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Abstract
Scheduling Image Processing Algorithms in Halide for x86, AVX and RISC-V RVV Targets
by
Sonali Naphade
Master’s of Science in Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Borivoje Nikolic, Chair

As computer vision expands and becomes an ever more important field, the speed of im-
age processing and specific image processing and graphics accelerators becomes important.
However, scheduling image algorithms by hand while maintaining correctness can become
quite tedious, and the most efficient schedules are often found through experimentation.
Therefore, specific high performance computing languages like Halide have been developed
to allow the programmer more flexibility in finding efficiency by separating the algorithm
from scheduling. In this work, the specific image kernels of unsharp filter, harris corners,
and non-linear means were implemented and scheduled in Halide. Two main approaches of
either splitting or tiling the output stage and computing producer stages with respect to the
output were implemented. Furthermore, the performance of different schedules were evalu-
ated for x86 AVX and RISC-V RVV targets. A comparison of the most efficient schedules
for the variety of targets reveals the strengths and difficulties of Halide and possible points
of inefficiency in Halide-generated RVV code.
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Chapter 1

Introduction

Image processing is the process of extracting useful information from an image in its digital
form. As more and more applications today utilize computer vision and computational pho-
tography, the speed of image processing algorithms is critical. In practice, these algorithms
must be very efficient, from running on mobile devices with power constraints to workloads
with many images. In low-level languages like C, the programmer can restructure naive code
to achieve an optimized algorithm with much better performance. However, this requires
careful thought on the programmer’s part to maintain correctness in addition to efficiency,
and generates complex, inflexible code. For image processing pipelines which consist of many
different stages, the most optimal code would be extremely difficult to write.

Halide is a domain-specific language designed to make it easier to write efficient image and
array processing code on modern machines. The algorithm is separated from its scheduling,
allowing the programmer to more flexibly experiment with different choices for optimal per-
formance. Furthermore, code can be generated for a variety of CPU and GPU architectures,
allowing for a comparison of performance across different targets. Vector architectures can
lend great speedup to image pipelines, so the standardized x86 AVX and variable-length
vectors of RISC-V RVV targets are of interest. In this work, we aim to experiment with dif-
ferent ways of optimally scheduling specific image processing algorithms in Halide. We aim
to generate code in the x86 AVX and RISC-V RVV targets, comparing their performances
and analyzing generated RVV code for inefficient trends.



Chapter 2

Background

2.1 Image Processing Algorithms

In image processing, digital image data is operated on to extract useful information or
transform the image. Image kernels operate on each pixel of the image, which may be in
grayscale or color (three values at each location for each of three RGB color channels). There
are many different categories within image processing [8|, from classification, to enhancement
and feature extraction algorithms. In this work, I focus on three specific image processing
algorithms: image sharpening with unsharp masking, harris corner detection, and image
denoising with non-local means. The sections below go into more detail on each algorithm
as they will be used in later chapters.

2.1.1 Image Sharpening with Unsharp Masking

Image sharpening is a contrast enhancement technique aiming to accentuate details and edges
in an image. Common image sharpening techniques can be separated into two categories:
modifying pixel values with histogram re-scaling approaches or separating and emphasizing
an image’s high frequency components. Both approaches to sharpening have their own pros
and cons, and further details about image sharpening methods can be found in [12].

In this paper, we focus on image sharpening with unsharp masking. Low frequencies of an
image are obtained by convolving the original image with a low-pass filter. The resulting
blurred image is called the unsharp mask. The high frequencies of the image, containing
edges and fine detail information, are then obtained by subtracting the unsharp mask from
the original image. A sharpened image is obtained by accentuating the high frequencies in
the original image. The basic unsharp masking procedure can be described by,

y(u,v) = z(u,v) + Az(u, v)

where y(u,v) is the sharpened output pixel value, x(u,v) is the original image input pixel
value, A is the gain factor, and z(u,v) is the high-frequency value at a pixel. A must be
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tuned well for good sharpening results, and adaptive approaches seek to vary the gain factor
in different image areas [14, 12].

(a) original image input (b) high frequencies obtained  (c) sharpened output image
from subtracting blurred image
from original image

Figure 2.1: Process of sharpening with unsharp mask. Figure from [12]

There are various ways to compute z, from linear and quadratic operators to laplacian and
normalized methods [3]. In this work, we use a normalized method to compute Az and we
convolve the image with a 7x7 gaussian kernel before subtracting the blurred image from the
original to extract its high frequencies. The below equation describes this process,

x(u,v)

Ne(un, ) = gray(u,v) — blur(u,v)
gray(u,v)

where gray(u,v) is the original image in grayscale.

2.1.2 Harris Corner Detection

Harris corner detection is a feature extraction approach for identifying corners within an
image. Identifying corners is useful for a variety of purposes in in image processing and
computer vision, from image matching and mosaic construction [7].

Broadly, a corner can be described as an area that is distinct from its surroundings. If an
area of an image is a corner, shifting a small window in all directions around the area should
result in a large change. This precise idea is captured by Harris and Stephens in their paper
[10, 9]. Mathematically, the change in appearance of a window W for a small shift [u, v] can
be given by
E(uv)= Y [Hz+uy+v)—I(z,y)
(z,y)eW

. Substituting first-order Taylor approximations for a small change [u,v], E simplifies to

E(u,0)~ [u o] M m
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nucleus of mask °
boundary of mask ———
N b

c

light area
(a) image with output corners marked (b) identifying a corner, possibilities of
[7] what a window can encounter [7].

Figure 2.2: Harris corner detector output.

where M is the second moment matrix involving image derivatives in the x and y directions,

I, and I
IEEN
u= 3 |5

(z,y)eW

From matrix M, we can calculate corner response R
R = Det(M) — kTr(M)?

Det(M) = I2I; — (I1,)* = M
Tr(M)=1+1, =X+ X

Eigenvalues A\; and )\, in the diagonalization of M give a rotationally invariant measure of
intensity change. When both eigenvalues are large, corner reponse R will be large, indicating
presence of a corner. In this work, we use this algorithm for Harris corner detection with
k = 0.04 on grayscale images. Furthermore, we use the Sobel operator to compute gradients
I, and I,,, as described in [17].

2.1.3 Non-Local Means Denoising

Image denoising techniques aim to remove noise in an image while retaining details like
texture and edges. Local mean filters denoise by taking the mean value of pixels in an area
to smooth out noise. By contrast, non-local means takes a global mean of the image weighted
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“Corner”
R0
-11001 1121
% 2102 % 000
R small
(b) Sobel operator Py
(a) The Sobel filter [17] (b) The space of possible corner re-

sponses R. When R is high, this in-
dicates both eigenvalues are large and
that there is a corner [17].

Figure 2.4: Weights are computed as a similarity measure between two patches, meaning the
weights for patches two and three will be large while those between patches one and three
will be small. Image generated based on weight comparison image in [4].

by similarity of each pixel to the target pixel, as shown in Figure 2.4. More information about
these various denoising methods can be found in [6].
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The non-local means algorithm can be expressed by
NL(i) = Y w(i,j)v(j)
jel
where v is the input noisy image and w(i, j) is a weight representing similarity of pixels 4
and j. Similarity between pixels depends on the similarity of gray level vectors of the pixels’

encompassing patch area, represented by N. Very similar windows will have a large weight
while contrasting windows will have small weights. The weight can be defined as

ol g) = Lo %) o),
=70 h? ’

where h is a filtering parameter and Z(4) is the normalizing constant

_o(Ng) — v(N))[3.4

Z(i)y=3Y e _h2

. This derivation comes from Buades’ and Morel’s work, and more specific details about this
calculation can be found in [4, 5].

(a) grayscale images (b) color images

Figure 2.5: Input images and output nl-means denoised images [6].

2.2 Halide

Writing fast image processing pipelines can be very tedious and challenging. Programmers
must generally take into account both parallelism (distributing work across threads, utilizing
SIMD vectors) and locality (tiling computations such that intermediate results are retained
in local cache). These optimizations can yield immense speedup, yet even in a low-level
language like C, optimized code can be complex and inflexible, as seen in Figure 2.6. For
multi-stage image pipelines, optimization often requires experimentation, and programming
in this way is impractical.
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Halide is a programming language embedded in C++ that offers a solution to this problem.
Halide separates an intrinsic algorithm from scheduling code, making it much easier to write
efficient, high-performance image processing code for modern machines. Scheduling is much
more flexible and choices can be easily changed without impacting algorithm correctness,
allowing the programmer to try and analyze different optimization techniques quickly.

void fast blur(const Image<uintlé t> &in, Image<uintl6é t> &bv) {
__ml28i one third = mm setl epil6(21846);

for (int yTile = 0; yTile < in.height(); yTile += 32) {
__ml28i a, b, ¢, sum, avg;
__m128i bh[(256/8)x(32+2)];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
__ml28i xbhPtr = bh;
for (int y = -1; y < 32+41; y++) {
const uintl6_t *inPtr = &(in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8) {
a = _mm loadu sil28((__ml28ix) (inPtr - 1));

b = mm loadu sil28((__ml28ix) (inPtr + 1));

c = _mm load sil28 ((__ml28ix) (inPtr));
sum = mm add epil6(_mm add epil6(a, b), c);
avg = mm mulhi epil6(sum, one third);

_mm_store_sil28 (bhPtr++, avg);
inPtr += 8;
}}

void blur(const Image<uintl6_t> &in, Image<uintl6_t> &bv) { bhPtr = bh;
Image<uintl6 t> bh(in.width(), in.height(); for (int y = 0; y < 32; y++) {
_ . ml28i woutPtr = (__ml28i «) (&(bv(xTile, yTile+y)));
for (int y = 0; y < in.height(); y++) for (int x = 0; x < 256; x += 8) {
for (int x = 0; x < in.width (); x++) a = mm load sil28(bhPtr + (256 x 2) / 8);
bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3; b = mm load sil28(bhPtr + 256 / 8);
c = mm load sil28 (bhPtr++);
for (int y = 0; y < in.height(); y++) sum = mm _add epil6(_mm add epil6(a, b), c);
for (int x = 0; x < in.width (); x++) avg = mm mulhi epilé6(sum, one_third);
bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1))/3; _mm_store_sil28 (outPtr++, avg);
} 1SRN
(a) Naive C++: 6.5ms per megapixel (b) Fast C4++ (for x86) : 0.30ms per megapixel
Func halide blur (Func in) {
Func bh, bv;

Var x, y, xi, yi;

bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1l, y))/3;
bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1))/3;

bv.tile(x, y, xi, yi, 256, 32)
.vectorize(xi, 8).parallel(y);
bh.compute_at (bv, x).vectorize(x, 8);

return bv;

}

(c) Halide : 0.29ms per megapixel

Figure 2.6: Comparison of optimizing code in C++ and Halide from [16].

An image pipeline algorithm can be written in Halide as a a series of functions, where
each 'Func’ object corresponds to a single pipeline stage. Functions are defined at integer
coordinates of "Var’ object variables as described by an ’Expr’ object computation using
these variables. Halide scheduling operators allow for a wide variety of choices. To actually
compute pixel data and generate an output image, we realize the final function of an image
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pipeline with specified input image dimensions. More details on the specifics of Funcs, Vars,
Exprs, and processing images in Halide can be found in [15].

The schedule of the image pipeline is defined separately. Unscheduled stages are computed
inline by default. When scheduling, the programmer must balance tradeoffs between re-
dundant computation, temporary memory usage, and memory bandwidth for their specific
purposes. The choice space for scheduling an image pipeline falls into two categories:

1. The ordering of loops to compute values within this stage

2. The ordering of computation of different producer-consumer stages within a multi-stage
pipeline

An overview of the primary scheduling calls within these choice spaces is given in the following
sections.

row-major column-major tiled vectorized parallel parallel tiles I ~@ dependence

Z %/M Z/Z E;E — Z Z scheduling l:l Loop extent

— within a

ZZ —i —_— Z Z function interleaving

block extents
in bh bv in bh bv in bh bv

SifI ERiE EEis Beass | Bes —
! ﬂ‘ L = Tl

compute_root() compute_at(bv, tile_x) inline
coarsest (whole images) moderate (per-tile) finest (per-pixel)

Q)

{

L | ——

redundant
compute

Y

scheduling across functions (interleaving granularity)

Figure 2.7: Visualization of different how different scheduling directives work from [16].

2.2.1 Single-Stage Scheduling Operations

These are some basic Halide directives used to schedule a single image pipeline stage by
making changes within the stage.

e reorder(vars): reorder loop nesting for the function in the given order of variables,
from innermost out.

e split(oldVar, outer, inner, factor): split a loop over the given variable oldVar into
nested loops over inner and outer sub-variables. The inner loop increments from zero
to the given split factor, and the outer loop increments from zero to the original extent
of oldVar divide by the split factor.
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e fuse(inner, outer, newVar): the opposite of split, fuse merges loops over inner and
outer sub-variables into a single loop over the newVar variable with the product of the
extents.

e tile(oldVarl, oldVar2, outerl, outer2, innerl, inner2, factorl, factor2): split-
ting in two dimensions, by the given factors and ordering nested loops to be innerl,
inner2, outerl, outer2, from innermost out. This is shorthand to obtain a tiled traversal
of a domain, where blocks are computed at a time.

e vectorize(var, factor): vectorizes computation along a dimension by splitting the
variable according to the factor and vectorizing the inner variable loop.

e unroll(var, factor): unrolls computation along a dimension by splitting the variable
according to the dactor an unrolling the inner variable loop.

e parallel(var): parallelizes computation along the dimension given by the variable.

2.2.2 Multi-stage Scheduling Operations

These are some basic Halide directives used to schedule a multi-stage image pipeline, by
indicating when a stage should be computed. We will describe the relationship between
stages as a producer-consumer relationship, where the producer stage computed intermediate
results used by the consumer stage.

e compute root(): evaluate the current producer stage fully before the consumer.

e compute at(consumer, var): evaluate the current producer stage as needed for
each variable value of the consumer.

e compute with(func, var): If current stage and given stage have the same schedule
from the outermost dimension until the given variable, the two stages can be fused
such that both computations occur within only one set of nested loops.

e store root(): store all of the producer computations in a buffer at the outermost
level (to avoid redundant computation).

e store at(consumer, var): store producer computations in a buffer just within the
consumer’s loop over the given variable (to avoid redundant computation).

2.2.3 Generators and Targets

Halide is supported by the LLVM compiler structure. Halide functions expressed in C-++
and scheduling are transformed into LLVM bitcode that LLVM transforms into code for
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specified targets [include reference|. Halide generators are a structured method for ahead-
of-time Halide pipeline compilation, and can be used to compile object files for a variety of
targets, such as x86, ARM, and CUDA.

In this work, we generate code for the targets of x86 AVX and RISC-V’s Vector (RVV)
extension. With Spike, we are able to attain cycle counts to compare the efficiency of code
for each target. Our goal is to experiment with optimal scheduling of the specific image
algorithms from section 2.1 for both of these targets. Additionally, we want to compare

Halide-generated RVV code and analyze possible inefficiencies compared to Halide-generated
x86 AVX code as standard.

Halide Functions Halide Schedule
N\ 'S
1 Imperative Blob —_— OpenCL/C
¥
LLVM bitcode —— | OpenCL/SPIR

'4 4 N
X86 (with sse) ARM (with neon) CUDA

X86 NaCl ARM NaCl

Figure 2.8: The Halide compiler process
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Chapter 3

Scheduling Experiments and
Performance Evaluation of Image
Processing Algorithms in Halide

A variety of different schedules were tried for each of the unsharp mask sharpening, harris
corner detection, and non-local means denoising algorithms. The main two approaches
to scheduling for optimized performance were splitting or tiling the final output stage for
blocked traversal, and computing certain producer stages as needed per block. Additionally,
storing intermediate results from producer stages and vectorizing loops often led to improved
performance. Although Halide provides parallel computation scheduling directives, these
were not used in this work and only single-core schedules were considered.

To evaluate the performance of a schedule, assembly code was generated for x86 scalar and
AVX vector targets in addition to the RVV vector target. Code was run on the Intel Xeon
6354 CPUs, notably with a 48 KB L1 data cache. This code was compiled and simulated with
Spike, outputting a cycle count. Out of many scheduling experiments, the best schedules
were determined by their cycle count results for an input matrix of size 64x64, before being
further evaluated for square matrices of size from 64 to 512, in increments of 32. Each of
the following section details the specific optimal schedules and analyzes their performance
for each image processing algorithm.

3.1 Unsharp Mask Image Sharpening

The unsharp masking algorithm described in Section 2.1.1 was implemented in Halide and
sharpened output was generated on a sample color image.

After experimenting with different schedules, these are the optimal schedules whose perfor-
mances were further evaluated.
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input(x, y, c)

[ input_bounded(x, y, c) ]

[ gaussian_kernel(x) ]
'
/

output(x, y, ¢)

(a) Unsharp mask algorithm major stages (b) Our input image (¢) Our generated
output image

Figure 3.1: Unsharp Mask algorithm and realized output.

1. split-yil6-vecl6: split y loop of output stage into nested yo and yi loops, where yi
traverse a wide image swath of width 16. Output stage nested loops are reorder to be
X, ¢, yi, yo, innermost out. The gray, blur y, and ratio stages are computed as needed
with respect to the yi loop of the output stage and are stored within the yo loop of
the output stage. The output, gray, blur_y, and ratio stages are each vectorized in
variable x with vector size 16.

2. split-yil6-vec8: similar to split-yil6-vec16 schedules, except with output, gray, blur y,
and ratio stages each vectorized in variable x with vector size 8.

3. tile-16x32-vecl6: tile output stage by splitting x and y loops into nested xi, yi, xo,
and yo loops. xi spans [0, 16) and yi spans [0, 32), such that the output stage is
computed in blocks of size 16x32 at a time. Output stage nested loops are reorder to
be xi, ¢, yi, X0, yo, innermost out. The gray, blur y, and ratio stages are computed as
needed with respect to the xo loop of the output stage, without storing. The output,
gray, blur_y, and ratio stages are each vectorized in variable x with vector size 16.

4. tile-16x32-vecl6-gray-storeatyo: similar to tile-16x32-vecl6 schedules, except the
gray stage’s results are stored within the yo loop of the output stage.
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5. tile-16x16-vecl6-gray-computeatyo: similar to tile-16x32-vecl6 schedule, except
the yi loop of the output stage spans [0, 16) and the gray stage is computed as needed
with respect to the yo loop of the output stage. Additionally, the gaussian kernel stage
is computed as needed with respect to the yo loop of the output stage and is stored at
the outermost level of the algorithm.

Performance Evaluation

Schedule x86 scalar cycles | x86 avx cycles | rvv cycles
split-yil6-vecl6 6069796 301456 442881
split-yil6-vec8 2441012 156228 444127
tile-16x32-vecl6 6069212 273580 419097

tile-16x32-vecl6-gray-storeatyo 6074588 327044 428240
tile-16x16-vecl6-gray-computeatyo 9867308 288140 378991

Table 3.1: Performance of unsharp mask schedules for 64x64 images.

1e9 sharpen-final (Float32) AVX Comparison

1e10 harpen-final (Float32) RV Comparison

6 9% 128 160 192 224 256 288 320 352 384 416 448 480 512 6 9% 128 160 192 224 256 288 320 352 384 416 448 480 512
Image Dimension Image Dimension

(a) RVV Performance (b) x86 AVX Performance

Figure 3.2: Performance of unsharp mask schedules for images of size 64x64 to 512x512.
True cycle count is table value multiplied by 1000.

In terms of RVV code, all five schedules gave similar performance. As seen in Table 3.1, for
an input image of size 64x64 pixels, all the schedules yielded around 4 x 10® cycles. In Figure
3.2.a, we see that each schedule follows a similar exponential trend as the input dimension
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size increases. If examining the graph closely, the split-yil6-vec8 schedule takes slightly more
cycles than the rest, since vector size 8 does not utilize the full capacity of a register. The
Halide directive natural vector size<float>() calculates the optimal vector size as vector
register length (512 here) divided by data type size (float 32 in this case), which would be
16. The tile-16x32-vecl6 and tile-16x32-vecl6-gray-storeatyo are less smooth compared to
the other schedules, like tile-16x16-vecl6-gray-computeatyo. The blur x and blur_y stages
utilize a larger window of gray stage results. These two schedules compute the gray stage
for every xo loop iteration of the output stage, so a narrower window of values is computed
compared to as in tile-16x16-vecl16-gray-computeatyo. Additionally, the block size of 16x32
means overlapping edges of the gray stage used for multiple blocks of blur x and blur_y
are larger, and more values need to be recomputed or stored.

There is much more variation among the results of the schedules for in x86 AVX code.
For size 64x64 inputs, Table 3.1 shows the schedules approximately output 3 x 10% cycles.
However, the split-yil6-vec8 schedule seems to be an outlier with an output of 1.5 x 108 cycles,
about half compared to the others which use vector size 16. This is interesting because the
vector size 16 is the natural vector size calculated for the data type and the target, as
mentioned above. Yet in Figure 3.2.b, vector size 8 in split-yil6-vec8 does much better than
any schedule with size 16 vectors until input sizes larger than 352x352 pixels. Examining
the AVX code, code with larger vector size 16 had 50 to 70 more vector instructions like
vpextrq, vpinsrb, vimovq to manipulate vector values within inner loop sections. It is unclear
why this difference happens for small to medium input sizes, but this would be significant
across multiple iterations. Otherwise, all five schedules seem to perform similarly, the cycle
counts increasing about linearly on average, if not smoothly, as input size increases. tile-
16x32-vecl6-gray-storeatyo does have an unusual spike at input size 256. A comparison of
the AVX assembly for input sizes 256 and 288 yields no difference at all, so the spike must
be due to storing the gray stage for each iteration of output’s yo loop causing extra time to
be taken.

Furthermore, we can compare the code generated for the RVV target to code generated for
x86 AVX by taking a ratio of RVV cycles to AVX cycles, shown in Figure 3.3. As x86
AVX is rather standardized and widespread, we can use it as a standard to compare RVV
code with. RVV code cycle counts for the schedules are between one to three times that of
AVX code. The split-yil6-vec8 has an outlier, higher trend due to the extremely low AVX
cycle counts. Otherwise, all schedules have RVV code that approaches AVX performance
at a sort of absolute minima at input side dimension of 224 to 256. RVV code seems to
be the most efficiently generated for medium sized inputs. tile-16x32-vec16-gray-storeatyo
even dips below a ratio of one at an input dimension of 256, meaning its RVV code performs
better than AVX code at that point.
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Ratio of RVV Cycles to AVX Cycles

Speedup

- split-yil6-vecl6
split-yil6-vec8
1 tile-16x32-vecl6

= tile-16x32-vecl6-gray-storeatyo
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Figure 3.3: Comparison of RVV and x86 AVX performance for unsharp mask schedules on
images of size 64x64 to 512x512.

3.2 Harris Corner Detection

The Harris corner detection algorithm described in Section 2.1.2 was implemented in Halide
for grayscale images and output was generated on a sample image.

After experimenting with different schedules, these are the optimal schedules whose perfor-
mances were further evaluated.

1. split-yi8-vecl16: split y loop of output stage into nested yo and yi loops, where yi
traverses a wide image swath of width 16. Stages Ix and Iy are computed as needed
with respect to the yi loop of the output stage and are stored within the yo loop of
the output stage. Ix and Iy are computed together within a single set of nested loops.
The output, Ix, and Iy stages are each vectorized in variable x with vector size 16.

2. split-yil6-vecl6-computeatyo: similar to split-yi8-vecl6, except yi traverse a wide
image swath of width 8 and stages Ix and Iy are computed as needed with respect to
the yo loop of the output stage, with no storing.
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Figure 3.4: Unsharp Mask algorithm and realized output (white areas indicate high corner
response, indicating corners/fine edges).

3. split-cascade-yil6-vecl6: split y loop of output stage into nested yo and yi loops,
where yi traverses a wide image swath of width 16. Every stage of the pipeline is
scheduled in a cascaded order:

e det and trace stages computed as needed with respect to the yo loop of the output
stage.

e Syy, Sxx, and Sxy stages computed as needed with respect to the y loop of the
det stage.

e lyy, Ixx, and Ixy stages computed as needed with respect to the y loop of the Syy
stage.

e Iy and Ix stages computed as needed with respect to the y loop of the Iyy stage.
Each group of stages is computed in one set of nested loops and is stored within the

yo loop of the output stage. Additionally, each stage mentioned above including the
output stage is vectorized in variable x with vector size 16.
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4. tile-16x16-vecl6-computeatyo: tile output stage by splitting x and y loops into
nested xi, yi, xo, and yo loops. xi spans [0, 16) and yi spans [0, 16), such that output
stage is computed in blocks of size 16x16 at a time. Stages Ix and Iy are computed as
needed with respect to the yo loop of the output stage, without storing. The output,
Ix, and Iy stages are each vectorized in variable x with vector size 16.

5. tile-cascade-16x32-vecl6: Similar to split-cascade-yil6-vecl6, except the output
stage is tiled with nested xi, yi, xo, and yo loops, where xi spans |0, 16) and yi spans |0,
32), such that output stage is computed in blocks of size 16x32 at a time. Additionally,
the Iy and Ix stages are left unscheduled and are computed inline by default.

Performance Evaluation

Schedule x86 scalar cycles | x86 avx cycles | rvv cycles
split-yi8-vecl6 1070844 224484 537154
split-yil6-vecl6-computeatyo 1062636 201668 433964
split-cascade-yil6-vecl6 1069488 313416 590700
tile-16x16-vecl6-computeatyo 1075440 204076 432303
tile-cascade-16x32-vecl6 1204808 300248 596239

Table 3.2: Performance of Harris corner detector schedules for 64x64 images.

For the RVV target, with an initial input size of 64x64, the schedules perform on the order
of 108 cycles in Table 3.2. There is some variability, from about 4 x 10® to 6 x 10® cycles.
This initial difference between schedules is maintained and reflected across small, medium,
and large input sizes in Figure 3.5.a. All the schedules follow a smooth exponential trend,
yet no lines overlap, with split-yil6-vecl6-computeatyo and tile-16x16-vecl6-computeatyo
having the best performance and tile-cascade-16x32-vecl6 and split-cascade-yil6-vecl6 on
the worse end.

In AVX, Table 3.2 shows the performances range from 2 x 108 to 3 x 10® cycles for input
size 64x64. Over many input sizes in Figure 3.5.b, all the schedules follow an exponential
trend. The performances separate into two categories, where the cascade schedules (split-
cascade-yil6-vecl6 and tile-cascade-16x32-vecl6) do worse. The cascade schedules had about
6500 lines of AVX code, almost double compared to around 3300 for the rest. Most of this
difference, in both the RVV andd AVX code, was extensive prologues and epilogues for setting
up the cascade loops in addition to many extra spills and reloads (over 1000 compared to
about 200 for the non-cascade schedules). split-yi8-vec16 has a sudden drop in AVX cycles
at input size 448. A comparison with the AVX code for input size 416 showed the inner
loop sections had long series of vector multiplies (vfmadd) and stores to memory (vmovups),



CHAPTER 3. SCHEDULING EXPERIMENTS AND PERFORMANCE EVALUATION
OF IMAGE PROCESSING ALGORITHMS IN HALIDE 18

1e10 harris-final (Float32) RVV Comparison harris-final (Float32) AVX Comparison

& % 128 160 192 24 26 288 20 32 84 a6 w8 480 512 2] % 128 160 192 24 256 288 20 32 384 416 48 480 512
Image Dimension Image Dimension

(a) RVV Performance (b) x86 AVX Performance

Figure 3.5: Performance of Harris corner detector schedules for images of size 64x64 to
512x512.

about five times as many as for input size 448. This is the cause of the difference, although
it is unclear why this particularly happens at size 448.

Comparing code generated for the RVV target to code generated for x86 AVX, Figure 3.6
shows the ratio of RVV to AVX cycles. RVV code cycle counts are between one to three
times those of AVX code. As input size increases, the RVV to AVX ratio decreases and
RVYV code is generated more efficiently in all schedules. The largest input sizes of 448 to 512
is where RVV performance is closest to AVX performance. On average, split-yi8-vecl6 had
the worst ratio. However, split-cascade-yil6-vecl6 had the best ratio for various input sizes,
with ratio less than one for sizes 448 and 480, such that RVV code performed better than
AVX. split-yi8-vecl6 particularly spikes at input size 448 due to its dip in AVX cycles taken.
Oppositely, split-cascade-yil6-vecl6 dips around input size 448 due to its steeper increase
in AVX cycles. Interestingly, within both RVV cycles and AVX cycles, split-yil6-vecl6-
computeatyo and tile-16x16-vecl6-computeatyo did about the exact same despite having
different approaches. The tiling approach had more loop overheads but also utilized the
cache more efficiently with 16x16 blocks of the image computed at once rather than wide
rectangular sections with splitting.

3.3 Non-local Means Denoising

The non-local means denoising algorithm described in Section 2.1.3 was implemented in
Halide and denoised output was generated on a randomized input array.
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Figure 3.6: Comparison of RVV and x86 AVX performance for Harris corner detector sched-
ules on images of size 64x64 to 512x512.

[ clamped_input(x, y, c) ]

dc(x, y, dx, dy, c) clamped_with_alpha
(x,y, ¢)

d(x, y, dx, dy)
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blur_d(x, y, dx, dy)

[ w(X, y, dx, dy) ]——[ non_local_means_sum(x, Y, C) J

output(x, y, c)

Figure 3.7: Non-local means algorithm major stages.
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After experimenting with different schedules, these are the optimal schedules whose perfor-
mances were further evaluated.

1. split-yi2-vecl6: split y loop of output stage into nested yo and yi loops, where yi tra-
verses a wide image swath of width 2. Stages non local means sum, blur_d_y, and
d are computed as needed with respect to the x loop of the output stage. The blur d
stage is computed at needed with respect to the x loop of the non local means sum
stage. Additionally, updates in the non local means sum stage are reordered in or-
der of ¢, x, y, innermost out, along with unrolling the ¢ loop. The d stage is reordered
in order y, x. The above scheduled stages are each vectorized in variable x with vector
size 16.

2. tile-16x8-vec16: similar to split-yi2-vecl6, except the output stage is tiled with nested
xi, yi, x0, and yo loops, where xi spans |0, 16) and yi spans |0, 8), such that output stage
is computed in blocks of size 16x8 at a time. blur _d_y and d stages are computed as
needed for the output stage at xo, non local means sum is computed as needed for
the output at xi, and blur d is computed as needed for non local means sum at x.
Instead of reordering the d stage, the blur _d _y stage is reordered in order y, x.

3. tile-16x16-vecl6-compatyo: similar to tile-16x8-vecl6 except in the output stage
yi spans [0, 16), such that output stage is computed in blocks of size 16x16 at a time.
Furthermore, the output loop order is reordered to be yi, ¢, xi, yo, xo, innermost out.
The blur_d_y and d stages are computed as needed for the output stage at yo and
both are reordered in order y, x.

4. tile-noreorder-16x16-vecl6-compatyo: similar to tile-16x16-vecl6-compatyo with-
out any reordering of the output stage’s loops.

Performance Evaluation

Schedule x86 scalar cycles | x86 avx cycles | rvv cycles
split-yi2-vecl6 103985844 4336936 11955531
tile-16x8-vecl6 104789090 2366228 6944837

tile-16x16-vecl6-compatyo 111558376 2115412 5669392
tile-noreorder-16x16-vecl6-compatyo 110556830 2282992 6347230

Table 3.3: Performance of non-local means denoising schedules for 64x64 images.

In terms of RVV code, for input size 64x64 pixels, the four schedules vary in performance
from 5 x 10% to 11 x 10? cycles, with tile-16x16-vecl6-compatyo taking half as many cycles
as split-yi2-vecl6 in Table 3.3. In Figure 3.8.a, we see the schedules follow pretty smooth
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Figure 3.8: Performance of non-local means denoising schedules for images of size 64x64 to
512x512.

exponential trends as input size increases. For input size greater than 192x192 pixels, a gap
in performance occurs between different groups of schedules. Examining differences closely
then, the tile-16x8-vec16 and tile-16x16-vecl6-compatyo schedules do better.

Comparing AVX performance for input size 64, the schedules yield about 2 x 10% cycles,
except for split-yi2-vecl6 which takes double the amount to run, at 4 x 10° cycles, from
Table 3.3. Looking at the performance across different input sizes in Figure 3.8.b, cycle
counts increase steeply in small input sizes before increasing less steeply for input larger than
192 pixels per side. Similar to what was seen for RVV performance, the schedules separate
into the same two groups with a gap in performance. For both RVV and AVX, examining
the code between these two groups revealed that split-yi2-vec16 and tile-noreorder-16x16-
vecl6-compatyo had many more extraneous vector operations wihtin inner loops (vpinsrb,
vextract, vpextrq) as the input sizes became larger. Sometimes the same value was calcualte
multiple times when it could have been calculated once and stored.

In Figure 3.9, we see the ratio of RVV to AVX cycles, which can be taken as a statistic
to gauge how efficiently code is generated for the RVV target. RVV code cycle counts are
between two to seven times those of the generated AVX code. As input size increases, the
ratio increases about linearly for each schedule, without much difference between schedules.
Each schedule hits a absolute minimum ratio for an input size of about 192x192 pixels, where
generated RVV code most closely replicates efficiently generated AVX code.
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Figure 3.9: Comparison of RVV and x86 AVX performance for non-local means denoising
schedules on images of size 64x64 to 512x512.

3.4 Inefficiences in Halide-generated RVV Code

As seen in the above sections, the Halide-generated RVV code usually takes two to three
times the cycles compared to Halide-generated AVX code. Further examination of assembly
generated files reveals inefficiencies that are the source 2, 13]. Mainly, repetitive ineffi-
cient portions of code were generally found in the prologues and epilogues before the major
computation of the image processing algorithm.

In RISC-V, there are 32 integer registers (31 excluding the program counter, pc) and 32 vector
registers. To maintain calling convention and ensure no values are lost even when different
functions are called, the prologue before computation stores register values that could be
overwritten on the stack and the epilogue after restores the values from the stack. The
register sp is incremented and decremented to keep track of values on the stack. Additionally,
when there are more local variables needed than registers available, some registers must be
saved to stack to make space (register spill) and can later to restored (register reload).

Looking at the RVV assembly generated, there were many times a value was loaded into
a specific register before a register spill saved it on the stack. After the spill, a new value
would be loaded into the same register and the original value is never required in the same
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vicinity. In the assembly fragments below, this process is shown happening repetitively. A
more efficient approach would only load values into registers when required soon, avoiding
filling up registers with extraneous values that then create excessive register spills.

24(a0)
696 (sp) # 8-byte Folded Spill
36(a0)

8(s2)

720(sp) 8-byte Folded Spill vsir.v # Unknown-size Folded Spill
24(s2) 1 a0,

648(sp) 8-byte Folded Spill vmv. S.X

40(s2) csrr

752(sp) 8-byte Folded Spill U al,
mul a0,

16(al) add 20,
24(al) addi
728(sp) 8-byte Folded Spill vslr.v # Unknown-size Folded Spill
36(al) i ao,
8(t0) VIV, S. X
712(sp) 8-byte Spill Gy
i al,

24(t0)

. mul ao,
584(sp) 8-byte Spill add 20,
40(t0) addi
744(sp) 8-byte Spill vsir.v # Unknown-size Folded Spill

(a) register a2 is repetitively loaded into, where (b) vector register v8 is repetitively loaded and
any loaded values immediately spill onto the spilled
stack.

iy iy

624(sp) # 8-byte Folded Spill

sl, a4,

592(sp) # 8-byte Folded Spill

a4, a4,
576(sp) # 8-byte Folded Spill
a4, ao,
616(sp) # 8-byte Folded Spill

(c) each computation immediately gets stored on stack
to free up registers

Figure 3.10: Portions of RVV code with unnecessary loads and repetitive spilling.

Additionally, in some places the same values are loaded multiple times within a loop when
they could be loaded once separately in registers. This would minimize the overall number
of loads required.

Furthermore, RVV allows for a variable vector length to control vector size and how many
elements are operated on within a vector. In generated RVV code, the vector length is
changed frequently in order to move and arrange elements. However means the vector
length must be reset over and over again. The same computation could be done in two parts
perhaps, accumulating some vslideup and vslidedown instructions to happen together before
the vector length is changed.
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a6, a4
40(a0)
12(s0)

a5i a4
12((as)]
8(s0)

8(a5)

4(s0)

4(a5)

0(s0)

a4, a4, 16
0(a5)

t0, .LBBO_56

Figure 3.11: register a0 is not altered throughout this loop, so lines like 1d a5, 40(a0) which
happen in every iteration are repetitive.

vsetivli zero, 9, e8, mf4, tu, ma
vslideup.vi v9, vii, 8

vsetivli zero, 1, e32, ml, ta, ma
vslidedown.vi v11, vi@, 9

vmv.Xx.s a4, vll

add a4, a4, s9

b a4, 0(a4d)

vmv.s.x v1ll, a4

vsetivli zero, 10, e8, mf4, tu, ma
vslideup.vi v9, vii, 9

vsetivli zero, 1, e32, ml, ta, ma
vslidedown.vi vll, v1o, 10

vmv.Xx.s a4, vil

add a4, a4, s9

b a4, 0(a4)

vmv.s.x vll, a4

Figure 3.12: v11 continually slides up into v9 and v10 continually slides down into v11, with
vector length readjusted in between.
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Chapter 4

Conclusion

In this work, different scheduling methods were explored for unsharp mask sharpening, Harris
corner detector, and non-local means denoising image processing algorithms. Performance of
schedules was evaluated by generating code for the x86 AVX and RVV targets and obtaining
cycle counts through Spike. Overall, both methods of splitting and tiling the output stage and
computing producer stages as needed with respect to the output worked well. Additionally,
reordering and vectorizing each stage made large impacts. Comparing Halide-generated RVV
code to x86 AVX, RVV cycles across all three algorithms usually was between one to three
times greater. Additionally, by considering cycle counts across a variety of input sizes from
64 to 512 pixels per side, we saw the ratio of RVV to AVX cycles had some minimum, where
RVYV cycles approached AVX cycles. At these points, for specific input sizes, prologue and
epilogue inefficiencies with repetitive loads and spills are minimized.

4.1 Future Work

It would be useful to see how handwritten RVV code for inefficient existing areas impacts
performance. There are still many places were performance is better or worse for a certain
input, but it is unclear why. More analysis of the RVV generated assembly and replacing
portions with handwritten code could help determine the causes.

Within Halide itself, there are many different things that could be further experimented
with. More can be explored with scheduling with respect to caches sizes, including L1 and
L2 caches. Currently, althought cache size was kept in mind, the best combination of split and
tile sizes were often found through experimentation. In terms of scheduling, parallelization
with multiple threads could be explored for additional speedups. Halide also provides auto-
scheduling [1] which given estimates, should optimally schedule the program. It would be
interested to see what schedule auto-scheduling generates and how those compare to the
handwritten ones in this work. In terms of targets, RVV handwritten code could be useful
in reducing the mentioned inefficiencies found in this work. Additionally, performance could
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be evaluated for different targets like CUDA and GPUs.

Similar to Halide, Exo [11] is another language that allows for easy scheduling and optimiza-
tion of algorithms. In Exo, algorithms are also separated from scheduling, but scheduling
directive allow for finer control loop manipulation and storage. Certain scheduling choices
that are difficult to implement in Halide may be easier in Exo, and vice versa. It would be
useful to implement these same algorithms in Exo, to see if better scheduling and therefore
performance can be attained. Additionally, it would help understand the class of alogrithms
that each language is most useful for programming.
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