k+1

h using conservative least squares on the aggregated data: . I.e.,
CQL regularized class Ch

f k+1
h  arg min

f2Ch

(
bEDn

h


f (s, a)� r�max

a0
f k+1
h+1 (s0, a0)

�2
+

K

Â
t=1

bEDt
h


f (s, a)� r�max

a0
f k+1
h+1 (s0, a0)

�2
)

(F.2.1)

9: f k+1
h = max{ f k+1

h , Qref
h } . Set a reference policy for calibration

(Definition 8.4.1)
10: end for
11: end for
12: Output: pK

f.2.1 Notations

• Feature covariance matrix Sk;h:

Sk;h =

k

Â
t=1

Xh( f t
)(Xh( f t

))
>

+ lI (F.2.2)

• Matrix Norm Zanette et al. [370]: for a matrix S, the matrix norm kukS is defined
as:

kukS =

p
uSu> (F.2.3)
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• Weighted `2 norm: for a given distribution b 2 D(S ⇥ A) and a function f :
S ⇥A 7! R, we denote the weighted `2 norm as:

k f k 2, b2 :=
q

E(s,a)⇠b f 2(s, a) (F.2.4)

• A stochastic reward function R(s, a) 2 D([0, 1])

• For each offline data distribution n = {n0, . . . , nH�1}, the offline data set at time step
h (nh) contains data samples (s, a, r, s0), where (s, a) ⇠ nh, r 2 R(s, a), s0 ⇠ P(s, a).

• Given a policy p := {p0, . . . , pH�1}, where ph : S 7! D(A), dp
h 2 D(s, a) denotes

the state-action occupancy induced by p at step h.

• We consider the value-based function approximation setting, where we are given a
function class C = C0 ⇥ . . . CH�1 with Ch ⇢ S ⇥A 7! [0, Vmax].

• A policy p f is defined as the greedy policy w.r.t. f : p
f
h(s) = arg maxa fh(s, a).

Specifically, at iteration k, we use pk to denote the greedy policy w.r.t. f k.

f.2.2 Assumptions and Defintions

Assumption F.2.1 (Pessimistic Realizability and Completeness). For any policy pe, we say
Ch is a pessimistic function class w.r.t. pe, if for any h, we have Qpe

h 2 Ch, and additionally, for
any fh+1 2 Ch+1, we have T fh+1 2 Ch and fh(s, a)  Qpe

h (s, a), 8(s, a) 2 S ⇥A.

Definition F.2.2 (Bilinear model Du et al. [66]). We say that the MDP together with the
function class F is a bilinear model of rand d of for any h 2 [H � 1], there exist two (known)
mappings Xh, Wh : F 7! Rd with max f kXh( f )k 2  BX and max f kWh( f )k 2  BW such
that

8 f , g 2 F :
����Es,a⇠dp f

h
[gh(s, a)� T gh+1(s, a)]

���� = |hXh( f ), Wh(g)i| . (F.2.5)

Assumption F.2.3 (Bilinear Rank of Reference Policies). Suppose Qref 2 Cref ⇢ C, where
Cref is the function class of our reference policy, we assume the Bilinear rank of Cref is dref and
dref  d.

Definition F.2.4 (Calibrated Bellman error transfer coefficient). For any policy p, we define
the calibrated transfer coefficient w.r.t. to a reference policy pref as

Cref
p := max

f2C, f (s,a)�Qref(s,a)

ÂH�1
h=0 Es,a⇠dp

h
[T fh+1(s, a)� fh(s, a)]

q
ÂH�1

h=0 Es,a⇠nh(T fh+1(s, a)� fh(s, a))2
, (F.2.6)

where Qref = Qpref .
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f.2.3 Discussions on the Assumptions

The pessimistic realizability and completeness assumption (Assumption F.2.1) is mo-
tivated by some theoretical studies of the pessimistic offline methods [350, 47] with
regularizers:

min
q

a (Es⇠D,a⇠p [Qq(s, a)]�Es,a⇠D [Qq(s, a)])| {z }
Conservative regularizer R(q)

+
1
2

Es,a,s0⇠D
h
(Qq(s, a)� BparQ(s, a))2

i
.

(F.2.7)

Since the goal of the conservative regularizer R(q) intrinsically wants to enforce

Qq(s, p(s))  Qq(s, pe
(s)), (F.2.8)

where p is the training policy and pe is the reference (behavior) policy. One can consider
equation F.2.7 as the Lagrange duality formulation of the following primal optimization
problem:

min
q

Es,a,s0⇠D
h
(Qq(s, a)� BparQ(s, a))2

i
, subject to Es⇠D,a⇠p [Qq(s, a)]  Es⇠D,a⇠pe [Qq(s, a)] ,

(F.2.9)
where the constraint set is equivalent to Assumption F.2.1. Although Assumption F.2.1

directly characterizes the constraint set of the primal form of equation F.2.7 the exact
theoretical connection between the pessimistic realizability and the regularized bellman
consistency equation is beyond the scope of this work and we would like to leave that for
future studies.

Assumption F.2.1 allows us to restrict the functional class of interest to a smaller con-
servative function class C ⇢ F , which leads to a smaller Bellman rank of the reference
policy (dref  d) suggested in Assumption F.2.3, and a smaller concentrability coefficient
(Cref

p  Cp) defined in Definition F.2.4, and F.3.2. Assumption F.2.3 and Definition F.3.2
provide the Bellman Bilinear rank and Bellman error transfer coefficient of the pessimistic
functional class C of interest.

f.2.4 Proof Structure Overview

We provide an overview of the proof structure and its dependency on different assump-
tions below:

• Theorem F.2.5: the total regret is decomposed into offline regrets and online regrets.

– Bounding offline regrets, requiring Definition F.2.4 and the following lemmas:

⇤ Performance difference lemma w.r.t. a comparator policy (Lemma F.3.5).
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⇤ Least square generalization bound (Lemma F.3.4), requiring Assump-
tion F.2.1.

– Bounding online regrets, requiring Definition F.2.2

⇤ Performance difference lemma for the online error (Lemma F.3.6).

⇤ Least square generalization bound (Lemma F.3.4), requiring Assump-
tion F.2.1.

⇤ Upper bounds with the bilinear model assumption (Lemma F.3.7).

⇤ Applying Elliptical Potential Lemma [195] with bellman rank d and dref
(Lemma F.3.8), requiring Assumption F.2.3.

f.2.5 Our Results

Theorem F.2.5 (Formal Result of Theorem 8.6.1). Fix d 2 (0, 1), moff = K, mon = 1, suppose
and the function class C follows Assumption F.2.1 w.r.t. pe. Suppose the underlying MDP admits
Bilinear rank d on function class C and dref on Cref, respectively, then with probability at least
1� d, Algorithm 8 obtains the following bound on cumulative suboptimality w.r.t. any comparator
policy pe:

K

Â
t=1

Vpe �Vpk
= eO

✓
min

⇢
Cref

pe H
q

dK log (|F |/d), K
⇣

Vpe �Vref
⌘

+ H
q

drefK log (|F |/d)

�◆
.

(F.2.10)

Note that Theorem F.2.5 provides a guarantee for any comparator policy pe, which can be
directly applied to p? described in our informal result (Theorem 8.6.1). We also change the
notation for the reference policy from µ in Theorem 8.6.1 to pref (similarly, dref, Vref, Cref

pe

correspond to dµ, Vµ, Cµ
pe in Theorem 8.6.1) for notation consistency in the proof. Our

proof of Theorem F.2.5 largely follows the proof of Theorem 1 of [308], and the major
changes are caused by Assumption F.2.1, Assumption F.2.3, and Definition F.2.4.
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Proof. Let Ek denote the event that
�

f k
0 (s, a)  Qref(s, a)

 
and arEk denote the event that�

f k
0 (s, a) > Qref(s, a)

 
. Let Vref(s) = maxa Qref(s, a), we start by noting that

K

Â
k=1

Vpe �Vp f k
=

K

Â
k=1

Es⇠r


Vpe

0 (s)�Vp f k

0 (s)
�

=

K

Â
k=1

Es⇠r

h
1 {arEk}

⇣
Vpe

0 (s)�Vref
(s)

⌘i

| {z }
G0

+

K

Â
k=1

Es⇠r

h
1 {arEk}

⇣
Vref

(s)�max
a

f k
0 (s, a)

⌘i

| {z }
=0, by the definition of arEk and line 9 of Algorithm 8

+

K

Â
t=1

Es⇠r


1 {arEk}

✓
max

a
f k
0 (s, a)�Vp f k

0 (s)
◆�

| {z }
G1

+

K

Â
k=1

Es⇠r

h
1 {Ek}

⇣
Vpe

0 (s)�max
a

f k
0 (s, a)

⌘i

| {z }
G2

+

T

Â
t=1

Es⇠r


1 {Ek}

✓
max

a
f k
0 (s, a)�Vp f k

0 (s)
◆�

| {z }
G3

.

(F.2.11)

Let K1 = ÂK
k=1 1

�
f k
0 (s, a) > Qref(s, a)

 
and K2 = ÂK

k=1 1
�

f k
0 (s, a)  Qref(s, a)

 
(or equiva-

lently K1 = ÂK
k=1 1 {arEk}, K2 = ÂK

k=1 1 {Ek}). For G0, we have

G0 = K2Es⇠r

⇣
Vpe

(s)�Vref
(s)

⌘
. (F.2.12)

For G2, we have

G2 =

K

Â
k=1

Es⇠r

h
1 {Ek}

⇣
Vpe

0 (s)�max
a

f k
0 (s, a)

⌘i

(i)


K

Â
k=1

1 {Ek}
H�1

Â
h=0

Es,a⇠dpe
h

h
T f k

h+1(s, a)� f k
h (s, a)

i

(ii)


K

Â
k=1

2

4Cref
pe · 1 {Ek}

vuut
H�1

Â
h=0

Es,a⇠nh

⇣
f k
h (s, a)� T f k

h+1(s, a)
⌘2
�3

5

(iii)
 K1Cref

pe
p

H · Doff,

(F.2.13)
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where Doff is similarly defined as Song et al. [308] (See equation F.3.3 of Lemma F.3.4).
Inequality (i) holds because of Lemma F.3.5, inequality (ii) holds by the definition of Cref

pe

(Definition F.2.4), inequality (iii) holds by applying Lemma F.3.4 with the function class
satisfying Assumption F.2.1, and Definition F.2.4. Note that the telescoping decomposition
technique in the above equation also appears in [349, 151, 66]. Next, we will bound
G1 + G3:

G1 + G3 =

K

Â
k=1

(1 {Ek} + 1 {arEk}) Es⇠d0


max

a
f k
0 (s, a)�Vp f k

0 (s)
�

(i)


K

Â
k=1

(1 {Ek} + 1 {arEk})

H�1

Â
h=0

����Es,a⇠dp f k
h

h
f k
h (s, a)� T f k

h+1(s, a)
i����

(ii)
=

K

Â
t=1

"

(1 {Ek} + 1 {arEk})

H�1

Â
h=0

���
D

Xh( f k
), Wh( f k

)

E���

#

(iii)


K

Â
k=1

"

(1 {Ek} + 1 {arEk})

H�1

Â
h=0

���Xh( f k
)

���S�1
k�1;h

q
Don + lB2

W

#
,

(F.2.14)

where Don is similarly defined as Song et al. [308] (See equation F.3.4 of Lemma F.3.4).
Inequality (i) holds by Lemma F.3.6, equation (ii) holds by the definition of Bilinear
model (equation F.2.5 in Definition F.2.2), inequality (iii) holds by Lemma F.3.7 and
Lemma F.3.4 with the function class satisfying Assumption F.2.1. Using Lemma F.3.8, we
have that

G1 + G3


K

Â
k=1

"

(1 {Ek} + 1 {arEk})

H�1

Â
h=0

���Xh( f k
)

���S�1
k�1;h

q
Don + lB2

W

#

(i)
H

s

2d log
✓

1 +
K1B2

X
ld

◆
· (Don + lB2

W) · K1 + H

s

2dref log
✓

1 +
K2B2

X
ldref

◆
· (Don + lB2

W) · K2

(ii)
H

 s

2d log
✓

1 +
K1

d

◆
· (Don + B2

XB2
W) · K1 +

s

2dref log
✓

1 +
K2

dref

◆
· (Don + B2

XB2
W) · K2

!
,

(F.2.15)

where the first part of inequality (i) holds by the assumption that the underlying
MDPs have bellman rank d (Definition F.2.2) when arEk happens, and the second part of
inequality (i) holds by the assumption that Cref has bilinear rank dref (Assumption F.2.3)
Cref has bellman rank dref when Ek happens. Inequality (ii) holds by plugging in l =
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B2
X. Substituting equation F.2.12, inequality F.2.13, and inequality equation F.2.15 into

equation F.2.11, we have
K

Â
t=1

Vpe �Vp f k
 G0 + G2 + G1 + G3  K2

⇣
Vpe

(s)�Vref
(s)

⌘
+ K1Cref

pe

p
H · Doff

+H

 s

2d log
✓

1 +
K1

d

◆
· (Don + B2

XB2
W) · K1 +

s

2dref log
✓

1 +
K2

dref

◆
· (Don + B2

XB2
W) · K2

!

(F.2.16)

Plugging in the values of Don, Doff from equation F.3.3 and equation F.3.4, and using the
subadditivity of the square root function, we have

K
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k=1

Vpe �Vp f k

 K2

⇣
Vpe

(s)�Vref
(s)

⌘
+ 16VmaxCref

pe K1
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✓
2HK1|F |
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◆
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◆
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◆
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✓
2HK2|F |

d

◆
+ BXBW

!
· H

s

2drefK2 log
✓

1 +
K2

dref

◆
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(F.2.17)

Setting moff = K, mon = 1 in the above equation completes the proof, we have
K

Â
k=1

Vpe �Vpk

 eO
✓

Cref
pe

q
HK1 log (|F |/d)

◆
+ eO

✓
H
q

dK1 log (|F |/d)
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✓
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eO
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⌘
if K1 � K2,

eO
⇣

K2

⇣
Vpe �Vref

⌘
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drefK2 log (|F |/d)

⌘
otherwise.

 eO
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Cref
pe H

q
dK log (|F |/d), K

⇣
Vpe �Vref

⌘
+ H

q
drefK log (|F |/d)

�◆
,

(F.2.18)

where the last inequality holds because K1, K2  K, which completes the proof.

f.3 key results of hyq [308]

In this section, we restate the major theoretical results of Hy-Q [308].
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f.3.1 Assumptions

Assumption F.3.1 (Realizability and Bellman completeness). For any h, we have Q?
h 2 Fh,

and additionally, for any fh+1 2 Fh+1, we have T fh+1 2 Fh.

Definition F.3.2 (Bellman error transfer coefficient). For any policy p, we define the transfer
coefficient as

Cp := max

8
<

:0, max
f2F

ÂH�1
h=0 Es,a⇠dp

h
[T fh+1(s, a)� fh(s, a)]

q
ÂH�1

h=0 Es,a⇠nh(T fh+1(s, a)� fh(s, a))2

9
=

; . (F.3.1)

f.3.2 Main Theorem of Hy-Q

Theorem F.3.3 (Theorem 1 of Song et al. [308]). Fix d 2 (0, 1), moff = K, mon = 1, and
suppose that the underlying MDP admits Bilinear rank d (Definition F.2.2), and the function class
F satisfies Assumption F.3.1. Then with probability at least 1� d, HyQ obtains the following
bound on cumulative suboptimality w.r.t. any comparator policy pe:

Reg(K) = eO
✓

max{Cpe , 1}VmaxBXBW

q
dH2K · log(|F |/d)

◆
. (F.3.2)

f.3.3 Key Lemmas

f.3.3.1 Least Squares Generalization and Applications

Lemma F.3.4 (Lemma 7 of Song et al. [308], Online and Offline Bellman Error Bound for
FQI). Let d 2 (0, 1) and 8h 2 [H � 1], k 2 [K], let f k+1

h be the estimated value function for
time step h computed via least square regression using samples in the dataset {Dn

h , D1
h, . . . , DT

h }
in equation F.2.1 in the iteration t of Algorithm 8. Then with probability at least 1� d, for any
h 2 [H � 1] and k 2 [K], we have

��� f k+1
h � T f k+1

h+1

��� 2, nh
2  1

moff
256V2

max log(2HK|F |/d) =: Doff (F.3.3)

and
k

Â
t=1

��� f k+1
h � T f k+1

h+1

��� 2, µt
h

2  1
mon

256V2
max log(2HK|F |/d) =: Don, (F.3.4)

where nh denotes the offline data distribution at time h, and the distribution µt
h 2 D(s, a) is

defined such that s, a ⇠ dpt

h .
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f.3.3.2 Bounding Offline Suboptimality via Performance Difference Lemma

Lemma F.3.5 (Lemma 5 of Song et al. [308], performance difference lemma of w.r.t. pe). Let
pe = (pe

0, . . . , pe
H�1) be a comparator policy and consider any value function f = ( f0, . . . , fH�1),

where fh : S ⇥A 7! R. Then we have

Es⇠d0

h
Vpe

0 (s)�max
a

f0(s, a)
i


H�1

Â
i=1

Es,a⇠dpe
i

[T fi+1(s, a)� fi(s, a)] , (F.3.5)

where we define fH(s, a) = 0, 8(s, a).

f.3.3.3 Bounding Online Suboptimality via Performance Difference Lemma

Lemma F.3.6 (Lemma 4 of Song et al. [308], performance difference lemma). For any
function f = ( f0, . . . , fH�1) where fh : S ⇥A 7! R and h 2 [H � 1], we have

Es⇠d0

h
max

a
f0(s, a)�Vp f

0 (s)
i


H�1

Â
h=0

����Es,a⇠dp f
h

[ fh(s, a)� T fh+1(s, a)]
���� , (F.3.6)

where we define fH(s, a) = 0, 8s, a.

Lemma F.3.7 (Lemma 8 of Song et al. [308], upper bounding bilinear class). For any k � 2
and h 2 [H � 1], we have

���
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Wh( f k
), Xh( f k
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�

+ lB2
W , (F.3.7)

where Sk�1;h is defined as equation F.2.2 and we use d f k

h to denote dp f k

h .

Lemma F.3.8 (Lemma 6 of Song et al. [308], bounding the inverse covariance norm). Let
Xh( f 1), . . . , Xh( f K) 2 Rd be a sequence of vectors with

��Xh( f k)
�� 2  BX < •, 8k  K. Then

we have
K

Â
k=1

���Xh( f k
)

���S�1
k�1;h 

vuut2dK log

 
1 +

KB2
X

ld

!
, (F.3.8)

where we define Sk;h := Âk
t=1 Xh( f t)Xh( f t)T + lI and we assume l � B2

X holds 8k 2 [K].

f.4 environment details

f.4.1 Antmaze

The Antmaze navigation tasks aim to control an 8-DoF ant quadruped robot to move from
a starting point to a desired goal in a maze. The agent will receive sparse +1/0 rewards
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depending on whether it reaches the goal or not. We study each method on “medium”
and “hard” (shown in Figure 34) mazes which are difficult to solve, using the following
datasets from D4RL [92]: large-diverse, large-play, medium-diverse, and medium-play. The
difference between “diverse” and “play” datasets is the optimality of the trajectories
they contain. The “diverse” datasets contain the trajectories commanded to a random
goal from random starting points, while the “play” datasets contain the trajectories
commanded to specific locations which are not necessarily the goal. We used an episode
length of 1000 for each task. For Cal-QL, CQL, and IQL, we pre-trained the agent using
the offline dataset for 1M steps. We then trained online fine-tuning for 1M environment
steps for each method.

f.4.2 Franka Kitchen

The Franka Kitchen domain require controlling a 9-DoF Franka robot to arrange a kitchen
environment into a desired configuration. The configuration is decomposed into 4
subtasks, and the agent will receive rewards of 0, +1, +2, +3, or +4 depending on how
many subtasks it has managed to solve. To solve the whole task and reach the desired
configuration, it is important to learn not only how to solve each subtask, but also to figure
out the correct order to solve. We study this domain using datasets with three different
optimalities: kitchen-complete, kitchen-partial, and kitchen-mixed. The “complete” dataset
contains the trajectories of the robot performing the whole task completely. The “partial”
dataset partially contains some complete demonstrations, while others are incomplete
demonstrations solving the subtasks. The “mixed” dataset only contains incomplete data
without any complete demonstrations, which is hard and requires the highest degree of
stitching and generalization ability. We used an episode length of 1000 for each task. For
Cal-QL, CQL, and IQL, we pre-trained the agent using the offline dataset for 500K steps.
We then performed online fine-tuning for 1.25M environment steps for each method.

f.4.3 Adroit

The Adroit domain involves controlling a 24-DoF shadow hand robot. There are 3 tasks we
consider in this domain: pen-binary, relocate-binary, relocate-binary. These tasks comprise
a limited set of narrow human expert data distributions (⇠ 25) with additional trajectories
collected by a behavior-cloned policy. We truncated each trajectory and used the positive
segments (terminate when the positive reward signal is found) for all methods. This
domain has a very narrow dataset distribution and a large action space. In addition,
learning in this domain is difficult due to the sparse reward, which leads to exploration
challenges. We utilized a variant of the dataset used in prior work [240] to have a standard
comparison with SOTA offline fine-tuning experiments that consider this domain. For the
offline learning phase, we pre-trained the agent for 20K steps. We then performed online
fine-tuning for 300K environment steps for the pen-binary task, and 1M environment

328



steps for the door-binary and relocate-binary tasks. The episode length is 100, 200, and
200 for pen-binary, door-binary, and relocate-binary respectively.

f.4.4 Visual Manipulation Domain

The Visual Manipulation domain consists of a pick-and-place task. This task is a multitask
formulation explored in the work, Pre-training for Robots (PTR) [187]. Here each task is
defined as placing an object in a bin. A distractor object was present in the scene as an
adversarial object which the agent had to avoid picking. There were 10 unique objects and
no overlap between the task objects and the interfering/distractor objects. The episode
length is 40. For the offline phase, we pre-trained the policy with offline data for 50K
steps. We then performed online fine-tuning for 100K environment steps for each method,
taking 5 gradient steps per environment step.

f.5 experiment details

f.5.1 Normalized Scores

The visual-manipulation, adroit, and antmaze domains are all goal-oriented, sparse reward
tasks. In these domains, we computed the normalized metric as simply the goal achieved
rate for each method. For example, in the visual manipulation environment, if the object
was placed successfully in the bin, a +1 reward was given to the agent and the task
is completed. Similarly, for the door-binary task in the adroit tasks, we considered the
success rate of opening the door. For the kitchen task, the task is to solve a series of 4
sub-tasks that need to be solved in an iterative manner. The normalized score is computed
simply as #tasks solved

total tasks .

f.5.2 Mixing Ratio Hyperparameter

In this work, we explore the mixing ratio parameter m, which is used during the online
fine-tuning phase. The mixing ratio is either a value in the range [0, 1] or the value -1. If
this mixing ratio is within [0, 1], it represents what percentage of offline and online data
is seen in each batch when fine-tuning. For example, if the mixing ratio m = 0.25, that
means for each batch we sample 25% from the offline data and 75% from online data.
Instead, if the mixing ratio is -1, the buffers are appended to each other and sampled
uniformly.

f.5.3 Details and Hyperparameters for CQL and Cal-QL

We list the hyperparameters for CQL and Cal-QL in Table 60. We utilized a variant
of Bellman backup that computes the target value by performing a maximization over
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target values computed for k actions sampled from the policy at the next state, where
we used k = 4 in visual pick and place domain and k = 10 in others. In the Antmaze
domain, we used the dual version of CQL [181] and conducted ablations over the value
of the threshold of the CQL regularizer R(q) (target action gap) instead of a. In the
visual-manipulation domain which is not presented in the original paper, we swept over
the alpha values of a = 0.5, 1, 5, 10, and utilized separate a values for offline (a = 5)
and online (a = 0.5) phases for the final results. We built our code upon the CQL
implementation from https://github.com/young-geng/JaxCQL [104]. We used a single
NVIDIA TITAN RTX chip to run each of our experiments.

f.5.4 Details and Hyperparameters for IQL

We list the hyperparameters for IQL in Table 61. To conduct our experiments, we
used the official implementation of IQL provided by the authors [175], and primarily
followed their recommended parameters, which they previously ablated over in their
work. In the visual-manipulation domain which is not presented in the original paper,
we performed a parameter sweep over expectile t = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 and
temperature b = 1, 3, 5, 10, 25, 50 and selected the best-performing values of t = 0.7 and
b = 10 for our final results. In addition, as the second best-performing method in the
visual-manipulation domain, we also attempted to use separate b values for IQL, for a
fair comparison with CQL and Cal-QL. However, we found that it has little to no effect,
as shown in Figure 39.

f.5.5 Details and Hyperparameters for AWAC and ODT

We used the JAX implementation of AWAC from https://github.com/ikostrikov/jaxrl [173].
We primarily followed the author’s recommended parameters, where we used the La-
grange multiplier l = 1.0 for the Antmaze and Franka Kitchen domains, and l = 0.3
for the Adroit domain. In the visual-manipulation domain, we performed a param-
eter sweep over l = 0.1, 0.3, 1, 3, 10 and selected the best-performing value of l = 1
for our final results. For ODT, we used the author’s official implementation from
https://github.com/facebookresearch/online-dt, with the author’s recommended parame-
ters they used in the Antmaze domain. In addition, in support of our result of AWAC
and ODT (as shown in Table 20), the poor performance of Decision Transformers and
AWAC in the Antmaze domain can also be observed in Table 1 and Table 2 of the IQL
paper [175].

f.5.6 Details and Hyperparameters for SAC, SAC + Offline Data, and CQL + SAC

We used the standard hyperparameters for SAC as derived from the original implemen-
tation in [123]. We used the same other hyperparameters as CQL and Cal-QL. We used
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automatic entropy tuning for the policy and critic entropy terms, with a target entropy
of the negative action dimension. For SAC, the agent is only trained with the online
explored data. For SAC + Offline Data, the offline data and online explored data is
combined together and sampled uniformly. For Hybrid RL, we use the same mixing ratio
used for CQL and Cal-QL presented in Table 60. For CQL + SAC, we first pre-train with
CQL and then run online fine-tuning using both offline and online data, also using the
same mixing ratio presented in Table 60.

Table 60: CQL, Cal-QL Hyperparameters

Hyperparameters Adroit Kitchen Antmaze Manipulation

a 1 5 - 5 (online: 0.5)
target action gap - - 0.8 -

mixing ratio -1, 0.25, 0.5 -1, 0.25, 0.5 0.5 0.2, 0.5, 0.7, 0.9

Table 61: IQL Hyperparameters

Hyperparameters Adroit Kitchen Antmaze Manipulation

expectile t 0.8 0.7 0.9 0.7
temperature b 3 0.5 10 10
mixing ratio -1, 0.2, 0.5 -1, 0.25, 0.5 0.5 0.2, 0.5, 0.7, 0.9

f.6 discussion on limitations of existing fine-tuning methods
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Figure 39: Abalation on IQL’s online temperature values: The change in the temperature b used in online
fine-tuning phase has little to no effect on the sample efficiency.
In this section, we aim to highlight some potential reasons behind the slow improvement
of other methods in our empirical analysis experiment in Section 8.4.1, and specifically,
we use IQL for the analysis. We first swept over the temperature b values used in the
online fine-tuning phase for IQL, which controls the constraint on how closely the learned
policy should match the behavior policy. As shown in Figure 39, the change in the
temperature b has little to no effect on the sample efficiency. Another natural hypothesis
is that IQL improves slowly because we are not making enough updates per unit of data
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Figure 40: IQL and CQL: Step 0 on the x-axis is the performance after offline pre-training. Observe while
CQL suffers from initial policy unlearning, IQL improves slower throughout fine-tuning.

Figure 41: The performance of Cal-QL using a neural net approximator for the reference value function is
comparable to using the Monte-Carlo return.

collected by the environment. To investigate this, we ran IQL with (a) five times as many
gradient steps per step of data collection (UTD = 5), and (b) with a more aggressive
policy update. Observe in Figure 40 that (a) does not improve the asymptotic performance
of IQL, although it does improve CQL meaning that there is room for improvement on
this task by making more gradient updates. Observe in Figure 40 that (b) often induces
policy unlearning, similar to the failure mode in CQL. These two observations together
indicate that a policy constraint approach can slow down learning asymptotically, and we
cannot increase the speed by making more aggressive updates as this causes the policy to
find erroneously optimistic out-of-distribution actions, and unlearn the policy learned
from offline data.

f.7 impact of estimation errors in the reference value function

In our experiments, we compute the reference value functions using Monte-Carlo return
estimates. However, this may not be available in all tasks. How does Cal-QL behave when
reference value functions must be estimated using the offline dataset itself? To answer
this, we ran an experiment on the kitchen domain, where instead of using an estimate for
Qµ based on the Monte-Carlo return, we train a neural network function approximator

332



Qµ
q to approximate Qµ via supervised regression on to Monte-Carlo return, which is then

utilized by Cal-QL. Observe in Figure 41, that the performance of Cal-QL largely remains
unaltered. This implies as long as we can obtain a reasonable function approximator to
estimate the Q-function of the reference policy (in this case, the behavior policy), errors
in the reference Q-function do not affect the performance of Cal-QL significantly.

f.8 initial unlearning of cql during online fine-tuning
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Figure 42: While CQL experiences initial unlearning, Cal-QL effectively mitigates it and quickly recovers
its performance.

In this section, we show the learning curves of CQL and Cal-QL from Figure 35 and
zoom in on the x-axis to provide a clearer visualization of CQL’s initial unlearning in the
Franka Kitchen, Adroit, and the visual-manipulation domains. As depicted in Figure 42,
it is evident across all tasks that while CQL experiences initial unlearning, Cal-QL can
effectively mitigate it and quickly recovers its performance. Regarding the Antmaze
domain, as we discussed in section 8.7.3, CQL does not exhibit initial unlearning since
the default dataset has a high coverage of data. However, we can observe a similar
phenomenon if we narrow down the dataset distribution (as shown in Figure 37).
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G
A P P E N D I X : R E A L - R O B O T P R E - T R A I N I N G

g.1 diagnostic study in simulation

We perform a diagnostic study in simulation to verify some of the insights observed in our
real-world experiments. We created a bin sort task, where a WidowX250 robot is placed
in front two bins and is provided with two objects (more details in Appendix G.2). The
task is to sort each object in the correct bin associated with that object. The pre-training
data provided to this robot is pick-place data, which only demonstrates how to pick one
of the objects and place it in one of the bins, but does not demonstrate the compound task
of placing both objects. In order to succeed at this such a compound task, a robot must
learn an abstract representation of the skill of sorting an object during the pre-training
phase and then figure out that it needs to apply this skill multiple times in a trajectory to
succeed at the task from just five demonstrations of the desired sorting behavior.

The performance numbers (along with 95%-confidence intervals) are shown in Table 62.
Observe that PTR improves upon prior methods in a statistically significant manner,
outperforming the BC and COG baselines by a significant margin. This validates the
efficacy of PTR in simulation and corroborates our real-world results.

g.2 details of our experimental setup

g.2.1 Real-World Experimental Setup

A picture of our real-world experimental setup is shown in Figure 43. The scenarios
considered in our experiments (Section 9.4) are designed to evaluate the performance of
our method under a variety of situations and therefore we set up these tasks in different
toykitchen domains (see Figure 43) on three different WidowX 250 robot arms. We use
data from the bridge dataset [70] consisting of data collected with many robots in many
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Method Success rate

BC (joint training) 7.00 ± 0.00 %
COG (joint training) 8.00 ± 1.00 %
BC (finetune) 4.88 ± 4.07 %

PTR (Ours) 17.41 ± 1.77 %

Table 62: Performance of PTR in comparison with other methods on the simulated bin sorting task,
trained for many more gradient steps for all methods until each one of them converges. Observe that
PTR substantially outperforms other prior methods, including joint training on the same data with BC or
CQL. Training on target data only is unable to recover a non-zero performance, so we do not report it in
this table. Since the 95%-confidence intervals do not overlap between PTR and other methods, it indicates
that PTR improves upon baselines in a statistically significant manner.

domains for training but exclude the task/domain that we use for evaluation from the
training dataset.

g.2.2 Simulation Setup

We evaluate our approach in a simulated bin-sorting task on the simulated WidowX 250
platform, aimed to mimic the setup we use for our real-world evaluations. This setup is
designed in the PyBullet simulation framework provided by Singh et al. [303]. A picture
is shown in Figure 44. In this task, two different bins and two different objects are placed
in front of the WidowX robot. The goal of the robot is to correctly sort each of the two
objects to their designated bin (e.g the cylinder is supposed to be placed in the left bin
and the teapot should be placed in the right bin. We refer to this task as a compound task
since it requires successfully combining behaviors of two different pick-and-place skills
one after the other in a single trajectory while also adequately identifying the correct bin
associated with each object. Success is counted only when the robot can accurately sort
both of the objects into their corresponding bins.

Offline pre-training dataset. The dataset provided for offline pre-training only consists of
demonstrations that show how the robot should pick one of the two objects and place it
into one of the two bins. Each episode in the pre-training dataset is about 30-40 timesteps
long. A picture showing some trajectories from the pre-training dataset is shown in
Figure 45. While the downstream task only requires solving this sorting task with two
specific objects (shown in Figure 46), the pre-training data consists of 10 unique objects
(some shown in Figure 45). The two target objects that appear together in the downstream
target scene are never seen together in the pre-training data. Since the pre-training data
only demonstrates how the robot must pick up one of the objects and place it in one of
the two bins (not necessarily in the target bin that the target task requires), it neither
consists of any behavior that places objects into bins sequentially nor does it consist of
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(1) (2)

(3) (4)

Figure 43: Setup Overview: Following Ebert et al. [70], we use a toykitchen setup described in that prior
work for our experiments. This utilizes a 6-DoF WidowX 250 robot. (1): Held-out toykitchen used for
experiments in Scenario 3 (denoted “toykitchen 6”), (2): Re-targeting toykitchen used for experiments in
Scenario 2 (denoted “toykitchen 2”), (3): target objects used in the experiments of scenario 3., (4): the
held-out kitchen setup used for door opening (“toykitchen 1”).

any behavior where one of the objects is placed one of the bins while the other one is not.
This is what makes this task particularly challenging.

Target demonstration data. The target task data provided to the algorithm consists of
only five demonstrations that show how the robot must complete both the stages of
placing both objects (see Figure 46). Each episode in the target demonstration data is 80
timesteps long, which is substantially longer than any trajectory in the pre-training data,
though one would hope that good representations learned from the pick and place tasks
are still useful for this target task. While all methods are able to generally solve the first
segment of placing the first object into the correct bin, the primary challenge in this task
is to effectively sort the second object, and we find that PTR attains a substantially better
success rate than other baselines in this exact step.
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Figure 44: Bin-Sorting task used for our simulated evaluations. The task requires sorting the cylinder
into the left bin and the teapot into the right bin.

Figure 45: Some trajectories from the pre-training data used in the simulated bin-sort task.
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Figure 46: The five demonstration trajectories used for Phase 2 of PTR .

g.3 description of the real-world evaluation scenarios

In this section, we describe the real-world evaluation scenarios considered in Section 9.4.
We additionally include a much more challenging version of Scenario 3, for which
we present results in Appendix G.4. These harder test cases evaluate the fine-tuning
performance on four different tasks, starting from the same initialization trained on
bridge data except the toykitchen 6 domain in which these four tasks were set up. In the
following sections, the nomenclature for the toy kitchens is drawn from Ebert et al. [70]
and as described in the caption of Figure 43.

g.3.1 Scenario 1: Re-targeting skills for existing to solve new tasks

Pre-training data. The pre-training data comprises all of the pick and place data from the
bridge dataset [70] from toykitchen 2. This includes data corresponding to the task of
putting the sushi in the transparent orange pot (Figure 47).

Target task and data. Since our goal in this scenario is to re-target the skill for putting the
sushi in the transparent orange pot to the task of putting the sushi in the metallic pot, we
utilize a dataset of 20 demonstrations that place the sushi in a metallic pot as our target
task data that we fine-tune with (shown in Figure 47).
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Retarget to metal-pot, using 10 
demos in target domain

1. Pre-Train on Bridge Data in toykitchen 2 (1850 trajectories  31 tasks): 

Figure 47: Illustration of pre-training data and finetuning data used for Scenario 1: re-targeting the put
sushi in metal-pot behavior to put the object in the metal pot instead of the orange transparent pot.

Quantitative evaluation protocol. For our quantitative evaluations in Table 22, we run
10 controlled evaluation rollouts that place the sushi and the metallic pot in different
locations of the workspace. In all runs, the arm starts at up to 10 cm distance above the
target object. The initial object and arm poses and positions are matched as closely as
possible for different methods.

g.3.2 Scenario 2: Generalizing to Previously Unseen Domains

Pre-training data. The pre-training data in Scenario 2 consists of 800 door-opening
demonstrations on 12 different doors across 3 different toykitchen domains.

Target task and data. The target task requires opening the door of an unseen microwave
in toykitchen 1 using a target dataset of only 15 demonstrations.

Quantitative evaluation protocol. We run 20 rollouts with each method, counting
successes when the robot opened the door by at least 45 degrees. To perform this
successfully, there is a degree of complexity as the robot has to initially open the door till
it’s open to about 30 degrees. Then due to physical constraints, the robot needs to wrap
around the door and push it open from the inside. To begin an evaluation rollout, we
reset the robot to randomly sampled poses obtained from held-out demonstrations on
the target door. This is a compound task requiring the robot to first grab the door by the
handle, next move around the door, and finally push the door open. As before, we match
the initial pose of the robot as closely as possible for all the methods.
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1. Pre-Train on Bridge Data, 12 doors 800 demonstrations, 3 different toy-kitchens

2. Fine-Tune on Target Domain Data: 1 door, 15 
demonstrations

Figure 48: Illustration of pre-training data and fine-tuning data used for Scenario 2 (door opening):
transferring a behavior to a held-out domain.

1. Pre-Train on Bridge Data 80 tasks, 5920 trajectories 
Put Sweet Potato on Plate

Put cucumber in pot

Put knife in pot

Take croissant out of pot

2. Fine-Tune on  
10 demos each 

Figure 49: Illustration of pre-training data and fine-tuning data used for the new tasks we have added
in Scenario 3. The goal is to learn to solve new tasks in new domains starting from the same pre-trained
initialization and when fine-tuning is only performed using 10-20 demonstrations of the target task.
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g.3.3 Scenario 3: Learning to Solve New Tasks in New Domains

Pre-training data. All pick-and-place data in the bridge dataset [70] except any demon-
stration data collected in toykitchen 6, where our evaluations are performed.

Target task and data. The target task requires placing corn in a pot in the sink in the
new target domain and the target dataset provides 10 demonstrations for this task. These
target demonstrations are sampled from the bridge dataset itself.

Quantitative evaluation protocol. During the evaluation we were unable to exactly match
the camera orientation used to collect the target demonstration trajectories, and therefore
ran evaluations with a slightly modified camera view. This presents an additional
challenge for any method as it must now generalize to a modified camera view of the
target toykitchen domain, without having ever observed this domain or this camera view
during training. We sampled initial poses for our method by choosing transitions from
a held-out dataset of demonstrations of the target task and resetting the robot to those
initial poses for each method. We attempted to match the positions of objects across
methods as closely as possible.

g.3.4 More Tasks in Scenario 3: Learning to Solve Multiple New Tasks in New Domains From
the Same Initialization

In Appendix G.4, we have now added results for more tasks in Scenario 3. The details of
these tasks are as follows:

Pre-training data. All pick-and-place data from bridge dataset [70] except data from
toykitchen 6.

Target task and data. We consider four downstream tasks: take croissant from a metallic
bowl, put sweet potato on a plate, place the knife in a pot, and put cucumber in a bowl.
We collected 10 target demonstrations for the croissant, sweet potato, and put cucumber
in bowl tasks, and 20 target demonstrations for the knife in pot task. A picture of these
target tasks is shown in Figure 49.

Qualitative evaluation protocol. For our evaluations, we utilize either 10 or 20 evaluation
rollouts. As with all of our other quantitative results, we evaluate all the baseline
approaches and PTR starting from an identical set of initial poses for the robot. These
initial poses are randomly sampled from the poses that appear in the first 10 timesteps
of the held-out demonstration trajectories for this target task. For the configuration of
objects, we test our policies in a variety of task-specific configurations that we discuss
below:

• Take croissant from metallic bowl: For this task, we alternate between two kinds of
positions for the metallic bowl. In the “easy” positions, the metallic bowl is placed
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roughly vertically beneath the robot’s initial starting pose, whereas in the “hard”
positions, the robot must first move itself to the right location of the bowl and then
execute the policy.

• Put the cucumber in bowl: We run 10 evaluation rollouts starting from 10 randomly
sampled initial poses of the robot for our evaluations. Here we moved the bowl
between the two stovetops in each trial.

• Put sweet potato on plate: For this task, we performed 20 evaluation rollouts. We
only sampled 10 initial poses for the robot, but for each position, we evaluated every
policy on two orientations of the sweet potato (i.e., the sweet potato is placed on the
table on its flat face or on its curved face). Each of these orientations presents some
unique challenges, and evaluating both of them allows us to gauge how robust the
learned policy is to changes in orientation. The demonstration data had a variety of
orientations for the sweet potato object that differed for each collected trajectory.

• Place knife in pot: We evaluate this task over 10 evaluation rollouts, where the
first five rollouts use a smaller knife, while the other five rollouts use a larger knife
(shown in Figure 43). Each knife was seen in the demonstration dataset with equal
probability.

We will discuss the results obtained on these new tasks in Appendix G.4.

g.4 additional experimental results

Original Viewpoint Elevated Viewpoint Rotated Viewpoint

Croissant Task Multiple Viewpoint Experiment

Figure 50: Sample observations from different camera viewpoints, only used during fine-tuning. Left:
the original camera viewpoint found in Figure 49. Middle: an elevated camera viewpoint where the robot
and camera have been raised 7 cm. Right: a rotated camera viewpoint where the kitchen has been slightly
translated and rotated 15 degrees counterclockwise relative to the camera and robot.

Finetuning to novel camera viewpoints: Even though Scenario 3 already presents a novel
toy-kitchen domain and previously unseen objects during finetuning, we also evaluate
PTR on a more challenging scenario where we additionally alter the camera viewpoint
during finetuning. We apply two kinds of alterations to the camera: (a) we elevate the
mounting platform of the camera by 7 cm, which necessitates adapting the way the
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physical coordinates of the robot end-effector are interpreted by the policy, and (b) we
rotate the camera by about 15 degrees to induce a more oblique image observation than
what was ever seen during pre-training. Note that in both of these scenarios, the robot
has never encountered such camera viewpoints during pre-training, which makes this
scenario even more challenging. The original dataset in [70] had the camera elevated
to the same position for each domain and always ensured the kitchen was parallel to
the camera platform, with translations being the primary changes in the scene for each
domain. In Table 63, we present our results comparing PTR and BC (finetune). Observe
that PTR still clearly outperforms BC (finetune), and attains performance close to that
of PTR in Table 24, indicating that such shifts in the camera do not drastically hurt
PTR .

Method Elevated Viewpoint Rotated Viewpoint

BC (finetune) 2/10 3/10
PTR (Ours) 6/10 7/10

Table 63: Comparison of PTR and BC (finetune), when evaluated on novel camera viewpoints with
elevated and rotated cameras as shown in Figure 50 for the croissant task. Observe that PTR still outperforms
BC (finetune) in this setting and attains more than 2x success rate of BC (finetune).

g.4.1 Hyperparameters for PTR and Baseline Methods

In this section, we will present the hyperparameters we use in our experiments and
explain how we tune the other hyperparameters for both our method PTR and the
baselines we consider.

PTR . Since PTR utilizes CQL as the base offline RL method, it trains two Q-functions
and a separate policy, and maintains a delayed copy of the two Q-functions, commonly
referred to as target Q-functions. We utilize completely independent networks to represent
each of these five models (2 Q-functions, 2 target Q-functions, and the policy). We also
do not share the convolutional encoders among them. As discussed in the main text, we
rescaled the action space to [�1, 1]|A| to match the one used by actor-critic algorithms,
and utilized a Tanh squashing function at the end of the policy. We used a CQL a value
of 10.0 for our pick-and-place experiments. The rest of the hyperparameters for training
the Q-function, the target network updates, and the policy are taken from the standard
training for image-based CQL from Singh et al. [303] and are presented in Table 65 below
for completeness. The hyperparameters we choose are essentially the network design
decisions of (1) utilizing group normalization instead of batch normalization, (2) utilizing
learned spatial embeddings instead of standard mean pooling, (3) passing in actions at
each of the fully connected layers of the Q-network and the hyperparameter a in CQL
that must be adjusted since our data consists of demonstrations. We will ablate the new
design decisions explicitly in Appendix G.5.
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Hyperparameter Value

Q-function learning rate 3e-4
Policy learning rate 1e-4
Target update rate 0.005 (soft update with Polyak averaging)
Optimizer type Adam
Discount factor g 0.96 (since trajectories have a length of only about 30-40)
Use terminals True
Reward shift and scale shift = -1, scale = 10.0
CQL a 10.0
Use Color Jitter True
Use Random Cropping True

Table 64: Main hyperparameters for CQL training in our real-world experiments. In the simulation, we
utilize a smaller a for CQL, a = 1.0, and a larger discount g = 0.98 since trajectories in the simulation are
about 60-70 timesteps in length.

The only other hyperparameter used by PTR is the mixing ratio t that determines the
proportion of samples drawn from the pre-training dataset and the target dataset during
the offline finetuning phase in PTR . We utilize t = 0.7 for our experiments with PTR in
the main paper, and use t = 0.9 for the additional experiments we added in the Appendix.
This is because t = 0.9 (more bridge data, and a smaller amount of target data) was
helpful in scenarios with very limited target data.

In order to perform checkpoint selection for PTR , we utilized the trends in the learned
Q-values over a set of held-out trajectories on the target data as discussed in Section 9.3.2.
We did not tune any other algorithmic hyperparameters for CQL, as these were taken
directly from [303].

BC (finetune). We trained BC in a similar manner as Ebert et al. [70], utilizing the
design decisions that this prior work found optimal for their experiments. The policy
for BC utilizes the very same ResNet 34 backbone as our RL policy since a backbone
based on ResNet 34 was found to be quite effective in Ebert et al. [70]. Following the
recommendations of Ebert et al. [70] and based on result trends from our own preliminary
experiments, we chose to not utilize the tanh squashing function at the end of the policy
for any BC-based method, but trained a deterministic BC policy that was trained to regress
to the action in the demonstration with a mean-squared error (MSE) objective.

In order to perform cross-validation, checkpoint, and model selection for our BC policies,
we follow guidelines from prior work [70, 71] and track the MSE on a held-out validation
dataset similar to standard supervised learning. We found that a ResNet 34 BC policy
attained the smallest validation MSEs in general, and for our evaluations, we utilized a
checkpoint of a ResNet 34 BC policy that attained the smallest MSE.
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Hyperparameter Value

Policy learning rate 1e-4
Optimizer type Adam
Use Color Jitter True
Use Random Cropping True
Dropout 0.4

Table 65: Main hyperparameters for Behavior Cloning Baseline Training in our real-world and simulation
experiments. Note: architecture design choices follow closely to PTR design choices.

Analogous to the case of PTR discussed above, we also ablated the performance of BC for
a set of varying values of the mixing ratio t, but found that a large value of t = 0.9 was
the most effective for BC, and hence utilized t = 0.9 for BC (finetune) and BC (joint).

BC (joint) and CQL (joint). The primary distinction between training BC (joint) and BC
(finetune) and correspondingly, CQL (joint) and PTR was that in the case of joint training,
the target dataset was introduced right at the beginning of Phase 1 (pre-training phase),
and we mixed the target data with the pre-training data using the same value of the
mixing ratio t used in for our fine-tuning experiments to ensure a fair comparison.

Few-shot offline meta-RL (MACAW) [230]: We compare to two variants of this algorithm
and perform an extensive sweep over several hyperparameters, shown in Table 66. We
trained two different variants of MACAW in our evaluation: (1) Pre-training on the bridge
data in Scenario 3 and then fine-tuning on target data of interest, and (2) adapting a set
of existing task identifiers to the target task of interest utilizing the same pre-training
and fine-tuning domains. We performed early stopping on the meta-training based on
validation losses. From there, we started the meta-testing phase, adapting to the target
domain of interest. Following Mitchell et al. [230], we use a task mini-batch of 8 tasks
at each step of optimization rather than using all of the training tasks. We clipped the
advantage weight logits to the scale of 20 and attempted to utilize a policy network
with a fixed and learned standard deviation. Additionally, we varied the number of
Adaptation steps following prior work. Our evaluation protocol for MACAW entails
utilizing the validation losses to choose an initial checkpoint for evaluation. Then, we
consider checkpoints in the neighborhood (± 50K gradient steps) to for evaluations as
well and chose the max over all of these checkpoints as the final evaluation success
rate.

Quantitatively, as seen in Table 24, MACAW was unable to get non-zero success rates on
any of the tasks we study. However, we did qualitatively observe nontrivial behavior seen
in our evaluation rollouts. For instance, we found that the policies trained via MACAW
could consistently grasp the object of interest but were unable to localize where to place
the object correctly. Several trials involved hovering around with the object of interest
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and not placing the object in the container. Other trials involved the agent failing to grasp
the object.

Hyperparameter Value

Optimizer Adam
Outer Policy learning rate 1e-4
Outer Value learning rate 1e-5, 1e-6
Inner Policy learning rate 1e-2, 1e-3
Inner Value learning rate 1e-3, 1e-4
Auxilary Advantage Coefficient 1e-2, 1e-3, 1e-4
Policy Parameterization Fixed std, Learned std
AWR Policy Temperature 1, 10, 20
Number of Adaptation Steps 1, 2, 3
Task Batch Size 8
Train Adaptation Batch Size 64
Eval Adaptation Batch Size 64
Max Advantage Clip 20
Use Color Jitter True
Use Random Cropping True

Table 66: Main hyperparameters for Training MACAW [230] in our real-world experiments. Note:
architecture design choices follow closely to PTR design choices but hyperparameter design choices follow
closely the suggestions in Mitchell et al. [230].

Pre-trained R3M initialization [243]: Next we compare PTR to utilizing an off-the-shelf
pre-trained representation given by R3M [243]. We compare two baselines that attempt to
train an MLP policy on top of the R3M state representation by using BC (finetuning) and
CQL (finetuning) respectively. To ensure that this baseline is well-tuned, we tried a variety
of network sizes with 2, 3 or 4 MLP layers and also tuned the hidden dimension sizes
in [256, 512, 1024]. We also utilized dropout as regularization to prevent overfitting and
tuned a variety of values of dropout probability in [0, 0.1, 0.2, 0.4, 0.6, 0.8]. We observe in
Table 24, that on the four tasks we evaluate on, PTR outperforms R3M, which indicates
that training on the bridge dataset can indeed give rise to effective visual representations
that are more suited to finetuning in our setting. The numbers we report in the table
are the best over each parametric policy corresponding to each hyperparameter in our
ablation. Checkpoint selection was done utilizing early stopping which is the last iteration
where the validation error stops decreasing.

Pre-trained MAE initialization [130]: We took a similar training procedure to R3M for
our MAE representation. We used an MAE trained on every image from the bridge
dataset Ebert et al. [70]. We then fine-tuned a specific target task with a similar ablation
on network size, hidden dimension size, and regularization techniques such as dropout.
We observe in Table 25, that on the four tasks we evaluate on, PTR outperforms R3M,
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which indicates that training on the bridge dataset can indeed give rise to effective
visual representations that are more suited to finetuning in our setting. The numbers
we report in the table are the best over each parametric policy corresponding to each
hyperparameter in our ablation. Checkpoint selection was done utilizing early stopping
which is the last iteration where the validation error stops decreasing.

Policy expressiveness study. We considered two policy expressiveness choices for BC
to compare with our reference BC implementation that is implemented with a set of
MLP layers. The first of the two choices was an autoregressive policy where the 7-
dimensional action space was discretized into 100 bins. Each action was then predicted
autoregressively conditioned on the observation, task id, and the action component from
the previous dimension(s). The second approach was with the BeT Architecture from
Shafiullah et al. [291]. We utilized the reference implementation from the paper with the
default suggested hyperparameters for this set of ablations. The window size for the
MinGPT transformer was ablated over between 1, 2, and 10.

g.5 validating the design choices from section 9 .3 .2

In this section, we will present ablation studies aimed to validate the design choices uti-
lized by PTR . We found these design choices quite crucial for attaining good performance.
The concrete research questions we wish to answer are: (1) How effective is a learned
spatial embedding compared to other approaches for aggregating spatial information? (2)
Is concatenating actions at each fully-connected layer of the Q-function crucial for good
performance?, (3) Is group normalization a good alternative to batch normalization? and
(4) How does our choice of creating binary rewards for training affect the performance of
PTR ?. We will answer these questions next.

Learned spatial embeddings are crucial for performance. Next we study the impact
of utilizing the learned spatial embeddings for encoding spatial information when
converting the feature maps from the convolutional stack into a vector that is fed into
the fully-connected part of the Q-function. We compare our choice to utilizing a spatial
softmax as in Ebert et al. [70], and also global average pooling (GAP) that simply averages
over the spatial information, typically utilized in supervised learning with ResNets.

Method Success rate

PTR with spatial softmax 4/10
PTR with global average pooling 4/10

PTR with learned spatial embeddings (Ours) 7/10

Table 67: Ablation of PTR with spatial softmax and GAP on the croissant task. Note that PTR with
learned spatial embeddings performs significantly better than using a spatial softmax or average pooling.
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As shown in Table 67 learned spatial embeddings outperform both of these prior ap-
proaches on the put croissant in pot task. We suspect that spatial softmax does not
perform much better than the GAP approach since the softmax operation can easily get
saturated when running gradient descent to fit value targets that are not centered in some
range, which would effectively hinder its expressivity. This indicates that the approach of
retaining spatial information like in PTR is required for attaining good performance.

Concatenating actions at each layer is crucial for performance. Next, we run PTR without
passing in actions at each fully connected layer of the Q-function on the take croissant
out of metallic bowl task and only directly concatenate the actions with the output of the
convolutional layers before passing it into the fully-connected component of the network.
On the croissant task, we find that not passing in actions at each layer only succeeds in
2/10 evaluation rollouts, which is significantly worse than the default PTR which passes
in actions at each layer and succeeds in 7/10 evaluation rollouts (Table 68).

Method Success rate

PTR without actions passed in at each FC layer 2/10
PTR with actions passed in at each FC layer (Ours) 7/10

Table 68: Ablation of PTR with actions passed in at each layer. Observe that passing in actions at each
fully-connected layer does lead to quite good performance.

Group normalization is more consistent than batch normalization. Next, we ablate the
usage of group normalization over batch normalization in the ResNet 34 Q-functions
that PTR uses. We found that batch normalization was generally harder to train to attain
Q-function plots that exhibit a roughly increasing trend over the course of a trajectory.
That said, on some tasks such as the croissant in pot task, we did get a reasonable
Q-function, and found that batch normalization can perform well. On the other hand, on
the put cucumber in pot task, we found that batch normalization was really ineffective.
These results are shown in Table 69, and they demonstrate that batch normalization may
not be as consistent and reliable with PTR as group normalization.

Method Croissant out of metallic bowl Cucumber in pot

PTR with batch norm. (relative) + 28.0% (7/10! 9/10) - 60.0% (5/10! 2/10)

Table 69: Relative performance of PTR with batch normalization with respect to PTR with group
normalization. Observe that while utilizing batch normalization in PTR can be sometimes more effective
than using group normalization (e.g., take croissant out of metallic bowl task), it may also be highly
ineffective and can reduce success rates significantly in other tasks. The performance numbers to the left of
the! correspond to the performance of PTR with group normalization and the performance to the right
of! is the performance with batch normalization.
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Choice of the reward function. Finally, we present some results that ablate the choice
of the reward function utilized for training PTR from data that entirely consists of
demonstrations. In our main set of experiments, we labeled the last three timesteps of
every trajectory with a reward of +1 and annotated all other timesteps with a 0 reward.
We tried perhaps the most natural choice of labeling only the last timestep with a 0
reward on the croissant task and found that this choice succeeds 0/10 times, compared
to annotating the last three timesteps with a +1 reward which succeeds 7/10 times. We
suspect that this is because only annotating the last timestep with a +1 reward is not
ideal for two reasons: first, the task is often completed in the dataset much earlier than
the observation shows the task complete, and hence the last-step annotation procedure
induces a non-Markovian reward function, and second, only labeling the last step with a
+1 leads to overly conservative Q-functions when used with PTR , which may not lead to
good policies.

g.6 more details for online fine-tuning

Offline pre-training. For both PTR and BC baseline, we used 40 open-door demonstra-
tions as target task data and combined them with the Bridge Dataset to pre-train the
policy. To reduce the training time in the real system, we used ResNet 18 backbones.

Reset policy. For the reset policy, we additionally collected 22 close-door demonstrations
as the target task data and pre-trained the policy with PTR. Similar to the open-door
policy, we used ResNet 18 backbones to save training time.

Reward classifier. We used a ResNet 34 classification model and trained it to detect
whether the door is open or closed from visual inputs. For the training data, we
manipulated the robot to collect around 20 positive and negative trajectories for both
open and closed doors.

Method. As discussed in Chapter 8, offline value function initializations from CQL may
not be effective at fine-tuning if the learned Q-values are not at the same scale as the
ground-truth return of the behavior policy. While this property does not affect offline
performance, it is crucial to enforce this property during fine-tuning. That said, this
property can be “baked in” by simply preventing the CQL regularizer from minimizing
the learned Q-function if its values fall below the Monte-Carlo return of the trajectories
in the dataset. Therefore, for the online fine-tuning experiment, we utilize Cal-QL
incorporated into the offline CQL approach.

Hyperparameters. For both online fine-tuning with PTR and SACfD, we performed the
experiment by mixing the Bridge Dataset, offline target data, and the online data in a
ratio (b) of 0.35, 0.15, and 0.5. For PTR , we used the CQL alpha value of 5 for the offline
phase and 0.5 for the online phase.
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Figure 51: Example of unsafe behaviors when running SACfD. The robot collides with the camera during
online exploration, resulting in a system crash.

Evaluation. The results shown in Figure 8 were evaluated autonomously every 5K
environment step during the online fine-tuning. Each evaluation was assessed with 10
trials, one from each initial position. The results shown in Figure 27 were additionally
evaluated over 3 trials from each initial position, using the offline initialization and the
final checkpoint obtained after 20K environment steps of online fine-tuning.
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H
A P P E N D I X : H A R D WA R E A C C E L E R AT O R D E S I G N

h.1 additional experiments

In this section, we present some additional results obtained by jointly optimizing mul-
tiple applications (Appendix H.1.2), provide an analysis of the designed accelerators
(Appendix H.1.4) and finally, discuss how our trained conservative surrogate can be used
with a different evaluation time constraint (Appendix H.1.3).

h.1.1 Comparison to Other Baseline Methods

Comparison to P3BO. We perform a comparison against P3BO, a state-of-the-art online
method in biological sequence design [12]. On average, PRIME outperforms the P3BO
method by 2.5⇥ (up to 8.7⇥ in U-Net). In addition, we present the comparison between
the total simulation runtime of the P3BO and Evolutionary methods in Figure 52. Note
that, not only the total simulation time of P3BO is around 3.1⇥ higher than the Evolu-
tionary method, but also the latency of final optimized accelerator is around 18% for
MobileNetEdgeTPU. On the other hand, the total simulation time of PRIME for the task
of accelerator design for MobileNetEdgeTPU is lower than both methods (only 7% of the
Evolutionary method as shown in Figure 14).
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Figure 52: Comparing the total simulation time needed by the P3BO and Evolutionary method on Mo-
bileNetEdgeTPU. Note that, not only the total simulation time of P3BO is around 3.1⇥ higher than the
Evolutionary method, but also the latency of final optimized accelerator is around 18% for MobileNetEd-
geTPU. The total simulation time of our method is around 7% of the Evolutionary method (See Figure 14).

Table 70: Optimized objective values (i.e., latency in milliseconds) obtained by PRIME and P3BO [12]
when optimizing over single applications (MobileNetEdgeTPU, M4, t-RNN Dec, t-RNN Enc, and U-Net).
On average, PRIME outperforms P3BO by 2.5⇥.

Application PRIME (Ours) P3BO

MobileNetEdgeTPU 298.50 376.02
M4 370.45 483.39
U-Net 740.27 771.70
t-RNN Dec 132.88 865.12
t-RNN Enc 130.67 1139.48
Geomean of PRIME ’s Improvement 1.0⇥ 2.5⇥

h.1.2 Learned Surrogate Model Reuse for Accelerator Design

Extending our results in Table 31, we present another variant of optimizing accelerators
jointly for multiple applications. In that scenario, the learned conservative model is
reused to architect an accelerator for a subset of applications used for training. We train a
contextual conservative model on the variants of MobileNet (Table 29) as discussed in
Section 10.4, but generated optimized designs by only optimizing the average surrogate
on only two variants of MobileNet (MobileNetEdgeTPU and MobileNetV2). This tests the
ability of our approach PRIME to provide a general contextual conservative surrogates,
that can be trained only once and optimized multiple times with respect to different subsets
of applications. Observe in Table 71, PRIME architects high-performing accelerator
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Table 71: Optimized objective values (i.e., latency in milliseconds) obtained by our PRIME when using the
jointly optimized model on three variants of MobileNets and use for MobileNetEdgeTPU and MobileNetV2
for different dataset configurations. PRIME outperforms the best online method by 7% and finds an
accelerator that is 3.29⇥ better than the best accelerator in the training dataset (last row). The best accelerator
configuration is highlighted in bold.

PRIME Online Optimization
Applications All -Opt -Infeasible Standard Bayes Opt Evolutionary D (Best in Training)

(MobileNetEdgeTPU, MobileNetV2) 253.85 297.36 264.85 341.12 275.21 271.71 834.68

Table 72: Optimized objective values (i.e., latency in milliseconds) obtained by various methods for the
task of learning accelerators specialized to MobileNetEdgeTPU under chip area budget constraint 18 mm2

reusing the already learned model by our method for MobileNetEdgeTPU (shown in Table 30). Lower
latency/runtime is better. From left to right: our method, our method without negative sampling (“PRIME -
Opt”) and without utilizing infeasible points (“PRIME -Infeasible”), standard surrogate (“Standard”), online
Bayesian optimization (“Bayes Opt”), online evolutionary algorithm (“Evolutionary”) and the best design
in the training dataset. Note that PRIME improves over the best in the dataset by 12%, outperforms the
best online optimization method by 4.4%. The best accelerator configuration is highlighted in bold.

PRIME Online Optimization
Applications All -Opt -Infeasible Standard Bayes Opt Evolutionary D (Best in Training)

MobileNetEdgeTPU, Area  18 mm2 315.15 433.81 351.22 470.09 331.05 329.13 354.13

configurations (better than the best point in the dataset by 3.29⇥ – last column) while
outperforming the online optimization methods by 7%.

h.1.3 Learned Surrogate Model Reuse under Different Design Constraint

We also test the robustness of our approach in handling variable constraints at test-time
such as different chip area budget. We evaluate the learned conservative surrogate trained
via PRIME under a reduced value of the area threshold, a, in Equation 10.3.1. To do so,
we utilize a variant of rejection sampling – we take the learned model trained for a default
area constraint a = 29 mm2 and then reject all optimized accelerator configurations which
do not satisfy a reduces area constraint: Area(x)  a0 = 18 mm2. Table 72 summarizes
the results for this scenario for the MobileNetEdgeTPU [121] application under the new
area constraint (a = 18 mm2). A method that produces diverse designs which are
both high-performing and are spread across diverse values of the area constraint are
expected to perform better. As shown in Table 72, PRIME provides better accelerator than
the best online optimization from scratch with the new constraint value by 4.4%, even
when PRIME does not train its conservative surrogate with this unseen test-time design
constraint. Note that, when the design constraint changes, online methods generally
need to restart the optimization process from scratch and undergo costly queries to the
simulator. This would impose additional overhead in terms of total simulation time
(§ Figure 14 and Figure 15). However, the results in Table 72 shows that our learned
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Table 73: Per application latency for the best accelerator design suggested by PRIME and the Evolutionary
method according to Table 31 for multi-task accelerator design (nine applications and area constraint
100 mm2). PRIME outperforms the Evolutionary method by 1.35⇥.

Latency (ms)
Applications PRIME Evolutionary (Online) Improvement of PRIME over Evolutionary

MobileNetEdgeTPU 288.38 319.98 1.10⇥
MobileNetV2 216.27 255.95 1.18⇥
MobileNetV3 487.46 573.57 1.17⇥
M4 400.88 406.28 1.01⇥
M5 248.18 239.18 0.96⇥
M6 164.98 148.83 0.90⇥
U-Net 1268.73 908.86 0.71⇥
t-RNN Dec 191.83 862.14 5.13⇥
t-RNN Enc 185.41 952.44 4.49⇥
Average (Latency in ms) 383.57 518.58 1.35⇥

Table 74: Optimized accelerator configurations (See Table 28) found by PRIME and the Evolutionary
method for multi-task accelerator design (nine applications and area constraint 100 mm2). Last row shows
the accelerator area in mm2. PRIME reduces the overall chip area usage by 1.97⇥. The difference in the
accelerator configurations are shaded in gray.

Parameter Value
Accelerator Parameter PRIME Evolutionary (Online)

# of PEs-X 4 4
# of PEs-Y 6 8
# of Cores 64 128
# of Compute Lanes 4 6
PE Memory 2,097,152 1,048,576
Core Memory 131,072 131,072
Instruction Memory 32,768 8,192
Parameter Memory 4,096 4,096
Activation Memory 512 2,048
DRAM Bandwidth (Gbps) 30 30

Chip Area (mm2) 46.78 92.05

surrogate model can be reused under different test-time design constraint eliminating
additional queries to the simulator.

h.1.4 Analysis of Designed Accelerators

In this section, we overview the best accelerator configurations that PRIME and the
Evolutionary method identified for multi-task accelerator design (See Table 31), when
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the number of target applications are nine and the area constraint is set to 100 mm2. The
average latencies of the best accelerators found by PRIME and the Evolutionary method
across nine target applications are 383.57 ms and 518.58 ms, respectively. In this setting,
our method outperforms the best online method by 1.35⇥. Table 73 shows per application
latencies for the accelerator suggested by our method and the Evolutionary method.
The last column shows the latency improvement of PRIME over the Evolutionary
method. Interestingly, while the latency of the accelerator found by our method for
MobileNetEdgeTPU, MobileNetV2, MobileNetV3, M4, t-RNN Dec, and t-RNN Enc are
better, the accelerator identified by the online method yields lower latency in M5, M6,
and U-Net.

To better understand the trade-off in design of each accelerator designed by our method
and the Evolutionary method, we present all the accelerator parameters (See Table 28)
in Table 74. The accelerator parameters that are different between each of the designed
accelerator are shaded in gray (e.g. # of PEs-Y, # of Cores, # of Compute Lanes, PE
Memory, Instruction Memory, and Activation Memory). Last row of Table 74 depicts the
overall chip area usage in mm2. PRIME not only outperforms the Evolutionary algorithm
in reducing the average latency across the set of target applications, but also reduces the
overall chip area usage by 1.97⇥. Studying the identified accelerator configuration, we
observe that PRIME trade-offs compute ( 64 cores vs. 128 cores ) for larger PE memory
size ( 2,097,152 vs. 1,048,576 ). These results show that PRIME favors PE memory size
to accommodate for the larger memory requirements in t-RNN Dec and t-RNN Enc
(See Table 29 Model Parameters) where large gains lie. Favoring larger on-chip memory
comes at the expense of lower compute power in the accelerator. This reduction in the
accelerator’s compute power leads to higher latency for the models with large number
of compute operations, namely M5, M6, and U-Net (See last row in Table 29). M4 is an
interesting case where both compute power and on-chip memory is favored by the model
(6.23 MB model parameters and 3,471,920,128 number of compute operations). This is
the reason that the latency of this model on both accelerators, designed by our method
and the Evolutionary method, are comparable (400.88 ms in PRIME vs. 406.28 ms in the
online method).

h.1.5 Comparison with Online Methods in Zero-Shot Setting

We evaluated the Evolutionary (online) method under two protocols for the last two rows
of Table 32: first, we picked the best designs (top-performing 256 designs similar to the
PRIME setting in Section 10.4) found by the evolutionary algorithm on the training set
of applications and evaluated them on the target applications and second, we let the
evolutionary algorithm continue simulator-driven optimization on the target applications.
The latter is unfair, in that the online approach is allowed access to querying more designs
in the simulator. Nevertheless, we found that in either configuration, the evolutionary
approach performed worse than PRIME which does not access training data from the
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Table 75: Optimized objective values (i.e., latency in milliseconds) obtained by various methods for the task
of learning accelerators specialized to a given application. Lower latency/runtime is better. From left to
right: our method, our method without negative sampling (“PRIME -Opt”) and without utilizing infeasible
points (“PRIME -Infeasible”), standard surrogate (“Standard”), online Bayesian optimization (“Bayes Opt”),
online evolutionary algorithm (“Evolutionary”) and the best design in the training dataset. Note that, in all
the applications PRIME improves over the best in the dataset, outperforms online optimization methods in
7/9 applications and the complete version of PRIME generally performs best. The best accelerator designs
are in bold.

PRIME Online Optimization
Application All -Opt -Infeasible Standard Bayes Opt Evolutionary D (Best in Training)

MobileNetEdge 298.50 435.40 322.20 411.12 319.00 320.28 354.13
MobileNetV2 207.43 281.01 214.71 374.52 240.56 238.58 410.83
MobileNetV3 454.30 489.45 483.96 575.75 534.15 501.27 938.41
M4 370.45 478.32 432.78 1139.76 396.36 383.58 779.98
M5 208.21 319.61 246.80 307.57 201.59 198.86 449.38
M6 131.46 197.70 162.12 180.24 121.83 120.49 369.85
U-Net 740.27 740.27 765.59 763.10 872.23 791.64 1333.18
t-RNN Dec 132.88 172.06 135.47 136.20 771.11 770.93 890.22
t-RNN Enc 130.67 134.84 137.28 150.21 865.07 865.07 584.70

target application domain. For the area constraint 29 mm2 and 100 mm2, the Evolutionary
algorithm reduces the latency from 1127.64! 820.11 and 861.69! 552.64, respectively,
although still worse than PRIME . In the second experiment in which we unfairly allow the
evolutionary algorithm to continue optimizing on the target application, the Evolutionary
algorithm suggests worse designs than Table 32 (e.g. 29 mm2: 1127.64 ! 1181.66 and
100 mm2: 861.69! 861.66).

h.1.6 PRIME Ablation Study

Here we ablate over variants of our method: (1) Opt was not used for negative sampling
(“PRIME -Opt” in Table 75) (2) infeasible points were not used (“PRIME -Infeasible” in
Table 75). As shown in Table 75, the variants of our method generally performs worse
compared to the case when both negative sampling and infeasible data points are utilized
in training the surrogate model.

h.1.7 Comparison with Human-Engineered Accelerators

In this section, we compare the optimized accelerator design found by PRIME that is
targeted towards single applications to the manually optimized EdgeTPU design [361,
121]. EdgeTPU accelerators are primarily optimized towards running applications in
image classification, particularly, MobileNetV2, MobileNetV3 and MobileNetEdgeTPU.
The goal of this comparison is to present the potential benefit of PRIME for a dedicated
application when compared to human designs. For this comparison, we utilize an area
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Table 76: The comparison between the accelerator designs suggested by PRIME and EdgeTPU [361, 121]
for single model specialization. On average (last row), with single-model specialization our method reduces
the latency by 2.69⇥ while minimizes the chip area usage by 1.50⇥.

Latency (milliseconds) Chip Area (mm2)
Application PRIME EdgeTPU Improvement PRIME EdgeTPU Improvement

MobileNetEdgeTPU 294.34 523.48 1.78⇥ 18.03 27 1.50⇥
MobileNetV2 208.72 408.24 1.96⇥ 17.11 27 1.58⇥
MobileNetV3 459.59 831.80 1.81⇥ 11.86 27 2.28⇥
M4 370.45 675.53 1.82⇥ 19.12 27 1.41⇥
M5 208.42 377.32 1.81⇥ 22.84 27 1.18⇥
M6 132.98 234.88 1.77⇥ 16.93 27 1.59⇥
U-Net 1465.70 2409.73 1.64⇥ 25.27 27 1.07⇥
t-RNN Dec 132.43 1384.44 10.45⇥ 14.82 27 1.82⇥
t-RNN Enc 130.45 1545.07 11.84⇥ 19.87 27 1.36⇥
Average Improvement — — 2.69⇥ — — 1.50⇥

constraint of 27 mm2 and a DRAM bandwidth of 25 Gbps, to match the specifications of
the EdgeTPU accelerator.

Table 76 shows the summary of results in two sections, namely “Latency” and “Chip
Area”. The first and second under each section show the results for PRIME and EdgeTPU,
respectively. The final column for each section shows the improvement of the design
suggested by PRIME over EdgeTPU. On average (as shown in the last row), PRIME finds
accelerator designs that are 2.69⇥ (up to 11.84⇥ in t-RNN Enc) better than EdgeTPU in
terms of latency. Our method achieves this improvement while, on average, reducing
the chip area usage by 1.50⇥ (up to 2.28⇥ in MobileNetV3). Even on the MobileNet
image-classification domains, we attain an average improvement of 1.85⇥.

h.1.8 Zero-Shot Results on All Applications

In this section, we present the results of zero-shot optimization from Table 32 on all
the nine applications we study in the paper (i.e., test applications = all nine models:
MobileNet (EdgeTPU, V2, V3), M6, M5, M4, t-RNN (Enc and Dec), and U-Net). We
investigate this for two sets of training applications and two different area budgets. As
shown in Table 77, we find that PRIME does perform well compared to the online
evolutionary method.
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Table 77: Optimized objective values (i.e., latency in milliseconds) under zero-shot setting when the test
applications include all the nine evaluated models (e.g. MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN
Dec, t-RNN Enc, U-Net). Lower latency is better. From left to right: the applications used to train the
surrogate model in PRIME the target applications for which the accelerator is optimized for, the area
constraint of the accelerator, PRIME ’s (best, median) latency, and best online method’s (best, median)
latency. The best accelerator configurations identified is highlighted in bold.

Train Applications Area PRIME Evolutionary (Online)

MobileNet (EdgeTPU,V2,V3), M4, M5, M6, t-RNN Enc 29 mm2 (426.65, 427.94) (586.55, 586.55)
MobileNet (EdgeTPU,V2,V3), M4, M5, M6, t-RNN Enc 100 mm2 (365.95, 366.64) (518.58, 519.37)
Geomean of PRIME ’s Improvement — (1.0⇥, 1.0⇥) (1.40⇥, 1.39⇥)

h.1.9 Different Train and Validation Splits

In the main paper, we used the worst 80% of the feasible points in the training dataset
for training and used the remaining 20% of the points for cross-validation using our
strategy based on Kendall’s rank correlation. In this section, we explore some alternative
training-validation split strategies to see how they impact the results. To do so, we
consider two alternative strategies: (1) training on 95% of the worst designs, validation
on top 5% of the designs, and (2) training on the top 80% of the designs and validation
on the worst 20% of the designs. We apply these strategies to MobileNetEdgeTPU, M6
and t-RNN Enc models from Table 30, and present a comparative evaluation in Table 78
below.

Results. As shown in Table 78, we find that cross-validating using the best 5% of the
points in the dataset led to a reduced latency (298.50! 273.30) on MobileNetEdgeTPU,
and retained the same performance on M6. However, it increased the latency on t-
RNN Enc (130.67 ! 137.45). This indicates at the possibility that while top 5% of the
datapoints can provide a better signal for cross-validation in some cases, this might also
hurt performance if the size of the 5% dataset becomes extremely small (as in the case
of t-RNN Enc, the total dataset size is much smaller than either MobileNetEdgeTPU or
M6).

The strategy of cross-validating using the worst 20% of the points hurt performance on M6
and t-RNN Enc, which is perhaps as expected, since the worst 20% of the points may not
be indicative of the best points found during optimization. However, while it improves
performance on the MobileNetEdgeTPU application compared to the split used in the
main paper but it is still worse than using the top 5% of the points for validation.
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Table 78: Performance of PRIME (as measured by median latency of the accelerator found across five runs)
under various train-test splits on three applications studied in Table 30.

Applications Best 5% Validation Best 20% Validation (Table 30) Worst 20% Validation

MobileNetEdgeTPU 273.30 298.50 286.53
M6 131.46 131.46 142.68
t-RNN Enc 137.45 130.67 135.71

h.2 details of prime

In this section, we provide training details of our method PRIME including hyperparam-
eters and compute requirements and details of different tasks.

h.2.1 Hyperparameter and Training Details

Algorithm 9 outlines our overall system for accelerator design. PRIME parameterizes the
function fq(x) as a deep neural network as shown in Figure 13. The architecture of fq(x)

first embeds the discrete-valued accelerator configuration x into a continuous-valued
640-dimensional embedding via two layers of a self-attention transformer [330]. Rather
than directly converting this 640-dimensional embedding into a scalar output via a simple
feed-forward network, which we found a bit unstable to train with Equation 10.4.2,
possibly due to the presence of competing objectives for a comparison), we pass the
640-dimensional embedding into M different networks that map it to M different scalar
predictions ( f i

q(x))M
i=1. Finally, akin to attention [330] and mixture of experts [294],

we train an additional head to predict weights (wi)
M
i=1 � 0 of a linear combination of

the predictions at different heads that would be equal to the final prediction: fq(x) =

ÂK
i=1 wi f i

q(x). Such an architecture allows the model to use different predictions f i
q(x),

depending upon the input, which allows for more stable training. To train fq(x), we
utilize the Adam [169] optimizer. Equation 10.4.2 utilizes a procedure Opt that maximizes
the learned function approximately. We utilize the same technique as Section 10.4
(“optimizing the learned surrogate”) to obtain these negative samples. We periodically
refresh Opt, once in every 20K gradient steps on fq(x) over training.

The hyperparameters for training the conservative surrogate in Equations 10.4.2 and its
contextual version are as follows:

• Architecture of fq(x). As indicated in Figure 13, our architecture takes in list of
categorical (one-hot) values of different accelerator parameters (listed in Table 28),
converts each parameter into 64-dimensional embedding, thus obtaining a 10⇥ 64
sized matrix for each accelerator, and then runs two layers of self-attention [330] on
it. The resulting 10⇥ 64 output is flattened to a vector in R640 and fed into M = 7
different prediction networks that give rise to f 1

q (x), · · · , f M
q (x), and an additional

attention 2-layer feed-forward network (layer sizes = [256, 256]) that determines
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Algorithm 9 Training the conservative surrogate in PRIME

1: Initialize a neural model fq0(x) and a set M = 23 of negative particles to be updated
by the firefly optimizer {x�1 (0), · · · , x�i (0), x�M(0)} to random configurations from the
design space.

2: for iteration i = 0, 1, 2, 3, . . . until convergence do
3: for firefly update step t = 0, 1, . . . , 4 . Inner loop do
4: Update the M fireflies according to the firefly update rule in Equation H.2.2,
5: towards maximizing fqi(x) according to: . Negative mining
6: xi(ti + 1) = xi(ti) + b(xi(ti)� xj(ti)) + heti
7: end for
8: Find the best firefly found in these steps to be used as the negative sample:
9: x�i = arg min{ fqi(x�1 (ti)), · · · , fqi(x�M(ti))} . Find negative sample

10: Run one gradient step on qi using Equation 10.4.2 with x�i as the negative sample
11: if i%p == 0, (p = 20000), then: . Periodically reinitialize the optimizer
12: Reinitialize firefly particles {x�1 (0), · · · , x�i (0), x�M(0)} to random designs.
13: end for
14: Return the final model fq⇤(x)

weights w1, · · · , wM, such that wi � 0 and ÂM
i=1 wi = 1. Finally the output is simply

fq(x) = Âi wi f i
q(x).

• Optimizer/learning rate for training fq(x). Adam, 1e� 4, default b1 = 0.9, b2 =

0.999.

• Validation set split. Top 20% high scoring points in the training dataset are used to
provide a validation set for deciding coefficients a, b and the checkpoint to evaluate.

• Ranges of a, b. We trained several fq(x) models with a 2 [0.0, 0.01, 0.1, 0.5, 1.0, 5.0]

and b 2 [0.0, 0.01, 5.0, 0.1, 1.0]. Then we selected the best values of a and b based on
the highest Kendall’s ranking correlation on the validation set. Kendall’s ranking
correlation between two sets of objective values: S = {y1, y2, · · · , yN} corresponding
to ground truth latency values on the validation set and S0 = {y01, y02, · · · , y0N}
corresponding to the predicted latency values on the validation set is given by t
equal to:

t =
ÂN,N

i,j I[(yi � yj)(y0i � y0j) > 0]�ÂN,N
i,j I[(yi � yj)(y0i � y0j)  0]

N · (N � 1)
. (H.2.1)

• Clipping fq(x) during training. Equation 10.4.2 increases the value of the learned
function fq(x) at x = x0 2 Dinfeasible and x� ⇠ Opt( fq). We found that with the
small dataset, these linear objectives can run into numerical instability, and produce
+• predictions. To avoid this, we clip the predicted function value both above and
below by ±10000.0, where the valid range of ground-truth values is O(1000).
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• Negative sampling with Opt(·). As discussed in Section 10.4, we utilize the firefly
optimizer for both the negative sampling step and the final optimization of the
learned conservative surrogate. When used during negative sampling, we refresh
(i.e., reinitialize) the firefly parameters after every p = 20000 gradient steps of
training the conservative surrogate, and run t = 5 steps of firefly optimization per
gradient step taken on the conservative surrogate.

• Details of firefly: The initial population of fireflies depends on the number of
accelerator configurations (C) following the formula 10 + b(C1.2 + C)⇥ 0.5e. In our
setting with ten accelerator parameters (See Table 28), the initial population of
fireflies is 23. We use the same hyperparameters: g = 1.0, b0 = 1.0, for the optimizer
in all the experiments and never modify it. The update to a particular optimization
particle (i.e., a firefly) xi, at the t-th step of optimization is given by:

xi(t + 1) = xi(t) + b(xi(t)� xj(t)) + i.i.d. Gaussian noise, (H.2.2)

where xj(t), j 6= i is a different firefly that achieves a better objective value compared
to xi and the function b is given by: b(r) = b0e�gr2 .

• Training set details: The training dataset sizes for the studied applications are
shown in Table 79. To recap, to generate the dataset, we first randomly sampled
accelerators from the deign space, and evaluated them for the target application,
and constituted the training set from the worst-performing feasible accelerators for
the given application. Since different applications admit different feasibility criteria
(differences in compilation, hardware realization, and etc.), the dataset sizes for each
application are different, as the number of feasible points is different. Note however
that as mentioned in the main text, these datasets all contain  8000 feasible points.

Discussion on data quality: In the cases of t-RNN Dec, t-RNN Enc, and U-Net,
we find that the number of feasible points is much smaller compared to other
applications, and we suspect this is because our random sampling procedure does
not find enough feasible points. This is a limitation of our data collection strategy
and we intentionally chose this naı̈ve strategy to keep data collection simple. Other
techniques for improving data collection and making sure that the data does not
consist of only infeasible points includes strategies such as utilizing logged data
from past runs of online evolutionary methods, mixed with some data collected via
random sampling to improve coverage of the design space.

h.2.1.1 Details of Firefly Used for Our Online Evolutionary Method

In this section, we discuss some details for firefly optimization used in the online evolu-
tionary method.

Stopping criterion: We stopped the firefly optimization when the latency of the best
design found did not improve over the previous 1000 iterations, but we also made sure
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Table 79: Dataset sizes for various applications that we study in this paper. Observe that all of the datasets
are smaller than 8000.

Application Dataset size

MobileNetEdgeTPU 7697
MobileNetV2 7620
MobileNetV3 5687
M4 3763
M5 5735
M6 7529
U-Net 557
t-RNN Dec 1211
t-RNN Enc 1240

Table 80: Comparing the latency of the accelerators designed by the evolutionary approach for variable
number of simulator access budgets (8k and 32k). Even with 4⇥ as much allowed simulator interaction,
online methods are unable to perform that well in our case.

Evolutionary (Online)
Application Area PRIME 8k data points 32k data points

MobileNetEdgeTPU 29 mm2 298.50 320.28 311.35
t-RNN Dec 29 mm2 132.88 770.93 770.63
t-RNN Enc 29 mm2 130.67 865.07 865.07
Geomean of PRIME ’s Improvement — (1.0⇥, 1.0⇥) 3.45⇥ 3.42⇥

to run firefly optimization for at least 8000 iterations, to make sure that both the online
and offline methods match in terms of the data budget. We also provide the convergence
curves for firefly optimization on various single-application problems from Table 30 in
Figure 53.

What happens if we run firefly optimization for longer? We also experimented with
running the evolutionary methods for longer (i.e., 32k simulator accesses compared to
8k), to check if this improves the performance of the evolutionary approach. As shown
in Table 80, we find that while this procedure does improve performance in some cases,
the performance does not improve much beyond 8k steps. This indicates that there is a
possibility that online methods can perform better than PRIME if they are run for many
more optimization iterations against the simulator, but they may not be as data-efficient
as PRIME .

Hyperparameter tuning for firefly: Since the online optimization algorithms we run have
access to querying the simulator over the course of training, we can simply utilize the value
of the latest proposed design as a way to perform early stopping and hyperparameter
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tuning. A naı̈ve way to perform hyperparameter tuning for such evolutionary methods
is to run the algorithm for multiple rounds with multiple hyperparameters, however
this is compute and time intensive. Therefore, we adopted a dynamic hyperparameter
tuning strategy. Our implementation of the firefly optimizer tunes hyperparameters by
scoring a set of hyperparameters based on its best performance over a sliding window of
T data points. This allows us to adapt to the best hyperparameters on the fly, within the
course of optimization, effectively balancing the number of runs that need to be run in
the simulator and hyperparameter tuning. This dynamic hyperparameter tuning strategy
requires some initial coverage of the hyperparameter space before hyperparameter tuning
begins, and therefore, this tuning begins only after 750 datapoints. After this initial phase,
every T = 50 iterations, the parameters g and b0 are updated via an evolutionary scoring
strategy towards their best value.

Discussion of t-RNN Enc and t-RNN Dec. Finally, we discuss the results of the evolu-
tionary approach on the t-RNN Enc and t-RNN Dec tasks, for which the convergence
plots are shown in Figures 53h and 53i. Observe that the best solution found by this
optimization procedure converges quite quickly in this case (with about 1000 iterations)
and the evolutionary method, despite the dynamic hyperparameter tuning is unable to
find a better solution. We hypothesize that this is because the performance of a local opti-
mization method may suffer heavily due to the poor landscape of the objective function,
and it may get stuck if it continuously observes only infeasible points over the course of
optimization.

h.2.1.2 Exact Hyperparameters Found By Our Cross-Validation Strategy

In this section, we present the exact hyperparameters found by our cross-validation
strategy discussed in Section 10.4. To recap, our offline cross-validation strategy finds the
early stopping checkpoint and selects the values of a and b in Equation 10.4.2 that attain
the highest rank correlation on a held-out validation set consisting of top 20% of the
dataset feasible samples. The values of a, b and checkpoint selected for the experiments
in Table 3, Table 4, Table 5 and 6 are shown in Table 81.

h.2.2 Details of Architecting Accelerators for Multiple Applications Simultaneously

Now we will provide details of the tasks from Table 31 where the goal is to architect
an accelerator which is jointly optimized for multiple application models. For such
tasks, we augment data-points for each model with the context vector ck from Table 29
that summarizes certain parameters for each application. For entries in this context
vector that have extremely high magnitudes (e.g., model parameters and number of
compute operations), we normalize the values by the sum of values across the applications
considered to only encode the relative scale, and not the absolute value which is not
required. To better visualize the number of feasible accelerators for joint optimization,
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Table 81: Hyperparameters a, b and checkpoint index (measured in terms of gradient steps on the learned
conservative model) for PRIME found by our offline cross-validation strategy discussed in Section 10.4,
that is based on the Kendall’s rank correlation on the validation set (note that no simulator queries were
used to tune hyperparameters). In the case of the multi-task and zero-shot scenarios, when training on
more than one application, the batch size used for training PRIME increases to N-fold, where N is the
number of applications in the training set, therefore we likely find that even a few gradient steps are good
enough.

Table Application a b Checkpoint Index

Table 30 MobileNetEdgeTPU 0.01 5.0 80000
Table 30 MobileNetV2 5.0 5.0 120000
Table 30 MobileNetV3 5.0 0.01 80000
Table 30 M4 0.1 0.0 80000
Table 30 M5 5.0 1.0 80000
Table 30 M6 1.0 1.0 60000
Table 30 U-Net 0.0 1.0 100000
Table 30 t-RNN Dec 1.0 0.0 60000
Table 30 t-RNN Enc 0.0 0.1 60000

Table 31 MobileNet (EdgeTPU, V2, V3) 5.0 0.01 60000
Table 31 MobileNet (V2, V3), M5, M6 0.0 5.0 30000
Table 31 MobileNet (EdgeTPU, V2, V3), M4, M5, M6 0.5 0.0 100000
Table 31 MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN Enc (Area 29.0) 0.0 1.0 20000
Table 31 MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN Enc (Area 100.0) 0.0 0.0 20000
Table 31 MobileNet (EdgeTPU, V2, V3), M4, M5, M6, U-Net, t-RNN (Enc, Dec) (Area 29.0) 0.01 0.01 10000
Table 31 MobileNet (EdgeTPU, V2, V3), M4, M5, M6, U-Net, t-RNN (Enc, Dec) (Area 100.0) 0.01 0.1 20000

Table 32 Train (Zero-Shot): MobileNet (EdgeTPU, V3) 5.0 0.01 60000
Table 32 Train (Zero-Shot): MobileNet (V2, V3), M5, M6 0.0 5.0 30000
Table 32 Train (Zero-Shot): MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN Enc (Area 29.0) 0.0 1.0 20000
Table 32 Train (Zero-Shot): MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN Enc (Area 100.0) 0.1 5.0 20000

Table 33 MobileNetV2 (NVDLA) 0.0 1.0 40000
Table 33 MobileNetV2 (ShinDianNao) 0.0 0.0 40000
Table 33 ResNet 50 (NVDLA) 0.01 0.0 40000
Table 33 ResNet 50 (ShinDianNao) 0.0 0.0 75000
Table 33 Transformer (NVDLA) 0.01 1.0 200000
Table 33 Transformer (ShinDianNao) 0.0 0.1 100000

Figure 54 show the tSNE plot (raw architecture configurations are used as input) of
high-performing accelerator configurations. The blue-colored dots are the jointly feasible
accelerators in the combined dataset, and note that these data points are no more than
20-30 in total. The highlighted red star presents the best design suggested by PRIME with
average latency of 334.70 (Table 31). This indicates that this contextual, multi-application
problem poses a challenge for data-driven methods: these methods need to produce
optimized designs even though very few accelerators are jointly feasible in the combined
dataset. Despite this limitation, PRIME successfully finds more efficient accelerator
configurations that attain low latency values on each of the applications jointly, as shown
in Table 31.
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h.2.3 Dataset Sensitivity to Accelerator Parameters

We visualize the sensitivity of the objective function (e.g. latency) with respect to the
changes in certain accelerator parameters, such as memory size (Table 28), in Figure 56b,
illustrating this sensitivity. As shown in the Figure, the latency objective that we seek to
optimize can exhibit high sensitivity to small variations in the architecture parameters,
making the optimization landscape particularly ill-behaved. Thus, a small change in one
of the discrete parameters, can induce a large change in the optimization objective. This
characteristic of the dataset further makes the optimization task challenging.

h.3 overview of accelerators and search space

This section briefly discuss the additional accelerators (similar to [164]) that we evaluate
in this work, namely NVDLA [250] and ShiDianNao [67], and their corresponding search
spaces.

NVDLA: Nvidia Deep Learning Accelerator NVDLA [249] is an open architecture in-
ference accelerator designed and maintained by Nvidia. In compared to other inference
accelerators, NVDLA is a weight stationary accelerator. That is, it retains the model pa-
rameters on each processing elements and parallelizes the computations across input and
output channels. NVDLA-style dataflow accelerators generally yield better performance
for the computations of layers at the later processing stages. This is because these layers
generally have larger model parameters that could benefit from less data movement
associated to the model parameters.

ShiDianNao: Vision Accelerator Figure 55 shows the high-level schematic of ShiDianNao
accelerator [67]. ShiDianNao-style dataflow accelerator is an output-stationary accelerator.
That is, it keeps the partial results inside each PE and instead move the model parameters
and input channel data. As such, in compared to NVDLA-style accelerators, ShiDianNao
provides better performance for the computations of the layers with large output channels
(generally first few layers of a model).

Search space of dataflow accelerators. We follow a similar methodology as [164] to
evaluate additional hardware accelerators, discussed in the previous paragraphs. We use
MAESTRO [190], an analytical cost model, that supports the performance modeling of
various dataflow accelerators. In this joint accelerator design and dataflow optimization
problem, the total number of parameters to be optimized is up to 106—the tuple of (# of
PEs, Buffers) per per model layer—with each parameter taking one of 12 discrete values.
This makes the hardware search space consist of ⇡ 2.5⇥10114 accelerator configurations.
We also note that while the method proposed in [164] treats the accelerator design problem
as a sequential decision making problem, and uses reinforcement learning techniques,
PRIME simply designs the whole accelerator in a single step, treating it as a model-based
optimization problem.
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Table 82: The evaluated applications, their model parameter size, number of compute operations, and
normalized compute-to-memory ratio.

Name Model Param # of Compute Ops. Normalized Compute-to-Memory Ratio

MobileNetEdgeTPU 3.87 MB 1,989,811,168 1.38e-1
MobileNetV2 3.31 MB 609,353,376 4.96e-2
MobileNetV3 5.20 MB 449,219,600 2.33e-2
M4 6.23 MB 3,471,920,128 1.5e-1
M5 2.16 MB 939,752,960 1.17e-1
M6 0.41 MB 228,146,848 1.5e-1
U-Net 3.69 MB 13,707,214,848 1.0
t-RNN Dec 19 MB 40,116,224 5.68e-4
t-RNN Enc 21.62 MB 45,621,248 5.68e-4

Table 83: Additional ablation study under zero-shot setting when the test applications include all the nine
evaluated models (e.g. MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN Dec, t-RNN Enc, U-Net). Lower
latency is better. From left to right: the applications used to train the surrogate model in PRIME , the area
constraint of the accelerator, PRIME ’s (best, median) latency.

Train Applications Area PRIME (best, median)

(1) MobileNet (V2, V3), M5, M6 29 mm2 (426.65, 427.35)
(2) MobileNet (V2, V3), M5, t-RNN Enc 29 mm2 (461.79, 464.87)
(3) MobileNet (EdgeTPU, V2, V3), M4, M5, M6, t-RNN Enc 29 mm2 (426.65, 427.94)

h.4 subset of applications for good zero-shot performance

In this section, we present the results of an ablation study with the goal to identify a
subset of applications such that training on data from only these applications yields good
zero-shot performance across all the nine applications studied in this work. Since we
cannot train PRIME for every subset of applications because the space of subsets of all
applications is exponentially large, we utilized some heuristics in devising the subset of
applications we would train on, with the goal to make interesting observations that allow
us to devise rough guidelines for performing application selection.

Our heuristic for devising subsets of applications: Building on the intuition that
applications with very different compute to memory ratios (shown in Table 82) may
require different accelerator designs – for example, if our goal is to run a compute-
intensive application, we likely need an accelerator design with more compute units –
we study two subsets of training applications: (1) MobileNetV2, MobileNetV3, M6, M5,
and (2) MobileNetV2, MobilenetV3, M5, t-RNN Enc. Note that, these two combinations
only differ in whether some RNN application was used in training or not. As shown in
Table 82, the t-RNN applications admit a very different compute to memory ratio, for
instance, while this ratio is 5.68e� 4 for t-RNN Enc and t-RNN Dec, it is much different
⇠ 0.01� 0.2 for other models MobileNetEdgeTPU, MobileNetV2, MobileNetV3, M5, and
M6. This means that likely t-RNN Enc and Dec will require different kinds of accelerators
for good performance compared to the other applications.
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Results: We present the performance of zero-shot evaluating the designed accelerator
obtained by training on combinations (1) and (2), and also the accelerator obtained by
training on (3) seven applications from Table 32 in Table 83 as reference. We make some
key takeaways from the results:

• The performance of both configuration (1) and training with seven applications ((3),
last row of Table 83) are similar.

• In case (2), when the training applications consist of four applications in which
one application is t-RNN Enc, with drastically different compute to memory ratio
(Table 82), the performance on an average across all applications becomes slightly
worse (compare the performance in (2) vs (3)).

Conclusion and guidance on selecting good applications: The above results indicate
that only a few applications (e.g., four applications in case (1)) can be enough for good
performance on all nine applications. While this set may not be not minimal, it is certainly
a much smaller set compared to the nine applications considered. Adding an RNN
application in case (2) increases latency in compared to case (1), because t-RNN Enc likely
admits a very different optimal accelerator compared to the other applications due to
a very different compute/memory ratio, which in turn skews the generalization of the
surrogate learned by PRIME when trained only on this limited set of four applications.
However, when seven applications are provided in case (3), even when the set of training
applications includes t-RNN, its contribution on the PRIME surrogate is reduced since
many other compute intensive applications are also provided in the training set and the
resulting accelerator performs well.

Practitioner guidance: The primary practitioner guidance we can conclude here is that the
models used for training must be representative of the overall distribution of the target models that
we want to zero-shot generalize to. Since a number of our applications are compute intensive,
we were able to simply utilize set (1) to attain good performance on all the applications.
On the other hand, in case (2), when the t-RNN Enc application was over-represented –
while seven of nine applications we considered were primarily compute intensive, one
out of four applications we used for training in case (2) were memory intensive – this
hurt performance on the overall set. Therefore, we believe that ensuring that the training
subset of applications is adequately aligned with the overall set of applications in terms of
compute/memory ratio statistic is imperative for favorable zero-shot performance.

For a practitioner deciding between zero-shot generalization and additional data
collection, it may make sense to test if the target application admits a similar value of
the compute to memory ratio as an already existing application. If it does, then the
practitioner might be able to utilize the zero-shot generalization, as is indicated with
the good performance of case (1), whereas if the compute/memory ratio is heavily
different from any seen application, zero-shot generalization to the target application
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may be worse. Finally, making sure that the training applications adequately reflect the
compute/memory ratio statistic for the overall target set is important.
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(a) MobileNetEdgeTPU (b) MobileNetV2 (c) MobileNetV3

(d) M4 (e) M5 (f) M6

(g) U-Net (h) t-RNN Dec (i) t-RNN Enc

Figure 53: Optimization behavior of Firefly optimizer (Online Evolutionary). Observe that the optimization
procedure converges and plateaus very quickly (at least 1000 iterations in advance) and hence we stop at
8000 iterations. In the case of t-RNN Enc and t-RNN Dec, we find that the evolutionary algorithm performs
poorly and we suspect this is because it saturates quite quickly to a suboptimal solution and is unable to
escape. This is also evident from Figures 53h and 53i, where we observe that online optimization plateaus
the fastest for these RNN applications.
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Figure 54: tSNE plot of the joint dataset and randomly sampled infeasible data points. The blue points
show the accelerator configurations that are jointly feasible for all the applications. The highlighted point
with red star shows the best design proposed by PRIME Ṫhe rest of the points show the infeasible points.
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Figure 55: Overview of ShiDianNao dataflow accelerator. This dataflow accelerators exhibits an output-
stationary dataflow where it keeps the partial results stationary within each processing elements (PEs).
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(a) (b)

Figure 56: The (a) histogram of infeasible (orange bar with large score values)/feasible (blue bars) data
points and (b) the sensitivity of runtime to the size of core memory for the MobileNetEdgeTPU [140]
dataset.

Figure 57: tSNE plot of the infeasible and feasible hardware accelerator designs. Note that feasible designs
(shown in blue) are embedded in a sea of infeasible designs (shown in red), which makes this a challenging
domain for optimization methods.
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Figure 58: To verify if the overestimation hypothesis–that optimizing an accelerator against a naı̈ve standard
surrogate model is likely to find optimizers that appear promising under the learned model, but do not
actually attain low-latency values–in our domain, we plot a calibration plot of the top accelerator designs
found by optimizing a naı̈vely trained standard surrogate model. In the scatter plot, we represent each
accelerator as a point with its x-coordinate equal to the actual latency obtained by running this accelerator
design in the simulator and the y-coordinate equal to the predicted latency under the learned surrogate.
Note that for a large chunk of designs, the predicted latency is much smaller than their actual latency (i.e.,
these designs lie beneath the y = x line in the plot above). This means that optimizing designs under a
naı̈ve surrogate model is prone to finding designs that appear overly promising (i.e., attain lower predicted
latency values), but are not actually promising. This confirms the presence of the overestimation hypothesis
on our problem domain.
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Figure 59: Plot showing the calibration plot of the predicted (y-axis) and actual latencies (x-axis) of
accelerators found by PRIME . Compared to Figure 58, observe that all the acclerator configurations lie
above y = x, meaning that PRIME predicts a higher latency (y-axis) compared to the actual latency. This
means that PRIME does not think that accelerators that attain high-latency values under the simulator, are
actually good. We also provide a zoomed-in version of the plot on the right, which shows that there are
accelerators do have meaningfully distinct latency predictions under PRIME . Observe in the zoomed-in plot
that the designs that attain small predicted latencies also perform relatively better under the actual latency
compared to the designs that attain larger predicted latency of ⇠ 14000-16000 under the PRIME surrogate.
Optimizing against PRIME is still effective because optimization just needs relative correctness of values,
not absolutely correct latency predictions.
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