Toward Usable Programming Systems for Geospatial
Analysis and Visualization

Parker Ziegler

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-264
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-264.html

December 8, 2023




Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Toward Usable Programming Systems for Geospatial Analysis and Visualization

by

Parker Ziegler

A thesis submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Electrical Engineering and Computer Sciences
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:
Assistant Professor Sarah E. Chasins, Chair

Professor Marti A. Hearst
Associate Professor Aditya Parameswaran

Fall 2023



The thesis of Parker Ziegler, titled Toward Usable Programming Systems for Geospatial
Analysis and Visualization, is approved:

: 12/6/23
Chair Q"\ Z. &""}1 Date

@‘PM Date

12/6/2023

P L/ N TP Date 11/27/23

University of California, Berkeley


Marti Hearst
11/27/23

Aditya Parameswaran

Aditya Parameswaran

Aditya Parameswaran
12/6/2023

Sarah E. Chasins
12/6/23


Toward Usable Programming Systems for Geospatial Analysis and Visualization

Copyright 2023
by
Parker Ziegler



Abstract
Toward Usable Programming Systems for Geospatial Analysis and Visualization
by
Parker Ziegler
Master of Science in Electrical Engineering and Computer Sciences
University of California, Berkeley

Assistant Professor Sarah E. Chasins, Chair

Geospatial data is playing an increasingly critical role in the work of Earth and climate
scientists, social scientists, and data journalists exploring spatiotemporal change in our en-
vironment and societies. However, existing software and programming tools for geospatial
analysis and visualization are challenging to learn and difficult to use. The aim of this
thesis is to identify—and begin addressing—the unmet computing needs of the diverse and
expanding community of geospatial data users. Toward this goal, this thesis makes four con-
tributions. First, I conducted a contextual inquiry study (n = 25) with domain experts using
geospatial data in their current work. Second, I performed a thematic analysis of the contex-
tual interviews, finding that participants struggled to (1) find and transform geospatial data
to satisfy spatiotemporal constraints, (2) understand the behavior of geospatial operators,
(3) track geospatial data provenance, and (4) explore the cartographic design space. Third, I
used these findings to synthesize a set of design opportunities for developers and designers of
geospatial analysis and visualization systems. Fourth, I put these design opportunities into
practice in cartokit, a new direct manipulation programming environment for interactive
cartography on the web. Cumulatively, this work presents a novel vision for what useful,
usable programming systems for geospatial analysis and visualization could look like.



Contents

Contents

List of Figures

List of Tables

1

2

Introduction

Background
2.1 Geospatial Data . . . . .. ..o
2.2 Geographic Information Systems vs. Programming Environments . . . . . .

Related Work

3.1 Observational Studies of Geospatial Data Users . . . . ... ... ... ...
3.2 Evaluating GIS Usability . . . . . . . .. .. ...
3.3 Needs of Data Scientists . . . . . . . . .. ... o

Method

4.1 Participants and Recruitment . . . . . . .. ... 00000
4.2 Consent and Compensation . . . . . . . .. .. ... L.
4.3 Session Structure . . . . . ...
4.4 Data Analysis . . . . . ..

Findings

5.1 Finding Geospatial Data . . . . . .. . ... ... oL
5.2 Transforming Geospatial Data . . . . . .. .. .. .. ... .00
5.3 Analyzing Geospatial Data . . . . . . .. ... ... oL
5.4 Representing Geospatial Analyses . . . . . . . .. ... ... ... ... ...
5.5 Visualizing Geospatial Data . . . . . . . ... ... ... ... .. .. ...

Design Opportunities
6.1 Solving Geospatial Data Constraints . . . . . . .. ... ... ... .....
6.2 Assistive Tools for Constructing Geospatial Analysis Pipelines . . . . . . ..

iii

vi

w w

ENEEN I e e



7 cartokit
7.1 System Overview . . . .
7.2 Related Work . . . . ..
7.3 System Design. . . . ..

7.4 Case Study: “Will global warming make temperature less deadly?” . . . . .

8 Limitations and Future Work

8.1 Contextual Inquiry Study
8.2 cartokit System Design

9 Conclusion

Bibliography

i

29
29
33
37
46

55
95
o6

59

60



List of Figures

2.1

2.2

4.1

5.1

5.2

5.3

Geospatial data models. The vector model represents geographies as points,
lines, and polygons. Geographies are attached to tabular data via an attribute ta-
ble. For example, in the choropleth map (left), U.S. counties encoded as polygons
are associated with housing data from the U.S. Census Bureau’s 2020 American
Community Survey. The raster model partitions space into a pixel grid. Fach
pixel has an attached value corresponding to the data attribute at that location.
For example, in the Landsat-8 satellite image of Mt. Rainier (right), each pixel

is associated with an RGB value measuring light reflected off the Earth’s surface.

Examples of GIS software and programming environments for working
with geospatial data. The QGIS project (left) and Jupyter notebook (right)
contain the same geospatial data, but users interact with this data differently in
each tool. . . . . . L

Participant experience and skill. Participants reported their years of prior
experience working with geospatial data (left) and their self-assessed skill level
working with geospatial data on a scale of 1-10 (right). . . . . . . .. ... ...

Participant responses to the question, “What part of your work or
research with geospatial data feels most difficult?” A plurality of par-
ticipants (12/25, 48%) selected data transformation, while 28% (7/25) selected
analysis. . . . ...
An example geospatial operator. The DISSOLVE operator is used to group
Census tracts in northern California by a shared attribute (COUNTY). In addition
to merging the geographic boundaries of Census tracts, DISSOLVE aggregates

il

10

14

values in the attribute table using an aggregation function (e.g., sum, first, etc.). 16

Timeline of PE9’s attempts to identify geospatial operators. PE9 moved
between tutorials, StackOverflow, and library documentation to identify the cor-
rect geopandas operator and syntax to filter a GeoDataFrame of cell phone lo-
cation records to those falling within a polygon from a separate GeoDataFrame.
They intermixed foraging for example code with testing candidate operators for
16 minutes before arriving at a working solution. . . . . . . ... ... ... ..



5.4

9.5

7.1

7.2

7.3

7.4

Informal program representations of geospatial analyses. (A) PS1 created
a hand-drawn diagram using a custom notational system to record operations,
layer names, and debugging steps in their analysis pipeline. (B) PE1 recorded
high-level analysis steps, issues encountered during analysis, and code snippets
in a Google Doc and Microsoft Word document. (C) PJ5 recorded step-by-step
instructions for overlaying a GeoJSON file with a Sentinel-2 image across Sentinel
Hub, QGIS, Photoshop, and Ilustrator. (D) PE3 used a Google Sheet to record
information on data sources, their use in the analysis pipeline, and arguments to
pass to operators in QGIS. . . . . . . . .. L
A selection of PJ5’s draft maps. (A) PJ5’s initial drafts combined choropleth
and dot density symbologies in a single map. (B) PJ5 created a gridded heat map
(top) and used this style with a modified color scheme in a small multiples layout
(bottom). (C) PJ5 tried an alternate layout combining a heat map with a bar
chart. These mockups also included a dropdown allowing users to change the
variable displayed on the map. The top and bottom mockups show two different
UI states in response to user interaction. . . . . . . . . . ... ... ... ....

The cartokit user interface. (A) Users interact directly with features ren-
dered in the Map View. (B) Users style layers on the map via controls in
the Properties Panel. (C) Users access the JavaScript program generated by
cartokit in the Code Viewer. (D) Users can view and sort the tabular data
associated with the selected layer in the Data Table. . . . . . . ... ... ...
cartokit’s system architecture. User interactions in the Properties Panel
dispatch updates to the cartokit IR. The Reconciler propagates these up-
dates back to the map, while the Code Generation Algorithm generates a
JavaScript program that, when executed, reproduces the map one-for-one.

Example Mapbox expressions. The Mapbox expressions syntax is a JSON
DSL loosely based off of Lisp S-expressions. (A) Users can specify predicates over
attributes of a dataset via a filter expression. (B) Users can compute new data
from existing attributes using a range of arithmetic operators. . . . . . ... ..
cartokit’s Data Transformation Panel. (A) Users click the gear icon next
to the Attribute select to open the Data Transformation Panel. (B) Users
can write arbitrary JavaScript functions to transform a layer’s GeoJSON. In this
example, a user employs Array.prototype.reduce to (1) filter features whose
Region_ID starts with the string ¢ ‘USA’’ and (2) compute the maximum of three
of its attributes, stored in a new property max. (C) The Preview shows the result
of applying the function to the layer’s GeoJSON on the currently selected feature.
cartokit computes the result on every keystroke. . . . . . . ... ...

v

32



7.5

7.6

7.7

7.8

7.9

7.10

7.11

The hierarchy of function calls in cartokit’s code generation algorithm.
Code generation begins with the top-level codegenImports function, which re-
solves data and library imports through analysis of the IR. Execution is passed
to functions lower in the hierarchy (rightward in the graph), which generate their
own program fragments and return them to callers. Callers determine where to
insert these program fragments in the final output program. . . . ... ... ..
The central map from “Will global warming make temperature less
deadly?” by Harry Stevens, published in the Washington Post. The
map is a global choropleth map using a 12-break manual threshold scale and
diverging green-to-purple color scheme. . . . . . . .. ... 0oL
Adding data to cartokit using the Add Layer Modal. The user navigates
to the From File tab to upload the GeoJSON dataset from disk. Users can also
fetch data from remote API endpoints using inputs in the From API tab. . . .
Transitioning from a Fill map to a Choropleth map. (A) The Properties
Panel updates with new controls in the Fill section to parameterize the CHORO-
PLETH map. The Stroke section is unchanged. (B) The map updates to reflect
the the map type transition, using the parameters specified in the Properties
Panel to symbolize the data. (C) The Layers Panel updates the legend to show
the visualized attribute, as well as the lower bound, upper bound, and color for
each break in thedata. . . . . . . . . . . ...
Iterating on parameters of the Choropleth map. The user explores six
variants of a CHOROPLETH map using controls in the Properties Panel. Each
change modifies the map immediately, allowing the user to move efficiently toward
their target map. . . . . . . . ..
Visualizing variance on the Choropleth map. (A) The user computes a
new variance attribute using the JavaScript code editor in the Data Transfor-
mation Panel. (B) cartokit displays the output of running the user-defined
variance algorithm on the currently selected feature in the Preview. (C) The
Console displays the output of console.log statements inserted in the trans-
formation. . . . . . ..
Accessing the generated program. (A) The user inspects and copies the
program corresponding to their variance map. (B) The user can view and sort
the tabular attributes of their geospatial data in the Data Table, including the
newly computed variance attribute. . . . . . ... ..o

47



List of Tables

4.1 Participant characteristics. Throughout the rest of the paper, I use the par-
ticipant IDs in the ID column to refer to individual participants. EXP. refers to
participants’ prior experience working with geospatial data, in years. . . . . ..

vi



vil

Acknowledgments

First and foremost, I want to thank my advisor, Professor Sarah E. Chasins, for her expertise,
mentorship, and relentless, unwavering support of my research. Her contributions to this
work cannot be overstated. I also want to thank my anonymous participants for sharing
their working practices with geospatial data—this research would not have been possible
without them. At Berkeley, the folks I am indebted to are almost too numerous to thank.
Rachel Leven at the Center for Computing, Data Science, and Society was instrumental in
connecting me with data journalists for this research. The members and friends of PLAIT
Lab, including David Cao, Serena Caraco, Hellina Hailu Nigatu, FEunice Jun, Slim Lim,
Justin Lubin, Gabriel Matute, Mae Milano, Eric Rawn, Lisa Rennels, J.D. Zamfirescu-
Pereira, and many others, have been an everlasting source of amazing ideas, incisive feedback,
and support during the hardest days. And of course, the broader community of the EPIC
Data Lab, the Programming Systems group, and friends spread across the Department of
Electrical Engineering and Computer Sciences, who have always made me feel valued and
welcomed. Beyond Berkeley, the folks who have believed in me, supported me, and guided me
are unquestionably too numerous to mention. But within that, I want to thank my parents
Christine and John, who have fostered my love of learning always; my brother, Quinn, and
sister-in-law, Carey, who have been some of my most trusted mentors and confidants; my
parents-in-law, Lauren and Bob, whose advice, perspective, and presence have shaped me
profoundly; my sister-in-law Ella and brother-in-law Cesar, whose ambition and drive are
sources of inspiration; and most of all my partner, Bess, whose love, support, intelligence,
and compassion have been my guiding light.



Chapter 1

Introduction

Geospatial data—data encoding the location and attributes of phenomena on the Earth’s sur-
face [72]—is growing in scale and accessibility at a tremendous rate [74]. Researchers estimate
that Earth observation satellites generate 80TB of new imagery daily [103]. Closer to the
surface, cheap, power-efficient sensors create massive volumes of geolocated data measuring
real-time environmental change [52]. Additionally, crowdsourcing efforts like OpenStreetMap
have fostered an explosion in publicly available volunteered geographic information [96, 62].
Geospatial data has long played a fundamental role in the research of geographers and car-
tographers. As this data becomes more available, experts across a widening array of domains
are turning to geospatial analysis and visualization to address challenges in climate change
[21], public health [42], school segregation [102], hazard modeling [121], and other areas.

Despite this expansion in the community of geospatial data users, research has yet to
explore the specific challenges domain experts face in gathering, analyzing, and visualizing
geographic information. Many domain experts are self-taught in the theory of geospatial
data and the specialized Geographic Information System software used to manipulate it.
Human-Computer Interaction (HCI) researchers have found that non-geographers struggle
to use these systems because they require familiarity with concepts and terminology from
geography [55]. Some of these users have turned to programming as an alternative. While
geospatial libraries are increasingly common in Python, R, and JavaScript, domain experts
must develop proficiency in at least one of these general-purpose languages to benefit from
these abstractions.

My research aims to investigate—and begin addressing—the computing needs of the
growing community of geospatial data users. Answering calls from HCI researchers for in-
creased collaboration with geography [59, 60], I conducted a contextual inquiry study with 25
geospatial data users from academia, industry, newsrooms, and the public sector. Thematic
analysis of observations and semi-structured interviews revealed common challenges across
five phases of participants’ work with geospatial data: data discovery, data transformation,
analysis, analysis representation, and visualization. I observed that participants had diffi-
culty (1) finding and transforming geospatial data to satisfy complex sets of spatiotemporal
constraints, (2) understanding the behavior of geospatial operators, (3) tracking geospatial



CHAPTER 1. INTRODUCTION 2

data provenance, and (4) efficiently exploring the cartographic design space, among other
challenges. My findings deepen our understanding of requirements for supporting domain
experts in their work with geospatial data and suggest design opportunities for geospatial
analysis and visualization systems.

Building off of these design opportunities, I next developed cartokit, a direct manipu-
lation programming environment for interactive cartography on the web. cartokit aims to
simplify the process of programming interactive maps by transforming sequences of inter-
actions with geospatial data in a graphical user interface (GUI) into JavaScript programs.
Toward this goal, cartokit makes three key technical contributions. First, it exposes di-
rect manipulation interactions for transforming and styling geospatial data while preserving
the underlying data representation, supporting dynamic movement between analysis and
visualization work in a single system. Second, it enables single-click transitions between
map types to support rapid exploration of the cartographic design space. Third, it com-
piles user-created maps to JavaScript programs, providing direct access to a reproducible
program artifact that can be copied, modified, and deployed in other code-based environ-
ments. In essence, cartokit reimagines the core interaction paradigm used to design maps
today—direct manipulation—as a form of programming.

In summary, this thesis makes the following contributions:

A contextual inquiry study of 25 geospatial data users to understand their computing
needs

A thematic analysis of challenges participants faced across distinct phases of their work
with geospatial data

A set of design opportunities for geospatial analysis and visualization systems

A novel direct manipulation programming environment for interactive cartography on
the web



Chapter 2

Background

2.1 Geospatial Data

Geospatial data describes the location and attributes of phenomena on the Earth’s surface
[111]. Tt differs from tabular data in that it links geometric representations of real-world
geographies—referred to as the geometry of the data—with attributes of those geographies
[72]. In this way, geospatial data connects information to place.

There are two models of geospatial data, distinguished by their geometric representations
(Figure 2.1):

1. The vector model represents geographic features as points, lines, and polygons, con-
necting tabular data to features via an attribute table. For example, the U.S. Census
Bureau’s American Community Survey connects demographic estimates to geographic
areas (e.g., counties) modeled as polygons [13].

2. The raster model partitions geographic space into a pixel grid. Each pixel corresponds
to a portion of the Earth’s surface depending on the spatial resolution of the raster.
For example, the Landsat-8 satellite collects data at 30m spatial resolution, meaning
each pixel in the raster represents a 30 x 30m area [104]. The value associated with a
raster pixel corresponds to the data attribute at that location.

2.2 Geographic Information Systems vs.
Programming Environments

Geographic Information Systems

A Geographic Information System (GIS) is a software system for “capturing, storing, query-
ing, analyzing, and displaying geospatial data” [17]. GISs represent geospatial datasets as
layers, which can be edited, combined, and analyzed to generate new layers using built-in



CHAPTER 2. BACKGROUND 4

Vector Model Raster Model

Renter-Occupied Units (%) True color composite, Landsat-8 satellite
e Mt. Rainier, WA, USA
o 20 4 60 80 100

Geometry
a

GEO_ID NAME OCC_UNITS | RENTER_OCC_UNITS

i i 0500000053033 King County, WA 900061 391715

el 0500000US02050 | Bethel Census Area, AK | 4999 1989 3on [Band 4 (R) | 32 132
| 9500000US41011 | Coos County, OR 27819 8810 ' | Band 3 (6) | 43 :

62 86
USB6023 | Humboldt County, CA 54120 23359 . Band 2 (B) | 21 . o . 3 . IEE)

Attributes

Figure 2.1: Geospatial data models. The vector model represents geographies as points,
lines, and polygons. Geographies are attached to tabular data via an attribute table. For
example, in the choropleth map (left), U.S. counties encoded as polygons are associated with
housing data from the U.S. Census Bureau’s 2020 American Community Survey. The raster
model partitions space into a pixel grid. Each pixel has an attached value corresponding to
the data attribute at that location. For example, in the Landsat-8 satellite image of Mt.
Rainier (right), each pixel is associated with an RGB value measuring light reflected off the
Earth’s surface.

geospatial operators accessed via GUIs. Users visualize and interact with layers in a spatial
canvas that allows them to zoom, pan, style, and select geographic features directly. In
this way, GISs center interaction with the geometry of geospatial datasets. Interaction with
attributes happens in secondary table views where users write SQL to query and manipulate
their data. Many GISs exist; my participants used ArcGIS [39] and QGIS [4].

Programming Environments

In contrast to GIS software, programming environments used to work with geospatial data
center interaction with the attributes of the data rendered as tables or dataframes. This is
especially true of computational notebooks like Jupyter notebooks [97], R Markdown [105],
and Observable [92], which have been adopted by geospatial data users but are not purpose-
built for geospatial data. In these environments, users write code to visualize and interact
with the geometry of their data. Rather than executing geospatial operators via GUIs,
they rely on APIs from geospatial analysis and visualization libraries. Newer programming



CHAPTER 2. BACKGROUND 3

GIS Software Example  QGIS Programming Environments example & supyter
Vector and raster Users interact with Users execute Users access Users write Users interact with
geospatial the geometry of built-in geospatial geospatial code to render the attributes of
datasets are datasets in a spatial operators via operators via layers datasets in table
rendered as layers canvas secondary GUIs library APIs individually views

Figure 2.2: Examples of GIS software and programming environments for working
with geospatial data. The QGIS project (left) and Jupyter notebook (right) contain the
same geospatial data, but users interact with this data differently in each tool.

environments like Google Earth Engine [53] and Microsoft Planetary Computer [85] mix
features from both GISs and computational notebooks but are designed for particular forms
of geospatial analysis (e.g., remote sensing).



Chapter 3
Related Work

This section surveys findings from observational studies of geospatial data users, empirical
evaluations of GIS usability, and studies exploring the needs of data scientists more generally.

3.1 Observational Studies of Geospatial Data Users

Prior observational studies of geospatial data users have focused on identifying GIS usabil-
ity issues [29, 31, 116, 115]. My work is most similar to a workplace study of 21 GIS
practitioners, which used video recordings, semi-structured interviews, and usability check-
lists to uncover recurrent participant challenges [31]. The insights centered around error
states, finding that GISs failed to prevent common user errors, surfaced errors in difficult-to-
understand language, and provided insufficient guidance for correcting errors. Additionally,
they observed that non-expert GIS users relied on a “local expert” to perform their analysis,
also reported in [49, 36]. My study differs in two ways. First, I investigate how users interact
with geospatial data across tools other than GISs, including computational notebooks, de-
sign software, and geospatial analysis and visualization libraries. In fact, most participants
(13/25,52%) did not use GIS software. Second, while [31] observed data transformation and
analysis, I identified additional challenges related to data discovery, analysis representation,
and visualization.

Another closely related study observed non-expert GIS users (social science faculty and
computer science graduate students) and identified data provenance tracking as a common
struggle [115]. Participants’ GISs maintained no record of how outputs were generated,
making it difficult to reproduce past analyses. Additionally, modifying or retargeting existing
maps at new data entailed reverse engineering the original analysis through trial and error.
My study extends our understanding of provenance needs by (1) identifying frustrations with
provenance features in modern GISs and (2) describing participants’ informal methods for
tracking provenance and reproducing past analyses.



CHAPTER 3. RELATED WORK 7

3.2 Evaluating GIS Usability

Several studies have evaluated GIS usability using non-observational qualitative methods,
including expert task analysis [116], user surveys [30], interviews [37], and screenshot analysis
[56]. A task analysis of seven GISs concluded that GIS software is challenging to use because
it (1) requires users to understand concepts from multiple disciplines, including geography,
cartography, statistics, and databases, and (2) relies on domain-specific vocabulary and
concepts (e.g., “overlay,” “thematic layer”) that reflect the system architecture rather than
a user’s view of their work [116]. A survey of 159 GIS users found respondents had difficulty
understanding and fixing errors, customizing the interface via provided macro languages,
and finding sufficient documentation to use GISs [30].

Other studies have employed quantitative methods such as interaction logging [43, 118],
controlled experiments [77, 98], and eye-tracking [78, 82] to evaluate particular GIS interfaces.
A controlled experiment compared five interaction techniques for cross-layer comparison and
correlation [77]. Fechner and colleagues logged interface interactions in a web-based GIS to
understand how users collaboratively create and edit geospatial datasets [43]. Unrau and
Kray provide a comprehensive survey of studies assessing the usability of different GISs [117].
Rather than evaluating specific GIS interfaces, my study focuses on challenges across various
tools.

3.3 Needs of Data Scientists

Research on the needs of data scientists has identified struggles with wrangling and aligning
data from multiple sources [89, 34|, iterating on and maintaining analysis versions [67, 68],
and editing data collaboratively [70]. Data transformation and preparation have consistently
emerged as the most challenging phases of data scientists’ work [65, 54]; practitioners must
develop domain-specific knowledge to identify patterns and anomalies in their datasets, han-
dle missing values, and combine data from differing sources and temporal paradigms [89].
For geospatial data, ensuring that datasets cover the target area and time range of analysis
is essential [70]. Beyond data transformation, interviews, surveys, and formative studies
have revealed data scientists struggle to track iterations of their analyses, often relying on
informal versioning techniques [67, 68]. T examine both challenges—data transformation and
version management—in the special case of geospatial data, highlighting areas of overlap and
divergence with prior work on data science more broadly.



Chapter 4

Method

To understand the challenges facing geospatial data users, I conducted a contextual inquiry
[64] study with 25 participants from academia, industry, newsrooms, and the public sector
using geospatial data in their current work.

4.1 Participants and Recruitment

[ recruited participants via social media (Twitter, Meetup, Reddit, Slack), direct outreach
to academic departments, and the authors’ networks. I used a screening survey to select
participants from multiple domains—including Earth and climate science, the social sciences,
and data journalism—with varying years of prior experience working with geospatial data
(Figure 4.1). Our aim with this design was to observe a wide range of user challenges and
identify those that recurred across a varied group, revealing needs that transcend domain
and expertise boundaries. However, this study design favors breadth at the cost of depth; by
prioritizing participant diversity, I may have missed details of challenges that arise only for
experts, non-experts, or users in a particular domain. Additionally, recruiting from social
media and personal networks runs the risk of creating a more homogeneous participant pool
that may not represent the broader community of geospatial data users. Table 4.1 provides
information about our participants.

4.2 Consent and Compensation

Before participating in the study, participants signed a consent form in accordance with our
institutional review board. Participants received compensation in the form of a $40 gift card
or a $40 donation to a 501(c)(3) organization of their choice.



CHAPTER 4. METHOD 9

ID Exr. DOMAIN LANGUAGES TooLs

PE1 1-3 Earth and Climate Science JavaScript Google Earth Engine

PE2  3-5 Earth and Climate Science R, Python Google Earth Engine

PE3 <1 Earth and Climate Science — QGIS

PE4 1-3 Earth and Climate Science Python Google  Earth  Engine,
Jupyter, geemap

PE5S <1 Earth and Climate Science Python Jupyter, Google My Maps,
Leaflet

PE6 5-10 Earth and Climate Science — ArcGIS

PE7 >10 Earth and Climate Science — QGIS

PE8  3-5 Earth and Climate Science Matlab —

PE9 5-10 Earth and Climate Science Python Jupyter, geopandas

PE10 1-3 Earth and Climate Science Python Jupyter, geopandas

PS1  1-3 Social Science — QGIS, Adobe Illustrator

PS2  >10 Social Science — QGIS, Adobe Illustrator

PS3 <1 Social Science Python QGIS, Jupyter, geopandas

PS4 1-3 Social Science R R Markdown, sf

PS5  5-10  Social Science — ArcGIS

PJ1  1-3 Data Journalism R R Markdown, Leaflet

PJ2 <1 Data Journalism — QGIS, VisiData

PJ3  5-10 Data Journalism JavaScript Observable, D3

PJ4  >10 Data Journalism Python Jupyter, geopandas

PJ5  5-10 Data Journalism JavaScript, CSS QGIS, Adobe Illustrator,
Adobe Photoshop, D3

PJ6 1-3 Data Journalism JavaScript QGIS, Mapbox

PJ7T 35 Data Journalism Python Jupyter, Microsoft Excel,
Tableau

PJ8  1-3 Data Journalism Python QGIS, Jupyter, geopandas

PO1 3-5  Other (Finance) — ArcGIS

PO2 5-10  Other (Computer Science) Python [Python, geopandas

Table 4.1: Participant characteristics. Throughout the rest of the paper, I use the par-
ticipant IDs in the ID column to refer to individual participants. EXP. refers to participants’
prior experience working with geospatial data, in years.

4.3 Session Structure

Each study session consisted of a 50-70 minute observation followed by a 15-20 minute

semi-structured interview.

I conducted sessions remotely over Zoom and recorded them

for subsequent analysis. One participant opted out of recording; I analyzed their session via



CHAPTER 4. METHOD 10

Number of Participants
Number of Participants

<1 1-3 3 -5 5 - 10 > 10 e 1 2 3 4 5 6 7 8 9 10

Years of Experience Working with Geospatial Data Self-Assessed Skill Working with Geospatial Data

Figure 4.1: Participant experience and skill. Participants reported their years of prior
experience working with geospatial data (left) and their self-assessed skill level working with
geospatial data on a scale of 1-10 (right).

written notes. During observation, I asked participants to share their screen and narrate their
thought processes as they worked on a task of their choice related to gathering, analyzing,
or visualizing geospatial data. I intentionally left the choice of task open for two reasons:

1. Faithfulness to participants’ work. I aimed to study the challenges participants
face in their everyday work with geospatial data. Researcher-designed tasks may not
elicit the challenges they typically encounter.

2. Experience, domain, and tool diversity. Participants varied widely in their prior
experience working with geospatial data, their domain of expertise, and the software
and programming environments they use to work with geospatial data. Researcher-
designed tasks might lead us to identify erroneous needs that are artifacts of task
design.

While the tasks I observed were more representative of participants’ actual work than
researcher-designed tasks, our study design does not give us insight into how representa-
tive they are of the broader community of geospatial data users. Assessing the prevalence of
our participants’ challenges will require further study.

During semi-structured interviews, I discussed specific observations from the session to
confirm or refine our interpretations of participant actions.

4.4 Data Analysis

I conducted an inductive thematic analysis [10] of video recordings of the observations and
semi-structured interviews using MaxQDA [109]. I started with an open coding phase in



CHAPTER 4. METHOD 11

which I associated short, descriptive sentences of participant behaviors with segments of
the video recordings. I then grouped these open codes into a hierarchy of axial codes and,
eventually, top-level themes. I met weekly with collaborators to refine the code hierarchy,
splitting and merging open and axial codes based on discussion. I analyzed 29 hours of
footage from 24 sessions and written notes from one unrecorded session.



12

Chapter 5
Findings

I organize my findings into five sections corresponding to distinct phases of participants’ work
with geospatial data: data discovery, data transformation, analysis, analysis representation,
and visualization.

5.1 Finding Geospatial Data

Participants struggled to find geospatial data satisfying a complex set of spatial and temporal
constraints derived from their analysis goals (PE1, PE2, PE3, PE4, PS4, PJ1, PJ2, PJ6,
PO2). The most common constraint required that a dataset cover a specific geographic area
(PE1, PE3, PE4, PS4, PJ1, PJ6, PJ7). However, it was rare for participants to find existing
datasets tailored to their analysis regions. More often, they reduced datasets collected for
larger geographic extents by clipping them to their study areas (PE3, PJ7) or filtering out
features based on attribute values (PE4, PES, PE10, PS4). For example, PE3 derived their
dataset by clipping a global soil region dataset to their study area and filtering the remaining
features by a soil type attribute. In other cases, data for an analysis region was spread across
multiple sources and had to be combined manually (PJ1, PJ6). PJ6 traversed 45 pages
of the California Air Resource Board’s website to obtain the air monitoring boundaries
for 15 communities in their analysis region, which they then composed into a single layer.
These findings are consistent with prior observations that geographic coverage affects dataset
selection [70] and that analysts combine datasets from disparate sources to meet analysis
requirements [89, 44].

Some constraints were related to geographic accuracy, which occasionally varied across
the analysis region. Accuracy inconsistencies were especially pronounced in crowdsourced
geospatial datasets like OpenStreetMap (PE3, PS2, PO2). PO2 explained that in poorly-
surveyed areas, “you’ll get weird things where building footprints don’t fall within block
boundaries, or you'll have weird self-intersections ... that don’t semantically or geograph-
ically make sense.” These issues were difficult to detect before analysis began due to the
size and detail of participants’ datasets. Some manually inspected their data to identify and



CHAPTER 5. FINDINGS 13

correct topological errors preemptively (PE6, PO1), while others compared their data to
satellite imagery (PJ7) or Google Street View images (PJ1) to corroborate its accuracy.

For Earth and climate scientists, constraints on spatial resolution, temporal resolution,
and occlusion characteristics of satellite imagery were critical—though difficult—to satisfy
(PE1, PE2, PE4, PES). For example, PE1’s analysis of drought patterns in Chile required
them to filter Sentinel-2 [35] satellite images of their study area to those captured during
the dry season over a six-year period. Occlusions like clouds, mist, and shadows skewed the
analysis, prompting them to implement additional image manipulation algorithms to mask
the affected pixels.

Participants had additional constraints related to:

e Cost (PE2, PE3) — Participants could only use freely-available data.

e File Format (PE3, PJ7) — Participants needed data in formats readable by their anal-
ysis tool.

e Programmatic Access (PE4, PS4) — Participants wanted to query and access data via
APIs.

5.2 Transforming Geospatial Data

Transforming geospatial data was especially challenging for participants, with a plurality
(12/25, 48%) reporting this phase most difficult (Figure 5.1). As PE6 noted, “The data
doesn’t come all nice, neat, and packaged ... The analysis process [can be| pretty thin and
bare compared to the preprocessing.”

Aligning Geospatial Datasets

Participants needed to align datasets of differing spatial extents, spatial resolutions, temporal
resolutions, and areal units to a shared spatial and temporal reference (PE2, PE10, PJ3,
PJ6, PJ8). This often required multiple transformations, including resampling, clipping,
and spatial and temporal aggregations. For example, PE2’s groundwater prediction model
used a combination of MOD16 global evapotranspiration data [106] (8-day, 500m), PRISM
climate data [27] (monthly, 4km), and USDA-NASS land cover data [119] (yearly, 30m).
To align these datasets to a shared spatial and temporal reference, they implemented (1)
a resampling algorithm to transform rasters at finer spatial resolutions (30m, 500m) to
the coarsest resolution (4km) and (2) an algorithm to accumulate data collected at finer
temporal resolutions (8-day, monthly) to the coarsest resolution (yearly). Similarly, PE10
aligned observations from NASA’s GRACE satellite to predictions from a land surface model.
They created two “masks” in the form of geopandas [50] GeoDataFrames to filter model
predictions to the geographic locations and timestamps for which they had ground truth
GRACE observations. In some cases, participants could not align datasets without making
approximations.



CHAPTER 5. FINDINGS 14

12 -

(%)

2 10 -
©

o

S 8-
8

Y= 6 -
o

S 4_
£

=}

z 2

Data Data Data Analysis  Visual.
Discovery Storage Transform.

Stage of Work with Geospatial Data

Figure 5.1: Participant responses to the question, “What part of your work or
research with geospatial data feels most difficult?” A plurality of participants (12/25,
48%)) selected data transformation, while 28% (7/25) selected analysis.

Topological Errors

Participants spent significant time correcting the topology of their datasets (PE6, PE7,
PS2, PO1, PO2). Topological errors refer to violations of geometric invariants such as
unclosed polygons, overlapping adjacent polygons, or gaps between adjacent polygons. Most
participants identified topological errors through time-consuming visual inspection in GISs
or matplotlib figures (PE7, PS2, PO1, PO2). PE6 used automated tools in ArcGIS to find
topological errors but explained that fixing these errors required manual intervention.

Reducing Resolution to Improve Performance

Participants faced a trade-off between using data with high geographic precision and spatial
resolution and being able to analyze data efficiently (PE3, PJ3, PJ4, PJ5). Greater precision
and resolution require more space to encode and, in turn, more compute to process. PE3
balanced this trade-off by using a coarser resolution version of their dataset (/=340km) while
iterating on an analysis, even though a higher resolution version (~1km) was available. This
allowed them to experiment with multiple analysis approaches without incurring the perfor-
mance penalty of processing higher resolution data: “I'm doing it at the lowest definition to
just run through the workflow first so I know what I'm doing. I'm probably going to pick
a higher definition later.” For journalists developing maps for the web, reducing geographic
precision minimized the amount of data loaded over users’ network connections (PJ3, PJ4,
PJ5). PJ3 and PJ4 used MapShaper [9] to simplify the geometry of their vector datasets;



CHAPTER 5. FINDINGS 15
in PJ3’s case, simplification yielded a 98% decrease in the size of their GeoJSON file.

Data Subsetting and Caching

Participants’ datasets were often so large that even analysis and visualization tools purpose-
built for this data lagged. “Just waiting for all this to ... [render|” (PO2) was a common
refrain among participants using both GISs and computational notebooks. PE9, who used
geopandas to analyze a 3-million point dataset in a Jupyter notebook, waited 50 seconds
for a within operation to run. PJ2 ran an OVERLAP ANALYSIS in QGIS between Census
block groups and a collection of 2-mile buffers that took six minutes to complete; a previous
run using 10-mile buffers “took like two hours.” Prior studies have observed GIS users’
frustrations with system performance [30, 31], but I found participants using programming
environments shared these frustrations.

Some participants accelerated the analysis feedback loop by subsetting data by spatial
extent (PO1, PO2). For example, while investigating a bug, PO2 filtered their dataset to
features within a subarea of their analysis region. This reduced matplotlib’s rendering time
from five minutes to one second, allowing them to iterate quickly on a fix. However, they
cautioned that this strategy could silence errors when applying the modified code to the full
dataset: “We’ll subset the entire data universe we're trying to work with and start developing
what we think is a generalized tool. And then once we run it on the large universe, we’ll
find weird inconsistencies and bugs.”

Participants also used past outputs as “waypoints” from which they could rerun individ-
ual transformations without restarting their entire pipeline (PE7, PJ2, PJ8). For example,
PET organized the outputs of each preprocessing stage in separate folders (“Level 1 — USGS
Product”, “Level 2 — Stacked”, “Level 3 — MESMA”, “Level 4 — Shade Normalized”), ex-
plaining:

I think Levels 3 and 4 [are] where a lot of stuff is going to change, where I might
decide to change the parameters or do it a little differently. And so what I can
do is just quickly [delete] this entire folder [Level 3] ... and it’ll clean the slate.
And then I'll go back to Level 2, and I'll just rerun everything again from Level
2 to get me to Level 3. ... It kind of speeds up the process.

5.3 Analyzing Geospatial Data

For participants, developing geospatial analyses involved constructing pipelines that applied
many geospatial operators (in a particular order) to input layers to produce target out-
puts. Geospatial operators transform both the geometries and attributes of geospatial data,
making it difficult to reason about their behavior. For example, the DISSOLVE operator
merges the boundaries of geographic features possessing a shared attribute value and com-
bines attributes of merged features using an aggregation function (e.g., sum) (Figure 5.2).



CHAPTER 5. FINDINGS 16

Dissolve

% American Indian % American Indian or Alaska Native
105 1w 0w sm o ms 12 3 a2

geopandas Program

import geopandas as gpd

Geometry

ca_sp3_tracts =
gpd.read_file(“tracts.shp”)

ca_sp3_counties =
ca_sp3_tracts.dissolve(
by="COUNTY",
aggfunc="sum”
)

couny [ 707

Attributes

Census Tracts Counties

Figure 5.2: An example geospatial operator. The DISSOLVE operator is used to group
Census tracts in northern California by a shared attribute (COUNTY). In addition to merging
the geographic boundaries of Census tracts, DISSOLVE aggregates values in the attribute
table using an aggregation function (e.g., sum, first, etc.).

Constructing analysis pipelines required participants to have deep knowledge of operators
and their semantics as well as the ability to inspect and debug generated outputs.

Identifying Geospatial Operators

Participants struggled to identify the correct operators to transform input layers into target
outputs (PE3, PE7, PE9, PS4, PJ4, PO2). Even an expert, PE7, noted that distinguishing
the behaviors of different geospatial operators is challenging: “I can never remember the
vector operations. There’s like UNION and MERGE. COMBINE! [ can never remember
exactly what they do. I know exactly what the output should look like in the end; I'm just
trying to figure out the tool that gets me that output.” PE9 spent 16 minutes searching for
a geopandas operator to filter a point layer to locations falling within a specific polygon in
a separate layer. They experimented with programs using intersection and sjoin before
identifying a solution using within, reflecting: “I feel like I spend a lot of time getting stuck
on, like, very simple GIS. It’s things like MERGE vs. JOIN, getting confused with which one
you want. Or SPATIAL JOIN vs. a regular JOIN. Sometimes just the terminology can be
confusing, and sometimes it’s not consistent between QGIS and Arc[GIS] and geopandas.”
The number of operators in GIS software and geospatial analysis libraries exacerbates this
challenge. For example, ArcGIS has over 200 operators in its Spatial Analyst toolbox,
ranging from bitwise operators to kriging algorithms [38]. This is only one of its 41 toolboxes.



CHAPTER 5. FINDINGS 17

Alternative Expressions of Intent

Although participants struggled to construct analysis pipelines, many could describe their
intent in other ways (PE7, PE9, PS4, PJ3, PJ4, PJ7, PJ8). Some used natural language
descriptions, either spoken aloud (PE7, PE9, PS4, PJ3, PJ4, PJ7) or written as comments
(PES, PS4, PJ1, PJ4). For example, PJ4 phrased their intent as a question: “How many
homicides did each neighborhood have this year, and how did that compare to, like, last
year or the last five years, or something like that, right? ... So now I'm doing the puzzle
in my head, like, how am I gonna get there?” They proceeded to write individual subgoals
for each analysis step in comments in their Jupyter notebook (e.g., “Spatially join homicides
to [neighborlhoods”). Some participants interacted directly with features in a map view to
express their intent (PS4, PJ7). PJ7 used their mouse to demonstrate in QGIS how they
would compute buffers around each line feature in their stream dataset, then compute the
area of overlap between these buffers and a raster deforestation dataset. This would yield
the total area of illegal logging in their analysis region.

Code Foraging

When participants could not identify the correct operator for an analysis context, they
resorted to foraging for similar analysis examples on Google (PE3, PE7, PE9, PJ2, PJ4),
StackOverflow (PE9, PE10), in documentation (PE7, PE9, PS4, PJ4), in online tutorials
(PE3, PE7, PE9, PS3, PS4, PJ3, PJ8), in colleagues’ computational notebooks and source
code (PE1, PE4, PE5, PS3, PJ3), or in their own notebooks and source code (PE1, PE9,
PE10, PS3, PJ3, PJ4, PJ8). PE9 demonstrated nearly all of these behaviors, visiting six
online tutorials, six StackOverflow pages, and two pages of the geopandas documentation
to determine the first two operators to use in their pipeline (Figure 5.3).

Understanding Geospatial Operator Semantics

Even when participants could identify candidate operators, they struggled to understand
operator behaviors (PE3, PE7, PES, PE9, PJ4, PJ8, PO2). As PE7 and PE9 noted in Section
5.3, this is partly due to the ambiguous naming of geospatial operators. Moreover, operator
semantics differ subtly across GISs and geospatial analysis libraries, meaning “you do need
some sort of specificity for doing the actual [analysis]” (PS2) in a particular environment.
For example, ArcGIS’s MERGE combines vector layers of any geometric type—point, line,
or polygon—into a single layer [40], while its QGIS-equivalent, MERGE VECTOR LAYERS,
can only merge vector layers of the same geometric type [3]. geopandas merge inherits
from pandas, ignoring geometry altogether and performing a join on shared attributes [51].
As this example illustrates, knowledge of geospatial operator behavior in one tool rarely
transfers to another.

Participants used diverse strategies to understand operator semantics. I highlight two
common techniques.



CHAPTER 5. FINDINGS 18

Encounters runtime error
attempting to access geometry
attribute of first feature in

Reads StackOverflow posts on
GeoDataFrame

geopandas within operator

: Revisits
¢ Accesses blog post geopandas

¢ on Python point-in- documentation on
i polygon test and within operator
: copies example code

s O O £ 52 s2[@E = s s

15:00 17:00 19:00 21:00 23:00 25:00 27:00 29:00 31:00
oy Debugging Attempt E Tutorial StackOverflow Post geopandas Documentation

Figure 5.3: Timeline of PE9’s attempts to identify geospatial operators. PE9
moved between tutorials, StackOverflow, and library documentation to identify the correct
geopandas operator and syntax to filter a GeoDataFrame of cell phone location records to
those falling within a polygon from a separate GeoDataFrame. They intermixed foraging for
example code with testing candidate operators for 16 minutes before arriving at a working
solution.

Output-Centered Hypothesis Testing

To test hypotheses about candidate operators’ behaviors, participants ran operators, then
manually inspected generated outputs (PE1L, PE3, PE7, PE9, PS1, PJ4, PO2). For example,
PE3 attempted to combine two single-band rasters into one multi-band raster in QGIS,
hypothesizing that the MERGE operator might be appropriate for the task. After running
MERGE, they inspected the output raster and found that it was still composed of a single
band. They next examined pixel values of this raster, noticing they were identical to pixel
values of just one of the input rasters. From this inspection, they inferred that MERGE
stitches together input rasters of differing geographic extents rather than combining raster
bands.

When testing candidate operators, participants focused on small subsets of pixels or fea-
tures and compared their values in input layers to their corresponding values in outputs.
Sometimes, selection of pixels or features was random (PE7, PS2, PO2). More often, they
selected parts of the output where unexpected behavior would produce obviously incorrect
values (PE1, PE3, PES, PS1, PJ2, PJ3). For example, PE1 computed a Normalized Differ-
ence Water Index raster and checked the pixel values of a lake in the generated output; if
the algorithm succeeded, these values would be close to the maximum value of one.



CHAPTER 5. FINDINGS 19

Observing Feature Count Changes

Many geospatial operations, such as those that filter, intersect, or aggregate geographies,
produce output layers containing a different number of features than their inputs. Partici-
pants used changes in feature counts to assess operator behavior, with the magnitude and
direction of change serving as proxies for correctness (PE9, PE10, PS1, PS4, PJ2, PJ3, PJ4,
PJ8). For example, PS4 checked the feature count of the dataframe produced by an st_join
operation: “This should only be 372 observations because each [Census| tract is unique, but
instead test2 [the output dataframe] is 2790, which is implying that there is something
wrong.”

Visibility of Geometry in Programming Environments

Participants relied on examining the geometry of their data to understand operator behavior
and validate operator output. GISs center the geometry of geospatial data via a map view, a
canvas that allows users to pan, zoom, and inspect features and pixels directly. Conversely,
participants using programming environments had to write additional code to perform these
interactions (PES, PE10, PJ7, PJ8, PO2). For example, PO2 wrote code to pan and zoom
static matplotlib figures to particular parcels in their OpenStreetMap dataset. This in-
volved a repetitive process of guessing the coordinates of bounding boxes containing the
parcels, updating a Python dictionary encoding these coordinates, re-executing their code
in IPython, and re-rendering the matplotlib figures until they achieved the desired view.
Programming environments made rendering and interacting with geospatial data chal-
lenging enough that, even when participants used them for analysis, they often moved their
data to GISs to “see” and “layer” (PJ6) it interactively (PE9, PJ2, PJ4, PJ6). PJ2 explained
the immediate visibility of their data’s geometry in GISs outweighed the performance ben-
efits of code: “I'm working in QGIS. I know that it’s slower than it would be to do it in
PostGIS or maybe even geopandas, and so I've considered switching to that. But I'm still
. new enough that I need to kind of ‘see’ to make sure my projections are right and stuff
like that.” PJ4 performed their analysis using geopandas in Jupyter but explained they
would visualize the results in QGIS: “Now I could try to visualize it here with matplotlib
and geopandas, but I know those things are ... not interactive and so I'm like, ‘I gotta
take this to QGIS.”” These findings extend prior work highlighting visual exploration and
cross-layer correlation as integral exploratory analysis techniques for geospatial data users
[77, 37]. Participants wanted visibility into their data’s geometry not only to identify spatial
patterns but also to validate the correctness of their analyses visually.

5.4 Representing Geospatial Analyses

Participants sought to represent their analyses in reproducible, shareable forms. While some
GISs maintain a record of users’ geoprocessing operations, this record is not grouped by
project or user session, omits changes to layer symbologies, and is encoded in formats like



CHAPTER 5. FINDINGS 20

XML [41] or command-line expressions [1] that participants did not otherwise use. As a
result, participants using GISs created informal program representations outside their GIS
to preserve information about analyses.

Reproducing Geospatial Analyses

Participants using GISs had difficulty reproducing their geospatial analyses, either because
they struggled to remember the current analysis state (PJ7) or lacked documentation on
how they performed the analysis previously (PJ5, PJ6). For example, PJ7 revisited a QGIS
project to expand the geographic extent of their analysis region but could not recall if they
had already clipped their layers to the new extent. They noted they “come across that
problem a lot of remembering where I was and what I've done already.” Some participants
tried to reverse engineer their workflows from generated artifacts (PJ5, PJ6): “I'm just
looking through ... some of my previous [exported SVGs| to remember what I did from
here” (PJ5). Prior studies of geospatial data users have similarly identified tracking data
provenance as a recurrent challenge [115].

Participants using GISs frequently relied on built-in history interfaces to “backtrace”
(PS1) operations they ran previously (PE3, PS1, PJ2). For example, PE3 and PS1 used the
RECENT menu in the QGIS EXPRESSION EDITOR to recover syntax for SQL queries they
recently executed, using these as templates to repeat processing steps with modifications.
Likewise, PJ2 used the RECENTLY USED menu in the QGIS PROCESSING T OOLBOX to rerun
BUFFER and OVERLAP ANALYSIS operations with new arguments. However, participants
explained these history interfaces are limited by how quickly they become overloaded with
stale information. PS1: “[I|f you do so many analyses in Q[GIS] in a week, it all gets buried
at the end of the day. There’s, like, no way you can actually export that history, which is
why I think fundamentally it’s only good temporally for a week at most.”

Participants using programming environments cited difficulty tracking provenance as a
core reason they avoid GISs (PE7, PE9, PS4, PJ8). PE9 explained: “I don’t do any of
my processing in [QGIS], and mainly because I like that you can track what you did, the
traceability of doing it in Python. Versus, there’s like none of that if you do it in QGIS. It’s
like you use a plugin or a function, but there’s no track record of it.” These participants could
also more easily recover information on the current analysis state. While converting a Google
Earth Engine pipeline to use imagery from a different satellite, PE1 could not recall how
much of this conversion they had completed. To determine where to resume refactoring,
they simply ran the program: “I'm just gonna try running this and see what happens
because I can’t really remember where the part is that I left off.” Additionally, participants
using programming environments perceived their programs as inherently replicable, shareable
artifacts (PE1, PE2, PE7, PS4, PJ1, PJ3, PJ4). PET: “If someone wants to go back and
look at my code—‘Oh, he got this shapefile from here and this shapefile from here, and he’s
pushing them together.” Whereas if you do that in Arc[GIS]|, you can’t really replicate that
workflow in the same way.”



CHAPTER 5. FINDINGS 21

Creating Informal Program Representations

Figure 5.4: Informal program representations of geospatial analyses. (A) PSI cre-
ated a hand-drawn diagram using a custom notational system to record operations, layer
names, and debugging steps in their analysis pipeline. (B) PE1 recorded high-level analysis
steps, issues encountered during analysis, and code snippets in a Google Doc and Microsoft
Word document. (C) PJ5 recorded step-by-step instructions for overlaying a GeoJSON file
with a Sentinel-2 image across Sentinel Hub, QGIS, Photoshop, and Illustrator. (D) PE3
used a Google Sheet to record information on data sources, their use in the analysis pipeline,
and arguments to pass to operators in QGIS.

Participants using GISs created informal program-like representations of their analyses
outside the software (PE3, PS1, PS2, PJ2, PJ5). Representations ranged from spreadsheets
(PE3) to semi-structured text documents (PE1, PS2) (Figure 5.4). PS1 created a hand-
drawn diagram using a custom notation based on the QGIS Graphical Modeler [2]. Their
diagram specified: the ordering of geospatial operators; the arguments, input layers, and
output layers of each operator; attribute table modifications and validation steps to perform
at specific pipeline stages; and layers to symbolize in QGIS before export to Illustrator. They



CHAPTER 5. FINDINGS 22

also used color as a visual variable, distinguishing layers from operators using blue and gold
dots.

Participants also used informal program representations to record data acquisition, clean-
ing, analysis, and visualization steps spread across multiple tools (PJ2, PJ5). For example,
PJ5 used macOS Notes to document a workflow for overlaying a GeoJSON atop a Sentinel-2
image, which involved moving data across Sentinel Hub, QGIS, Illustrator, and Photoshop.
They recorded steps ranging from querying a specific Sentinel-2 image in Sentinel Hub to
recomposing raster tiles in Illustrator. This degree of tool-hopping was common among par-
ticipants (PS1, PS2, PJ2, PJ5, PJ6, PJ7, PJ8), but all lacked automated tooling to track
cross-system provenance. PJ7 explained: “Y’know, when I'm jumping between QGIS and
Python and, well, we were just in Excel, and Tableau and Adobe Illustrator ... y’know,
commenting my code in Python doesn’t help me remember where I was in Illustrator.”

5.5 Visualizing Geospatial Data

Participants wanted to explore an expansive design space of cartographic representations
to visualize their analyses’ outputs. However, existing tools made this exploration difficult.
Visualizing the same data using different cartographic representations involved starting the
cartographic design process from scratch for each map variant. Because the tools participants
used for map design could not always natively handle geospatial data, spatial information
was lost when cartographic work began.

Sketching Cartographic Variants

Participants wanted to visualize data using multiple cartographic representations to explore
the design space of possible maps and provide tangible artifacts for collaborators to evaluate
(PS2, PJ5, PJ6). PJ5 had over 20 “concept drafts” of maps for one story, ranging from a
gridded heat map to a layout combining choropleth and dot density symbologies (Figure 5.5).
One draft included a sequence of mockups showing how the map would respond to a user
changing the visualized variables via dropdown menus. These drafts allowed PJ5 to explore
cartographic choices with editors: “I have several different versions where someone’s like,
‘What if this was a fullscreen map and the controls were in the corner, or if this were a side-
by-side map?’ Yeah, it’s predominantly thinking through what is the user experience and
what kind of information do we want the reader to be focused on.” PJ6 drafted multiple
choropleth maps for a story in QGIS and Mapbox Studio, took screenshots of the maps
in each tool, designed webpage layouts around the screenshots in Figma, and copied the
layouts into a Google Doc for editors to provide comments. They noted that prototyping
in a combination of GIS and design software allowed them to compare cartographic choices
quickly and get feedback “before I code anything.” While these drafts helped PJ5 and PJ6
explore the design space, they were not publication-ready. As a result, both authored code
for the chosen maps after the fact.



CHAPTER 5. FINDINGS 23

Figure 5.5: A selection of PJ5’s draft maps. (A) PJ5’s initial drafts combined choropleth
and dot density symbologies in a single map. (B) PJ5 created a gridded heat map (top)
and used this style with a modified color scheme in a small multiples layout (bottom). (C)
PJ5 tried an alternate layout combining a heat map with a bar chart. These mockups also
included a dropdown allowing users to change the variable displayed on the map. The top
and bottom mockups show two different UI states in response to user interaction.

To create multiple map versions, participants went through their entire visualization
pipeline—spread across code, GISs, and design software—for each variant (PJ5, PJ6). Sev-
eral participants used PJ6’s strategy of screenshotting draft maps in GISs (PS2, PE5) or the
browser (PJ5) to capture variants at intermediate stages. This allowed them to record many
versions distinguished by minor cartographic differences (e.g., color scales, basemaps), even
if changing map styles was too time-consuming. PJ5 avoided repeating their analysis and
visualization process by creating synthetic layers in some mockups: “If you look at those
mocks, they’re not fully accurate because I wasn’t able to do any of the data analysis I
wanted to do. So it was more of my crude approximation, like, ‘Well, y’know, if we allowed
the user to mess with these filters, here’s kind of what it would look like.”

Geospatial Information in Design Software

Participants using GISs for analysis rarely conducted cartographic work there; instead, they
moved their data into design software such as [llustrator or Photoshop (PS1, PS2, PJ5, PJ7).
This process involved transforming data encoded in geospatial formats (e.g., GeoJSON, Geo-
TIFF) into non-spatial formats (e.g., SVG, PNG). This transformation jettisons the spatial



CHAPTER 5. FINDINGS 24

information of the data, making it challenging to alter analyses after beginning visualization
work. Participants described moving from GIS to design software as “crossing a rubicon”
(PS2) and “mapping without a net” (PJ5) because the transition broke the link between
features and their real-world geographies. For example, PJ5 wanted to alter the brightness
of a Sentinel-2 image exported from QGIS to Photoshop while keeping it geographically
aligned to a GeoJSON exported separately to Illustrator: “If I crop this by so much as a
pixel, right, then it’ll no longer be accurate to that geography ... But as long as this raster
image and my I[llustrator SVG remain the same dimensions, then they will be accurate to
one another.”

Participants used a combination of strategies to avoid spatial information loss when
moving to design software. The most common was to avoid resizing a map after export
from GIS (PS1, PS2, PJ5), which guaranteed the preservation of spatial accuracy during
cartographic design. Participants also exported more data than they planned to use to avoid
re-exporting. PS1 maintained a layer group in QGIS named “primary” to house all layers
they believed could be important for visualization because “I never know what I want to
end up exporting as an SVG into Illustrator.”



25

Chapter 6

Design Opportunities

Our findings suggest new research directions and design opportunities for geospatial analysis
and visualization systems.

6.1 Solving Geospatial Data Constraints

Opportunity 1. Participants struggled to find geospatial data satisfying complex spatial
and temporal constraints (Section 5.1). While many could describe their constraints succinctly,
satisfying them involved constructing bespoke workflows to combine, align, and simplify their
raw datasets (Section 5.2). These challenges suggest an opportunity for tools that (1) offer
alternative programming abstractions to express data constraints and (2) infer geospatial data
queries and transformations from constraints.

Designers could take inspiration from constraint-based programming systems, which have
addressed similar problems in visualization [88] and mathematical diagramming [122]. These
systems allow users to describe target outputs (e.g., charts, diagrams) via constraints ex-
pressed in domain-specific languages (DSLs). Compilers then translate these programs into
optimization problems for constraint solvers. In the geospatial setting, GeoSPARQL’s topol-
ogy vocabulary extension [22] provides an example of a constraint-based system for enforcing
topological invariants. Our findings suggest that a constraint-based language for geospatial
data could allow users to compose additional constraints related to spatial extent, geographic
accuracy, spatial resolution, temporal resolution, and occlusion characteristics.

Many constraint-based languages are declarative—users describe what a program should
generate without specifying how. Declarative DSLs have addressed domain experts’ needs
in fields including cloud infrastructure engineering [57], interactive graphics [108, 61], and
programmable biochemistry [95]. A declarative DSL for geospatial data transformation
could shift much of the burden of wrangling to automated tooling. For example, we could
imagine PE2 replacing their resampling algorithm (Section 5.2) with an expression defining
the required spatial resolution of all input rasters; the language implementation would be



CHAPTER 6. DESIGN OPPORTUNITIES 26

responsible for generating code to perform the resampling. Prior programming languages
work targeted at geospatial data [5, 71] has focused on simplifying querying, but our findings
indicate that users need better abstractions for transformation.

6.2 Assistive Tools for Constructing Geospatial
Analysis Pipelines

Opportunity 2. Participants could describe the target outputs of their geospatial analyses but
struggled to construct pipelines to produce them (Section 5.3). This suggests an opportunity for
tools that (1) accept non-code specifications of analysis intent, (2) synthesize analysis programs
that satisfy specifications, and (3) support users in editing programs.

Program synthesis approaches, such as programming-by-example (PBE) and programming-
by-demonstration (PBD), excel in contexts where users can express outputs but struggle to
author code. In prior work, C-SPRL used PBD to synthesize spatial data queries from
recordings of user interactions in a GIS [114, 115]. However, we are not aware of synthesiz-
ers that aid programmers in selecting geospatial operators for their analysis pipelines. Given
participants’ use of many alternative specifications of intent—natural language descriptions,
direct interaction with maps, constraints on outputs (Sections 5.3 and 5.3)—operator se-
lection may be fertile ground for synthesis. Moreover, prior research in data science has
shown that PBE can assist with operator selection in libraries with large API surfaces [7],
suggesting that search over the vast numbers of operators in GISs and geospatial analysis
libraries is tractable.

Based on participants’ code-foraging behaviors (Section 5.3), synthesis may be useful
even if synthesizers cannot reach all plausible programs. We observed that participants were
comfortable tweaking existing programs to reach their target solution. Thus, tools that
support goal (3) above may be helpful both as companions to synthesis and independently.
This echoes design guidance from [115] arguing that synthesized programs should be editable
to support users in adapting them to similar tasks.

Opportunity 3. Participants relied on running operators and manually inspecting outputs
to understand operator semantics (Section 5.3). This was computationally expensive and time-
consuming, suggesting an opportunity for tools that surface information on operator semantics
without requiring execution across entire inputs.

Live programming offers users immediate visual feedback on program behavior using
concrete inputs [75, 107]. We observed that participants already use small collections of geo-
graphic features or pixels as test cases to infer operator behavior, implying that this technique
may fit existing debugging patterns (Section 5.3). Our observations of data subsetting prac-
tices (Section 5.2) reinforce this connection—participants already manually reduce dataset
size to get faster feedback. A live programming system for geospatial analysis could automate



CHAPTER 6. DESIGN OPPORTUNITIES 27

these practices.

Reproducible, Shareable Geospatial Workflows

Opportunity 4. Participants using GISs struggled to create reproducible, shareable geospatial
workflows (Section 5.4). Limitations in existing history interfaces made it difficult to recover
information on the current analysis state or revisit past analysis decisions (Section 5.4). These
struggles suggest opportunities for tools that (1) support efficient search through system history
and (2) distill history into a portable and executable representation.

Tools like Verdant [69] and Variolite [67] offer glimpses of alternative ways of surfacing
analysis histories. For example, Verdant offers views of computational notebook history by
time, artifact, and structured search. It also produces a single-file history representation
that users can share with collaborators. Producing usable history tools for geospatial data
will first require identifying what history information is valuable. Participants’ informal
program representations suggest that tracking provenance information at the layer level and
recording modifications to layer symbologies and attribute tables could augment existing
systems’ approach of logging geoprocessing operations (Section 5.4).

Beyond making history searchable, developers could borrow techniques from record and
replay [14, 76, 100, 84] to make history executable. An observational study of GIS users
found that participants’ work was often highly repetitive [31], implying that record and replay
could help automate tedious tasks in GISs. Although we observed few cases of repetitive
work, our participants frequently used history interfaces to manually replay past operations
with modified arguments (Section 5.4). This suggests an opportunity for tools that can
automatically parameterize recordings of user interactions into generalized programs. Ringer
(6, 18, 19] and BluePencil [87] are models in this space; for example, Ringer transforms
user demonstrations in web browsers into scripts that can be modified, parameterized, and
replayed.

Exploring the Cartographic Design Space

Opportunity 5. Participants wanted to visualize their geospatial data using multiple car-
tographic representations, but transitioning between representations required engineering each
one from scratch (Section 5.5). This suggests an opportunity for cartographic design tools that
reduce the viscosity [8] of switching between map types.

High-level DSLs offer a low-viscosity approach for design space exploration. In visualiza-
tion, grammars of graphics [120] like Vega-Lite [108] pair declarative primitives for describing
visualizations with a compiler for generating low-level rendering code. Encouragingly, these
grammars already have some support for geospatial data. However, because they restrict
the geospatial file formats, data models, and cartographic types that users can work with,
these grammars cannot express the majority of maps our participants created. In rethinking



CHAPTER 6. DESIGN OPPORTUNITIES 28

a grammar of graphics for cartography, our findings indicate that supporting more carto-
graphic representations and minimizing the number of program edits required to switch
representations are critical design considerations. Libraries like Plot [93] and Bertin.js [73]
are promising examples of tools that make map type a first-class primitive.

Opportunity 6. Many participants used direct manipulation design software to visualize
geospatial data. These tools discard all geographic information, making it difficult to refactor
an analysis once visualization work has begun (Section 5.5). This suggests an opportunity for
tools that (1) bridge geospatial analysis and cartographic design and (2) maintain the underlying
geospatial data representation of graphical elements while supporting direct manipulation.

Prior work indicates that pairing programmatic and direct manipulation paradigms is
possible for tasks with visual outputs. Sketch-n-Sketch [63] successfully applies this tech-
nique to SVG editing. Users can manipulate the output SVG or edit the program repre-
sentation to make changes; Sketch-n-Sketch propagates edits bidirectionally to maintain the
correspondence between program and graphic. Such an approach for geospatial data could
preserve the geographic information of graphical elements during visualization, allowing users
to return to analysis without obviating in-progress design work. Moreover, this approach
could address participants’ core issue with using direct manipulation design software for
cartography—that once a particular map design was chosen, they often had to reproduce
the map in code (Section 5.5).



29

Chapter 7

cartokit

In this chapter, I introduce cartokit, a direct manipulation programming environment
for interactive cartography on the web. cartokit aims to realize several of the design
opportunities described in Chapter 6 in a unified system. In addition, it seeks to fill critical
gaps in existing direct manipulation interfaces for cartographic design. Toward these goals,
cartokit makes three novel contributions. First, it exposes direct manipulation interactions
for styling geospatial data while preserving the underlying data representation, allowing
users to move fluidly between analysis and visualization work. Second, it enables single-
click transitions between map types, facilitating rapid exploration of the cartographic design
space. Third, it compiles user-created maps—on each interaction—into JavaScript programs,
providing direct access to a reproducible program artifact and supporting transfer to other
code-based environments.

In the following sections, I describe cartokit’s design and implementation in detail.
First, I provide a brief system overview. Next, I survey prior work on direct manipula-
tion interfaces for cartographic design as well as direct manipulation interfaces supporting
code generation from visual artifacts. From there, I highlight novel facets of cartokit’s
design that extend beyond prior work, focusing on (1) support for cross-geometry map type
transitions, (2) support for user-defined data transformations, and (3) code generation to a
general-purpose language. Finally, I demonstrate these novel facets by way of a case study
showing how cartokit users can create expressive thematic maps comparable to graphics
published in national newsrooms.

7.1 System Overview

cartokit is a web application implemented in TypeScript [86] using Svelte [24], a functional,
reactive programming framework for building user interfaces. The user interface consists of
four primary elements (Figure 7.1):

(A) The Map View, which displays the map the user is actively manipulating and styling.
cartokit uses MapLibre GL JS [23], a WebGL-based graphics library for interactive



CHAPTER 7. CARTOKIT 30

Figure 7.1: The cartokit user interface. (A) Users interact directly with features ren-
dered in the Map View. (B) Users style layers on the map via controls in the Proper-
ties Panel. (C) Users access the JavaScript program generated by cartokit in the Code
Viewer. (D) Users can view and sort the tabular data associated with the selected layer in
the Data Table.

maps, for rendering.

(B) The Properties Panel, which provides access to interface elements for editing visual
and semantic properties of layers on the map.

(C) The Code Viewer, which displays the JavaScript program—generated by cartokit—
corresponding to the user’s map.

(D) The Data Table, which shows the tabular data associated with the currently selected
layer.

Secondary interface elements supply functionality for uploading geospatial datasets, render-
ing layer information (e.g., display names, legends), authoring and previewing data trans-
formations, and altering base layer selection.



CHAPTER 7. CARTOKIT 31

Interaction Model

cartokit is an output-directed, direct manipulation programming environment for building
web maps. Rather than writing a program by hand to visualize geospatial data on an
interactive map, cartokit users style their geospatial data through direct manipulation
while the system generates a program to reproduce the map one-for-one. In essence, users
reach working programs by modifying the program’s output (i.e., the map) rather than its
source code.

In the following sections, I outline a typical user interaction with cartokit across three
phases: uploading data, styling data, and compilation.

Uploading Data

cartokit users begin interacting with the system by uploading a geospatial dataset encoded
as GeoJSON [15], a popular interchange format for vector geospatial data. I selected Geo-
JSON as cartokit’s primary data format due to its wide adoption among my participants
and its compatibility with many different geospatial graphics engines (e.g., Mapbox GL JS,
MapLibre GL JS, Leaflet, deck.gl, d3-geo). To upload data to cartokit, users start by click-
ing the + icon in the Layers Panel; cartokit then renders a modal prompting them for
the GeoJSON and an associated layer name. Users have the option of uploading a GeoJSON
file from disk or supplying an API endpoint from which cartokit can fetch the GeoJSON.
Once supplied, cartokit parses the GeoJSON in a Web Worker and stores the result in
memory. Moving data parsing to a Web Worker frees the JavaScript engine’s main thread to
continue processing user interactions while upload occurs. This is an important optimization
for handling GeoJSON datasets, which can range in size from tens to hundreds of megabytes.

Styling Data

After cartokit ingests users’ geospatial data, the system renders it using a default carto-
graphic representation appropriate for the input geometry type. For example, cartokit uses
the FILL map type to render a GeoJSON dataset consisting of Polygons, applying a uniform
fill and stroke to all features in the layer. Conversely, it uses the POINT map type for Point
datasets, applying a uniform fill, stroke, and radius to all points in the layer. To initiate
styling, the user selects an individual feature (e.g., a single Point, Line, or Polygon) on
the map. Feature selection opens the Properties Panel, which includes interface controls
for altering visual properties such as fill, stroke, opacity, size, and color scheme. The Prop-
erties Panel also contains interface controls for modifying higher-level properties of the
map, including the map type, the statistical method used for setting breaks in continuous
data, and mappings of data attributes to visual encodings. While user selections occur on
individual features in a layer, interactions in the Properties Panel affect the appearance
of all features in the layer. This behavior differs from the model used in direct manipulation
design software (e.g., Adobe Illustrator, Sketch, Figma), where modifications of properties
only affect selected features. However, this behavior closely mirrors GIS software, which



CHAPTER 7. CARTOKIT 32

cartokit Ul Intermediate Representation

Dispatch IR Trigger Code
Update Generation Code Generation
GUI Interaction Algorithm
o .
~ User
Observe Map

Change Generate JS

Program

Trigger Map
Reconciliation

Apply Changes to Map Layers .
Reconciler

weuboud yduosener

Figure 7.2: cartokit’s system architecture. User interactions in the Properties Panel
dispatch updates to the cartokit IR. The Reconciler propagates these updates back to
the map, while the Code Generation Algorithm generates a JavaScript program that,
when executed, reproduces the map one-for-one.

groups all features of a dataset into a single layer; modification of a single feature is then
interpreted as a change to the layer’s overall symbology.

Compilation

On every modification of the map—including zoom events, pan events, and basemap changes,
in addition to interactions in the Properties Panel—cartokit generates a JavaScript
program that reproduces the map one-for-one. We can think of this component of cartokit
as a compiler that transforms a sequence of user interactions with a map GUI into JavaScript
programs producing equivalent output. The generated programs use Mapbox GL JS [79], a
popular WebGL-based library for interactive maps, as the graphics engine. Notably, nothing
about cartokit’s design is tied to this choice of “backend”; the compiler could just as easily
target different geospatial graphics engines or different programming languages altogether.
Unlike a traditional compilation model-—in which modifying a source program and com-
piling a source program are separate actions—styling and program generation are tightly
coupled in cartokit. This coupling has several important benefits. First, the generated
program is always up to date with the user’s styling changes. Second, it is impossible
for users to reach invalid programs; every available interaction in the interface predictably
transforms the generated program. To achieve stable, near real-time compilation, cartokit
maintains and repeatedly updates an intermediate representation of the map and all user-
defined layers. Each interaction with the interface applies a transformation to the IR, which
in turn triggers cartokit’s reconciler and code generation algorithm. The reconciler ensures
that the map GUI reflects the user’s changes while the code generation algorithm transforms
the IR to the output JavaScript program. Figure 7.2 provides a high-level overview of the



CHAPTER 7. CARTOKIT 33

system architecture. cartokit displays the generated program in the Code Viewer, from
which a user can inspect or copy it. This allows users to take their cartographic design
work—codified in the program representation—to other tools when they wish to achieve
something beyond the system’s supported functionality.

7.2 Related Work

In this section, I discuss prior work on direct manipulation interfaces for cartographic design
as well as direct manipulation interfaces supporting code generation from visual outputs.

Direct Manipulation Interfaces for Cartographic Design

Existing direct manipulation interfaces for cartographic design align in their decisions to
(1) limit in-system data transformation, (2) target custom specification formats rather than
general-purpose languages, and (3) expose interface controls that map closely to the APIs
of their respective graphics engines. We explore these themes in the two systems most
closely related to cartokit—Mapbox Studio and Felt. Other direct manipulation systems
for cartographic design exist (e.g., Tableau, Datawrapper). However, these systems differ
substantively from the others in that they hide the underlying program from users. I briefly
discuss these systems at the end of this section.

Mapbox Studio

Mapbox Studio [80] is a direct manipulation editor for geospatial data targeting the Mapbox
Style Specification [81], a custom JSON specification format. Users style geospatial data
using interface controls in a GUI; alternatively, they can textually edit individual key-value
pairs of the generated JSON. Interestingly, Mapbox Studio never exposes the full JSON style
specification to users within the interface. Instead, each direct manipulation control has an
associated code editor to enable one-off textual edits at the property level.

To render a map created in Mapbox Studio in the browser, users rely on (1) embedding
an iframe referencing a Mapbox-generated url in a web page, (2) fetching their style speci-
fication from a Mapbox-generated url in a JavaScript program using Mapbox GL JS, or (3)
exporting their style specification from Mapbox Studio and inlining it in a JavaScript pro-
gram using Mapbox GL JS. In the first case, a user has no ability to modify the underlying
program outside of Mapbox Studio. In the latter two cases, the user has direct access to the
style specification but must write the JavaScript program from scratch. These programs can
quickly become complex; rendering a single dataset involves importing and parsing the Geo-
JSON data, instantiating the Map instance, wiring up onload event listeners, and creating
layers and layer sources. In all three cases, Mapbox Studio users are dependent on graphics
engines that can interpret the Mapbox Style Specification directly.



CHAPTER 7. CARTOKIT 34

Data Transformation Mapbox Studio expects users’ geospatial data to be pre-analyzed;
once loaded, data cannot be transformed. However, Mapbox Studio does support “views”
on data through attribute-based filtering and computed attributes. For users, constructing
views involves writing expressions using Mapbox’s expressions syntax, an array-based JSON
DSL. These expressions are evaluated at run time by a custom interpreter in Mapbox GL
JS. Figure 7.3 shows two example Mapbox expressions illustrating filtering and computed
attributes.

{
"circle-radius": [
{ "interpolate",
"filter": [ ["linear"],
||::||I [usqrtu’ ["get", "total_capacity" ] ] ,
["get", "primary_source"], 9,
"oil" 0.5,
1 84.136,
} 25,
1
}

Figure 7.3: Example Mapbox expressions. The Mapbox expressions syntax is a JSON
DSL loosely based off of Lisp S-expressions. (A) Users can specify predicates over attributes
of a dataset via a filter expression. (B) Users can compute new data from existing at-
tributes using a range of arithmetic operators.

The introduction of a custom syntax makes users dependent on the Mapbox GL JS
interpreter supporting the language constructs they need. More complex data transforma-
tions, such as cross-geometry transitions or statistical clustering methods commonly used in
geospatial visualization, are currently unsupported. In addition, because these expressions
are evaluated internally by the interpreter and applied uniformly to all features, users have
limited ability to debug expressions producing unexpected results for specific features (e.g.,
those containing NaN or null attributes).

Level of Abstraction Mapbox Studio’s user interface exposes controls that map directly
to the Mapbox Style Specification. Users work at a level of abstraction closer to the lower-
level details of the graphics engine rather than the higher-level language of cartography.
Instead of thinking in terms of cartographic representations (e.g., choropleth, proportional
symbol, dot density, etc.), users manipulate graphical properties of features (e.g., £ill,
stroke, circle-radius). For example, in order to create a choropleth map, a user creates a
"fill" layer, maps the "fill-color" attribute to a custom "step" expression referencing a
data attribute, manually computes statistical breaks in that data attribute, and maps each



CHAPTER 7. CARTOKIT 35

break to a specific RGB value or hexadecimal code. One notable exception in the Map-
box Style Specification is the "heatmap" layer type, which allows users to specify abstract
graphical properties like "heatmap-intensity" and "heatmap-weight" that parameterize
an underlying bivariate kernal density estimation algorithm.

Felt

Felt [45] is a direct manipulation editor for geospatial data targeting the Felt Style Language
(FSL) [46], a custom JSON specification format. Similar to Mapbox Studio, users can
style their geospatial data either through direct manipulation or textual editing of the FSL
specification. Unlike Mapbox Studio, Felt exposes the full FSL specification at all times in
its Source Viewer.

To render a map created in Felt in the browser, users rely on (1) sharing Felt-generated
urls or (2) embedding an iframe referencing a Felt-generated url in a web page. Felt has
no accompanying JavaScript library to interpret FSL; users can only create and style maps
that run on Felt’s platform.

Data Transformation Similar to Mapbox Studio, Felt does not support persistent data
transformation within the interface but does enable “views” through attribute-based filtering.
Filters in FSL use infix operators; for example, the filter in Figure 7.3 (A) would be expressed
in FSL as "$primary_source == o0il". Unlike Mapbox Studio, Felt currently has no support
for computed attributes—users can only visualize fields that have been pre-computed in their
datasets.

For certain cartographic representations, Felt includes algorithms for binning and cluster-
ing data automatically. For example, users creating choropleth or proportional symbol maps
can select from a set of six algorithms to set breaks in continuous numerical data, including
Jenks natural breaks, quantiles, quantization, standard deviations, geometric intervals, and
manual breaks. Interestingly, these algorithms are only selectable in the direct manipulation
interface. FSL provides no language abstractions for these algorithms; instead, users supply
breaks manually as an array of numbers for the "steps" key in an FSL specification.

Level of Abstraction In addition to supporting modification of visual properties (e.g.,
the fill, stroke, size, and opacity of rendered marks), Felt’s user interface exposes controls
for editing higher-level properties of a map. Felt’s map type selector is a key example,
allowing users to switch cartographic representations with a single click. For example, users
interacting with Point datasets can transition their data from a point map to a categorical
point map, color scaled point map, proportional symbol map, or heat map in one interaction.
Notably, Felt limits the set of reachable map types based on the geometry of the input
dataset. For example, users cannot transition Polygon datasets to map types appropriate
for Point or LineString geometries, despite such cross-geometry transitions being common
in cartographic design.



CHAPTER 7. CARTOKIT 36

Felt’s higher-level interface controls do not always correspond to constructs in FSL. For
example, the selected map type and breaks algorithm are represented in the interface but
are absent in an FSL specification. In this way, users work at different levels of abstraction
depending on whether they use the interface or edit the FSL specification directly.

Related Systems

Several other direct manipulation interfaces for cartographic design exist; however, these
systems differ from those above in that they intentionally hide the underlying program
representation from users. Tableau [112] is a no-code, direct manipulation editor for con-
structing data visualizations and data dashboards. While not specialized for geospatial data,
Tableau allows users to visualize pre-analyzed vector geospatial data using one of six preset
map types. Datawrapper [28] is a no-code, direct manipulation editor for creating annotated
graphics, targeted at the data journalism community. Similar to Tableau, it allows users
to visualize vector geospatial data using one of four preset map types. In this sense, both
Tableau and Datawrapper operate at a similar level of abstraction to cartokit, orienting
users around the central primitive of the map type. However, cartokit extends signifi-
cantly beyond these systems by (1) supporting in situ, user-defined geospatial and tabular
data transformations and (2) generating and exposing a corresponding JavaScript program
to reproduce the maps users create.

Code Generation in Direct Manipulation Interfaces

Outside of the domain of cartographic design, several direct manipulation systems have ex-
perimented with generating code from sequences of user interactions with visual outputs.
Sketch-n-Sketch [63, 83, 20] is one prominent example. As described in Section 6.2, Sketch-
n-Sketch is a bidrectional, direct manipulation programming environment for SVG editing.
Users can edit either the program source code or the output SVG while the system main-
tains the correspondence between the two. While cartokit is inspired by Sketch-n-Sketch,
it differs in two key ways. First, Sketch-n-Sketch targets a custom-built functional lan-
guage, meaning that generated programs can currently only be evaluated by the system’s
interpreter. Targeting a custom language comes with additional consequences; Sketch-n-
Sketch users have no language tooling (e.g., libraries, debuggers, and performance profilers)
to take advantage of outside of what the system provides. In contrast, cartokit intention-
ally targets a general-purpose language, JavaScript, with a sophisticated language tooling
ecosystem. Users can take cartokit-generated programs and execute, debug, profile, or
extend them in any environment supporting JavaScript. Second, Sketch-n-Sketch uses an
evaluation model where changes to the SVG output yield program transformations that are
applied to the source program. In the case of multiple candidate transformations, users pick
which one to apply and Sketch-n-Sketch re-executes the program. In contrast, cartokit
maintains an intermediate representation that models the map users interact with in the
interface. Edits to the map using the Properties Panel update the IR, which in turn



CHAPTER 7. CARTOKIT 37

triggers (1) a reconciliation algorithm that ensures updates are propagated to the map, and
(2) a code generation algorithm that produces the output JavaScript program.

Direct manipulation design software systems, such as Adobe Illustrator and Sketch, sup-
port modest code generation to aid designers in transitioning the visual appearance of static
media to programs. Figma’s Dev Mode [47] is a recent step forward in this space, supporting
compilation of visual assets to CSS, SwiftUI, or Jetpack Compose code. In these contexts,
code generation operates at the level of individual components, providing small, focused snip-
pets for handling layout and appearance of one element at a time. In contrast, cartokit
provides the entire program needed to produce the visual output (i.e., the map) the user
interacts with. Beyond the layout and appearance of layers, cartokit handles data imports,
data transformations, calls to external libraries, asynchronous loading and rendering of the
map and layers, and more.

7.3 System Design

In this section, we explore cartokit’s design in greater depth, focusing on three novel
contributions that distinguish it from existing direct manipulation interfaces for cartographic
design: cross-geometry transitions, user-defined data transformations, and code generation
to a general purpose language.

Cross-Geometry Transitions

Existing direct manipulation interfaces for cartographic design restrict the possible maps
users can create based on the geometry of input datasets. To explore alternate cartographic
representations, users must transform their data externally using GIS software or geospatial
analysis libraries. This separation of transformation and visualization capabilities not only
forces data transfer across tools, but also requires starting cartographic design work from
scratch for each new map.

cartokit addresses this challenge through non-destructive, cross-geometry map type
transitions via the Map Type select in the Properties Panel. The Map Type select
is the core interface element in cartokit’s design, allowing users to switch cartographic
representations with a single click. Unlike related systems, cartokit can also transition
between cartographic representations of differing geometry types. For example, users up-
loading Polygon data can transition that data from Polygon-based map types (e.g., FILL,
CHOROPLETH) to Point-based map types (e.g., PROPORTIONAL SYMBOL, DOT DENSITY)
and back. Critically, cartokit preserves visual styles across transitions when those styles
are not affected by the choice of map type. This means that lower-level, in progress design
work is preserved even as the higher-level cartographic representation changes.

To support cross-geometry transitions, cartokit introduces novel, custom geospatial
transformation algorithms. Internally, I implemented the transformation algorithms using a
mixture of TypeScript and calls to library functions from Turf.js [25]. These algorithms take



CHAPTER 7. CARTOKIT 38

into account the source and target map type, as well as the initial and current geometry types
of the user’s dataset, to determine (1) whether a given map type transition is possible and (2)
how to transform features of the input geometry type to the output geometry type. Listing
7.1 provides an example of one such algorithm, transformDotDensity, which transitions
a Polygon or MultiPolygon dataset to a DOT DENSITY map, a Point-based cartographic
representation. Geospatial transformations applied to the original dataset are serialized
and stored in a transformations array in the cartokit IR. The transformations array
tracks provenance information for the currently rendered data; given the original dataset,
applying the stored transformations in sequence reproduces the current map exactly. During
code generation, these transformations are inserted as functions in the output JavaScript
program. We also generate a flow call, which applies the transformations in sequence.

cartokit’s map type transitions are also non-destructive—users can recover their orig-
inal maps even after initiating a transition. To accomplish this, cartokit maintains two
representations of a layer’s data in memory: the currently rendered version and the originally
uploaded version. When computing the set of possible map type transitions, the system takes
into account both data representations. For example, after transitioning a FILL layer to a
POINT layer, cartokit has two representations of the layer’s data: (1) the original Polygons
and (2) the Points corresponding to those Polygons’ centroids. If a user then transitions
the POINT layer to a CHOROPLETH layer, cartokit will reuse the Polygons of the original
data. In practice, this means that map type transitions that are either impossible or destruc-
tive in existing systems—because they overwrite the source data’s geometry—are possible
in cartokit.



CHAPTER 7. CARTOKIT 39

1| function transformDotDensity(layer) {

2| // Obtain the layer's source and current geometry types.

3 const sourceGeometryType = getLayerGeometryType(layer.data.sourceGeoJSON) ;

4 const geometryType = getLayerGeometryType(layer.data.geoJSON);

5

6 // If the source geometry type is not "Polygon" or "MultiPolygon", we cannot transition
7 // to a Dot Density map - we don't have the requisite geometry.

8| if (sourceGeometryTye !== "Polygon" && sourceGeometryType !== "MultiPolygon") {

9 throwUnsupportedTransitionError (sourceGeometryType, "Polygon");

10 }

11

12 // If the current geometry type is not "Polygon" or "MultiPolygon", use the source Polygon
13| // geometry from the original GeoJSON. Otherwise, use the current GeoJSON.

14| const features = geometryType !== "Polygon" && geometryType !== "MultiPolygon"

15 ? layer.data.sourceGeoJSON.features

16 : layer.data.geoJSON.features;

17| const attribute = getLayerAttribute(layer);

18 const dotValue = deriveDotDensityStartingValue(features, attribute);

19

20| const dots = features.flatMap((feature) => {

21 // Compute the number of dots to generate for each Polygon feature based on the
22 // attribute being visualized and the specified dot value.

23 const numPoints = Math.floor(

24 feature.properties?. [attribute] / dotValue

25 )5

26 // Obtain the bounding box of the Polygon feature.

27 const bbox = turf.bbox(feature);

28 const selectedFeatures = [];

29

30 // Generate random points within the bounding box of the Polygon feature, stopping
31 // once we've generated the requisite number of points.

32 while (selectedFeatures.length < numPoints) {

33 // Generate a random point within the bounding box of the Polygon feature.

34 const candidate = turf.randomPoint(1, { bbox }).features[0];

35

36 // Verify the generated point is within the Polygon feature, not just its bbox.
37 if (turf.booleanWithin(candidate, feature)) {

38 selectedFeatures.push(candidate) ;

39 }

40 3

41

42 // Return a FeatureCollection of the generated points, each with the same set of
43 // attributes as the original Polygon feature.

44 return selectedFeatures.flatMap((point) => turf.feature(point.geometry, feature.properties));
45! 1)

46

47| return turf.featureCollection(dots);

48|}

Listing 7.1: cartokit’s algorithm for transitioning to a Dot Density map. The
algorithm first examines the source and current geometry types to determine if the transition
is possible. From there, the algorithm generates a specific number of dots within the source
Polygon based on the attribute being visualized.



CHAPTER 7. CARTOKIT 40

User-Defined Data Transformations

cartokit users primarily transform the geometry of their geospatial datasets using the Map
Type select. However, my observations with participants revealed that many geospatial
analyses require additional computation over both a dataset’s geometry and tabular at-
tributes (Section 5.3). These computations vary widely in complexity, ranging from single-
predicate filters to arithmetic expressions deriving new attributes to advanced aggregations
and geostatistical analyses. To facilitate flexible, in situ data transformations, cartokit
provides a Data Transformation Panel that allows users to author and apply arbitrary
JavaScript functions to their GeoJSON datasets.

I implemented the Data Transformation Panel as a Codemirror [58] editor accessed
via the Properties Panel (Figure 7.4). When a user opens the Data Transformation
Panel, cartokit renders the editor pre-filled with a function (transformGeoJSON) tak-

Figure 7.4: cartokit’s Data Transformation Panel. (A) Users click the gear icon next
to the Attribute select to open the Data Transformation Panel. (B) Users can write
arbitrary JavaScript functions to transform a layer’s GeoJSON. In this example, a user em-
ploys Array.prototype.reduce to (1) filter features whose Region_ID starts with the string
““USA’’ and (2) compute the maximum of three of its attributes, stored in a new property
max. (C) The Preview shows the result of applying the function to the layer’'s GeoJSON
on the currently selected feature. cartokit computes the result on every keystroke.



CHAPTER 7. CARTOKIT 41

ing a single argument (geoJSON) corresponding to the layer’s GeoJSON dataset. From
here, the user can modify the body of the function to specify a transformation. For ex-
ample, to combine filtering and attribute computation in a single function, a user can call
Array.prototype.reduce on geoJSON.features. Within the reducer callback, they can
remove features failing a given predicate and compute a new attribute that is added to each
feature’s properties Object (see the example in Figure 7.4). Users execute transformations
by clicking the Run button, which sends the function body and GeoJSON to a Web Worker
for execution. Similar to the benefits of parsing datasets in a worker, running transforma-
tions in a worker frees the main thread to continue processing user interaction. This is an
important optimization for long-running computations or extremely large datasets, both of
which are common in geospatial analysis contexts. If no errors occur while running user
code, the data is transformed, serialized, and sent back to the main thread, where it replaces
the layer’s previous data in application state; cartokit also displays a success message. If
the transformation results in a runtime error, the computation terminates and the error’s
message, line number, and column number in the source program are displayed to the user.

Beyond the code editor for defining data transformations, the Data Transformation
Panel contains two additional interface elements to assist users in authoring custom transfor-
mations. First, the Console displays output printed by a user via console.log statements
in their transformation code. This provides modest—though important—debugging capabil-
ities, allowing users to inspect transformation behavior at the level of individual expressions
or statements. Second, the Preview displays a live GeoJSON representation of running
the transformation on the currently selected feature, giving users an “always on” view of
the transformation’s output using a concrete example. My observations of output-centered
hypothesis testing (Section 5.3) and data subsetting to accelerate the transform-inspect-
modify loop (Section 5.2) heavily influenced the Preview design. cartokit smooths and
automates these interactions by (1) paring down the dataset to a single feature when execut-
ing the transformation, supporting fast generation of output, and (2) displaying the tabular
data of the output in near real-time. Furthermore, the Preview provides a glimpse of what
a live programming interaction for data transformation could look like in geospatial analysis
environments (Section 6.2).

To our knowledge, cartokit is the first direct manipulation programming environment
for cartographic design to support arbitrary, in situ, user-defined data transformations. No-
tably, the choice to support JavaScript as the transformation language opens up classes of
transformations that cannot be expressed by other tools. Unlike Mapbox Studio and Felt,
which use small DSLs with custom interpreters for a restricted set of data transformations,
users can perform any computation that can be expressed in JavaScript. In addition, users
have access to the full JavaScript ecosystem via dynamic import statements, which allows
access to third-party libraries. This is particularly useful for bringing in packages to assist
with more complex geospatial transformations or geostatistical analyses.



CHAPTER 7. CARTOKIT 42

Compilation to a General-Purpose Language

A central goal of cartokit’s design is to help users reach programs that (1) are difficult to
write by hand, (2) use a programming language and graphics engine they are already familiar
with, and (3) can be modified, executed, and deployed outside of the system. Toward this
goal, cartokit’s code generation algorithm targets JavaScript programs using Mapbox GL
JS as the graphics engine. This pairing was widely adopted among my participants focusing
on visualizing geospatial data, especially those in the data journalism community. In addi-
tion, using JavaScript as the compilation target improves the portability and extensibility of
cartokit’s output. Users can copy the generated program out of cartokit and modify it in
a text editor, web-based IDE, or computational notebook to reach map types or interactions
currently unsupported by the system. Users can also take advantage of the vast JavaScript
ecosystem when modifying programs, bringing in additional libraries as needed. This is par-
ticularly important for users who need to integrate programs generated by cartokit with
broader web site infrastructure, interface layouts, and deployment pipelines.

Compiling to a general-purpose language like JavaScript distinguishes cartokit from
other direct manipulation interfaces for cartographic design, which compile to custom JSON
DSLs. Style specifications in these DSLs only describe the visual appearance of layers,
providing a small portion of the full program needed to render the map. They do not handle
tasks like importing data and libraries, instantiating and rendering the map instance, loading
data sources and layers asynchronously, or wiring up event listeners. In contrast, cartokit
provides a complete program to reproduce the map designed within the system, which can
be run unmodified in any JavaScript environment. Achieving this functionality significantly
complicates the code generation process. For example, cartokit needs to track and reference
identifiers mapped to imported data, selectively import library functions for cross-geometry
transitions, compose user-defined transformations, inject user-defined transformations within
the appropriate lexical scope, handle asynchronous data fetching, and handle asynchronous
layer rendering. In the following sections, we describe how cartokit approaches this problem
through the design of its intermediate representation and code generation algorithm.

Intermediate Representation

The cartokit intermediate representation is a JavaScript Object wrapped by a Svelte
store. Svelte stores are a framework abstraction for asynchronous state management,
allowing any application component to both publish a new state and subscribe to state up-
dates. In cartokit, the store abstraction allows any interface element to (1) modify the IR
and (2) react to IR updates. In practice, every interface element defines its own function
specifying how user interactions with the element should update the IR. Likewise, every
interface element defines which portion of the IR it reads and how it should update the user
interface when that portion changes.

At the root level, the IR stores information on the map’s center coordinates, zoom level,
and basemap. In addition, it maintains a dictionary of the map’s layers, mapping layer iden-



CHAPTER 7. CARTOKIT 43

tifiers to layer definitions. Each layer definition follows a standardized interface consisting of
five properties: id, displayName, type, data, and style. I discuss each of these properties
below.

id and displayName FEach layer is given a unique id, generated by cartokit, alongside
a user-provided displayName. ids are used in the generated program to uniquely identify a
Mapbox layer and its corresponding source.

type The type property corresponds to the map type of the given layer. Currently,
cartokit supports six map types: CHOROPLETH, DOT DENSITY, FILL, LINE, POINT,
and PROPORTIONAL SYMBOL. The IR models the type property using a TypeScript union
of string literals.

data The data property is itself an Object storing all information about a layer’s source
data. The url property within the Object stores the endpoint from which the GeoJSON
was fetched (if accessed remotely) while the fileName property stores the name of the
GeoJSON file uploaded by the user (if accessed from disk). The sourceGeoJSON property
stores the original version of the layer’s GeoJSON at the time of layer creation. When
cross-geometry transitions need to restore the original layer geometry, cartokit will use this
version of the data. The geoJSON property stores the currently rendered version of the layer’s
GeoJSON. When transitioning data to a different cartographic representation or applying
user-defined transformations, cartokit operates on this version of the data. Finally, the
transformations property stores all cross-geometry and user-defined transformations in an
array. Each transformation consists of a name property corresponding to its function name
in the generated program and a definition property containing the body of the function.
The code generation algorithm inspects the transformations array to determine the order
in which to compose transformations in the generated program.

style The style property stores all information about a layer’s visual appearance. The
specific properties of the style property vary based on the map type of the layer. For ex-
ample, a FILL layer’s style property consists only of optional £i11 and stroke properties
describing the color, opacity, and stroke width to apply to Polygons in the layer. Conversely,
a CHOROPLETH layer’s style property includes information about the attribute to visual-
ize, the statistical method to use to set breaks in the data, the number of breaks, numeric
thresholds for the breaks, and the color scheme, in addition to properties like opacity and
stroke width.

As mentioned in the Compilation subsection of Section 7.1, the cartokit IR is agnos-
tic to the choice of graphics engine and programming language used by the code generation
algorithm. I achieved this agnosticism by skewing the IR design closer to higher-level car-
tographic concepts rather than details of any particular renderer. While this complicates



CHAPTER 7. CARTOKIT 44

code generation, it also opens up the possibility of targeting multiple language and engine
“backends.” T hope to explore this direction in future work to give users access to many
different programs for a single map design.

Code Generation Algorithm

cartokit’s code generation algorithm consists of a hierarchy of functions that each operate
on specific portions of the intermediate representation. Each function peeks at relevant
information from the IR to generate its own program fragment—a portion of the final output
program—and returns this fragment to its caller. Functions at a higher level in the hierarchy
determine where program fragments generated by callees are inserted into the final generated
program. Figure 7.5 provides a graph representation of the code generation algorithm’s
function hierarchy.

0 oo IO oo ornsons
O M
e

>
>

codegenImports

» Execution

Program Fragment

Figure 7.5: The hierarchy of function calls in cartokit’s code generation algorithm.
Code generation begins with the top-level codegenImports function, which resolves data
and library imports through analysis of the IR. Execution is passed to functions lower in
the hierarchy (rightward in the graph), which generate their own program fragments and
return them to callers. Callers determine where to insert these program fragments in the
final output program.

During program fragment generation, some codegen functions analyze multiple parts of
the IR to reason about the code to generate. For example, within codegenMap, cartokit
must determine whether the callback passed to map.on(‘load’) is synchronous or asyn-
chronous; if asynchronous, cartokit will prepend the async keyword to the callback. To
ascertain this information, cartokit iterates over the layers dictionary in the IR. On each
layer, cartokit checks if (1) layer.data.url is defined and (2) if layer.data.
transformations.length > 0. These two conditions together indicate that data was fetched
from a remote API endpoint and transformed from its original representation either by a



© 00 N O U b W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

CHAPTER 7. CARTOKIT 45

cross-geometry transition or a user-defined transformation. Therefore, the callback should
be asynchronous to support data fetching using the browser’s fetch API. If neither of these
conditions are met by any layer, the callback can safely be marked as synchronous. Listing
7.2 shows the full algorithm, including additional details on how execution is passed from
codegenMap to codegenSource and codegenLlayer, and how codegenMap inserts program
fragments from these callees into the program.

function codegenMap(map, ir) {

// Generate program fragments for layer sources and layers.

const layerSources = Object.values(ir.layers).reduce((p, layer) => {
return p.concat('\n\n' + codegenSource(layer, uploadTable));

} ||).

const layerRenders = Object.values(ir.layers).reduce((p, layer) => {
return p.concat('\n\n' + codegenLayer (layer)) ;

} ||).

const { 1lng, lat } = map.getCenter();

// Determine if the onload callback must be asynchronous by checking if
// any layer fetches data from a remote API and transforms it locally.
let isLoadAsync = false;
for (const layer of Object.values(ir.layers)) {

if (layer.data.url && layer.data.transformations.length > 0) {

isLoadAsync = true;

}

}

// Return the program fragment for instantiating the map, layer sources, and layers.
const fragment = ~
const map = new mapboxgl.Map ({
container: 'map',
style: '${ir.basemap.url.replace(
PUBLIC_MAPTILER_API_KEY,
'<YOUR_MAPTILER_API_KEY>'
DR
center: [${1ng}, ${lat}],
zoom: ${map.getZoom()}
B

map.on('load', ${isLoadAsync ? 'async ' : "'}() => {
${layerSources}

${layerRenders}
B
return fragment;

}

Listing 7.2: The codegenMap function within cartokit’s code generation algorithm,
implemented in TypeScript. To determine if the map’s onload callback should be asyn-
chronous, cartokit checks multiple parts of the IR, including the urls and transformations
of individual layers.




CHAPTER 7. CARTOKIT 46

In addition to reasoning locally about the IR, codegen functions higher in the hierarchy
perform additional analyses to derive relevant information for multiple callees. For exam-
ple, codegenImports—the codegen function responsible for scaffolding top-level imports of
libraries and data—creates a symbol table mapping layer IDs to the variable identifiers of
their source data in the program. Later, in codegenTransformations, the compiler uses
this symbol table to construct the function calls applying user-defined transformations to
this identifier. Likewise, codegenSource references this identifier when specifying a value
for a source’s data property.

7.4 Case Study: “Will global warming make
temperature less deadly?”

To demonstrate the expressiveness of programming by direct manipulation in cartokit, I
present a walkthrough showing how cartokit can reproduce and extend on a thematic map
published by a national newsroom. Specifically, I will demonstrate how a cartokit user can
create a modified version of the central map featured in Harry Stevens’ piece, “Will global
warming make temperature less deadly?” [110], published February 2023 in the Washington
Post. This map is a global choropleth map showing the predicted change in average annual
deaths from temperature exposure per 100,000 people between 2080 and 2099 (Figure 7.6).

Figure 7.6: The central map from “Will global warming make temperature less
deadly?” by Harry Stevens, published in the Washington Post. The map is a global
choropleth map using a 12-break manual threshold scale and diverging green-to-purple color
scheme.



CHAPTER 7. CARTOKIT 47

The map visualizes results from Carleton et al. [16], which uses NASA’s Earth Exchange
climate projections [113] in an emissions stabilization scenario (Representative Concentration
Pathways 4.5) to predict temperature change across 24,378 contiguous regions. The map
uses a diverging green-to-purple color scheme to distinguish between regions with predicted
increases versus predicted decreases in deaths. In addition, the map employs a manual
threshold scale to introduce 12 discrete breaks in the data.

Uploading Data

Figure 7.7: Adding data to cartokit using the Add Layer Modal. The user navigates
to the From File tab to upload the GeoJSON dataset from disk. Users can also fetch data
from remote API endpoints using inputs in the From API tab.

To begin reproducing the map, a cartokit user starts by uploading the GeoJSON dataset
from disk. The dataset is 15MB in size, containing 24,378 Polygons each associated with four
tabular attributes: the Region_ID, and predictions for change in deaths per 100,000 people
for three separate temporal intervals: 2020-2039, 2040-2059, and 2080-2059 (represented by
the attributes years_2020_2039, years_2040_2059, and years_2080_2099, respectively). To
initiate the upload, the user clicks on the + button in the Layers Panel. This interaction
opens the Add Layer Modal, which contains a tab-style interface with options for uploading
data from an API or file on disk (Figure 7.7). The user clicks the From File tab, which
navigates to a new tab showing two inputs: a File Browser input and a Display Name
input. The user clicks the File Browser input, which opens a system dialog allowing them



CHAPTER 7. CARTOKIT 48

to navigate to and select the GeoJSON dataset from their local file system. Finally, they
give the layer a display name of “WaPo Temp Death Prediction” using the Display Name
input and click the Add button to add the layer to the map.

Transitioning Map Type

cartokit loads and renders the data on the map, with a new entry appearing in the Lay-
ers Panel. This entry contains the layer’s display name and visibility toggle, in addition
to a legend showing the layer’s symbology, feature count, and geometry type. Noticing
that cartokit rendered the data as a FILL map—applying a uniform fill and stroke to all
Polygons in the layer—the user sets out to transition to a CHOROPLETH map. To do so,
they click a Polygon feature on the map. By default, cartokit applies an outline to all fea-
tures on hover to indicate they are selectable. Clicking on a Polygon opens the Properties
Panel, which shows the user the current map type, fill color, fill opacity, stroke color, stroke
width, and stroke opacity. From here, they use the Map Type Select to change the layer’s
map type to CHOROPLETH.

Figure 7.8: Transitioning from a Fill map to a Choropleth map. (A) The Properties
Panel updates with new controls in the Fill section to parameterize the CHOROPLETH
map. The Stroke section is unchanged. (B) The map updates to reflect the the map type
transition, using the parameters specified in the Properties Panel to symbolize the data.
(C) The Layers Panel updates the legend to show the visualized attribute, as well as the
lower bound, upper bound, and color for each break in the data.

This interaction leads to several changes across the cartokit interface. In the Proper-
ties Panel, the Fill section renders new controls, including: (1) an Attribute select, (2)
a Method select, (3) a Steps select, and (4) a Color Scheme select. Together, these
controls parameterize the CHOROPLETH map. The Attribute select allows the user to se-
lect the tabular attribute to visualize. In this instance, cartokit infers the years_2020_2039
attribute as the first numeric attribute in the dataset and selects it for visualization. The



CHAPTER 7. CARTOKIT 49

Method select and Steps select give the user controls for computing statistical breaks
in continuous numerical data. cartokit uses a Quantile binning method with 5 steps by
default, which corresponds to the 5-quantiles of the years_2020_2039 attribute across all
24,378 Polygons. Finally, the Color Scheme select allows the user to specify the output
color range. cartokit applies a sequential white-to-orange color scheme with five colors,
each of which corresponds to a given quantile. Notably, the Stroke section of the Proper-
ties Panel does not change. Because the transition from a FILL layer to a CHOROPLETH
layer does not modify the stroke in any way, cartokit preserves the previous default value.
On the map, each Polygon has been colored by (1) determining which quantile its
years_2020_2039 attribute falls into and (2) mapping this value to the appropriate color
in the color scheme. In the Layers Panel, the legend has updated to show the upper
bound, lower bound, and color of each break in the data. Figure 7.8 shows the state of the
interface before and after the transition from a FILL map to a CHOROPLETH map.

Iterating on Map Styles

With the core map type in place, the user begins iterating on the parameters of the CHORO-
PLETH map. First, they use the Attribute select to pick the years 20802099 attribute
for visualization. Next, to match the color scheme of the original map, they use the Color
Scheme select to choose a diverging purple-green color scheme. cartokit provides access
to all D3 color schemes, including Color Brewer [11] palettes commonly used in cartographic
design. Because the cartokit scheme ranges purple-to-green, but the original map’s scheme
ranges green-to-purple, the user clicks the = button to reverse the color scheme.

With the attribute and color scheme set, the user next modifies the steps and method
used to set breaks in the data. First, they increase the number of breaks to the maximum of
9 using the Steps select. To mimic the custom threshold scale used in the original map,
they use the Method select to switch from a Quantile scale to a Manual scale. This opens
the Set Stops Panel, which allows the user to edit the intervals assigned to each color in
the CHOROPLETH layer. They modify the upper bound of each interval manually while the
system modifies the lower bound of the adjacent interval to match. Finally, noticing that the
original map applies no stroke to features, the user clicks the - button in the Stroke section
to remove the stroke. With these tweaks, the user has reproduced a close approximation of
the original map. Figure 7.9 depicts the full sequence of user styling interactions, showing
the state of the interface after each change.

Transforming Data

Aiming to move beyond reproducing the original map, the user decides to visualize a new
attribute that does not exist yet in the dataset—the variance of the years 20202039,
years_2040_2059, and years_2080_2099 attributes. Their goal is to uncover which regions
of the dataset have the lowest variance, suggesting that predicted changes in deaths due to
temperature exposure are similar across the three time intervals. To compute the variance,



CHAPTER 7. CARTOKIT 50

Change the visualized attribute Use a diverging purple-to-green 3 Reverse the color scheme to range
]. e tOyears_2080_2099. e color scheme. o from green to purple.

Increment the number of breaks in Define a manual threshold scale 6
o the data to the maximum of 9. 5. to set custom breaks in the data. e Remove the stroke on all features.

Figure 7.9: Iterating on parameters of the Choropleth map. The user explores six
variants of a CHOROPLETH map using controls in the Properties Panel. Each change
modifies the map immediately, allowing the user to move efficiently toward their target map.

the user opens the Data Transfromation Panel by clicking the gear icon next to the
Attribute select.

Within the Data Transformation Panel, the user starts modifying the body of the
transformGeoJSON function. On each key stroke, cartokit applies the function to the
single selected feature in the dataset and renders a live preview of the GeoJSON result.
In this instance, the user implements an algorithm to compute variance by hand (Listing
7.3); however, they could have also used a dynamic import statement to bring in a third-
party library to assist with the computation. While constructing the algorithm, the user
periodically drops in console.log statements to verify intermediate values. The evaluated
values of the logged expressions appear in the Console section of the Data Transformation
Panel.



CHAPTER 7. CARTOKIT 51

1| function transformGeoJSON(geoJSON) {

2| geoJSON.features.forEach((feature) => {

3 const values = Object

4 .entries(feature.properties)

5 .reduce((acc, [k, v]) => {

6 if (k !== "Region_ID") {

7 return [...acc, v];

8 }

9

10 return acc;

11 Y, s

12

13 const sum = values.reduce((acc, el) => acc + el, 0);
14 const mean = sum / values.length;

15 const sumSquares = values.reduce((acc, el) => acc + Math.pow(el - mean, 2), 0);
16

17 feature.properties.variance = sumSquares / values.length;
18] B;

19

20 return geoJSON;

21|}

Listing 7.3: Computing variance. The user implements a custom algorithm for computing
the variance of the years 20202039, years_2040_2059, and years_2080_2099 attributes in

the body of transformGeoJSON function.

Figure 7.10: Visualizing variance on the Choropleth map. (A) The user computes
a new variance attribute using the JavaScript code editor in the Data Transformation
Panel. (B) cartokit displays the output of running the user-defined variance algorithm
on the currently selected feature in the Preview. (C) The Console displays the output of
console.log statements inserted in the transformation.



CHAPTER 7. CARTOKIT 52

Once the user finishes writing the algorithm, they inspect the value of the new variance
property in the Preview to see if it matches their expectation. Satisifed with the result, they
click the Run button to apply the function to all features in the dataset. The user then clicks
on the Attribute select back in the Properties Panel and selects the newly computed
variance attribute for visualization, with the map updating accordingly. Given that they
are still using the Manual threshold scale from the previous map, they use the Method
select to switch back to Quantile. Additionally, since variance values are always positive,
they switch from a diverging color scale to a sequential white-to-purple scale. Figure 7.10
shows the final map, with the user-defined transformation, GeoJSON preview, and console
output displayed in the Data Transformation Panel. As a final step, they move to copy
the generated program out of cartokit into their development environment.

Accessing the Program

Figure 7.11: Accessing the generated program. (A) The user inspects and copies
the program corresponding to their variance map. (B) The user can view and sort the
tabular attributes of their geospatial data in the Data Table, including the newly computed
variance attribute.

To access the program generated by cartokit, the user clicks the Open Editor button.
This interaction opens the Code Viewer and Data Table. The user notices the Data
Table contains a new column, variance, corresponding to the variance value computed by
their transformation. In addition, they inspect the program in the Code Viewer and see
that their transformation has been inserted into the program source code. They complete
their interaction with cartokit by copying this program from the Code Viewer to their
development environment. Figure 7.11 shows the Code Viewer and Data Table and
Listing 7.4 shows the full program generated by cartokit.



© 00 N O Uk W N

CUOT O 0T O B B B R R R B 0 W W W LW W WNNNNDNNINRNNDDNE R e e e e e e
B O R O 00O Gk WhEFE O O©KTS TR DL EFE OO M0 Ok WD RO © W10 U s W~ O

CHAPTER 7. CARTOKIT 53

import mapboxgl from "mapbox-gl";
import waPoTempDeathPrediction from "./wapo-temperature-change.json";
mapboxgl.accessToken = "<YOUR_MAPBOX_ACCESS_TOKEN>";

const map = new mapboxgl.Map({
container: "map",
style: "https://tiles.stadiamaps.com/styles/alidade_smooth.json",
center: [-94.10970610068892, 42.30205151566838],
zoom: 3.9596799106540934,
b

map.on("load", () => {
function transformGeoJSON(geoJSON) {
geoJSON. features.forEach((feature) => {
const values = Object.entries(feature.properties).reduce(
(acc, [k, v]) => {

if (k !== "Region_ID") {
return [...acc, v];
}
return acc;
},

a,
);
const sum = values.reduce((acc, el) => {

return acc + el;
}, 0);
const mean = sum / values.length;
const sumSquares = values.reduce((acc, el) => {
return acc + Math.pow(el - mean, 2);

}, 0,

feature.properties.variance = sumSquares / values.length;

»;

return geoJSON;
}

map.addSource ("wa-po-temp-death-prediction__1", {
type: "geojson",
data: transformGeoJSON(waPoTempDeathPrediction),
b;

map.addLayer ({
id: "wa-po-temp-death-prediction__1",
source: '"wa-po-temp-death-prediction__1",
type: "fill",

paint: {
"fill-color": [
"step",
["get", "variance"],
"#E££7£3",




55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

CHAPTER 7. CARTOKIT

]’

20.669645900034187,
"#fde0dd",
58.96717040855061,
"#fccbco",
112.99252150319008,
"#faQfb5",
241.8917213513634,
"#£768al",
564.7926377701071,
"#dd3497",
1131.481855736475,
"#ae017e",
2046.4537964541362,
"#7a0177",
5876.09592446122,
"$49006a",

"fill-opacity": 0.75,

}’

»;

B;

54

Listing 7.4: The program generated by cartokit.

cartokit generates a complete

JavaScript program to reproduce the variance CHOROPLETH map the user created.




55

Chapter 8

Limitations and Future Work

In this chapter, I discuss the limitations of both my contextual inquiry study and the system
design of cartokit. I also highlight opportunities for future research and engineering efforts
to support domain experts in their work with geospatial data.

8.1 Contextual Inquiry Study

In my contextual inquiry study, I identified shared challenges and computing needs of geospa-
tial data users across particular disciplinary and expertise boundaries, but future research
should explore additional needs beyond my selected domains and experience levels. Specif-
ically, I recruited from three domains: Earth and climate science, the social sciences, and
data journalism. Therefore, my findings may not generalize to geospatial data users outside
these areas, such as epidemiologists, digital humanities researchers, or statisticians. I believe
there are also opportunities for additional research within my chosen domains and experience
groups. The number of participants from any given subgroup of my participant pool is too
small to reveal insights about the needs of each class independently.

In general, the sample size of my study (n = 25) limits my ability to make quantitative
claims about the prevalence of my findings in a broader population [90]. Furthermore, qual-
itative research experts warn about the risks of quantifying qualitative data [33]. For these
reasons, I intentionally avoided attempts to generalize my findings beyond my participant
group. Instead, I hope they can serve as a basis for designing larger-scale studies to assess
the prevalence of my identified challenges in the wider community of geospatial data users.

Using contextual inquiry with open task selection provided me with rich detail and con-
text on participants’ challenges but also came with drawbacks. First, asking participants
to narrate their thought processes while performing cognitively challenging tasks can make
these tasks more difficult [32]. Thus, tasks may appear harder in a lab setting than in a
non-observational context. I attempted to mitigate this effect by permitting participants
to pause narration until they reached a stopping point for discussion. Second, asking par-
ticipants to work on their own tasks inhibits me from making comparative claims that a



CHAPTER 8. LIMITATIONS AND FUTURE WORK 56

fixed-task design may support. For example, alternative studies could compare participant
performance on fixed tasks across multiple tools to understand their relative strengths. Ad-
ditionally, my study design does not assess whether participants’ tasks are representative of
the work of geospatial data users more generally. Validating task representativeness through
additional studies would bolster my findings.

A critical next step for this research is to validate my design opportunities with domain
experts. I followed the practice of other contextual inquiry studies that derive design oppor-
tunities directly from participant observation [66, 26, 12]. Indeed, a strength of contextual
inquiry is that it exposes unforeseen participant challenges in situ, allowing me to identify
needs that may not become visible in alternative methods relying on participants’ memories
of their work. However, this does not erase the threats of researcher confirmation bias [91] or
causal error [94]. Future work can test my design opportunities through expert interviews,
large-scale surveys, and formative studies of new systems.

8.2 cartokit System Design

Restricted Geospatial Data Models

cartokit currently can only process vector geospatial data in the GeoJSON interchange
format, which inherently limits the class of maps users can create with the system. Raster
geospatial data—including multispectral satellite imagery, Light Detection and Ranging (LI-
DAR) data, Synthetic Aperture Radar (SAR) data, and other forms—played a critical role
in many participants’ workflows, making it a clear target for support in cartokit. However,
handling raster data would require significant alterations to the system’s data management
strategy. Currently, cartokit stores GeoJSON data in memory, which can be feasible for
datasets in the <100MB range. Raster data, by contrast, can range anywhere from >100MB
to multiple GBs in size depending on the spatial extent, spatial resolution, and number of
bands. At this scale, storing and analyzing raster data entirely on the client is infeasible.
For a web application like cartokit, shifting raster data storage to a spatial database (e.g.,
PostGIS [99], SpatialLite [48]) and raster analysis to a web server would be necessary.

A lower lift with the current architecture would involve supporting other vector geospatial
formats. In particular, the Shapefile and Keyhole Markup Language (KML) formats are
widely used vector interchange formats among GIS practitioners. Supporting these formats
natively or enabling automatic conversion to GeoJSON within cartokit would reduce the
amount of data preparation users must perform before interacting with the system.

Data Transformation

Currently, cartokit uses library functions from Turf.js in its geospatial transformation al-
gorithms. Because Turf.js is implemented entirely in TypeScript, cartokit can perform all
geospatial transformations client-side in the browser, either on the main thread or within
a Web Worker. While obviating the need for a client-server architecture, performing data



CHAPTER 8. LIMITATIONS AND FUTURE WORK o7

transformation on the client also increases memory pressure on users’ devices. In addi-
tion, both my algorithms and Turf.js’s library functions often iterate over all Features in a
GeoJSON FeatureCollection, meaning that performance degrades with increasing dataset
size.

A possible alternative would be to shift data transformation to an in-memory spatial
database, such as DuckDB [101] paired with its Spatial Extension. Spatial databases are
optimized to perform the kinds of computations cartokit currently offloads to Turf.js while
offering better performance. In addition, employing an in-memory spatial database could
address some of the challenges around file formats discussed above. DuckDB’s Spatial Ex-
tension, PostGIS, and SpatialLite all natively support a diverse set of vector geospatial file
formats and can interoperate between them.

Bidirectionality

Currently, cartokit does not allow users to edit the JavaScript program produced by its
code generation algorithm. The only ways to modify the program within the system are
through (1) direct manipulation interactions using the controls in the Properties Panel
or (2) authoring transformations in the Data Transformation Panel. This restriction is
in part a consequence of the system architecture. Rather than generating a program and
subsequently executing it to render the output, cartokit instead maps user interactions
to IR updates. From here, the reconciler and code generation algorithm transform the IR
update into a map update and a program update, respectively, keeping the two in sync. To
support arbitrary edits to the JavaScript program with the current architecture, cartokit
would need to determine how to map users’ program edits back to the IR.

While making the generated program read only is a drawback, it also comes with several
advantages. First, it is impossible for users to create syntactically invalid programs. Even
in the case where users write syntactically invalid data transformations using the Data
Transformation Panel, cartokit prevents these transformations from making their way
into the IR. Second, it allows us to instrument the map with additional interaction code
without worrying about collisions with user code. For example, cartokit renders outline
layers atop each user-defined layer that only become visible on feature hover and feature
selection. These effects helps to bring familiar design software interactions to cartokit, but
could easily be overwritten by user code defining custom mouseover or click event handlers.

Still, making the JavaScript program editable would have significant benefits for cartokit
users. Modifying choices made by cartokit’s code generation algorithm cannot currently
be done without moving the program out of the system and editing it manually. To ad-
dress the challenge of bidirectional editing, future work on cartokit could start by shifting
to an execution model in which the generated program is run directly within the system.
Supporting this behavior would additionally require (1) analyzing the program to recover
values to populate direct manipulation controls and (2) synthesizing program repairs when
a direct manipulation update occurs. Inspiration could be taken from Mayer et al.’s [83]
work on bidrectional evaluation in direct manipulation systems. They develop the notion



CHAPTER 8. LIMITATIONS AND FUTURE WORK o8

of an evaluation update relation that, given a change to the program output ', rewrites
the program e to €’ to reconcile the change. Defining such a relation for cartokit could
help address challenge (2) above, while existing program analysis techniques (e.g., program
slicing) could help tackle (1).



59

Chapter 9

Conclusion

As geospatial data grows in scale and accessibility, domain experts require increasingly ex-
pressive tools to harness the insights hidden in this data. But what could such tools look
like, and what challenges should they address? This thesis aims to answer this question
by (1) deepening our understanding of the computing needs of domain expert geospatial
data users and (2) presenting a novel direct manipulation programming system for geospa-
tial analysis and visualization. Using contextual inquiry, I identified unreported challenges
across five phases of participants’ work: data discovery, data transformation, analysis, anal-
ysis representation, and visualization. For example, my work is the first to discuss how
users (1) employ data subsetting and resolution reduction to speed up exploratory geospa-
tial analysis, (2) create informal program representations to record geoprocessing workflows,
and (3) observe changes to feature counts and geometry to infer geospatial operator behav-
ior. Going beyond prior work on GIS usability, I also uncovered needs that extend to other
tools used in modern geospatial workflows, including computational notebooks, design soft-
ware, and geospatial analysis and visualization libraries. My observations revealed that four
challenges—finding and transforming geospatial data to satisfy spatiotemporal constraints,
understanding the behavior of geospatial operators, tracking geospatial data provenance,
and exploring the cartographic design space—were especially difficult for participants. From
these observations, I synthesized novel design opportunities for geospatial analysis and vi-
sualization systems. Finally, I used these design opportunities to guide the development of
cartokit, an output-directed, direct manipulation programming environment for authoring
interactive maps. Future work can build on these insights and system design to create useful
and usable tooling that makes it easier to explore, analyze, and communicate patterns of
spatiotemporal change in our environment and societies.



60

Bibliography

QGIS Association. 24.4. The history manager — QGIS Documentation. https://
docs .qgis.org/3.22/en/docs/user _manual/processing/history.html. Ac-
cessed: 2022-06-24. 2022.

QGIS Association. 24.5. The graphical modeler — QGIS Documentation. https :
//docs .qgis.org/3.22/en/docs/user _manual /processing/modeler . html.
Accessed: 2022-06-27. 2022.

QGIS Association. 25.1.17. Vector general — QGIS Documentation. https://docs.
qgis.org/3.22/en/docs/user_manual/processing_algs/qgis/vectorgeneral.

html. Accessed: 2022-06-21. 2022.

QGIS Association. QGIS Geographic Information System. https://qgis.org/. Ac-
cessed: 2022-08-22. 2022.

Marie-Aude Aufaure-Portier. “Definition of a Visual Language for GIS”. In: Cognitive
Aspects of Human-Computer Interaction for Geographic Information Systems. Ed.
by Timothy L. Nyerges et al. Dordrecht, Netherlands: Springer Netherlands, 1995,
pp. 163-178. po1: 10.1007/978-94-011-0103-5_12.

Shaon Barman et al. “Ringer: Web Automation by Demonstration”. In: ACM SIG-
PLAN Notices 51.10 (Oct. 2016), pp. 748-764. DOIL: 10.1145/3022671.2984020.

Rohan Bavishi et al. “AutoPandas: Neural-Backed Generators for Program Synthe-
sis”. In: Proceedings of the ACM on Programming Languages 3.00PSLA (Oct. 2019),
168:1-168:27. por: 10.1145/3360594.

Alan F. Blackwell and Thomas R.G. Green. “Notational Systems — the Cognitive
Dimensions of Notations Framework”. In: HCI Models, Theories, and Frameworks:
Toward a Multidisciplinary Science. Ed. by John M. Carroll. Interactive Technologies.
San Francisco, CA, USA: Morgan Kaufmann, 2003. Chap. 5, pp. 103-133. DOI: 10.
1016/B978-155860808-5/50005-8.

Matthew Bloch. Mapshaper. https://mapshaper.org/. Accessed: 2022-07-13. 2022.

Virginia Braun and Victoria Clarke. “Using thematic analysis in psychology”. In:
Qualitative Research in Psychology 3.2 (Apr. 2006), pp. 77-101. por: 10 . 1191/
1478088706qp063o0a.


https://docs.qgis.org/3.22/en/docs/user_manual/processing/history.html
https://docs.qgis.org/3.22/en/docs/user_manual/processing/history.html
https://docs.qgis.org/3.22/en/docs/user_manual/processing/modeler.html
https://docs.qgis.org/3.22/en/docs/user_manual/processing/modeler.html
https://docs.qgis.org/3.22/en/docs/user_manual/processing_algs/qgis/vectorgeneral.html
https://docs.qgis.org/3.22/en/docs/user_manual/processing_algs/qgis/vectorgeneral.html
https://docs.qgis.org/3.22/en/docs/user_manual/processing_algs/qgis/vectorgeneral.html
https://qgis.org/
https://doi.org/10.1007/978-94-011-0103-5_12
https://doi.org/10.1145/3022671.2984020
https://doi.org/10.1145/3360594
https://doi.org/10.1016/B978-155860808-5/50005-8
https://doi.org/10.1016/B978-155860808-5/50005-8
https://mapshaper.org/
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa

BIBLIOGRAPHY 61

[11]

[12]

[13]

[19]

[20]

Cynthia Brewer. ColorBrewer. https://colorbrewer?.org/. Accessed: 2023-11-13.
2023.

Julia Brich et al. “Exploring End User Programming Needs in Home Automation”.
In: ACM Transactions on Computer-Human Interaction 24.2 (Apr. 2017), 11:1-11:35.
DOI: 10.1145/3057858.

U.S. Census Bureau. American Community Survey 5-Year Estimates. S2502: De-
mographic Characteristics for Occupied Housing Units. https : //data . census .
gov/. Retrieved from: https://data. census . gov/table?t=0wner /Renter+
(Householder ) +Characteristics&g=0100000US%240500000&tid=ACSST5Y2020 .
52502. Type: dataset. 2020.

Brian Burg et al. “Interactive Record/Replay for Web Application Debugging”. In:
Proceedings of the 26th Annual ACM Symposium on User Interface Software and
Technology. UIST "13. New York, NY, USA: Association for Computing Machinery,
Oct. 2013, pp. 473-484. DOI: 10.1145/2501988.2502050.

H. Butler et al. The GeoJSON Format. RFC 7946. Aug. 2016. DOI: 10 . 17487/
RFC7946. URL: https://www.rfc-editor.org/info/rfc7946.

Tamma Carleton et al. “Valuing the Global Mortality Consequences of Climate Change
Accounting for Adaptation Costs and Benefits”. In: The Quarterly Journal of Eco-
nomics 137.4 (Nov. 2022), pp. 2037-2105. pOI: 10.1093/qje/qjac020. (Visited on
11/11/2023).

Kang-Tsung Chang. “Geographic Information System”. In: International Encyclo-
pedia of Geography: People, the Earth, Environment and Technology. Hoboken, NJ,
USA: John Wiley & Sons, Ltd, 2019, pp. 1-10. pDOr: 10 . 1002 /9781118786352 .
wbieg0152.pub2.

Sarah Chasins et al. “Browser Record and Replay as a Building Block for End-User
Web Automation Tools”. In: Proceedings of the 24th International Conference on
World Wide Web. WWW ’15 Companion. New York, NY, USA: Association for
Computing Machinery, May 2015, pp. 179-182. DOT: 10.1145/2740908.2742849.

Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. “Rousillon: Scraping Dis-
tributed Hierarchical Web Data”. In: Proceedings of the 31st Annual ACM Symposium
on User Interface Software and Technology. UIST "18. New York, NY, USA: Asso-
ciation for Computing Machinery, Oct. 2018, pp. 963-975. DOI: 10.1145/3242587 .
3242661.

Ravi Chugh et al. “Programmatic and direct manipulation, together at last”. In:
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. PLDI ’16. New York, NY, USA: Association for Computing
Machinery, June 2016, pp. 341-354. DOI: 10.1145/2908080.2908103.


https://colorbrewer2.org/
https://doi.org/10.1145/3057858
https://data.census.gov/
https://data.census.gov/
https://data.census.gov/table?t=Owner/Renter+(Householder)+Characteristics&g=0100000US%240500000&tid=ACSST5Y2020.S2502
https://data.census.gov/table?t=Owner/Renter+(Householder)+Characteristics&g=0100000US%240500000&tid=ACSST5Y2020.S2502
https://data.census.gov/table?t=Owner/Renter+(Householder)+Characteristics&g=0100000US%240500000&tid=ACSST5Y2020.S2502
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.17487/RFC7946
https://doi.org/10.17487/RFC7946
https://www.rfc-editor.org/info/rfc7946
https://doi.org/10.1093/qje/qjac020
https://doi.org/10.1002/9781118786352.wbieg0152.pub2
https://doi.org/10.1002/9781118786352.wbieg0152.pub2
https://doi.org/10.1145/2740908.2742849
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/2908080.2908103

BIBLIOGRAPHY 62

[21] Luca Cinquini et al. “The Earth System Grid Federation: An open infrastructure
for access to distributed geospatial data”. In: Future Generation Computer Systems.
Special Section: Intelligent Big Data Processing 36 (July 2014), pp. 400-417. poI:
10.1016/j.future.2013.07.002.

[22] Open Geospatial Consortium. GeoSPARQL. https ://opengeospatial . github .
io/ogc-geosparql/geosparqlll/spec.html#_topology_vocabulary_extension.
Accessed: 2022-12-12. 2022.

[23] MapLibre GL JS Contributors. MapLibre GL JS. https://maplibre.org/maplibre-
gl-js/docs/. Accessed: 2023-10-23. 2023.

[24]  Svelte Contributors. Svelte. https://svelte.dev/. Accessed: 2023-10-22. 2023.
Turf.js Contributors. Turf.js. https://turfjs.org/. Accessed: 2023-11-06. 2023.

)
AN

2]

Bronwyn J. Cumbo, Tom Bartindale, and Dan Richardson. “Exploring the Opportu-
nities for Online Learning Platforms to Support the Emergency Home School Con-
text”. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. CHI "21. New York, NY, USA: Association for Computing Machinery, May
2021, pp. 1-11. DOT: 10.1145/3411764 . 3445044,

[27]  Christopher Daly, Ronald P. Neilson, and Donald L. Phillips. “A Statistical-Topographic
Model for Mapping Climatological Precipitation over Mountainous Terrain”. In: Jour-
nal of Applied Meteorology and Climatology 33.2 (Feb. 1994). Type: dataset, pp. 140—
158. DOI: 10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.C0; 2.

[28] Datawrapper. Datawrapper. https://wuw.datawrapper.de/. Accessed: 2023-11-10.
2023.

[29] Clare Davies and David Medyckyj-Scott. “Feet on the Ground: Studying User-GIS
Interaction in the Workplace”. In: Cognitive Aspects of Human-Computer Interaction
for Geographic Information Systems. Ed. by Timothy L. Nyerges et al. Dordrecht,
Netherlands: Springer Netherlands, 1995, pp. 123-141. pDOI: 10.1007/978-94-011~
0103-5_10.

[30] Clare Davies and David Medyckyj-Scott. “GIS usability: recommendations based on
the user’s view”. In: International Journal of Geographical Information Science 8.2
(1994),pp.175f189.DCH:10.1080/02693799408901993.

[31] Clare Davies and David Medyckyj-Scott. “GIS users observed”. In: International
Journal of Geographical Information Systems 10.4 (June 1996), pp. 363-384. DOLI:
10.1080/02693799608902085.

[32] Simon P. Davies and Adrian M. Castell. “From Individuals to Groups Through Arti-
facts: The Changing Semantics of Design in Software Development”. In: User-Centred
Requirements for Software Engineering Environments. Ed. by David J. Gilmore, Rus-
sel L. Winder, and Francoise Détienne. New York, NY, USA: Springer-Verlag, 1994,
pp. 11-23.


https://doi.org/10.1016/j.future.2013.07.002
https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html#_topology_vocabulary_extension
https://opengeospatial.github.io/ogc-geosparql/geosparql11/spec.html#_topology_vocabulary_extension
https://maplibre.org/maplibre-gl-js/docs/
https://maplibre.org/maplibre-gl-js/docs/
https://svelte.dev/
https://turfjs.org/
https://doi.org/10.1145/3411764.3445044
https://www.datawrapper.de/
https://doi.org/10.1007/978-94-011-0103-5_10
https://doi.org/10.1007/978-94-011-0103-5_10
https://doi.org/10.1080/02693799408901993
https://doi.org/10.1080/02693799608902085

BIBLIOGRAPHY 63

[33]

[34]

[36]

[37]

[39]

[40]

[41]

[42]

[44]

Norma K. Denzin and Yvonna S. Lincoln, eds. The SAGE Handbook of Qualitative
Research. 5th. Thousand Oaks, CA, USA: SAGE Publications, Inc., 2018.

Ian Drosos et al. “Wrex: A Unified Programming-by-Example Interaction for Synthe-
sizing Readable Code for Data Scientists”. In: Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. CHI ’20. New York, NY, USA: Association
for Computing Machinery, Apr. 2020, pp. 1-12. DOI: 10.1145/3313831.3376442.

M. Drusch et al. “Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Op-
erational Services”. In: Remote Sensing of Environment. The Sentinel Missions - New
Opportunities for Science 120 (May 2012), pp. 25-36. DOI: 10.1016/j .rse.2011.
11.026.

Max Egenhofer. “User Interfaces: Front Matter”. In: Cognitive Aspects of Human-
Computer Interaction for Geographic Information Systems. Ed. by Timothy L. Ny-
erges et al. Dordrecht, Netherlands: Springer Netherlands, 1995, pp. 143-145.

Miguel Elias et al. ““Do I Live in a Flood Basin?” Synthesizing Ten Thousand Maps”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’08. New York, NY, USA: Association for Computing Machinery, Apr. 2008,
pp. 255-264. pOr: 10.1145/1357054.1357100.

Esri. A complete listing of the Spatial Analyst tools—ArcGIS Pro Documentation.
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-analyst/
complete-listing-of-spatial-analyst-tools.htm. Accessed: 2022-05-13. 2022.

Esri. ArcGIS. https://www.esri.com/en-us/arcgis/about-arcgis/overview.
Accessed: 2022-08-22. 2022.

Esri. Merge (Data Management)—ArcGIS Pro Documentation. https://pro.arcgis.
com/en/pro-app/2.8/tool-reference/data-management/merge.htm. Accessed:
2022-06-21. 2022.

Esri. Viewing tool execution history—ArcMap Documentation. https ://desktop .
arcgis .com/en/arcmap/latest/analyze /executing-tools/history-1log-
files.htm. Accessed: 2022-06-24. 2022.

Munazza Fatima et al. “Geospatial Analysis of COVID-19: A Scoping Review”. In:
International Journal of Environmental Research and Public Health 18.5 (Jan. 2021),
p. 2336. DOIL: 10.3390/1jerph18052336.

Thore Fechner, Dennis Wilhelm, and Christian Kray. “Ethermap — Real-time Col-
laborative Map Editing”. In: Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. CHI "15. New York, NY, USA: Association for
Computing Machinery, Apr. 2015, pp. 3583-3592. DOI: 10.1145/2702123.2702536.

Melanie Feinberg. “A Design Perspective on Data”. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. CHI ’17. New York, NY, USA:
Association for Computing Machinery, May 2017, pp. 2952-2963. po1: 10 . 1145/
3025453 .3025837.


https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1145/1357054.1357100
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-analyst/complete-listing-of-spatial-analyst-tools.htm
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-analyst/complete-listing-of-spatial-analyst-tools.htm
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/data-management/merge.htm
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/data-management/merge.htm
https://desktop.arcgis.com/en/arcmap/latest/analyze/executing-tools/history-log-files.htm
https://desktop.arcgis.com/en/arcmap/latest/analyze/executing-tools/history-log-files.htm
https://desktop.arcgis.com/en/arcmap/latest/analyze/executing-tools/history-log-files.htm
https://doi.org/10.3390/ijerph18052336
https://doi.org/10.1145/2702123.2702536
https://doi.org/10.1145/3025453.3025837
https://doi.org/10.1145/3025453.3025837

BIBLIOGRAPHY 64

[45]
[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Felt. Felt. https://felt.com. Accessed: 2023-10-16. 2023.

Felt. Felt Style Language. https://felt.com/blog/felt-style-language. Ac-
cessed: 2023-10-16. 2023.

Figma. Figma Dev Mode. https://www.figma.com/dev-mode/. Accessed: 2023-11-
10. 2023.

Alessandro Furieri. SpatiaLite. https://www.gaia-gis.it/fossil/libspatialite/
index. Accessed: 2023-11-17. 2023.

G. David Garson and Robert S. Biggs. Analytic Mapping and Geographic Databases.
Quantitative Applications in the Social Sciences. Newbury Park, CA, USA: SAGE
Publications, Inc., 1992. DOI: 10.4135/9781412983334,

GeoPandas. GeoPandas 0.12.2. https://geopandas .org/en/stable/. Accessed:
2023-01-06. 2022.

GeoPandas. Merging Data — GeoPandas 0.12.2. https ://geopandas . org/en/
stable/docs/user_guide/mergingdata.html#attribute-joins. Accessed: 2023-
01-06. 2022.

Jianya Gong, Jing Geng, and Zeqiang Chen. “Real-time GIS data model and sensor
web service platform for environmental data management”. In: International Journal
of Health Geographics 14.1 (Jan. 2015), p. 2. DOL: 10.1186/1476-072X~14-2.

Noel Gorelick et al. “Google Earth Engine: Planetary-scale geospatial analysis for
everyone”. In: Remote Sensing of Environment 202 (Dec. 2017), pp. 18-27. DOI:
10.1016/j.rse.2017.06.031.

Philip J. Guo et al. “Proactive Wrangling: Mixed-Initiative End-User Programming
of Data Transformation Scripts”. In: Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology. UIST "11. New York, NY, USA: Asso-
ciation for Computing Machinery, Oct. 2011, pp. 65-74. DOI: 10 . 1145/2047196 .
2047205.

Mordechai (Muki) Haklay and Artemis Skarlatidou. “Human-computer interaction
and geospatial technologies — context”. In: Interacting with Geospatial Technologies.
West Sussex, UK: John Wiley & Sons, Ltd, 2010. Chap. 1, pp. 1-18. Dor1: 10.1002/
9780470689813 .chl.

Mordechai (Muki) Haklay and Antigoni Zafiri. “Usability Engineering for GIS: Learn-
ing from a Screenshot”. In: The Cartographic Journal 45.2 (May 2008), pp. 87-97.
DOI: 10.1179/174327708X305085.

HashiCorp. Terraform. https://wuw.terraform.io/. Accessed: 01-07-2023. 2023.

Marijn Haverbeke. Codemirror. https://codemirror .net/. Accessed: 2023-11-06.
2023.


https://felt.com
https://felt.com/blog/felt-style-language
https://www.figma.com/dev-mode/
https://www.gaia-gis.it/fossil/libspatialite/index
https://www.gaia-gis.it/fossil/libspatialite/index
https://doi.org/10.4135/9781412983334
https://geopandas.org/en/stable/
https://geopandas.org/en/stable/docs/user_guide/mergingdata.html#attribute-joins
https://geopandas.org/en/stable/docs/user_guide/mergingdata.html#attribute-joins
https://doi.org/10.1186/1476-072X-14-2
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1002/9780470689813.ch1
https://doi.org/10.1002/9780470689813.ch1
https://doi.org/10.1179/174327708X305085
https://www.terraform.io/
https://codemirror.net/

BIBLIOGRAPHY 65

[59]

[60]

[61]

[62]

[64]

[67]

Brent Hecht et al. “Geographic Human-Computer Interaction”. In: CHI ’11 FExtended
Abstracts on Human Factors in Computing Systems. CHI EA '11. New York, NY,
USA: Association for Computing Machinery, May 2011, pp. 447-450. DOI: 10.1145/
1979742.1979532.

Brent Hecht et al. “Geographic Human-Computer Interaction”. In: CHI 13 Extended
Abstracts on Human Factors in Computing Systems. CHI EA ’13. New York, NY,
USA: Association for Computing Machinery, Apr. 2013, pp. 3163-3166. DOI: 10 .
1145/2468356.2479637.

Jeffrey Heer and Michael Bostock. “Declarative Language Design for Interactive Vi-
sualization”. In: IEEE Transactions on Visualization and Computer Graphics 16.6
(Nov. 2010), pp. 1149-1156. por: 10.1109/TVCG.2010. 144,

Christian Heipke. “Crowdsourcing geospatial data”. In: ISPRS Journal of Photogram-
metry and Remote Sensing. ISPRS Centenary Celebration Issue 65.6 (Nov. 2010),
pp. 550-557. DOI: 10.1016/j .isprsjprs.2010.06.005.

Brian Hempel, Justin Lubin, and Ravi Chugh. “Sketch-n-Sketch: Output-Directed
Programming for SVG”. In: Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology. UIST ’19. New York, NY, USA: Association
for Computing Machinery, Oct. 2019, pp. 281-292. DOI: 10.1145/3332165.3347925.

Karen Holtzblatt and Hugh Beyer. “Principles of Contextual Inquiry”. In: Conteztual
Design: Design for Life. Ed. by Karen Holtzblatt and Hugh Beyer. 2nd. Interactive
Technologies. Boston, MA, USA: Morgan Kaufmann Publishers, Jan. 2017. Chap. 3,
pp. 43-80. por: 10.1016/B978-0-12-800894-2.00003-X.

Sean Kandel et al. “Wrangler: Interactive Visual Specification of Data Transformation
Scripts”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI "11. New York, NY, USA: Association for Computing Machinery, May
2011, pp. 3363-3372. DOL: 10.1145/1978942 . 1979444,

Anna Kawakami et al. “Improving Human-ATI Partnerships in Child Welfare: Under-
standing Worker Practices, Challenges, and Desires for Algorithmic Decision Sup-
port”. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems. CHI ’22. New York, NY, USA: Association for Computing Machinery, Apr.
2022, pp. 1-18. DOT: 10.1145/3491102.35174309.

Mary Beth Kery, Amber Horvath, and Brad Myers. “Variolite: Supporting Exploratory
Programming by Data Scientists”. In: Proceedings of the 2017 CHI Conference on Hu-
man Factors in Computing Systems. CHI "17. New York, NY, USA: Association for
Computing Machinery, May 2017, pp. 1265-1276. DOT: 10.1145/3025453.3025626.

Mary Beth Kery et al. “The Story in the Notebook: Exploratory Data Science using
a Literate Programming Tool”. In: Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems. CHI "18. New York, NY, USA: Association for
Computing Machinery, Apr. 2018, pp. 1-11. DOI: 10.1145/3173574.3173748.


https://doi.org/10.1145/1979742.1979532
https://doi.org/10.1145/1979742.1979532
https://doi.org/10.1145/2468356.2479637
https://doi.org/10.1145/2468356.2479637
https://doi.org/10.1109/TVCG.2010.144
https://doi.org/10.1016/j.isprsjprs.2010.06.005
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1016/B978-0-12-800894-2.00003-X
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/3491102.3517439
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3173574.3173748

BIBLIOGRAPHY 66

[69]

[70]

[71]

[77]

[78]

[79]

Mary Beth Kery et al. “Towards Effective Foraging by Data Scientists to Find Past
Analysis Choices”. In: Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. CHI ’19. New York, NY, USA: Association for Computing
Machinery, May 2019, pp. 1-13. por: 10.1145/3290605.3300322.

Laura Koesten et al. “Collaborative Practices with Structured Data: Do Tools Sup-
port What Users Need?” In: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. CHI ’19. New York, NY, USA: Association for Com-
puting Machinery, May 2019, pp. 1-14. Dor: 10.1145/3290605.3300330.

Manolis Koubarakis et al. “Data Models and Query Languages for Linked Geospatial
Data”. In: Reasoning Web: Semantic Technologies for Advanced Query Answering.
Ed. by Thomas Eiter and Thomas Krennwallner. Lecture Notes in Computer Science.
Berlin and Heidelberg, Germany: Springer-Verlag, 2012, pp. 290-328. DOI: 10.1007/
978-3-642-33158-9_8.

M. J. Kraak. Cartography: Visualization of Geospatial Data. 4th. Boca Raton, FL,
USA: Routledge, 2021. DOI: 10.1201/9780429464195.

Nicolas Lambert. Bertin.js. https ://github . com/neocarto/bertin. Accessed:
2022-12-14. 2022.

Jae-Gil Lee and Minseo Kang. “Geospatial Big Data: Challenges and Opportunities”.
In: Big Data Research. Visions on Big Data 2.2 (June 2015), pp. 74-81. por: 10.
1016/j.bdr.2015.01.003.

Sorin Lerner. “Projection Boxes: On-the-fly Reconfigurable Visualization for Live
Programming”. In: Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. CHI 20. New York, NY, USA: Association for Computing Ma-
chinery, Apr. 2020, pp. 1-7. DOI: 10.1145/3313831.3376494.

Gilly Leshed et al. “CoScripter: Automating & Sharing How-To Knowledge in the
Enterprise”. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI "08. New York, NY, USA: Association for Computing Machinery,
Apr. 2008, pp. 1719-1728. DOT: 10.1145/1357054 . 1357323,

Maria-Jesis Lobo, Emmanuel Pietriga, and Caroline Appert. “An Evaluation of In-
teractive Map Comparison Techniques”. In: Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems. CHI ’15. New York, NY, USA:
Association for Computing Machinery, Apr. 2015, pp. 3573-3582. DOI: 10 . 1145/
2702123.2702130.

Steven M. Manson et al. “Using Eye-tracking and Mouse Metrics to Test Usability
of Web Mapping Navigation”. In: Cartography and Geographic Information Science
39.1 (2012), pp. 48-60.

Mapbox. Mapbox GL JS. https://github.com/mapbox/mapbox-gl-7js. Accessed:
2023-10-15. 2023.


https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1145/3290605.3300330
https://doi.org/10.1007/978-3-642-33158-9_8
https://doi.org/10.1007/978-3-642-33158-9_8
https://doi.org/10.1201/9780429464195
https://github.com/neocarto/bertin
https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/2702123.2702130
https://doi.org/10.1145/2702123.2702130
https://github.com/mapbox/mapbox-gl-js

BIBLIOGRAPHY 67

[30]
[81]

[82]

[84]

[89]

Mapbox. Mapbox Studio. https ://www . mapbox . com/mapbox-studio. Accessed:
2023-10-15. 2023.

Mapbox. Mapbox Style Specification. https : //docs . mapbox . com/style-spec/
guides/. Accessed: 2023-10-15. 2023.

Jon May and Tim Gamble. “Collocating Interface Objects: Zooming into Maps”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’14. New York, NY, USA: Association for Computing Machinery, Apr. 2014,
pp. 2085-2094. DOI: 10.1145/2556288.2557279.

Mikaél Mayer, Viktor Kuncak, and Ravi Chugh. “Bidirectional Evaluation with Direct
Manipulation”. In: Proceedings of the ACM on Programming Languages 2.00PSLA
(Oct. 2018), 127:1-127:28. poI: 10 .1145/3276497. URL: https://doi.org/10.
1145/3276497.

James Mickens, Jeremy Elson, and Jon Howell. “Mugshot: Deterministic Capture
and Replay for Javascript Applications”. In: Proceedings of the 7th USENIX Confer-
ence on Networked Systems Design and Implementation. NSDI "10. USA: USENIX
Association, Apr. 2010, p. 11.

Microsoft. Microsoft Planetary Computer. https://planetarycomputer .microsoft.
com/. Accessed: 2022-09-10. 2022.

Microsoft. TypeScript. https://www.typescriptlang.org/. Accessed: 2023-10-22.
2023.

Anders Miltner et al. “On the Fly Synthesis of Edit Suggestions”. In: Proceedings
of the ACM on Programming Languages 3.00PSLA (Oct. 2019), 143:1-143:29. DOI:
10.1145/3360569.

Dominik Moritz et al. “Formalizing Visualization Design Knowledge as Constraints:
Actionable and Extensible Models in Draco”. In: IEEE Transactions on Visualization
and Computer Graphics 25.1 (Jan. 2019), pp. 438-448. DOIL: 10.1109/TVCG.2018.
2865240.

Michael Muller et al. “How Data Science Workers Work with Data: Discovery, Cap-
ture, Curation, Design, Creation”. In: Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. CHI "19. New York, NY, USA: Association
for Computing Machinery, May 2019, pp. 1-15. DOI: 10.1145/3290605.3300356.

Brad A. Myers et al. “Programmers Are Users Too: Human-Centered Methods for
Improving Programming Tools”. In: Computer 49.7 (July 2016), pp. 44-52. DOT: 10.
1109/MC.2016.200.

Raymond S. Nickerson. “Confirmation Bias: A Ubiquitous Phenomenon in Many
Guises”. In: Review of General Psychology 2.2 (June 1998), pp. 175-220. por: 10.
1037/1089-2680.2.2.175.

Observable. Observable. https://observablehq.com/. Accessed: 2022-09-11. 2022.


https://www.mapbox.com/mapbox-studio
https://docs.mapbox.com/style-spec/guides/
https://docs.mapbox.com/style-spec/guides/
https://doi.org/10.1145/2556288.2557279
https://doi.org/10.1145/3276497
https://doi.org/10.1145/3276497
https://doi.org/10.1145/3276497
https://planetarycomputer.microsoft.com/
https://planetarycomputer.microsoft.com/
https://www.typescriptlang.org/
https://doi.org/10.1145/3360569
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1145/3290605.3300356
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1037/1089-2680.2.2.175
https://observablehq.com/

BIBLIOGRAPHY 68

[93] Observable. Observable Plot. https://observablehq.com/plot. Accessed: 2022-12-
14. 2022.

[94] Anthony J. Onwuegbuzie and Nancy L. Leech. “Validity and Qualitative Research:
An Oxymoron?” In: Quality € Quantity 41.2 (Apr. 2007), pp. 233-249. pOIL: 10 .
1007/s11135-006-9000-3.

[95] Jason Ott et al. “BioScript: Programming Safe Chemistry on Laboratories-on-a-
Chip”. In: Proceedings of the ACM on Programming Languages 2.00PSLA (Oct.
2018), 128:1-128:31. DOIL: 10.1145/3276498.

[96] Leysia Palen et al. “Success & Scale in a Data-Producing Organization: The Socio-
Technical Evolution of OpenStreetMap in Response to Humanitarian Events”. In:
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. CHI "15. New York, NY, USA: Association for Computing Machinery, Apr.
2015, pp. 4113-4122. DOI: 10.1145/2702123.2702294.

[97] Fernando Perez and Brian E. Granger. “IPython: A System for Interactive Scientific
Computing”. In: Computing in Science € Engineering 9.3 (May 2007), pp. 21-29.
DOI: 10.1109/MCSE. 2007 .53.

[98] Alenka Poplin. “How user-friendly are online interactive maps? Survey based on ex-
periments with heterogeneous users”. In: Cartography and Geographic Information
Science 42.4 (Aug. 2015), pp. 358-376. DOI: 10.1080/15230406.2014.991427.

[99] PostGIS. PostGIS. https://postgis.net/. Accessed: 2023-11-17. 2023.

[100] The Selenium Project. Selenium. https://www.selenium.dev/. Accessed: 2022-12-
06. 2022.

[101] Mark Raasveldt and Hannes Miihleisen. “DuckDB: an Embeddable Analytical Database”.
In: Proceedings of the 2019 International Conference on Management of Data. SIG-
MOD ’19. New York, NY, USA: Association for Computing Machinery, June 2019,
pp. 1981-1984. DOI: 10.1145/3299869 .3320212.

[102] Meredith P. Richards. “The Gerrymandering of School Attendance Zones and the
Segregation of Public Schools: A Geospatial Analysis”. In: American Educational
Research Journal 51.6 (Dec. 2014), pp. 1119-1157. DO1: 10.3102/0002831214553652.

[103] Esther Rolf et al. “A generalizable and accessible approach to machine learning with
global satellite imagery”. In: Nature Communications 12.1 (July 2021), p. 4392. DOTI:
10.1038/s41467-021-24638-z.

[104] D. P. Roy et al. “Landsat-8: Science and product vision for terrestrial global change
research”. In: Remote Sensing of Environment 145 (Apr. 2014), pp. 154-172. por:
10.1016/j.rse.2014.02.001.

[105] RStudio. rmarkdown: Dynamic Documents for R. R package version 2.19.2. Accessed:
2023-01-07. 2022. URL: https://github.com/rstudio/rmarkdown.


https://observablehq.com/plot
https://doi.org/10.1007/s11135-006-9000-3
https://doi.org/10.1007/s11135-006-9000-3
https://doi.org/10.1145/3276498
https://doi.org/10.1145/2702123.2702294
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1080/15230406.2014.991427
https://postgis.net/
https://www.selenium.dev/
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.3102/0002831214553652
https://doi.org/10.1038/s41467-021-24638-z
https://doi.org/10.1016/j.rse.2014.02.001
https://github.com/rstudio/rmarkdown

BIBLIOGRAPHY 69

[106]

107]

[108]

[109]
[110]

111]

[112]
[113]

[114]

[115]

[116]

117]

Steve Running, Qiaozhen Mu, and Maosheng Zhao. MYD16A2 MODIS/Aqua Net
Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. Type: dataset. 2017. DOI:
10.5067/MODIS/MYD16A2.006.

Mark Santolucito, William T. Hallahan, and Ruzica Piskac. “Live Programming By
Example”. In: Eztended Abstracts of the 2019 CHI Conference on Human Factors in
Computing Systems. CHI EA '19. New York, NY, USA: Association for Computing
Machinery, May 2019, pp. 1-4. DOI: 10.1145/3290607 .3313266.

Arvind Satyanarayan et al. “Vega-Lite: A Grammar of Interactive Graphics”. In:
IEEE Transactions on Visualization and Computer Graphics 23.1 (Jan. 2017), pp. 341—
350. por: 10.1109/TVCG.2016.2599030.

VERBI Software. MAXQDA. https://maxqgda.com/. Accessed: 2022-11-17. 2022,

Harry Stevens. Will global warming make temperature less deadly? en. URL: https:
//www . washingtonpost . com/climate - environment / interactive /2023 /hot -
cold-extreme-temperature-deaths/ (visited on 11/11/2023).

Kristin Stock and Hans Guesgen. “Geospatial Reasoning With Open Data”. In: Au-
tomating Open Source Intelligence. Ed. by Robert Layton and Paul A. Watters.
Waltham, MA, USA: Syngress, 2016. Chap. 10, pp. 171-204. po1: 10.1016/B978-0~
12-802916-9.00010-5.

Tableau. Tableau. https://wuw.tableau.com/. Accessed: 2023-11-10. 2023.

Bridget Thrasher et al. “Bias correcting climate model simulated daily temperature
extremes with quantile mapping”. In: Hydrology and FEarth System Sciences 16.9
(2012), pp. 3309-3314.

Carol Traynor and Marian G. Williams. “A Study of End-User Programming for
Geographic Information Systems”. In: Papers presented at the seventh workshop on
Empirical studies of programmers. ESP '97. New York, NY, USA: Association for
Computing Machinery, Oct. 1997, pp. 140-156. DOI: 10.1145/266399.266412.

Carol Traynor and Marian G. Williams. “End Users and GIS: A Demonstration Is
Worth a Thousand Words”. In: Your Wish is My Command: Programming by Fx-
ample. San Francisco, CA, USA: Morgan Kaufmann Publishers, Mar. 2001, pp. 115—
134.

Carol Traynor and Marian G. Williams. “Why Are Geographic Information Systems
Hard to Use?” In: Conference Companion on Human Factors in Computing Systems.
CHI ’95. New York, NY, USA: Association for Computing Machinery, May 1995,
pp. 288-289. DOI: 10.1145/223355.223678.

René Unrau and Christian Kray. “Usability evaluation for geographic information
systems: a systematic literature review”. In: International Journal of Geographical
Information Science 33.4 (Apr. 2019), pp. 645-665. DOI: 10.1080/13658816.2018.
1554813.


https://doi.org/10.5067/MODIS/MYD16A2.006
https://doi.org/10.1145/3290607.3313266
https://doi.org/10.1109/TVCG.2016.2599030
https://maxqda.com/
https://www.washingtonpost.com/climate-environment/interactive/2023/hot-cold-extreme-temperature-deaths/
https://www.washingtonpost.com/climate-environment/interactive/2023/hot-cold-extreme-temperature-deaths/
https://www.washingtonpost.com/climate-environment/interactive/2023/hot-cold-extreme-temperature-deaths/
https://doi.org/10.1016/B978-0-12-802916-9.00010-5
https://doi.org/10.1016/B978-0-12-802916-9.00010-5
https://www.tableau.com/
https://doi.org/10.1145/266399.266412
https://doi.org/10.1145/223355.223678
https://doi.org/10.1080/13658816.2018.1554813
https://doi.org/10.1080/13658816.2018.1554813

BIBLIOGRAPHY 70

[118]

[119]

[120]

[121]

[122]

René Unrau, Morin Ostkamp, and Christian Kray. “An approach for harvesting, visu-
alizing, and analyzing WebGIS sessions to identify usability issues”. In: Proceedings of
the ACM SIGCHI Symposium on Engineering Interactive Computing Systems. EICS
"17. New York, NY, USA: Association for Computing Machinery, June 2017, pp. 33—
38. DOI: 10.1145/3102113.3102122.

USDA. USDA - National Agricultural Statistics Service - Research and Science -
Cropland Data Layer Releases. https ://www .nass .usda.gov/Research _and _
Science/Cropland/Release/index.php. Accessed: 2022-07-12. Type: dataset. 2022.

Leland Wilkinson. The Grammar of Graphics. 2nd. New York, NY, USA: Springer
Science+Business Media, Inc., 2005. DOI: 10.1007/0-387-28695-0.

Chaowei Yang et al. “Utilizing Cloud Computing to address big geospatial data chal-
lenges”. In: Computers, Environment and Urban Systems. Geospatial Cloud Com-
puting and Big Data 61 (Jan. 2017), pp. 120-128. DOI: 10.1016/j.compenvurbsys.
2016.10.010.

Katherine Ye et al. “Penrose: From Mathematical Notation to Beautiful Diagrams”.
In: ACM Transactions on Graphics 39.4 (July 2020), 144:144:1-144:144:16. poI: 10.
1145/3386569.3392375.


https://doi.org/10.1145/3102113.3102122
https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php
https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php
https://doi.org/10.1007/0-387-28695-0
https://doi.org/10.1016/j.compenvurbsys.2016.10.010
https://doi.org/10.1016/j.compenvurbsys.2016.10.010
https://doi.org/10.1145/3386569.3392375
https://doi.org/10.1145/3386569.3392375

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Geospatial Data
	Geographic Information Systems vs. Programming Environments

	Related Work
	Observational Studies of Geospatial Data Users
	Evaluating GIS Usability
	Needs of Data Scientists

	Method
	Participants and Recruitment
	Consent and Compensation
	Session Structure
	Data Analysis

	Findings
	Finding Geospatial Data
	Transforming Geospatial Data
	Analyzing Geospatial Data
	Representing Geospatial Analyses
	Visualizing Geospatial Data

	Design Opportunities
	Solving Geospatial Data Constraints
	Assistive Tools for Constructing Geospatial Analysis Pipelines

	cartokit
	System Overview
	Related Work
	System Design
	Case Study: ``Will global warming make temperature less deadly?''

	Limitations and Future Work
	Contextual Inquiry Study
	cartokit System Design

	Conclusion
	Bibliography

