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Abstract

Text-to-Image Model for Protein Localization Prediction

by

Emaad Khwaja

Masters of Science in Electrical Engineering & Computer Sciences

University of California, Berkeley

Professor Yun S. Song, Chair

We present CELL-E 2, a novel bidirectional non-autoregressive transformer that can generate
realistic images and sequences of protein localization in the cell. Protein localization is a
challenging problem that requires integrating sequence and image information, which most
existing methods ignore. CELL-E 2 extends the work of CELL-E by capturing the spatial
complexity of protein localization and produce probability estimates of localization atop a
nucleus image, but can also generate sequences from images, enabling de novo protein design.
We train and finetune CELL-E 2 on two large-scale datasets of human proteins. We also
demonstrate how to use CELL-E 2 to create hundreds of novel nuclear localization signals
(NLS) for Green Fluorescent Protein (GFP).
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Chapter 1

Introduction

1.1 Background
Subcelllular protein localization is a vital aspect of molecular biology as it helps in un-

derstanding the functioning of cells and organisms [6]. The correct localization of a protein
is critical for its proper functioning, and mislocalization can lead to various diseases [7].
Protein localization prediction models have typically relied on protein sequence data [8, 9]
or fluorescent microscopy images [10, 11] as input to predict which subcelleular organelles a
protein would localize to, designated as discrete class labels [12, 13]. The CELL-E model was
markedly different in that it utilized an autoregressive text-to-image framework, to predict
subcellular localization as an images [14], thereby overcoming bias from discrete class labels
derived from manual annotation [15]. Furthermore, CELL-E was capable of producing a
2D probability density function as an image based on localization data seen throughout the
dataset, yielding more a far more interpretable output for the end user.

Although novel, CELL-E was inherently restricted by the following limitations:

Autoregressive Generation Alongside other autoregressive models [16–19], CELL-E was
limited by slow generation times and unidirectionality. When provided with input, CELL-E
required a separate step for each image patch (256 for the output image composed of tokens
of size 16×16). This slow image generation severely limits the ability of CELL-E to perform
a high-throughput mutagenesis screening.

Unidirectional Prediction The unidirectional nature of CELL-E allowed for predictions
to be made in response to an amino acid sequence, however it may be of interest to biologists
to make predictions of sequence given a localization pattern. Such capability would be
advantageous for those working in a protein engineering domain [20, 21]. One could imagine
a researcher wanting to know the optimal localization sequence to append to a protein on
either the N or C terminus [22] while maintaining essential function within an active site
region, as well as reducing the chance of off-target trafficking.
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Figure 1.1: Localization predictions from CELL-E 2
(HPA Finetuned (Finetuned HPA (VQGAN)_480) on randomly chosen validation set
proteins from the OpenCell dataset. All images feature the Hoescht-stained nucleus image
as a base. The “Original Image” column shows the fluroscently labelled protein from
the dataset. The “Thresholded Label” shows pixels greater than the median value. This
serves as the ground truth for the model during training. “Generated Image” is the image
specifically predicted by CELL-E 2 and is compared against the thresholded ground truth
image. “Predicted Distribution” is the latent space interpolation of the binary threshold
image tokens which uses which utilizes the output logits of CELL-E 2. See Fig. 1.3 for
colorbars corresponding to all plots in this work.

Limited Dataset CELL-E utilized the OpenCell dataset [23], a small dataset which led
to overfitting. Vision transformers require large amounts of data to make robust predictions



CHAPTER 1. INTRODUCTION 3

Reconstructed
Tokens

Input
Tokens

Cross-EntropyCross-Entropy
LossLoss

Inputs

Figure 1.2: Depiction of training paradigm for CELL-E 2. Gray squares indicate masked
tokens. Loss is only calculated on masked tokens in the sequence and protein threshold
image.

[24], however a small dataset was utilized in the original model. This led to a degree of
overfitting and prediction bias based on the limited diversity in localization patterns of the
original dataset.

Present Work CELL-E 2 differs from CELL-E by implementing a non-autoregressive
(NAR) paradigm which improves the speed of generation. Similar to CELL-E, we retrieve
embeddings from a pre-trained protein language model and concatenate these with learned
embeddings corresponding to image patch indices coming from a nucleus image and protein
threshold image encoders (Fig. 1.2). We then apply masking to both the amino acid sequence
as well as the threshold image in an unsupervised fashion, and reconstructed tokens are
predicted in parallel, allowing for generation in fewer steps. This also allows for bidirectional
prediction, (sequence to protein threshold image or protein threshold image to sequence).
Additionally, to improve the predictive performance we utilize a larger corpus of data, the
Human Protein Atlas (HPA) [25] in pre-training to expose the model to a higher degree
of localization diversity, and finetune on the OpenCell dataset [23], which preserves native
expression levels. We explore multiple strategies towards finetuning which serves to generally
inform task-specific refinement text-to-image models in Section 3.
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Figure 1.3: Colorbars used in figures on white (left) and black (right) background.

1.2 Related Work
Protein Language Models

Embeddings from unsupervised protein language moels can be used to predict and ana-
lyze the properties of proteins, such as their structure, function, and interactions [26]. By
exploring the hidden patterns and relationships within these sequences, protein language
models can help to advance our understanding of the complex world of proteins and their
roles in various biological processes. Masked language modelling has been particularly suc-
cessful. Ankh [27], ProtT5 [28], ProGen [29], ESM-2 [30], and OmegaFold [31] are examples
of recent models which use masked langauge approaches. ESM-2 and Omegafold in particu-
lar have been able to be used for structural prediction, indicating hierarchies of information
beyond the primary sequenece contained in the embeddings [32].

Protein Localization Prediction
Protein localization prediction via machine learning is an emerging field that uses compu-

tational algorithms and statistical models to predict the subcellular location of proteins [33].
This is an essential task in biology, as the subcellular localization of a protein plays a crucial
role in determining its function and interactions with other proteins [34, 35] The prediction
of protein localization is performed by analyzing protein sequences, amino acid composition,
and other features that can provide clues about their subcellular location. Machine learn-
ing algorithms are trained on large datasets of labeled proteins to recognize patterns and
make predictions about the subcellular location of a protein. This field has the potential to
improve our understanding of cellular processes, drug discovery, and disease diagnosis.

Recently, attention-based methods have demonstrated the ability to predict localization
from a sequeunce [36], enabling the use of long context information when compared to
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convolutional neural network-based counterparts [37–39]. These methods, however, predict
localization as discrete classes rather than as an image. CELL-E, on the contrary, does not
utilize existing annotation and provides a heatmap of the expected localization on a per-pixel
basis [14]. This approach enables learning at scale by eliminating the bottleneck of manual
annotation while also eliminating label bias.

Text-to-Image Synthesis
Recently, there has been a significant advancement in the field of text-to-image synthe-

sis. Gains have largely been made by autoregressive models [16, 18], which correlate text
embeddings with image patch embeddings, as well as diffusion models, [19, 40–43], which
condition on sentence embeddings to gradually synthesize images from random noise.

A few works implement non-autoregressive models (NAR), which take advantage of a
masked reconstruction procedure, similar to BERT [44], where the model is tasked with pre-
dicted randomly masked portions of an input image. These types of models are particulalry
advantageous because they enable parallel decoding, allowing images to be synthesized in
relatively view steps when compared to autoregressive models. Furthermore, NAR models
are not bound to a particular direction of synthesis like autoregressive models, which only
perform next-token prediction. CogView2 [45] utilizes a modified transformer architecture
where attention on masked tokens is eliminated. MUSE [46] builds on MaskGIT [47] by
concatenating a pre-trained text embedding to a token masked representation of a corre-
sponding image. It uses a vanilla transformer architecture [48] and yielded state-of-the-art
image synthesis performance in terms of FID and human evaluation.
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Chapter 2

CELL-E 2 Transformer

2.1 Datasets
We pre-trained our model on protein images from the Human Protein Atlas (HPA)

[49], which covers various cell types and imaging conditions using immunofluorescence mi-
croscopy1. We then fine-tuned it on the OpenCell dataset [23], which has a consistent
modality using live-cell confocal microscopy23 of endogenously tagged proteins. To ensure
generalization to new data, we followed the homology partitioning method of [39]. We used
PSI-CD-HIT [50] to cluster HPA proteins at ( ≥ 50% ) sequence similarity and randomly
split the clusters into 80/20 train/validation sets. We applied the same clustering and split-
ting to the OpenCell proteins, matching the train/validation labels from HPA. For proteins
present in OpenCell but not HPA n = 176, we assigned the protein based on the other labels
in the cluster. Any remaining unassigned proteins n = 1 were assigned to the training set.

Human Protein Atlas
We used the Human Protein Atlas v21, available under the Creative Commons Attribution-

ShareAlike 3.0 International License. For pre-training, we selected the immunofluorescence
stained images from the Human Protein Atlas (HPA), which contains data on more than
17,268 human proteins, with information on their distribution across 44 different normal
human tissues and 20 different cancer types. Example images show distribution of proteins
within 2-5 cell types with different antibody markers [49]. We extracted corresponding amino
acid sequences from UniProt [51].

OpenCell
We selected the OpenCell dataset for fine tuning due to its high-quality images, consistent

imaging and cell conditions, and availability of reference images with consistent morphology.
The dataset includes a collection of 1,311 CRISPR-edited HEK293T human cell lines, each
tagged with a target protein using the split-mNeonGreen2 system. For each cell line, the
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OpenCell imaging dataset contains 4-5 confocal images of the tagged protein, accompanied
by DNA staining to serve as a reference for nuclei morphology. While smaller in comparison
to HPA, the cells were imaged while alive, providing a more accurate representation of protein
distribution within the cell than immunofluorescence [23]. The OpenCell dataset is available
under the BSD 3-Clause License.

Amino Acid Sequence Preprocessing
In natural language contexts, ensuring input sequences are the same length is usually

performed by modifying the end of the sequence, either via truncation or end-padding [52].
This allows for predictions with respect to a given input (i.e. a text prompt). From the
perspective of protein function, however, both the beginning and end (N and C termini) are
points of interest for appending amino acids, especially with respect to protein localization
[6, 53]. As such, we augment the sequence data as follows:

1. The amino acid sequence is tokenized using the ESM-2 tokenizer.

2. Start and end tokens are appended to the beginning and end of the sequence.

3. Cropping or padding occur based on the full sequence length, (length of amino acid
sequence + <START> token + <END> token = 1002).

• If the full sequence length > 1002 tokens, we randomly crop 1002 tokens.
• If the full sequence length < 1002 tokens, we randomly add pad tokens before the

<START> token and/or after the <END> token (See Fig. 2.1).

4. A <SEP> token is appended to the end of the protein sequence.

Image Preprocessing
A few preprocessing steps were necessary for the image encoder. Our image processing

procedure is as follows:

1. We clip pixels beneath the .001 and above the 99.999 percentiles.

2. We normalize image values based on the calculated means and standard deviation from
the datasets:
Human Protein Atlas
Nucleus: µ = 0.0655, σ = 0.1732

Protein Image: µ = 0.0650, σ = 0.1208

OpenCell
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Figure 2.1: The amino acid sequence is tokenized and randomly padded via the <PAD> token.
The top row shows start and end padding. The middle row shows end padding. The bottom
row shows start-padding. All of these are possible. Note that the fixed length of 1002 means
that the <SEP> token is always placed in the 1003rd position.

Nucleus: µ = 0.0272, σ = 0.0486

Protein Image: µ = 0.0244, σ = 0.0671

3. We rescale the images so pixel values are between 0 and 1.

4. The median pixel value of the protein image is calculated to create the thresholded
image such that pixels ≥ median = 1 and pixels < median = 0.
Finally, we rescale images to 600× 600 and randomly crop to 256× 256 pixels.

5. Data augmentation is applied via random horizontal and vertical flips.

2.2 Model
CELL-E 2 (Fig. 1.2) is a masked encoder-only transformer model, similar to BERT [44],

which upgrades the capabilities of CELL-E, an autoregressive decoder-only model [54]. Due
to the NAR nature of the model, CELL-E 2 is capable of both image generation (sequence
to image), as well as sequence prediction (image to sequence).

Amino Acid Sequence Embeddings
CELL-E 2 utilizes embeddings from ESM=2 [30]. We opt to use frozen embeddings for the

prediction task, which has been demonstrated to yield superior reconstruction performance
in text-to-image models [14, 41, 46]. The embeddings obtained from a protein language
model contain valuable information about amino acid residues, biochemical interactions,
structural features, positional arrangements, as well as other characteristics like size and
complexity [26]. We train models of varying size based on the released ESM-2 checkpoints
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(See Section 3). The output of the final embedding layer per respective model is used as the
amino acid sequence embedding.

Image Tokenization
We utilize VQGAN autoencoders [55] trained on both the HPA and OpenCell datasets,

respectively. VQGAN surpasses other quantized autoencoders by incorporating a learned
discriminator derived from GAN architectures [56]. Specifically, the Nucleus Image Encoder
employs VQGAN to represent 256× 256 nucleus reference images as 16× 16 image patches,
with a codebook size of (n = 512) image patches. To enable transfer learning, we explore
ways to finetune these VQGANs in Section 2.2.

The protein threshold image encoder acquires a compressed representation of a discrete
probability density function (PDF) that maps per-pixel protein positions, presented as an
image. We binarize the image based on the median pixel value of the image (see Section 2.1).
We utilize a VQGAN architecture identical to the Nucleus VQGAN to estimate the entire set
of binarized image patches to denote local protein distributions. These VQGANs are trained
until convergence, and the discrete codebook indices are used for the CELL-E 2 transformer.
Hyperparameters (Table 2.1, Table 2.2) and training details can be found in Section 2.2.

Input Masking Strategy
We adopt a cosine-scheduling technique for masking image tokens, which has been used

by other works. The probability of an image patch being masked is determined by a cosine
function, favoring high masking rates with an expected masking rate of 64% [46, 47]. This
technique provides various levels of masking during the training process, exposing the model
to spatial context for masked language tokens.

Of similar interest as image prediction, sequence in-filling with respect to a localiza-
tion pattern is of interest to biologists. Typically, protein localization sequences are found
through sequence similarity searches with proteins that have known localizations in partic-
ular organelles [57–59] or via experimentation [60, 61]. CELL-E 2’s bidirectionality enables
the model to make predictions for image sequences and sequence predictions for images,
making it a novel approach to protein engineering. To achieve this, we also mask the lan-
guage tokens along with the protein threshold image tokens. We experimented with using
the same cosine function for image masking but found it led to numerical instability and
vanishing gradients. Therefore, we decided to linearly scale the cosine function to ensure the
maximum masking rate matched that used during the training of ESM-2, which was 15%.

Base Transformer
The base transformer is an encoder-only model in which the inner dimension is set based

on the embedding size of the pre-trained language model used. In order to perform masking,
we have two types of masking tokens. For masking the amino acid sequence, we utilize the
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mask token which already exists within the ESM-2 dictionary, designated as <MASK_SEQ>.
The VQGAN does not contain a masking token within its codebook, so to represent it, we
add an additional entry in the image token embedding space (with n + 1: (512 + 1 = 513),
where n is the number of tokens in the VQGAN codebook), and designate the final token
as <MASK_IM>. We additionally create an embedding space of length 1 for the <SEP> token
which is appended to the end of the amino acid sequence. Training details can be found in
Section 2.2.

We sample from this transformer by strategically masking positions in the image or
sequence (see Section 2.2). The logit values for the image prediction are used as weights for
the threshold image patches to produce a predicted distribution (Fig. 1.1, Fig. 3.1).

Sampling
We experimented with the cosine-scheduling approach used in other works [46, 47], but

we did not see any improvement in reconstruction performance (Fig. 2.3). We predicted
the entire image in one step for image prediction. For amino acid sequence prediction, we
predict amino acids one-by-one from the central protein.

We also calculated the probabilities of each token for all image predictions. We kept the
output logits of the transformer. For image logits, we normalized them to 1 and fed them
to the VQGAN decoder, which performed a linear interpolation in latent space. We clipped
the values between 0 and 1 and displayed them as a heatmap (Fig. 2.2).

Training
We utilized 4× NVIDIA RTX 3090 TURBO 24G GPUs for this study. 2 GPUs were

utilized for training VQGANs via distributed training. Our computer also contained 2×
Intel Xeon Silver and 8× 32768mb 2933MHz DR×4 Registered ECC DDR4 RAM. Only a
single GPU is ever used to train CELL-E 2 models. Models were implemented in Python
3.11 using Pytorch 2.0 [62].

In order to train the transformer, we underwent the following procedure (Fig. 1.2):

1. We tokenize the amino acid sequence using the ESM-2 dictionary. We tokenize the
nucleus image and protein threshold image using the codebook indices of the respective
pre-trained VQGANs.

2. We retrieve embeddings for the amino acid sequence from the pre-trained ESM-2 pro-
tein language model (available under the MIT license Copyright (c) Meta Platforms,
Inc. and affiliates.) . These embeddings are frozen and never updated over the course
of training.

3. We randomly mask the amino acid sequence and protein threshold image tokens. The
<SEP> and nucleus image tokens are never masked.
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Figure 2.2: Depiction of the reconstruction scheme used to generate the predicted distribu-
tion heatmaps. Similar to training time, we provide tokenized vectors corresponding to the
amino acid sequence and the nucleus image. Every position for the tokenized image is set
to <MASK_IM> (shown as gray squares). The output logits are saved for every position and
treated as probabilities associated with each image patch. These values are scaled and sent
to the threshold VQGAN decoder to produce the final heatmap. Values are clipped between
0 and 1.

4. We obtain embeddings for the image tokens from embedding spaces created within
the transformer and are learned over training. These size of the embedding are set
to the same dimension as the pre-trained language embeddings. We similarly retrieve
embeddings from a separate embedding space for the <SEP> token.

5. We pass the embeddings through a positional encoder via rotary encoding [63].

6. We concatenate the embeddings along the sequence dimension and pass them through
the transformer. We calculate loss via cross-entropy only on the masked tokens.

Hyperparameters
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Table 2.1: VQGAN Hyperparameters

Hyperparameter Value

Optimizer Adam [64]
Base Learning Rate 4.5× 10−6

Betas β1 = .5, β2 = .9
Weight Decay 0
Embedding Dimension 256
Number of Embeddings 512
Resolution 256
Number of Input Channels 1
Dropout 0
Discriminator Start 50000
Discriminator Weight .2
Codebook Weight 1.0

Table 2.2: Base Transformer Hyperparameters

Hyperparameter Value

Optimizer AdamW [65]
Base Learning Rate 3× 10−4

Betas β1 = .9, β2 = .95
Weight Decay .01
Number of Text Tokens 33
Text Sequence Length 1000
Embedding Dimension/Depth 480/68 or 640/55

or 1280/25 or 2560/5
Number of Heads 16
Dimension of Head 64
Attention Dropout .1
Feedforward Dropout .1
Image Loss Weight 1
Condition Loss Weight 1

Fine-Tuning
We sought to leverage both datasets to be beneficial. Human Protein Atlas contains

many proteins (17,268) but is subject to inaccuracies fundamentally because of the immuno-
histochemistry used for staining, which requires several rounds of fixation and washing [25].
This means the proteins are not observed in a live cell; are subject to signal loss, artifacts,
and/or relocalization events; and therefore do not necessarily represent the true nature of
protein expression and distribution within a cell [66]. The OpenCell dataset, while com-
paratively smaller, overcomes these issues by using a split-fluorescent protein fusion system
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allows for tagging endogenous genomic proteins, maintaining local genomic context, and the
preservation of native expression regulation [23, 67]. We therefore initially trained on the
Human Protein Atlas dataset and then fine-tuned on the OpenCell dataset.

Fine-tuning in the text-to-image domain is still an open question. The use of multiple
models makes it difficult to pin down the correct strategy. Contemporary efforts utilize
pre-trained checkpoints to fine-tune on domain specific data [68–70]. Chambon et al. [71]
reported improved synthesized image fidelity when fine-tuning the U-net of a text-to-image
diffusion model, but similar fine-tuning strategies have not been explored for patch-based
methods. We report our findings in Section 3.
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Cosine Schedule Reconstruction (480 HPA Model)
Formin-like protein 1
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Figure 2.3: Image prediction based on the number of reconstruction steps. Note the decreased
distribution intensity with increasing step count.
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Chapter 3

Results

Similar to CELL-E, we cast the embedding spaces for the image tokens at the same size
as the ones used by the pre-trained language model. The size of the embedding vectors
(”Hidden Size”) for each model was chosen based on the publicly available ESM-2 check-
points. For instance, a CELL-E 2 model with hidden size = 480 uses esm2_t12_35M_UR50D,
which corresponds to a 35M parameter model with 12 attention layers. Khwaja et al. [14]
demonstrated an positive relationship between the number of attention layers in the base
transformer (designated ”Depth”), and the image prediction performance. The maximum
depth was set based on our available GPU memory capacity. We refer to models using the
name format ”Training Set_Hidden Size”.

Image Prediction Accuracy
To generate the protein localization image prediction, we provide CELL-E 2 with the

protein sequence and nucleus image, and fill the image token positions with <MASK_IM>
tokens (Fig. 2.2).

We evaluated the models on several image metrics (see Section A) that measure the
quality and diversity of the generated protein images (Table 3.1). Additionally, we assessed
the model’s generalization capabilities by testing them on the other dataset (HPA-trained
model on OpenCell and vice versa) (Table A.1). We reported the results for each model on its
respective dataset. We observed a significant positive effect of depth on performance across
all metrics and datasets. The models with hidden sizes of 480 and 640 achieved the highest
scores, with no significant difference between them. However, on the HPA dataset, HPA_640
surpassed the HPA_480 model in more categories. On the OpenCell dataset, OpenCell_480
performed better than the OpenCell_640. Table A.1 shows the image prediction
performance of HPA and OpenCell-trained across both datasets and splits. We evaluate
image reconstruction using the following metrics:

Nucleus Proportion MAPE This metric measures how well the predicted protein image
matches the ground truth in terms of the fraction of intensity within the nucleus. We use
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Cellpose [72] to create a mask of the nucleus channel. Then we divide the sum of the
predicted 2D PDF pixels inside the mask by the sum of all pixels in the image. We do
the same for the ground truth protein image and compare the two fractions. The error is
expressed as a percentage of the ground truth fraction.

Image MAE This metric calculates the average absolute difference between each pixel
in the predicted protein threshold image and the ground truth protein threshold image. A
lower MAE means a better match.

PDF MAE This metric is similar to Image MAE, except we evaluate the difference using
the predicted 2D PDF, rather than the predicted protein threshold image. We expect this
number to be less accurate as tokens with less confidence will reduce the pixel value, while
all values in the protein threshold image are 0 or 1.

SSIM Structural similarity index measure (SSIM) is a metric that evaluates how similar
two images are in terms of local features such as brightness and contrast. It takes into
account the spatial relationships between neighboring pixels. SSIM values range from 0,
meaning no similarity, to 1, meaning perfect similarity.

IS Inception score (IS) is a metric that assesses how realistic and diverse the images gener-
ated by a model are. It uses a pretrained neural network to classify the images and computes
a score based on how well they fit into different categories. A higher IS means more realistic
and varied images.

FID Fréchet Inception Distance (FID) is another metric that compares the quality and
diversity of generated images to ground truth images. It calculates the distance between
two statistical representations of the image distributions, called feature vectors, which are
extracted by a pretrained neural network. A lower FID means more similar distributions
and better quality images. For this study FID was scored against the training or validation
sets when applicable.

Table 3.1: Validation Set Image Prediction Accuracy
Dataset Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

480 68 0.0257 ± 0.0250 0.3340 ± 0.0788 0.2846 ± 0.0985 0.2633 ± 0.1781 12.0332 2.2900 ± .0410
HPA 640 55 0.0294 ± 0.0278 0.3283 ± 0.0805 0.2842 ± 0.0991 0.2826 ± 0.1827 21.7942 2.2618 ± 0.0364

1280 25 0.0370 ± 0.0360 0.3622 ± 0.0799 0.2967 ± 0.0985 0.2645 ± 0.1857 1.5161 2.5440 ± 0.0490
2560 5 0.0818 ± 0.0794 0.3516 ± 0.0792 0.3104 ± 0.0904 0.2558 ± 0.1619 23.7977 2.1578 ± 0.0290
480 68 0.0161 ± 0.0148 0.4953 ± 0.0064 0.3620 ± 0.1168 0.1220 ± 0.1188 1.5844 2.6069 ± 0.1175

OpenCell 640 55 0.0159 ± 0.0136 0.4995 ± 0.0006 0.3785 ± 0.1008 0.1011 ± 0.1012 2.6966 2.0974 ± 0.0981
1280 25 0.0272 ± 0.0223 0.4996 ± 0.0010 0.4359 ± 0.0700 0.0694 ± 0.0472 8.9102 1.3712 ± 0.0432
2560 5 0.0584 ± 0.0511 0.4996 ± 0.0005 0.4145 ± 0.0889 0.0890 ± 0.0667 9.5116 1.4176 ± 0.0329

We also visually inspected some of the generated protein images (Fig. 3.2, Fig. 3.3). The
images appeared realistic and consistent with the ground truth labels, but they had low
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entropy in the predicted distribution. This suggests that the models learned to generate
images with high probability tokens, but failed to capture the uncertainty and variability of
the image tokens. This could be attributed to the rapid overfitting of the OpenCell models,
which limited their generalization ability.

We found that models performed better on their own datasets than on the other dataset.
However, the HPA-trained model had higher image prediction performance on the OpenCell
dataset than the OpenCell-trained model, with lower PDF MAE values for all categories.
The HPA model also had lower FID on the OpenCell validation set, indicating the benefits
of having more data despite different imaging conditions. OpenCell_480 achieved the best
scores for 4 out of 8 metrics (MAPE, MAE, SSIM and IS). This performance is likely due to
the large number of parameters in the model, which is 25M.

Masked Sequence In-Filling
To test each model’s sequence learning, we used a masked in-filling task similar to the

training task. Similar to Section 3, we provide CELL-E 2 with a randomly masked (15 %)
sequence, a nucleus image, and a threshold image. To select the sequence prediction we
perform a weighted random sampling operation from the 3 amino acids with the highest
predicted probabilities. We measured the accuracy as the percentage of correct predictions
(noted as ”Sequence MAE”, see Section A). We then embedded each reconstructed sequence
with esm2_t36_3B_UR50D, the largest model we could fit in memory, with 3B parameters,
36 layers and an embedding dimension of 2560. We computed the mean cosine similarity
between the embeddings of the original and reconstructed sequences at masked positions.
We show validation results in (Table 3.2) and all results in (Table A.2).

We evaluate only on masked positions using the following criteria:

Sequence MAE This metric calculates the average absolute difference between each
amino acid in the predicted sequence and the ground truth sequence. A lower MAE means
a better match.

Cosine Similarity We evaluate cosine similarity of the amino acid embeddings. This
metric measures the angle between two vectors that represent the predicted sequence and
the ground truth sequence. It ranges from -1 to 1, where 1 means the vectors are identical,
0 means they are orthogonal, and -1 means they are opposite. A higher cosine similarity
means a more similar sequence.

Most models had low performance on this task in terms of reconstruction. This could be
because the models learned to generate amino acids that were common or frequent in the
dataset, but not necessarily correct for the specific sequence. However, we also observed val-
ues close to 1 for the cosine similarity, indicating that the predicted amino acids had similar
embedding values to the original ones at the masked positions. This could be because the
models learned to capture some semantic or structural features of the amino acids, such as
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Table 3.2: Validation Set Masked Sequence In-Filling

Dataset Hidden Size Depth Sequence MAE Cosine Similarity

480 68 0.8628 ± 0.0951 0.9504 ± 0.0237
HPA 640 55 0.7917 ± 0.1245 0.9577 ± 0.0216

1280 25 0.6512 ± 0.1794 0.9708 ± 0.0163
2560 5 0.5759 ± 0.2322 0.9722 ± 0.0210

480 68 0.7507 ± 0.1709 0.9533 ± 0.0285
OpenCell 640 55 0.6641 ± 0.1764 0.9610 ± 0.0272

1280 25 0.5698 ± 0.2016 0.9709 ± 0.0220
2560 5 0.4950 ± 0.2456 0.9711 ± 0.0271

polarity or charge, that were reflected in the embedding space. Models that used the embed-
ding model with 2560 dimensions had the best performance. For example, OpenCEll_2560
had the best performance on both metrics, with a MAE of 0.4950 and cosine similarity of
0.9711.

Table 3.3: ESM-2 Masked Sequence In-Filling Accuracy (No Image)
Training Set Proteins

Dataset Hidden Size # Layers Sequence MAE Cosine Similarity

480 12 .7351 ± .1100 .9464 ± .0232
HPA 640 30 .6507 ± .1317 .9572 ± .0183

1280 33 .4921 ± .1741 .9724 ± .0133
2560 36 .3818 ± .1911 .9778 ± .0130

480 12 .7276 ± .1144 .9425 ± .0233
OpenCell 640 30 .6151 ± .1364 .9572 ± .0159

1280 33 .4335 ± .1650 .9746 ± .0082
2560 36 .3298 ± .1762 .9793 ± .0089

Validation Set Proteins
Dataset Hidden Size # Layers Sequence MAE Cosine Similarity

480 12 .7368 ± .1116 .9471 ± .0209
HPA 640 30 .6553 ± .1334 .9571 ± .0161

1280 33 .5005 ± .1705 .9723 ± .0096
2560 36 .3894 ± .1911 .9777 ± .0096

480 12 .7355 ± .1130 .9381 ± .0286
OpenCell 640 30 .6185 ± .1454 .9538 ± .0199

1280 33 .4260 ± .1822 .9737 ± .0096
2560 36 .3220 ± .1848 .9789 ± .0086

We also note that the reconstruction ability does not improve the performance of the
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original language models (Table 3.3). This may be a result of the combined image/sequence
loss used during training or because of a smaller corpus of data compared to datasets used
for the training the original language model.

Evaluation results across both datasets can be found in (Table A.2)

Finetuning
We experimented with different finetuning strategies for CELL-E 2 on the OpenCell

dataset. We used the pre-trained HPA checkpoint as the starting point for all finetuned
models, continuing training on the OpenCell train set. We also evaluated the pre-trained
HPA and OpenCell checkpoints without any finetuning as baselines. The finetuned models
differed in how they updated the image encoders:

• HPA Finetuned (HPA VQGAN): we kept the original VQGAN image encoders from the
HPA checkpoint.

• HPA Finetuned (OpenCell VQGAN): we replaced the image encoders with the Open-
Cell VQGANs.

• HPA Finetuned (Finetuned HPA VQGAN): we finetuned the HPA image encoders while
keeping the rest of the model frozen, then freeze the image encoders and update the
transformer weights.

Fig. 3.4 shows image predictions on an OpenCell validation protein for models with
hidden size = 480. Surprisingly, the pre-trained HPA model already achieved strong perfor-
mance on the OpenCell dataset without any finetuning (seeTable A.3). The best results were
obtained by fine-tuning both the VQGAN image encoders and using them in the HPA base
transformer checkpoint (see Table 3.4). We attribute the 1.81% improvement in MAE, along
with the improvements in FID and IS, to the finetuning of both the VQGANs, as it improved
the consistency of image patch tokens. This provided the checkpoint with more reliable im-
age patches to generate from. However, swapping the HPA VQGAN with an OpenCell one
led to a similar losses of distribution information seen in Fig. 3.3. This could be because the
model overfits before being able to learn probabilities across tokens. The learning obstacle
comes from the possibility that images patches within the finetuned OpenCell VQGAN have
sufficient (or even more) pixel consistency with the images, but the patch positional indices
are misaligned with those of the HPA VQGAN. These findings are consistent with those
found in analogous text-to-image works utilizing diffusion models.

We did not find that finetuning improved the sequence reconstruction ability of the model
(see Table A.4).
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Table 3.4: OpenCell Validation Set Image Prediction Accuracy after Finetuning
Fine-Tuned Threshold Image Encoder Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

No HPA 0.0181 ± 0.0168 0.4154 ± 0.0594 0.3887 ± 0.1270 0.1250 ± 0.1149 3.9509 2.1739 ± 0.1255
No OpenCell 0.0161 ± 0.0148 0.4953 ± 0.0064 0.3620 ± 0.1168 0.1220 ± 0.1188 1.5844 2.6069 ± 0.1175
Yes HPA 0.0166 ± 0.0151 0.3776 ± 0.0834 0.3477 ± 0.1268 0.1869 ± 0.1503 17.4075 2.9113 ± 0.1199
Yes OpenCell 0.0159 ± 0.0156 0.4996 ± 0.0006 0.3506 ± 0.1208 0.1574 ± 0.1372 2.5026 2.7168 ± 0.1137
Yes HPA Finetuned 0.0170 ± 0.0160 0.3449 ± 0.1305 0.3487 ± 0.1340 0.1881 ± 0.1541 19.2683 3.6083 ± 0.2013
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Figure 3.1: More randomly selected predictions from HPA Finetuned HPA VQGAN_480. We
only note an incorrect prediction in Eukaryotic translation initiation factor 5.
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HPA Model Size Comparison
Broad substrate specificity ATP-binding cassette transporter ABCG2
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Figure 3.2: CELL-E 2 models trained on the HPA dataset. Predictions are shown based
on the hidden size of the transformer embedding. We see the strongest performance from
the 480 and 640 models. Localization is expected within the mitochondria in the selected
protein. Not the heightened intensity within the nuclear region in the 1280 and 2560 models
predictions.
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OpenCell Model Size Comparison
Actin-binding protein WASF1
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Figure 3.3: Similar to Fig. 3.2, we depict the performance of CELL-E 2 models only trained
on the OpenCell dataset. We see the best performance on the 480 model, but not drastically
different predicted distribution images. This is likely a function of reduced training time due
to the quick overfitting of the model.
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Finetuned Model Comparison
Glycerol-3-phosphate acyltransferase 4
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Figure 3.4: Various model performance from different fine tuning methods. We note superior
predictive performance from the model with where we initially fine-tune the image encoder.
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Chapter 4

Discussion

Speed
In Table 4.1, we compare the speed localization prediction from scratch of CELL-E 2

against CELL-E. We found that the CELL-E 2 with hidden size of 480 was able to generate
a prediction 65× faster than the CELL-E model. This is a result of the model’s capability to
generate a prediction in a single step (.2784 seconds). This level of speed enables the advent
of large-scale in silico mutagenesis studies.

Table 4.1: Speed Comparison

Model Hidden Size Autoregressive Mean Generation Time (s)

CELL-E (Cached) 768 Yes 18.2740 ± 0.0451
CELL-E (Non-Cached) 768 Yes 28.7694 ± 0.3207

CELL-E 2 480 Yes 55.0057 ± 0.2069
CELL-E 2 640 Yes 62.9650 ± 0.1033
CELL-E 2 1280 Yes 74.3698 ± 0.1788
CELL-E 2 2560 Yes 128.9960 ± 0.3718

CELL-E 2 480 No 0.2784 ± 0.0006
CELL-E 2 640 No 0.3067 ± 0.0012
CELL-E 2 1280 No 0.3249 ± 0.0011
CELL-E 2 2560 No 0.5487 ± 0.0022

Table 4.1 depicts the mean time taken for 10 separate model predictions. CELL-E is
not directly comparable to CELL-E 2 due to differences in language model and package
versioning, so we opt to include the compute time of CELL-E 2 using an autoregressive
reconstruction scheme (i.e. 256 sequential steps from top left to bottom right). CELL-
E 2 model run in autoregressive mode are significantly slower due to the lack of cache
implementation found in CELL-E and the larger ESM-2 language model compared to the
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TAPE model used in CELL-E. CELL-E 2 models which generate the prediction in a single
step (NAR) are an orders of magnitude faster than their autoregressive counterparts.

De novo NLS Design
CELL-E 2 ’’s bidirectional integration of sequence and image information allows for an

entirely novel image-based approach to de novo protein design. We applied CELL-E 2 to
generate NLSs for GFP, a common protein engineering target [73–75] that is non-native
and absent in the datasets. NLS are short amino acid sequences that direct proteins to the
nucleus. They are usually identified by experimental mutagenesis studies or in silico screens
that search for frequent sequences in nuclear proteins [57, 76]. However, these methods may
yield candidates that are highly similar to known ones or not specific to the target protein.
A more recent approach uses machine learning on sequence identity to augment featurization
and statistical priors [22], but it is limited by the distribution of training samples due to
the scarcity of experimentally verified NLSs. CELL-E 2 overcomes these limitations because
it does not rely on explicit labels, and can therefore leverage significantly more unlabelled
image data.

We generated a list of 255 novel NLS sequences for GFP using the procedure described
in Section 4. Briefly, we insert mask tokens of set length in a GFP sequence and ask the
model with best sequence in-filling performance (OpenCell_2560) to fill in the masked amino
acids, conditioned on a threshold image generated from the nucleus image (via Cellpose
segmentation [72]). To verify the accuracy of the prediction, we pass the predicted sequence
through the best performing image model (HPA Finteuned (Finetuned HPA VQGAN)_480),
and quantify the proportion of signal intensity within the nucleus of the predicted threshold
image (Fig. 4.1). The NLS sequences were then ranked by based on sequence and embedding
similarity with known NLSs (see Section 4). The list of candidates can be found in Section B.
We found several NLS candidates with high predicted signal in the nucleus, but which were
fairly dissimilar from any protein found within NLSdb [76].

NLS generation

1. We selected a desired NLS length (iterating over a range of 5 to 30 residues) and
inserted that number of mask tokens after the starting methionine in the GFP se-
quence. (e.g. an NLS of length 5 at the N terminus would have an input sequence of
<START> M <MASK_SEQ> <MASK_SEQ> <MASK_SEQ> <MASK_SEQ>
<MASK_SEQ>SKGEE...<END> <PAD>...).

2. We randomly chose a nucleus image and segmented the nuclei area by applying a mask
with Cellpose [72]. We assigned the pixels inside the nucleus area to True and used
this as the threshold image.
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3. We inputted the masked GFP sequence, the nucleus image, and the threshold image
to the transformer and sampled the output. We used the model depth that achieved
the highest performance on sequence reconstruction, which was OpenCell_2560.

4. For each sequence length, we generated 300 candidates per length per terminus. We
then provided the HPA Finetuned (Finetuned HPA VQGAN)_480 model with the pre-
dicted NLS + GFP sequence and the nucleus image. Using the previously calculated
nucleus mask, we calculate the percentage of positive intensity predicted within the
nucleus bounds. Any sequence with a predicted nucleus proportion intensity < 75%
was discarded.

We generated candidate NLS with lengths from 2 to 30 amino acids at the N and C
termini of the protein. We ranked them using these criteria:

• Forward Consistency: The proportion of positive signal in the nucleus mask relative
to the whole image, using the best image prediction model (480 model), similar to
Section 3.

• Image Prediction Confidence: The values from the predicted distribution using a
masked approach, indicating the confidence in the localization image prediction.

• Text Prediction Confidence: The average probability values of the predicted NLS se-
quence tokens.

• Sequence Similarity: The maximum alignment score between the candidate NLS and
sequences from the NLSdb, similar to Madani et. al. [29].

• Embedding Cosine Angle: The minimum cosine angle between the embeddings of the
candidate NLS and sequences from the NLdb [76], using the same language model from
Section 3, except similarity is evaluated on the entire protein sequence (NLS + GFP),
rather than limited to the masked positions.

We rounded all values to one decimal place and ranked them by 1) Sequence Similarity,
2) Embedding Cosine Angle, 3) Forward Consistency, 4) Image Prediction Confidence, 5)
Text Prediction Confidence.

Classical NLSs are characterized by having regions of basic, positively charged amino
acids arginine (R) and lysine (K) [53, 77], and are categorized as “monopartite” or “bipartite”,
either having a single cluster of basic amino acids or two clusters separated by a linker [78],
respectively. We observed a postive corellation between percentage of R and K residues in
our predicted NLSs and sequence homology with known NLSs (Table 4.2). The number of
clusters per sequence followed a similar trend, with sequences with relatively low sequence
homology (Max ID% ≤ 33) having at most 2 clusters in 88 % of predictions (Fig. 4.2). The
remaining predictions, if correct, are therefore non-classical NLSs.
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Table 4.2: NLS Composition

Max ID % # Sequences Mean Sequence Length Mean % R or K

0% - 33% 109 25.6606 ± 3.0099 20.6379 ± 8.6101
33% - 66% 133 17.1955 ± 5.0804 32.0076 ± 12.8334
66% - 100% 13 6.9231 ± 1.2558 57.5794 ± 17.9351

Visualizing Attention
In Fig. 4.3 and Fig. 4.4, we depict the relative attention weights placed on the input amino

acid sequence and nucleus image used to generate the threshold prediction. Specifically, we
sought to emphasize weights correlated with positive signal, that is patches with largely
white pixels. In this way, we do not bias the weights we consider with the use of any manual
feature annotations or image segmentation. We first use attention rollout [79] to obtain the
relative correlation between tokens at the end of the network. We then take an average across
the multiplied attention heads. From here, we separate ”positive” vs ”negative” signal image
patches based on the average intensity within the predicted image. Positive and negative
patches are those where ≥ 75% and ≤ 25% are white, respectively. We then subtract
the mean attention weights of the negative patches from the positive patches. Those with
positive differences are therefore more correlated with a positive signal prediction in the cell.
For visualization, we depict the log value of the difference (normalized to 1).

Similar to CELL-E, we observed high attention weights on documented localization se-
quences correlated with positive protein signal within the threshold image (Fig. 4.3). For
sequences with high predicted nucleus proportion intensities, we observed high activation
across the entire sequence (novel NLS and GFP residues), with some NLS weights being an
order of magnitude higher than others across the GFP sequences (Fig. 4.4). On the contrary,
predicted sequences with comparatively less predicted intensity within the nucleus had low
activation across the sequence, with little to none in the proposed NLS. We observed similar
amounts of attention placed on the nucleus image patches, which largely corresponded to
the location of the predicted threshold patches.

4.1 Future Work
In this paper, we have presented CELL-E 2, a novel bidirectional NAR model for protein

design and engineering. CELL-E 2 can generate both image and sequence predictions, handle
multimodal inputs and outputs, and run significantly faster than the SOTA.

By pre-training on a large HPA dataset and fine-tuning on CELL-E, CELL-E 2 can
achieve competitive or superior performance on image and sequence reconstruction tasks.
However, one limitation of CELL-E 2 is its output resolution, which is currently (256×256).
This resolution may not capture the fine details of microscopy images. Increasing the output
resolution of CELL-E 2 is one direction for future work. Another direction for future work is
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to incorporate structural information into the sequence embeddings. CELL-E 2 can generate
novel NLS sequences with similar properties to GFP but low homology to existing sequences.
However, the current sequence embeddings are based on a language model that may not
capture all the structural features of the proteins. These features may affect the image
appearance and vice versa.

We believe that CELL-E 2 is a promising model for protein design and engineering. We
hope that our work will inspire more research on bidirectional NAR models for this domain
and other domains that involve multimodal data.
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Input
Tokens

Inputs

Figure 4.1: Diagram depicts the pipeline for NLS discovery. In the top half, we predetermine
the length of the novel NLS sequence and insert the corresponding number of mask tokens
either after the starting Methionine or before the <END> token, depending on the chosen
terminus. The threshold image is obtained by passing the nucleus image through Cellpose. In
the bottom half, we pass the the GFP with proposed NLS sequence into an image prediction
model to ensure predictive consistency of the sequence.
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Figure 4.2: Pie charts showing the maximum # of stretches (numbers outside of circle) of
R and K amino acids per proposed NLS sequence. Stretches are calculated based on the
number of continuous R and K amino acids with a maximum tolerance of 2 amino acid gap.
Only streches with 4 or more amino acids are counted. Proteins are shown binned with
respect to Max ID % sequence homology with the NLSdb (0%-33%, 33%-66%, and 66%-
100%). The relative proportion of max stretches per bin is shown as a percentage inside the
circle.
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Figure 4.3: Relative attention weights of predictions from HPA_480 on HPA images with
known localization signals (highlighted in red).
Three proteins with documented localization signals show high attention on those regions:
Heterogeneous nuclear riboprotein A1 (top left), which localizes to the nucleus and cytoplasm
[1, 2]; Nucleoplasmin-2 (bottom left), which localizes to the nucleus [3]; and Mitochondrial
import receptor subunit TOM22 homolog (top right), which localizes to the mitochondria
[4]. However, Calnexin (bottom right), which localizes to the endoplasmic reticulum [5],
does not show high attention on its localization signal despite the correct prediction. This
may be due to the loss of subcellular features in the thresholding process caused by the low
resolution of the fluorescence image.
We also observe high attention on other amino acids in the sequences that are not known
localization signals. These may indicate potential sites of interest for further biological
investigation.
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Figure 4.4: Attention weights associated with positive signal within the predicted image.
Tokens with higher attention weight associated with background patches (low signal) are
not highlighted. See Section 4 for more information about the visualization process. We
show 3 sequences with the highest (left column) and lowest (right column, not included in
Table B.1) predicted nucleus proportion intensity. The GFP sequences are shown with the
predicted NLS highlighted in red.
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Appendix A

Extended Results

Image Prediction Accuracy
Table A.1 shows the image prediction performance of HPA and OpenCell-trained across

both datasets and splits.

Masked Sequence In-Filling
Table A.2 shows the sequence prediction performance (predicting 15 % of masked residues)

of the models shown in Table A.1.

FineTuning
Table A.3 shows the image prediction performance of models across datasets after fine-

tuning on the OpenCell dataset. Table A.4 shows the sequence prediction accuracy of the
same models.
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Table A.1: Image Prediction Accuracy Across OpenCell and HPA

Training Set Proteins
Dataset Train Set Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

480 68 .0254 ± .0296 .3344 ± .0797 .2845 ± .0991 .2635 ± .1797 11.4596 2.3151 ± .0224
HPA 640 55 .0291 ± .0318 .3286 ± .0808 .2843 ± .0996 .2827 ± .1836 21.0591 2.2879 ± .0153

1280 25 .0356 ± .0341 .3640 ± .0797 .2942 ± .0973 .2673 ± .1862 1.0080 2.5634 ± .0192
2560 5 .0788 ± .0773 .3530 ± .0795 .3097 ± .0904 .2569 ± .1636 22.8721 2.1817 ± .0166

HPA
480 68 .0244 ± .0317 .4620 ± .0769 .3530 ± .0803 .0865 ± .0714 4.1290 2.7063 ± .0146

OpenCell 640 55 .0247 ± .0285 .4676 ± .0778 .3572 ± .0781 .0800 ± .0674 37.6196 2.4858 ± .0169
1280 25 .0368 ± .0321 .4678 ± .0776 .3835 ± .0659 .0712 ± .0518 21.3462 1.5207 ± .0020
2560 5 .0706 ± .0737 .4678 ± .0777 .3474 ± .0797 .1041 ± .0725 14.4177 1.7531 ± .0109

480 68 .0184 ± .0177 .4138 ± .0573 .3699 ± .1262 .1388 ± .1206 3.7217 2.3090 ± .0548
HPA 640 55 .0183 ± .0166 .4087 ± .0579 .3835 ± .1191 .1230 ± .1128 3.5440 2.0354 ± .0998

1280 25 .0219 ± .0202 .4358 ± .0588 .3659 ± .1141 .1225 ± .1198 7.1451 2.1888 ± .0776
2560 5 .0460 ± .0418 .4164 ± .0693 .3905 ± .0962 .0984 ± .0870 7.5480 2.0104 ± .0519

OpenCell
480 68 .0134 ± .0131 .4930 ± .0074 .3264 ± .1108 .1620 ± .1429 .8923 3.0345 ± .1000

OpenCell 640 55 .0141 ± .0124 .4994 ± .0006 .3473 ± .0995 .1291 ± .1195 2.8314 2.3160 ± .0702
1280 25 .0277 ± .0230 .4996 ± .0007 .4276 ± .0707 .0743 ± .0518 9.3420 1.3759 ± .0213
2560 5 .0567 ± .0479 .4996 ± .0006 .4037 ± .0877 .0927 ± .0681 9.8328 1.4463 ± .0260

Validation Set Proteins
Dataset Train Set Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

480 68 .0257 ± .0250 .3340 ± .0788 .2846 ± .0985 .2633 ± .1781 12.0332 2.2900 ± .0410
HPA 640 55 .0294 ± .0278 .3283 ± .0805 .2842 ± .0991 .2826 ± .1827 21.7942 2.2618 ± .0364

1280 25 .0370 ± .0360 .3622 ± .0799 .2967 ± .0985 .2645 ± .1857 1.5161 2.5440 ± .0490
2560 5 .0818 ± .0794 .3516 ± .0792 .3104 ± .0904 .2558 ± .1619 23.7977 2.1578 ± .0290

HPA
480 68 .0245 ± .0235 .4622 ± .0767 .3533 ± .0803 .0861 ± .0718 41.5344 2.6712 ± .0225

OpenCell 640 55 .0248 ± .0231 .4676 ± .0776 .3575 ± .0783 .0795 ± .0681 38.3386 2.4850 ± .0381
1280 25 .0371 ± .0343 .4678 ± .0775 .3833 ± .0661 .0713 ± .0525 21.6973 1.5206 ± .0152
2560 5 .0717 ± .0722 .4678 ± .0776 .3474 ± .0796 .1038 ± .0731 14.7231 1.7524 ± .0160

480 68 .0181 ± .0168 .4154 ± .0594 .3887 ± .1270 .1250 ± .1149 3.9509 2.1739 ± .1255
HPA 640 55 .0178 ± .0165 .4058 ± .0574 .3651 ± .1197 .1359 ± .1183 3.0867 2.1508 ± .0384

1280 25 .0227 ± .0213 .4323 ± .0581 .3886 ± .1128 .1051 ± .1140 1.4713 2.0247 ± .1003
2560 5 .0487 ± .0453 .4202 ± .0722 .4049 ± .0870 .0874 ± .0792 9.1799 1.9269 ± .0768

OpenCell
480 68 .0161 ± .0148 .4953 ± .0064 .3620 ± .1168 .1220 ± .1188 1.5844 2.6069 ± .1175

OpenCell 640 55 .0159 ± .0136 .4995 ± .0006 .3785 ± .1008 .1011 ± .1012 2.6966 2.0974 ± .0981
1280 25 .0272 ± .0223 .4996 ± .0010 .4359 ± .0700 .0694 ± .0472 8.9102 1.3712 ± .0432
2560 5 .0584 ± .0511 .4996 ± .0005 .4145 ± .0889 .0890 ± .0667 9.5116 1.4176 ± .0329
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Table A.2: Masked Sequence In-Filling Accuracy

Training Set Proteins
Dataset Train Set Hidden Size Depth Sequence MAE Cosine Similarity

480 68 .8548 ± .1050 .9500 ± .0260
HPA 640 55 .7738 ± .1368 .9580 ± .0238

1280 25 .5818 ± .2053 .9733 ± .0195
2560 5 .5294 ± .2402 .9732 ± .0235

HPA
480 68 .8554 ± .1047 .9504 ± .0262

OpenCell 640 55 .7806 ± .1343 .9576 ± .0239
1280 25 .6377 ± .1850 .9709 ± .0191
2560 5 .5599 ± .2294 .9721 ± .0235

480 68 .8403 ± .1102 .9463 ± .0277
HPA 640 55 .7434 ± .1356 .9557 ± .0263

1280 25 .5315 ± .1996 .9725 ± .0219
2560 5 .4760 ± .2281 .9726 ± .0266

OpenCell
480 68 .7507 ± .1709 .9533 ± .0285

OpenCell 640 55 .6641 ± .1764 .9610 ± .0272
1280 25 .5698 ± .2016 .9709 ± .0220
2560 5 .4950 ± .2456 .9711 ± .0271

Validation Set Proteins
Dataset Train Set Hidden Size Depth Sequence MAE Cosine Similarity

480 68 .8628 ± .0951 .9504 ± .0237
HPA 640 55 .7917 ± .1245 .9577 ± .0216

1280 25 .6512 ± .1794 .9708 ± .0163
2560 5 .5759 ± .2322 .9722 ± .0210

HPA
480 68 .8625 ± .0935 .9508 ± .0240

OpenCell 640 55 .7927 ± .1245 .9577 ± .0216
1280 25 .6476 ± .1811 .9711 ± .0163
2560 5 .5696 ± .2288 .9724 ± .0210

480 68 .8651 ± .0992 .9420 ± .0312
HPA 640 55 .7675 ± .1318 .9529 ± .0271

1280 25 .5910 ± .2065 .9699 ± .0213
2560 5 .5137 ± .2414 .9700 ± .0250

OpenCell
480 68 .8600 ± .1030 .9430 ± .0316

OpenCell 640 55 .7645 ± .1332 .9532 ± .0273
1280 25 .5872 ± .2060 .9703 ± .0213
2560 5 .5080 ± .2365 .9703 ± .0250
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Table A.3: Image Prediction Accuracy after Finetuning on HPA and OpenCell

Training Set Proteins
Dataset Image Encoders Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

HPA .0292 ± .0291 .3606 ± .0832 .3599 ± .0836 .2237 ± .1479 22.0947 2.8130 ± .0208
Opencell 480 68 .0245 ± .0317 .4680 ± .0776 .3428 ± .0833 .1047 ± .0840 23.2398 3.0922 ± .0167
HPA Finetuned .0249 ± .0289 .3755 ± .1011 .3292 ± .0848 .1406 ± .1027 8.3675 3.9647 ± .0299
HPA .0299 ± .0263 .3475 ± .0834 .3472 ± .0819 .1516 ± .1118 6.7563 2.0455 ± .0099
Opencell 640 55 .0273 ± .0254 .4518 ± .0570 .3505 ± .0778 .0900 ± .0747 31.7937 2.5763 ± .0119

HPA HPA Finetuned .0270 ± .0249 .3041 ± .0907 .3328 ± .0794 .1278 ± .0910 11.4788 2.3392 ± .0130
HPA .0448 ± .0400 .3461 ± .0820 .3350 ± .0842 .2004 ± .1364 6.8770 2.1677 ± .0096
OpenCell 1280 25 .0426 ± .0410 .4486 ± .0556 .3401 ± .0826 .1067 ± .0841 17.6565 2.7158 ± .0105
HPA Finetuned .0435 ± .0437 .3315 ± .0888 .3323 ± .0826 .1762 ± .1183 5.9633 2.2360 ± .0279
HPA .0729 ± .0655 .3844 ± .0704 .3590 ± .0792 .1793 ± .1161 12.6113 2.0646 ± .0112
OpenCell 2560 5 .0727 ± .0776 .4736 ± .0633 .3428 ± .0847 .1291 ± .0925 8.4963 2.1803 ± .0116
HPA Finetuned .0744 ± .0671 .3507 ± .0803 .3599 ± .0795 .2014 ± .1322 16.672 2.2908 ± .0156

HPA .0157 ± .0151 .3712 ± .0791 .3699 ± .0799 .2038 ± .1525 17.1616 3.0822 ± .0843
OpenCell 480 68 .0135 ± .0135 .4996 ± .0007 .3161 ± .1117 .1874 ± .1495 1.5167 3.0898 ± .1459
HPA Finetuned .0154 ± .0150 .3170 ± .1159 .3186 ± .1215 .2125 ± .1600 18.7426 3.9276 ± .1406
HPA .0165 ± .0151 .4011 ± .0667 .3439 ± .1026 .1263 ± .1063 6.0163 2.2918 ± .0533
OpenCell 640 55 .0149 ± .0136 .4732 ± .0192 .3415 ± .1054 .1356 ± .1281 4.9600 2.4016 ± .0866

OpenCell HPA Finetuned .0167 ± .0150 .3305 ± .1035 .3400 ± .1059 .1525 ± .1195 2.8065 2.7464 ± .0621
HPA .0243 ± .0224 .3817 ± .0686 .3355 ± .1065 .1546 ± .1201 3.7530 2.5043 ± .0454
OpenCell 1280 25 .0220 ± .0205 .4671 ± .0278 .3236 ± .1089 .1702 ± .1491 .5084 3.0222 ± .1054
HPA Finetuned .0254 ± .0241 .3701 ± .0838 .3581 ± .1054 .1468 ± .1156 5.2415 2.5990 ± .1403
HPA .0411 ± .0379 .4067 ± .0745 .3363 ± .1087 .1775 ± .1299 14.7029 2.4132 ± .0603
OpenCell 2560 5 .0540 ± .0492 .4977 ± .0124 .3753 ± .1089 .1630 ± .1200 26.8886 1.8080 ± .0489
HPA Finetuned .0394 ± .0359 .3710 ± .0843 .3492 ± .1032 .1727 ± .1265 15.3433 2.5426 ± .0637

Validation Set Proteins
Dataset Image Encoders Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

HPA .0291 ± .0259 .3589 ± .0838 .3583 ± .0843 .2246 ± .1501 21.8254 2.8176 ± .0210
Opencell 480 68 .0245 ± .0233 .4681 ± .0774 .3430 ± .0833 .1047 ± .0853 23.9367 3.0918 ± .0519
HPA Finetuned .0249 ± .0235 .3427 ± .0908 .3292 ± .0847 .1397 ± .1047 8.7002 3.9302 ± .0716
HPA .0304 ± .0273 .3469 ± .0835 .3476 ± .0821 .1496 ± .1117 7.0875 2.0259 ± .0310
Opencell 640 55 .0276 ± .0265 .4519 ± .0567 .3502 ± .0779 .0905 ± .0759 31.8870 2.5738 ± .0402

HPA HPA Finetuned .0279 ± .0262 .3041 ± .0906 .3326 ± .0793 .1266 ± .0917 12.0062 2.3105 ± .0310
HPA .0454 ± .0434 .3462 ± .0822 .3362 ± .0847 .1984 ± .1368 6.8893 2.1656 ± .0288
Opencell 1280 25 .0433 ± .0444 .4484 ± .0560 .3400 ± .0827 .1064 ± .0848 18.1654 2.7017 ± .0460
HPA Finetuned .0430 ± .0403 .3322 ± .0882 .3320 ± .0824 .1771 ± .1162 5.9752 2.2687 ± .0112
HPA .0746 ± .0686 .3828 ± .0708 .3594 ± .0807 .1790 ± .1176 12.6199 2.0311 ± .0311
OpenCell 2560 5 .0739 ± .0755 .4730 ± .0650 .3429 ± .0854 .1289 ± .0957 8.7266 2.1980 ± .0275
HPA Finetuned .0761 ± .0697 .3510 ± .0816 .3603 ± .0810 .2003 ± .1332 16.4098 2.2785 ± .0319

HPA .0166 ± .0151 .3776 ± .0834 .3477 ± .1268 .1869 ± .1503 17.4075 2.9113 ± .1199
OpenCell 480 68 .0159 ± .0156 .4996 ± .0006 .3506 ± .1208 .1574 ± .1372 2.5026 2.7168 ± .1137
HPA Finetuned .0170 ± .0160 .3449 ± .1305 .3487 ± .1340 .1881 ± .1541 19.2683 3.6083 ± .2013
HPA .0176 ± .0155 .4028 ± .0668 .3644 ± .1004 .1060 ± .0928 7.9330 2.0560 ± .1219
OpenCell 640 55 .0170 ± .0149 .4771 ± .0201 .3684 ± .1073 .1081 ± .1121 5.1479 2.1141 ± .1304

OpenCell HPA Finetuned .0172 ± .0151 .3477 ± .1043 .3583 ± .1033 .1339 ± .1083 2.4811 2.4813 ± .1009
HPA .0258 ± .0243 .3890 ± .0709 .3572 ± .1050 .1355 ± .1092 3.7844 2.2680 ± .1109
OpenCell 1280 25 .0262 ± .0259 .4743 ± .0275 .3576 ± .1133 .1339 ± .1218 .9963 2.6376 ± .1468
HPA Finetuned .0247 ± .0234 .3599 ± .0813 .3361 ± .1078 .1645 ± .1229 4.8118 2.8837 ± .0426
HPA .0464 ± .0464 .4081 ± .0776 .3591 ± .1074 .1598 ± .1211 13.7206 2.2251 ± .1164
OpenCell 2560 5 .0594 ± .0533 .4969 ± .0121 .3928 ± .1074 .1509 ± .1135 27.7841 1.7532 ± .0837
HPA Finetuned .0446 ± .0430 .3812 ± .0885 .3709 ± .0988 .1549 ± .1193 13.4599 2.3191 ± .1147
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Table A.4: Masked Sequence In-Filling Accuracy after Finetuning on HPA and OpenCell

Training Set Proteins
Dataset Image Encoders Hidden Size Depth Sequence MAE Cosine Similarity

HPA .8457 ± .1102 .9507 ± .0260
OpenCell 480 68 .8442 ± .1144 .9508 ± .0259
HPA Finetuned .8498 ± .1108 .9506 ± .0259
HPA .7716 ± .1365 .9581 ± .0239
OpenCell 640 55 .7729 ± .1422 .9582 ± .0240

HPA HPA Finetuned .7755 ± .1354 .9579 ± .0239
HPA .5742 ± .2022 .9740 ± .0194
OpenCell 1280 25 .5737 ± .2155 .9738 ± .0196
HPA Finetuned .5791 ± .2071 .9736 ± .0196
HPA .5156 ± .2443 .9738 ± .0235
OpenCell 2560 5 .5177 ± .2426 .9736 ± .0236
HPA Finetuned .5128 ± .2433 .9739 ± .0236

HPA .8139 ± .1436 .9483 ± .0279
OpenCell 480 68 .7493 ± .1909 .9528 ± .0286
HPA Finetuned .8026 ± .1585 .9493 ± .0281
HPA .7339 ± .1560 .9560 ± .0267
OpenCell 640 55 .6738 ± .1964 .9599 ± .0277

OpenCell HPA Finetuned .7338 ± .1565 .9561 ± .0267
HPA .4991 ± .2176 .9738 ± .0226
OpenCell 1280 25 .3697 ± .2493 .9790 ± .0236
HPA Finetuned .4959 ± .2190 .9740 ± .0229
HPA .4510 ± .2568 .9725 ± .0273
OpenCell 2560 5 .4289 ± .2600 .9732 ± .0274
HPA Finetuned .4482 ± .2558 .9726 ± .0273

Validation Set Proteins
Dataset Image Encoders Hidden Size Depth Sequence MAE Cosine Similarity

HPA .8566 ± .1000 .9508 ± .0238
OpenCell 480 68 .8575 ± .0973 .9507 ± .0237
HPA Finetuned .8610 ± .0998 .9507 ± .0238
HPA .7920 ± .1249 .9576 ± .0217
OpenCell 640 55 .7976 ± .1243 .9574 ± .0217

HPA HPA Finetuned .7954 ± .1235 .9575 ± .0216
OpenCell 1280 25 .6434 ± .1840 .9713 ± .0163
HPA Finetuned .6446 ± .1824 .9712 ± .0163
HPA .5672 ± .2345 .9726 ± .0209
OpenCell 2560 5 .5731 ± .2313 .9723 ± .0209
HPA Finetuned .5651 ± .2329 .9727 ± .0210

HPA .8560 ± .1061 .9426 ± .0312
OpenCell 480 68 .8634 ± .1101 .9421 ± .0313
HPA Finetuned .8689 ± .1090 .9417 ± .0311
HPA .7679 ± .1340 .9529 ± .0271
OpenCell 640 55 .7829 ± .1385 .9517 ± .0276

OpenCell HPA Finetuned .7792 ± .1398 .9520 ± .0273
HPA .5955 ± .2134 .9695 ± .0218
OpenCell 1280 25 .5867 ± .2172 .9698 ± .0219
HPA Finetuned .5931 ± .2136 .9696 ± .0217
HPA .5277 ± .2565 .9686 ± .0255
OpenCell 2560 5 .5322 ± .2545 .9684 ± .0255
HPA Finetuned .5255 ± .2552 .9687 ± .0255
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Appendix B

Candidate NLS Sequences

Predicted sequences are shown in Table B.1.
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Table B.1: NLS candidates sorted by nucleus proportion.

Terminus Sequence Terminus Sequence

N RKRRQR C SPTAFPSNVIETIRVKRRMEL
N NKRPRKKEK C EFRAKYRQMGSRKKKKSGQWSA
C RPKVI N KKHKLRSVPDLTELMRMIFLAP
C VLKRAKKD N KLLRFAGKSGMMVLLAPHSGKM
C RHKKKKIA C IFQADKDQKAHPPAKKAPSELMQ
N HRRKKR C KGKVKSIMIPPKSRKSLAKVPLS
C RSQKRK N AAGKSFKPRIKKSRMTRDSSETMA
N KCKKKN C TGNRIFGETPSWERERKRPGGGQQ
N KGKRFSK C NKLQKHSKRQPHKLQAMKLKYPTWE
C AKRLKGK C LVFPNRDASIKKPLQNPPQKRRCMIM
C SKKAKKNKM N LPKRRRLSRRKKVELEPEYGWEEEVVV
C EEKRPRF N TEAPARTAVKKSRAMKGYIARLASSPS
N MKICIT C IEKSKGKEAPKSSPPLKQNQRSRKMVK
N AVPAKRARIDG C FQVRASPKGKPATKNKLRLLKIRRHRV
C ESHHLPRAKKR C LQEGTRTRSQKAQEPKFKKVSGDIPNK
N GKERSYPPISKR N SDPNTAQYPWMPPQATKRAAMAAREAE
C KLKKRNRQPEDKK C HYKKEKRKRSASPILAEEPVPKCARTLR
C GGKFATGKKKKPKM C LDKRKRIKPPKEEQKELMRKMWGPGSSL
N PSKLLRQ N GSKKSRTATDSLESRMAMEDVAMGEESE
C QRRKGQKFQT C EGSGLVPGNSRKRPEPKKPKKRKKVRRK
C KTCPPKRPVVEW C RKKRQAIQAVTMGRIKKKSYEKQWSKFED
C DKEKKRKNDHEK C ASTVPAYSRSKAGKVEPKPKQKKTQRNAP
N FRFSC C SKQQAEINLKAAKPLETTDISLSKKEKKDM
N LQSSDKK C RRAEGLSEPKRHMAEYEQSRRRQRVVRTAT
C EMEGKKKKIKKM N PPTKKQEPQQENNSEDELRRSSSAADPEER
C LQRKQKMRSH C ANFCSGMQAHLSRDFLCL
C YGEPCIKRSS C GNKLARTEMPAVYTSIGSASKSY
C AQAKRKRIGFH C VELRNGKLKPTEESMSFKRMYGS
C DSSKKPKFTPK C EITLSGPPFGGPQVVYRPKLQRVT
C LKSGPSKSQRKN C FGGETQIIENSAKRSHLRPNMHEMI
C TTKKKKNDSCGAS C HKAQPAVIQAISVKRAVEDEPVPMAMT
C LFGKNRFPKKKKFKM C HLTSLKMGGLFVLLPIRSRQKRGSDVG
C GKKYGHKPRKLKKEK C LRDARRSASGLPRQDSEGYVGAPKRIN
N SAKRGYMLAE C LLTGFRLGIGDEKPRRAKHILTSQASK
C DYPGKGKKRKGKK C YVQSIGVEIPGKRGKSSLPSLYQMAEP
N KRVLHEAPQSAL C LKLRLRYNAPIKKLFSRK
C GPPAKFMLDV N PGPSSRYRPLEDGGPAAE
C SKQACRGKRGSK C YPNMPKPRRSKRSVAYTMM
C DSIPSSRKKRSEM N ENEMPTEFHSPKRYQPMNPNS
C IGPSSSSVEPEFKRT N PRNNKKTKMTELGLTQLAEAV
C IFVQPASDKKRKAMT N DSPKRPFVTSVEEPMSMVIMPE
C SRNRKKRKNRLRRIRKRQFH C EIIGNAKRVPEAEGLLHKYQKK
N PKRRKPMQGGE C KASKKVEDQLDAKKPKMEGKAKP
N KRALMAEPVVE C TQEKAQKKADLRGQPQRKRSKEM
C KKEKVSKRKQRRRF C KPQEVLKEIECTQKPTKKKVLDG
C VEGKGMKRSVRAV C IATATHRKRGIKHPHRRRSRPLFG
C RQRPAYNAVDI N QSNYKRQKVPPPENSEMRVAMGSEL
C TYKKLPTDKKQQQILKR C FSKKPEPTGKRPKKSSRSKFRCHRN
C FALKQDHKKAK N KRKTNQIPSKREGDQTNMADTKRQKL
N GNHKRYKMKERMGLF C FRTKPPKGKNRMSETGSFAMAVKANA
C KKWKQRIKRILPLI C TKEPKKPHKKTKMRLRRLNGNSESMSC
N ELGERPGSRKRTGRE C DWFTYAQNQAVSNAIEEHHSMLKKHKI
N SLTKAFSQMQRSQKK C DLRNRRLHLSKVEIVWYGALSKQPRTN
N LKLHSKLLEKKNKRMM C RKRRRGLDRPGYNSSTSHGDDPPTSGW
C VTLDQTKKSKTRRKHIFR C HALRKGRIELVYKQTKRSAAITSRYTLE
N DASEMLKGKLKKMKSEGLT C KRKAAEDTTEVEMSPGGDEEEKHASPSS
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C GNRKAKRKDGTLDRNHRLEN C DKDNLCLKKRERLEDMGYLPKKRASAMRM
C LDANGPFKDMVKNKRAKRQC C NIKLDDPIPTDRTGEILMDARKSKIRPMM
C RDFKEPKPKRRRIRRASGAP C QSLDPKDDDSAKRPALPHPAKAIKKSRLH
C DRAVLPPPYKHQKRKEATKKKM C NPTLHAPIHFGKMRNLTPPPPPTKKKMKP
C AYKLRGVESASAPHSPIKRKEM N PRPSLAKRPRFVACKQLMLPDDPVSLHYK
N PTPPSKRQPELSLEFAKQAAREA N PPKQRRRHKTDESLFLGRPDTPSVEWKRKQ
C KKKRPGRARRRRRKKKQGELKIQH C SKSPMLAGGGEPHDPSGTESEPVSMRTHTM
C KFRGGKKRKRRTDKKTQSVTRKRRK N AEEELTVAVTTASEPAWAGMSSITEIAAKR
C VKYEPGFSRQQGRI C KKDAAAPGLVTGDEKRTAM
C RQKLSYALVEGMVD C VPPGYRDKDVKRAKPLSPSYVA
C SRAKRKAEPIVWVLA C RKSRKILCPYMRFYFEHATVGAW
C APIFVESPQSSGQNKRE C KKENTPVQLVPPSKKAARTSLISK
C KKRGRWGRIRPSYVKDKCL C SVSKRSRDLVPWSEEGFFQQAKQIQ
C LLSDSSSLQHALEPKKIQI C NVRPAIKKQIPLYDLQRQPEKMRKLINM
C NTTKPKRKQNKTIT C DFKKKRKKWLLARRMQAC
N PPSRGKKLTDNRRSKSPSPLPE N ELAREQEMSPAKRHMTWGTL
N DPGPAKKARTMTQS C PHKITEDLTQERRKRGKGGH
C NENPTVKQECKK C IGAAKKLHQPVGERASKKAMM
C KEYIKYQKKKLMM N SSTEPPADPSAPRSKIPRLATE
C MIKPAKRSKTEKPQN C LVLEKSASSVMEAPSKILKQKM
C AKKFESLAMKFQRLN C AASPLPLEPPANLGDRKKRKEAIK
C RPTVLPKPGSRQAKKSY C HPKKKRATGWSPKKQASRKRPKWNAI
C KVEDIEPNTKKFSGKQS C KGESSGKKQTLKKVCLGHEKRTFSKA
C KRSKGKMWMKNLFPEKL C ASSKCDHNERDRSSRDKRKTSKKKGNK
C RKKKKKSRTEREPIRKRK C YFSISRTISKTRKARPRGWEGSKKSRMM
N STKRCEVERSENLDAGEM C STISSVATRRSKKEQRMPAAPSNNLPKKI
C EPVGSTKFRKRQKIRGISN N PRRRREADVETRDAAMGGEPKVLQVLHLGN
C KYRSKKAFREMRTKVGGGM C IRYMNIPQRGIPKLPRSE
C KVSDKASEQHARRKKRQSS C SFTHQDNMPSKRFNGRGRMQH
N GKHTCSNKGKRKRKLIHFKSRM C KQRAATLKQTSEESKKPRPIDLH
C DRKKDITGHGPEKKKLRKEQQK C AAPSALSREEPGLWGSMAKRTVLA
C NVDNENIDKKKKFKSVTKGKHD C TSKDQPPHKLMQRAV
C ATEGKEPVGPGSSKGRRRRRRRP N TMMAMQLARRMGPRFMRSSF
C QGIEVDSSIKGFSHKKKKRKMKM C KSKFKRQKYAGDHGLKEGDI
C RRKNKLRPARRRRLYPSKRRRRLRPN C VPAEREKNRRKRQTHLGYSMGL
C ERAATAAASTSTKEASPPASKKSYKFEF C DVMPNKKLCIVLPPKSLSDAPMQ
C DKKGRKPGRSTGVI C PLETDHMHRTWSTKIRMCVLMIT
C KRAARRSRVVAPIRSI C KLKRRGIIITGETLNESGLKKLA
C HSSGSPLEKLGRKNNRNRAS N AARKRGQAKLLERRLEWFWMMIGDML
C RTRVDGAAAASE C RQSQSISAKWKRESAASQSGEQAEMNM
N AMAGQTKRRPQRKA C QVRKRYYVRLTSEKPKIPKYQKWLYWM
N SGDGPFHQSKGKRKH C LCMDIVIEYTDARIRKKTAKFLKEINE
C WNCKRLKEKKSEHPAA C IYPGKEPPIKLNKSLKSKRESHSADMSF
N SGPPAKVQKRAPESDCR N EVSKAQRKQKPAKLPPSTTIQIASVDYE
C RHPPAEETPKAAKRKPTI N KGGRKEVEVQQRESAPLPALPSEAYEEAVE
C DKETSKDIGRGGRGKRKLDL C NMLSPSEPSYVGSTKYGKSIR
C KKKKKQRKKRKRDQGRLRKW C VHSPWMGVSSTEGLLFLPVKILKQV
C LSFERGKMKRLHKKKRKIKL C YAQEPELQSKFKAQRLTDPYFYGPH
C KGKTYYKRVRERMPKKRPLT C SRGLAWLMPTVLLCPHKPFRLRVDS
C KKREKRKQKEAKHKRRIKSMLE N RIGSIWEFVRRKEQFWLRVTAMA
C SMPKELNSLVPKKRRQGPVRQDTQ C KLLIEPYAKAKKNWISMLCSAAMGSFL
C PQSKRDGKQKDSDN C KSRNKTPPKKGLCVVTSSLKKTVTMTKS
C RGEAKKESENAKRHQ C SIFGDGKLKDARRKVPHKRRLRILFLSYC
C KEKQNITKKAKRKTHK C GSGLRRKSTKTLQQTSDMAEGKS
C DRKSNPFVFLKPKTEEM C TLIPFHALKNIFAVVALQALRVVG
C KRKDKQIAVKKYPRTKS C AALIGSASPLALLRHGVQVLSPDSYW
C KLLKTTKITKDAKYPRKH C KYKGEQTIVKQEHLGDGVVARMPT
C ARYSKSKKKFYNSKLMPH C RKEMFVRPPTHTHTVTMILRKKLKLSAS
C RGGKKKKGARAPVFGASLD C SNRHAIMSRPEYNKHEDDNKMQKYIVWM
C VDVAFVHKSPGSRKQRGRF N AGASLVMDTAGIGGSVGMRIQTKRHKVD



APPENDIX B. CANDIDATE NLS SEQUENCES 51

C RTTKKRQTRPPAPRDRRNSL N KRFMPMMSQNTIHNNPQYINARPSRFPLY
C SKLEEKKWALLSSQKHTRQG N ATAHPTSNASWEKESAHAPVKKVHRMKEP
N NKKKNKTCAAAPAAAAPTVM C REHKPAQQQAKGKEPKVPPPTGERTMGYQ
N SKKKKYPGILRVPVGQLPLAEMKSA C AAKKSRTLPETKSGGMKTVRLLEGPMDF
N PKKKRKAPAVWQAAEPAPSSMPPVE N AAATNPTRAMITLKENRKGHMMGKNKKA
N PFLLVSQLG C VDKKLPPKECMKKMIKMAISKLVAKPTK
N LLATAGIYHLL C YTSVTNFGFKAHDLDFGKFKQEPDLDYD
C HSSKHLARVL N ISFSKILMLPLMSLSTAPAMKVQHED
C RVCRKGNMFIDSSKERS N AMMAVAMMTMVAMGQFAGDTLKKRNRGE
N MMMMMMMMMKMMMMLCQTLTGQRKRGN LAIGAVEPAMAQEPMIETTMVFQVPERS
C FLRINAVHRAKGPKKIKSLPA C DGTKLLEGQFTKQSCAATILFPSHD

N AMAGLAYGQENVPPKNGQGQT


