Reinforcement Learning from Static Datasets:
Algorithms, Analysis, and Applications

Aviral Kumar

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-223
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-223.html

August 11, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Reinforcement Learning from Static Datasets:
Algorithms, Analysis, and Applications

By

Aviral Kumar

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in

Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Sergey Levine, Chair
Professor Jiantao Jiao
Professor Emma Brunskill
Professor Jennifer Listgarten

Summer 2023

Reinforcement Learning from Static Datasets:
Algorithms, Analysis, and Applications

Copyright © 2023

by

Aviral Kumar

Abstract

Reinforcement Learning from Static Datasets:
Algorithms, Analysis, and Applications

by
Aviral Kumar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

Reinforcement learning (RL) provides a formalism for learning-based control. By attempt-
ing to learn behavioral policies that can optimize a user-specified reward function, RL
methods have been able to acquire novel decision-making strategies that can outperform
the best humans even with highly complex dynamics and even when the space of all
possible outcomes is huge (e.g., robotic manipulation, chip floorplanning). Yet RL has
had a limited applicability compared to standard machine learning (ML) in real-world
scenarios. Why? The central issue with RL is that it relies crucially on running large
amounts of trial-and-error active data collection for learning policies. Unfortunately
though, in the real world, active data collection is generally very expensive (e.g., running
wet lab experiments for drug design), and/or dangerous (e.g., robots operating around
humans), and accurate simulators are hard to build. Overall, this means that while RL
carries the potential to broadly unlock ML in real-world decision-making problems, we
are unable to realize this potential via current RL techniques.

To realize this potential of RL, in this dissertation, we develop an alternate paradigm that
aims to utilizes static datasets of experience for learning policies. Such a “dataset-driven”
paradigm broadens the applicability of RL to a variety of decision-making problems where
historical datasets already exist or can be collected via domain-specific strategies. It also
brings the scalability and reliability benefits that modern supervised and unsupervised
ML methods enjoy into RL. That said, instantiating this paradigm is challenging as it
requires reconciling the static nature of learning from a dataset with the traditionally
active nature of RL, which results in challenges of distributional shift, generalization, and
optimization. After theoretically and empirically understanding these challenges, we
develop algorithmic ideas for addressing thee challenges and discuss several extensions
to convert these ideas into practical methods that can train modern high-capacity neural

1

network function approximators on large and diverse datasets. Finally, we show how the
techniques can enable us to pre-train generalist policies for real robots and video games
and enable fast and efficient hardware accelerator design.

CONTENTS

Contents i
1 Introduction 1
1 Problem Statement and Challenges
2 Problem Statement and Preliminaries 5
2.1 Reinforcement Learning Preliminaries 5
2.2 Problem Statement: Offline Reinforcement Learning 11
3 Challenges in Offline Reinforcement Learning 13
3.1 Introduction 13
3.2 Experimental Setup 14
3.3 Impact of Distributional Shift 15
3.3.1 What Are the Best Data Distributions Without Sampling Error? 16
3.4 Impact of Sampling Error and Overfitting 16
3.4.1 Quantifying Overfitting 17
3.4.2 Does Compensating for Overfitting Improve Performance? 18
11 Algorithmic Approaches to Offline RL
4 Restricting Action Selection For Policy Learning 20
4.1 Introduction 20
4.2 Out-of-Distribution Actions in Q-Learning 21
4.3 Formal Analysis and Distribution-Constrained Backups 22
4.4 Bootstrapping Error Accumulation Reduction (BEAR) 25
4.5 Experimental Evaluation of BEAR 27
4.5.1 Performance on Medium-Quality Data 28
4.5.2 Performance on Random and Optimal Datasets 28
4.6 Related Work 29
4.7 Discussion and Limitations 30
5 Conservative Value Function Estimation 32

5.1 Model-Free Conservative Value Function Estimation 32
5.1.1 The Conservative Value Estimation Paradigm 33
5.1.2 Conservative Off-Policy Evaluation 33
5.1.3 Conservative Q-Learning for Offline Policy Optimization 35
5.1.4 Robust / Safe Policy Improvement Guarantees 38
5.1.5 Practical Conservative Q-Learning Algorithm 39
5.1.6 Related Work 40
5.1.7 Experimental Evaluation of CQL 41

5.2 Model-Based Conservative Value Function Estimation 44
5.2.1 Additional Notation for Model-Based RL 46
5.2.2 Analysis: Uncertainty Calibration in Offline Model-Based RL 46
5.2.3 Conservative Offline Model-Based Policy Optimization 47
5.2.4 Theoretical Analysis of COMBO 49
5.2.5 Experimental Evaluation of COMBO 52

5.3 Discussion and Limitations 55

1 Extensions of Offline RL
6 Offline RL With Large Models 58
6.1 Introduction 58
6.2 DR3: Explicit Regularization For Value-Based Offline RL 60
6.2.1 Feature Co-Adaptation And Implicit Regularization 60
6.2.2 Theoretically Characterizing Implicit Regularization in TD-Learning 62
6.2.3 DR3: Explicit Regularization for Deep TD-Learning 67
6.2.4 Experimental Evaluation of DR3 68
6.3 Scaled Q-Learning: Large-Scale Study of Offline Q-Learning 71
6.3.1 Our Approach for Scaling Offline RL 72
6.3.2 Experimental Evaluation 75
6.3.3 Related Work 81
6.4 Discussion and Limitations 81
7 Offline RL with Multi-Task and Unlabeled Data 83
7.1 Introduction 83
7.2 Data Sharing for Multi-Task Offline Reinforcement Learning 85
7.2.1 Related Work 85
7.2.2 Notation and Problem Statement 86
7.2.3 When Does Data Sharing Actually Help in Offline Multi-Task RL? 87
7.2.4 CDS: Reducing Distributional Shift in Multi-Task Data Sharing 9o
7.2.5 Experimental Evaluation of Conservative Data Sharing 93
7.3 Multi-Task Offline RL With Unlabeled Data 97
7.3.1 Related Work 97
7.3.2 How To Use Unlabeled Data in Offline RL 98
7.3.3 Experimental Evaluation of UDS and CDS+UDS 104
7.3.4 Empirical Analysis of UDS and CDS+UDS 107
7.4 Discussion and Limitations 109
8 Online RL Fine-Tuning of Offline RL 110
8.1 Introduction 110
8.2 Related Work 112
8.3 Problem Statement and Additional Notation 113
8.4 When Can Offline RL Initializations Enable Fast Online Fine-Tuning? 113
8.4.1 Empirical Analysis 113
8.4.2 Conditions on the Offline Initialization that Enable Fast Fine-Tuning 114

ii

v

10

g N w p <

8.5 Cal-QL: Calibrated Q-Learning 115

8.6 Theoretical Intuition of Cal-QL 116

8.7 Experimental Evaluation 118
8.7.1 Empirical Results 120
8.7.2 Cal-QL With High Update-to-Data (UTD) Ratio 120
8.7.3 Understanding the Behavior of Cal-QL 121

8.8 Discussion and Limitations 123

Applications of Offline RL

Real-Robot Pre-Training 125

9.1 Introduction 125

9.2 Problem Statement and Definitions 126

9.3 Learning Policies for New Tasks from Offline RL Pre-training 127
9.3.1 The Components of PTR 127
9.3.2 Important Design Choices and Practical Considerations 129

9.4 Experimental Evaluation of PTR and Takeaways for Robotic RL 132
9.4.1 Setup and Comparisons 133
9.4.2 Experimental Results 134
9.4.3 Comparison to non-RL Visual Pre-Training Methods 137
9.4.4 Understanding the Benefits of PTR over BC 137
9.4.5 Effective Use of High-Capacity Neural Networks 139
9.4.6 Autonomous Online Fine-Tuning 139

9.5 Related Work 141

9.6 Discussion and Limitations 142

Hardware Accelerator Design 143

10.1 Introduction 143

10.2 Background on Hardware Accelerators 145

10.3 Problem Statement, Training Data and Evaluation Protocol = 146

10.4 PRIME : Architecting Accelerators via Conservative Models 149
10.4.1 Learning Conservative Models Using Logged Offline Data 149
10.4.2 Incorporating Design Constraints by Training on Infeasible Points
10.4.3 Optimizing Multiple Applications and Zero-Shot Design 151

10.5 Related Work 152

10.6 Experimental Evaluation 153

10.7 Discussion 157

Conclusion 159

Appendices

Appendix: Challenges in Offline Reinforcement Learning 195
Appendix: Restricting Action Selection For Policy Learning 197
Appendix: Conservative Value Function Estimation 207
Appendix: Offline RL With Large Models 251

iii

T O M

Appendix
Appendix
Appendix
Appendix

: Offline RL With Multi-Task and Unlabeled Data
: Online RL Fine-Tuning of Offline RL

: Real-Robot Pre-Training 334
: Hardware Accelerator Design

351

318

287

iv

Acknowledgments

First and foremost, I am tremendously grateful to my adviser, Sergey Levine, for his
continuous support and guidance throughout my Ph.D. Besides heavily influencing my
technical growth and a lot of ideas in this dissertation, Sergey provided me with the
freedom to work on problems of my interest, allowing me to pursue research that I
wanted, and has taught me the art of asking the right questions, the importance of which
I now realize. I am also grateful to Sergey for teaching me how to think about the
big-picture questions. He is the smartest researcher I have met so far and I believe I could
not have had a better advisor.

I am very grateful to George Tucker, who has been a long-term collaborator of mine since
my second paper in my Ph.D. Most notably, I have learned from him the importance of
critical examination of research ideas. George’s critical questions have always made me
and my work better and I really appreciate him for this. Thank you to my qualifying
examination and dissertation committee members Jiantao Jiao, Emma Brunskill, and
Jennifer Listgarten for your support, guidance, and fruitful discussions. I am also
extremely grateful to Geoffrey Hinton for taking a chance on me when I did not know
much about machine learning and hosting me as an intern at Google Brain Toronto in
2017, and for introducing me to reinforcement learning, which is the area I studied for
my Ph.D. I am also very thankful to Pieter Abbeel for his advice on research and career
at multiple points during my Ph.D., most notably during the first year of my PhD.

I have had the great fortune to collaborate with a number of faculty members, students,
post-doctoral scholars, and researchers throughout my Ph.D. In the initial years of my
Ph.D., I started exploring the topic of offline RL with Justin Fu. At the time, I also worked
with Abhishek Gupta on several topics aimed at understanding temporal-difference
learning. These were both immense learning experiences for me. I also learned a lot
pertaining to the implementation of a variety of RL algorithms while working with Jason
Peng. I am grateful to have had the opportunity to work with these senior graduate
student collaborators in the initial years of my Ph.D.

Since the middle of my Ph.D., I have collaborated with and learned a lot from Chelsea
Finn, Tianhe Yu, Rishabh Agarwal, Young Geng, Anikait Singh, Amir Yazdanbakhsh,
Abhishek Gupta, Dibya Ghosh, Yi Su, Avi Singh, Frederik Ebert, Colin Li, and Quan
Vuong. In particular, I would like to thank Rishabh Agarwal and Tianhe Yu, with whom I
explored several new research topics that established a line of work covered in this thesis.
I would like to thank Rishabh Agarwal for teaching me how to systematically organize
experiments and compile results, a skill that will be very valuable for my future. I would
like to thank Young Geng for answering countless queries about Jax, being my go-to
person to ask for implementation advice, and asking hard questions on projects I pursued
and my research ideas that enabled me to grow as a researcher. I am also grateful

v

to all other collaborators I have worked with: Yi Su, Mitsuhiko Nakamoto, Saurabh
Kumar, Simon Zhai, Anurag Ajay, Aurick Zhou, Joey Hong, Tengyu Ma, Karol Hausman,
Yevgen Chebotar, Zhang-Wei Hong, Manan Tomar, Katie Kang, Kuba Grudzien, Nick
Rhinehart, Rafael Rafailov, Amy Lu, Ofir Nachum, Aravind Rajeswaran, Homer Walke,
Florian Shkurti, Animesh Garg, Nilah Ionidis, Grace Gu, Zico Kolter, Priya Donti, Melrose
Roderick, Jad Rahme, Milad Hashemi, Will Chen, Yifei Zhou, and Pulkit Agarwal. I
would also especially like to thank all undergraduate and master’s students I worked
with: Brandon Trabucco, Anikait Singh, Kevin Li, Yanlai Yang, Sathvik Kolli, Homanga
Bharadhwaj, Jonathan Yang, Albert Yu, Stephen Tian, Han Qi, Ria Doshi, Chet Bhateja,
Derek Guo, and Jason Wang for their hard work and dedication to the projects. These
students are now leaders in emerging areas of Al and I eagerly look forward to their
future successes.

During my Ph.D., I was a part-time student researcher at Google Brain from 2020 to
2023. I was hosted by George Tucker and Amir Yazdanbakhsh, two excellent mentors,
who gave me the freedom to work on any topic I wanted and collaborate with anyone. I
started to appreciate the importance of looking at applied problems and learned a lot
about systems working with Amir. Amir would never turn my silly questions time and
always make time to discuss with me, which I am very thankful about. I am grateful to
all researchers and engineers I have talked to and collaborated with at Google during
this time. Many times a lot of these discussions and collaborations never made it into a
publication or release, but gave me a lot of perspective about real-world problems. Thank
you, Sandra Faust, Dale Schuurmans, Minmin Chen, Marc Bellemare, Yevgen Chebotar,
Karol Hausman, Hossein Mobahi, Kevin Swersky, Mohammad Norouzi, Yundi Qian,
John Sipple, Sherry Yang, Yingjie Miao, Jordi Orbay, and Ofir Nachum, for sharing your
perspectives and thoughtful conversations.

I would also like to thank the members of the RAIL lab and the broader BAIR community
for creating a supportive and friendly atmosphere in the lab. Thanks to the open layout of
the lab, I enjoyed engaging in several conversations on BWWS8, that would start randomly
over lunch, coffee, or near the desk area. Special thanks to Young Geng and Michael
Janner, graduate students in RAIL in my cohort: our high-level philosophical discussions
about research trends over coffee and food have greatly shaped my thoughts. The middle
years of my Ph.D. were during the height of the COVID pandemic and hence, a time when
we were all remote, but I greatly enjoyed hanging out with and learned a lot from the
members of RAIL before and after. Thank you, Michael Janner, Abhishek, Frederik, Justin,
Michael Chang, Aurick, Kelvin, Nick, Rowan, Natasha, Dhruv, Manan, Dibya, Colin,
Laura, Katie, Marwa, Amy Lu, Mitsuhiko, Simon, Oleh, Karl, Homer, Kuba, Kevin, Kuan,
Amy Zhang, Natasha, Seohong, Will, Kyle, Kristian, Vivek, Philip Ball, Glen, Anusha,
Coline, Greg, Dinesh, Vitchyr, JD, Jason, Sid, Avi, Ashvin, Alex Lee, Erin, Marvin, Joey,
Charlie, Tuomas, Kate, Jedrzej, and others, for making my Ph.D. years exciting, both

vi

research and otherwise. I especially cherish my experiences with hiking “buddies” in
RAIL including Manan, Colin, and Young, who over a period of 2 months made me
realize how beautiful Berkeley hills are and transformed me from someone who would
not at all want to walk up Hearst to someone who loves to go up to the peaks in Berkeley
hills everyday. I also am grateful to all dinner conversations I have had with Young, Oleh,
Karl, and Mitsuhiko, all of which have only made me a better person. Also big thanks
to lab members nearby: Young Geng, Marwa Abdulhai, Laura Smith, Rowan McAllister,
Amy Zhang, Abhishek Gupta, and Marvin Zhang, for making it fun to be in the lab.

My experience during graduate school has been made ever so enjoyable by my amazing
group of friends outside work, both in Berkeley and elsewhere. Thank you, Karan,
Siddharth, Shubham, Anurag, and Manan, for being extraordinary roommates and for
supporting and helping me selflessly whenever I asked. Thank you, Saurabh, Siddhant,
Sumith, Amrith, Utkarsha, Moraldeep, and Upadhi, for providing me fundae at various
points during my PhD years. I want to thank Jean Nguyen, Angie Abbatecola, and the
rest of the BAIR admin team for their help in making my Ph.D. experience smooth and
enjoyable. My time at Berkeley would also not have been the same without the coffee
from Blue Bottle and tea from Asha’s, the deadline food from the Noodle, Bangkok Thai,
Mad Seoul, Bongo Burger, and Urban Turbann, as well as 6 am paper deadline breakfasts
from Noah’s Bagels and McDonald’s.

Finally, I would like to thank my parents, Mukesh Saxena and Sadhna Sinha: thank you
for giving me the freedom to pursue my dreams, keeping me sane in times of stress, and
never letting me feel alone from the other side of the planet.

vii

INTRODUCTION

Reinforcement learning (RL) provides a mathematical formalism for learning-based
control. Specifically, reinforcement learning techniques can automatically discover and
acquire near-optimal behavior (often referred to as policies), which optimizes a user-
specified reward function. The reward function defines what a policy should do, and an
RL algorithm automatically determines how to do it. Devising RL algorithms has been an
active area of research ever since the development of dynamic programming algorithms
for optimal control in the 1960s [25]. Over the last decade, the introduction of effective
high-capacity deep neural network function approximators into RL, along with effective
algorithms for training them, has allowed RL methods to attain excellent results along a
wide range of domains [321, 202, 232, 203, 298, 160], often producing policies that match
or outperform the best known control strategy for the downstream task.

Despite these promising results, reinforcement learning methods have had limited appli-
cability in a number of other decision-making and control problems in the real world.
This is because traditional reinforcement learning techniques that have been developed for
a few decades now typically subscribe to an online learning paradigm: these techniques
involve iteratively collecting experience by actively interacting with an environment in
a trial-and-error fashion, and then using that experience to improve the policy [312]. In
many settings, this sort of online interaction is impractical, either because data collec-
tion is expensive (e.g., in robotics, drug design, education, power grid management, or
healthcare) and dangerous (e.g., in autonomous driving, power grid management, or
healthcare). One option to circumvent the need for active interaction is to instead build
simulators for the target problem and then run RL in simulation for discovering the
optimal behaviors. Even though this approach is practically feasible, it tends to perform
poorly when accurate simulators are hard to build (e.g., modelling the interaction between
a drug and a pathogen or that between humans and robots).

14

An alternate approach that we take in this dissertation is to build a “dataset-driven
paradigm for RL that can incorporate static, previously-collected datasets for making
effective decisions. Since the success of supervised and unsupervised machine learning

methods across a range of practically relevant problems over the past decade can in large
part be attributed to the development of scalable dataset-driven learning methods, which
continue to reliably improve as they are trained with more and higher-quality data, one
would also expect that such a dataset-driven paradigm for RL will enjoy these appealing
properties. Put in other words, such a dataset-driven paradigm for RL bears the promise
of translating progress in collecting datasets and advances in deep learning, directly to
generalizable and powerful decision-making engines.

That said, instantiating this paradigm presents a
challenge as it requires reconciling the passive na- fg {:Q
ture of a static dataset with traditional RL tech- Real-world
niques and objective functions, which critically rely
on actively collecting experience for improving the Previously
underlying policy. While prior work shows that the collected datasets
class of off-policy RL algorithms, which we briefly 7 <o ool
review in Chapter 2, can suffice for this fully offline

. ; Step 2: Deploy !
setting as well [192, 43, 234, 235], these classical tech- jearned policy in
niques often require restrictive assumptions that do ~ thereal-world

observation
______________/

not hold with high-dimensional control problems v —r——

L .] . ep 1: Train policy to
and realistic datasets. As we will discuss in Chap- ‘.___synthesize actions
ter 3, in realistic decision-making problems, the
inability to actively collect experience often mani- Figure 1: The offline RL paradigm.

fests in the form of several challenges pertaining to distributional shift, generalization,
and optimization. These challenges are perhaps the most evident in the fully “offline”
setting, where we are not allowed access to any form of active interaction. Function
approximators such as deep neural networks generally exacerbate these issues, since func-
tion approximation increases the vulnerability of the learning algorithm to pathologies
from distributional shift and incorrect generalization.

Concretely, in this dissertation we provide a theoretical and empirical foundation to
the problem of utilizing static datasets in reinforcement learning, especially relevant
within the context of realistic datasets. We perform empirical studies to isolate the various
challenges when learning policies via RL in a fully offline manner, followed by developing
algorithmic techniques to address these challenges. Then, we develop techniques to scale
up these algorithmic ideas to leverage the generalization benefits offered by highly-
expressive function approximators, especially when provided with diverse and multi-task
datasets from a rich set of RL problems. We also develop techniques that enable rapid
fine-tuning of an offline initialization learned from the static dataset, with a limited
amount of active interaction. Finally, we demonstrate the efficacy of these algorithmic
ideas in the context of two real-world decision-making problems in hardware accelerator
design (i.e., chip design) and real robot control.

Organization. After a brief disscussion of notation and the problem statement in Chap-
ter 2 (based on Levine et al. [204]), we make the following contributions:

In Chapter 3, we empirically analyze the behavior of traditional RL algorithms in
the offline learning setting and isolate the challenges of distributional shift and
overfitting. This work appeared previously as Fu et al. [90].

In Chapter 4, we develop an initial algorithm to circumvent the challenge of dis-
tributional shift by restricting the learned policy to lie within the support of the
data-collection policy. This work was published previously as Kumar et al. [179].

In Chapter 5, we develop an approach for learning policies from static data, that
we call conservative value estimation. Conservative estimation of value functions
dispenses with the need to restrict the learned policy to within the support of
the data-collection policy, enabling bigger performance improvements, while still
addressing the challenge of distributional shift. We also instantiate our approach
into concrete model-free and model-based algorithms. This chapter consists of
content from work previously published as Kumar et al. [181], Yu et al. [367].

In Chapter 6, we develop explicit regularization techniques that enable the approach
from Chapter 5 to utilize high-capacity neural network architectures. This chapter
is based on works previously published as Kumar et al. [183, 185].

In Chapter 7, we develop automatic data sharing and reward labeling strategies
that boost the performance of the approach from Chapter 5, when learning from
multi-task and unlabeled datasets. This chapter consists of work that was published
as Yu et al. [366, 368].

In Chapter 8, we develop a method that enables sample-efficient online fine-tuning
of offline policy initializations learned by the approach in Chapter 5. This chapter is
primarily based on work that previously appears as Nakamoto et al. [244].

In Chapter 9, we present an application of the techniques from Chapters 5, 6, and
8 to the problem of incorporating broad prior data for boosting generalization of
robotic skill learning, with only a handful of task-specific rollouts. This chapter
consists of work that was previously published as Kumar et al. [188].

In Chapter 10, we present an application of the techniques from Chapter 5 to the
problem of hardware accelerator design. This chapter consists of work that was
published as Kumar et al. [177].

We conclude with a discussion of current approaches and promising future directions in
developing reinforcement learning algorithms that can incorporate static datasets.

Part 1

PROBLEM STATEMENT AND CHALLENGES

PROBLEM STATEMENT AND PRELIMINARIES

In this chapter, we will discuss our notion and background definition, followed by a
discussion of the problem statement of offline reinforcement learning (RL).

2.1 REINFORCEMENT LEARNING PRELIMINARIES

In this section, we will define reinforcement learning (RL) concepts, following standard
definitions [314]. RL addresses the problem of learning to control a dynamical system.
The dynamical system is fully defined by a fully-observed or partially-observed Markov
decision process (MDP). We only consider problems where the dnynamical system is
defined by a fully-observed MDP in this dissertation.

Definition 2.1.1 (Markov decision process). A Markov decision process is defined as a tuple
M= (S,A,T,dyr,y), where S is a set of states s € S, which may be either discrete or
continuous (i.e., multi-dimensional vectors), A is a set of actions a € A, which similarly can be
discrete or continuous, T defines a conditional probability distribution of the form T (s;41]|s¢, a¢)
that describes the dynamics of the system,* dy defines the initial state distribution dy(sg), r :
S x A — R defines a reward function, and v € (0,1] is a scalar discount factor.

The final goal in a reinforcement learning problem is to learn a policy, which defines
a distribution over actions conditioned on states, 7t(a;|s;). From these definitions, we
can derive the trajectory distribution. The trajectory is a sequence of states and actions

We will sometimes use time subscripts (i.e., s;+1 follows s;), and sometimes “prime” notation (i.e., s’ is the
state that follows s). Explicit time subscripts can help clarify the notation in finite-horizon settings, while
“prime” notation is simpler in infinite-horizon settings where absolute time step indices are less meaningful.

of length H, given by T = (sg, ay, ..., sy, ag), where H may be infinite. The trajectory
distribution p, for a given MDP M and policy 7 is given by

H
pr(T) = do(so) l_g t(at|st)T(St41]st, ar).
t=

The reinforcement learning objective, (77), can then be written as an expectation under
this trajectory distribution:

H
J(7) = Ecep(o) [ZO ’th’(St,ﬂt)] . (2.1.1)
t=

When H is infinite, it is typical to consider the expected reward under the -discounted
stationary distribution of the learned policy. Formally, we can refer to the marginals of
the trajectory distribution p (7). We will use d™(s) to refer to the overall state visitation
frequency, averaged over the time steps, and d[*(s¢) to refer to the state visitation frequency
at time step t. Alternatively, we can consider the undiscounted expected reward under
the stationary distribution of the Markov chain (s, a;) defined by 7w (a¢|s¢) T (s+1]s¢, a¢),
under ergodicity assumptions. For discussions in this dissertation, we will consider the
discounted marginal setting for simplicity.

Next, we will briefly summarize some types reinforcement learning algorithms and
present definitions. At a high level, all standard reinforcement learning algorithms follow
the same basic learning loop: the agent interacts with the MDP M by using some sort
of behavior policy, which may or may not match 7t(a|s), by observing the current state sy,
selecting an action a;, and then observing the resulting next state s; ;1 and reward value
rt = r(st, a¢). This may repeat for multiple steps, and the agent then uses the observed
transitions (s¢, at, s;41,7¢) to update its policy. This update might also utilize previously
observed transitions. We will use D = {(s}, al, s! 1 1)} to denote the set of transitions
that are available for the agent to use for updating the policy (“learning”), which may
consist of either all transitions seen so far, or some subset thereof.

Dynamic Programming with Function Approximators

One way to optimize the reinforcmeent learning objective relies on the following observa-
tion: if we can accurately estimate a state or state-action value function, then it is easy to
then recover a near-optimal policy. A value function provides an estimate of the expected
cumulative reward that will be obtained by following some policy 7t(a¢|s;) when starting
from a given state s¢, in the case of the state-value function V7 (s;), or when starting from

a state-action tuple (s¢, a;), in the case of the state-action value function Q™ (s¢, a;). We
can define these value functions as:

Vn<st) Twpﬂ (t|st) [2 Y St/ at]

=t

H
Qn(sf/ at) =]Erwpﬂ('r\st,at) [2 'Yt 7t7‘(5t/ at)] .

=t

From this, we can derive recursive definitions for value functions:

Vn(st) = IEutNT[(ﬂt‘Sf) [Qn(st’ at)]
Q" (st,ar) = r(st, at) + VEs,, ~T(siafspar) [V (s141)] -

We can combine these two equations to express the Q™ (s;, a;) in terms of Q" (s¢41, At41):

Q" (st,ar) = r(st, at) + YEs,, ~T(s,u1lspar)ara~m(aplsenn) Q7 (St1,ae41)] . (2.1.2)

We can also express these in terms of the Bellman operator for the policy 7r, which we
denote B”. For example, Equation (2.1.2) can be written as Q™ = B"Q”, where Q™ (with
abuse of notation) now denotes the Q-function Q™ represented as a vector of length
|S| x | A]. Before moving on to deriving learning algorithms based on these definitions,
we briefly discuss some properties of the Bellman operator. This Bellman operator has a
unique fixed point that corresponds to the true Q-function for the policy 7(al|s), which
can be obtained by repeating the iteration Q[,; = B™Qy, and it can be shown that
limy_,o, QF = Q”, which obeys Equation (2.1.2) [314]. The proof for this follows from the
observation that B” is a contraction in the o norm [191].

Based on these definitions, we can derive two commonly used algorithms based on
dynamic programming: Q-learning and actor-critic methods. To derive Q-learning,
we express the policy implicitly in terms of Q as 7t(a|s;) = 6(a;r = argmax Q(s, a;)),
and only learn the Q-function Q(s;, a;). By substituting this (implicit) policy into the
above dynamic programming equation, we obtain the following condition on the optimal
Q-function:

Q (st,ar) =r(s ar) + Vs, 15,y)si,0) |MAXQ7(St41, 4141) | - (2.1.3)

We can again express this as Q = B*Q in vector notation, where B* now refers to the
Bellman optimality operator. Note however that this operator is not linear, due to the
maximization on the right-hand side in Equation (2.1.3). To turn this equation into
a learning algorithm, we can minimize the difference between the left-hand side and
right-hand side of this equation with respect to the parameters of a parametric Q-function

7

estimator with parameters ¢, Qg (st, a;). There are a number of variants of this Q-learning
procedure, including variants that fully minimize the difference between the left-hand side
and right-hand side of the above equation at each iteration, commonly referred to as fitted
Q-iteration [72, 277], and variants that take a single gradient step, such as the original
Q-learning method [337]. The commonly used variant in deep reinforcement learning is a
kind of hybrid of these two methods, employing a replay buffer [212] and taking gradient
steps on the Bellman error objective concurrently with data collection [232]. We write out
a general recipe for Q-learning methods in Algorithm 1.

Algorithm 1 Generic Q-learning (includes FQI and DQN as special cases)

1: initialize ¢y

2: initialize 71o(a|s) = el (a) + (1 — €)d(a = argmax, Qy, (s, a)) > Use e-greedy
exploration

3: initialize replay buffer D = @ as a ring buffer of fixed size

4: initialize s ~ d(s)

5. for iteration k € [0,...,K] do

6: forstepse|[0,.. S —1] do

7: a ~ m(als) > sample action from exploration policy

8: s’ ~ p(s'ls, a) > sample next state from MDP

9: D« DU{(s,a,s,r(s,a))} > append to buffer, purging old data if buffer too
big

10: end for

11: 4)k,0 — ¢x

12 for gradient step g € [0,...,G — 1] do

13: sample batch batch C D > B = {(si,ai,s,,1)}

2

14: estimate error (B, i) = X (Q‘Pkg' (r; + ymax, Qg, (s,))>

15: update parameters: ¢k 1 < Pk — &V E(B, Prg)

16: end for

17: Prr1 < Pr G > update parameters

18: end for

Classic Q-learning can be derived as the limiting case where the buffer size is 1, and
we take G = 1 gradient steps and collect S = 1 transition samples per iteration, while
classic fitted Q-iteration runs the inner gradient descent phase to convergence (i.e.,
G = o), and uses a buffer size equal to the number of sampling steps S. Note that
many modern implementations also employ a target network, where the target value
ri + ymaxy Qg, (s, a’) actually uses ¢, where L is a lagged iteration (e.g., the last k
that is a multiple of 1000). Note that these approximations violate the assumptions
under which Q-learning algorithms can be proven to converge. However, recent work
suggests that high-capacity function approximators, which correspond to a very large set

8

Q, generally do tend to make this method convergent in practice, yielding a Q-function
that is close to Q™ [90, 329].

Algorithm 2 Generic off-policy actor-critic

10:
11:

12!
13:
14:
15:
16:

17:
18:

19:
20:

21:
22:
23:
24:

25:
26:

27:

L XN 2 AW N

initialize ¢y
initialize 6,
initialize replay buffer D = @ as a ring buffer of fixed size
initialize s ~ dy(s)
for iteration k € [0,...,K] do
forsteps € [0,...,S —1] do
a ~ 1, (als) > sample action from current policy
s’ ~ p(s'ls, a) > sample next state from MDP
D+ DU{(s,a,s,r(s,a))} >append to buffer, purging old data if buffer too
big
end for
Pro < Px
for gradient step g € [0,...,Gg — 1] do
sample batch batch C D > B = {(si, ai,s,, 1)}
2
estimate error £(B, 9r) = X (Qpyg — (i + 1Bty (1) Qi (5, 0)))
update parameters: ¢y o1 < P o — ocQquk,gS (B, 47k,g)
end for
Pr+1 < Pi,Go > update Q-function parameters
k0 < Ok
for gradient step g € [0,...G; — 1] do
sample batch of states {s;} from D
for each s;, sample a; ~ Tl g (als;) > do not use actions in the buffer!
for each (s;, a;), compute A(s;, a;) = Qg (i, a;) — Eg o (als;) [Qpy.. (i, a)]
Vo) (7o) = 5 Vi, 10g g, (i, a;) A(si, a;)
9k,g+1 — Qk,g + DénVQk,g](T(gk’g)
end for
Ok +1 < 0, > update policy parameters
end for

Actor-Critic Algorithms

Actor-critic algorithms employ both a parameterized policy and a parameterized value
function, and use the value function to provide training signal for the policy. Typically,
the learned value function is used to provide a better estimate of policy performance (or

advantage A(s, a)) in a policy gradient objective. There are a number of different variants
of actor-critic methods, including on-policy variants that directly estimate V7 (s) [171],
and off-policy variants that estimate Q" (s,a) via a parameterized state-action value
function QF (s, a) [125, 124, 134].

We will focus on the latter class of algorithms, since they can be easily extended to the
offline setting. The basic design of such an algorithm is a straightforward combination
of the ideas in dynamic programming and policy gradients. Unlike Q-learning, which
directly attempts to learn the optimal Q-function, actor-critic methods aim to learn the
Q-function corresponding to the current parameterized policy 79(a|s), which must obey
the equation

Qn(sf/ at) = T’(St, ut) + ’ylEstHNT(st_H|st,ut),ut+1~7rg(at+1\st+1) [Qﬂ(SH_l, uH—l)] :

As before, this equation can be expressed in vector form in terms of the Bellman operator
for the policy, Q™ = BQ", where Q™ denotes the Q-function Q™ represented as a vector
of length |S| x | A|. We can now instantiate a complete algorithm based on this idea,
shown in Algorithm 2.

For more details, we refer the reader to standard textbooks and prior works [312, 171].
Actor-critic algorithms are closely related with another class of methods that frequently
arises in dynamic programming, called policy iteration (PI) [191]. Policy iteration consists
of two phases: policy evaluation and policy improvement. The policy evaluation phase
computes the Q-function for the current policy 77, Q”, by solving for the fixed point
such that Q™ = B™Q”. This can be done via gradient updates, analogously to line 15
in Algorithm 2. The next policy iterate is then computed in the policy improvement
phase, by choosing the action that greedily maximizes the Q-value at each state, such that
Tkr1(als) = 6(a = argmax, Q™ (s, a)), or by using a gradient based update procedure
as is employed in Algorithm 2 on line 24. In the absence of function approximation
(e.g., with tabular representations) policy iteration produces a monotonically improving
sequence of policies, and converges to the optimal policy. Policy iteration can be obtained
as a special case of the generic actor-critic algorithm in Algorithm 2 when we set Gg = oo
and G, = oo, when the buffer D consists of each and every transition of the MDP.

Model-Based Reinforcement Learning

Model-based reinforcement learning is a general term that refers to a broad class of
methods that utilize explicit estimates of the transition or dynamics function T(s;41]|s¢, a¢),
parameterized by a parameter vector ¢, which we will denote Ty (s¢1|s, a;). There is
no single recipe for a model-based reinforcement learning method. Some commonly
used model-based reinforcement learning algorithms learn only the dynamics model
Ty(st+1/st, a¢), and then utilize it for planning at test time, often by means of model-
predictive control (MPC) [318] with various trajectory optimization methods [239, 49].

10

Other model-based reinforcement learning methods utilize a learned policy 7g(a¢|s;) in
addition to the dynamics model, and employ backpropagation through time to optimize
the policy with respect to the expected reward objective [60]. Yet another set of algorithms
employ the model to generate “synthetic” samples to augment the sample set available to
model-free reinforcement learning methods. The classic Dyna algorithm uses this recipe
in combination with Q-learning and one-step predictions via the model from previously
seen states [313], while a variety of recently proposed algorithms employ synthetic model-
based rollouts with policy gradients [257, 156] and actor-critic algorithms [148].

Comparison of different types of RL methods. One might wonder how these different
classes of reinforcement learning methods compare with each other. In practice, value-
based RL methods that use pproximate dynamic programming (Q-learning and actor-
critic) train Q-functions to match non-stationary target values, resulting in an optimization
problem different from standard supervised learning. This results in error propagation, a
phenomenon that we discuss theoretically and empirically in Chapter 4 when learning
value functions. On the other hand, training a model of the transition dynamics is a
supervised learning problem, which can be tackled using well-studied tools in empirical
risk minimization theoretically and benefits directly from advances in supervised deep
learning in practice. That said, trajectory rollouts in model-based RL algorithms diverge
from rollouts in the ground-truth model over longer horizons, once errors in fitting the
model compound together over steps of a trajectory. This is further exacerbated when the
policy aims to optimize the cumulative reward under the learned model, as we elaborate
theoretically and empirically in Chapter 5. From a theoretical standpoint, value-based RL
methods based on approximate dynamic programming require stronger assumptions of
completeness in order to learn a policy effectively, although model-based RL methods do
not require this sort of an assumption (see Sun et al. [310] for a detailed discussion of
when model-based RL methods can perform better).

2.2 PROBLEM STATEMENT: OFFLINE REINFORCEMENT LEARNING

The offline reinforcement learning problem can be defined as a dataset-driven formulation
of the RL problem. The end goal is still to optimize the objective in Equation (2.1.1).
However, the agent no longer has the ability to interact with the environment and
collect additional transitions using the behavior policy. Instead, the learning algorithm
is provided with a static dataset of transitions, D = {(s}, a},s. ;,7})}, and must learn
the best policy it can using this dataset. This formulation more closely resembles the
standard supervised learning problem statement, and we can regard D as the training set
for the policy. In essence, offline reinforcement learning requires the learning algorithm
to derive a sufficient understanding of the dynamical system underlying the MDP M
entirely from a fixed dataset, and then construct a policy 77(a|s) that attains the largest

11

possible cumulative reward when it is actually used to interact with the MDP. We will use
g to denote the distribution over states and actions in D, such that we assume that the
state-action tuples (s, a) € D are sampled according to s ~ d"#(s), and the actions are
sampled according to the behavior policy, such that a ~ 7g(als).

The offline reinforcement learning problem can be approached using algorithms from
many categories of examples discussed above, and in principle any off-policy RL algo-
rithm could be used as an offline RL algorithm. For example, a simple offline RL method
can be obtained simply by using Q-learning without additional online exploration, using
D to pre-populate the data buffer. This corresponds to changing the initialization of D in
Algorithm 1, and setting S = 0. However, as we will discuss in subsequent chapters, not
all such methods are effective in the offline setting.

We will also consider an extension of the offline reinforcement learning problem, where
the goal is to first learn an offline policy initialization, followed by fine-tuning the learned
policy with limited amounts of online, actively-collected data. We will define a bit of
terminology and notation for this problem in Chapter 8, which studies this problem.

12

CHALLENGES IN OFFLINE REINFORCEMENT LEARNING

]
L)

In this chapter, we aim to understand challenges in learning policie from offline data.
To this end, we empirically study the behavior of a class of standard RL methods when
training on a static, offline dataset. In principle, off-policy RL methods should be
able to leverage experience collected from prior policies for sample-efficient learning.
However, as we illustrate in this chapter, in practice, commonly used off-policy RL
methods from Chapter 2 based on Q-learning and actor-critic are incredibly sensitive
to both the dataset distribution and quantity. Building on these insights from our
empirical study, we identify two main challenges in the offline setting: distributional
shift and sampling error. In the subsequent chapters, we develop techniques to handle
distributional shift (Chapters 4, 5) and briefly, sampling error (Chapter 6), progressing
towards reliable and easy-to-use offline RL methods.

3.1 INTRODUCTION

In principle, off-policy reinforcement learning (RL) methods from Chapter 2 provide
an effective way to learn optimal policies from static data: by learning value-functions,
Q-learning and actor-critic algorithms, can learn optimal policies from even sub-optimal
offline data. By attempting to isolate practical problems that hinder the usability of off-
policy RL methods in learning from entirely static data, we wish to highlight challenges
in offline RL. Specifically, we focus on answering the following questions:

(1) What is the effect of distributional shift?

The standard formulation of Q-learning and actor-critic prescribes a learning procedure
that must make accurate counterfactul predictions about on states and actions visited by
the learned policy. In general, the distribution of the learned policy will always be very
different from that of the behavioral policy, and the difference will only be exacerbated
for a correctly functioning algorithm that is able to find a policy close to the optimal

13

policy for the problem. We perform controlled experiments to investigate the amount
of distributional shift and its impact on performance, observing that deviating away
from the distributions of states and actions in the offline dataset can lead to significant
instability over the course of learning.

(2) What is the effect of sampling error?

In general, it is impossible to precisely infer the true underlying dynamical system using
just a finite amount of offline data. This means that akin to standard supervised learning,
off-policy RL algorithms that reuse a static dataset for learning would also overfit to the
training data. To what extent, does this overfitting hurt performance? We experimentally
show that overfitting exists in practice by performing ablation studies on the number
of gradient steps utilized for learning, and by demonstrating that oracle based early
stopping techniques can be used to improve performance of Q-learning algorithms.

3.2 EXPERIMENTAL SETUP

While it is definitely possible to study challenges with off-policy RL methods in offline
RL on common deep RL benchmark tasks (e.g., OpenAl Gym [262] environments), these
tasks do not necessarily provide us with the ability to compute oracle solutions and
isolate challenges individually. Therefore, we perform our study in a “unit-testing”
setup, consisting of gridworld and other tabular environments with varying difficulty
levels, where it is possible to compute oracle solutions and control for different factors
independently.

For our study, we selected eight tabular domains, each with different qualitative attributes,
including: gridworlds of varying sizes and observations, blind Cliffwalk [286], discretized
Pendulum and Mountain Car based on OpenAlI Gym [262], and a sparsely connected
graph. We discuss each domain in detail below:

e Gridworlds. The Gridworld environment is an NxN grid with randomly placed
walls. The reward is proportional to Manhattan distance to a goal state (1 at the goal,
o at the initial position), and there is a 5% chance the agent travels in a different
direction than commanded. We vary two parameters: the size (16 x 16 and 64 x 64),
and the state representations. We use a one-hot representation, an (X, Y) coordinate
tuple (represented as two one-hot vectors), and a random representation, a vector
drawn from N(0,1)N, where N is the width or height of the Gridworld. The
random observation significantly increases the challenge of function approximation,
as significant state aliasing occurs.

o Cliffwalk: Cliffwalk is a toy example from Schaul et al. [286]. It consists of a
sequence of states, where each state has two allowed actions: advance to the next

14

state or return to the initial state. A reward of 1.0 is obtained when the agent reaches
the final state. Observations consist of vectors drawn from A (0,1).

¢ InvertedPendulum and MountainCar: InvertedPendulum and MountainCar are
discretized versions of continuous control tasks found in OpenAl gym [262], and
are based on problems from classical RL literature. In the InvertedPendulum task,
an agent must swing up an pendulum and hold it in its upright position. The state
consists of the angle and angular velocity of the pendulum. Maximum reward is
given when the pendulum is upright. The observation consists of the sin and cos of
the pendulum angle, and the angular velocity. In the MountainCar task, the agent
must push a vehicle up a hill, but the hill is steep enough that the agent must gather
momentum by swinging back and forth within a valley in order to reach the top.
The state consists of the position and velocity of the vehicle.

e SparseGraph: The SparseGraph environment is a 256-state graph with randomly
drawn edges. Each state has two edges, each corresponding to an action. One state
is chosen as the goal state, where the agent receives a reward of one.

In order to provide consistent metrics across domains, we normalize returns and errors
involving Q-functions by the returns of the expert policy 77* on each environment.

3.3 IMPACT OF DISTRIBUTIONAL SHIFT

Off-policy RL methods applied to the offline RL problem would typically attempt to
learn an optimal policy, even though the static dataset may not be generated from an
optimal policy. As a result, one issue that emerges is that of distributional shift: while these
methods train a model of the value-function and the policy only using state-action tuples
from the data, upon deployment, these models will need to make correct predictions
on states and actions sampled from a different distribution of the learned policy. In
general, models trained via machine learning are not robust when the distribution of
inputs changes, indicating that distributional shift can be a challenge for off-policy RL
methods. Is distributional shift a challenge in offline RL?

Indeed, theoretically, the effects of distributional shift have been quantified using the
notion of a concentrability coefficient [235], a constant typically > 1, which provides a
worst-case error bound on the performance of an off-policy RL method due to distribu-
tional shift. To evaluate if this challenge persists empirically as well, we will analyze
Q-learning methods for various choices of data distributions in this section.

A crucial design decision we must make is to consider setups that do not confound
distributional shift with access to limited data. Therefore, for our study, we provide the
underlying algorithm oracle access to all state-action transitions in the MDD, but vary the
distribution over state-action pairs from which these transitions are sampled.

15

3.3.1

We begin by studying the effect of data dis-
tributions when disentangled from sampling
error. We run Q-learning with an ablation over
various Q-function network architectures and
data distributions and report our aggregate re-
sults in Fig. 2. Unif(s, a), Replay(s, a) (using a
replay buffer consisting of data from a mixture
of policies with different degrees of optimal-
ity), and Prioritized(s, a) (weighting induced
by prioritized experience replay [286]) consis-
tently result in the highest returns across all
architectures. On the other hand, relatively
“narrow” data distributions, such as those in-
duced the optimal policy (7t*) or only using a
mixture of a few policies (Replay(10)) results in
poor performance. We believe that these results
favor the uniformity hypothesis: intuitively, the

What Are the Best Data Distributions Without Sampling Error?

o Uniform

o
=3}
vl

o
=3
=]

Replay o Prioritized

Pi

e
~
G

o
S
=

sReplay(10)
«Random

Normalized Returns
o o o
w L=1] o
w (=] (%)

o

n

=3
.
m-l

0.6 0.7 0.8 0.9 1.0
Weight Entropy

Figure 2: Normalized returns plotted against
normalized entropy for different weighting dis-
tributions. All experiments assume access to all
state-action pairs with a 256x256 Q-network. We
see a general trend that high-entropy distribu-
tions lead to greater performance, corroborating
the uniformity hypothesis.

best distributions spread weight across a larger
support of the state-action space, reducing the amount of possible distributional shift. On
the other hand, less-uniform distributions, such as the state-action distribution induced
by the optimal policy, present multiple avenues to deviate away from the offline data
distribution, resulting in larger distributional shift.

To summarize, this indicates that narrow data distributions lead to worse performance
compared to higher-entropy data distributions, indicating that distributional shift can
have a significant impact on the performance of off-policy RL in the offline setting.

3.4 IMPACT OF SAMPLING ERROR AND OVERFITTING

°

Samples
32
64
— 256
=—= 512

So far, we have observed that the performance of off-
policy RL algorithms based on Q-learning can be quite
sensitive to the distribution of the offline data, even
when all the transition tuples in the MDP are provided
to the algorithm, and only the weighting over these
samples is varied. In this section, we aim to study a
distinct question: we investigate the performance of off-
policy Q-learning when the offline dataset is of a finite
size and may not contain all transitions in the MDP. To
address any confounders from distributional shift, we

e o b
kS @ o

Normalized Returns

o
Y

00 4"
0 5 100 150 200 250 300

Iterations

Figure 3: Samples vs. returns. More
samples yields better performance.

16

Normalized Validation Loss

(a) On-policy validation losses
for varying amounts of on-policy
data (or replay buffer), averaged
across environments and seeds.
Note that sampling from the re-
play buffer has lower on-policy
validation loss, despite bias from
distribution shift.

0 100 200 300 400 500 600

(b) Normalized returns plotted
over training iterations (32 sam-
ples per iteration), for different
ratios of gradient steps per sam-
ple. We observe that intermedi-
ate values of gradient steps work
best, and too many gradient steps
hurt performance.

Normalized Returns
|

(c) Normalized returns plotted
over training iterations (32 sam-
ples are taken per iteration), for
different early stopping methods.
We observe that using proper
early stopping can result in a
modest performance increase.

provide the underlying Q-learning algorithm oracle access to collecting data from the
current snapshot of the learned policy. While this sort of active data collection is not
possible in the offline RL problem setting, this simplification allows us to more carefully
localize the challenges of overfitting and sampling error.

We analyze several key points that relate to sampling error. First, we show that Q-learning
is prone to overfitting, and this overfitting has a real impact on performance.

3.4.1 Quantifying Overfitting

We first quantify the amount of overfitting during training, by varying the number of
samples. In order provide comparable validation errors across different experiments, we
tix a reference sequence of Q-functions, Q!, ..., QN, obtained during an arbitrary run of
Q-learning. We then retrace the training sequence, and minimize the projection error
IT,(Q') at each training iteration, using varying amounts of on-policy data or sampling
from a replay buffer. We measure the validation error (the expected Bellman error) at
each iteration under the on-policy distribution, plotted in Figure 4a. We note the obvious
trend that more samples leads to significantly lower validation loss.

Next, Figure 3 shows the relationship between number of samples and returns. We
see that more samples leads to improved learning speed and a better final solution.
Despite overfitting being an issue, larger architectures still perform better because the
bias introduced by smaller architectures dominates. This observation indicate that the
nature of overfitting in RL is likely significantly different from that of supervised learning;:
while overfitting in supervised learning can bne controlled by regulating model capacity,
off-policy RL methods likely need to rely on alternative techniques to control overfitting.
We made some progress towards understanding this questions in Li et al. [209].

17

3.4.2 Does Compensating for Overfitting Improve Performance?

Finally, to confirm our hypotheses regarding overfitting, we now wish to understand if
compensating for overfitting does lead to improved performance. One common technique
for reducing overfitting is to utilize early stopping methods to mitigate overfitting without
reducing model size. In order to understand whether early stopping criteria can reduce
overfitting, we employ oracle stopping rules to provide an “upper bound” on the best
potential improvement. We try two criteria for setting the number of gradien