
Algorithm Design for Safe and Efficient Societal-Scale

Navigation

Chih-Yuan Chiu

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-267

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-267.html

December 11, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Algorithm Design for Safe and Efficient Societal-Scale Navigation

by

Chih-Yuan Chiu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering—Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor S. Shankar Sastry, Chair
Professor Claire Tomlin
Professor Murat Arcak

Professor Koushil Sreenath

Winter 2023

Algorithm Design for Safe and Efficient Societal-Scale Navigation

Copyright 2023
by

Chih-Yuan Chiu

1

Abstract

Algorithm Design for Safe and Efficient Societal-Scale Navigation

by

Chih-Yuan Chiu

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

In modern urban centers, traffic networks increasingly experience higher densities of both
human-operated and self-driving vehicles. Unfortunately, high traffic loads can increase
the likelihood of accidents and gridlock at individual intersections and roads, and produce
societal-scale externalities in the form of pollution and excessive commute times. To address
these issues, modern navigation and transportation technologies increasingly leverage ma-
chine learning-enabled components to safely and efficiently guide commuters towards their
desired destinations. Examples range from learning-enabled perception and motion planning
algorithms deployed on self-driving vehicles, to recommendation systems for route planning
in large-scale transportation networks. Unfortunately, learning-based algorithms can exhibit
unexpected and alarming behavior when deployed in real-world environments. For instance,
computer vision modules in self-driving vehicles frequently fail to correctly identify traffic
signs and predict pedestrian motion, with fatal consequences. Meanwhile, route recommen-
dation platforms can induce high congestion levels, by directing self-interested travelers to
overcrowd paths of least perceived latency. These phenomena highlight that, despite their
promise, modern ML algorithms for localized and societal-scale navigation remain unable to
operate robustly in real-world traffic scenarios.

To overcome these challenges, this thesis draws from tools in control theory, estimation
theory, numerical optimization, game theory, and mechanism design to design algorithms
that ensure safe and efficient navigation in modern transportation systems. In particular,
the thesis consists of the following parts, each of which targets a different facet of decision
making in traffic navigation: (I) A unified optimization-based state estimation algorithm
for autonomous agents; (II) Game-theoretic motion planners that characterize multi-agent
interactions in local traffic scenarios; (III) A dynamic tolling scheme and learning updates
for large traffic networks. We conclude by describing promising avenues of future work.

i

Contents

Contents i

1 Introduction 1

I SLAM: A Generalized Optimization Framework 5

2 Static SLAM 6
2.1 Introduction . 6
2.2 SLAM: Formulation on Euclidean Spaces . 8
2.3 SLAM: Formulation on Manifolds . 9
2.4 Main Algorithm . 11
2.5 Gauss-Newton Descent . 15
2.6 Marginalization of States . 16
2.7 Main Algorithm on Manifolds . 18

3 Equivalence of Filtering and Optimization 22
3.1 Extended Kalman Filter (EKF) on Euclidean Spaces, Standard Formulation 22
3.2 Extended Kalman Filter (EKF) on Euclidean Spaces, in an Optimization

Framework . 24
3.3 Multi-State Constrained Kalman Filter (MSCKF), Standard Formulation . . 31
3.4 Multi-State Constrained Kalman Filter (MSCKF), on Manifolds 36
3.5 State-of-the-Art SLAM Algorithms . 45
3.6 Experiments . 46
3.7 Discussion . 49

II Game-Theoretic Motion Planning for Autonomous Vehicles 50

4 Defensive Driving 51
4.1 Related Work . 54
4.2 Preliminaries . 56
4.3 Methods . 58

ii

4.4 Implementation Details: ILQGames . 60
4.5 Results . 60
4.6 Discussion . 65

5 Game-Theoretic Priors for SLAM 66
5.1 Related Work . 67
5.2 Setup and Notation . 68
5.3 Methods . 70
5.4 Experiment Results . 74
5.5 Discussion . 77

III Adaptive Tolling for Transportation Networks 82

6 Adaptive Tolling for Arc-Based Traffic Assignment 83
6.1 Preliminaries . 85
6.2 Optimal Toll: Existence and Uniqueness . 94
6.3 Dynamics and Convergence . 100
6.4 Experiment Results . 113
6.5 Discussion . 113

7 Online Learning for Adaptive Tolling 117
7.1 Preliminaries . 118
7.2 Main Algorithm . 121
7.3 Lemmas for Regret Analysis . 130
7.4 Regret Analysis . 133
7.5 Experiments . 143
7.6 Discussion . 144

IV Future Work 145

8 Conclusion 146
8.1 Part 1 . 146
8.2 Part 2 . 147
8.3 Part 3 . 149

Bibliography 151

iii

Acknowledgments

I would like to thank my advisor, Professor Shankar Sastry, for his constant advice and
enthusiasm for research throughout my Ph.D. journey. It is safe to say that I would not be
where I am today without his insightful professional feedback. I would also like to thank
Professors Claire Tomlin, Gireeja Ranade, David Fridovich-Keil, Forrest Laine, Yi Ma, Eric
Mazumdar, and Lillian Ratliff, for their support and encouragement throughout my Ph.D.
experience. I would also like to thank my collaborators (for both past and ongoing work,
listed in alphabetical order of surname) Dr. Daniel Calderone, Benjamin Chasnov, Sampada
Deglurkar, Jingqi Li, Chinmay Maheshwari, Anish Muthali, Druv Pai, Lasse Peters, Amay
Saxena, Haotian (David) Shen, Ritika Shrivastava, Pan-Yang Su, Victoria Tuck, and Dr.
Manxi Wu for excellent collaborations I have enjoyed at UC Berkeley, some of which are
described in this thesis. Special thanks to Dr. Tyler Westenbroek and Professor David
Fridovich-Keil, for providing perspectives and conversations that were singularly helpful
during the final year of my PhD experience. Finally, I would like to thank my family and
friends for their support during my graduate school years.

1

Chapter 1

Introduction

In our modern era of artificial intelligence, navigation and transportation technologies in-
creasingly leverage learning-enabled components to perform rapid data collection and pro-
cessing, to facilitate autonomous decision making in multi-agent interactions. These inter-
actions can occur in atomic settings involving a small number of agents in a local environ-
ment, such as autonomous navigation, or in non-atomic settings in which the contribution
of each agent’s behavior is infinitesimal, such as route-planning in large-scale transportation
networks. Unfortunately, learning-based methods can exhibit unexpected and alarming be-
havior once deployed in real-world environments. For instance, learning-enabled computer
vision modules in self-driving vehicles frequently fail to correctly identify traffic signs, with
fatal consequences. Meanwhile, learning-based route recommendation platforms often in-
duce high congestion levels, by directing self-interested travelers to overcrowd paths of least
perceived latency. These phenomena highlight that, despite their promise, modern machine
learning (ML) methods for localized and societal-scale navigation continue to be plagued by
the following fundamental flaws:

1. Lack of Robustness and Interpretability—Current state-of-the-art ML-based nav-
igation algorithms often struggle to robustly process noisy observations of an au-
tonomous agent’s surroundings, a crucial prerequisite for local motion planning. As
such, these navigation algorithms are brittle, incapable of sustained and trustworthy
operation when deployed for localized navigation in challenging real-world environ-
ments. This leads to unpredictable and undesirable consequences, such as autonomous
driving-related fatalities.

2. Socially Undesirable Outcomes—Current ML-based route recommendation plat-
forms are not endowed with concepts relevant to collective social optimality or strategic
human decision-making. As such, when guiding travelers across large-scale transporta-
tion networks, they often fail to account for interactions between the profit-maximizing,
yet individually unpredictable, agents using these networks. This results in the afore-
mentioned excessive congestion.

CHAPTER 1. INTRODUCTION 2

To address the above issues, this dissertation presents principled mathematical methods
for designing algorithms for assured autonomous navigation on localized and societal scales.

Part I: A Unified Framework for Simultaneous

Localization and Mapping (SLAM)

An autonomous vehicle navigating a previously unseen traffic scenario must accurately repre-
sent its environment and locate itself within that representation. While purely learning-based
perception is increasingly deployed in autonomy stacks, such methods can exhibit unexpected
and alarming behavior in real-world traffic. For instance, computer vision modules in self-
driving vehicles often fail to correctly identify traffic signs and predict pedestrian motion,
with fatal consequences.

To address this issue, my work presents a unified optimization-based framework for Si-
multaneous Localization and Mapping (SLAM) algorithms, which construct geometric maps
describing an autonomous agent’s surroundings, while locating the agent within the estab-
lished map. In the existing literature, SLAM methods are categorized into filtering-based al-
gorithms, which are usually computationally faster, and optimization-based methods, which
tend to be more accurate. My colleagues, Amay Saxena, Ritika Shrivastava, Dr.
Joseph Menke, Professor Shankar Sastry and I reconciled the strengths of these two
methods by formulating a unified optimization-based framework that encompasses a large
class of existing, state-of-the-art SLAM algorithms for static scenes [95]. Our framework
allows the robustness and accuracy of these methods to be interpreted as the consequence of
algorithmic design choices, and easily contrasted across SLAM benchmark datasets. More-
over, our framework facilitates the design of new algorithms whose performance flexibly
interpolates those of current methods. Altogether, our work provides a unified framework
for perception and estimation, to inform immediate decision-making in autonomous naviga-
tion.

Part II: Game-Theoretic Motion Planning

When designing a safe trajectory for a given (“ego”) autonomous vehicle, the motion planning
literature typically models the other (“non-ego”) vehicles in the scene as dynamic obstacles
with fixed trajectories that were independently predicted upstream in the autonomy stack.
Unfortunately, this assumption precludes the ego agent’s ability to account for non-ego
agents’ reactions when executing their own planned trajectories.

To address this issue, my colleagues Professor Claire Tomlin, David Fridovich-
Keil, and I focused on developing game-theoretic motion planners, which explicitly encode
the intent of other non-ego agents, as well as their potential reactions to the ego agent’s
trajectory, as coupled optimization problems. These algorithms are capable of capturing
complex multi-agent interactions that frequently arise in real-life traffic scenarios. These

CHAPTER 1. INTRODUCTION 3

include defensive driving, in which the ego agent guards themselves against the possibility
that non-ego agents in close proximity are temporarily distracted, and may unintentionally
exhibit adversarial behavior.

In the literature, the objectives of self-interested agents interacting in a shared environ-
ment are often encoded as a set of coupled Hamilton-Jacobi equations whose solutions yield
local Nash equilibrium strategies [100, 99]. These strategies can then be computed numer-
ically via state space discretization. However, these algorithms inevitably require compu-
tational cost and memory that scale exponentially with the state dimension (the “curse of
dimensionality”), and are thus unsuitable for modeling the high-dimensional, multi-player
interactions in real-world traffic [9]. To overcome these computational challenges, our work
uses ILQGames [46], a recently developed iterative linear-quadratic algorithm, as our primary
game solver. ILQGames iteratively solves linear-quadratic games and incurs computational
complexity cubic in the number of players and linear in the time horizon.

We conclude this part by presenting GTP-SLAM, a game-theoretic framework for joint
localization, mapping, prediction, and planning. The GTP-SLAM algorithm offers a rap-
prochement between the game-theoretic path planning paradigm explored in Part II with
the SLAM algorithms described in Part I. More precisely, we formulate a novel SLAM al-
gorithm for multi-player scenes, motivated by iterative best response. GTP-SLAM aims to
jointly estimate the dynamic states and control inputs of all players in the scene, as well
as landmark positions. It does so from the ego player’s perspective, while accounting for
noncooperative, game-theoretic interactions between the players.

Part III: Congestion Management via Dynamic Tolling

Dynamic tolling schemes provide a practical method for reducing traffic congestion in trans-
portation networks, in which self-interested travelers select routes that minimize travel times
to their destinations. Traffic assignment models (TAMs) play a critical role in congestion
modeling, by predicting travelers’ arc selection decisions based on the traffic load and im-
posed toll on each arc. TAMs operate on the core principle that self-interested travelers select
routes with minimal perceived cost, which can be modeled as deterministic or stochastic.

Part III of this thesis presents joint work with Chinmay Maheshwari, Pan-Yang Su,
and Professor Shankar Sastry, in which we developed timescale-separated stochastic dy-
namics models for the traffic flow and imposed tolls on a traffic network of arbitrary structure
and scale. Many traffic assignment models (TAMs) in the literature are route-based, which
assumes that travelers make a single decision among routes that connect their origin and
destination. However, the comprehensive enumeration of routes in a traffic network is often
computationally intractable, since the number of available routes can be exponential in the
number of arcs. To tackle this issue, Chapter 4 presents arc-based TAMs that model traffic
network congestion generated by self-interested travelers who sequentially select arcs based
on their perceived latency on the network. Moreover, we use perturbed best-response dynam-
ics to characterize the selfish, yet not entirely predictable, routing and rerouting decisions

CHAPTER 1. INTRODUCTION 4

of travelers in the transportation system, as they learn and respond to the fluctuating load-
dependent latency and toll on each arc in the network. We prove that arc flows generated by
these dynamics converge to a neighborhood of the associated equilibrium flow allocation. At
the same time, we implement a dynamic tolling scheme to ensure convergence to a socially
desirable traffic load distribution.

However, for the tolling mechanism to be effectively implemented, the central traffic
authority must possess knowledge of a wide range of system parameters. These include
parameters for arc latency functions that relate travel time to traffic load, as well as dispersion
(temperature) and noise parameters that capture degrees of stochasticity and rationality in
the travelers’ aggregate decision-making. All of these parameters may a priori be unknown
to the traffic authority, and difficult to estimate. To address this issue, Chapter 5 presents
an online learning algorithm that estimates unknown system parameters while implementing
effective tolls, thus generalizing the dynamic tolling scheme introduced in Chapter 4.

Overall, this dissertation thesis presents the first steps towards a unified theory of socially
optimal autonomous navigation that blends both learning- and model-based methods for ef-
ficient data-processing and decision-making. We conclude by discussing promising directions
of future research.

Acknowledgements Needless to say, my research has benefited tremendously from the
fruitful collaborations in which I was privileged to partake during my PhD experience. These
collaborations feature prominently in the content of this thesis. In particular, Part I draws
heavily from collaborations with Amay Saxena, Ritika Shrivastava, Dr. Joseph Menke, and
Professor Shankar Sastry [95, 17, 16]. Part II is based on papers published in collaboration
with Professors Claire Tomlin and David Fridovich-Keil [21, 18]. Finally, Part III is derived
from a productive collaboration with Chinmay Maheshwari, Pan-Yang Su, and Professor
Sastry over the course of the past year and a half [22, 20].

5

Part I

SLAM: A Generalized Optimization
Framework

6

Chapter 2

Static SLAM

2.1 Introduction

A critical function for any autonomous vehicle navigating a previously unseen traffic sce-
nario is to accurately represent its environment and locate itself within that representation.
While purely learning-based perception is increasingly used to model an autonomous agent’s
environment, such methods can exhibit unexpected and alarming behavior when deployed in
real-world environments. For instance, even when equipped with state-of-the-art computer
vision algorithms, self-driving vehicles often fail to correctly identify traffic signs and predict
pedestrian motion, sometimes with fatal consequences.

To address these issue, Chapters 2 and 3 focus on Simultaneous Localization and Map-
ping (SLAM), a well-studied problem in robotics, computer vision, and estimation theory.
In SLAM, a robot builds a representation for a previously unexplored environment while lo-
cating itself in the constructed map [66]. Applications of SLAM range widely, from military
applications such as map construction and search-and-rescue missions, to civilian applica-
tions such as augmented and virtual reality, and 3D scene capture [14, 24, 25, 26].

The first step towards solving the SLAM problem is to locate and identify landmarks in
the environment, and extract features to construct a map. The robotic agent then uses its
dynamics model, in conjunction with these feature measurements, to pinpoint the position
and orientation (pose) of the robotic agent relative to the map. Measurements of new
features from newly identified landmarks, and new measurements of old features, can be
used to iteratively update the SLAM states—that is, landmark positions and estimates of
the robot’s pose. This reduces errors in original estimates of landmark positions and the
robot pose, due to either measurement noise or fluctuations in the environment.

Modern SLAM algorithms usually include front and back ends. The front end performs
feature extraction, data association, and outlier rejection on raw sensor data. This includes
feature extraction, data association, and outlier rejection, to match features across feature
data, filter out spurious feature matches (outliers), process IMU data, and associate all of
this information with relevant SLAM states. The back end then performs inference over the

CHAPTER 2. STATIC SLAM 7

processed data, using underlying dynamics and measurement models to produce a compati-
ble state estimate.Back end algorithms classified as Gaussian filtering or batch optimization
based. Filtering methods iteratively update the distribution of recently observed states un-
der a Gaussian distribution assumption [98, 79, 69], while optimization methods iteratively
estimate states as solutions to an optimization problem, with the optimization objective
constructed from sensor error, such as error terms collected from inertial measurement units
(IMU) and image reprojection. In particular, factor graph-based approaches efficiently solve
optimization problems over past variables via factorization schemes that maintain the spar-
sity of the underlying least squares problem [28, 57, 30, 56]. Keyframe-based methods are
optimization-based approaches that retain only a small subset of maximally informative
frames (“keyframes”) spaced arbitrarily far apart in time in the optimization window, while
dropping all other poses [67]. Keyframes are selected to maximize the information captured
in optimization windows of limited size. Empirically, algorithms from both categories have
achieved state-of-the-art performance, though the latter often attain higher accuracy at the
cost of longer compute times [14, 67, 34].

Prior literature contrasted theoretical and empirical properties of filtering and batch
optimization algorithms. Scaramuzza and Fraundorfer performed a comparison study of
filtering and bundle adjustment-based methods for visual odometry [96, 44]. Frese et al.
provided a survey, from a practitioner’s perspective, of grid-based and pose graph SLAM
algorithms [45]. By contrast, Huang and Dissanyake studied the consistency, accuracy,
and computational speed of filtering, optimization-based, and pose-graph SLAM from a
theoretical perspective [52]. Khosoussi et al. exploited sparsity in SLAM problems by
conditioning on estimates of robot orientations [61]. Strasdat et al. conducted Monte Carlo
experiments on visual SLAM algorithms [101], revealed that including more features in the
back end increased accuracy more (compared to including more frames), and concluded
that bundle adjustment (BA) outperforms filtering, since its computation time increases less
drastically with the number of features.

In this chapter and the next, we present a unified template for filtering and optimization-
based SLAM approaches, by building upon methods surveyed by the publications pre-
sented above. Our aim is to facilitate the design of new algorithms whose computational
speed and performance flexibly interpolate those of existing, state-of-the-art algorithms. We
then use this framework to elucidate the tradeoff between the accuracy and computational
complexity of filtering-based and batch optimization-based algorithms in different environ-
ments. Specifically, we recast the Extended Kalman Filter (EKF), Multi-State Constrained
Kalman Filter (MSCKF), and Open Keyframe Visual-Inertial SLAM algorithm (OKVIS)
as optimization-based back-end algorithms, using our unified SLAM framework. We then
compare the empirical performance of the reformulated MSCKF with that of sliding window
optimization-based back-end algorithms, including the keyframe-based approach of Open
Keyframe Visual-Inertial SLAM [67]. Somewhat surprisingly, the MSCKF outperforms slid-
ing window filters (SWF) of comparable sizes on several datasets, despite not performing
multiple Gauss-Newton updates. We use our unified framework to analyze these empiri-
cal results. More details can be found in a published paper, Saxena⋆, Chiu⋆, Shrivastava,

CHAPTER 2. STATIC SLAM 8

Menke, and Sastry “Simultaneous Localization and Mapping: Through the Lens of Nonlinear
Optimization” [95] (⋆Equal contribution).

2.2 SLAM: Formulation on Euclidean Spaces

SLAM on Euclidean Spaces

The SLAM problem involves estimating two types of variables: states and features. The state
at each time t, denoted xt ∈ Rdx , describes physical attributes of the robot, e.g., camera
positions and orientations (poses). Feature positions available at time t in a global frame,
denoted {fk|j = 1, · · · , p} ⊂ Rdf , can be obtained by analyzing information from image
measurements {zt,k|j = 1, · · · , p} ⊂ Rdz and state estimates; these describe the relative
position of the robot in its environment. States and features are described by an infinitely
differentiable (i.e., C∞) dynamics map g : Rdx → Rdx and a C∞ measurement map h :
Rdx × Rdf → Rdz , via additive noise models:

xt+1 = g(xt) + wt, wt ∼ N (0,Σw), (2.1)

zt,k = h(xt, fk) + vt,k, vt,k ∼ N (0,Σv), (2.2)

where Σw ∈ Rdx×dx ,Σw ⪰ 0 and Σv ∈ Rdz×dz ,Σv ⪰ 0.
For localization and mapping, SLAM algorithms maintain a full state (vector) xt ∈ Rd,

in which a number of past states and feature positions are concatenated. The exact number
and time stamps of these states and features vary with the design choice of each SLAM
algorithm. For example, sliding window filters (SWFs) may define the full state xt :=
(xt−n+1, · · · , xt, fp−q+1, · · · , fp) ∈ Rd, with d := dxn + dfq, to be a sliding window of the
most recent n states, consisting of one pose each, and the most recent estimates, at time
t, of a collection of q features [98, 79]. Batch optimization methods, on the other hand,
maintain all states and features encountered in the problem up to the current time [30, 28,
57, 56].

Note that (2.1) and (2.2) do not involve overparameterized state variables, e.g., quater-
nion representations for poses. These natural extensions are discussed in Section 2.3.

SLAM as an Optimization Problem on Euclidean Spaces

SLAM estimates state and feature positions that best enforce constraints posed by given
dynamics and measurement models, as well as noisy state and feature measurements collected
over time. This is formulated as the minimization of the sum of weighted residual terms
representing these constraints. For example, weighted residuals associated with the prior
distribution over xt ∈ Rd, the dynamics constraints between states xi, xi+1 ∈ Rdx , and
the reprojection error of feature fj ∈ Rdf corresponding to the state xi ∈ Rdx and image

measurement zt,k ∈ Rdz , may be given by Σ
−1/2
0 (xt − µ0) ∈ Rd, Σ

−1/2
w

(
xi+1 − g(xi)

)
∈ Rdx ,

and Σ
−1/2
v

(
zi,j − h(xi, fk)

)
∈ Rdz , respectively (here, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ q). We define

CHAPTER 2. STATIC SLAM 9

the running cost, c : Rdxn+df q → R, as the sum of weighted norm squares of these residuals.
For example, for a SWF algorithm for SLAM:

c(xt) := ∥xt − µ0∥2Σ−1
0

+
t−1∑

i=t−n+1

∥xi+1 − g(xi)∥2Σ−1
w

+

p∑
j=p−q+1

t∑
i=t−n+1

∥zi,j − h(xi, fk)∥2Σ−1
v
,

(2.3)

where ∥v∥2A := v⊤Av for any real vector v and real matrix A of compatible dimension.
To formulate SLAM as a nonlinear least-squares problem, we stack all residual terms into

one residual vector C(xt). For example, for the SWF given above:

C(xt) :=
[(
Σ

−1/2
0 (xt − µ0)

)⊤(
Σ−1/2
w (xt−n+1 − g(xt−n))

)⊤ · · · (Σ−1/2
w (xt − g(xt−1))

)⊤(
Σ−1/2
v (zt−n+1,p−q+1 − h(xt−n+1, fp−q+1))

)⊤ · · ·(
Σ−1/2
v (zt−n+1,p − h(xt−n+1, fp))

)⊤ · · ·(
Σ−1/2
v (zt,p−q+1 − h(xt, fp−q+1))

)⊤ · · ·(
Σ−1/2
v (zt,p − h(xt, fp))

)⊤]⊤ ∈ R(2n−1)dx+nqdz .

Thus, c(xt) = C(xt)
⊤C(xt), and the SLAM problem is now reduced to the nonlinear least

squares problem below:

min
xt

.c(xt) = min
xt

.C(xt)
⊤C(xt) (2.4)

Section 2.4 introduces the main algorithmic submodules used to find an approximate solution
to (2.4).

2.3 SLAM: Formulation on Manifolds

Here, we generalize the SLAM formulation in Section 2.2 to the case where dynamical states
are defined on smooth manifolds rather than Euclidean spaces. SLAM often involves esti-
mating the orientations of rigid bodies, which evolve on a smooth manifold embedded in
an ambient space, e.g., rotation matrices expressed as unit quaternions. In such situations,
we use boxplus (⊞) and boxminus (⊟) operators, defined below, to perform composition
and difference operations in the iterative algorithm presented in Section 2.4, while enforcing
constraints imposed by the manifold’s geometric structure.

Suppose the full state x evolves on a smooth manifoldM, with dim(M) = n. For each
x ∈ M, let πx : Ux → Vx be a diffeomorphic chart from an open neighborhood Ux ⊂ M of

CHAPTER 2. STATIC SLAM 10

x ∈ M to an open neighborhood Vx ⊂ Rn of 0 ∈ Rn. Without loss of generality, suppose
πx(x) = 0. The operators ⊞ : Ux × Vx → Ux and ⊟ : Ux × Ux → Vx are defined by:

x⊞ δ = π−1
x (δ) (2.5)

y ⊟ x = πx(y) (2.6)

In essence, ⊞ adds a perturbation δ ∈ Rn, in local coordinates, to a state x ∈ M, while ⊟
extracts the difference δ ∈ Rn, in local coordinates, between states x, x′ ∈ M covered by
the same chart. Below, “δ” often describes an error or increment to a nominal state on the
manifold.

Manifold Examples

This subsection gives examples of the ⊞, ⊟ and π operators for manifolds that occur widely
in SLAM: the set of unit quaternions, Hu, and the set of rotation matrices, SO(3).

Each q ∈ Hu is expressed as q = (qu, q⃗v) where qu ∈ R and q⃗v ∈ R3 denote the scalar and
vector (imaginary) parts, respectively, with ∥q∥ =

√
q2u + ∥q⃗v∥22 = 1 (JPL convention). Here,

the coordinate map π : Hu → R3 is defined as the Log map on Hu; its inverse π−1 is the
Exp map. Specifically, we write each q ∈ Hu as q =

(
cos(θ

2
), sin(θ

2
)ω⃗
)
for some θ ∈ [0, π],

ω⃗ ∈ R3 with ∥ω⃗∥ = 1, i.e., the quaternion q implements a rotation about the axis ω⃗ by
θ radians counterclockwise. Then, π : Hu → R3 and π−1 : Bπ(0) → Hu are defined by:
(Bπ(0) := {x ∈ R3 : ∥x∥2 < π} denotes the image of π)

π(q) = Log(q) = θω⃗,

π−1(θω⃗) = Exp(θω⃗) = (cos(θ/2), sin(θ/2)ω⃗).

The ⊞ and ⊟ maps are then implemented via the quaternion product ⋆ : Hu ×Hu → Hu:

qa ⊞ ω⃗ = qa ⋆ Exp(ω⃗)

qa ⊟ qb = Log(q−1
b ⋆ qa)

For SO(3), we define ⊞ and ⊟ similarly, i.e.,

Ra ⊞ ω⃗ = Ra Exp(ω⃗)

Ra ⊟Rb = Log(RT
b Ra)

Often, the full state in a SLAM problem exists in the Cartesian product of a finite collection
of manifolds, since it contains poses and features on their own manifolds. For a product
manifoldM1×M2, with projection, increment, and difference maps already defined onM1

andM2, we define ⊞ and ⊟ onM1 ×M2 by:

(g1, g2)⊞ (ξ1, ξ2) = (g1 ⊞ ξ1, g2 ⊞ ξ2)

(g1, g2)⊟ (h1, h2) = (g1 ⊟ h1, g2 ⊟ h2)

CHAPTER 2. STATIC SLAM 11

SLAM as an Optimization Problem on Manifolds

The SLAM problem can be formulated on manifolds using modified cost functions, where
plus and minus operations are replaced with ⊞ and ⊟ when necessary. We provide a more
explicit description of this process below.

To formulate SLAM on a manifold, we must alter our definitions of the state variables,
features, image positions, dynamics map, and measurement map. Let X be a smooth man-
ifold of dimension dx, on which the system state are defined. Similarly, let F be a smooth
manifold of dimension df , on which features are defined, and let Z be the smooth manifold
of dimension dz, on which image measurements are defined (Often, F = Rdf and Z ∈ Rdz ,
e.g., with df = 3 and dz = 2). We then have:

xt+1 = g(xt)⊞ wt, wt ∼ N (0,Σw),

zt,k = h(xt, fk)⊞ vt,k, vt,k ∼ N (0,Σv).

where xt ∈ X denotes the state at time t, g : X → X denotes the discrete-time dynamics
map, and wt ∈ Rdx denotes the dynamics noise, with covariance Σw ∈ Rdx×dx , Σw ≻ 0.
Moreover, fk ∈ F denotes feature position j estimated at the camera pose at time t, zt,k ∈ Z
denotes the image measurement of feature j measured from the camera pose at time t,
h : X × F → Z denotes the measurement map, and vt ∈ Rdz denotes the measurement
noise, with covariance Σv ∈ Rdz×dz , Σv ≻ 0.

As before, SLAM concerns an optimization problem over a collection of poses and fea-
tures, e.g., a sliding window of the most recent poses in the states {xi ∈ X |i = t−n+1, · · · , t}
and features {fk ∈ F|j = p− q + 1, · · · , p}:

xt := (xt−n+1, · · · , xt, fp−q+1, · · · , fp) ∈ X n ×F q.

We assume that xt is associated with a prior distribution with mean µ0 ∈ X n × F q and
covariance Σ0 ∈ R(ndx+qdf)×(ndx+qdf).

2.4 Main Algorithm

Algorithm Overview

Below, we describe in detail the submodules of a straightforward, general SLAM algorithm,
using the state variables and cost terms defined in Sections 2.2 and 2.3. As before, we
first focus on the case where the state space is Euclidean. As before, denote the state and
concatenated cost vector by xt ∈ Rd and C : Rd → RdC , respectively. (e.g., the sliding
window filter in Section 2.2 would correspond to d = dxn + dfq and dC = (2n − 1)dx +
qdf + nqdz). Recall from Chapter 2.2 that the SLAM problem is equivalent to solving the
nonlinear least-squares problem (2.4), reproduced below:

min
xt

.c(xt) = min
xt

.∥C(xt)∥22.

CHAPTER 2. STATIC SLAM 12

Constructing the Optimization Problem

The first step of the algorithm is to construct the objective function whose minimization
defines the SLAM problem. From available visual and inertial measurements, we construct
and concatenate a collection of residual terms to form a residual vector C(xt) of the form
introduced in Section 2.2. The SLAM problem is then equivalent to solving the nonlinear
least-squares problem (2.4), reproduced below with the indices considered here:

min
xt

.c(xt) = min
xt

.C(xt)
⊤C(xt).

Recall that xt ∈ Rdxn+df q consists of the most recent n poses and position estimates of the
q most salient features, measured at the most recent pose (at time t). Recall also that
C : Rdxn+df q → Rdxn+df q+dx(n−1)+dznq is defined by:

C(xt) :=
[
C0(xt)

⊤ C⊤
gt−n+1

· · · C⊤
gt−n+1

C⊤
hp−q+1,t−n+1

· · · C⊤
ht,p−q+1

· · ·

C⊤
ht−n+1,p

· · · C⊤
ht,p

]⊤
.

with weighted residual terms C0 : Rdxn+df q → Rdxn+df q, and Cgi : R2dx → Rdx , Chij :
Rdx+df → Rdz for each i ∈ {t− n+ 1, · · · , t− 1} and j ∈ {p− q + 1, · · · , p} given by:

C0(xt) := Σ
−1/2
0 (xt − µ0), (2.7)

Cgi(xi, xi+1) := Σ−1/2
w

(
xi+1 − g(xi)

)
, (2.8)

Chij(xi, ft,j) := Σ−1/2
v

(
zi,j − h(xi, ft,j)

)
. (2.9)

Gauss-Newton Descent and Linear Approximation

Next, we recursively update of the full state xt ∈ Rdxn+df q by performing Gauss-Newton
descent steps using the cost function. More precisely, let J ∈ R(dxn+df q+dx(n−1)+dzq)×(dxn+df q)

denote the Jacobian of C with respect to xt. Starting from an initial estimate xt
(0) ∈ Rdxn+df q

of xt, we recursively update iterates of our estimate {xt(k)|k ≥ 0} via the Gauss-Newton
algorithm:

xt
(k+1) ← xt

(k) − (JTJ)−1JTC(xt
(k)). (2.10)

These Gauss-Newton steps are iteratively applied until the current iterate xt
⋆ := xt

(k), for
some sufficiently large k ∈ N, is believed to correspond to a sufficiently small cost c(xt

⋆).
Then, it is fixed, and all or part of the original SLAM optimization problem is replaced with
the following linear least squares optimization problem (2.4):

min
xt

.c(xt) = min
xt

.C(xt)
⊤C(xt)

= min
xt

.
[
(xt − µ)⊤Σ−1(xt − µ) + o(xt − xt⋆)

]

CHAPTER 2. STATIC SLAM 13

≈ min
xt

.(xt − µ)⊤Σ−1(xt − µ) (2.11)

where µ ∈ Rdxn+df q and Σ ∈ R(dxn+df q)×(dxn+df q) are given by:

µ← xt
⋆ − (J⊤J)−1J⊤C(xt

⋆)

Σ← (J⊤J)−1.

Remark 2.4.1. Alternatives to the Gauss-Newton algorithm, for computing incremental
improvements to the initial guess are available, exist in abundance. These include the stan-
dard gradient descent algorithms [90], the Levenberg-Marquardt algorithm [75], or Powell’s
dog leg method [88, 71]. However, we focus on the Gauss-Newton algorithm because, as
illustrated above, it has a meaningful interpretation in the case of filtering based SLAM al-
gorithms. Moreover, for well-conditioned problems where a good initial estimate is available,
the Gauss-Newton algorithm tends to be faster than other methods [80].

Marginalization

The marginalization step reduces the number of variables present in the SLAM problem to
reduce computation time. In the context of the above setup, these variables are estimates
of the n pose positions and q feature positions, encapsulated in the overall state xt, which
are selected to optimize the overall cost c(xt). Intuitively, the marginalization procedure
involves the following steps to reduce the number of pose and feature position estimates in our
optimization problem. First, we partition the overall state xt ∈ Rdxn+df q into marginalized
and non-marginalized components. Likewise, we rewrite the overall cost c(xt) ∈ R as the sum
of two cost terms, one of which depends only on the non-marginalized components, while
the other depends on both the marginalized and non-marginalized components. Finally,
the marginalization step is completed by approximating the latter cost term as an explicit
function of the non-marginalized cost term. This process is described mathematically below.

Among the n poses and p features present in the overall state xt, let the marginalized state
xM ∈ RdxMx+dfMf encapsulate the Mx pose positions and Mf feature positions that we wish
to discard from our optimization problem, where 1 ≤Mx ≤ n− 1 and 1 ≤Mf ≤ q − 1, and
collect the remaining pose and feature position estimates into the non-marginalized state
xK ∈ Rdx(n−Mx)+df (q−Mf). The only state components kept in the optimization problem
after marginalization, encapsulated in xK , are poses and feature position estimates that are
sufficiently recent or informative to be considered irreplaceable in the optimization problem.

Next, we wish to approximate c(xt) using a cost function that depends entirely on xK .
To do this, we first recall that c(xt) is the sum of squared residual terms. By collecting
all terms which depend only on the non-marginalized state components xK , we can rewrite
c(xt) as the sum of two costs:

c(xt) = c(xK , xM) = c1(xK) + c2(xK , xM)

= C1(xK)
⊤C1(xK) + C2(xK , xM)⊤C2(xK , xM),

CHAPTER 2. STATIC SLAM 14

where c1 : Rdx(n−Mx)+df (q−Mf) → R describes the sum of squared residuals in c(xt) with
no dependence on xM , and C1 : Rdx(n−Mx)+df (q−Mf) → Rdc,1 denotes the concatenation
of such squared residual terms, i.e., c1(xK) = C1(xK)

⊤C1(xK), while c2 : Rdxn+df q → R
and C2 : Rdxn+df q → Rdc,2 correspond to the remaining terms. The dimensions c1 and c2
depend on the specific way in which the state variables in xt and the cost terms in c(xt) are
partitioned. For example, consider the cost function (2.3):

c(xt) = (xt − µ0)
⊤Σ−1

0 (xt − µ0) +
t−1∑

i=t−n+1

(xi+1 − g(xi))⊤Σ−1
w

(
xi+1 − g(xi)

)
+

p∑
j=p−q+1

t∑
i=t−n+1

(
zi,j − h(xi, ft,j)

)⊤
Σ−1
v

(
zi,j − h(xi, ft,j)

)
.

Suppose we partition the full state vector by xt := (xK , xM), with:

Mx := {t− n+ 1, · · · , t− n+Mx}, (poses to marginalize),

Mf := {p− q + 1, · · · , p− q +Mf}, (features to marginalize),

xK := (xt−n+Mx+1, · · · , xt, ft,p−q+Mf+1, · · · , ft,p) ∈ Rdx(n−Mx)+df (p−Mf),

xM := (xt−n+1, · · · , xt−n+Mx , ft,p−q+1, · · · , ft,p−q+Mf
) ∈ RdxMx+dfMf .

and the cost function by c(xt) = c1(xK) + c2(xM , xK), with:

C1(xK) :=
[
C⊤
gt−n+Mx

· · · C⊤
gt−1

C⊤
ht−n+Mx+1,p−q+Mf+1,t

· · · C⊤
ht−n+Mx+1,p,t

· · ·

C⊤
ht,p−q+Mf+1,t

· · · C⊤
ht,p,t

]⊤
∈ Rdx(n−Mx)+dz(n−Mx)(q−Mf).

C2(xK , xM) :=
[
C0(xt)

⊤ C⊤
gt−n+1

· · · C⊤
gt−n+Mx−1

C⊤
ht−n+1,p−q+1,t

· · · C⊤
ht−n+1,p,t

· · ·

C⊤
ht−n+Mx,p−q+1,t

· · · C⊤
ht−n+Mx,p

C⊤
ht−n+Mx+1,p−q+1,t

· · · C⊤
ht−n+Mx+1,p−q+Mf ,t

Cht,p−q+1,t · · ·Cht,p−q+Mf ,t

]⊤
∈ Rdxn+df q+dx(Mx−1)+dz(Mxq+Mfn−MxMf),

c1(xK) = C1(xK)
⊤C1(xK) ∈ R,

c2(xK , xM) = C2(xK , xM)⊤C2(xK , xM) ∈ R,

where C0 and each Cgi and Chij,t are given by (2.7), (2.8), and (2.9), respectively. Note that
in this case, the dimensions of C1 and C2 are given by dc,1 = dx(n−Mx)+dz(n−Mx)(q−Mf)
and dc,2 = dxn+ dfq + dx(Mx − 1) + dx(Mxq +Mfn−MxMf), respectively.

The SLAM problem can now be written as:

min
xt

.c(xt) = min
xK

.
[
C1(xK)

⊤C1(xK) + min
xM

.C2(xK , xM)⊤C2(xK , xM)
]

CHAPTER 2. STATIC SLAM 15

To complete the marginalization step, we replace the output of the inner minimization,
minxM .C2(xK , xM)⊤C2(xK , xM), with an explicit function of xK . To do so, we apply first-
order approximation to the cost term C2(xK , xM)⊤C2(xK , xM) to obtain:

C2(xK , xM) = C2(x⋆K , x
⋆
M) +

[
J⊤
K J⊤

M

] [xK − x⋆K
xM − x⋆M

]
+ o(xK − x⋆K , xM − x⋆M), (2.12)

where JK ∈ Rc2×(dx(n−Mx)+df (q−Mf)) denotes the Jacobian of C2 with respect to xK and
JM ∈ Rc2×(dxMx+dfMf) denotes the Jacobian of C2 with respect to xM . Using (2.12) to
approximate the inner minimization in the above optimization problem, we arrive at the
optimization problem below, which depends only on the non-marginalized state xK :

min
xt

.c(xt) = min
xK

.
[
C1(xK)

⊤C1(xK) + min
xM

.C2(xK , xM)⊤C2(xK , xM)
]

≈ min
xK

.
(
C1(xK)

⊤C1(xK) + (xK − µK)⊤Σ−1
K (xK − µK))

)
(2.13)

where the algorithm defines the mean µK ∈ Rdx(n−Mx)+df (q−Mf) and the covariance matrix
ΣK ∈ R(dx(n−Mx)+df (q−Mf))×(dx(n−Mx)+df (q−Mf)) of xK by assigning:

µK ← x⋆K − ΣKJ
⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
C2(x⋆) (2.14)

ΣK ←
(
J⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
JK
)−1

, (2.15)

In this chapter and the next, we mathematically prove the optimality of the approx-
imations in (2.12) and (2.13), and examines the implications of varying the frequency in
executing the Gauss-Newton Descent, Linear Approximation, and Marginalization steps. In
particular, in Chapter 3, we will interpret a selection of mainstream filtering-based SLAM
algorithms as the repeated iteration of the above three steps at different rates. Moreover,
in Section 3.6, we will illustrate that, by varying the frequencies at which each of the above
three steps is performed, we can construct novel SLAM algorithms whose accuracy and
computational time interpolate smoothly between those of existing algorithms.

In the sections below, we consider the Gauss-Newton Descent, Linear Approximation,
and Marginalization steps in more detail.

2.5 Gauss-Newton Descent

Gauss-Newton descent involves solving for the minimization of c(xt) via Gauss-Newton steps,
an iterative linearization method that approximates c(xt) about a given linearization point
xt
⋆ by a linear least-squares cost term, i.e.,

min
xt

.c(xt) = min
xt

.∥xt − µt∥2Σ−1
t

+ o(xt − xt⋆) (2.16)

for some µt ∈ Rd and Σt ∈ Rd×d. The linearization procedure required to obtain µt ∈ Rd

and Σt ∈ Rd×d, as well as the approximation involved, are detailed in the theorem below.

CHAPTER 2. STATIC SLAM 16

Theorem 2.5.1. (Gauss-Newton Step) Let xt
⋆ ∈ Rd denote a given linearization point,

and suppose J := ∂C
∂xt
∈ RdC×d has full column rank. Then applying a Gauss-Newton step to

the cost c(xt), about xt
⋆ ∈ Rd yields the new cost:

c(xt) = ∥xt − µt∥2Σ−1
t

+ o(xt − xt⋆),

where µt ∈ Rd and Σt ∈ Rd×d are given by:

Σt ← (J⊤J)−1,

µt ← xt
⋆ − (J⊤J)−1J⊤C(xt

⋆).

Proof. We have:

c(xt) = C(xt)
⊤C(xt)

=
[
C(xt

⋆) + J(xt − xt⋆)
]⊤[

C(xt
⋆) + J(xt − xt⋆)

]
+ o(xt − xt⋆)

= (xt − µt)⊤Σ−1
t (xt − µt) + c0(xt

⋆) + o(xt − xt⋆),

where c0(xt
⋆) ∈ R denotes a scalar-valued function of xt

⋆ that is independent of the variable
xt. This concludes the proof.

Algorithm 1: Gauss-Newton Step.

Data: Objective C⊤C, linearization point x⋆t .
Result: Mean µ, covariance Σ after a Gauss-Newton step.

1 J ← ∂C
∂xt

∣∣
µt

2 Σt ← J⊤J
3 µt ← x⋆t − (J⊤J)−1J⊤C(x⋆t)
4 return µt,Σt

2.6 Marginalization of States

The marginalization step reduces the state dimension in our SLAM algorithm, which helps to
reduce the computation time. First, we partition the overall state xt ∈ Rd into a marginalized
component xt,M ∈ RdM , to be discarded from xt, and a non-marginalized component xt,K ∈
RdK , to be kept (d = dK+dM .) Then, we partition c(xt) into two cost terms: c1(xt,K), which
depends only on non-marginalized state components, and c2(xt,K , xt,M) which depends on
both marginalized and non-marginalized state components:

c(xt) = c(xK , xM) = c1(xK) + c2(xK , xM)

= ∥C1(xK)∥22 + ∥C2(xK , xM)∥22.

CHAPTER 2. STATIC SLAM 17

Here, C1(xK) ∈ RdC,1 and C2(xK , xM) ∈ RdC,2 denote the concatenation of residuals associ-
ated with c1(xK) and c2(xK , xM) (with dC = dC,1 + dC,2). To remove xt,M ∈ RdM from the
optimization problem , observe that:

min
xt

c(xt) = min
xt,K ,xt,M

(
c1(xt,K) + c2(xt,K , xt,M)

)
= min

xt,K

(
∥C1(xt,K)∥22 +min

xt,M
∥C2(xt,K , xt,M)∥22

)
.

To remove xt,M , it suffices to approximate the solution to the inner minimization problem
by a linear least-squares cost, i.e.:

min
xt,M
∥C2(xt,K , xt,M)∥22 ≈ ∥xt,K − µt,K∥2Σ−1

t,K

for some µt,K ∈ RdK and Σt,K ∈ RdK×dK . Since ∥C2(xt,K , xt,M)∥22 is in general non-convex,

we obtain µt,K and Σt,K by minimizing the first-order Taylor expansion of ∥C2(xt,K , xt,M)∥22
about some linearization point, instead of minimizing ∥C2(xt,K , xt,M)∥22 directly. Below,
Theorem 2.6.1 details the derivation of µt,K and Σt,K .

Theorem 2.6.1 (Marginalization Step). Let xt
⋆ ∈ Rd denote a given linearization point,

and suppose J := ∂C
∂xt
∈ RdC×d has full column rank. Define JK := ∂C

∂xt,K
∈ RdC×dK and JM :=

∂C
∂xt,M

∈ RdC×dM . If C(xt,M , xt,K) were a linear function of xt = (xt,M , xt,K), then applying a

Marginalization step to the cost c(xt), about the linearization point xt
⋆ = (x⋆t,K , x

⋆
t,M) ∈ Rd

yields:

min
xt,M

c(xt,K , xt,M) = min
xt,K

.
(
c1(xt,K) + min

xt,M
c2(xt,K , xt,M)

)
, (2.17)

where Σt,K ∈ RdK×dK and µt,K ∈ RdK are given by:

Σt,K :=
(
J⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
JK
)−1

, (2.18)

µt,K := x⋆t,K − Σt,KJ
⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
C2(x⋆t). (2.19)

Proof. It suffices to show that:

min
xt,M

c2(xt,K , xt,M) = (xt,K − µK)⊤Σ−1
K (xt,K − µK) + c′(x⋆t).

To do so, we first note that since C2(xt) is linear in xt:

c2(xt) = ∥C2(xt)∥22 = ∥C2(x⋆t) + J2∆xt∥22
= ∥C2(x⋆t) + JK∆xt,K + JM∆xt,M∥22.

By the method of least-squares, the optimal ∆xt,M is given by the normal equation:

∆xt,M = −(J⊤
MJM)−1J⊤

M

(
C2(x⋆t) + JK∆xt,K

)

CHAPTER 2. STATIC SLAM 18

Substituting back into our expression for c(xt), we have:

min
xt,M

.c2(xt) =∥
(
I − JM(J⊤

MJM)−1J⊤
M

)(
C2(x⋆t) + JK∆xt,K

)
∥22

=
(
C2(x⋆t) + JK∆xt,K

)⊤[
I − JM(J⊤

MJM)−1J⊤
M

](
C2(x⋆t) + JK∆xt,K

)
=(xt,K − x⋆t,K)

⊤ J⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
JK︸ ︷︷ ︸

:=Σ−1
K

(xt,K − x⋆t,K)

+ 2(xt,K − x⋆t,K)
⊤J⊤

K

[
I − JM(J⊤

MJM)−1J⊤
M

]
C2(x⋆t)

+ C2(x⋆t)
⊤[I − JM(J⊤

MJM)−1J⊤
M

]
C2(x⋆t)

=
(
xt,K −x⋆t,K + ΣKJ

⊤
K

[
I − JM(J⊤

MJM)−1J⊤
MC2(x⋆t)︸ ︷︷ ︸

:=−µK

])⊤
Σ−1
K

(
xt,K −x⋆t,K + ΣKJ

⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
C2(x⋆t)︸ ︷︷ ︸

:=−µK

)
+ C2(x⋆t)

(
I − JM(J⊤

MJM)−1J⊤
M

)
+ c′(x⋆t)

=(xt,K − µK)⊤Σ−1
K (xt,K − µK) + c′(x⋆t).

with ΣK and µK as defined in the theorem statement, and c′(x⋆t) ∈ R independent of xt.

Algorithm 2: Marginalization

Data: Objective f = C⊤C, vector of variables to marginzlie xt,M , linearization
point x⋆t .

Result: Mean µt,K and covariance Σt,K of non-margnalized variables x⋆t,K .

1 C ← subvector of C containing entries dependent on xM .

2 J :=
[
JK JM

]
←
[

∂C
∂xt,K

∣∣
x⋆

∂C
∂xt,M

∣∣
x⋆

]
.

3 Σt,K ←
(
J⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
JK
)−1

4 µt,K ← x⋆t,K − Σt,KJ
⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
C(x⋆)

5 return µt,K ,Σt,K

2.7 Main Algorithm on Manifolds

Our SLAM framework, formulated above on Euclidean spaces, can be straightforwardly
extended to a formulation on manifolds. This involves using manifold-related concepts in
Section 2.3 to modify the Euclidean-space dynamics and measurement maps in Section 2.2,

CHAPTER 2. STATIC SLAM 19

as well as the cost functions, Gauss-Newton steps, and marginalization steps in Sections 2.5,
2.6. In particular, when appropriate, plus and minus operations must be replaced with the
⊞ and boxminus operators.

More precisely, we interpret the SLAM problem on manifolds as the optimization of a
cost function c : X n×F q → R, constructed from residual terms of the same dimension of the
minimal coordinates of xt, xt and zt. In particular, we must generalize (2.3) to the case where
the states, dynamics and measurement maps are defined on and between manifolds. This
involves replacing + and - operators with ⊞ and ⊟ operators, when necessary. For example,
the sliding window filter window presented in Section 2.2, would be associated with the cost
c : X n ×F q → R, given by:

c(xt) = ∥xt ⊟ µ0∥2Σ−1
0

+
t−1∑

i=t−n+1

∥xi+1 ⊟ g(xi)∥2Σ−1
w
(xi+1 ⊟ g(xi))

+

p∑
j=p−q+1

t∑
i=t−n+1

∥zij ⊟ h(xi, fk)∥2Σ−1
v

Similar to Section 2.2, we stack all residual terms into a single residual vector C(xt). For
example, for the sliding window filter above, we have:

C(xt) :=
[(
Σ

−1/2
0 (x̃t ⊟ µ0)

)⊤(
Σ−1/2
w (xt−n+1 ⊟ g(xt−n))

)⊤ · · · (Σ−1/2
w (xt ⊟ g(xt−1))

)⊤(
Σ−1/2
v (zt−n+1,p−q+1 ⊟ h(xt−n+1, fp−q+1))

)⊤ · · · (Σ−1/2
v (zt−n+1,p ⊟ h(xt−n+1, fp))

)⊤
· · ·
(
Σ−1/2
v (zt,p−q+1 ⊟ h(xt, fp−q+1))

)⊤ · · · (Σ−1/2
v (zt,p ⊟ h(xt, fp))

)⊤]⊤
∈ R(2n−1)dx+pdf+nqdz .

As a result, c(xt) = C(xt)
⊤C(xt), and the SLAM problem is now reduced to the following

nonlinear least squares problem:

min
xt

.c(xt) = min
xt

.C(xt)
⊤C(xt) (2.20)

Below, we introduce the main algorithmic submodules used to find an approximate solu-
tion to (2.20). Let x̄∗ be a chosxen linearization point. Let Ĉx̄∗ := C ◦π−1

x̄⋆ be the coordinate

representation of the function C near x̄∗. Recall that Ĉx̄∗ is simply a function from one
Euclidean space to another. We can now Taylor expand to write:

C(x̄) = (C ◦ π−1
x⋆)
(
πx⋆(x)

)
= Ĉx̄⋆(∆χ) = Ĉx̄⋆(0) + J∆χ+ o(∆χ),

where ∆χ = x⊟ x⋆ and J is the Jacobian of Ĉx̄∗ with respect to ∆χ evaluated at zero. We
then apply a modified version of the algorithms from Section 2.4:

CHAPTER 2. STATIC SLAM 20

1. Gauss-Newton Descent : Used to update the current linearization point x̄{k} to a new
linearization point x̄{k+1}.

x(k+1) ← x(k) ⊞
(
− (JTJ)−1JTC(x(k))

)
(2.21)

After Gauss-Newton steps have been taken, the linearization point x⋆ is fixed, and
all or part of the original optimization problem, i.e., minx c(x) = minxC(x)

⊤C(x), is
replaced with the following linear least squares optimization problem:

min
x
.(x⊟ µ)⊤Σ−1(x⊟ µ) (2.22)

where the algorithm assigns:

µ← x⋆ ⊞ (J⊤J)−1J⊤C(x⋆)

Σ← (J⊤J)−1.

2. Marginalization: Used to remove variables xM from the optimization problem by ap-
plying linear approximation to C—in particular, the optimization problem minx .c(x)
is approximated by:

min
xK

.(xK ⊟ µK)
⊤Σ−1

K (xK ⊟ µK),

where the algorithm assigns:

µK ← x⋆K ⊞
(
− ΣKJ

⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
C2(x⋆)

)
ΣK ←

(
J⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
JK
)−1

,

For characterizations of the behavior of Jacobian matrices under the boxplus ⊞ and
boxminus ⊟ operators, we refer the reader to [95], Appendix A.

Gauss-Newton Descent

Gauss-Newton steps update the current linearization point x̄{k} to a new linearization point
x̄{k+1}.

x(k+1) ← x(k) ⊞
(
− (JTJ)−1JTC(x(k))

)
(2.23)

After Gauss-Newton steps have been taken, the linearization point x⋆ is fixed, and all or
part of the original optimization problem, reproduced below:

min
x

c(x) = min
x

C(x)⊤C(x)

is replaced with the following linear least squares optimization problem:

min
x
.(x⊟ µ)⊤Σ−1(x⊟ µ)

where µ and Σ are given by:

µ← x⋆ ⊞ (J⊤J)−1J⊤C(x⋆)

Σ← (J⊤J)−1.

CHAPTER 2. STATIC SLAM 21

Marginalization

Marginalization removes variables xM from the optimization problem by applying linear
approximation to C—in particular, the optimization problem minx .c(x) is approximated by:

min
xK

.(xK ⊟ µK)
⊤Σ−1

K (xK ⊟ µK),

where µ and Σ are defined as:

µK ← x⋆K ⊞
(
− ΣKJ

⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
C2(x⋆)

)
ΣK ←

(
J⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
JK
)−1

.

22

Chapter 3

Equivalence of Filtering and
Optimization

In this chapter, we build upon the notation and terminology established in Chapter 2 to
illustrate the equivalence of filtering and batch optimization-based SLAM algorithms. In
particular, we will focus on the Extended Kalman Filter (EKF, in Section 3.2) and Multi-
State Constrained Kalman Filter (MSCKF, in Section 3.4), as examples of widely-used
filtering-based SLAM algorithms, and establish analogous optimization-based algorithms
using our unified framework. Although similar results exist in the optimization literature
[6], they do not analyze algorithmic submodules unique to SLAM, e.g., feature incorporation,
processing, and discarding.

Below, we begin by presenting the classical formulation of EKF SLAM, as portrayed in
the literature.

3.1 Extended Kalman Filter (EKF) on Euclidean

Spaces, Standard Formulation

The Extended Kalman Filter (EKF), whose standard formulation is presented in Algorithm
3, is an iterative algorithm for updating estimates of the current pose xt (i.e. n = 1)
and positions of all observed features at the current time, ft := (f1, · · · , fp) ∈ Rpdf . This
corresponds to the sliding window filter in our formulation, with n = 1 and q = p. Below,
as an application of our optimization-based SLAM framework, we present the dynamics and
measurement maps of the EKF algorithm in R2, as well as the associated cost functions.
Dimension-wise, in its standard formulation, the 2D EKF is an instantiation of Algorithm
3 with dx = 3, df = 2, and dz = 2. To unify our notation, we will suppose that dx, df , dz
assume these values throughout the rest of this section.

Let xt := (x1t , x
2
t , θt) ∈ Rdx denote the robot pose, comprising its position and angle in

Rdf , let fk := (f 1
k , f

2
k) ∈ Rdf denote the position of each feature fk ∈ {f1, · · · , fp} visible

at time t, and let zt,k := (z1t,k, z
2
t,k) ∈ Rdz denote the measurement of feature fk at time t.

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 23

The dynamics map g : Rdx → Rdx , with ẋt = g(xt) is obtained by performing numerical
integration on the continuous-time dynamics:

ẋ1t = v cos θ + w1
t ,

ẋ2t = v sin θ + w2
t ,

θ̇t = ω + w3
t ,

where wt := (w1
t , w

2
t , w

3
t) ∈ Rdx denotes additive zero-mean Gaussian noise on the (x, y, θ)

coordinates of the state variable, respectively, with joint covariance wt ∼ N (0,Σw) for some
covariance matrix Σw ∈ Rdx×dx , Σw ≻ 0.

The measurement map h : Rdx × Rdf → Rdz is given by:

z1t,k = f 1
k − x1t + v1t ,

z2t,k = f 2
k − x2t + v2t ,

where vt := (v1t , v
2
t) ∈ Rdz denotes additive zero-mean Gaussian noise on the measurements

z1t,j, z
2
t,j ∈ R, respectively, with joint covariance vt ∼ N (0,Σv) for some covariance matrix

Σv ∈ Rdz×dz , Σv ≻ 0. The measurement vector zt ∈ Rpdf is then given by concatenating
each of the q residual measurements obtained at time t, i.e. zt := (zt,1, · · · , zt,p) ∈ Rpdz .

Algorithm 3: Extended Kalman Filter SLAM, Standard Formulation.

Data: Prior distribution on x0 ∈ Rdx : N (µ0,Σ0), dynamics and measurement noise
covariances Σw ∈ Rdx×dx ,Σv ∈ Rdz×dz , (discrete-time) dynamics map
g : Rdx → Rdx , measurement map h : Rdx × Rpdf → Rdz , time horizon T ∈ N.

Result: Estimates x̂t for all desired timesteps t ≤ T .

1 for t = 0, · · · , T do
2 if detect new feature measurements zt,p+1:p+p′ := (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz

then
3 µt,Σt, p← Alg. 5, EKF feature augmentation

(
µt,Σt, p, zt,p+1:p+p′ , h(·)

)
4 end
5 zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz ← New measurements of existing features.

6 µt,Σt ← Alg. 6, EKF feature update
(
µt,Σt, zt,1:p, h(·)

)
.

7 if t < T then
8 µt+1,Σt+1 ← Alg. 7, EKF state propagation

(
µt,Σt, g(·)

)
9 end

10 end
11 return x̂0, · · · x̂T ∈ Rdx.

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 24

3.2 Extended Kalman Filter (EKF) on Euclidean

Spaces, in an Optimization Framework

At each time t, the EKF SLAM algorithm on Euclidean spaces maintains the full state
vector x̃t := (xt, f1, · · · , fp) ∈ Rdx+pdf , consisting of the most recent state xt ∈ Rdx and
feature position estimates f1, · · · , fp ∈ Rdf . In other words, the EKF SLAM algorithm
follows our optimization-based SLAM algorithm, with n = 1 and q = p. At initialization
(t = 0), no feature has been detected (p = 0), and the EKF full state is simply the initial
state x̃0 = x0 ∈ Rdx , with mean µ0 ∈ Rdx and covariance Σ0 ∈ Rdx×dx . The corresponding
initial running cost, cEKF,0,0 : Rdx → R, is thus defined by:

cEKF,0,0 = ∥x̃0 − µ0∥2Σ−1
0
.

Suppose, at the current time t, the running cost cEKF,t,0 : Rdx+pdf → Rdx+pdf is:

cEKF,t,0 = ∥x̃t − µt∥2Σ−1
t
,

where x̃t := (xt, f1, · · · , fp) ∈ Rdx+pdf denotes the EKF full state at time t, with mean
µt ∈ Rdx+pdf and covariance Σt ∈ R(dx+pdf)×(dx+pdf). Below, we introduce the feature aug-
mentation, feature update, and state propagation submodules of the EKF SLAM Algorithm.
Each of these steps refines the mean and covariance of the EKF full states computed by
applying the Gauss-Newton, Linear Approximation, and Marginalization steps.

First, the feature augmentation step appends the position estimates of newly observed
features fp+1, · · · , fp+p′ ∈ Rdf to the EKF full state x̃t, and updates its mean and covari-
ance. In particular, feature measurements zt,p+1, · · · , zt,p+p′ ∈ Rdz are assimilated by adding
measurement residual terms, creating a new cost cEKF,t,1 : Rdx+(p+p′)df → R:

cEKF,t,1(x̃t, fp+1, · · · , fp+p′) := ∥x̃t − µt∥2Σ−1
t

+

p+p′∑
k=p+1

∥zt,k − h(xt, fk)∥2Σ−1
v
.

In effect, cEKF,t,1 appends positions of new features to x̃t, and constrains it using feature
measurements residuals. We then replace p with p+ p′.

Next, the feature update step uses measurements of features originally contained in x̃t to
update the mean and covariance of x̃t. More precisely, feature measurements zt,1, · · · , zt,p ∈
Rdz , of the p features f1, · · · , fp included in x̃t, are introduced by incorporating the cor-
responding measurement residuals

{
(zt,k − h(xt, fk))⊤Σ−1

v (zt,k − h(xt, fk))
∣∣k = 1, · · · , p

}
to

create a new cost cEKF,t,2 : Rdx+pdf → R:

cEKF,t,2(x̃t) := ∥x̃t − µt∥2Σ−1
t

+

p∑
k=1

∥zt,k − h(xt, fk)∥2Σ−1
v
.

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 25

A Gauss-Newton step then constructs an updated mean µt ∈ Rdx+pdf and covariance Σt ∈
R(dx+pdf)×(dx+pdf) for x̃t, creating a new cost cEKF,t,3 : Rdx+pdf → R:

cEKF,t,3(x̃t) := ∥x̃t − µt∥2Σ−1
t

,

which returns the running cost to the form of cEKF,t,0.
The state propagation step propagates the EKF full state forward by one time step, via

the EKF state propagation map g : Rdx+pdf → Rdx+pdf . To propagate x̃t forward in time,
we add the dynamics residual, creating a new cost cEKF,t,4 : R2dx+pdf → R:

cEKF,t,4(x̃t, xt+1) := ∥x̃t − µt∥2Σ−1
t

+ ∥xt+1 − g(xt)∥2Σ−1
w
.

In effect, cEKF,t,4 appends the new state xt+1 ∈ Rdx to x̃t, while adding a new constraint posed
by the dynamics residuals. A marginalization step, with x̃t,K := (xt+1, f1, · · · , fp) ∈ Rdx+pdf

and x̃t,M := xt ∈ Rdx , then removes the previous state xt ∈ Rdx from the running cost. This
step produces a mean µt+1 ∈ Rdx+pdf and a covariance Σt+1 ∈ R(dx+pdf)×(dx+pdf) for the new
EKF full state, x̃t+1 := x̃t,K . The running cost is updated to cEKF,t+1,0 : Rdx+pdf → R:

cEKF,t+1,0(x̃t+1) := ∥x̃t+1 − µt+1∥2Σ−1
t+1
,

which returns the running cost to the form of cEKF,t,0.
The theorems below establish that the feature augmentation, feature update, and state

propagation steps of the EKF, presented above in our optimization framework, correspond
precisely to those presented in the standard EKF SLAM algorithm (Alg. 3) [105, 98].

Theorem 3.2.1. The feature augmentation step of standard EKF SLAM (Alg. 5) is equiv-
alent to applying a Gauss-Newton step to cEKF,t,1 : Rdx+(p+p′)df → R, with:

cEKF,t,1(x̃t, fp+1, · · · , fp+p′) = ∥x̃t − µt∥2Σ−1
t

+

p+p′∑
k=p+1

∥zt,k − h(xt, fk)∥2Σ̃−1
v
.

Proof. To simplify the analysis below, we assume all degrees of freedom of new features
are observed. More specifically, we assume the existence of an inverse observation map
ℓ : Rdx×Rdz → Rdf , satisfying h(xt, ℓ(xt, zt)) = zt for each xt ∈ Rdx , zt ∈ Rdz , which directly
generates position estimates of new features from their feature measurements and the current
pose, by effectively “inverting” the measurement map h : Rdx × Rdf → Rdz [98]. When full
observations are unattainable, the missing degrees of freedom are introduced as a prior to
the system [98]; in this case, similar results follow.

First, to simplify notation, define:

zt,p+1:p+p′ = (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz ,

fp+1:p+p′ = (fp+1, · · · , fp+p′) ∈ Rp′df ,

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 26

h̃(xt, fp+1:p+p′) :=
(
h(xt, fp+1), · · · , h(xt, fp+p′)

)
∈ Rp′dz ,

Σ̃v = diag{Σv, · · · ,Σv} ∈ Rp′dz×p′dz .

We can now rewrite the cost cEKF,t,1 as:

cEKF,t,1(x̃t, fp+1:p+p′) = ∥x̃t − µt∥2Σ−1
t

+ ∥zt,p+1:p+p′ − h̃(xt, fp+1:p+p′)∥2Σ̃−1
v
.

To apply a Gauss-Newton step, our first task is to find a vector C1(x̃t, fp+1:p+p′) of an
appropriate dimension such that cEKF,t,1(x̃t, fp+1:p+p′) = C1(x̃t, fp+1:p+p′)

⊤C1(x̃t, fp+1:p+p′).
A natural choice is furnished by C1(x̃t, fp+1:p+p′) ∈ Rdx+pdf+p

′dz , as defined below:

C1(x̃t, fp+1:p+p′) :=

[
Σ

−1/2
t (x̃t − µt)

Σ
−1/2
v

(
zt,p+1:p+p′ − h̃(xt, fp+1:p+p′)

)] .
Thus, our parameters for the Gauss-Newton algorithm submodule are:

x̃⋆t := (x⋆t , f
⋆
1:p, f

⋆
p+1:p+p′) =

(
µt, ℓ(x

⋆
t , zt,p+1), · · · , ℓ(x⋆t , zt,p+p′)

)
∈ Rdx+(p+p′)df ,

where x⋆t ∈ Rdx , f ⋆1:p ∈ Rpdf , f ⋆p+1:p+p′ ∈ Rp′df ,

C1(x̃
⋆
t) =

[
Σ

−1/2
t (x̃⋆t − µt)

Σ̃v
−1/2(

zt,p+1:p+p′ − h̃(x⋆t , f ⋆p+1:p+p′)
)] =

[
0
0

]
∈ Rdx+pdf+p

′dz ,

J =

[
Σ

−1/2
t O

−Σ̃−1/2
v H̃t,x

[
I O

]
−Σ̃−1/2

v H̃t,f

]
∈ R(dx+pdf+p

′dz)×(dx+(p+p′)df),

where H̃t :=
[
H̃t,x H̃t,f

]
∈ Rp′dz×(dx+p′df) is defined as the Jacobian of h̃ : Rdx×Rp′df → Rp′dz

at (x⋆t , f
⋆
p+1:p+p′) ∈ Rdx+p′df , with H̃t,x ∈ Rp′dz×dx and H̃t,f ∈ Rp′dz×pdf . By Algorithm 1, the

Gauss-Newton update is thus:

Σt ← (J⊤J)† =

(Σ−1/2
t −

[
I
O

]
H̃⊤
t,xΣ̃

−1/2
v

O −Σ̃−1/2
v H̃t,f

[Σ
−1/2
t O

−Σ̃−1/2
v H̃t,x

[
I O

]
−Σ̃−1/2

v H̃t,f

])†

=

Σ−1
t +

[
I
O

]
H̃⊤
t,xΣ̃

−1
v H̃t,x

[
I O

] [
I
O

]
H̃⊤
t,xΣ̃

−1/2
v H̃t,f

H̃⊤
t,f Σ̃

−1
v H̃t,x

[
I O

]
H̃⊤
t,f Σ̃

−1
v H̃t,f

†

=

Ωt,xx + H̃⊤
t,xΣ̃

−1
v H̃t,x Ωt,xf H̃⊤

t,xΣ̃
−1
v H̃t,f

Ωt,fx Ωt,ff O

H̃⊤
t,f Σ̃

−1
v H̃t,x O H̃⊤

t,f Σ̃
−1
v H̃t,f

†

, (3.1)

µt ← x̃⋆t − (J⊤J)†J⊤C1(x̃
⋆
t)

=
(
µt, ℓ(x

⋆
t , zt,p+1), · · · , ℓ(x⋆t , zt,p+p′)

)
,

where † denotes the Moore-Penrose pseudoinverse.

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 27

Here, we have defined Ωt,xx ∈ Rdx×dx ,Ωt,xf = Ω⊤
t,fx ∈ Rdx×pdf and Ωt,ff ∈ Rpdf×pdf by:[

Ωt,xx Ωt,xf

Ωt,fx Ωt,ff

]
:=

[
Σt,xx Σt,xf

Σt,fx Σt,ff

]−1

(3.2)

To conclude the proof, we must show that (3.1) is identical to the update equations for
covariance matrix in the standard formulation of the Extended Kalman Filter algorithm,
i.e., we must show that: Σt,xx Σt,xf Σt,xxL

⊤
x

Σt,fx Σt,ff Σt,fxL
⊤
x

LxΣt,xx LxΣt,xf LxΣt,xxL
⊤
x + LzΣvL

⊤
z

 =

Ωt,xx + H̃⊤
t,xΣ̃

−1
v H̃t,x Ωt,xf H̃⊤

t,xΣ̃
−1
v H̃t,f

Ωt,fx Ωt,ff O

H̃⊤
t,f Σ̃

−1
v H̃t,x O H̃⊤

t,f Σ̃
−1
v H̃t,f

†

This follows by applying (3.2), as well as the matrix equalities resulting from taking the
derivative of the equation zt := h

(
xt, ℓ(xt, zt)

)
with respect to xt ∈ Rdx and zt ∈ Rdz ,

respectively:

I = H̃t,fLz,

O = H̃t,x + H̃t,fLx.

Theorem 3.2.2. The feature update step of standard EKF SLAM (Alg. 6) is equivalent to
applying a Gauss-Newton step on cEKF,t,2 : Rdx+pdf → R, with:

cEKF,t,2(x̃t) :=∥x̃t − µt∥2Σ−1
t

+

p∑
k=1

∥zt,k − h(xt, fk)∥2Σ−1
v
.

Proof. First, to simplify notation, define:

zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz ,

f1:p := (f1, · · · , fp) ∈ Rpdf ,

h̃(xt, f1:p) :=
(
h(xt, f1), · · · , h(xt, fp)

)
∈ Rpdz ,

Σ̃v := diag{Σv, · · · ,Σv} ∈ Rpdz×pdz .

We can then rewrite the cost as:

cEKF,t,2(x̃t) = ∥x̃⋆t − µt∥2Σ−1
t

+ ∥zt,1:p − h̃(x̃⋆t)∥2Σ̃−1
v
.

To apply a Gauss-Newton step, our first task is to find a vector C2(x̃t) of an appropriate
dimension such that cEKF,t,2(x̃t) = C2(x̃t)

⊤C2(x̃t). A natural choice is furnished by C2(x̃t) ∈
Rdx+pdf+pdz , as defined below:

C2(x̃t) :=

[
Σ

−1/2
t (x̃t − µt)

Σ̃
−1/2
v (zt,1:p − h̃(x̃t))

]
.

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 28

Thus, our parameters for the Gauss-Newton algorithm submodule are:

x̃⋆t = µt ∈ Rdx+pdf ,

C2(x̃
⋆
t) =

[
Σ

−1/2
t (x̃⋆t − µt)

Σ̃
−1/2
v (zt,1:p − h̃(x̃⋆t))

]
=

[
0

Σ̃
−1/2
v (zt,1:p − h̃(µt)

]
∈ Rdx+pdf+pdz ,

J =

[
Σ

−1/2
t

−Σ̃−1/2
v Ht

]
∈ R(dx+pdf+pdz)×(dx+pdf),

where H̃t ∈ Rpdz×Rdx+pdf is defined as the Jacobian of h̃ : Rdx×Rpdf → Rpdz at x̃⋆t ∈ Rdx+pdf .
By Algorithm 1, the Gauss-Newton update is thus given by:

Σt ← (J⊤J)−1

= (Σ−1
t +H⊤

t Σ̃
−1
v Ht)

−1

= Σt − ΣtH
⊤
t (Σ̃v +HtΣtH

⊤)−1HtΣt,

µt ← µt − (J⊤J)−1J⊤C2(x̃
⋆
t)

= µt − (Σ−1
t +H⊤

t Σ̃
−1
v Ht)

−1
[
Σ

−1/2
t −H⊤

t Σ̃
−1/2
v

]
·
[

0

Σ̃
−1/2
v (zt,1:p − h̃(µt))

]
= µt + (Σ−1

t +H⊤
t Σ̃

−1
v Ht)

−1H⊤
t Σ̃

−1
v

(
zt,1:p − h̃(µt)

)
,

= µt + Σ̃−1
v H⊤

t (HtΣtH
⊤
t + Σ̃v)

−1
(
zt,1:p − h̃(µt)

)
,

which are identical to the feature update equations for the mean and covariance matrix in
the Extended Kalman Filter algorithm, i.e. (4) and (5) respectively. Note that, in the final
step, we have used a variant of the Woodbury Matrix Identity.

Theorem 3.2.3. The state propagation step of standard EKF SLAM (Alg. 7) is equivalent
to applying a Marginalization step to cEKF,t,4 : R2dx+pdf → R, with:

cEKF,t,4(x̃t, xt+1) :=∥x̃t − µt∥2Σ−1
t

+ ∥xt+1 − g(xt)∥2Σ−1
w
.

where x̃t,K := (xt+1, f1, · · · , fp) ∈ Rdx+pdf and x̃t,M = xt ∈ Rdx.

Proof. Intuitively, the state propagation step marginalizes out xt ∈ Rdx and retain xt+1 ∈
Rdx . In other words, in the notation of our Marginalization algorithm submodule, we have:

x̃t,K = x̃t+1 ∈ Rdx+pdf ,

x̃t,M = xt ∈ Rdx+pdf .

To apply a marginalization step, our first task is to find vectors CK(xK) = CK(x̃t) and
CM(xK , xM) = CM(x̃t, xt+1) of appropriate dimensions such that:

cEKF,t,4(x̃t, xt+1) = CK(xt+1)
⊤CK(xt+1) + CM(x̃t, xt+1)

⊤CM(x̃t, xt+1).

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 29

A natural choice is furnished by CK(xt+1) ∈ R and CM(x̃t, xt+1) ∈ Rdx , as defined below:

cK(xt+1) = 0

cM(x̃t, xt+1) = ∥x̃t − µt∥2Σ−1
t

+ ∥xt+1 − g(xt)∥2Σ−1
w
.

where we have identified the following parameters, in the language of a Marginalization step
(Section 2.2):

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

[
Σ̄

−1/2
t (x̃t − µt)

Σ
−1/2
w

(
xt+1 − g(xt)

)] ∈ R2dx+pdf .

For convenience, we will define the pose and feature track components of the mean µt ∈
Rdx+pdf by µt := (µt,x, µt,f) ∈ Rdx+pdf , with µt,x ∈ Rdx and µt,f ∈ Rpdf , respectively. This
mirrors our definition of xt ∈ Rdx and f1:p ∈ Rpdf as the components of the full state x̃t :=

(xt, f1:p) ∈ Rdx+pdf . In addition, we will define the components of Σ̄
−1/2
t ∈ R(dx+pdf)×(dx+pdf)

and Σ̄−1
t ∈ R(dx+pdf)×(dx+pdf) by:[

Ωt,xx Ωt,xf

Ωt,fx Ωt,ff

]
:= Σ̄−1

t ∈ R(dx+pdf)×(dx+pdf),[
Λt,xx Λt,xf
Λt,fx Λt,ff

]
:= Σ̄

−1/2
t ∈ R(dx+pdf)×(dx+pdf),

where Σt,xx,Λt,xx ∈ Rdx×dx , Σt,xf ,Λt,xf ∈ Rdx×pdf , Σt,fx,Λt,fx ∈ Rpdf×dx , and Σt,ff ,Λt,ff ∈
Rpdf×pdf . Using the above definitions, we can reorder the residuals in CK ∈ R and CM ∈
R2dx+pdf , and thus redefine them by:

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

Λt,xx(xt − µt,x) + Λt,xf (f1:p − µt,f)
Σ

−1/2
w (xt+1 − g(xt))

Λt,fx(xt − µt,x) + Λt,ff (f1:p − µt,f)

 ∈ R2dx+pdf .

Our state variables and cost functions for the Gauss-Newton algorithm submodule are:

x⋆M = x̃⋆t = µt ∈ Rdx+pdf ,

x⋆K = g(x̃⋆t) = g(µt) ∈ Rdx+pdf ,

CK(x̃
⋆
t,K) = 0 ∈ R,

CM(x̃⋆t,K , x̃
⋆
t,M) =

[
0
0

]
∈ R2dx+pdf ,

JK =

 O Λxf
Σ

−1/2
w O
O Λff

 ∈ R(2dx+pdf)×(dx+pdf)

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 30

JM =

 Λxx
−Σ−1/2

w Gt

Λxf

 ∈ R(2dx+pdf)×dx ,

where we have defined Gt to be the Jacobian of g : Rdx → Rdx at µt,x ∈ Rdx , i.e.:

Gt :=
∂g

∂xt

∣∣∣∣∣
xt=µt,x

Applying the Marginalization equations, we thus have:

µt+1 ← x̃t,K − Σt+1J
⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
CM(x⋆K , x

⋆
M)

= g(µt),

Σt+1 ←
(
J⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
JK
)−1

,

=
(
J⊤
KJK − J⊤

KJM(J⊤
MJM)−1J⊤

MJK
)−1

,

=

([
Σ−1
w O
O ΛfxΛxf + Λ2

ff

]
−
[

−Σ−1
w Gt

ΛfxΛxx + ΛffΛfx

]
(Λ2

xx + ΛxfΛfx +G⊤
t Σ

−1
w Gt)

−1

·
[
−G⊤

t Σ
−1
w ΛxxΛxf + ΛfxΛff

])−1

=

([
Σ−1
w O
O Ωff

]
−
[
−Σ−1

w Gt

Ωfx

]
(Ωxx +G⊤

t Σ
−1
w Gt)

−1
[
−G⊤

t Σ
−1
w Ωxf

])−1

To show that this is indeed identical to the propagation equation for the covariance matrix
in the Extended Kalman Filter algorithm, i.e. Algorithm 3, Line 5, we must show that:([

Σ−1
w O
O Ωff

]
−
[
−Σ−1

w Gt

Ωfx

]
(Ωxx +G⊤

t Σ
−1
w Gt)

−1
[
−G⊤

t Σ
−1
w Ωxf

])−1

·
[
GtΣt,xxG

⊤
t + Σw GtΣt,xf

Σt,xfG
⊤
t Σt,ff

]
This follows by brute-force expanding the above block matrix components, and applying
Woodbury’s Matrix Identity, along with the definitions of Σt,xx,Λt,xx, Σt,xf ,Λt,xf , Σt,fx,Λt,fx,
Σt,ff , and Λt,ff .

Remark 3.2.1. In practice, Gauss-Newton steps for feature augmentation can be delayed
and done with feature updates.

Next, we present the original formulation of MSCKF SLAM, as portrayed in [79].

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 31

Algorithm 4: EKF SLAM, as an iterative optimization problem.

Data: Prior N (µ0,Σ0) on x0 ∈ Rdx , noise covariances Σw, Σv, dynamics map g,
measurement map h, time horizon T .

Result: Estimates x̂t ∈ Rdx , ∀ t ∈ {1, · · · , T}.
1 f0(x)← ∥x0 − µ0∥2Σ−1

0

2 p← 0.

3 for t = 0, 1, · · ·T do
4 (zt,1, · · · , zt,p)← Measurements of existing features.
5 costt ← costt +

∑p
k=1 ∥zt,k − h(xt, fk)∥2Σ−1

v

6 µ̄t, Σ̄t, costt ← 1 Gauss-Newton step on costt, about µt, (Alg. 1).
7 x̂t ← µ̄t ∈ Rdx+pdf .
8 (zt,p+1, · · · , zt,p+p′)← Measurements of new features.

9 costt ← costt +
∑p+p′

k=p+1 ∥zt,k − h(xt, fk)∥2Σ−1
v

10 µ̄t ←
(
µ̄t, ℓ(xt, zt,p+1), · · · , ℓ(xt, zt,p+p′)

)
∈ Rdx+(p+p′)df .

11 µ̄t, Σ̄t, costt ← 1 Gauss-Newton step on costt, about µt (Alg. 1).
12 p← p+ p′

13 if t < T then
14 costt ← costt + ∥xt+1 − g(xt)∥2Σ−1

w

15 µt+1,Σt+1, costt ← 1 Marginalization step on costt+1 with xM = xt, about
(µt, g(µt)) (Alg. 2).

16 costt+1 ← ∥xt+1 − µt+1∥2Σ−1
t+1

17 end

18 end
19 return x̂0, · · · , x̂T

3.3 Multi-State Constrained Kalman Filter

(MSCKF), Standard Formulation

The Multi-State Constrained Kalman Filter (MSCKF) algorithm iteratively refines the mean
and covariance of a MSCKF full state, consisting of the most recent IMU state and a sliding
window of n poses (Algorithm 8). In particular, when a set of new IMU measurements is
obtained, the MSCKF full state is propagated forward in time. When a new image mea-
surement arrives, the current pose is appended to the MSCKF full state vector. Features
not observed in the current pose are marginalized. If the number of poses maintained in
the MSCKF full state, denoted n, exceeds a pre-specified upper bound Nmax, then features
common to every third currently maintained pose, starting from the second oldest pose, are
marginalized. Below, we discuss the key components of the MSCKF algorithm—the IMU
state, poses, MSCKF full states, features, image measurements, dynamics, pose augmenta-

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 32

Algorithm 5: Extended Kalman Filter, Feature Augmentation Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf)×(dx+pdf), current number of features p, observations of new
features at current pose zt,p+1:p+p′ := (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz ,
measurement map h : Rdx × Rdf → Rdz , inverse measurement map
ℓ : Rdx × Rdz → Rdf .

Result: Updated number of features p, updated EKF state mean µt ∈ Rdx+pdf ,
covariance Σt ∈ R(dx+pdf)×(dx+pdf) (with p already updated)

1 (µt,x, µt,f,1:p)← µt ∈ Rdx+pdf , with µt,x ∈ Rdx , µt,f,1:p ∈ Rpdf .

2 ℓ : Rdx × Rdz → Rdf ← Inverse measurement map, satisfying zt,k = h
(
xt, ℓ(xt, zt,k)

)
for each xt ∈ Rdx , zt,k ∈ Rdz , ∀k = p+ 1, · · · , p+ p′.

3 ℓ̃(µt,x, zt,p+1, · · · , zt,p+p′)←
(
ℓ(µt,x, zt,p+1), · · · , ℓ(µt,x, zt,p+p′)

)
∈ Rp′df×(dx+p′dz)

4 µt ←
(
µt, ℓ̃(µt,x, zt,p+1, · · · , zt,p+p′)

)
∈ Rdx+(p+p′)df

5

[
Σt,xx Σt,xf

Σt,fx Σt,ff

]
← Σt ∈ R(dx+pdf)×(dx+pdf), with Σt,xx ∈ Rdx×dx ,

Σt,xf = Σ⊤
t,fx ∈ Rdx×pdf , Σt,ff ∈ Rpdf×pdf .

6 Lx ← ∂ℓ̃
∂x

∣∣
(µt,z′t)

∈ Rp′df×dx

7 Lz ← ∂ℓ̃
∂z

∣∣
(µt,z′t)

∈ Rp′df×p′dz

8 Σ̃v ← diag{Σv, · · · ,Σv} ∈ Rp′dz×p′dz

9 Σt ←

 Σt,xx Σt,xf Σt,xxL
⊤
x

Σt,fx Σt,ff Σt,fxL
⊤
x

LxΣt,xx LxΣt,xf LxΣt,xxL
⊤
x + LzΣ̃vL

⊤
z

 ∈ R(dx+(p+p′)df)×(dx+(p+p′)df)

10 p← p+ p′

11 return µt ∈ Rdx+pdf ,Σt ∈ R(dx+pdf)×(dx+pdf), p ≥ 0

tion and measurement maps—in more detail.
The IMU state xt,IMU takes the form:

xt,IMU := (qWS, vS, bg, ba, rWS)(t) ∈ R3 ×Hu × R9, (3.3)

where we use S and W to represent the sensor frame and world frame, respectively. Here,
rWS ∈ R3 denotes the position of the IMU sensor frame represented in the world frame,
qWS ∈ Hu denotes the unit quaternion of axis rotation from world frame to IMU sensor
frame, and R(qWS) ∈ SO(3) denotes the rotation matrix associated with qWS. Moreover,
vS ∈ R3 denotes the linear velocity of the IMU sensor frame relative to the world frame, as
represented in the world frame, while bg ∈ R3 and ba ∈ R3 denote the sensor biases of the
gyroscope and accelerometer, respectively. Finally, ω̃S ∈ R3 and ãS ∈ R3 denote gyroscope
and accelerometer measurements, respectively.

For convenience, define XIMU := R3×Hu×R9 and X ′
IMU := R3×H×R9. The continuous-

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 33

Algorithm 6: Extended Kalman Filter, Feature Update Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf)×(dx+pdf), new measurements of existing features
zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz , measurement map h : Rdx × Rdf → Rdz

Result: Updated EKF state mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf)×(dx+pdf)

1 f1:p ← (f1, · · · , fp) ∈ Rpdf .

2 h̃(xt, f1:p)←
(
h(xt, f1), · · · , h(xt, fp)

)
∈ Rpdz

3 Ht ← ∂h̃
∂(xt,f1:p)

∣∣∣
µt

Jacobian of h̃ : Rdx × Rpdf → Rpdz evaluated at µt ∈ Rdx+pdf .

4 Σ̃v ← diag{Σv, · · · ,Σv} ∈ Rpdz×pdz .

5 µt ← µt + ΣtH
T
t (HtΣtH

T
t + Σ̃v)

−1
(
zt,1:p − h̃(µt)

)
∈ Rdx+pdf .

6 Σt ← Σt − ΣtH
T
t (HtΣtH

T
t + Σ̃v)

−1HtΣt ∈ R(dx+pdf)×(dx+pdf).

7 return µt ∈ Rdx+pdf ,Σt ∈ R(dx+pdf)×(dx+pdf).

Algorithm 7: Extended Kalman Filter, State Propagation Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf)×(dx+pdf), (discrete-time) dynamics map g : Rdx → Rdx

Result: Propagated EKF state mean µt+1 ∈ Rdx+pdf and covariance
Σt+1 ∈ R(dx+pdf)×(dx+pdf)

1 (µt,x, µt,f,1:p)← µt, with µt,x ∈ Rdx , µt,f,1:p ∈ Rpdf .

2

[
Σt,xx Σt,xf

Σt,fx Σt,ff

]
← Σt ∈ Rdx×dx , with Σt,xx ∈ Rdx×dx ,Σt,xf = Σ

⊤
t,fx ∈ Rdx×pdf ,

Σt,ff ∈ Rpdf×pdf .

3 Gt ← ∂g
∂x

∣∣∣
µt,x

.

4 µt+1 ←
(
g(µt,x), µt,f,1:p

)
∈ Rdx+pdf .

5 Σt+1 ←
[
GtΣt,xxG

⊤
t + Σw GtΣt,xf

Σt,fxG
⊤
t Σt,ff

]
∈ R(dx+pdf)×(dx+pdf).

6 return µt+1 ∈ Rdx+pdf ,Σt+1 ∈ R(dx+pdf)×(dx+pdf).

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 34

Algorithm 8: Multi-State Constrained Kalman Filter, Standard Formulation.

Data: Prior distribution on xIMU,0 ∈ Xp: N (µ0,Σ0), dynamics and measurement
noise covariances Σw ∈ Rdx×dx , Σv ∈ Rdx×dz , discrete-time dynamics map
gIMU : RdIMU × RdIMU , measurement map h : Xp × Rdf → Rdz , time horizon T ,
pose transformation ψ : XIMU × (Xp)n ×Xp → Xp (IMU → global).

Result: Estimates x̂t ∈ XIMU × (Xp)n for all desired timesteps t ≤ T , where n :=
number of poses in x̂t at time t.

1 Sz, Sx, Sz,1, Sz,2 ← ϕ
2 (n, p)← (0, 0)
3 for t = 0, · · · , T do
4 while new image with new pose xn+1 ∈ Xp recorded, new IMU measurement not

yet received do

5 µt ∈ XIMU × (Xp)n,Σt ∈ R(dIMU+ndx)2 ← Alg. 9 (x̃t, µt, Σt, xn+1, x
IMU
n+1 , ψ(·))

6 {zn+1,j| feature j is observed at xn+1} ← Feature measurements at xn+1

7 {f ⋆j | Feature j is observed at xn+1} ← Feature position estimates at xn+1.

8 xn+1 ∈ Xp ← Record new estimates of existing features, first estimate of new
features.

9 Sz ← Sz ∪
{
(xn+1, fj)| Feature j observed at n+ 1

}
10 n← n+ 1
11 if n ≥ Nmax − 1 then
12 Sx ← {xi|i mod 3 = 2, and 1 ≤ i ≤ n.}
13 Sz,1 ←

{
(xi, fj) ∈ Sz

∣∣xi ∈ Sx, feature j observed at each pose in Sx
}

14 end

15 Sz,2 ←
{
(xi, fj) ∈ Sz|xi ∈ x1:n, feature j observed at xi but not at xn

}
.

16 Sf ←
{
fj
∣∣∃xi ∈ x1:n s.t. (xi, fj) ∈ Sz,1 ∪ Sz,2

}
17 if Sf ̸= ϕ then
18 µt ∈ XIMU × (Xp)n,Σt ∈ R(dIMU+ndx)×(dIMU+ndx) ← Alg. 10 (x̃t, µt, Σt,

xn+1, Sz,1 ∪ Sz,2, Sf , h(·))
19 x̂t ← µt ∈ XIMU × (Xp)n.
20 end
21 Sz ← Sz\(Sz,1 ∪ {(xi, fj)|xi ∈ Sx})
22 Reindex poses and features, i.e., {x1, · · · , xn−|Sx|} and {f1, · · · , fp−|Sf |}.
23 (p, n)← (p− |Sf |, n− |Sx|)
24 end
25 if t < T then
26 µt+1 ∈ XIMU × (Xp)n,Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx) ← Alg. 11, MSCKF State

Propagation (x̃t, µt, Σt)
27 end

28 end
29 return x̂0, · · · x̂T ∈ XIMU × (Xp)n

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 35

time IMU dynamics map gIMU,ct : XIMU → X ′
IMU is given by:

q̇WS = qWS ⋆
1

2

[
0

ω̃S − bg − wg

]
,

ḃg = wbg ,

v̇S = R(qWS)
⊤(ãS − ba + wa

)
+ gW ,

ḃa = wba ,

ṙWS = vS.

where ⋆ denotes quaternion multiplication, and wg, wa, wbg , wba ∈ R3 denote zero-mean stan-
dard Gaussian noise.

Each pose xk ∈ {x1, · · · , xn} currently maintained in the sliding window of poses takes
the form xk := (qWCk

, rWCk
) ∈ Hu × R3, where rWCk

∈ R3 denotes the position of the
camera at pose xk in the world frame, while qWCk

∈ Hu denotes the quaternion associated
with the axis rotation from the world frame to the camera frame at pose xk ∈ H× R3. For
convenience, we define Xp := Hu × R3.

The MSCKF full state maintained throughout the operation of the MSCKF algorithm
contains the IMU state at the current time, as well as a collection of n poses, where n is
constrained to remain below a pre-specified, fixed upper bound Nmax:

x̃t := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n. (3.4)

The state space is thus X := XIMU × (Xp)n.
When a new image measurement arrives, the estimate of the current camera pose in

the IMU frame, denoted xIMU
n+1 ∈ XIMU, is transformed to the global frame, and appended

to the MSCKF full state x̃t. This coordinate transformation is realized by the map ψ :
XIMU × (Xp)n → Xp, defined by:

ψ
(
qWS, vS, bg, ba, rWS, qWC1 , rWC1 , · · · , qWCn , rWCn , qWIn+1 , rWIn+1

)
=
(
qIC ⋆ qWIn+1 , rWIn+1 + C(qWIn+1)rIC

)
:=(qWCn+1 , rWCn+1),

where qIC denotes the quaternion encoding the (fixed) transformation from the IMU frame
to the camera frame. In summary, the MSCKF algorithm defines the new pose xn+1 and
updates the MSCKF full state x̃t as follows:

xn+1 ← ψ(x̃t, x
IMU
n+1) ∈ Xp,

x̃t ← (x̃t, xn+1) =
(
x̃t, ψ(x̃t, x

IMU
n+1)

)
∈ XIMU × (Xp)n+1,

with the map ψ as defined above.
When new feature position estimates are detected from a new image measurement, the

new camera pose corresponding to this image measurement is appended to x̃t, and n is

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 36

incremented by 1. If n = Nmax the upper limit Nmax, a third of all old poses in x̃t is
discarded, starting from the second oldest pose. Then, feature measurements, corresponding
to features unobserved at the current pose, are marginalized and used to update the mean
and covariance of the new MSCKF full state x̃t.

As is the case with the EKF algorithm, we assume that the image measurement space and
feature space are given by Rdz and Rdf , respectively, with dz = 2 and df = 3. Throughout
the duration of the MSCKF algorithm, poses and features are added into, dropped from, and
marginalized from the MSCKF full state. Suppose at a given time, the MSCKF maintains
n poses in the MSCKF full state x̃t, and retains measurements of p features. For each pose
i ∈ {1, · · · , n} and feature j ∈ {1, · · · , p} currently maintained in the SLAM algorithm, if
feature j were detected at pose i, let zi,j ∈ Rdz denote the associated feature measurement.
For the MSCKF, the measurement map h : XIMU × Rdf → Rdz is given by:

zi,j = h(xi, fj) :=
1

(R(qWCk
)fj − rWCk

)z

[
(R(qWCk

)fj − rWCk
)x

(R(qWCk
)fj − rWCk

)y

]
(t) + vi,j.

where R(qWCk
) ∈ SO(3) denotes the rotation matrix associated with the quaternion qWCk

,
fj ∈ R3 denotes the position of feature j in the world frame, while the subscript indices
“x, y, z” refer to the respective coordinates of the vector R(qWS)fj − rWS ∈ Xp. Meanwhile,
vi,j ∈ Rdz denotes zero-mean standard Gaussian noise in the measurement at time t, with
covariance matrix Σv ∈ Rdz×dz , Σv ≻ 0.

When a new image measurement is received, the MSCKF algorithm performs marginal-
ization, described in Section 2.6, using two sets of feature measurements—the set of all
feature measurements common to old poses xi to be dropped, denoted Sz,1, as well as the set
of all feature measurements of features fj not seen in the current pose, denoted Sz,2. These
are more precisely defined in Section 3.4. The measurement vector used for marginaliza-
tion, denoted z̃ ∈ R|Sz,1∪Sz,2|dz , is then given by concatenating the q residual measurements
obtained at times t− n+ 1, · · · , t, i.e.:

z̃ := {zi,j|(xi, fj) ∈ Sz,1 ∪ Sz,2} ∈ R|Sz,1∪Sz,2|dz .

3.4 Multi-State Constrained Kalman Filter

(MSCKF), on Manifolds

The MSCKF algorithm maintains a full state, x̃t ∈ XIMU× (Xp)n, containing the most recent
IMU state, xIMU ∈ XIMU and n recent poses, (x1, · · · , xn) ∈ (Xp)n:

x̃t := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n,

with mean µt ∈ XIMU × (Xp)n and covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx). As new poses are
introduced, old poses are discarded, and features are processed and discarded to update x̃t,
the mean µt, covariance Σt, and n ∈ N accordingly.

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 37

Algorithm 9: Multi-State Constrained Kalman Filter, Pose Augmentation Sub-
block.
Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean µt ∈ XIMU × (Xp)n and

covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx), New pose xn+1 ∈ Xp, measurement of
new pose in IMU frame xIMU

n+1 ∈ Xp, Transformation of poses from IMU frame
to global frame ψ : R(dIMU+ndx) ×Xp → Xp

Result: Updated MSCKF state mean µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx), updated number of poses n.

1 x̃t ← (x̃t, xn+1) ∈ RdIMU+(n+1)dx , where xn+1 ∈ Xp is the new pose vector.
2 {zn+1,j| Feature j is observed at pose n+ 1} ← Feature measurements at pose xn+1

3 {f ⋆j | Feature j is observed at pose xn+1} ← Feature position estimates at pose xn+1.

4 µt ← (µt, ψ(µt, x
IMU
n+1)) ∈ RdIMU+(n+1)dx , where µt,IMU ∈ RdIMU := IMU component of

µt, x
IMU
n+1 ∈ Xp := pose estimate of xn+1 from the IMU frame.

5 Σt ←

[
IdIMU+(n+1)dx

∂ψ
∂(x̃t,xIMU

n+1)

]
Σt

[
IdIMU+(n+1)dx

∂ψ
∂(x̃t,xIMU

n+1)

]⊤
6 return µt ∈ XIMU × (Xp)n, Σt ∈ R(dIMU+ndx)×(dIMU+ndx), n ≥ 0

At initialization (t = 0), no pose has yet been recorded (n = 0), and the full state x̃0 is
the initial IMU state x̃0,IMU ∈ XIMU, with mean µ0 ∈ XIMU and covariance Σ0 ∈ RdIMU×dIMU .
Thus, x̃0 = µ0 optimizes the initial running cost cMSCKF,0 : XIMU → R in our algorithm:

cMSCKF,0,0(x̃0) = ∥x̃0 ⊟ µ0∥2Σ−1
0
.

Suppose that, at the current time t, the running cost cMSCKF,t,0 : XIMU × (Xp)n → XIMU ×
(Xp)n is:

cMSCKF,t,0(x̃t) = ∥x̃t ⊟ µt∥2Σ−1
t
,

where µt ∈ XIMU× (Xp)n and Σt ∈ R(dIMU+ndx)×(dIMU+ndx) denote the mean and covariance of
the full state x̃t := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n at time t, consisting of the current
IMU state and n poses. When a new image is received, the pose augmentation step adds
a new pose xn+1 ∈ Xp (global frame) to x̃t, derived from xIMU

n+1 ∈ XIMU, the IMU position
estimate in the global frame, via the map ψ : XIMU × (Xp)n ×XIMU → Xp, i.e.,

xn+1 := ψ(x̃t, x
IMU
n+1) ∈ Xp.

The feature update step uses features measurements to update the mean and covariance of
x̃t. In MSCKF, (A) if a feature becomes unobserved in the current pose, it is discarded, and
(B) when n ≥ Nmax, a specified upper bound, features common to ⌊Nmax⌋/3 of the n poses,
evenly spaced in time, are processed via a feature update step, then dropped alongside the
corresponding poses. Let Sz,1 and Sz,2 denote sets of pose-feature pairs (xi, fj) from cases (A)

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 38

Algorithm 10:Multi-State Constrained Kalman Filter, Feature Update Sub-block.

Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean µt ∈ XIMU × (Xp)n and
covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx), Set of image measurements for
marginalization Sz,1 ∪ Sz,2, Set of features to marginalize Sf , measurement
map h : Xp × Rdf → Rdz .

Result: Updated MSCKF state mean µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx).

1 fSf
∈ R|Sf |df ← Concatenation of all features in Sf

2 f ⋆Sf
∈ R|Sf |df ← Concatenation of position estimate of all features in Sf

3 h̃(x̃t, fSf
) ∈ R|Sz,1∪Sz,2|dz ← Concatenation of measurement map outputs{

h(xi, fj)|(xi, fj) ∈ Sz,1 ∪ Sz,2
}
.

4 z̃ ∈ R|Sz,1∪Sz,2|dz ← Concatenation of feature measurements{
zij|(xi, fj) ∈ Sz,1 ∪ Sz,2

}
.

5 H̃t,x ← ∂h̃
∂x̃t

(µt, f
⋆
Sf
) ∈ R|Sz,1∪Sz,2|dz×(dIMU+ndx).

6 H̃t,f ← ∂h̃
∂fSf

(µt, f
⋆
Sf
) ∈ R|Sz,1∪Sz,2|dz×|Sf |df .

7 {a1, · · · , a|Sz,1∪Sz,2|dz−|Sf |df} ⊂ R|Sz,1∪Sz,2|dz ← Orthonormal basis for N(H̃⊤
t,f).

8 A←
[
a1 · · · a|Sz,1∪Sz,2|dz−|Sf |df

]
∈ R|Sz,1∪Sz,2|dz×(|Sz,1∪Sz,2|dz−|Sf |df).

9 QT ← QR Decomposition of A⊤H̃t,x, with

Q ∈ R(|Sz,1∪Sz,2|dz−|Sf |df)×(|Sz,1∪Sz,2|dz−|Sf |df), T ∈ R(|Sz,1∪Sz,2|dz−|Sf |df)×(dIMU+ndx).

10 Σ
−1

t ← Σ−1
t + T⊤(Q⊤A⊤RAQ)−1T ∈ R(dIMU+ndx)×(dIMU+ndx).

11 µt ← µt ⊞
(
Σ−1
t + T⊤(Q⊤A⊤RAQ)−1T

)−1
T⊤(Q⊤A⊤RAQ)−1

(
z̃ ⊟ h̃(x̃t)

)
∈

XIMU × (Xp)n.
12 x̂t ← µt ∈ XIMU × (Xp)n.
13 return µt ∈ XIMU × (Xp)n, Σt ∈ R(dIMU+ndx)×(dIMU+ndx)

Algorithm 11: Multi-State Constrained Kalman Filter, State Propagation Sub-
block.
Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean µt ∈ XIMU × (Xp)n and

covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx), (discrete-time) dynamics map
g : RdIMU → RdIMU .

Result: Updated MSCKF state mean µt+1 ∈ XIMU × (Xp)n and covariance
Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx).

1 (µt,IMU, µt,x,1:n)← µt, with µt,IMU ∈ RdIMU , µt,x,1:n ∈ Rndx .

2 Gt ← Jacobian of gIMU : RdIMU → RdIMU evaluated at µt,IMU ∈ RdIMU .

3 µt+1 ←
(
gIMU(µt,IMU), µt,x,1:n

)
∈ XIMU × (Xp)n.

4 Σt+1 ←
[
Gt O
O Indx

]
Σt

[
G⊤
t O
O Indx

]
+

[
Σw O
O O

]
∈ R(dIMU+ndx)×(dIMU+ndx).

5 return µt+1 ∈ XIMU × (Xp)n, Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx).

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 39

and (B) above, respectively, and let Sf denote the set of features to be processed and (Alg. 8).
These constraints are then incorporated, creating a new cost cMSCKF,t,2 : XIMU× (Xp)n → R:

cMSCKF,t,2(x̃t) := ∥x̃t ⊟ µt∥2Σ−1
t

+
∑

(xi,fj)∈Sz,1∪Sz,2

∥zi,j ⊟ h(xi, fj)∥2Σ−1
v
,

where zi,j ∈ Rdz is the feature measurement of feature j observed from pose xi ∈ Xp.
Using Gauss-Newton steps, we use constraints posed by measurement residuals to create an
updated mean for x̃t, denoted µt ∈ XIMU× (Xp)n, and an updated covariance for x̃t, denoted
Σt ∈ R(dIMU+ndx)×(dIMU+ndx). Then, we update our cost to cMSCKF,t,3 : XIMU × (Xp)n → R:

cMSCKF,t,3(x̃t) := ∥x̃t ⊟ µt∥2Σ−1
t

,

which assumes the form of cMSCKF,t,0.
The state propagation step propagates the full state by assimilating dynamics residuals,

creating a new cost cMSCKF,t,4 : (XIMU)
2 × (Xp)n → R:

cMSCKF,t,4(x̃t, xt+1,IMU) := ∥x̃t ⊟ µt∥2Σ−1
t

+ ∥xt+1,IMU ⊟ gIMU(xt,IMU)∥2Σ−1
t
.

In effect, cMSCKF,t,4 appends the new IMU variable xt+1,IMU ∈ XIMU to the current full
state x̃t ∈ XIMU × (Xp)n, and constrains this new full state via the dynamics residuals. A
marginalization step, with x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU×(Xp)n and x̃t,M := xt,IMU ∈
XIMU, then removes the previous IMU state, xt,IMU, from the running cost. This produces
a mean µt+1 ∈ XIMU × (Xp)n and a covariance Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx) for the new
MSCKF full state, x̃t+1 := x̃t,K = (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n. The running cost
is updated to cMSCKF,t+1,0 : XIMU × (Xp)n → R:

cMSCKF,t+1,0(x̃t+1) := ∥x̃t+1 ⊟ µt+1∥2Σ−1
t+1
,

which returns the running cost to the form of cMSCKF,t,0.
The theorems below establish that the feature augmentation, feature update, and state

propagation steps of the MSCKF, presented above in our optimization framework, corre-
spond precisely to those presented in the standard MSCKF (Alg. 8) [79].

Theorem 3.4.1. The pose augmentation step of the standard MSCKF (Alg. 9) is equivalent
to applying a Gauss-Newton step to cMSCKF,t,1 : XIMU × (Xp)n ×XIMU → R, with:

cMSCKF,t,1(x̃t, xn+1) = ∥x̃t ⊟ µt∥2Σ−1
t

+ ϵ−1∥xn+1 ⊟ ψ(x̃t, x
IMU
n+1)∥22,

and taking ϵ→ 0 in the resulting (augmented) mean µt and covariance Σt.

Proof. We claim that from an optimization perspective, the pose augmentation step is equiv-
alent to applying one Gauss-Newton step to the cost function cMSCKF,t,1(x̃t, xn+1), spec-
ified above, and then taking the limit ϵ → 0 in the resulting augmented mean µt(ϵ) ∈
XIMU × (Xp)(n+1) and augmented covariance µt(ϵ) ∈ R(dIMU+(n+1)dx)×(dIMU+(n+1)dx).

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 40

Algorithm 12: Multi-State Constrained Kalman Filter, as iterative optimization.

Data: Prior N (µ0,Σ0) on xIMU,0 ∈ XIMU, noise covariances Σw, Σv, dynamics gIMU,
measurement map h, time horizon T , Pose transform ψ (IMU → global) ,
ϵ > 0.

Result: Estimates x̂t for all desired timesteps t ∈ {1, · · · , T} .
1 costt ← ∥x0 ⊟ µ0∥2Σ0

. (Initialize objective function).
2 Sz, Sx, Sz,1, Sz,2 ← ϕ
3 (n, p)← (0, 0)
4 for t = 0, · · · , T do
5 while new pose xn+1 ∈ Xp recorded, new IMU measurement not received do
6 costt ← costt + ϵ−1∥xn+1 ⊟ ψ(x̃t, x

IMU
n+1)∥22.

7 µt,Σt, costt ← 1 Gauss-Newton costt (Alg. 1), about (µt, ψ(µt, x
IMU
n+1)) with

ϵ→ 0.
8 {zn+1,j} ← Feature measurements at xn+1

9 Sz ← Sz ∪
{
(xn+1, fj)|fj observed at n+ 1

}
10 n← n+ 1
11 if n ≥ Nmax − 1 then
12 Sx ← {xi|i mod 3 = 2, and 1 ≤ i ≤ n.}
13 Sz,1 ←

{
(xi, fj) ∈ Sz

∣∣xi ∈ Sx, feature j observed at each pose in Sx
}

14 end

15 Sz,2 ←
{
(xi, fj) ∈ Sz|fj not observed at xn

}
.

16 costt ← costt +
∑

(xi,fj)∈Sz,1∪Sz,2
∥zi,j ⊟ h(xi, ft,j)∥Σ−1

v

17 µt, Σt, costt ← 1 Gauss-Newton step on costt, about µt (Alg. 1)
18 x̂t ← µt ∈ XIMU × (Xp)n.
19 Sz ← Sz\(Sz,1 ∪ {(xi, fj)|xi ∈ Sx})
20 Reindex poses and features in ascending order.
21 (p, n)← (p− |Sf |, n− |Sx|)
22 end
23 if t < T then
24 costt ← costt + ∥xt+1,IMU ⊟ gIMU(xt,IMU)∥2Σ−1

w
.

25 µt+1,Σt+1, costt ← 1 Marginalization step on costt, about (µt, g(µt,IMU)) (Alg.
2)

26 end

27 end
28 return x̂0, · · · x̂T ∈ XIMU × (Xp)n

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 41

To apply a Gauss-Newton step, our first task is to find a vector C(x̃t, xn+1) of an ap-
propriate dimension such that cMSCKF,t,1(x̃t, xn+1) = C1(x̃t, xn+1)

⊤C1(x̃t, xn+1). A natural
choice is furnished by C1(x̃t, xn+1) ∈ RdIMU+(n+1)dx , as defined below:

C1(x̃t, xn+1) :=

[
Σ

−1/2
t (x̃t ⊟ µt)

ϵ−1/2
(
xn+1 ⊟ ψ(x̃t, x

IMU
n+1)

)] .
Thus, our parameters for the Gauss-Newton algorithm submodule are:

(x̃⋆t , x
⋆
n+1) := (µt, ψ(µt, x

IMU
n+1)) ∈ XIMU × (Xp)n,

C1(x̃
⋆
t , x

⋆
n+1) =

[
Σ

−1/2
t (x̃⋆t − µt)

ϵ−1/2
(
x⋆n+1 − ψ(x̃⋆t , xIMU

n+1)
)] = [0

0

]
∈ RdIMU+(n+1)dx ,

J =

[
Σ

−1/2
t O

−ϵ−1/2Ψ ϵ−1/2Idx

]
∈ R(dIMU+(n+1)dx)×(dIMU+(n+1)dx),

where Ψ ∈ Rdx×(dIMU+ndx) is defined as the Jacobian of ψ : XIMU × (Xp)n → Xp with respect
to x̃t at (x̃

⋆
t , x

IMU
n+1) ∈ RdIMU+(n+1)dx . By Algorithm 1, the Gauss-Newton update is thus given

by:

Σt(ϵ)← (J⊤J)−1 =

[
Σ

1/2
t O

ΨΣ
1/2
t ϵ1/2Idx

][
Σ

1/2
t Σ

1/2
t Ψ⊤

O ϵ1/2Idx

]
=

[
Σt ΣtΦ

⊤

ΨΣt ΨΣtΨ
⊤ + ϵIdx

]
,

µt(ϵ)← x̃⋆t − (J⊤J)−1J⊤C1(x̃
⋆
t , x

⋆
n+1) = 0.

Taking ϵ→ 0 concludes the proof.

Theorem 3.4.2. The feature update step of the standard MSCKF (Alg. 10) is equivalent to
applying a Marginalization step to cMSCKF,t,2 : XIMU × (Xp)n × R|Sf |df → R, with:

cMSCKF,t,2(x̃t, fSf
) := ∥x̃t ⊟ µt∥2Σ−1

t
+

∑
(xi,fj)∈Sz,1∪Sz,2

∥zi,j ⊟ h(xi, fj)∥2Σ−1
v
,

where fSf
∈ R|Sf |df denotes the stacked vector of all feature positions in Sf (see Alg. 8).

Proof. First, we rewrite cMSCKF,t,2 as:

cMSCKF,t,2(x̃t, fSf
) := ∥x̃t ⊟ µt∥2Σ−1

t
+ ∥z̃ ⊟ h̃(x̃t, fSf

)∥2
Σ̃−1

v
,

where z̃ ∈ R|Sz,1∪Sz,2|dz , h̃ : XIMU × (Xp)n × R|Sf |df → R|Sz,1∪Sz,2|dz : are defined as follows—
z̃ denotes the stacked measurement vectors in {zi,j|(xi, fj) ∈ Sz,1 ∪ Sz,2} ∈ R|Sz,1∪Sz,2|dz ,
h̃(x̃t, fSf

) denotes the stacked outputs of the measurement map in {h(xi, fj)|(xi, fj) ∈ Sz,1 ∪
Sz,2} ∈ R|Sz,1∪Sz,2|dz , and Σ̃v := diag{Σv, · · · ,Σv} ∈ R|Sz |dz×|Sz |dz .

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 42

Essentially, by marginalizing the feature position estimates, this step utilizes information
from feature measurements to constrain our state estimates. To accomplish this, we choose
our algorithm variables as follows:

x̃t,K := x̃t = (xt,IMU, x1, · · · , xn) ∈ RdIMU+ndx+|Sf |df ,

x̃t,M := fSf
∈ R|Sf |df ,

x := (x̃t,K , x̃t,M) ∈ RdIMU+ndx+|Sf |df ,

CM(x̃t,K , x̃t,M) :=

[
Σ

−1/2
t (x̃t ⊟ µt)

Σ̃
−1x/2
v

(
z̃ ⊟ h̃(x̃t, fSf

)
)] ∈ RdIMU+ndx+|Sz,1∪Sz,2|dz .

The Marginalization algorithm block then implies that:

JK :=
∂CM
∂x̃t

(µt, f
⋆
Sf
) =

[
Σ

−1/2
t

−Σ̃−1/2
v H̃t,x

]
∈ R(dIMU+ndx+|Sz,1∪Sz,2|dz)×(dIMU+ndx),

JM :=
∂CM
∂fSf

(µt, f
⋆
Sf
) =

[
O

−Σ̃−1/2
v H̃t,f

]
∈ R(dIMU+ndx+|Sz,1∪Sz,2|dz)×|Sf |df ,

where we have defined:

f ⋆Sf
∈ R|Sf |df ← Stacked position estimates of features in Sf ,

H̃t,x :=
∂h̃

∂x̃t
h̃(µt, f

⋆
Sf
) ∈ R|Sz,1∪Sz,2|dz×(dIMU+ndx),

H̃t,f :=
∂h̃

∂fSf

(µt, f
⋆
Sf
) ∈ R|Sz,1∪Sz,2|dz×|Sf |df .

Recall that the marginalization equations (2.14) and (2.15) in our formulation read:

µK ← µK − ΣKJ
⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
CM
(
x̃t,K , x̃t,M

)
,

ΣK ←
(
J⊤
K(I − JM(J⊤

MJM)−1J⊤
M)JK

)−1
.

Substituting in the above expressions for JK , JM , and CM
(
µt, f

⋆
Sf

)
, we have:

Σt ← (J⊤
K(I − JM(J⊤

MJM)−1J⊤
M)JK

)−1
,

=

([
Σ

−1/2
t −H̃⊤

t,xΣ̃
−1/2
v

] [I O

O I − Σ̃
−1/2
v H̃t,f (H̃

⊤
t,f Σ̃

−1
v H̃t,f)

−1H̃⊤
t,f Σ̃

−1/2
v

]
[

Σ
1/2
t

−Σ̃−1/2
v H̃t,x

])−1

=
(
Σ−1
t + H̃⊤

t,xΣ̃
−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
⊤
t,f Σ̃

−1
v H̃t,f)

−1H̃⊤
t,f Σ̃

−1/2
v

]
Σ̃−1/2
v H̃t,x

)−1

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 43

µt ← µK − ΣKJ
⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
CM
(
µt, f

⋆
Sf

)
= µt +

(
Σ−1
t + H̃⊤

t,xΣ̃
−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
⊤
t,f Σ̃

−1
v H̃t,f)

−1H̃⊤
t,f Σ̃

−1/2
v

]
· Σ̃−1/2

v H̃t,x

)−1

· H̃⊤
t,xΣ̃

−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
⊤
t,f Σ̃

−1
v H̃t,f)

−1 · H̃⊤
t,f Σ̃

−1/2
v

]
Σ̃−1/2
v

(
z̃ − h̃(x̃t, fSf

)
)
.

Comparing with the update step in the MSCKF algorithm, i.e., (10) and (9), it suffices to
show:

T⊤(Q⊤A⊤Σ̃vAQ)
−1 =H̃⊤

t,xΣ̃
−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
⊤
t,f Σ̃

−1
v H̃t,f)

−1H̃⊤
t,f Σ̃

−1/2
v

]
· Σ̃−1/2

v

=H̃⊤
t,xΣ̃

−1
v − H̃⊤

t,xΣ̃
−1
v H̃t,f (H̃

⊤
t,f Σ̃

−1
v H̃t,f)

−1H̃⊤
t,f Σ̃

−1
v .

To see this, recall that A is defined as a full-rank matrix whose columns span N(H̃⊤
t,f). Thus:

(Σ̃−1/2
v H̃t,f)

⊤ · Σ̃1/2
v AQ = H̃⊤

t,fAQ = O.

In other words, the columns of Σ̃
−1/2
v H̃t,f and of Σ̃

1/2
v AQ form bases of orthogonal subspaces

whose direct sum equals Rnqdz . We thus have:

Σ̃−1/2
v H̃t,f (H̃

⊤
t,f Σ̃

−1
v H̃t,f)

−1H̃⊤
t,f Σ̃

−1/2
v + Σ̃1/2

v AQ(Q⊤A⊤Σ̃vAQ)
−1Q⊤A⊤Σ̃1/2

v = I,

which in turn implies that:

T⊤(Q⊤A⊤Σ̃vAQ)
−1 =H̃⊤

t,xAQ(Q
⊤A⊤Σ̃vAQ)

−1Q⊤A⊤

=H̃⊤
t,xΣ̃

−1/2
v (Σ̃1/2

v AQ)(Q⊤A⊤Σ̃1/2
v · Σ̃1/2

v AQ)−1(Q⊤A⊤Σ̃1/2
v)Σ̃−1/2

v

=H̃⊤
t,xΣ̃

−1/2
v

(
I − Σ̃−1/2

v H̃t,f (H̃
⊤
t,f Σ̃

−1
v H̃t,f)

−1H̃⊤
t,f Σ̃

−1/2
v

)
Σ̃−1/2
v

=H̃⊤
t,xΣ̃

−1
v − H̃⊤

t,xΣ̃
−1
v H̃t,f (H̃

⊤
t,f Σ̃

−1
v H̃t,f)

−1H̃⊤
t,f Σ̃

−1
v ,

as claimed.

Theorem 3.4.3. The state propagation step of the standard MSCKF (Alg. 11) is equivalent
to applying a Marginalization step to cMSCKF,t,4 : (XIMU)

2 × (Xp)n → R, with:

cMSCKF,t,4(x̃t, xt+1,IMU) := ∥x̃t ⊟ µt∥2Σ−1
t

+ ∥xt+1,IMU ⊟ gIMU(xt,IMU)∥2Σ−1
t
.

with x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n and x̃t,M = xt,IMU ∈ XIMU.

Proof. We claim that from an optimization perspective, the update step is equivalent to ap-
plying one marginalization step to the cost function cMSCKF,t,4(x̃t, xt+1,IMU) specified above.
In particular, we wish to marginalize out xt,IMU ∈ XIMU and retain xt+1,IMU ∈ XIMU; in other
words, in the notation of our Marginalization algorithm submodule, we have:

x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n,
x̃t,M := xt,IMU ∈ XIMU.

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 44

To apply a marginalization step, our first task is to find vectors CK(xK) = CK(x̃t) and
CM(xK , xM) = CM(x̃t, xt+1,IMU) of appropriate dimensions such that cMSCKF,t,4(x̃t, xt+1,IMU) =
CK(xt+1,IMU)

⊤CK(xt+1,IMU) + CM(x̃t, xt+1,IMU)
⊤CM(x̃t, xt+1,IMU). A natural choice is fur-

nished by CK(xt+1,IMU) ∈ R and CM(x̃t, xt+1,IMU) ∈ Xp, as defined below:

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

[
Σ̄

−1/2
t (x̃t − µt)

Σ
−1/2
w

(
xt+1,IMU − gIMU(xt,IMU)

)] ∈ R2dIMU+ndx .

For convenience, we will define the IMU state and pose components of the mean µt ∈
XIMU × (Xp)n by µt := (µt,IMU, µt,IMU) ∈ XIMU × (Xp)n, with µt,IMU ∈ Xp and µt,x ∈ (Xp)n,
respectively. This mirrors our definition of xt ∈ Xp and xn+1 ∈ (Xp)n as the components of
the full state x̃t := (xt, xn+1) ∈ XIMU × (Xp)n. In addition, we will define the components of

Σ̄
−1/2
t ∈ R(dIMU+ndx)×(dIMU+ndx) and Σ̄−1

t ∈ R(dIMU+ndx)×(dIMU+ndx) by:[
Ωt,IMU,IMU Ωt,IMU,x

Ωt,x,IMU Ωt,x,x

]
:= Σ̄−1

t ∈ R(dIMU+ndx)×(dIMU+ndx),[
Λt,IMU,IMU Λt,IMU,x

Λt,x,IMU Λt,x,x

]
:= Σ̄

−1/2
t ∈ R(dIMU+ndx)×(dIMU+ndx),

with the dimensions of the above block matrices given by Σt,IMU,IMU,Λt,IMU,IMU ∈ RdIMU×dIMU ,
Σt,IMU,x,Λt,IMU,x ∈ RdIMU×ndx , Σt,x,IMU,Λt,x,IMU ∈ Rpdx×dIMU , and Σt,x,x,Λt,x,x ∈ Rndx×ndx .
Using the above definitions, we can reorder the residuals in CK ∈ R and CM ∈ R2dIMU+ndx ,
and thus redefine them by:

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

Λt,IMU,IMU(xt,IMU − µt,IMU) + Λt,IMU,x(x1:n − µt,x)
Σ

−1/2
w (xt+1,IMU − gIMU(xt,IMU))

Λt,x,IMU(xt,IMU − µt,IMU) + Λt,x,x(x1:n − µt,x)

 ∈ R2dIMU+ndx ,

where x1:n := (x1, · · · , xn) ∈ (Xp)n.
Our state variables and cost functions for the Gauss-Newton algorithm submodule are:

x⋆M = x̃⋆t = µt ∈ XIMU × (Xp)n,
x⋆K = g(x̃⋆t) = g(µt) ∈ XIMU × (Xp)n,

CK(x̃
⋆
t,K) = 0 ∈ R,

CM(x̃⋆t,K , x̃
⋆
t,M) =

[
0
0

]
∈ R2dIMU+ndx ,

JK =

 O ΛIMU,x

Σ
−1/2
w O
O Λxx

 ∈ R(2dIMU+ndx)×(dIMU+ndx),

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 45

JM =

 ΛIMU,IMU

−Σ−1/2
w Gt

Λx,IMU

 ∈ R(2dIMU+ndx)×dx ,

where we have defined Gt to be the Jacobian of gIMU : XIMU → XIMU at µt,IMU ∈ XIMU, i.e.:

Gt :=
∂g

∂xt,IMU

∣∣∣∣∣
xt,IMU=µt,IMU

Applying the Marginalization update equations, we thus have:

µt+1 ← x̃t,K − Σt+1J
⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
CM(x⋆K , x

⋆
M)

= g(µt),

Σt+1 ←
(
J⊤
K

[
I − JM(J⊤

MJM)−1J⊤
M

]
JK
)−1

,

=
(
J⊤
KJK − J⊤

KJM(J⊤
MJM)−1J⊤

MJK
)−1

,

=

([
Σ−1
w O
O Λx,IMUΛIMU,x + Λ2

xx

]
−
[

−Σ−1
w Gt

Λx,IMUΛIMU,IMU + ΛxxΛx,IMU

]
·

· (Λ2
IMU,IMU + ΛIMU,xΛx,IMU +G⊤

t Σ
−1
w Gt)

−1

·
[
−G⊤

t Σ
−1
w ΛIMU,IMUΛIMU,x + Λx,IMUΛxx

])−1

=

([
Σ−1
w O
O Ωxx

]
−
[
−Σ−1

w Gt

Ωx,IMU

]
(ΩIMU,IMU +G⊤

t Σ
−1
w Gt)

−1
[
−G⊤

t Σ
−1
w ΩIMU,x

])−1

To show that this is indeed identical to the propagation equation for the covariance matrix
in the Extended Kalman Filter algorithm, i.e. Algorithm 3, Line 5, we must show that:([

Σ−1
w O
O Ωxx

]
−
[
−Σ−1

w Gt

Ωx,IMU

]
(ΩIMU,IMU +G⊤

t Σ
−1
w Gt)

−1
[
−G⊤

t Σ
−1
w ΩIMU,x

])−1

=

[
GtΣt,IMU,IMUG

⊤
t + Σw GtΣt,IMU,x

Σt,IMU,xG
⊤
t Σt,x,x

]
This follows by brute-force expanding the above block matrix components, and applying
Woodbury’s Matrix Identity, along with the definitions of Σt,IMU,IMU,Λt,IMU,IMU, Σt,IMU,x,Λt,IMU,x,
Σt,x,IMU,Λt,x,IMU, Σt,x,x, and Λt,x,x.

3.5 State-of-the-Art SLAM Algorithms

Our framework balances the need for computational efficiency, estimation accuracy, and map
precision, tradeoffs observed in design choices for existing SLAM algorithms.

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 46

• Extended Kalman Filter (EKF) [105, 98, 117] –The EKF iteratively updates posi-
tion estimates of the current pose and all observed features; all past poses are marginal-
ized. This design favors computational speed over localization and mapping accuracy.
A variant, the iterated Extended Kalman Filter (iEKF), takes multiple Gauss-Newton
steps before marginalization to tune the linearization point. This improves mapping
and localization accuracy but increases computation time slightly.

• Iterated Extended Kalman Filter (iEKF) [117] [106]–The iterated EKF algo-
rithm extends the EKF by performing multiple steps of Gauss-Newton descent before
the marginalization step, to ensure that marginalization occurs about a sufficiently ac-
curate linearization point. Compared to standard EKF, this design improves mapping
and localization accuracy at the cost of a heavier computational burden.

• Multi-State Constrained Kalman Filter [79, 69, 70]—The MSCKF iteratively
updates a full state, with the current IMU state and n past poses, while processing
features observed at these poses; here n ≤ Nmax, a specified upper bound that trades
off accuracy and computational speed.

• Sliding Window Smoother, Fixed-Lag Smoother [76, 97, 30]—The fixed-lag
smoother resembles the MSCKF, but performs multiple steps of Gauss-Newton de-
scent before the marginalization step, to adjust the linearization point. This improves
localization and mapping accuracy, but increases the computation time.

• Open Keyframe Visual-Inertial SLAM (OKVIS) [67]—OKVIS updates a sliding
window of “keyframes”, poses deemed most informative, which may be arbitrarily
spaced in time. Keyframe poses leaving the sliding window, and associated landmarks,
are marginalized. This design aims to improve estimation accuracy by maximizing
information encoded by the stored poses, without increasing computation time.

• GraphSLAM, Bundle Adjustment [105, 50] –These algorithms solve the full SLAM
problem (no marginalization), often with high accuracy, but can be very slow.

3.6 Experiments

This section describes the empirical performance of different marginalization schemes on
pose tracking of real-world data. We examine the MSCKF [79], a standard SWF, and the
keyframe-based OKVIS algorithm [67], each implemented using our unifying framework.

Simulation Settings

Experiments are performed on the EuRoC MAV dataset of stereo images and IMU data
[13]. We standardize the front-end across all experiments, using BRISK keypoint features

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 47

Figure 3.1: Localization on Vicon Room 2 (medium): Drift from, vs. distance traveled along,
the ground-truth trajectory, at 5 meter intervals. We apply trajectory alignment as in [107].

with brute-force matching. Outlier rejection between stereo cameras is performed via epipo-
lar constraint tests, and outlier rejection between stereo frames at subsequent timesteps is
performed via the reprojection distance test, using the latest estimate of the camera pose
and feature positions. We use the GTSAM back-end in C++ to construct and update costs,
compute Jacobians, and implement Gauss-Newton and marginalization steps [28, 29].

To construct dynamics and measurement maps, we collect on-board IMU odometry mea-
surements, and apply IMU pre-integration scheme as in [43] and trajectory alignment as in
[107]. Please see [43, 107, 95] for more details.

Results and Discussion

Localization root-mean-squared error on Vicon Room and Machine Hall sequences from the
Euroc MAV dataset are presented in Figure 3.2. Due to space constraints, only the estimator
drift on the V2 02 sequence is plotted (Fig 3.1). First, we analyze standard SWFs of window

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 48

Figure 3.2: Root-mean-squared error in translation and rotation on Vicon Room and Machine
Hall sequences from the Euroc MAV dataset. We apply trajectory alignment as in [107].

size n = 5, 10, 20 frames. Features are marginalized when they are only visible in the oldest
frame in the optimization window. EKF and iEKF are also included, and are implemented
as SWFs with window size 1. For the former, only 1 Gauss-Newton step is taken, and for
the latter, steps are taken until convergence. Next, we implement MSCKF via incremental
optimization (Section 3.4), with window size n = 5, and with two optimization schemes: (1)
standard, with one Gauss-Newton step after marginalization, and (2) a version that takes
steps until convergence (“Iterated MSCKF,” or iMSCKF). Finally, we implement OKVIS
with IMU window size n = 3, 10, keyframe window size k = 5, and marginalization and
keyframe selection schemes as in Leutenegger et al. [67].

Our experiments show that, overall, OKVIS outperforms baseline SWFs, even when the
latter has a larger window size. Moreover, our MSCKF implementation outperforms SWFs
and OKVIS, even under challenging camera motions, despite the latter maintaining nonlinear
constraints between camera poses and landmarks, and taking multiple Gauss-Newton steps
per iteration. This persists even for SWFs with larger window sizes. Taking multiple Gauss-
Newton steps in the iMSCKF estimator did not noticeably improve performance over the
standard MSCKF (Figure 3.1).

In contrast with SWF and OKVis implementations of comparable sizes, the MSCKF
recovers better from localization errors, by employing a marginalization scheme that always
maintains poses arbitrarily far in the past. This is because older poses represent higher base-
lines and thus supply better localization information [7]. For instance, the MSCKF maintains
the first pose in the estimator for a long time, thus enforcing consistency with subsequent
pose estimates and minimizing drift. In contrast, although OKVIS allows older keyframes to
be maintained, in practice keyframes are usually roughly evenly spaced and form a sliding
temporal window of camera motion. Thus, earlier poses are quickly marginalized, causing
estimates to drift more at the start of the trajectory. Furthermore, the MSCKF processes
features in the optimization window only after they have matured. Thus, it maximally uti-
lizes localization information with fewer updates, and ensures that each feature is always
initialized through multiple-view, instead of merely stereo, triangulation. This minimizes
the linearization error when features are processed and dropped.

CHAPTER 3. EQUIVALENCE OF FILTERING AND OPTIMIZATION 49

3.7 Discussion

This chapter presented a framework for formulating and analyzing optimization and filtering-
based SLAM approaches as the iterative application of key algorithm submodules, and proves
that it encompasses state-of-the-art filtering algorithms as special cases. Experimental anal-
ysis indicate our formulation is useful for analyzing various design choices inherent in these
existing SLAM algorithms, and implementing them in a modular fashion for a wide range
of robotics applications, which we are eager to test on hardware.

50

Part II

Game-Theoretic Motion Planning for
Autonomous Vehicles

51

Chapter 4

Defensive Driving

When deployed in real-world applications, autonomous vehicles and robots should operate
safely in a robust manner. Violations of safety constraints can lead to catastrophic crashes in
real-life traffic scenarios, particularly when the self-driving system on an semi-autonomous
car is directed by a distracted individual (Figure 4.1), or when an autonomous car is in the
vicinity of human-operated vehicles piloted by distracted drivers. To avoid such disastrous
outcomes, autonomous navigation pipelines must be capable of endowing self-driving vehicles
with the ability to reason about how their behavior and the behavior of other vehicles in
their vicinity affect each other.

In scenarios in which an “ego” agent navigates in an environment with multiple other
“non-ego” agents, existing methods formulate safety for the ego agent in the following two
ways. Adversarial robustness methods, such as Hamilton-Jacobi-Isaacs (HJI) equation-based
reachability theory, aim to generate trajectories that would ensure the safety of the ego agent
despite worst-case behavior of all other agents [4, 78, 74]. Another commonly proposed
methodology involves probabilistic constraint satisfaction [36, 81]. Here, algorithms attempt
to bound the probability that the ego agent’s trajectory becomes unsafe. Unfortunately,
each of these approaches carries significant drawbacks. HJI methods only apply to zero-sum
game settings, and exact solution methods suffer from the so-called “curse of dimensionality,”
with computational cost increasing exponentially in the dimension of the state [4]. Moreover,
decision-making based on reachability-based methods may be overly conservative, resulting
in excessive congestion and gridlock. Meanwhile, probabilistic constraint satisfaction encodes
safety via distributional assumptions, but does not allow the ego player to anticipate more
specific patterns of adversarial interactions with non-ego agents.

To address these shortcomings, we present a novel formulation of robustness within the
framework of general-sum dynamic game theory, modeled on defensive driving. Here, the
ego player pre-supposes that: (1) For an initial fixed window of time Tadv, other agents
are temporarily distracted, and thus unintentially behave in an erratic or even adversarial
manner, and (2) After this time interval [0, Tadv] has expired, the agent returns to normal
operation, and is willing to cooperate with the ego agent to ensure safe operation, e.g., to
avoid collisions. To encode this, we prepend an adversarial phase to the ego agent’s cost

CHAPTER 4. DEFENSIVE DRIVING 52

Figure 4.1: As reported by Neal E. Boudette and Bill Vlasic of the New York Times [12]
(“Tesla Self-Driving System Faulted by Safety Agency in Crash,” September 12, 2017), the
self-driving Tesla vehicle shown above operated on a system for autonomous steering and
control. Unfortunately, it was used by a driver who was distracted for an extended period
of time, and guided the vehicle down a road on which it was not designed to be driven. In
general, the failure of autonomous navigation pipelines to ensure safe operation raises serious
concerns about the mass deployment of self-driving vehicles in real-life traffic.

function. In other words, we prepend a time interval during which other agents are assumed
to be temporarily distracted, in order to render the ego agent’s equilibrium trajectory robust
against other agents’ potentially dangerous behavior during this time. This is followed
by a cooperative phase, during which the non-ego agents are expected to resume “normal”
cooperative behavior. This paradigm is modeled on the concept of defensive driving, wherein
a driver on a busy road guards themselves against other drivers who, while momentarily
distracted, may temporarily behave dangerously. We demonstrate the effectiveness of our
new formulation in encoding safety via multiple traffic scenarios.

The rest of this chapter proceeds as follows. Section 4.1 presents related work on the use
of HJI reachability theory and chance-constrained optimal control to encode adversarial and
probabilistic robustness, respectively, as well as recent literature on iterative algorithms for
solving dynamic games. Section 4.2 presents the mathematical formulation for the dynamic
game that models the multi-agent interactions studied in our work. Section 4.3 presents the
main methodology of our algorithm, and formally introduces the concept of an adversarial

CHAPTER 4. DEFENSIVE DRIVING 53

Figure 4.2: (Top) To encode robustness into its safety guarantees, the ego agent imagines that
all other agents behave adversarially during an initial time frame before resuming “normal”
cooperative behavior. (Bottom) In this example, an ego vehicle assumes that the non-ego,
oncoming vehicle behaves adversarially for an initial period of time, which results in its
swerving into the ego’s lane. After the adversarial time interval expires, the non-ego agent
is assumed to return to its own lane, and resume cooperative behavior for the remainder of
the time horizon.

CHAPTER 4. DEFENSIVE DRIVING 54

time horizon. Section 4.5 demonstrates the spectrum of robustness which can be expressed
in our formulation, compared with a purely cooperative game-theoretic approach, using
multiple traffic scenarios. Section 4.6 summarizes our contributions and discusses directions
for future research. More details can be found in a published paper, Chiu⋆ and Fridovich
Keil⋆ “Encoding Defensive Driving as a Dynamic Nash Game” [21] (⋆Equal contribution).

4.1 Related Work

This section reviews prior literature on several of the prevailing formulations of safety used
in the design of multi-agent and uncertain systems—adversarial reachability, multi-agent
forward reachability, and probabilistic constraint satisfaction. We compare and contrast these
against the novel methodology in our work. We conclude this section with a brief summary
of modern algorithms for iteratively solving dynamic games.

Adversarial Reachability

Adversarial reachability methods [35, 78, 39, 4] involve the construction of a zero-sum dif-
ferential game between two agents, the ego agent and an adversary. The Nash equilibrium
of this game satisfies a Hamilton-Jacobi-Isaacs (HJI) partial differential equation, which can
be numerically solved via state space discretization. In this zero-sum framework, the ego
agent assumes that the adversarial agent is constantly attempting to compromise the ego’s
safety, and will thus compute and execute a control strategy that steers the ego’s trajectory
away from any feasible trajectory of the non-ego agent.

Adversarial reachability appropriately describes many intricate dynamic interactions,
such as capture-the-flag, reach-avoid, and pursuit-evasion-defense games [55, 54, 39]. How-
ever, it suffers from several significant limitations. First, this zero-sum formulation can only
model dynamic interactions between two agents, or two groups of colluding agents, with
opposing goals. This is inadequate for many motion-planning tasks, such as those involving
traffic scenarios, which must account for the presence of an arbitrary number of agents, with
possibly an arbitrary number of goals. Second, the adversarial nature of the zero-sum game
leads to the construction of extremely conservative ego trajectories, since the ego must imag-
ine the worst-case non-ego behaviors that can possibly transpire Figure 4.2. Our approach,
on the other hand, avoids the first issue by considering a general-sum game applicable to
N -player scenarios. Moreover, we avoid the second issue by modeling antagonistic non-ego
behavior using the novel notion of an adversarial-to-cooperative time horizon, as shown in
Figure 4.2, rather than as a worst-case bounded disturbance. By modeling non-ego agents as
first adversarial, then cooperative, we avoid overly conservative ego strategies corresponding
to purely adversarial non-ego trajectories that are unlikely to materialize.

CHAPTER 4. DEFENSIVE DRIVING 55

Multi-Agent Forward Reachability

Reachability-based formulations can also be used for safety-critical path planning in a non-
game theoretic manner. For instance, forward reachable sets (FRS) of the ego agent can be
computed offline by numerically solving the Hamilton-Jacobi-Bellman equation, then used
to aid online motion planning modules in the generation of obstacle-avoiding trajectories.
This is the approach taken by the Reachability-based Trajectory Design for Dynamical en-
vironments (RTD-D) and RTD-Interval (RTD-I) algorithms presented in Vaskov et al. and
Yu et al. [108, 113], in which not-at-fault ego trajectories are generated by leveraging the
offline-computed FRS of the ego agent and online obstacle motion predictions from an ex-
ternal module. Although the resulting trajectories avoid at-fault collisions, this framework
does not allow the ego agent to account for the dynamic reactions of non-ego agents to its
behavior. In contrast, our work explicitly models the dynamic obstacles as non-ego agents,
within the framework of a dynamic feedback game.

Geometric prediction modules form another framework for using reachability-based meth-
ods in a non-game-theoretic setting. For instance, Koschi et al. and Pek et al. [62, 86] ensure
constraint satisfaction by computing fail-safe ego trajectories which avoid an overapproxi-
mation of all dynamically feasible non-ego trajectories. This is posed as an optimal control
problem (rather than a dynamic game), with avoidance of the set of all feasible non-ego tra-
jectories serving as a state constraint. Although these approaches ensure that the ego will
not collide with the non-ego agent, they do so at the cost of generating overly conservative
maneuvers, particularly in situations when the non-ego agent may not be purely adversarial
throughout the entire time horizon. By contrast, our formulation generates less conservative
trajectories by assuming that non-ego agents display hostile behavior only during a fixed
subset of the overall time horizon.

Probabilistic Constraint Satisfaction

Probabilistic constraint satisfaction is another commonly used framework for establishing
safety guarantees in motion planning. These approaches bound the probability that an ego
agent, operating in an unpredictable environment with stochastic disturbance, becomes un-
safe [81]. In particular, risk-sensitive algorithms guard the ego agent from low-probability
events that may result in highly dangerous outcomes. For example, Farshidian et al. [37]
generates risk-sensitive trajectories by optimizing an exponential-quadratic cost term that
amplifies the cost of low-probability, yet highly dangerous outcomes. Meanwhile, Pilipovsky
et al. [36] associate individual constraint violations with different penalties, and optimizes
their allocation over the horizon. Likewise, Du et al. [33] use a probabilistic framework to
capture state uncertainties of an autonomous robotic agent, and uncertainties in the geom-
etry or dynamics of obstacles in its environment. However, the control strategies generated
by these methods merely account for the nonzero probability of unsafe outcomes occurring
any time within the entire time horizon. By contrast, our work allows the ego to explicitly
encode adversarial non-ego behavior inside a specific subset of the time horizon, when such

CHAPTER 4. DEFENSIVE DRIVING 56

behavior is most expected to occur.

Algorithms for Solving Dynamic Games

Several alternative methods exist in the literature for numerically solving the general-sum
differential games considered in this work. For instance, these games can be formulated
collections of coupled Hamilton-Jacobi equations. The solutions to these equations, which
correspond to local Nash equilibrium strategies [100, 99], can subsequently be numerically
evaluated via grid-based approaches or other methods for state space discretization. Un-
fortunately, these algorithms suffer computational costs, and requires memory storage that
scales exponentially in the state dimension [9]. Therefore, they are unsuitable for modeling
the high-dimensional, multi-player interactions considered in this chapter.

Another category of numerical methods for dynamic games involves Iterative Best Re-
sponse (IBR) algorithms [40, 111]. These algorithms iterate through the players, repeatedly
solving the optimal control problem of finding the best-response strategy of each player,
assuming all other players’ strategies are currently fixed at the values in the previous iter-
ate. Replacing the full dynamic game with a sequence of optimal control problems reduces
computation time at each iteration; however, IBR algorithms can still be computationally
inefficient overall.

Our work in this chapter employs ILQGames [46], an iterative linear-quadratic algorithm,
as our primary game solver. ILQGames iteratively computes linear approximations of the
ego agent’s and non-ego agents’ dynamics, and quadratic approximations of the ego agent’s
and non-ego agents’ cost, effectively generating a linear quadratic game to approximate the
original general-sum game. Then, the algorithm computes the feedback Nash equilibrium
of the linear quadratic game, to approximate the feedback Nash equilibrium of the original
game. ILQGames incurs computational complexity cubic in the number of players and lin-
ear in the time horizon. Although other game solvers, such as the Augmented Lagrangian
GAME-theoretic Solver (ALGAMES) [23], exist, all known implementations of these meth-
ods are restricted to an open-loop [32, 31]—rather than feedback—information structure and
have equivalent computational complexity.

4.2 Preliminaries

Consider the N -player finite horizon general-sum differential game with deterministic, noise-
free nonlinear system dynamics:

ẋ = f(t, x, u1:N). (4.1)

Here, x ∈ Rn is the state of the system, obtained by concatenating the dynamical quantities
of interest of each player, t ∈ R denotes time, ui ∈ Rmi is the control input of player i, for
each i ∈ {1, · · · , N} := [N], and u1:N := (u1, · · · , uN) ∈ Rm, where m :=

∑N
i=1mi. The

dynamics map f : R × Rn × Rm → Rn is assumed to be continuous in t and continuously
differentiable in x and ui, for each i = 1, · · · , N and each t ∈ [0, T]. Since we wish to ensure

CHAPTER 4. DEFENSIVE DRIVING 57

the safety of one particular player amidst their interactions with all other players, we refer to
Player 1 as the ego agent, and the other players as non-ego agents. Each player’s objective
is defined as the integral of a running cost gi : [0, T]× Rn × Rm → R over the time horizon
[0, T]:

costi
(
u1:N(·)

)
=

∫ T

0

gi
(
t, x(t), u1:N(t)

)
dt, (4.2)

for each i ∈ {1, · · · , N}. The running costs gi encode implicit dependence on the state
trajectory x(·) : [0, T] → Rn and explicit dependence on the control signals ui(·) : [0, T] →
Rm.

To minimize its cost, each player selects a control strategy to employ over the time horizon
[0, T], as described below. We assume that, at each time t ∈ [0, T], each player i observes
the state x(t), but no other control input {uj(t) | j ̸= i}, and uses this information to design
their control, i.e.

u(t) := γi(t, x(t)),

where γi : [0, T]×Rn → Rmi , defined as Player i’s strategy, is assumed to be measurable. We
define the strategy space of Player i, denoted Γi, as the collection of all of Player i’s possible
strategies, and denote, with a slight abuse of notation, the overall cost costi of each Player
i by:

costi(γ1; · · · ; γN) := costi
(
γ1(·, x(·)), · · · , γN(·, x(·))

)
.

In practice, we shall solve for strategies γi that are time-varying, affine functions of x.
We now define the Nash equilibrium of the above game.

Definition 4.2.1. (Nash equilibrium, [5, Chapter 6]) The strategy set (γ⋆1 , · · · , γ⋆N) is said
to be a Nash equilibrium if no player is unilaterally incentivized to deviate from his or her
strategy. Precisely, the following inequality must hold for each player i:

cost⋆i := costi
(
γ⋆1 , . . . , γ

⋆
i−1, γ

⋆
i , γ

⋆
i+1, . . . , γ

⋆
N

)
(4.3)

≤ costi
(
γ⋆1 , . . . , γ

⋆
i−1, γi, γ

⋆
i+1, . . . , γ

⋆
N

)
,∀γi ∈ Γi.

Computing a global Nash equilibrium is intractable for dynamic games with general
dynamics and cost functions. As such, in this work, we concern ourselves with finding a
local Nash equilibrium, which is defined similarly to (4.3), but with the inequalities only
constrained to hold within a neighborhood of the strategy set (γ⋆1 , · · · , γ⋆N). Moreover, in
the dynamic games considered in this chapter, we impose additional constraints on the
dynamical quantities of each player, to model appropriate behavior between autonomous
agents in traffic scenarios. These constraints will translate into a set of state constraints,
and will significantly affect the set of Nash equilibria of the game. As such, in this work, we
search for a (similarly defined) generalized local Nash equilibrium.

CHAPTER 4. DEFENSIVE DRIVING 58

4.3 Methods

Our main contribution is a novel formulation of safety, best understood through the lens of
defensive driving. In Section 4.3, we describe how, in the ego agent’s mind, the concept of
defensive driving can be encoded into the running cost of each non-ego agent, i.e. gi(x, u1:N),
for each i ∈ {2, · · · , N}. To demonstrate this defensive driving framework in practice, we
simulate realistic traffic scenarios; Section 4.3 details the dynamics, costs, and constraints
imposed on the various agents in these simulations. Finally, in Section 4.4, we summarize
the ILQGames algorithm as the main feedback game solver used in this work.

Encoding Defensive Driving as a Running Cost

In our framework, the ego agent (Player 1) operates under the assumption that all other
agents are momentarily distracted. To encode this “imagined” scenario, the ego agent imag-
ines the overall time horizon [0, T] as divided into two sub-intervals, the adversarial interval
[0, Tadv] and cooperative interval [Tadv, T], with 0 < Tadv < T . During the adversarial
interval, the ego agent imagines the other agents to be “momentarily distracted,” and de-
sires to act defensively. This phenomenon is modeled using an adversarial running cost
gadv,i : Rn × RNm → R for each i ∈ {2, · · · , N}. On the other hand, during the cooperative
interval, the ego agent supposes that the other agents have reverted to their “normal” or
“cooperative” manner, and thus proceeds to select control signals for the remainder of the
time horizon in a less conservative manner. This behavior is captured using a cooperative
running cost gcoop,i : Rn × RNm → R for each i ∈ {2, · · · , N}. In other words, the running
cost of each non-ego agent gi can be piecewisely defined as follows:

gi(t, x, u1:N) =

{
gadv,i(x, u1:N), t ∈ [0, Tadv),

gcoop,i(x, u1:N), t ∈ [Tadv, T].

In this scenario, the net integrated cost Ji, first defined in (4.2) can be written as follows:

Ji =

∫ Tadv

0

gadv,i(x, u1:N)dt+

∫ T

Tadv

gcoop,i(x, u1:N)dt . (4.4)

With increasing Tadv, the ego agent imagines an increasingly adversarial encounter and acts
more and more defensively as a result. In practice, the user or system designer would select
a suitable Tadv before operation, e.g., by choosing the largest Tadv such that the solution
deviates from a nominal solution with Tadv = 0 sufficiently little.

Simulation Setup

To test this construction, we simulate two traffic encounters in ILQGames [46] that involve
significant interaction (see Sec. 4.5), in which a responsible human driver would likely drive
defensibly. Our method attempts to capture the spectrum of this “defensive” behavior as

CHAPTER 4. DEFENSIVE DRIVING 59

Tadv, the duration of the adversarial time horizon, is varied. In each setting, each agent (in
this case, each car) has augmented bicycle dynamics, i.e.:

ṗx,i = vi sin θi, v̇i = ai,

ṗy,i = vi cos θi, ϕ̇i = ωi, (4.5)

θ̇i = (vi/Li) tanϕi, ȧi = ji,

where x = (px,i, py,i, θi, vi, ϕi, ai)
N
i=1 encapsulates the position, heading, speed, front wheel

angle, and acceleration of all vehicles, ui = (ωi, ji) represents each vehicle’s front wheel rate
and tangent jerk, and Li is each player’s inter-axle distance.

We define gadv,i and gcoop,i as weighted combinations of the following functions, with
different behavior encouraged through the use of different weighting coefficients. We denote
pi = (px,i, py,i) for each agent position, dℓi(pi), defined below, for the distance between an
agent and the corresponding lane centerline ℓi in the (px,i, py,i)-plane, and dprox for a constant
desired minimum proximity between agents:

lane center:

[
dℓi(pi) := min

pℓ∈ℓi
∥pℓ − pi∥

]2
(4.6)

ideal speed: (vi − vref,i)2 (4.7)

cooperative: 1{∥pi − pj∥ < dprox}(dprox − ∥pi − pj∥)2 (4.8)

adversarial: ∥pi − pj∥2 (4.9)

input: uTi Riiui . (4.10)

Recall that, for non-ego agents, the “adversarial” cost is only present during the adversar-
ial horizon [0, Tadv) and the “cooperative” cost is present thereafter during the cooperative
horizon [Tadv, T]. We also enforce the following inequality constraints, where dlane denotes
the lane half-width, and vi and vi denote speed limits:

proximity: ∥pi − pj∥ > dprox (4.11)

lane: |dℓi(pi)| < dlane (4.12)

speed range: vi < vi < vi , (4.13)

Here, the “proximity” constraint is enforced for only the ego agent, to force the ego to
bear responsibility for satisfying joint state constraints which encode his or her own safety
(e.g. non-collision). In addition, all agents must satisfy individual constraints that encode
reasonable conduct in traffic (e.g., staying within a range of speeds). All constraints are
enforced over the entire time horizon [0, T]. For all tests, we use a time horizon T = 15 s
and discretize time (following [46] and [5]) at 0.1 s intervals.

Receding Horizon Control

In realistic motion-planning scenarios, such as the real-life traffic encounters simulated in this
work, the ego agent cannot perfectly predict the trajectories of non-ego agents throughout the

CHAPTER 4. DEFENSIVE DRIVING 60

time horizon [0, T]. As such, in addition to adopting the defensive driving framework, we need
to further robustify the ego agent’s trajectory against unpredictable and possibly adversarial
non-ego decisions. To do so, we encode the ego agent to follow its own Nash strategy for
a short time, before re-computing an updated strategy by re-solving the dynamic game in
a receding horizon fashion. Receding horizon control has a long history of use in motion
planning [104, 111, 46]. Adversarial robust motion planning approaches typically assume
that non-ego agents persistently exhibit worst-case behavior, while the cooperative game
framework assumes all players wish to avoid collision. By contrast, our paradigm interpolates
smoothly between these two extremes, generating trajectories whose conservativeness varies
depending on the length of the adversarial time horizon. This is demonstrated in Section 4.5,
where we compare the performance of receding horizon and non-receding horizon simulations
of several traffic scenarios. We shall study the implications on robustness in future work.

4.4 Implementation Details: ILQGames

The traffic simulations in this work are solved approximately to local feedback Nash equi-
libria in real time using ILQGames, a recently developed, open-source C++ based game
solver algorithm introduced in Fridovich-Keil et al. [46]. ILQGames iteratively solves linear-
quadratic games in a receding horizon manner, by linearizing dynamics and quadraticizing
costs at each step, and incurs computational complexity that is cubic in the number of
players [46].

As discussed above, we must also account for both equality and inequality constraints on
the game trajectory. While we note that [46] does not address constrained Nash games, here
we incorporate constraints using augmented Lagrangian methods [80]. For a more detailed
discussion of constraint-handling in feedback Nash games, please refer to Laine et al. [63].
Although other game solvers, such as ALGAMES [23] and Iterative Best Response algorithms
[111], can likewise handle constraints, their applications are restricted to open-loop games.
A thorough treatment of constraints in games can be found in Peng et al. [85].

4.5 Results

We present simulation results for various traffic scenarios in which a responsible traffic partic-
ipant would likely drive defensively. First, we consider a simple situation involving oncoming
vehicles on a straight road, as a proof of concept. Then, we analyze a more complicated
intersection example with a crosswalk. In both cases, the ILQGames algorithm solves the
defensive driving game quickly, in under 1 s.

Oncoming Example

In this example, the ego car is traveling North on a straight road when it encounters another
car traveling South. Since the road has a lane in each direction, “ideally” the ego vehicle

CHAPTER 4. DEFENSIVE DRIVING 61

Figure 4.3: Oncoming example. The ego vehicle (right lane, heading upwards) and the
oncoming vehicle (left lane, heading downwards) perform increasingly extreme maneuvers
as Tadv increases, in this “oncoming” scenario. Dark blue, turquoise, and light green are
used to represent the agents’ location for Tadv = 0, 2.5, 5 s, respectively. Panels show agent
positions as time elapses. When Tadv = 0 s, the ego vehicle does not deviate significantly
from its lane from t = 1 to 6 s because it anticipates that the non-ego vehicle will behave
cooperatively throughout the entire time horizon by swerving to avoid a collision. However,
when Tadv = 5 s, the ego vehicle actively swerves outward to avoid the non-ego agent. This
minor course adjustment is sufficient to dissuade the oncoming vehicle from making a stronger
effort to attempt a collision, since it would occur in the future, after Tadv.

would not deviate too far from its lane or speed. However, to drive more defensively, the ego
vehicle should plan as though the oncoming Southbound car were to act noncooperatively.
Our method encodes precisely this type of defensive planning. Figure 4.3 shows the planned
trajectories that emerge for increasing Tadv. As shown, the ego vehicle (bottom) imagines
more aggressive maneuvers for itself and the oncoming car (top) as Tadv increases. Note,
however, that these are merely imagined trajectories and that (a) the ego vehicle can always
choose to follow this trajectory only for an initial period of time, and recompute its trajectory
thereafter, and (b) the oncoming vehicle will make its own decisions and will not generally
follow this “partially adversarial” trajectory. We solve each of these problems (with fixed
Tadv) in under 0.5 s.

CHAPTER 4. DEFENSIVE DRIVING 62

Merging Example

Here, we present a six-player example in which the ego car is positioned on the merging lane
on a highway, slightly behind the point at which an on ramp merges into the lane. The ego
vehicle, with initial position at (x, y) = (0,−20) m, must successfully navigate the highway
while avoid collision with five non-ego vehicles—two on the passing lane to the left of the
ego, two on the ramp (P5, P6), about to merge into the ego’s lane (P2, P4), and one directly
in front of the ego (P3).

Figure 4.4 shows the resulting approximate local Nash equilibria of the defensive driving
game for increasing Tadv. As before, the “apprehension” of the ego vehicle towards other
vehicles increases with the length of the adversarial time horizon. In the ego’s mind, as Tadv
increases, P6 speeds up and swerves rightwards in an attempt to collide into P1. Interestingly,
P2 and P4, whose initial positions are in front of that of P1, actually slow down. This is
because, although P2 and P4 are motivated to collide into P1, they are subject to heading
and lane costs; thus, the best maneuver they can execute to approach and collide into P1 is
to slow down.

Next, we explore the case in which the initial position of P6 were slightly behind or ahead
that of P1 (Figure 4.5), with Tadv fixed at 2 seconds. The figure on the right here is the same
as the figure on the right in Figure 4.4, with P6 behind P1. However, on the left that when
P6 is initialized ahead of P1, the ego P1 does not swerve that severely away from P6, but
instead decides to make a more significant attempt to avoid P3 and P4 at the intersection
of the ramp and the highway lanes.

Three-Player Intersection Example

We introduce a more complicated scenario designed to model the behavior of two vehicles
and a pedestrian at an intersection. As shown in Figure 4.6, the ego vehicle is present in
the intersection alongside a non-ego vehicle heading in the opposite direction, who wishes
to make a left turn, and a pedestrian, who wishes to cross the road. To reach their goal
locations, these three agents must cross paths in the intersection. When Tadv = 0 s, the
ego vehicle continues straight along its lane because it anticipates that the non-ego vehicle
will behave cooperatively throughout the entire time horizon. In particular, it anticipates
that the non-ego vehicle will continue along its curved path at nominal speed, resulting in a
collision-free trajectory. However, as with the oncoming example, the ego vehicle’s trajectory
becomes increasingly more conservative as the adversarial time horizon increases in length.
When Tadv = 1 s, the ego vehicle actively swerves rightwards to avoid the non-ego vehicle.
This is because in this scenario, the oncoming vehicle is initially slower than the ego vehicle,
and will thus approach the intersection at the same time as the ego vehicle. As before, each
problem is solved in well under 0.75 s in single-threaded operation on a standard laptop, via
the ILQGames algorithm [46]. This performance indicates real-time capabilities which will
be explored in future work on hardware.

CHAPTER 4. DEFENSIVE DRIVING 63

Figure 4.4: Merging Example. The ego vehicle (P1, shown in red, heading upwards)
is traveling along a highway while avoiding collisions with other vehicles (P2-P5, shown in
various colors), three of which are merging or have just merged onto the highway. Notice
that the ego vehicle’s apprehension towards the other vehicles increases when the adversarial
sub-interval increases. In particular, as Tadv increases, P6, whose initial position is behind
that of P1, speeds up and swerve rightwards in an attempt to collide into P1. Meanwhile,
P2 and P4, whose initial positions are in front of that of P1, actually slow down.

CHAPTER 4. DEFENSIVE DRIVING 64

Figure 4.5: Merging Example. Consider again the merging example first depicted in
Figure 4.4, with the same color code, and with the same fixed Tadv = 2 s. Here, we examine
what happens if the initial position of P6 were slightly behind or ahead that of P1. Note
that the figure on the right here is identical to the figure on the right in Figure 4.4, with P6
behind P1. On the left, however, when P6 is initialized ahead of P1, the ego P1 does not
swerve that severely away from P6, but instead decides to make a more significant attempt
to avoid P3 and P4 at the intersection of the ramp and the highway lanes.

CHAPTER 4. DEFENSIVE DRIVING 65

Figure 4.6: Three Player Intersection Example. The ego vehicle (right lane, heading
upwards) navigates an intersection while avoiding collision with an oncoming vehicle (left
lane, heading downwards initially before making a left turn) and a pedestrian (horizontal
path at the intersection, left to right). Dark blue, turquoise, and light green are used to
represent the agents’ location at Tadv = 0, 0.5, 1 s, respectively. As with the oncoming
example, these three agents perform increasingly extreme maneuvers as Tadv increases. In
particular, when Tadv = 0 s, the ego vehicle anticipates that the non-ego will continue along
its curved path at its nominal speed, allowing it to approach the intersection before the ego
vehicle. Thus, the ego vehicle swerves leftwards, to avoid the non-ego agent as it makes
its left turn and continues rightwards in the figure, resulting in a collision-free trajectory.
(The pedestrian’s trajectories for Tadv = 0 s and Tadv = 0.5 s coincide.) However, when
Tadv = 1 s, the ego vehicle accelerates and swerves rightwards to avoid the non-ego vehicle.
As before, this suffices to dissuade the oncoming vehicle from performing more collision-
seeking behavior, since it forces any potential collision to occur after Tadv. The pedestrian’s
speed also noticeably decreases for the same reason.

4.6 Discussion

This chapter presented a novel formulation of robustness in motion planning for multi-agent
problems. Inspired by defensive driving, our method explicitly models other agents as adver-
sarial in only a limited, initial portion of the overall planning interval. Instead of forcing the
ego to avoid all feasible non-ego trajectories, we use a piecewise-defined game cost structure
to endow the ego with the perspective that other agents are temporarily distracted. As
such, our approach generates far less conservative behavior than purely adversarial methods,
such as Hamilton-Jacobi-Isaacs optimal control. Simulation results illustrate that this novel
formulation of safety can be used to solve these “defensive” problems in real-time. We are
eager to implement this method in hardware and test its performance in a receding time
horizon with other (human) drivers.

66

Chapter 5

Game-Theoretic Priors for SLAM

To navigate through real-world traffic safely and efficiently, autonomous vehicles must moni-
tor their surroundings for obstacles or other disturbance sources, while simultaneously inter-
acting with multiple self-interested agents in the scene. This entails accurately representing
an uncharted and possibly dynamic environment, while executing robust motion plans that
account for multi-player interactions in the scene. This requires a careful fusion of state
estimation, prediction, and path planning modules in vehicle autonomy stacks. However,
current, state-of-the-art autonomous navigation pipelines typically treat these problems sep-
arately and do not incorporate direct feedback between them.

Regarding estimation, algorithms tackling the Simultaneous Localization and Mapping
(SLAM) problem aim to accurately reconstruct an uncharted environment while also local-
izing the “ego” player within it [66, 14, 25, 26]. In recent years, popular inference algorithms
for SLAM, such as factor graph-based methods, have also been used to solve challenging
motion planning and optimal control problems jointly with SLAM problems in unknown
environments [27]. However, these approaches often do not account for the behavior of self-
interested dynamic players in the vicinity. It is therefore an open question whether these
approaches can truly generate safe, efficient, and robust motion plans for an ego player
operating in the vicinity of other players.

Interactions between individually self-interested mobile agents are naturally modeled as
dynamic games between rational actors with differing objectives [53, 5, 100, 99]. Recent
advances in game-theoretic motion planning exploit this structure to predict the responses
of other players to one’s own decisions, and identify a desirable equilibrium strategy [38,
46]. However, game-theoretic formulations of noncooperative multi-player interactions are
generally not considered in SLAM tasks.

In this chapter, we formulate the SLAM task from the perspective of an ego player,
who is interacting with multiple other players while simultaneously estimating all players’
positions and all landmark locations. Inspired by the dynamic game theory literature, we
first establish mild assumptions under which this problem can be formulated as a potential
game. We then present a factor graph-based algorithm to solve this game and prove that
it is guaranteed to converge to a local equilibrium. Unlike existing SLAM methods, this

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 67

approach tightly integrates estimation, prediction, and decision-making for multiple players,
simultaneously. Experiment results illustrate that, compared to standard bundle adjustment,
the introduction of game-theoretic interaction priors leads to higher localization and map
reconstruction accuracy in realistic traffic scenarios. Moreover, our algorithm is robust with
respect, both to perturbations in the distributions of initial conditions, and across a wide
range of observation noise.

The rest of this chapter is structured as follows. Section 5.1 surveys related work on
factor-graph based algorithms for SLAM, dynamic SLAM, and game-theoretic path planning.
Section 5.2 introduces fundamental concepts in dynamic game theory relevant to the multi-
player interactions explored by our SLAM algorithm. Section 5.3 then formulates the SLAM
problem under study as a potential game, and presents our IBR-based algorithm for solving
it. The empirical results presented in Section 5.4 demonstrate that our algorithm outperforms
standard bundle adjustment algorithms in localization and map reconstruction accuracy in
realistic traffic scenarios. Finally, Section 5.5 summarizes our method and presents future
research directions. More details can be found in a published paper, Chiu and Fridovich-
Keil “GTP-SLAM: Game-Theoretic Priors for Simultaneous Localization and Mapping in
Multi-Agent Scenarios” [18].

5.1 Related Work

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping is a fundamental state estimation task with a well-
developed literature in the robotics community [66, 14], A standard method for solving
SLAM problems is to reformulate the underlying maximum a posteriori (MAP) estimation
problem into a nonlinear least squares problem, which can then be solved via factor graph
optimization [30, 56].

In recent years, factor graphs have been used to formulate a wide range of robotics
problems beyond the SLAM task in static environments, including model predictive control
and trajectory tracking [102, 27]. Factor graph-based methods have also been used to solve
the dynamic SLAM problem, which involves the reconstruction of uncharted environments
with dynamic players [115] who share measurement information, and perform estimation, and
prediction in a cooperative game framework [116, 51]. These methods typically infer time-
dependent variables pertaining to multiple players without accounting for players’ interactive,
and likely noncooperative, behavior [60, 103]. By contrast, our approach explicitly accounts
for purposeful and potentially noncooperative interactions between multiple players by using
iterative best response to search for local Nash equilibria of the players’ variables.

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 68

Multi-Player Path Planning via Dynamic Games

In robotics applications, interactions between multiple players are naturally modeled as
dynamic games. In particular, scenarios in which two groups of players have opposing
objectives, such as robust control problems and pursuit-evasion games, are often formulated
as zero-sum dynamic games [38, 39]. Meanwhile, problems in which multiple players have
only partially conflicting objectives, such as path planning in busy traffic, are posed as
general-sum dynamic games [46, 87]. Although solutions to continuous-time dynamic games
are characterized by coupled Hamilton-Jacobi-Bellman (HJB) PDEs [100, 99, 4], solving
these equations is typically intractable due to the so-called “curse of dimensionality,” [7] i.e.,
their computation time grows exponentially in the state space dimension. For this reason,
such methods are impractical in many multi-player scenarios of interest.

In contrast, our algorithm uses an iterative best response (IBR) scheme, in which each
player takes a turn solving for their optimal strategy while assuming all other players’ strate-
gies are fixed [40, 110, 59, 114]. By replacing the dynamic game with a sequence of optimal
control problems, the computational burden of solving for a local Nash equilibrium strategy
is substantially reduced. Indeed, IBR has been successfully applied to a wide range of multi-
player interaction scenarios, such as hierarchical planning for autonomous driving [40] and
racing [110]. Moreover, IBR is suitable for our application because it can be embedded in a
factor graph-based framework, by iteratively solving estimation problems over the variables
relevant to each player, while holding all other players’ variables fixed.

Our approach also draws inspiration from the potential games literature, which exploits
the symmetric cost structure of multi-player interactions in certain robotics applications [59,
114]. Recent literature indicates that iterative methods which exploit this symmetry can
be more efficient than those that do not [59]. Our approach draws inspiration from this
observation: we recast the multi-agent SLAM problem under study as a potential game, and
perform IBR in a manner that preserves its potential structure.

5.2 Setup and Notation

Below, we introduce core concepts in dynamic game theory. Readers are directed to [5] for
further details.

Open-Loop Nash Equilibria

Consider the N -player, K-stage general-sum dynamic game Γ, with nonlinear, discrete-time
system dynamics for each player i ∈ [N] := {1, · · · , N} and time k ∈ [K] := {1, · · · , K},
given by:

xik+1 ∼ N
(
f ik(x

i
k, u

i
k),Σf

)
, (5.1)

where xik ∈ Rni , uik ∈ Rmi , and f ik : Rni×Rmi → Rni are respectively the state, control input,
and (differentiable) state transition map of player i at time k, and Σf is the associated co-

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 69

variance matrix. Below, for each player i ∈ [N], we use the shorthand xi := (xi1, · · · , xiK+1) ∈
Rni(K+1), and ui := (ui1, · · · , uiK) ∈ RmiK . Moreover, we define x := (x1, · · · , xN) ∈ Rn(K+1)

and u := (u1, · · · , uN) ∈ RmK , where n =
∑

i ni and m =
∑

imi.
Our method jointly estimates the trajectories of all players from the perspective of one

particular player, referred to below as player 1 or the ego player. Other players are termed
non-ego players. The ego player observes Nℓ landmarks, whose global positions in Rdℓ are
given by ℓ := (ℓ1, · · · , ℓNℓ

) ∈ RdℓNℓ . Players also observe each others’ positions. These
measurements, at each time k ∈ [K], are given by:

zαk ∼ N
(
h(x1k, ℓα),Σh

)
, (landmark-agent) (5.2)

zijk ∼ N
(
h(xik, x

j
k),Σh

)
, (inter-agent) (5.3)

where zαk ∈ Rz is the measurement of landmark α by the ego player, for each α ∈ [Nℓ], while
zijk ∈ Rz is the measurement by player i of player j, for each i, j ∈ [N], i ̸= j. Here, Σh and
Σh denote associated covariance matrices. Additionally, each player’s objective is defined by
Li(x, u), with Li : Rn(K+1) × RmK → R for each i ∈ [N], k ∈ [K]. Here, we presume that
the ego player knows other players’ objectives Li. While this seems a strong assumption
in practice, recent work has established that it is possible to infer unknown parameters of
players’ objectives in such games efficiently [87, 65]. Thus equipped, we now define the Nash
equilibrium of the GTP-SLAM problem.

Definition 5.2.1. [Open-Loop Nash Equilibrium, [5, Ch. 6]] We call u⋆ :=
(
u1,⋆, · · · , uN,⋆

)
an open-loop Nash equilibrium of Γ if no player can lower their cost by unilaterally deviating
from their control ui,⋆ while all other players’ controls, u−i,⋆, remains fixed, i.e.,

Li
(
ui,⋆, u−i,⋆

)
≤ Li

(
ui, u−i,⋆

)
, ∀ui ∈ RmiK . (5.4)

Potential Dynamic Games

Our approach leverages well-established convergence guarantees of iterative best response
(IBR) algorithms in the setting of potential games. For clarity, we define a finite-stage
potential game as follows.

Definition 5.2.2 (Potential Dynamic Game, [59], [42]). An N-player, K-stage general-
sum dynamic game Γ is called a potential game if there exists an optimal control problem,
defined over all players’ controls (u1, · · · , uN), whose solutions are Nash equilibria of the
game Γ. In other words, there exists a potential function p : RduNK → R such that,
for any player i ∈ [N] and any controls (u1, · · · , uN) ∈ RduNK and any alternative player i
controls ūi, we have:

p(ui, u−i)− p(ūi, u−i) = Li(ui, u−i)− Li(ūi, u−i).

In Section 5.3, we will recast the multi-player, noncooperative SLAM problem of interest
into a potential game, and establish mild assumptions under which an appropriate IBR
algorithm converges.

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 70

5.3 Methods

Our main contribution is GTP-SLAM, a novel SLAM algorithm for multi-player scenes,
motivated by iterative best response. GTP-SLAM aims to jointly estimate the dynamic
states and control inputs of all players in the scene, as well as landmark positions. It does
so from the ego player’s perspective, while accounting for noncooperative, game-theoretic
interactions between the players.

Constructing the GTP-SLAM Factor Graph

Figure 5.1: Factor graphs for GTP-SLAM, our IBR-based algorithm (Left) and a standard
bundle adjustment approach (Right), for a two-player example. Red nodes describe dynamic
variables (states x, controls u) for Player 1, while blue nodes describe analogous quantities
for Player 2. Gray nodes represent variables temporarily held constant. Square, circular, and
triangular nodes represent states, controls, and landmarks, respectively. Green factors (lines
and nodes) represent dynamics constraints, blue factors represent landmark and inter-player
distance measurements, and black factors represent priors on states and controls, e.g. to
track lanes, to align the vehicle headings, and minimize overall control effort.

We begin by expressing the players’ noncooperative preferences as factors in a bipartite
factor graph. Each factor is a function which encodes vector-valued residual error among
the connected variables; as a whole, factors allow us to compute the joint likelihood of all
input variables. Following standard Gaussian assumptions, we use the Mahalanobis distance
associated to each factor (i.e., ∥v∥2Σ := v⊤Σ−1v for factor v and covariance Σ) to compute the
negative log-likelihood of a collection of variables. Concretely, then, we construct a factor
graph from the following terms:

priors : gik(x
i
k), ĝ

i
k(u

i
k) (5.5)

dynamics : f ik(x
i
k, u

i
k)− xik+1 (5.6)

interactions : b(xik, x
j
k) (5.7)

landmark measurements : h(x1k, ℓα)− zαk (5.8)

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 71

inter-player observations : h(xik, x
j
k)− z

ij
k , (5.9)

which are color-coded in Figure 5.1. For example, the ternary dynamics factor (5.6) computes
the difference between vehicles’ states and those predicted by the appropriate state transition
function (5.1). Likewise, the factors (5.7) between pairs of states belonging to players i ̸= j
describe interactions between pairs of players. For example, to encode collision avoidance,
we may set b(x, x′) := 1/∥x− x′∥2. The factors h(x1k, ℓα)− zαk denote the difference between
expected and actual landmark measurements made by the ego player. Finally, h(xik, x

j
k)−z

ij
k ,

where i, j ∈ [N], i ̸= j,min{i, j} = 1, denotes inter-player position measurements between
the ego player and each non-ego player.

The maximum a posteriori (MAP) estimation problem faced by each player, then, is
the minimization of a sum of squared factors. In other words, each player’s individual
decision problem is a nonlinear least squares problem, when other players’ variables are held
constant. Neglecting interaction factors, landmarks, and inter-player measurements (which
couple players’ variables together), we compute the partial log-likelihood of each player i’s
variables as:

J i(xi, ui) :=
K∑
k=1

(
∥gik(xik)∥2Σg

+ ∥ĝik(uik)∥2Σĝ
+ ∥f ik(xik, uik)− xik+1∥2Σf

)
. (5.10)

Note that (5.10) does not include interaction terms (b) or measurements (z or z), since
each interaction term depends upon multiple players’ variables, and because measurements
pertaining to landmarks and other players’ states are only assumed to be collected by the
ego player. If these terms are included, the ego player’s full estimation problem is given by:

L1(x, u, ℓ) := J1(x, u) +

Nℓ∑
α=1

K∑
k=1

∥h(x1k, ℓα)− zαk ∥2Σh
(5.11)

+
∑
j ̸=1

K∑
k=1

∥h(x1k, x
j
k)− z

1j
k ∥

2
Σh

+
∑
j ̸=1

K∑
k=1

∥b(x1k, x
j
k)∥

2
Σb
,

while each non-ego player’s MAP problem is given by:

Li(x, u) := J i(xi, ui) +
K∑
k=1

∥h(xik, x1k)− zi1k ∥2Σh

+
∑
j ̸=i

K∑
k=1

∥b(xik, x
j
k)∥

2
Σb
, (5.12)

for each i ∈ [N]\{1}.

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 72

GTP-SLAM as a Potential Game

Next, we illustrate that the GTP-SLAM problem of Section 5.3 is a potential game (Lemma 5.3.1,
Proposition 5.3.2). This connection to potential games is critical, as it suggests a locally-
convergent solution method for GTP-SLAM problems given in Section 5.3 (Corollary 5.3.3).
The following results are based upon established concepts in the literature [42, 114, 59];
here, we illustrate their pertinence to the noncooperative SLAM problem. The following is
a direct corollary of [59], Theorems 1 and 2.

Lemma 5.3.1. Consider an N-player, K-stage dynamic game Γ, with fixed initial condition
x1 := (x11, · · · , xN1) ∈ Rn. Suppose the system dynamics of each player given by (5.1), and
the cost function of each player i is of the form:

L1(x, u, ℓ) := C1(x1, u1, ℓ) +
N∑
j=2

C1j(x1, xj),

Li(x, u) := Ci(xi, ui) +
∑
j ̸=i

Cij(xi, xj), ∀i ∈ [N]\{1}

respectively, where Ci : Rni(K+1) × RmiK → R, and Cij : Rni(K+1) × Rnj(K+1) → R satisfy:

Cij(xi, xj) = Cji(xj, xi), ∀ i, j ∈ [N], i ̸= j.

Then Γ is a potential game corresponding to the optimal control problem of minimizing the
potential function:

p(x, u) := C1(x1, u1) +
N∑
i=2

Ci(xi, ui) +
∑

i,j∈[N],i<j

Cij(xi, xj), (5.13)

subject to the dynamics (5.1), for each i ∈ [N].

Note that L1 and C1 also depend upon landmarks ℓ; we make this dependence implicit
for notational convenience.

Proof. This proposition follows directly from analogous proofs established in [59, 49], rephrased
here for completeness.

Below, we make implicit the dependence of L1 and C1 on the landmarks ℓ, for no-
tational convenience. Let p(x, u) be given by (5.13), with a minimizer given by u⋆ :=
(u1,⋆, · · · , uN,⋆) ∈ RmK , x⋆ := (x1,⋆, · · · , xN,⋆) ∈ Rn(K+1). For any player r ∈ [N], and any
unilateral deviation in player r’s controls away from u⋆, i.e.,

u := (ur, u−r,⋆) = (u1,⋆, · · · , ur−1,⋆, ur, ur+1,⋆, · · · , uN,⋆) ∈ RmK ,

with corresponding state trajectory:

(xr, x−r,⋆) = (x1,⋆, · · · , xr−1,⋆, xr, xr+1,⋆, · · · , xN,⋆) ∈ Rn(K+1),

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 73

we have:

0 ≤ p(xr, x−r,⋆, ur, u−r,⋆)− p(xr,⋆, x−r,⋆, ur,⋆, u−r,⋆)

=

(
Cr(xr, ur) +

∑
i ̸=r

Cir(xi,⋆, xr) +
∑
i ̸=r

Ci(xi,⋆, ui,⋆) +
∑

1≤i<j≤n

i,j ̸=r

Cij(xi,⋆, xj,⋆)

)

−

(
Cr(xr,⋆, ur,⋆) +

∑
i ̸=r

Cir(xi,⋆, xr,⋆) +
∑
i ̸=r

Ci(xi,⋆, ui,⋆) +
∑

1≤i<j≤n

i,j ̸=r

Cij(xi,⋆, xj,⋆)

)

=

(
Cr(xr, ur) +

∑
i ̸=r

Cir(xi,⋆, xr)

)
−

(
Cr(xr,⋆, ur,⋆) +

∑
i ̸=r

Cir(xi,⋆, xr,⋆)

)
= Lr(xr, x−r,⋆, ur, u−r,⋆)− Lr(x⋆, u⋆).

This condition matches that which defines open-loop Nash equilibria (Definition 5.2.1).
Hence, u⋆ is an open-loop Nash equilibrium of the game Γ.

Given the result of Lemma 5.3.1, we now show that the GTP-SLAM game structure
given in (5.10) is consistent with a potential game.

Proposition 5.3.2. The GTP-SLAM game, with players’ objectives given by (5.10), is a
potential game.

Proof. In the context of (5.10), we have:

C1(x1, u1, ℓ) := J1(x1, u1) +

Nℓ∑
α=1

K∑
k=1

∥h(x1k, ℓα)− zαk ∥2Σh
,

C1j(x1, xj) :=
K∑
k=1

∥h(x1k, x
j
k)− z

1j
k ∥

2
Σh

+
K∑
k=1

∥b(x1k, x
j
k)∥

2
Σb
, ∀j ∈ [N]\{1},

Ci(xi, ui) := J i(xi, ui), ∀ i ∈ [N]\{1},

Ci1(xi, x1) :=
K∑
k=1

∥h(xik, x1k)− zi1k ∥2Σh
+ ∥b(xik, x1k)∥2Σb

∀ i ∈ [N]\{1},

Cij(xi, xj) :=
K∑
k=1

∥b(xik, x
j
k)∥

2
Σb
, ∀ i, j ∈ [N]\{1}, i ̸= j.

Thus, by Lemma 5.3.1, the game encoded in GTP-SLAM is a potential dynamic game.

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 74

Iterative Best Response

To find Nash equilibria of the GTP-SLAM game with objectives given by (5.11) and (5.12),
we employ Algorithm 13, an approach inspired by iterative best response (IBR). Specifically,
Algorithm 13 proceeds in rounds, where each player i minimizes its MAP objective Li while
holding variables pertaining to other players j ̸= i fixed. Convergence is guaranteed by the
following corollary, due to [114].

Corollary 5.3.3. Algorithm 13 converges to an open-loop Nash equilibrium when applied to
potential games of the form of Definition 5.2.2, if the maximum number of iterations Q is
set to ∞ and the convergence tolerance ϵ is set to 0.

Proof. The proof of this Corollary follows directly from Zanardi et al. Proposition 1 [114].

Algorithm 13: Solving the GTP-SLAM Problem

Data: Maximum number of iterations Q, Convergence tolerance ϵ, Cost functions
Li.

Result: Nash equilibrium variables x⋆ = (x1,⋆, · · · , xN,⋆), u⋆ = (u1,⋆, · · · , uN,⋆), ℓ⋆.
1 q ← 1
2 while q ≤ Q and ∥xi,q − xi,q−1∥2 < ϵ, ∀ i ∈ [N] do
3 (x1,q, u1,q, ℓq)← arg min

(x1,u1,ℓ)
L1(x, u, ℓ)

4 for i ∈ [N]\{1} do
5 (xi,q, ui,q)← arg min

(xi,ui)
Li(x, u)

6 end
7 q ← q + 1

8 end
9 return (x1,q, · · · , xN,q), (u1,q, · · · , uN,q), ℓq

5.4 Experiment Results

Simulation Setup

To demonstrate the importance of game-theoretic priors in multi-player SLAM problems,
we simulate a highway driving scenario (Figure 5.2). Specifically, four vehicles change lanes
over a kilometer-long stretch of highway while avoiding collision, maintaining a desired speed,
and collecting range and bearing measurements of surrounding landmarks via lidar. These
preferences are encoded directly in players’ individual cost functions Li,∀i ∈ [N] We assume
that each vehicle follows Dubins paths, i.e., moves with constant speed (30m s−1, here), and
can control its yaw rate. Vehicle motion is discretized at intervals of 0.2 s. These dynamics

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 75

Figure 5.2: Schematic of the highway example. Here, players 1 (red), 2 (blue), 3 (green), and
4 (purple) navigate a kilometer-long stretch of highway and interact with each other while
performing lane changes. The ego player detects landmarks in the scene, which describe
objects common to realistic highway scenarios, e.g., speed limit signs, exit signs, light poles,
etc.

constitute the state transition maps f ik. Moreover, we assume that the highway is sparsely
populated with occasional landmarks, e.g., exit signs, speed limit signs, and light poles,
shown as yellow circles in Figure 5.2.

A local Nash equilibrium of the highway driving game is found by applying Algorithm 13
with fixed initial states for all players and neglecting measurement likelihood factors. To
understand the role of game-theoretic interactions in SLAM problems, we conduct a Monte
Carlo study of the highway driving scenario of Figure 5.2, with results recorded in Figure 5.8.
For each noise standard deviation level in the set {0.05, 0.10, · · · , 0.95, 1.0}, we ran 50 ex-
periments, each with a slightly perturbed set of initial conditions. For each experiment, we
simulated random measurements of all landmarks, and of all non-ego players’ planar coordi-
nates, with respect to the ego player’s local frame. We then ran Algorithm 13 to convergence,
and compared the results to a standard bundle adjustment approach that neglected game-
theoretic priors. That is, by ignoring (5.7) for the ego player and (5.5), (5.6), (5.7) for all
non-ego players, the GTP-SLAM problem reduces to a single MAP problem which may be
solved jointly for all players at once. Throughout all simulations, we use GTSAM [28] to
construct the factors above, compute Jacobians, and implement Levenberg-Marquardt steps
[80] for both GTP-SLAM and bundle adjustment.

Empirical Results

Figures 5.8 and 5.5 record the total localization and map reconstruction error of GTP-SLAM
(red) and standard bundle adjustment (blue). Individual plots of localization error are pre-
sented in Figures 5.6 and 5.3, while individual plots of map reconstruction error are presented

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 76

in Figures 5.7 and 5.4. Compared to the bundle adjustment baseline, the localization and
map reconstruction error for GTP-SLAM is lower across all noise standard deviation levels,
and degrades more gracefully as noise levels increase. In particular, conventional bundle
adjustment becomes numerically unstable at low noise levels, as evinced by the spike in
the root-mean-square error (0.9 m) incurred at a measurement noise standard deviation of
0.3. By contrast, the introduction of game-theoretic priors appears to yield a more well-
conditioned estimation problem, resulting in lower error overall, and accuracy (characterized
by the root-mean-square errors) that degrades more gracefully with the standard deviation
of the measurement noise. In summary, these results indicate that game-theoretic priors
introduce additional structure in an otherwise complex estimation problem, enabling re-
liable recovery of vehicle states and map landmarks. In particular, whereas conventional
bundle adjustment struggles to reconstruct poses with later timestamps, possibly due to the
corresponding lack of landmark measurements at those times, GTP-SLAM does not suffer
significantly from this drawback.

Figure 5.3: Mean and standard deviations of root-mean-square error of vehicle poses vs.
standard deviation of measurement noise.

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 77

Figure 5.4: Mean and standard deviations of root-mean-square error of landmark positions
vs. standard deviation of measurement noise.

5.5 Discussion

Inspired by recently developed iterative dynamic game algorithms, we present a novel method
for Simultaneous Localization and Mapping (SLAM) in dynamic scenes in which multiple
players interact noncooperatively. Our approach exploits the structure of potential games
to ensure reliable convergence. Empirical results illustrate that our algorithm outperforms
standard bundle adjustment methods in localization and map reconstruction accuracy.

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 78

Figure 5.5: Mean and standard deviations of root-mean-square combined error of estimated
vehicle and landmark positions vs. standard deviation of measurement noise.

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 79

Figure 5.6: First and third quartiles of root-mean-square error of vehicle poses vs. standard
deviation of measurement noise.

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 80

Figure 5.7: First and third quartiles of root-mean-square error of landmark positions vs.
standard deviation of measurement noise.

CHAPTER 5. GAME-THEORETIC PRIORS FOR SLAM 81

Figure 5.8: First and third quartiles of root-mean-square combined error of estimated vehicle
and landmark positions vs. standard deviation of measurement noise.

82

Part III

Adaptive Tolling for Transportation
Networks

83

Chapter 6

Adaptive Tolling for Arc-Based Traffic
Assignment

In Chapters 6 and 7, we broaden our focus to encompass challenges in societal-scale navi-
gation in modern transportation networks, in which self-interested commuters are aided by
learning-enabled route recommendation algorithms. In particular, we study congestion man-
agement on transportation networks via tools from dynamic game theory and mechanism
design. Reducing congestion on transportation networks is critical in urban environments,
since the aggregate behavior of self-interested travelers often significantly increases commute
time and pollution levels. In recent years, congestion pricing, i.e., tolling, has emerged as
an increasingly popular tool for regulating traffic flows [73, 68]. The design of tolls that can
effectually induce socially optimal traffic loads requires a realistic traffic assignment model
(TAM) that captures commuters’ routing preferences.

Many traffic assignment models (TAMs) in the literature employ a route-based modeling
paradigm, which assumes that travelers make a single decision among routes that connect
their origin and destination in a directed acyclic traffic network and do not deviate from
their selection mid-route [112, 41, 92]. However, the exhaustive enumeration of routes is
computationally infeasible for most real-world traffic networks networks, whose route counts
can be exponential in the number of arcs they contain. Moreover, route-based models do
not capture correlations between the total costs of routes that share arcs. To address these
issues, my collaborators and I use an arc-based TAM [2, 3, 83, 84, 22, 58] to capture com-
muters’ routing decisions. In this paradigm, commuters navigate through a traffic network
by sequentially selecting among outgoing edges at each intermediate node. Toll design for
arc-based TAMs is relatively under-studied, with the only exception of [58], in which the au-
thors show that, similar to route based TAMs, marginal tolling also achieves social optimality
in arc-based TAMs.

Fundamentally, tolls are designed and deployed with the aim of steering the equilibrium
behavior of agents towards social optimality, by adding external incentives to their utility
functions. A key, unrealistic assumption in this setting is that agents’ behaviors are in equi-
librium at all times. By contrast, real-world agents often iteratively update their strategies

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 84

based on repeated interactions, only eventually converging to an equilibrium outcome [47].
Although learning rules for route-based TAMs which provably converge to the equilibrium
strategies do exist [72, 93], the development of analogous learning mechanisms for arc-based
TAMs is relatively recent, e.g., in [22], which introduces a perturbed best response based
dynamics. Thus, it is of interest to study tolling under the assumption that commuters’
strategies undergo such dynamic adaptation rules, instead of remaining fixed at equilibrium.

Prior work focused on empirical results also design tolls in dynamic environments by
using reinforcement learning to iteratively update the toll on each arc. For instance, Chen
et al. formulated the toll design problem as a Markov Decision Process (MDP) with high-
dimensional state and action spaces, and apply a novel policy gradient algorithm to dynam-
ically design tolls [15]. Mirzaei et al. used policy gradient methods to design incremental
tolls on each link based on the difference between the observed and free-flow travel times
[77]. Qiu et al. framed dynamic tolling as an instance of cooperative multi-agent reinforce-
ment learning, and then applies graph convolutional networks to tractably solve the problem
[89]. Likewise, Wang et al. use a cooperative actor-critic algorithm to tractably update a
dynamic tolling scheme [109]. However, these methods operate on high-dimensional spaces,
and are thus often computationally expensive. Moreover, they typically lack theoretical
guarantees of convergence. Mirzaei et al. designed incremental tolls on each link, based
on the difference between the observed and free-flow travel times, by using policy gradient
methods [77]. Qiu et al. framed dynamic tolling as an instance of cooperative multi-agent
reinforcement learning, and then applies graph convolutional networks to tractably solve the
problem [89]. Likewise, Wang et al. deployed a cooperative actor-critic algorithm to update
a dynamic tolling scheme [109]. However, these methods operate on high-dimensional spaces
and are thus often computationally expensive, and usually do not readily admit theoretical
guarantees of convergence.

In light of the strengths and shortcomings of the adaptive tolling mechanisms described
above, this chapter presents an adaptive tolling scheme in the arc-based TAM detailed in
[22]. We prove the existence of a toll which induces socially optimal congestion levels.
Furthermore, we propose dynamics equations for adaptive tolling that drives the commuters’
routing preferences towards these socially optimal congestion levels. Our proof utilizes the
theory of constant step-size two-timescale stochastic approximation [11], which allows us to
decouple the toll and arc selection dynamics, and establish their convergence via two separate
Lyapunov-based proofs. Although marginal tolling provably leads to socially efficient traffic
allocation in a route-based TAM [92], to the best of our knowledge, our marginal tolling
scheme is the first to induce socially optimal traffic flows in an arc-based setting. More
details can be found in the following published papers: Chiu⋆, Maheshwari⋆, Su, and Sastry
“Arc-based Traffic Assignment: Equilibrium Characterization and Learning” [22] (⋆Equal
contribution) and Chiu, Maheshwari, Su, and Sastry “Dynamic Tolling in Arc-based Traffic
Assignment Models” [20].

Remark 6.0.1. The core methodology used in our work was first introduced in Maheshwari,
Kulkarni, Wu, and Sastry, “Dynamic Tolling for Inducing Socially Optimal Traffic Loads”

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 85

Table 6.1: Arc correspondences between the graphs in Figure 6.1: The original network (top
left) and the CoDAG (top right).

Original aO1 aO2 aO3 aO4 aO5 aO6 aO7 aO8 aO9
CoDAG aT1 aT2 aT4 aT7 aT5 aT6 aT3 aT11 aT12

aT9 aT8 aT10

[72] to study adaptive tolling under the setting of parallel-link networks. Our method extends
the scope of that work to transportation networks with bi-directional arcs, in the context of
arc-based TAMs.

6.1 Preliminaries

Consider a traffic network described by a directed graph GO = (IO, AO), where IO and AO
denote nodes and arcs, respectively. An example is shown in Figure 6.1 (top left); note that
GO can contain bidirectional arcs. Let the origin nodes and destination nodes be two disjoint
subsets of IO. To simplify our exposition, we assume that IO contains only one origin o ∈ I
and one destination d ∈ I, although the results presented below straightforwardly extend
to the multiple origin-destination-pair scenario. commuters navigate through the network,
from origin o to destination d, by sequentially selecting arcs at every intermediate node.
This process produces congestion on each arc, which in turn determines travel times. The
cost on each arc is then obtained by summing the travel time and toll. Specifically, each
arc a ∈ AO is associated with a toll pa ∈ R|AO|, and a positive, strictly increasing latency
function sa : [0,∞)→ [0,∞), which gives travel time as a function of traffic flow. The cost
on arc a ∈ AO is then given by:

ca(wa, pa) = sã(wa) + pa.

Finally, let the demand of (infinitesimal) commuters entering from origin node o be denoted
by go.

Note that sequential arc selection on networks with bidirectional arcs can result in a
cyclic route. For example, a traveler navigating the left traffic network in Figure 6.1 using
sequential arc selection may cycle between nodes iO2 and iO3 . To resolve this issue, we consider
arc selection on the condensed DAG (CoDAG) representation of the original network GO,
a directed acyclic graph (DAG) representation, as proposed in [22]. The Condensed DAG
representation preserves all acyclic routes from origin o to destination d in GO, but pre-
cludes cyclic routes by design. Details regarding the construction and properties of CoDAG
representations are provided in [22], Section II.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 86

Figure 6.1: Example of a single-origin single-destination original network GO (top left, with
superscript O), and its corresponding condensed DAG, or CoDAG, representation G (top
right, with superscript C). Arc correspondences between the two networks are given by
Table 6.1, while node correspondences are indicated by color.

Preliminaries on DAG: Depth and Height

The exposition in subsequent sections of this paper requires the following definitions asso-
ciated with the CoDAG representation. Let G = (I, A) be a CoDAG representation of an
original network GO, where I and A are the nodes and arcs in G respectively. With a slight
abuse of notation, note that the origin-destination pair of G is also (o, d). Furthermore,
let R be the set of all acyclic routes in G which start at the origin node o and end at the
destination node d.

Below, we will recursively define dynamical quantities, such as the time evolution of the
traffic flows w ∈ R|A| and the latency-to-go z ∈ R|A|, in a component-wise fashion, either
from the origin of the Condensed DAG G towards the destination, or from the destination to
the origin. To facilitate these recursive definitions, we require the following characterizations

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 87

regarding the depths and heights of arcs in a Condensed DAG G.

Definition 6.1.1 (Routes). A route r in a DAG G is an ordered subset of arcs A of the
form r = {a1, · · · , a|r|}, with ia1 = o, ja|r| = d, and iak = jak−1

for each k ∈ {2, · · · , |r|}. We
denote by R the set of all acyclic routes in G.

First, we define the concept of the depth of a directed acyclic graph (DAG), which will
be crucial for the remaining exposition.

Definition 6.1.2 (Depth of a DAG). Given a DAG G = (I, A) describing a single-origin
single-destination traffic network, the depth of G, denoted ℓ(G), is defined by:

ℓ(G) := max
a∈A

ℓa.

In our method, we consider only acyclic routes in traffic networks with finitely many
edges, so we have ℓ(G) < ∞. Moreover, the case ℓ(G) = 1 corresponds to a parallel link
network, for which the results of the following proposition have already been analyzed in
[72]. Therefore, we assume below that ℓ(G) ≥ 2.

Proposition 6.1.3. Given a Condensed DAG G = (I, A) with the route set R:

1. For any a ∈ A, we have ℓa = 1 if and only if ia = o. Similarly, if ℓa = ℓ(G), then
ja = d.

2. For any fixed r ∈ R, and any a, a′ ∈ r with ℓa,r < ℓa′,r, we have ℓa < ℓa′ i.e., arcs along
a route have strictly increasing depth from the origin to the destination.

3. Fix any a ∈ A, and any r ∈ R containing a such that ℓa,r = ℓa. Then, for any a′ ∈ R
preceding a in r, we have ℓa′,r = ℓa′.

4. For each depth k ∈ [ℓ(G)] := {1, · · · , ℓ(G)}, there exists some a ∈ A such that ℓa = k.

Proof.

1. If ℓa ̸= 1, then ℓa ≥ 2, so there exists at least one route r ∈ R containing a ∈ A such
that ℓa,r ≥ 2. Thus, ia ̸= o (otherwise the first ℓa,r − 1 arcs of r would form a cycle).
Conversely, if ia ̸= o, then no route r ∈ R contains a ∈ A as its first arc, i.e., ℓa,r ≥ 2
for each r ∈ R containing a. Thus, ℓa = maxr∈R:a∈r ℓa,r ≥ 2; in particular, ℓa ̸= 1.
This establishes that ℓa = 1 if and only if ia = o.

Now, suppose by contradiction that there exists some a ∈ A such that ℓa = ℓ(G)
but ja ̸= d. Fix any r ∈ R such that a ∈ r and ℓa,r = ℓa. Then a cannot be at the end
of R, since by definition, routes must end at d. Let a′ ∈ r be the arc immediately after
a in r. Then ℓa′ ≥ ℓa′,r = ℓa,r + 1 = ℓ(G) + 1, a contradiction to the definition of ℓ(G).

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 88

2. Fix r ∈ R, a, a′ ∈ r such that ℓa,r < ℓa′,r. If ℓa = 1, then ℓa′ ≥ ℓa′,r > ℓa,r = 1 = ℓa,
and we are done. Suppose ℓa ≥ 2. By definition of ℓa, there exists some route r2 such
that ℓa,r2 = ℓa. Construct a new route r3 ∈ R by replacing the first ℓa,r arcs of r with
the first ℓa,r2 arcs of r2. Then ℓa′ ≥ ℓa′,r3 = ℓa′,r − ℓa,r + ℓa,r2 > ℓa,r2 = ℓa.

3. Fix any a ∈ A, and any r ∈ R containing a such that ℓa,r = ℓa. Suppose by contradic-
tion that there exists some a′ ∈ R, preceding a in r, for which ℓa′ ≥ ℓa′,r + 1. Then,
by applying the second part of this lemma along the (ℓa,r − ℓa′,r) arcs of R from a′ to
a, we find that ℓa ≥ ℓa′ + (ℓa,r − ℓa′,r) ≥ ℓa,r + 1 = ℓa + 1, a contradiction.

4. Fix any arc a ∈ A with ℓa = ℓ(G). Then there exists some r ∈ R containing a such
that ℓa,r = ℓa = ℓ(G). It follows from the third part of this proposition that, for each
k ∈ [ℓ(G)], the k-th arc in R is of depth k.

Next, we define the concept of height of a directed acyclic graph (DAG), which will be
crucial for the remaining exposition.

Definition 6.1.4 (Height of a DAG). Given a DAG G = (I, A) describing a single-origin
single-destination traffic network, the height of G, denoted m(G), is defined by:

m(G) := max
a∈A

ma.

Since the traffic network under study is finite, and we consider only acyclic routes, we
have m(G) < ∞. Moreover, the case m(G) = 1 corresponds to a parallel link network, for
which the results of the following proposition have already been extensively analyzed in [72].
We will henceforth assume that m(G) ≥ 2.

Proposition 6.1.5. Given an Condensed DAG G = (I, A) with the route set R:

1. For any a ∈ A, we have ma = 1 if and only if ja = d. Similarly, if ma = m(G), then
ia = o.

2. For any fixed r ∈ R, and any a, a′ ∈ r with ma,r < ma′,r, we have ma < ma′ i.e., arcs
along a route from the origin to the destination have strictly decreasing depth.

3. Fix any a ∈ A, and any r ∈ R containing a such that ma,r = ma. Then, for any
a′ ∈ R following a in r, we have ma′,r = ma′.

4. For each height k ∈ [m(G)] := {1, · · · ,m(G)}, there exists an arc a ∈ A such that
ma = k.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 89

The proof of Proposition 6.1.5 parallels that of Proposition 6.1.3, and is omitted for
brevity.

We define [·] : A → AO to be a map from each CoDAG arc a ∈ A to the corresponding
arc in the original graph, [a] ∈ AO (as shown in Table 6.1). For each arc a ∈ A, let ia and
ja denote the start and terminal nodes, and for each node i ∈ I, let A−

i , A
+
i ⊂ A denote the

set of incoming and outgoing arcs.

Cost Model

Below, we assume that every traveler has access to GO, and to the same CoDAG repre-
sentation G = (I, A) of GO; in particular, G is used to perform sequential arc selection to
generate acyclic routes. The commuters’ aggregative arc selections generate network con-
gestion. Specifically, for each a ∈ A, let the flow or congestion level on arc a be denoted by
wa, and let the total flow on the corresponding arc in the original network be denoted, with
a slight abuse of notation, by w[a] :=

∑
a′∈[a]wa′

1. commuters perceive the cost on each arc
a ∈ A as:

c̃[a](w[a], p[a]) := c[a](w[a], p[a]) + νa = s[a](w[a]) + p[a] + νa,

where νa is a zero-mean random variable. At each non-destination node i ∈ I\{d}, com-
muters select among outgoing nodes a ∈ A+

i by comparing their perceived cost-to-go z̃a :
R|A| × R|AO| → R, given recursively by:

z̃a(w, p) := s̃[a](w[a]) + p[a] + min
a′∈A+

ja

z̃a′(w, p), ja ̸= d, (6.1)

z̃a(w, p) := s̃[a](w[a]) + p[a], ja = d.

Consequently, the fraction of commuters who arrives at i ∈ I\{d} and choose arc a ∈ A+
i is

given by:

Pija := P(z̃a ≤ z̃a′ , ∀a′ ∈ A+
i). (6.2)

An explicit formula for the probabilities {Pija : a ∈ A+
i }, in terms of the statistics of z̃a,

is provided by the discrete-choice theory [8]. In particular, define za(w) := E[z̃a(w)] and
ϵa := z̃a(w)− za(w), and define the latency-to-go at each node by:

φi({za′(w, p) : a′ ∈ A+
i }) = E

[
min
a′∈A+

i

z̃a′(w, p)

]
. (6.3)

Then, from discrete-choice theory [8]:

Pija =
∂φi
∂za

(z), i ∈ I\{d}, a ∈ A+
i , (6.4)

1Unlike existing TAMs, in our model, the latency of arcs in G can be coupled, since multiple copies of
the same arc in GO may exist in G.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 90

where, with a slight abuse of notation, we write φi(z) for φi({za′ : a′ ∈ A+
i }).

To obtain a closed-form expression of φ, we employ the logit Markovian model [2, 3], under
which the noise terms ϵa are described by the Gumbel distribution with scale parameter β.
As a result, the expected minimum cost-to-go za : R|A|×R|AO| → R, associated with traveling
on each arc a ∈ A, assumes the following form:

za(w, p) = s[a]

(∑
ā∈[a]

wā

)
+ p[a] −

1

β
ln

(∑
a′∈A+

ja

e−βza′ (w,p)

)
. (6.5)

Note that (6.5) is well-posed, as za can be recursively computed from the destination
back to the origin ([22], Section III).

CoDAG Equilibrium

Here, we define the condensed DAG (CoDAG) equilibrium (Definition 6.1.6), based on the
CoDAG representation of the original traffic network. Specifically, we show that the CoDAG
equilibrium exists, is unique, and solves a strictly convex optimization problem (Theorem
6.1.7).

Definition 6.1.6 (Condensed DAG Equilibrium). Fix a toll vector p ∈ R|AO|, and fix
β > 0. We call an arc-flow vector w̄β(p) ∈ R|A| a Condensed DAG (CoDAG) equilibrium at
p if, for each i ∈ I\{d}, a ∈ A+

i :

w̄βa (p) =

gi + ∑
a′∈A+

i

w̄βa′(p)

 exp(−βza(w̄β(p), p))∑
a′∈A+

ia
exp(−βza′(w̄β(p), p))

, (6.6)

where gi = g0 · 1(i = o), and w ∈ W, where:

W :=

{
w ∈ R|A| :

∑
a∈A+

i

wa =
∑
a∈A−

i

wa, ∀ i ̸= o, d, (6.7)

∑
a∈A+

o

wa = go, wa ≥ 0, ∀a ∈ A

}

characterizes the conservation of flow in the CoDAG G. Note thatW is convex and compact.

At a CoDAG equilibrium w̄β(p), the fraction of commuters at any intermediate node
i ∈ I\{d} who selects an arc a ∈ A+

i is given by ξ̄βa (p), as defined below:

ξ̄βa (p) :=
w̄βa (p)∑

a′∈A+
i
w̄βa′(p)

.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 91

The CoDAG equilibrium bears some resemblance to the Markovian Traffic Equilibrium
(MTE) introduced in Baillon and Cominetti [3]. However, the CoDAG formulation by design
precludes the possibility of assigning cyclic routes, and is capable of capturing couplings
between arcs in the CoDAG G that correspond to the same arc in the original network GO

(see [22], Remark 6).
Below, we show that, given any CoDAG representation G of an original network GO and

any fixed toll vector p ∈ R|AO|, the CoDAG equilibrium exists and is unique. Specifically,
the CoDAG equilibrium is the unique minimizer of a strictly convex optimization problem
over a compact set. This characterization provides powerful insight into the mathematical
properties of the CoDAG equilibrium flow, and its dependence on the toll vector. These
properties will be used in our work to establish the existence of an optimal toll (Theorem
6.2.1) and the convergence of our discrete-time toll dynamics to the optimal toll (Theorem
6.3.1).

For each [a] ∈ AO, define F :W × R|AO| → R by:

F (w, p) =
∑

[a]∈AO

∫ w[a]

0

[
s[a](u) + p[a]

]
du (6.8)

+
1

β

∑
i ̸=d

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]
.

Theorem 6.1.7. For each fixed toll vector p ∈ R|AO|, the corresponding CoDAG equilibrium
w̄β(p) ∈ W exists, is unique, and is the unique minimizer of F (·, p) over W.

Proof. (Proof Sketch) The proof parallels that of [22], Theorem 1 and Lemma 1. For
details, please see [22], Section III and Appendix B.

To prove Theorem 6.1.7, we first show that for each fixed toll vector p ∈ R|AO|, the map
F (·, p) is strictly convex overW (Lemma 6.1.8). Therefore, F has a unique minimizer inW .
It then suffices to show that the CoDAG equilibrium definition (Definition 6.1.6) matches
the Karush-Kuhn-Tucker (KKT) conditions for the optimization problem (6.8).

Lemma 6.1.8. For any fixed toll vector p ∈ R|AO|, the map F (·, p) : W → R is strictly
convex.

Proof. (Proof Sketch) For convenience, we define f[a] :W → R, χi : R|A+
i | → R, F :W → R

for each [a] ∈ AO, i ∈ I\{d} by:

f[a](w) :=

∫ w[a]

0

s[a](u)du, ∀ [a] ∈ AO,

χi(wA+
i
) :=

∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)
, ∀ i ̸= I\{d},

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 92

where wA+
i
∈ R|A+

i | denotes the components of w corresponding to arcs in A+
i . Then:

F (w) =
∑

[a]∈A0

f[a](w) +
1

β

∑
i∈I\{d}

χβi (w).

Also, for convenience, define:

Ws :=

{
w ∈ R|A| :

∑
a∈A+

i

wa =
∑
a∈A−

i

wa, ∀ i ̸= o, d,
∑
a∈A+

o

wa = 0.

}
. (6.9)

Essentially,Ws is the tangent space of the linear manifold with boundaryW . We can rewrite
(6.9) as:

Ws =
{
eA−

i
− eA+

i
: i ̸= o, d

}⊥ ∩ {eA+
o

}⊥
.

We can now establish the strict convexity of F .
We first establish the convexity of F . It suffices to show that f[a] and χi are convex for

each [a] ∈ AO, i ∈ I\{d}. Note that each f[a] is convex since it is the composition of a convex
function (g(w) =

∑
a∈A0

∫ wa

0
sa(u)du) with a linear function (w[a] :=

∑
a′∈[a]wa′). We show

below that χi is convex, for each i ∈ I\{d}.
Fix i ∈ I\{d}. For any a, a′ ∈ A+

i and each w ∈ W :

∂2χi
∂wa∂wa′

(w) =
1

wa
1{a′ = a} − 1∑

ā∈A+
i
wā
.

Thus, for any y ∈ R|A+
i |:

y⊤∇2
wχi(w)y =

∑
a,a′∈A+

i

yaya′
∂2χi

∂wa∂wa′
(w)

=
∑
a∈A+

i

y2a
wa
− 1∑

ā∈A+
i
wā
·
∑

a,a′∈A+
i

yaya′

=
1∑

ā∈A+
i
wā

∑
ā∈A+

i

wā ·
∑
a∈A+

i

y2a
wa
−

∑
a′∈A+

i

ya′

2
=

1∑
ā∈A+

i
wā

(∑
ā∈A+

i

(√
wā
)2 · ∑

a∈A+
i

(
ya√
wa

)2

−

∑
a′∈A+

i

√
wa′ ·

ya′√
wa′

2)
≥ 0, (6.10)

where the final inequality follows from the Cauchy-Schwarz inequality. Cauchy-Schwarz
also implies that equality holds in (6.10) if and only if the vectors (

√
wa)a∈A+

i
∈ R|A+

i | and

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 93

(ya/
√
wa)a∈A+

i
∈ R|A+

i | are parallel, i.e., if (ya)a∈A+
i
and (wa)a∈A+

i
are scalar multiples of each

other. This shows that χi is convex, and dim(N(∇2
wχi)) = 1.

Second, suppose by contradiction that F is not strictly convex on W . Then there exists
some w̄ ∈ W , z ∈ Ws\{0} such that:

z⊤∇2
wF (w̄)z = 0.

Since ∇2
wF (w̄) is symmetric positive semidefinite, this is equivalent to stating that z is in

N(∇2
wF (w̄)), the null space of ∇2

wF (w̄). Let Az denote the set of arc indices for which z has
a nonzero component, i.e.:

Az := {a′ ∈ A : za′ ̸= 0}.

Since z is not the zero vector, Az is non-empty. Since there are a discrete and finite number
of levels of G, there exists some a ∈ Az such that ℓa ≤ ℓa′ for all a

′ ∈ Ay, i.e., ℓa = min{ℓa′ :
a′ ∈ Ay}. Without loss of generality, we consider the case za > 0 (if not, then replace z with
−z, which would also be a nonzero vector in N(∇2

wF (w̄))). We claim that wa ̸= 0, and that
for all a′ ∈ A+

ia
:

za′ = za ·
wa′

wa
≥ 0.

To see this, note that otherwise, the vectors (za)a∈A+
i
∈ R|A+

i | and (wa)a∈A+
i
are not parallel,

and so equality cannot be obtained in (6.10), i.e.,:

z⊤∇2
wχi(w̄)z > 0,

where, with a slight abuse of notation, we have defined χi(w) = χi(A
+
i). As a result:

z⊤∇2
wF (w̄)z =

∑
[a]∈A

z⊤∇2
wf[a](w̄)z +

1

β

∑
i′ ̸=d

z⊤∇2
wχi′(w̄)z ≥

1

β
z⊤∇2

wχi(w̄)z > 0,

a contradiction. Thus, za > 0, and za′ ≥ 0 for each a′ ∈ A+
ia
, so:∑

a′∈A+
ia

za′ > 0.

If ℓa = 1, i.e., ia = o, we arrive at a contradiction, since the fact that z ∈ Ws implies∑
a′∈A+

ia
za′ = 0. If ℓa > 1, we also arrive at a contradiction, since the fact that z ∈ Ws

implies: ∑
â∈A−

ia

zâ =
∑
a′∈A+

ia

za′ > 0,

so there exists at least one ℓâ ∈ A−
ia

with zâ > 0. Then, by definition of a ∈ A, we have
ℓa ≤ ℓâ; this contradicts Proposition 6.1.3, Part 2, which implies that since â ∈ A−

ia
, there

exists at least one arc containing â immediately before a ∈ A, and thus ℓâ ≤ ℓa − 1. These
contradictions complete the proof of the strict convexity of F on W .

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 94

Social Optimality

We now describe the socially optimal flow which would minimize the total latency over the
entire transportation network. More specifically, we define below the notion of perturbed
social optimality considered in our work.

Definition 6.1.9 (Perturbed Socially Optimal Flow). We define a perturbed socially
optimal flow with regularization parameter β > 0 to be a minimizer of the following convex
optimization problem:

min
w∈W

∑
[a]∈AO

w[a] · s[a](w[a]) +
1

β

∑
i ̸=d

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]
,

with W given by (6.7), and w[a] :=
∑

a′∈[a]wa′, as defined above.

In words, perturbed social optimality is characterized as the total latency experienced by
commuters on each arc of the CoDAG G, augmented by an entropy term with regularization
parameter β which captures stochasticity in the commuters’ arc selections.

6.2 Optimal Toll: Existence and Uniqueness

Below, we characterize the optimal toll p̄ ∈ R|AO| for which the corresponding CoDAG
equilibrium w̄β(p̄) is perturbed socially optimal (see Definition 6.1.9). Throughout the rest
of the paper, we call p̄ the optimal toll.

Theorem 6.2.1. There exists a unique toll vector p̄ ∈ R|A0| that satisfies the following
fixed-point equation:

p̄[a] = w̄β[a](p̄) ·
ds[a]
dw

w̄β[a](p̄), ∀a ∈ A. (6.11)

Moreover, w̄β(p̄), the CoDAG equilibrium flow distribution corresponding to p̄, is the per-
turbed socially optimal flow with regularization β.

To prove Theorem 6.2.1, we first show that w̄β(p) is continuous and monotonic in the
toll p (Lemmas 6.2.2 and 6.2.3). Then, we use these properties to establish the existence
and uniqueness of a toll vector p̄ ∈ R|AO| satisfying the fixed-point equation (6.11) (Lemma
6.2.4). Finally, we prove that the CoDAG equilibrium flow allocation w̄β(p̄) corresponding
to p̄ is perturbed socially optimal (Lemma 6.2.5).

Below, we begin by establishing that the CoDAG equilibrium w̄β(p) is a continuously
differentiable and monotonic function of the toll p ∈ R|AO|.

Lemma 6.2.2. w̄β(p) is continuously differentiable in p.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 95

Proof. Define F :W × R|AO| → R by:

F (w, p) :=
∑

[a]∈AO

∫ w[a]

0

[
s[a](z) + p[a]

]
dz

+
1

β

∑
i ̸=d

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]
. (6.12)

The theory of constrained optimization implies that, for each p, the unique minimizer of
F (·, p) : W → R is completely characterized via a set of equality constraints, which we
describe below. First, recall that since W is a subset of an affine subspace of R|A| charac-
terized by |I\{d}| equality constraints, there exist M ∈ R|A|×|I\{d}|, of full column rank, and
b ∈ R|I\{d}| such that:

W = {w ∈ R|A| :M⊤w + b = 0, wa ≥ 0, ∀a ∈ A}.

Moreover, by using QR decomposition, we can assume that the columns of M are orthonor-
mal. Next, let B ∈ R|A|×(|A|−|I\{d}|) be given such that the columns of B have unit norm,
are pair-wise orthogonal, and are each orthogonal to the subspace of R|A| spanned by the
columns of M , i.e., B⊤ maps each vector in R|A| to the coefficients of its projection onto the
linear subspace orthogonal toW , with respect to an ordered, orthonormal basis of that sub-
space. Then the theory of constrained optimization, and the strict convexity of F (·, p), imply
that w̄β(p), the unique minimizer of F (·, p), is completely characterized by the equations:

M⊤w + b = 0,

B⊤∇wF (w, p) = 0.

To this end, define J : R|AO| × R|A| → R|A| by:

J(w, p) :=

[
M⊤w + b

B⊤∇wF (w, p)

]
.

Note that J is continuously differentiable almost everywhere, with:

∂J

∂w
(w, p) =

[
M⊤

B⊤∇2
wF (w, p)

]
∈ R|A|×|A|.

Suppose by contradiction that ∂J
∂w

(w, p) ∈ R|A|×|A| is singular at some (w, p). Then ∂J
∂w

(w, p)⊤ ∈
R|A|×|A| lacks full column rank, i.e.:

dim(R(M) +R(∇2
wF (w, p)B) = rank(

[
M ∇2

wF (w, p)B
]
) ≤ |A| − 1.

By the Boolean formula for sums of vector spaces:

dim(R(M) ∩R(∇2
wF (w, p)B)

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 96

=dim(R(M)) + dim(R(∇2
wF (w, p)B)− dim(R(M) +R(∇2

wF (w, p)B)

=dim(R(M)) + dim(R(B))− dim(R(M) +R(∇2
wF (w, p)B)

≥|A| − (|A| − 1)

=1.

Thus, there exists some nonzero vector v ∈ R(M) ∩ R(∇2
wF (w, p)B). Since v ∈ R(M),

and the columns of B are orthogonal to R(M), we have B⊤v = 0. Meanwhile, since v ∈
R(∇2

wF (w, p)B), there exists some nonzero w ∈ R|A|−d such that u = ∇2
wF (w, p)Bw. Thus,

we have:

0 = B⊤u = B⊤∇2
wF (w, p)Bu,

a contradiction, since the fact that B⊤ has full row rank and∇2
wF (w, p) is symmetric positive

definite implies that B⊤∇2
wF (w, p)B is symmetric positive definite, and u ̸= 0 by construc-

tion. This establishes that ∂J
∂w

(w, p) ∈ R|A|×|A| is non-singular at each (w, p) ∈ R|AO| × R|A|.

The existence and continuity of dw̄β

dp
(p) at each p ∈ R|AO| now follows from the Implicit

Function Theorem.

Lemma 6.2.3. For any p, p′ ∈ R|A0|:∑
a∈A

(
w̄βa (p

′)− w̄βa (p)
)
(p′[a] − p[a]) ≤ 0.

Proof. In this subsection, we show that for any p, p′ ∈ R|AO|:∑
a∈A

(
w̄βa (p

′)− w̄βa (p)
)
(p′[a] − p[a]) ≤ 0.

By Theorem 6.1.7, w̄β(p) is the unique minimizer, in W , of the following strictly convex
function of w:∑

[a]∈AO

∫ w[a]

0

[
s[a](z) + p[a]

]
dz +

1

β

∑
i ̸=d

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]
.

Applying first-order conditions for optimality in constrained convex optimization, we
obtain that, for each w1 ∈ W :

∑
a∈A

[
s[a]
(
w̄β[a](p)

)
+ p[a] +

1

β
ln

 w̄βa (p)∑
a′∈A+

ia
w̄βa′(p)

] · (w1
a − w̄βa (p)) ≥ 0.

Similarly, for w̄[a](p
′), we obtain that for each w2 ∈ W :

∑
a∈A

[
s[a]
(
w̄β[a](p

′)
)
+ p′[a] +

1

β
ln

 w̄βa (p
′)∑

a′∈A+
ia
w̄βa′(p

′)

] · (w2
a − w̄βa (p′)) ≥ 0.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 97

Taking w1 := w̄βa (p
′), w2 := w̄βa (p), and adding the above two inequalities, we have:

0 ≤
∑
a∈A

(
w̄βa (p

′)− w̄βa (p)
)

·

[
s[a](w̄

β
[a](p))− s[a](w̄

β
[a](p

′)) + p[a] − p′[a]

+
1

β
ln

(
w̄βa (p)∑

a′∈A+
ia
w̄βa′(p)

)
− 1

β
ln

(
w̄βa (p

′)∑
a′∈A+

ia
w̄βa′(p

′)

)]
.

Since the maps wa 7→ s[a](w[a]) and wa 7→ ln
(
wa/

∑
a′∈A+

ia
wa′
)
are non-decreasing, by rear-

ranging terms, we obtain: ∑
a∈A

(
w̄βa (p

′)− w̄βa (p)
)
(p′[a] − p[a]) ≤ 0,

as desired. Additionally, it also holds that∑
[a]∈AO

(
w̄β[a](p

′)− w̄β[a](p)
)
(p[a] − p[a]) ≤ 0.

We then use the above lemmas to prove that the fixed-point equation (6.11) yields a
unique solution.

Lemma 6.2.4. There exists a unique p̄ ∈ R|AO|, called the optimal toll in subsequent
discussions, which satisfies (6.11):

p̄[a] = w̄β[a](p̄) ·
ds[a]
dw

(
w̄β[a](p̄)

)
, ∀ [a] ∈ AO.

Proof. Below, we show that there exists a unique p̄ ∈ R|AO| satisfying (6.11):

p̄[a] = w̄β[a](p̄) ·
ds[a]
dw

(
w̄β[a](p̄)

)
, ∀ [a] ∈ AO.

Define ψ : R|AO| → R as:

ψ[a](p) := w[a](p) ·
ds[a]
dw

(
w[a](p)

)
, ∀ [a] ∈ AO.

Since w[a](·) is continuous (Lemma 6.2.2), and s[a] is continuously differentiable, the map ψ
is continuous. Define the set:

K :=

{
y ∈ R|AO| : y ⪰ 0, ∥y∥1 ≤ |AO|go max

[a]∈AO

ds[a]
dw

(go)

}
.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 98

Observe that K is a compact and convex subset of R|AO|, and ψ maps K to K, since for any
p ∈ K, we have ψa(p) ≥ 0 for each a ∈ A, and:

∥ψ(p)∥1 =
∑
a∈AO

ψa(p)

=
∑
a∈AO

w̄[a](p) ·
ds[a]
dw

(w̄[a](p))

≤ max
a∈AO

ds[a]
dw

(go) ·
∑
a∈AO

w̄[a](p)

≤ |AO|go · max
a∈AO

ds[a]
dw

(go).

Thus, by the Brouwer’s fixed point theorem, there exists a fixed point p̄ ∈ K ⊂ R|AO| of ψ,
i.e., there exists p̄ ∈ R|AO| satisfying (6.11), i.e.,:

p̄[a] = w̄β[a](p̄)
ds[a]
dw

(w̄β[a](p̄)), ∀ [a] ∈ AO.

Next, we show that p̄ is unique up to Markovian Traffic Equilibrium on the original traffic
network, i.e., any p′ ∈ R|AO| satisfies (6.11) if and only if w̄β[a](p

′) = w̄β[a](p̄) for each a ∈ A.
To show this, suppose by contradiction that there exists some p′ ∈ R|AO| satisfying (6.11),
such that w̄β[a](p

′) ̸= w̄β[a](p̄) for some [a] ∈ AO. Then:

p̄[a] − p′[a]

= w̄β[a](p̄) ·
ds[a]
dw

(
w̄β[a](p̄)

)
− w̄β[a](p

′) ·
ds[a]
dw

(
w̄β[a](p

′)
)

=
[
w̄β[a](p̄)− w̄

β
[a](p

′)
]
·
ds[a]
dw

(
w̄β[a](p̄)

)
+ w̄β[a](p

′) ·
[ds[a]
dw

(
w̄β[a](p̄)

)
−
ds[a]
dw

(
w̄β[a](p

′)
)]
.

Rearranging terms, and invoking the strict convexity and increasing nature of each s[a], and

the fact that w̄β[a](p̄) ̸= w̄β[a](p
′) for some [a] ∈ AO, we obtain:∑

a∈A

[
w̄βa (p̄)− w̄βa (p′)

]
(p̄[a] − p′[a])

=
∑

[a]∈AO

[
w̄β[a](p̄)− w̄

β
[a](p

′)
]
(p̄[a] − p′[a])

=
∑

[a]∈AO

[
w̄β[a](p̄)− w̄

β
[a](p

′)
]2
·
ds[a]
dw

(
w̄β[a](p̄)

)
+
∑

[a]∈AO

w̄β[a](p
′)
[
w̄β[a](p̄)− w̄

β
[a](p

′)
]2
·

[
ds[a]
dw

(
w̄β[a](p̄)

)
−
ds[a]
dw

(
w̄β[a](p

′)
)]

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 99

>0,

which contradicts Theorem 6.1.7 .
The above arguments establish that if p′ ∈ R|AO| satisfies (6.11), then w̄β[a](p

′) = w̄β[a](p̄)

for each [a] ∈ AO. Through (6.11), we then have, for each [a] ∈ AO:

p̄[a] = w̄β[a](p̄) ·
ds[a]
dw

(
w̄β[a](p̄)

)
= w̄β[a](p

′) ·
ds[a]
dw

(
w̄β[a](p

′)
)
= p′[a],

so p′ = p̄. This concludes the proof.

Finally, we prove that the CoDAG equilibrium flow corresponding to p̄ ∈ R|AO| is per-
turbed socially optimal.

Lemma 6.2.5. w̄β(p̄) is perturbed socially optimal.

Proof. Below, we show that w̄β(p̄) is perturbed socially optimal. Let w⋆ ∈ R|A| denote the
perturbed socially optimal load. Recall that, by Theorem 6.1.7 and the definition of the
perturbed socially optimal load:

w̄β(p̄) =arg min
w∈W

{ ∑
[a]∈AO

∫ w[a]

0

[
s[a](z) + p[a]

]
dz

+
1

β

∑
i ̸=d

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]}
,

w⋆ =arg min
w∈W

{ ∑
[a]∈AO

w[a] lnw[a]

+
1

β

∑
i ̸=d

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]}
.

The proof follows by verifying that the variational inequalities corresponding to the above
two optimization problems are the same. These two variational inequalities in question are
respectively given by:

∑
[a]∈AO

[
s[a]
(
w̄β[a](p̄)

)
+ w̄β[a](p̄)

ds[a]
dw

(
w̄β[a](p̄)

)
+

1

β
ln

(
w̄β[a](p̄)∑

a′∈A+
ia
w̄β[a′](p̄)

)](
wa − w̄β[a](p̄)

)
> 0,

∀w ∈ W , w ̸= w̄β[a](p̄),

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 100

∑
[a]∈AO

[
s[a]
(
w⋆[a]
)
+ w⋆[a]

ds[a]
dw

(
w⋆[a]
)

+
1

β
ln

(
w̄⋆[a]∑

a′∈A+
ia
w⋆[a′]

)](
wa − w⋆a

)
> 0,

∀w ∈ W , w ̸= w⋆,

and are thus, indeed, identical. This confirms that w̄β(p̄) = w⋆, and concludes the proof.

Together, Lemmas 6.2.2, 6.2.3, 6.2.4, and 6.2.5 prove Theorem 6.2.1.

6.3 Dynamics and Convergence

Discrete-time Dynamics

Below, we introduce discrete-time stochastic dynamics to describe flow and toll evolution
on the traffic network G. Formally, go non-atomic units of traveler enter G at the origin
node o at each time step n ≥ 0. At each non-destination node i ∈ I\{d}, a ξa[n] fraction
of commuters chooses an outgoing arc a ∈ A+

i . We shall refer to ξa[n] as the aggregate arc
selection probability. Consequently, the flow induced on any arc a ∈ A satisfies:

Wa[n] =

(
gia +

∑
a′∈A+

ia

Wa′ [n]

)
· ξa[n]. (6.13)

At the end of each time step n, commuters arrive at the destination node d and observe a
noisy estimate of the cost-to-go values and tolls on all arcs in the network (including arcs not
traversed during that time step). Let Ki > 0 be node-dependent constants, to be specified
shortly, and let {ηi[n+ 1] ∈ R : i ∈ I, n ≥ 0} be independent bounded random variables2 in
[µ, µ], with 0 < µ < µ < µ < 1/max{Ki : i ∈ I\{d}} and E[ηia [n + 1]] = µ at each node
i ∈ I and discrete time index n ≥ 0. Based on the observed latencies, at time n+1, for each
non-destination node i ∈ I\{d}, a ηi[n+1] ·Ki fraction of commuters at node i ∈ I switches
to the outgoing arc that minimizes the observed cost-to-go. Meanwhile, 1 − ηi[n + 1] · Ki

fraction of commuters chooses the same arc they selected at time step n. We assume that
{ηi[n + 1] ∈ R : i ∈ I, n ≥ 0} are independent bounded random variables3 in [µ, µ], with
0 < µ < µ < µ < 1 and E[ηia [n+ 1]] = µ for each node i ∈ I and discrete time index n ≥ 0.
Thus, the arc selection probabilities evolve according to the following perturbed best-response

2The random variables {ηa[n] : a ∈ A,n ≥ 0} are assumed to be independent of travelers’ perception
uncertainties.

3The random variables {ηa[n] : a ∈ A,n ≥ 0} are assumed to be independent of commuters’ perception
uncertainties.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 101

dynamics :

ξa[n+ 1] = ξa[n] + ηia [n+ 1] ·Kia ·

(
− ξa[n] +

exp(−β
[
za(W [n], P [n])

]
)∑

a′∈A+
ia
exp(−β

[
za′(W [n], P [n])

]
)

)
.

(6.14)

We assume that ξa[0] > 0 for each a ∈ A, i.e., each arc has some strictly positive initial
traffic flow. This captures the stochasticity in commuters’ perception of network congestion,
which causes each arc to be assigned a nonzero probability of being selected.

At each time step n + 1 ≥ 0, the tolls P[a][n] ∈ R|AO| on each arc [a] ∈ AO are updated
by interpolating between the tolls implemented at time step n, and the marginal latency of
that arc given the flow at time step n. That is:

P[a][n+ 1] = P[a][n] + γ

(
−P[a][n] +W[a][n] ·

ds[a]
dw

(W[a][n])

)
, (6.15)

with γ ∈ (0, 1)4, where with a slight abuse of notation, we denote W[a] :=
∑

a′∈[a]Wa′ . Note

that the update (6.15) is distributed, i.e., for each arc in the original network, the updated
toll depends only on the flow of that arc, and not on the flow of any other arc. Moreover,
we assume that γ ≪ µ, i.e., the toll updates (6.15) occur at a slower timescale compared to
the arc selection probability updates (6.14).

Convergence Results

In this subsection, we show that the arc selection probability and toll updates (6.14)-(6.15)
converge in the neighborhood of the socially optimal flow w̄β(p̄) and the corresponding toll
p̄ respectively.

Theorem 6.3.1. The joint evolution of arc selection probability and toll updates (6.14)-
(6.15) satisfies

lim sup
n→∞

E
[
∥ξ[n]− ξ̄β(p̄)∥22 + ∥P [n]− p̄∥22

]
= O

(
µ+

γ

µ

)
.

Consequently, for each δ > 0:

lim sup
n→∞

P
(
∥ξ[n]− ξ̄β(p̄)∥22 + ∥P [n]− p̄∥22 ≥ δ

)
= O

(
µ

δ
+

γ

δµ

)
.

4Our result also holds if γ is a random variable with bounded support.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 102

To prove Theorem 6.3.1, we employ the theory of two-timescale stochastic approximation
[10]. Consequently, the asymptotic behavior of (6.14)-(6.15) can be studied by studying the
convergence properties of the corresponding continuous-time dynamical system. Since the
tolls are updated at a slower rate compared to the traffic flows (γ ≪ µ), we consider the
evolution of continuous-time flows w(t) under a fixed toll p ∈ R|AO|, and continuous-time tolls
p(t) with flow converged at the corresponding CoDAG equilibrium w̄β(p(t)) at each time.
Specifically, for any fixed toll p ∈ R|AO|, on each arc a ∈ A, the arc selection probabilities
evolve as follows:

wa(t) = ξa(t) ·

(
gia +

∑
a′∈A−

ia

wa′(t)

)
, (6.16)

ξ̇a(t) = Kia

(
−ξa(t) +

exp(−β · za(w(t), p))∑
a′∈A+

ia
exp(−β · za′(w(t), p))

)
. (6.17)

Meanwhile, on each arc [a] ∈ AO on the original network, we consider the following continuous-
time toll dynamics:

ṗ[a](t) = −p[a](t) + w̄β[a](p(t)) · θ[a],1. (6.18)

We prove that, for each fixed toll p ∈ R|AO|, the corresponding continuous-time ξ-
dynamics (6.17) globally asymptotically converges to the corresponding CoDAG equilibrium
w̄β(p) ∈ R|A|. Moreover, the continuous-time toll dynamics (6.18) globally converges to the
optimal toll p̄ ∈ R|AO|.

Lemma 6.3.2. Suppose w(0) ∈ W, i.e., the initial flow satisfies flow continuity. For each
fixed toll vector p ∈ R|AO|, the continuous-time flow dynamics induced by the arc-selection
dynamics (6.17) globally asymptotically converges to the corresponding CoDAG equilibrium
w̄β(p).

Proof. We recursively write the continuous-time evolution of the arc flows w(·) as follows,
from (6.17) and (6.16). At any w ∈ W , for each a ̸∈ A+

o :

ẇa(t)

= ξ̇a(t) ·

(
gia +

∑
â∈A−

ia

wâ(t)

)
+ ξa(t) ·

∑
a′∈A−

ia

ẇa′(t) (6.19)

=Kia

(
− ξa(t) +

exp(−βza(w(t), p))∑
a′∈A+

ia
exp(−βza′(w(t), p))

)
·

(
gia +

∑
â∈A−

ia

wâ(t)

)

+ ξa(t) ·
∑
a′∈A−

ia

ẇa′(t) (6.20)

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 103

= −Kiawa(t) +Kia ·

(
gia +

∑
â∈A−

ia

wâ(t)

)
· exp(−βza(w(t), p))∑

a′∈A+
ia
exp(−βza′(w(t), p))

+
wa(t)∑

a′∈A+
ia
wa′(t)

·
∑
â∈A−

ia

ẇâ(t)

= −Kia

(
1−

∑
a′∈A−

ia
ẇa′

Kia ·
∑

â∈A+
ia
wâ

)
wa (6.21)

+Kia ·

(
gia +

∑
â∈A−

ia

wâ(t)

)
· exp(−βza(w(t), p))∑

a′∈A+
ia
exp(−βza′(w(t), p))

,

for each a ∈ A. More formally, we define each component h : W → R|A| recursively as
follows. First, for each a ∈ A+

o , we set:

ha(w, p) := Ko

(
− wa + go ·

exp(−βza(w, p))∑
a′∈A+

o
exp(−βza′(w, p))

)
.

Suppose now that, for some arc a ∈ A, the component ha : W → R of h has been defined
for each â ∈ A−

ia
. Then, we set:

ha(w, p) := −Kia

(
1−

∑
a′∈A−

ia
ha′(w, p)

Kia ·
∑

â∈A+
ia
wâ

)
wa +Kia ·

∑
a′∈A−

ia

wa′ ·
exp(−βza(w, p))∑

a′∈A+
o
exp(−βza′(w, p))

.

By iterating through the above definition forward through the Condensed DAG G from
origin to destination (in other words, along nodes of increasing depth), we can completely
specify each ha in a well-posed manner (For a more rigorous characterization of this iterative
procedure, see Appendix A, Proposition 1). We then define the w-dynamics corresponding
to the ξ-dynamics (6.17) by:

ẇ = h(w, p). (6.22)

Now, recall the objective F :W×R|AO| → R of the optimization problem that characterizes
w̄β, first stated in Theorem 6.1.7 as Equation (6.8), reproduced below:

F (w, p) :=
∑

[a]∈A0

∫ w[a]

0

[
s[a](z) + p[a]

]
dz

+
1

β

∑
i ̸=d

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]
.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 104

Roughly speaking, our main approach is to show that F is a Lyapunov equation for the best-
response dynamics in (6.22). Specifically, let Ws denote the tangent space to W , and let
ΠWs denote the orthogonal projection onto Ws. Under the continuous-time flow dynamics
(6.17) and (6.16):

d

dt
F (w(t), p)

= ẇ(t)⊤∇wF (w(t), p) (6.23)

= ẇ(t)⊤ΠWs∇wF (w(t), p) (6.24)

= ẇ(t)⊤ΠWs

(
∇wf(w(t), p) +∇χβ(w(t))

)
= ẇ(t)⊤ΠWs

((
s[a](w[a](t)) + p[a]

)
a∈A +∇χβ(w(t))

)
(6.25)

= ẇ(t)⊤ΠWs

[
−∇χβ

(((
gia +

∑
a′∈A−

ia

wa′(t)

)
· exp(−βza(w(t), p))∑

ā∈A+
i
exp(−βzā(w(t), p))

)
a∈A

)
(6.26)

+∇χβ(w(t))

]

= ẇ(t)⊤ΠWs

[
−∇χβ

(((
gia +

∑
a′∈A−

ia

wa′(t)

)
· exp(−βza(w(t), p))∑

ā∈A+
i
exp(−βzā(w(t), p))

)
a∈A

)
(6.27)

+∇χβ
(((

1−

∑
a′∈A−

ia
ha′(w(t), p)

Kia ·
∑

â∈A+
ia
wâ(t)

)
wa(t)

)
a∈A

)]

=

[(
−Kia ·

(
1−

∑
a′∈A−

ia
ha′(w(t), p)

Kia ·
∑

â∈A+
ia
wâ(t)

)
wa(t)

+Kia ·

(
gia +

∑
a′∈A+

ia

wa′(t)

)
· exp(−βza(w(t), p))∑

ā∈A+
ia
exp(−βzā(w(t), p))

)
a∈A

]⊤
[
−∇χβ

(((
gia +

∑
a′∈A−

ia

wa′(t)

)
· exp(−βza(w(t), p))∑

ā∈A+
i
exp(−βzā(w(t), p))

)
a∈A

)

+∇χβ
(((

1−

∑
a′∈A−

ia
ha′(w(t), p)

Kia ·
∑

â∈A+
ia
wâ(t)

)
wa(t)

)
a∈A

)]
< 0.

We explain the equalities (6.23) = (6.24), (6.25) = (6.26) and (6.26) = (6.27) below. After
(6.26), the rest of the proof follows by substituting in the definition of ẇ, recalling from
“(6.23) = (6.24)” that ẇ ∈ Ws, and invoking the strict convexity of χβ.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 105

Verifying (6.23) = (6.24) From the equations leading up to (6.21), we have, for each
w ∈ W :

ẇa(t) = ha(w(t), p)

= −Kia

(
1−

∑
a′∈A−

ia
ẇa′

Kia ·
∑

â∈A+
ia
wâ

)
wa

+Kia ·

(
gia +

∑
a′∈A−

ia

wa′(t)

)
· exp(−βza(w(t), p))∑

a′∈A+
ia
exp(−βza′(w(t), p))

= −Kia · wa(t) +Kia ·

(
gia +

∑
a′∈A−

ia

wa′(t)

)
· exp(−βza(w(t), p))∑

a′∈A+
ia
exp(−βza′(w(t), p))

+
wa∑

â∈A+
ia
wâ
·
∑
a′∈A−

ia

ẇa′(t)

= −Kia · wa(t) +Kia ·

(
gia +

∑
a′∈A−

ia

wa′(t)

)
· exp(−βza(w(t), p))∑

a′∈A+
ia
exp(−βza′(w(t), p))

+ ξa(t) ·
∑
a′∈A−

ia

ẇa′(t).

Fix any node i ∈ I in the Condensed DAG, and consider the sum of the above equation over
the arc subset A+

i :∑
a′∈A+

i

ẇa′(t) = −
∑
a′∈A+

i

wa′(t) +

(
gi +

∑
â∈A−

ia

wâ(t)

)
· 1 + 1 ·

∑
â∈A−

ia

ẇâ(t).

Rearranging terms, we obtain:

d

dt

∑
a′∈A+

i

wa′ −
∑
â∈A−

ia

wâ − gi

 = −

∑
a′∈A+

i

wa′ −
∑
â∈A−

ia

wâ − gi

 .

Since w(0) ∈ W by assumption, we have the initial condition (
∑

a′∈A+
i
wa′ −

∑
â∈A−

ia
wâ −

gi)(0) = 0 for the above linear time-invariant differential equation. We thus conclude that,
for each t ≥ 0: ∑

a′∈A+
i

wa′(t)−
∑
â∈A−

ia

wâ(t)− gi = 0.

Since this holds for any arbitrary node i ∈ I, we have w(t) ∈ W for all t ≥ 0.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 106

Verifying (6.25) = (6.26) We will show that:

ΠWs

[(
s[a](w[a](t))

)
a∈A +∇χβ

(((
gia +

∑
a′∈A−

ia

wa′(t)

)
(6.28)

· exp(−βza(w(t), p))
Kia ·

∑
ā∈A+

i
exp(−βzā(w(t), p))

)
a∈A

)]
= 0,

which would a fortiori establish the desired claim (6.25) = (6.26). To do so, first note that,
for each i ̸= d, a ∈ A+

i :

∂χβ

∂wa
(w) =

1

β
·

[
lnwa + 1− ln

∑
a∈A+

i

wa

− 1

]
=

1

β
ln

(
wa∑

a∈A+
i
wa

)
. (6.29)

Thus, we have:

∂χβ

∂wa

(((
gia +

∑
a′∈A−

ia

wa′

)
· exp(−βza(w, p))∑

ā∈A+
ia
exp(−βzā(w, p))

)
a∈A

)

=
1

β
ln

(
exp(−βza(w, p))∑

ā∈A+
i
exp(−βzā(w, p))

)

= − za(w, p)−
1

β
ln

∑
ā∈A+

ia

exp(−βzā(w, p))


= − za(w, p) + φia(w, p).

Concatenating these partial derivatives to form the gradient, we can now verify (6.28) by
observing that:

ΠWs

[(
s[a](w[a]) + p[a]

)
a∈A

+∇χβ
(((

gia +
∑
a′∈A−

ia

wa′

)
· exp(−βzâ(w, p))∑

ā∈A+
i
exp(−βzā(w, p))

)
â∈A

)
a∈A

]
=ΠWs

(
s[a](w[a]) + p[a] − za(w, p) + φia(w, p)

)
a∈A

=ΠWs

(
φia(w, p)− φja(w, p)

)
a∈A

=ΠWs

[∑
a∈A

φia(w, p)ea −
∑
a∈A

φja(w, p)ea

]

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 107

=ΠWs

[
−
∑
â∈A−

d

φjâ(w, p)eâ +
∑
a′∈A+

o

φia′ (w, p)ea′

+
∑

i ̸={o,d}

(∑
a′∈A+

i

φi(w, p)ea′ −
∑
â∈A−

i

φi(w, p)eâ

)]

=ΠWs

[
0 + φo(w, p)eA+

o
+
∑

i ̸={o,d}

φi(w, p)
(
eA−

i
− eA+

i

)]
=0,

where the last equality follows by definition of ΠWs .

Verifying (6.26) = (6.27) We will show that:

∇χβ(w) = ∇χβ
(((

1−

∑
a′∈A−

ia
ẇa′

Kia ·
∑

â∈A+
ia
wâ

)
· wa

)
a∈A

)
,

which is equivalent to showing that (6.26) = (6.27). From (6.29), we have for each a ∈ A:

∂χβ

∂wa

(((
1−

∑
a′∈A−

ia
ha′(w, p)

Kia ·
∑

â∈A+
ia
wâ

)
· wa

)
a∈A

)
=

1

β
ln


(
1−

∑
a′∈A−

ia

ha′ (w,p)

Kia ·
∑

â∈A+
ia

wâ

)
wa

∑
ā∈A+

ia

(
1−

∑
a′∈A−

iā

ha′ (w,p)

Kia ·
∑

â∈A+
iā

wâ

)
wā



=
1

β
ln


(
1−

∑
a′∈A−

ia

ha′ (w,p)

Kia ·
∑

â∈A+
ia

wâ

)
wa(

1−
∑

a′∈A−
ia

ha′ (w,p)

Kia ·
∑

â∈A+
ia

wâ

)
·
∑

ā∈A+
ia
wā


=

1

β
ln

(
wa∑

ā∈A+
ia
wā

)

=
∂χβ

∂wa
(w).

The second equality above follows because, for each ā ∈ A+
ia
, we have iā = ia. This verifies

that (6.26) = (6.27).
Above, we proved that the map F strictly decreases along any trajectory originating in

W\{w̄β} and following the best-response dynamics 6.22. The convergence of the dynamics
(6.22) to the Condensed DAG equilibrium (6.1.6) now follows by invoking either Sandholm,
Corollary 7.B.6 [93], or Sastry, Proposition 5.22 and Theorem 5.23 (LaSalle’s Principle and
its corollaries) [94].

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 108

Theorem 6.3.3. There exists some δ > 0 such that for any initial p(0) ∈ R|AO| satisfying
∥p(0)− p̄∥2 < δ, where p̄ ∈ R|AO| denotes the socially optimal toll, and ∥ · ∥⋆, the continuous-
time dynamical system for the evolution of the tolls p(t) ∈ R|AO|:

ṗ[a] = −p[a] + w̃β[a](p) ·
ds[a]
dw

(
w̃β[a](p)

)
(6.30)

converges to p̄ ∈ R|AO|.

Proof. Define ψβ : R|AO| → RAO by:

ψβ[a](p) := w̄β[a](p) ·
ds[a]
dw

(
w̄β[a](p)

)
,

for each p ∈ R|AO| and [a] ∈ AO.
First, we claim that the eigenvalues of dψβ

dp
are real and strictly negative, and thus lie on

the open left half complex plane. To see this, note that:

dψβ

dp
(p) = D(p)

dw̃β

dp
(p), (6.31)

where D(p) ∈ R|AO|×|AO| is a diagonal matrix with diagonal entries:

D[a][a](p) =
ds[a]
dw

(
w̄β[a](p)

)
+ w̄β[a](p) ·

d2s[a]
dw2

(
w̄β[a](p)

)
for each [a] ∈ AO. Our approach for analyzing (6.31) will be to show that D(p) and dw̃β

dp
(p)

are symmetric positive definite and symmetric negative definite, respectively. To this end,
note that since s[a] is strictly convex and increasing for each [a] ∈ AO, each D[a][a](p) is
non-negative, so D(p) is symmetric positive definite.

Meanwhile, to show that dw̃β

dp
is symmetric negative semidefinite, let C ∈ R|A|×|AO| be

defined by Ca,[a′] := 1{a ∈ [a′]}, where 1{·} is the indicator function that returns 1 when
the input argument is true, and 0 otherwise. (Note that C has full column rank, due to the
surjectivity of the map π : a 7→ [a]). Then:

dw̃β

dp
(p) = C⊤dw̃

β

dp
(p). (6.32)

To characterize dw̃β

dp
(p), we invoke the Implicit Function Theorem. As established in the proof

of Proposition 6.2.2, there exists a continuously differentiable function J : R|AO|×R|A| → R|A|,
and matrices M ∈ R|A|×d and B ∈ R|A|×(|A|−d), such that J(p, wβ(p)) = 0 for each p ∈ R|AO|,
the columns of B and the columns of M are orthonormal, R(M) and R(B) are orthogonal
subspaces whose direct sum is R|A|, and:

∂J

∂w
(w, p) =

[
M⊤

B⊤∇2
wF (w, p)

]
∈ R|A|×|A|,

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 109

where, as in the proof of Proposition 6.2.2, F :W × R|AO| → R is given by:

F (w, p) =
∑

[a]∈AO

∫ w[a]

0

[
s[a](u) + p[a]

]
du+

1

β

∑
i ̸=d

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]
.

Thus, the Implicit Function Theorem implies that:

dw̄β

dp
(p) = −

[
∂J

∂w
(w̄β(p), p)

]−1
∂J

∂p
(w̄β(p), p)

= −
[

M⊤

B⊤∇2
wF (w̄

β(p), p)

]−1 [
O

B⊤ d
dp
∇wF (w̄

β(p), p)

]
, (6.33)

where ∇wF (w, p) ∈ R|A|, and ∂
∂p
∇wF (w, p) ∈ R|A|×|AO|. To study (6.33) further, we wish

to rewrite the B⊤∇2
wF (w, p) term. To this end, note that since

[
M B

]
∈ R|A|×|A| is an

orthogonal matrix, and ∇2
wF (w, p) is symmetric positive definite (since F (p, ·) is strictly

convex for each p ∈ R|AO|), the matrix:

Q :=

[
M⊤

B⊤

]
∇2
wF (w̄

β(p), p)
[
M B

]
∈ R|A|×|A|

is symmetric positive definite as well. Now, let Q11 := M⊤∇2
wF (w, p)M ∈ Rd×d, Q12 :=

M⊤∇2
wF (w, p)B ∈ Rd×(|A|−d), and Q22 := B⊤∇2

wF (w, p)B ∈ R(|A|−d)×(|A|−d) denote the
various block matrices of Q, as shown below:

Q =

[
Q11 Q12

Q⊤
12 Q22

]
.

We then have:

B⊤∇2
wF (w, p) =

[
O I

] [M⊤

B⊤

]
∇2
wF (w, p)

=
[
O I

]
Q

[
M⊤

B⊤

]
= Q⊤

12M
⊤ +Q22B

⊤,

where the matrices O and i ∈ I above are the zero matrix of dimension (|A| − d) × d and
identity matrix of dimension (|A|−d)× (|A|−d), respectively. Substituting back into (6.33),
we obtain:

dw̄β

dp
(p) = −

[
M⊤

B⊤∇2
wF (w, p)

]−1 [
O

B⊤ d
dp
∇wF (w, p)

]
= −

[
M⊤

Q⊤
12M

⊤ +Q22B
⊤

]−1 [
O

B⊤ d
dp
∇wF (w, p)

]

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 110

= −

([
I O
Q⊤

12 Q22

] [
M⊤

B⊤

])−1 [
O
B⊤

]
d

dp
∇wF (w, p)

= −
[
M B

] [I O
−Q−1

22 Q
⊤
12 Q−1

22

] [
O
B⊤

]
d

dp
∇wF (w, p) (6.34)

= −BQ−1
22 B

⊤C (6.35)

= −B(B⊤∇2
wF (w, p)B)−1B⊤C,

where the computation of d
dp
∇wF (w, p) to show the equality between (6.34) and (6.35) follows

by observing that, since for each a ∈ A:

∂

∂wa
F (w, p) = s[a](w[a]) + p[a] +

1

β
lnwa −

1

β
ln

(∑
a′∈A+

ia

wa

)
,

we have
(
d
dp
∇wF (w, p)

)
a,[a′]

= 1{a ∈ [a′]} = Ca,[a′], i.e.,
d
dp
∇wF (w, p) = C. Together, (6.32)

and (6.35) give:

dw̃β

dp
(p) = C⊤dw̃

β

dp
(p) = −C⊤BQ−1

22 B
⊤C

= −C⊤B(B⊤Q22B)−1B⊤C,

This establishes that dw̃β

dp
(p) is symmetric negative semidefinite.

Returning to our original objective of showing that the eigenvalues of dψβ

dp
are negative,

recall that from (6.31), we have:

dψβ

dp
(p) = D(p)

dw̃β

dp
(p).

Now, consider the Lyapunov function V : R|A0| → R, given by:

V (p) := (p− p̄)⊤D(p̄)−1(p− p̄)⊤.

Given a square matrix M of any dimension, let σmin(M) denote the smallest singular values
of M , respectively. Let δ1 > 0 be given such that, for each p̂ ∈ R|A0| satisfying ∥p̂− p̄∥2 ≤ δ1:∥∥∥∥dψβdp (p̂)

∥∥∥∥
2

≤ 2

∥∥∥∥dψβdp (p̄)

∥∥∥∥
2

,

∥D(p̂)−1 −D(p)−1∥2 ≤
σmin (D(p̄)−1)

4
∥∥∥dψβ

dp
(p̄)
∥∥∥
2

.

Set:

δ :=
σmin(D(p̄)−1)

∥D(p̄)−1∥2
· δ1 ∈ (0, δ1].

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 111

Then, for any p̂ ∈ R|A0| such that ∥p̂− p̄∥2 < δ, we have:

∥p̂− p̄∥2 < δ1,

V (p) < ∥D(p̄)−1∥2 · δ = σmin(D(p̄)−1) · δ1,

and:

V̇ =
dV

dp

⊤
ṗ

= 2(p− p̄)⊤D(p̄)−1ṗ

= 2(p− p̄)⊤D(p̄)−1
(
−p+ ψβ(p)

)
= −2(p− p̄)⊤D(p̄)−1 (p− p̄) + 2(p− p̄)⊤D(p̄)−1

(
−p̄+ ψβ(p)

)
= −2V + 2(p− p̄)⊤D(p̄)−1

(
ψβ(p)− p̄

)
= −2V + 2(p− p̄)⊤D(p̄)−1

(
ψβ(p)− ψβ(p̄)

)
= −2V + 2(p− p̄)⊤D(p̄)−1

(∫ 1

0

dψβ

dp
(̄tp̄+ (1− t)p)dt

)
(p− p̄)

= −2V + 2(p− p̄)⊤
(∫ 1

0

D(p̄)−1D
(
tp̄+ (1− t)p

)dw̃β
dp

(̄tp̄+ (1− t)p)dt
)
(p− p̄)

= −2V + 2(p− p̄)⊤
(∫ 1

0

dw̃β

dp
(̄tp̄+ (1− t)p)dt

)
(p− p̄)

+ 2(p− p̄)⊤
(∫ 1

0

[
D(p̄)−1 −D

(
tp̄+ (1− t)p

)−1
]

D
(
tp̄+ (1− t)p

)dw̃β
dp

(̄tp̄+ (1− t)p)dt

)
(p− p̄)

≤ −2V + 0 + 2∥p− p̄∥22 ·
σmin (D(p̄)−1)

4
∥∥∥dψβ

dp
(p̄)
∥∥∥
2

· 2
∥∥∥∥dψβdp (p̄)

∥∥∥∥
2

= −2V + σmin

(
D(p̄)−1

)
∥p− p̄∥22

≤ −2V + V

≤ −V.

We now claim that if p(0) ∈ R|AO| satisfies V (p(0)) ≤ ϵ := σmin(D(p̄))−1 · δ1, then
we indeed have V (p(t)) < ϵ for each t ≥ 0, and thus V̇ ≤ −V for each t ≥ 0, with
equality if and only if p = p̄. To see this, suppose by contradiction that V (p(t1)) ≥ ϵ
for some t1 ≥ 0. Since V (p(t)) is continuously differentiable, and V (p(0)) < ϵ, we have
τ := inf{t ≥ 0 : V̇ > 0} ∈ [0, t1). Thus, for each t ∈ [0, τ), we have V̇ ≤ 0; since V (p(0)) < ϵ,
we have V (τ) ≤ V (p(0)) < ϵ. The continuity of V then implies the existence of some
δ > 0 such that V (p(t)) < ϵ for each t ∈ [0, τ + δ], and thus V̇ ≤ 0 for each t ∈ [0, τ + δ],

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 112

contradicting the definition of τ . Thus, if V (p(0)) = (p(0) − p̄)⊤D(p̄)−1(p(0) − p̄) < ϵ, we
have V̇ ≤ −V for all t ≥ 0, with equality if and only if p(t) = p̄. This establishes the local
convergence (in fact, at an exponential rate) of p(t) to p̄, as claimed.

To conclude the proof of Theorem 6.3.1, it remains to check that the discrete-time dy-
namics (6.14)-(6.15), and the continuous-time dynamics (6.17)-(6.18), satisfy the technical
conditions in Lemmas 6.3.4 and 6.3.5. In particular, Lemma 6.3.4 establishes that flows and
tolls are uniformly bounded across the arc and time indices, while Lemma 6.3.5 asserts that
the continuous-time flow and toll dynamics maps are Lipschitz continuous.

Lemma 6.3.4. The discrete-time flow and toll dynamics induced by (6.14)-(6.15) satisfy:

1. For each a ∈ A: {Ma[n + 1] : n ≥ 0} is a martingale difference sequence with respect
to the filtration Fn := σ

(
∪a∈A (Wa[1], ξ[1], p[1], · · · ,Wa[n], ξ[n], p[n])

)
.

2. There exist Cw, Cm, Cp > 0, such that, for any node-dependent constants {Ki : i ∈ I},
each a ∈ A and each n ≥ 0, we have Wa[n] ∈ [Cw, go], Pa[n] ∈ [0, Cp], |Ma[n]| ≤ Cm.

Likewise, the continuous-time flow and toll dynamics induced by (6.17) and (6.18) satisfy
the following condition—For each a ∈ A, t ≥ 0, we have wa(t) ∈ [Cw, go] and pa(t) ∈ [0, Cp].

Proof. Please see [20], Appendix B.2.

Lemma 6.3.5. The continuous-time flow dynamics (6.16) and toll dynamics (6.18) satisfy:

1. The map ξ̄β : R|AO| → R|A| is Lipschitz continuous.

2. For each a ∈ A, the restriction of the cost-to-go map za :W ×R|AO| → R to the set of
realizable flows and tolls, i.e., W ′ × [0, Cp]

|AO|, is Lipschitz continuous.

3. The map from the probability transitions ξ ∈
∏

i∈I\{d}∆(A+
i) and the traffic flows

w ∈ W is Lipschitz continuous.

4. For each a ∈ A, the restriction of the continuous dynamics transition map ρa : R|A| ×
R|AO| → R|A|, defined recursively by:

ρa(ξ, p) := Kia

(
−ξa +

exp(−βza(w, p))∑
a′∈A+

ia
exp(−βza′(w, p))

)
.

to the set of realizable flows and tolls, i.e., W ′ × [0, Cp]
|AO|, is Lipschitz continuous.

5. For each a ∈ A, the map r[a] : R|AO| × R|AO|, defined by:

r[a](p) := −p[a] + w̄β[a](p) ·
ds[a]
dw

(w̄β[a](p)), ∀a ∈ A,

is Lipschitz continuous.

Proof. Please see [20], Appendix B.3.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 113

Table 6.2: Parameters for simulation.

Notation Default value

θa,0 0, 1, 0, 1, 1, 0, 1, 1, 1 (ordered by edge index)
θa,1 2, 1, 1, 1, 1, 1, 2, 2, 2 (ordered by edge index)
g1 1
β 10
γ 0.02
ηia [n] Uniform(0, 0.1), ∀a ∈ A, i ∈ I\{d}

6.4 Experiment Results

This section presents experiments that validate the theoretical convergence results of Section
6.3. We present simulation results illustrating that, under (6.14)-(6.15), the traffic flows and
tolls converge to a neighborhood of the socially optimal values, as claimed by Theorem 6.3.1.

Consider the network presented in Figure 6.1, following affine latency functions sa(wa) =
θa,1wa + θa,0 with parameters given in Table 6.2. To validate Theorem 6.3.1, we evaluate
and plot the traffic flow values Wa[n] and toll values Pa[n] on each arc a ∈ A with respect
to discrete time index n ≥ 0. Figure 6.2 presents traffic flow values at the condensed DAG
equilibrium (i.e., wβ) for the original network before and after tolls. Meanwhile, Figure 6.3
and 6.4 illustrate that w and p converge to the condensed DAG equilibrium in approximately
300 iterations. While the original traffic distribution is more concentrated on a few routes,
tolls can distribute the traffic more evenly. This shows that tolls can improve overall social
welfare by reducing congestion in over-utilized routes.

6.5 Discussion

This work introduces a discrete-time adaptive tolling scheme to minimize the total travel
latency in a general traffic network with bidirectional edges. Our model assumes that, at
each time, players near-instantaneously react via perturbed best response to the announced
tolls. Accordingly, we formulate a two-timescale stochastic dynamical system that describes
the joint evolution of traffic flow and tolls. We prove that the fixed point of these dynamics
is unique and corresponds to the optimal traffic flow allocation from the perspective of
minimizing the total travel time. Moreover, we prove that the stochastic dynamics converges
to a neighborhood of the unique fixed point with high probability. Finally, we present
simulation results that corroborate our theoretical findings.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 114

Figure 6.2: Steady state traffic flow on each arc for the original network before (left) and
after (right) tolls. Flows on arcs emerging from the same node are identically colored.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 115

Figure 6.3: Traffic flow W vs. time index n for the condensed DAG in Figure 6.1.

CHAPTER 6. ADAPTIVE TOLLING FOR ARC-BASED TRAFFIC ASSIGNMENT 116

Figure 6.4: Toll P vs. time index n for the condensed DAG in Figure 6.1.

117

Chapter 7

Online Learning for Adaptive Tolling

Chapter 6 presented an adaptive tolling mechanism over a stochastic arc-based traffic assign-
ment model (TAM), in which commuters sequentially select among outgoing arcs at each
intermediate node from source to destination. In particular, an entropy parameter β > 0
is used to characterize stochasticity in the commuters’ arc selections. Unfortunately, the
deployment of the tolling scheme required the unrealistic assumption that the central tolling
authority possesses perfect knowledge of β the network latency functions.

To address this shortcomings, this chapter presents an online learning algorithm in the
framework of a stochastic, arc-based TAM, to simultaneously learn the latency function
and the entropy parameter, while implementing tolls that become increasingly effective at
reducing overall congestion in subsequent iterations. At each iteration, we first implement
tolls, constructed during the most recent iteration, on each arc in the network. We then
collect the resulting equilibrium traffic flow and latency data from each arc, and apply a
regularized least-squares method to update our estimates of the latency function parameters,
based on the collected data. In turn, the flow data and latency function estimates can then
be used to update our estimate of the entropy parameter β, using the Principle of Optimism
in the Face of Uncertainty. Finally, these improved estimates of the latency function and
entropy parameters are used to design an improved tolling strategy for the next iteration.

We define the stage-wise regret of our algorithm at each iteration t to be the difference
between the following two quantities: (a) The overall latency in the network induced by
equilibrium flows corresponding to the toll implemented at iteration t, and (b) The minimum
overall latency attainable by the tolling mechanism if it possessed perfect knowledge of the
entropy parameter and each arc latency function. The cumulative regret is then computed
by summing the stage-wise regret across all iterations. Our algorithm incurs regret of order
O(
√
T ln(T)|A| ·max{|I| ln(|A|/|I|), B}), where T denotes the total iteration count, |A| and

|I| denote the number of arcs and nodes in the network, respectively, and B denotes the
number of arcs in the network used to construct the estimate of the entropy parameter β at
each iteration.

On a technical level, our algorithm utilizes concepts familiar to the bandits community,
such as the regularized least-squares method for latency function estimation [48, 64, 1],

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 118

and the Principle of Optimism in the Face of Uncertainty for entropy parameter estimation
and toll design. However, the problem formulation and proof methodologies considered in
this work differ significantly from the above literature. First, in our problem setup, the
decision maker’s actions are tolls, which induce equilibrium flows through a non-convex
map; in turn, the regret is defined from the overall network congestion generated by these
equilibrium flows. Similarly, the unknown entropy parameter estimated in our work affects
the cumulative regret in a complicated manner. These complex dependencies between the
actions, unknown parameters, and regret preclude the direct use of analysis techniques in the
bandit literature. Moreover, whereas the decision-maker in [48] estimates latency functions
in the context of a route-based TAM and implements optimal flow assignments directly,
our work estimates both the latency functions and entropy parameter β of an underlying
arc-based TAM, and implements tolls, which in turn induce an equilibrium flow from which
the regret is computed. In particular, to estimate the entropy parameter β, we use a novel
approximation scheme beyond the methods in [48].

Likewise, various works have investigated the problem of estimating the entropy param-
eter of softmax models in the context of traffic assignment models or other machine learning
problems [84, 82, 91]. However, these approaches usually use heuristic models to approxi-
mate the unknown parameter [84, 82], or assume that the overall objective can be written
as a convex function of the entropy parameter [91]. These assumptions separate the above
methods from our work, since our formulation involves cost and equilibrium models that are
highly non-convex in the action variables (tolls) and in the unknown entropy parameter β.

The remainder of the paper is structured as follows. Section 7.1 introduces the traffic
network studied throughout the remaining sections, as well as the incentive structures faced
by the commuters traversing the network. Section 7.2 presents our online algorithm. An
upper bound for the overall regret incurred by this algorithm is given in Section 7.4. Finally,
Section 7.5 presents empirical evidence for the theoretical regret bounds on our algorithm,
while Section 7.6 summarizes our work and presents avenues for future research. More
details can be found in Chiu and Sastry, “Parameter Estimation in Optimal Tolling for
Traffic Networks Under the Markovian Traffic Equilibrium” [19].

7.1 Preliminaries

Setup

Let G = (I, A) be a directed acyclic graph that describes a single-origin single-destination
traffic network, with I and A denoting the set of nodes and the set of arcs, respectively. For
each arc a ∈ A, we denote the start and end nodes of a by ia and ja, respectively. For each
node i ∈ I, let A−

i , A
+
i ⊂ A denote the set of incoming and outgoing arcs. Let go ≥ 0 denote

the traffic flow entering the network G at each iteration.
To traverse the network, commuters sequentially select from outgoing arcs at each inter-

mediate node, from the origin o to the destination d. Each arc a ∈ A is associated with a

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 119

positive, strictly increasing latency function sa : [0,∞) → [0,∞), which captures the time
required to travel through arc a due to congestion produced by the traffic load wa ≥ 0, and
a toll pa ≥ 0, the monetary value each traveler must pay to access the arc. Throughout the
rest of the paper, we adopt a linear latency model, formally stated in the assumption below
1.

Assumption 7.1.1 (Linear Latency Functions). For each arc a ∈ A, there exists some
θa ∈ R such that sa(wa) = θawa.

The cost ca : [0,∞)3 → [0,∞) on each arc is then obtained by summing the travel time
and toll:

ca(θa, wa, pa) = sa(wa) + pa = θawa + pa,

while the perceived cost c̃a additionally includes a zero-mean stochastic error term δa ∈ R
that encapsulates variations in commuters’ perception of travel time:

c̃a(θa, wa, pa) = sa(wa) + pa + δa = θawa + pa + δa,

At every non-destination node i ∈ I\{d}, commuters select among outgoing nodes a ∈ A+
i

by computing their perceived minimum cost-to-go {z̃a ∈ R : a ∈ A+
i } on arc a:

z̃a(θ, w, p) := c̃a(θ, wa, pa) + Eδ
[
min
a′∈A+

ja

z̃a′(θ, w, p)
]
, ja ̸= d, (7.1)

z̃a(θ, w, p) := c̃a(θ, wa, pa), ja = d.

In this work, we adopt the logit Markovian Model [2, 3], under which the noise terms δa are
described by the Gumbel distribution with scale parameter β > 0. (We also call β > 0 the
entropy parameter.) As a result, the expected cost-to-go za for each arc a ∈ A admits the
following closed-form expression:

za(θ, w, p) = ca(θa, wa, pa)−
1

β
ln

(∑
a′∈A+

ja

e−βza′ (θ,w,p)

)
. (7.2)

As a result, the corresponding equilibrium flow, called the Markovian Traffic Equilibrium
(MTE) w̄θ,β(p) ∈ R|A| corresponding to the latency function parameters θ ∈ R|A|, entropy
parameter β > 0, and toll vector p ∈ R|A|, is the unique flow vector satisfying the following
fixed point equation—For each non-destination node i ∈ I\{d} and outgoing arc a ∈ A+

i :

w̄θ,βa (θ, p) =

gi + ∑
a′∈A+

i

w̄θ,βa′ (θ, p)

 · exp(−βza(θ, w̄θ,β(p), p))∑
a′∈A+

i
exp(−βza′(θ, w̄θ,β(p), p))

∈ W ,

1For an extension of our least-squares-based latency function estimation method to higher-degree poly-
nomial latency functions, please see [48].

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 120

where W is the constraint set that enforces the conservation of traffic flow:

W :=

{
w ∈ R|A| :

∑
a∈A+

i

wa =
∑
a∈A−

i

wa, ∀ i ̸= o, d,
∑
a∈A+

o

wa = go, wa ≥ 0, ∀a ∈ A

}
(7.3)

Socially Optimal Tolls

The objective of toll implementation is to realign commuter’s incentives and route selection
decisions, to induce perturbed social optimality with respect to the logit Markovian model
detailed in Section 7.1, as defined below.

Definition 7.1.1 (Perturbed Socially Optimal Flow). Let the perturbed total weighted
latency L :W × R|A| × R→ R be given by:

L(w, θ, β) :=
∑
a∈A

waℓ
θ
a(wa) +

1

β⋆

∑
i∈I\{d}

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]
. (7.4)

We call w⋆ ∈ W the perturbed socially optimal flow with latency parameters θ regularization
parameter β > 0 if it solves minw∈W L(w, θ, β), with W given by (7.3).

In the perturbed total latency L defined above, the first component is the total latency on
the network weighted by the traffic load on each arc, while the second component is a non-
positive entropy term that achieves its minimum when the traffic load at each non-destination
node allocates itself equally among all outgoing arc. Thus, the entropy parameter β weights
the total network latency against the tendency of commuters with imperfect information to
explore among outgoing arcs at each intermediate node.

Since the minimization problem posed by Definition 7.1.1 is strictly convex, the perturbed
socially optimal flow exists and is unique. Moreover, [22, 20] establish that, given a traffic
network G = (I, A) with latency function parameters θ ∈ R|A| and entropy parameter β > 0,
there exists an optimal toll p̄ ∈ R|A| whose corresponding MTE w̄θ,β(p̄) is perturbed socially
optimal, and a dynamic tolling scheme that converges to the optimal toll. Those results, in
the context of the online tolling problem considered in this work, are as summarized below.
For more details, please see [20].

Proposition 7.1.2. There exists w̃ ∈ W and p̄ ∈ R|A| such that w̃ = w̄θ,β(p̄) and p̄ta = w̄ta ·θa
for each a ∈ A. Moreover, w̄ is perturbed socially optimal, i.e., w̃ = argminw∈W L(w, θ, β).

Online Learning Problem

Here, we pose the online learning problem that forms the central focus of this work. Let
T denote the total number of iterations for which the algorithm is run. Consider a traffic
network G with known node and arc structure (I, A), but unknown latency function param-
eters {θ⋆a : a ∈ A} and entropy parameter β⋆ > 0. We assume that θ⋆ and β⋆ are bounded,
as posed below.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 121

Assumption 7.1.2 (Parameter Bounds). There exist constants cθ, Cθ, cβ > 0 such that
θ⋆a ∈ [cθ, Cθ] for each a ∈ A, and β⋆ > cβ. The central authority has access to cβ but not
necessarily cθ or Cθ.

The above assumptions are not overly restrictive, since roads cannot be arbitrarily con-
gestive, and travelers usually have some non-zero proclivity for selecting cost-minimizing arcs
and routes. Moreover, as established in Section 7.2, the arc latency parameter estimation
errors ∥θt − θ⋆∥2 shrinks rapidly as t increases. This allows the true, unknown temperature
parameter β⋆, and thus a lower bound for β⋆, to be estimated with increasing accuracy as
more data is collected.

Now, consider ourselves in the position of a central traffic authority that wishes to mini-
mize the perturbed total latency over the iterations t ∈ [T], despite initially lacking knowl-
edge of the function parameters θ ∈ R|A|, and the underlying entropy parameter β. To
accomplish this, at each iteration t ∈ [T], we implement a toll vector p̂t ∈ R|A|, and ob-
serve the resulting MTE traffic load allocation wt := w̄θ

⋆,β⋆
(pt) ∈ W , as well as the random

realizations of the travelers’ latencies on each arc:

ℓta,j = sa(w
t
a) + ϵta,j.

for each j ∈ [⌊wt⌋], where ϵta,j are independent 1-subGaussian random variables. We then
use the flow data {wta : a ∈ A} and the latency data {ℓta,j : a ∈ A, j ∈ [⌊wt⌋]} to update our
estimates of the underlying, unknown latency function parameter θ⋆ and entropy parameter
β⋆, and correspondingly design our toll to implement at the next iteration t + 1. The
cumulative regret R over the iterations t ∈ [T] is thus given by:

R :=
T∑
t=1

[
L
(
wθ

⋆,β⋆

(pt), θ⋆, β⋆
)
− L

(
wθ

⋆,β⋆

(p⋆), θ⋆, β⋆
)]

(7.5)

The core tenet of the above framework is that, as we accumulate more data on the traffic
flow and realized latencies, we can construct increasingly accurate estimates of θ⋆ and β⋆,
and consequently adapt our tolls pt to reduce congestion in an increasingly effective manner.

7.2 Main Algorithm

In this section, we present the main components of our algorithm. Section 7.2 describes the
least-squares estimator used to approximate the arc latency functions from collected flow
data. Section 7.2 then discusses our novel approximation scheme for the unknown entropy
parameter β. Finally, we present our main algorithm in Section 7.2.

Least-Squares Estimator for Latency Function Parameters

First, we present the regularized least-squares estimator for the arc latency coefficients {θa :
a ∈ A}. At each iteration t ∈ [T], for each arc a ∈ A, we observe the traffic flow at the

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 122

current iteration, wta, and latency data {ℓka,j : a ∈ A, k ∈ [t], j ∈ ⌊wta⌋}, We then update the

regularized least-squares estimate θ̂ta > 0 for the true coefficient θ⋆a, with regularizer λa > 0,
as follows 2:

θ̂ta := argmin
θa

 t−1∑
j=1

⌊wj
a⌋∑

k=1

(ℓja,k − θaw
j
a)

2 + λa∥θa∥22

 .

The following lemma states that these estimates, across iterations t ∈ [T], lie within a
neighborhood of the true parameter θ⋆a.

Lemma 7.2.1. [64] For each iteration t ∈ [T] and arc a ∈ A, define:

γta :=
√
λaCθ +

√
2 lnT + 2 ln

(
V t−1
a

λa

)
, (7.6)

and let the “good event” E be defined by:

E :=

{
∀ t ∈ [T],∀a ∈ A : |θ̂t−1

a − θ⋆a| ≤
γta√
V t−1
a

}
.

Then P(E) ≥ 1− |A|
T
.

Proof. We first introduce some notation. At each iteration t ∈ [T], for each arc a ∈ A, the
regularized least-squares estimate θ̂ta > 0 for the true coefficient θ⋆a, with regularizer λa > 0,
is given by:

θ̂ta := argmin
θa

 t−1∑
j=1

⌊wj
a⌋∑

k=1

(ℓja,k − θaw
j
a)

2 + λa∥θa∥22

 .

Note that the cost objective in the above argmin expression is convex and quadratic. Thus,
by setting the gradient to 0, we can compute the optimal parameter estimate as follows (for
more details, please see Gollapudi et al. [48], Lemma 2):

θ̂ta =

(
λa +

t−1∑
j=1

(wja)
3

)−1
 t−1∑

j=1

wja ·
⌊wj

a⌋∑
k=1

ℓja,k

 (7.7)

For convenience, we define:

V t
a := λa +

t−1∑
j=1

(wja)
3, (7.8)

2We assume ⌊w⌋ ≥ 1, i.e., each arc is traversed upon by at least one commuter per iteration.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 123

W t
a :=

t−1∑
j=1

(wja)
3, (7.9)

U t
a :=

t−1∑
j=1

wja ·
⌊wj

a⌋∑
k=1

ℓja,k, (7.10)

Sta :=
t−1∑
j=1

wja ·
⌊wj

a⌋∑
k=1

ϵja,k. (7.11)

Thus, we can write (7.7) as:

θ̂ta = (V t
a)

−1U t
a = (V t

a)
−1(W t

aθa + Sta). (7.12)

For each arc a ∈ A, the above process generates regularized least-squares estimates {θ̂ta},
across iterations t ∈ [T], for the true underlying parameter θ⋆a. The following lemma demon-
strates that these estimates, across iterations t ∈ [T], lie within a neighborhood of the true
parameter θ⋆a.

The remainder of the proof parallels that of Gollapudi et al. [48], Lemma 3, and is
included for completeness. From (7.12), we have:√

V t
a |θ̂ta − θ⋆a|

=
√
V t
a |(V t

a)
−1(W t

aθa + Sta)− θa|
=
√
V t
a |(V t

a)
−1Sta +

(
(V t

a)
−1W t

a − 1
)
θa|

=
√
V t
a |(V t

a)
−1Sta +

(
(V t

a)
−1(V t

a − λa)− 1
)
θa|

=
√
V t
a |(V t

a)
−1Sta − λa(V t

a)
−1θa| (7.13)

= (V t
a)

−1/2|Sta|+
√
λaθa.

To bound (V t
a)

−1/2|Sta|, define M t
a(z) := exp

(
zSta − 1

2
V t
a z

2
)
for each z ∈ R. Then, for any

fixed z ∈ R:

E[M t
a(z)|F ta] =M t−1

a (z) · E

exp
wta · ⌊wt

a⌋∑
k=1

ϵta,kz −
1

2
⌊wta⌋(wta)2z2

∣∣∣∣∣F ta


=M t−1
a (z) ·

⌊wt
a⌋∏

k=1

E

[
exp

(
wta · ϵta,kz −

1

2
⌊wta⌋(wta)2z2

) ∣∣∣∣∣F ta
]

≤M t−1
a (z).

so M t
a(z) is a supermartingale adapted to the filtration F ta := σ(w1

a, s̃
1
a). Thus, so is M̃ t

a :=
Ez∼N (0,1)[M

t
a(z)]. It thus follows from Lattimore and Szepesvari [64], Theorem 20.4, that:

(V t
a)

−1/2|Sta| ≤

√
2 ln t+ ln

(
V t
a

λa

)
. (7.14)

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 124

The proof now follows from (7.13) and (7.14).

In other words, with probability at least 1 − |A|
T
, for each arc a ∈ A at each iteration

t ∈ [T], the estimate θ̂ta falls within the confidence interval
[
θ̂ta−

γta√
V t−1
a

, θ̂ta+
γta√
V t−1
a

]
. Below,

for convenience, we set:

θ̂t,−a := θ̂ta −
γta√
V t
a

,

θ̂t,+a := θ̂ta +
γta√
V t
a

Entropy Parameter Estimation

Intuitively, the entropy parameter governs the degree to which travelers at an intermediate
node prefer to select an outgoing arc that minimizes the cost-to-go. Specifically, when
β →∞, travelers at node i select with probability 1 an outgoing arc a ∈ A+

i that minimizes
the cost-to-go; when β → 0, travelers at node i select from all outgoing arcs with equal
probability. As such, a natural approach for estimate β would begin by fixing a node i⋆,
whose outgoing routes to the destination are relatively straightforward to describe. Then,
we can analyze data that characterize the traffic flows and costs among its outgoing arcs
at each iteration t ∈ [T], to gain insight into the strength of the commuters’ preference to
minimize their cost-to-go, i.e., to estimate β.

We thus begin with the following lemma, which states that regardless of the precise
structure of the traffic network G, there must exist a node i⋆ ∈ I with properties desirable
for estimating β > 0. For every node i⋆ satisfying the conditions of Lemma 7.2.2, each
outgoing arc a′ ∈ A+

i⋆ yields exactly one route from i⋆ to d. Thus, the route segments from
i⋆ to d have structure akin to a parallel-link network, allowing the estimation of the entropy
parameter β⋆ from i⋆ to be straightforward. Examples are furnished in Figure 7.1.

Lemma 7.2.2. There exists a node i⋆ ∈ I\{d} such that |A+
i⋆| ≥ 2, and for each j ∈ A+

i⋆,
either j = d, or there exists only one route from j to d.

Proof. By assumption, the graph G contains more than one route from the origin o to the
destination d. Thus, there exists some a ∈ A such that |A+

ia
| ≥ 2, so the quantity:

m⋆ := min{ma : a ∈ A, |A+
ia
| ≥ 2}

is well-defined. Now, fix any a ∈ A such that ma = m⋆, and |A+
ia
| ≥ 2. It suffices to show

that, for each j ∈ A+
ia
, there exists only one route connecting j to the destination d. Suppose

by contradiction that there exists some j′ ∈ A+
ia
such that at least two distinct routes connect

j′ to d. Let j̄ ∈ I\{d} denote any node at which these routes diverge. Then for any ā ∈ A⋆j̄ ,
we have |A+

iā
| = |A+

j̄
| ≥ 2, and:

mā < ma = m⋆,

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 125

Figure 7.1: (Left) A parallel arc-network with 6 arcs; here, i⋆ = i1. (Right) A more general
network with 6 arcs; here, i⋆ = i2 since there exists two routes from i2 to the destination i4
which do not share an arc.

a contradiction to the definition of m⋆. This concludes the proof.

Below, we present assumptions that facilitate the estimation of the true, unknown tem-
perature parameter β⋆. First, for each node i⋆ ∈ I\{d}, and any arc latency parameter
estimate θ ∈ R|A| and temperature parameter β > 0 within a range of reasonable estimates
for the true parameters θ⋆ ∈ R|A| and β⋆ > 0, we assume that the MTE costs of the outgoing
edges A+

i⋆ are not identical. In particular, for each such node i⋆, among the outgoing arcs
A, there must be sufficiently differentiation, in the form of a strictly positive gap ∆z > 0,
between the minimum and maximum costs-to-go. This facilitates the estimation of the tem-
perature parameter in β, and emphasizes its role in the stochastic route choices made on the
part of the travelers. Indeed, the temperature parameter β is not meaningful in networks
with route segments that are virtually indistinguishable in cost.

Assumption 7.2.1. Let p̄(θ̂, β̂) denote the optimal toll corresponding to an arc-based TAM
with entropy parameter β̂, over a network with latency function parameters θ. There exists
∆z > 0, such that, for any node i⋆ ∈ I satisfying the conditions of Lemma 7.2.2, and any
parameter estimates within known bounds, θ̂ ∈ [cθ, Cθ] and β̂ ∈ [cβ,∞), we have:

max
a′∈A+

i⋆

za′(θ̂, w̄
θ⋆,β⋆

(p̄(θ̂, β̂)), p̄(θ̂, β̂))

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 126

− min
a′∈A+

i⋆

za′(θ, w̄
θ⋆,β⋆

(p̄(θ̂, β̂)), p̄(θ̂, β̂)) ≥ ∆z.

In the following lemma, we establish an estimator βt for the temperature parameter
β at each iteration t whose proximity to the true temperature parameter β⋆ is directly
proportional to the gap between the under- and over-estimators θt,− ∈ R|A| and θt,+ ∈ R|A|

of the true arc latency parameter θ⋆. The key intuition behind the estimator is that, if
the true latency function parameters θ⋆ on each arc were known, the underlying entropy
parameter β⋆ can be perfectly recovered by comparing the flows of outgoing arcs at a non-
destination node, and the ratios between the costs-to-go of these arcs. However, since the
central authority lacks access to θ⋆, we instead use the upper and lower bounds of the
confidence interval at each iteration t, i.e., {θt,+a , θt,−a : a ∈ A}, to construct an estimate βt

of the underlying, unknown entropy parameter β⋆. Moreover, we construct the estimate βt

to provably under-approximate β⋆, i.e., to guarantee that βt ≤ β⋆. This can be viewed as
an extension of the Principle of Optimism in the Face of Uncertainty, since the total latency
(7.4) is non-decreasing in the entropy parameter β (Recall that the entropy term, to which
the 1/β⋆ factor is multiplied, is always non-positive).

Lemma 7.2.3. Let i⋆ ∈ I\{d} be any node satisfying the conditions in Lemma 7.2.2, and
let:

a⋆ ∈ arg min
a′∈A+

i⋆

za′(θ
⋆, wt, pt). (7.15)

Then there exists βt ∈ [cβ, β
⋆] such that:

exp(−βt · za⋆(θt,−, wt, pt))∑
a′∈A+

i⋆
exp(−βt · za′(θt,+, wt, pt))

=
exp(−β⋆ · za⋆(θ⋆, wt, pt))∑

a′∈A+
i⋆
exp(−β⋆ · za′(θ⋆, wt, pt))

(7.16)

Moreover, let A(i⋆) denote the set of all arcs contained in a route from i⋆ to d. Then:

|βt − β⋆| ≤ β⋆go
∆z

·
∑

a∈A(i⋆)

(θt,+a − θt,−a)wta. (7.17)

Proof. Fix t ∈ [T]. Define κta⋆ ∈ R by:

κta⋆ :=
exp(−β⋆ · za⋆(θ⋆, wt, pt))∑

a′∈A+
i⋆
exp(−β⋆ · za′(θ⋆, wt, pt))

=
wta⋆∑

a′∈A+
i⋆
wta′

,

and let f t, gt : R× R|A|×R|A| → R be given as follows:

f t(β, θ+, θ−) :=
exp(−βt · za⋆(θt,−, wt, pt))∑

a′∈A+
i⋆
exp(−βt · za′(θt,+, wt, pt))

,

gt(β, θ+, θ−) := ln f t(β, θ+, θ−)− lnκta

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 127

= −β · za⋆(θ−, wt, pt)− ln

 ∑
a′∈A+

i⋆

exp
(
−β · za′(θ+, wt, pt)

)− lnκta⋆

Note that gt(βt, θ+, θ−) = 0 holds if and only if f t(βt, θ+, θ−) = κta. If one takes θ+ = θt,+

and θ− = θt,+ this becomes a restatement of (7.16). We note that za(θ, w, p) is continuously
differentiable for each a ∈ A, θ ∈ R|A|, w ∈ W , and p ∈ R|A|, and the log-sum-exp function
is continuously differentiable in the entropy parameter β. Thus, f t and gt are likewise
continuously differentiable at each β > 0 and each θ+, θ− ∈ R|A|.

The remainder of the proof proceeds in two parts. We first prove that, given any fixed
values θ+a ≥ θ⋆a, θ

−
a ≤ θ⋆a for each a ∈ A, there exists a unique fixed point solution β to the

function gt(βt, θ+, θ−) = 0. In particular, given θt,+a ≥ θ⋆a, θ
t,−
a ≤ θ⋆a for each a ∈ A, there

exists a unique entropy parameter estimate βt > 0 that solves gt(βt, θt,+, θt,−) = 0, i.e., that
satisfies (7.16), and β⋆ is the unique entropy parameter value that satisfies gt(β⋆, θ⋆, θ⋆) = 0.
We then bound the gap between β⋆ and β by bounding the difference between θt,+ and θ⋆,
and between θt,− and θ⋆.

1. Claim—Given any fixed θ+a ≥ θ⋆a, θ
−
a ≤ θ⋆a for each a ∈ A, there exists a unique fixed

point solution β to the function gt(βt, θ+, θ−) = 0:

Proof : To show that, for any θt,+, θt,− ∈ R|A|, the fixed-point equation gt(β⋆, θt,+, θt,−) =
0, has a unique solution (or equivalently that f t(β, θ+, θ−) = κta has a unique solution),
we first note that:

1

|A+
i⋆ |
≤ κta⋆

=
exp(−β⋆ · za⋆(θ⋆, wt, pt))∑

a′∈A+
i⋆
exp(−β⋆ · za′(θ⋆, wt, pt))

< 1.

and that f t(0, θ+, θ−) = 1/|A+
i⋆|. Below, we establish that limβ→∞ f t(β, θ+, θ−) =

1/|A+
i⋆ |, by lower bounding ∂gt

∂β
. The existence and uniqueness of a solution β to the

fixed-point equation f t(β, θ+, θ−) = κta⋆ then follows from the Intermediate Value The-
orem.

To compute derivatives of gt, we observe that, since ia⋆ = i⋆ satisfies the conditions
of Lemma 7.2.2, for each a′ ∈ A+

i⋆ , there exists exactly one route that connects ja′ and
d. As a result, za′(θ

+, wt, pt) equals the sum of latencies on a′ and on arcs comprising
that route, and therefore does not depend on the entropy parameter β. Thus:

∂gt

∂β
(β, θ+, θ−) = −za⋆(θ−, wt, pt) +

∑
a′∈A+

i⋆

e−β·za′ (θ
t,−,wt,pt) · za′(θt,−, wt, pt)∑

a′∈A+
i⋆

e−β·za′ (θt,−,wt,pt)

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 128

= −za⋆(θ−, wt, pt) +
∑
ā∈A+

i⋆

e−β·zā(θ
t,−,wt,pt)∑

a′∈A+
i⋆

e−β·za′ (θt,−,wt,pt)
· zā(θt,−, wt, pt)

=
∑
ā∈A+

i⋆

e−β·zā(θ
t,−,wt,pt)∑

a′∈A+
i⋆

e−β·za′ (θt,−,wt,pt)
·
[
zā(θ

t,−, wt, pt)− za⋆(θt,−, wt, pt)
]

=
∑
ā∈A+

i⋆

wtā∑
a′∈A+

i⋆

wta′
·
[
zā(θ

t,−, wt, pt)− za⋆(θt,−, wt, pt)
]
.

The flow continuity equations imply that
∑

a′∈A+
i⋆
wta′ ≤ go; together with the assump-

tion that wta ≥ 1 for each a ∈ A, we have:

wtā∑
a′∈A+

i⋆
wta′
≥ 1

go
.

Combining this with the definition of ∆z, we obtain:

∂gt

∂β
(β, θ+, θ−) ≥ ∆z

go
. (7.18)

Thus, gt(β, θ+, θ−) increases to +∞ as β →∞, and therefore so does f t.

To reiterate for emphasis, this claim establishes the unique existence of a entropy
parameter estimate βt > 0 that satisfies gt(·, θt,+, θt,−) = 0, or equivalently, (7.16). This
claim also establishes that β = β⋆ is the unique solution to gt(·, θ⋆, θ⋆) = 0.

2. Claim—We have:

|βt − β⋆| = β⋆go
∆z

·
∑

a∈A(i⋆)

(θt,+a − θt,−a)wta.

Proof : For convenience, we denote θ± := (θ+, θ−) ∈ R2|A|. For any θ± ∈ R2|A|

such that θ+a > θ⋆a and θ−a < θ⋆a for each a ∈ A, let β = β̂(θ+, θ−) denote the unique
solution to gt(β, θ+, θ−). Note that for any fixed w ∈ W and p ∈ R|A|, since za⋆(θ, w, p)
is component-wise increasing in θ, we have f t(0, θ+, θ−) ≤ κta ≤ f t(β⋆, θ+, θ−). It thus
follows from the Intermediate Value Theorem that β̂(θ+, θ−) ∈ [0, β⋆].

By (7.18), we have ∂gt

∂β
(β, θ+, θ−) ̸= 0 at each β > 0. This allows us to apply the

Implicit Function Theorem, which yields that β̂ is continuously differentiable in θ±,
with:

∂β̂

∂θ±
(θ±) =

[
∂g

∂β
(β, θ+, θ−)

]−1[
∂g

∂θ±
(β, θ+, θ−)

]

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 129

Now, define u+ := θt,+ − θ⋆ and u− := θt,− − θ⋆. We then have:

|βt − β⋆| =

∣∣∣∣∣
∫ 1

0

∂β̂

∂θ±
(θ+ + σu+, θ

− + σu−)
⊤ dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

[
∂g

∂β
(β, θ⋆ − σu+, θ⋆ + σu−)

]−1

· ∂g
∂θ±

(β, θ+ + σu−, θ
− + σu+)

· (θ+ − θ⋆, θ− − θ⋆)dt

∣∣∣∣∣
≤ go

∆z

·
∫ 1

0

∣∣∣∣∣ ∂g∂θ± (β, θ+ + σu−, θ
− + σu+) · (θ+ − θ⋆, θ− − θ⋆)

∣∣∣∣∣dt
=

go
∆z

·
∫ 1

0

∣∣∣∣∣∑
a∈A

∂g

∂θ+a
(β, θ+ + σu−, θ

− + σu+) · (θt,+a − θ⋆)

+
∑
a∈A

∂g

∂θ−a
(β, θ+ + σu−, θ

− + σu+) · (θt,−a − θ⋆)

∣∣∣∣∣dt,
where the inequality follows from (7.18). Next, let A(i⋆) denote the set of all arcs along
routes from the node i⋆ to the destination node d. Now, observe that, for any a ∈ A,
β > 0 and θ+, θ− ∈ R|A|:

∂g

∂θ+a
(β, θ+, θ−) = −βwta · 1{a ∈ A(i⋆)},

∂g

∂θ−a
(β, θ+, θ−) =

exp(−β · zā(θt,−, wt, pt))∑
a′∈A+

i⋆
exp(−β · za′(θt,−, wt, pt))

· βwta · 1{a ∈ A(i⋆)}.

Substituting into the above upper bound for |βt − β⋆|, we obtain:

|βt − β⋆| ≤ go
∆z

·
∫ 1

0

∑
a∈A(i⋆)

∣∣∣∣∣ ∂g∂θ+a (β, θ+ + σu−, θ
− + σu+)

∣∣∣∣∣ · (θt,+a − θ⋆)
+
∑

a∈A(i⋆)

∣∣∣∣∣ ∂g∂θ−a (β, θ+ + σu−, θ
− + σu+)

∣∣∣∣∣ · (θ⋆ − θt,−a)dt

≤ β⋆go
∆z

·
∑

a∈A(i⋆)

(θt,+a − θt,−a)wta,

as desired.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 130

The upper bound (7.17) demonstrates that, by applying the least-squares estimator de-
scribed in Section 7.2, which ensures that ∥θt,+−θt,−∥2 < O(1/

√
t) as t→∞, we can likewise

ensure that |βt − β⋆| < O(1/
√
t) as t→∞.

Algorithm Overview

Armed with the estimation schemes for θ⋆ and β⋆ presented in Sections 7.2 and 7.2, we pro-
ceed to present our online learning algorithm (Algorithm 14). At each iteration t, the central
authority uses latency function and entropy parameter estimates obtained in the previous
round to compute the corresponding optimal toll pt (Line 2). Observe that, for the latency
function parameter, we use the lower bound θt,− of the confidence interval (θt,−, θt,+), in
accordance with the Principle of Optimism in the Face of Uncertainty. Commuters then
sequentially select arcs in the traffic network to minimize their average cost-to-go, resulting
in the MTE traffic allocation wt := w̄θ

⋆,β⋆
(pt) (Line 3). The central authority then collects

this data, and uses the regularized least-squares method in Section 7.2 to construct an up-
dated estimate θt of the underlying latency function parameters θ⋆ (Lines 5-11). Finally, we
construct an update estimate βt of the underlying entropy parameter β⋆ using the approach
in Section 7.2 (Lines 13-14).

7.3 Lemmas for Regret Analysis

Throughout this section, the notation x ≲ y denotes that there exists some constant
K(λ,∆z, cθ, Cθ, cβ, β

⋆), such that x ≤ Ky.
This subsection presents preliminary lemmas that will facilitate the proof of Theorem

7.4.1, which upper bounds the regret of Algorithm 14. We begin with the following lemma,
which facilitates the decomposition of the regret into tractable terms.

Lemma 7.3.1. Suppose θ2a ≥ θ1a for each a ∈ A, and β2 ≥ β1. Then, for each w ∈ W:

L(w, θ1, β1) ≤ L(w, θ2, β2).

Proof. This follows by noting that w ≥ 0, and that the entropy term in L is non-positive.

Next, we present a result derived from the Fundamental Theorem of Calculus.

Lemma 7.3.2. If f : Rn → Rm is continuously differentiable, then, for each x1, x2 ∈ Rn:

∥f(x2)− f(x1)∥2 ≤ max
t∈[0,1]

∥∥∥∥∂f∂x(x1 + t(x2 − x1)
)∥∥∥∥

2

· ∥x2 − x1∥2.

Below, we establish a collection of upper bounds that will be used repeatedly throughout
the remainder of the proofs (Lemmas 7.3.3 and 7.3.4).

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 131

Algorithm 14: Simultaneous Tolling and Parameter Estimation

Data: i⋆ ∈ I, β0 := cβ > 0, λa, V
0
a = λa, Q

0
a = 0, and p0a θ

0,−
a > 0, θ0,+a > 0 (∀a ∈ A)

1 for t = 1, · · · , T do

2 pt ← Solution to pt = θt−1,− · w̄θt−1,−,βt
(pt).

3 wt ← w̄θ
⋆,β⋆

(pt) (Commuters’ flow allocation)
4 for a ∈ A do
5 ℓta,1, · · · , ℓta,⌊wt

a⌋
← Costs collected from arc a at iteration t

6 γta ←
√
λaCθ +

√
2 lnT + ln

(
V t−1
a

λa

)
7 θt,−a ← max

{
θ̂t−1
a − γta√

V t−1
a

, 0
}

8 θt,+a ← θ̂t−1
a + γta√

V t−1
a

9 V t
a ← V t−1

a + ⌊wta⌋(wta)2

10 Qt
a ← Qt−1

a + wta ·
∑⌊wt

a⌋
k=1 ℓ

t
a,k

11 θ̂ta ← Qt
a/V

t
a

12 end

13 β̃t ← Solution to—∀a ∈ A+
i⋆ :

wta∑
a′∈A+

i⋆

wta′
=

exp(−β̃t · za(θt,−, wt, pt))∑
a′∈A+

i⋆

exp(−β̃t · za(θt,+, wt, pt))
.

14 βt ← max{cβ, β̃t}.
15 end

Lemma 7.3.3. For any a ∈ A and t ∈ [T]:

γta ≲
√

ln(Tgo).

Proof. Recall the definition of γta in (7.6). After taking λa = 1, we have, for any t ≥ 2:

γta =
√
λaCθ +

√
2 lnT + 2 ln

(
V t−1
a

λa

)

= Cθ +

√√√√2 lnT + 2 ln

(
1 +

t−1∑
t=1

⌊wta⌋(wta)2
)

≤ Cθ +
√
2 lnT + 2 ln

(
1 + (t− 1)g3o

)
≲
√
ln(Tgo).

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 132

This result can be straightforwardly extended to the t = 1 case by ensuring that the constant
encapsulated in the “≲” is selected to be large enough.

Lemma 7.3.4. For any a ∈ A:
T∑
t=1

min

{
1,
⌊wta⌋(wta)2

V t−1
a

}
≲ ln(Tgo).

Proof. First, observe that min{1, x} ≤ 1
ln 2
· ln(1 + x) for each x ≥ 0. Thus:

T∑
t=1

min

{
1,
⌊wta⌋(wta)2

V t−1
a

}
≤ 1

ln 2
·

T∑
t=1

ln

(
1 +
⌊wta⌋(wta)2

V t−1
a

)

=
1

ln 2
·

T∑
t=1

ln

(
V t−1
a + ⌊wta⌋(wta)2

V t−1
a

)

=
1

ln 2
·

T∑
t=1

ln

(
V t−1
a + ⌊wta⌋(wta)2

V t−1
a

)

≤ 1

ln 2
·

T∑
t=1

ln

(
V t
a

V t−1
a

)
=

1

ln 2
· lnV T

a

≤ 1

ln 2
· ln
(
1 + Tg3o

)
≲ ln(Tgo),

as desired.

Next, we bound the weighted sums of the magnitudes of the latency function parameter
errors θt,− − θ⋆ and entropy parameter βt − β⋆ across iterations t ∈ [T]. First, we require
the following lemma.

Lemma 7.3.5. Under the good event E, for any p > 0:

T∑
t=1

∑
a∈A

|θt,−a − θ⋆a|(wta)p ≲ gpo |A|
√
T ln(Tgo). (7.19)

Proof. The desired result follows by taking p = 2 in Lemma 7.3.5.

Lemma 7.3.6. Recall that B denotes the number of arcs along routes from i⋆ to d, which
are used to construct an estimate of β⋆ at each iteration t. Under the good event E:

T∑
t=1

|βt − β⋆| ≲ goB
√
T ln(Tgo).

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 133

Proof. Let A(i⋆) denote the set of all arcs on routes from i⋆ to d. By Lemma 7.2.3, under
the good event E, we have βt ∈ [cβ, β

⋆], so |βt − β⋆| ≤ β⋆ − cβ. Moreover, from (7.17), we
have:

|βt − β⋆| ≲ go ·
∑

a∈A(i⋆)

(θt,+a − θt,−a)wta

We then have:

T∑
t=1

|βt − β⋆| ≲go ·
T∑
t=1

∣∣∣∣∣∣min

β⋆ − cβ, ∑
a∈A(i⋆)

(θt,+a − θt,−a)wta


∣∣∣∣∣∣

≲go ·
T∑
t=1

min

1,
∑

a∈A(i⋆)

(θt,+a − θt,−a)wta

 .

Take ã ∈ maxa∈A(i⋆)
{∑T

t=1(θ
t,+
a − θt,−a)wta

}
. Then:

T∑
t=1

|βt − β⋆| ≲go ·
T∑
t=1

min

{
1, B · 2γtã√

V t−1
ã

wta

}

≤4goBγ
T
ã ·
√
T ·

√√√√ T∑
t=1

min

{
1,

1

V t−1
ã

(wta)
2

}

≤4goBγ
T
ã ·
√
T ·

√√√√ T∑
t=1

min

{
1,
⌊wta⌋(wta)2
V t−1
ã

}
≲goB

√
T ln(Tgo)

where we have used the fact that ⌊wta⌋ ≥ 1.

7.4 Regret Analysis

In the main theorem below, we upper bound the regret incurred by Algorithm 14.

Theorem 7.4.1. There exists some constant K(λ,∆z, cθ, Cθ, cβ, β
⋆) > 0, dependent only on

the parameter bounds cθ, Cθ and cβ, such that for any T ∈ N:

R ≲ g2o ln
2(go)|A|

√
T ln(Tgo) ·max

{
|I| ln

(
|A|
|I|

)
, B

}
,

where B := |A(i⋆)| denotes the set of all arcs used to construct the estimates βt.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 134

Proof. As in Algorithm 14, set pt ∈ R|A| and p⋆ ∈ R|A| to be the unique solutions to the
following fixed-point equations:

pt = θt−1,− · w̄θt−1,βt−1

(pt),

p⋆ = θ⋆ · w̄θ⋆,β⋆

(p⋆).

Under the good event E described in Lemma 7.2.1:

L
(
w̄θ

t,−,βt

(pt), θt,−, βt
)
≤ L

(
w̄θ

⋆,β⋆

(p⋆), θt,−, βt
)
≤ L

(
w̄θ

⋆,β⋆

(p⋆), θ⋆, β⋆
)
,

where the first inequality follows since Definition 7.1.1, Proposition 7.1.2, and the definition
of pt (Algorithm 14, Line 2) together imply that w̄θ

t,−,βt
(pt) = argminw∈W L(w, θt,−, β⋆, βt),

while the second inequality follows from Lemmas 7.2.1 and 7.3.1.
For convenience, we denote by χ :W → R the entropy term in C, restated below:

χ(w) :=
∑

i∈I\{d}

∑
a∈A+

i

wa lnwa −

∑
a∈A+

i

wa

 ln

∑
a∈A+

i

wa

 (7.20)

Thus, the regret R can be upper bounded and decomposed as follows:

R =
T∑
t=1

[
L
(
w̄θ

⋆,β⋆

(pt), θ⋆, β⋆
)
− L

(
w̄θ

⋆,β⋆

(p⋆), θ⋆, β⋆
)]

≤
T∑
t=1

[
L
(
w̄θ

⋆,β⋆

(pt), θ⋆, β⋆
)
− L

(
w̄θ

t,−,βt

(pt), θt,−, βt
)]

=
T∑
t=1

[
L
(
w̄θ

⋆,β⋆

(pt), θ⋆, β⋆
)
− L

(
w̄θ

⋆,β⋆

(pt), θt,−, βt
)]

+
T∑
t=1

[
L
(
w̄θ

⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̄θ

t,−,βt

(pt), θt,−, βt
)]

=
T∑
t=1

∑
a∈A

(θ⋆a − θt,−a)w̄θ
⋆,β⋆

a (pt)2 (7.21)

+
T∑
t=1

(
1

β⋆
− 1

βt

)
· χ
(
w̄θ

⋆,β⋆

a (pt)
)

(7.22)

+
T∑
t=1

[
L
(
w̄θ

⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̄θ

t,−,βt

(pt), θt,−, βt
)]
, (7.23)

where, in accordance with the notation in Algorithm 14, we set wt := w̄θ
⋆,β⋆

(pt). Define the
three summands (7.21), (7.22), (7.23) by R1, R2, and R3 respectively. The convergence rate

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 135

of θt,− → θ⋆ and βt → β⋆ can then be analyzed to yield non-asymptotic bounds for R1 and
R2, respectively. In turn, these bounds are then employed to bound R3. Details of these
steps are presented in Lemmas 7.4.2, 7.4.4, and 7.4.5 below.

Remark 7.4.1. Compared to [48], our regret upper bound contains an extra term of the form
max{|I| ln(|A|/|I|), B}, due to the following unique features of our problem formulation that
are not present in [48]: (1) The entropy parameter estimation process, which contributes the
network structure-dependent constant B, (2) The tolling authority affects the equilibrium flow
allocation indirectly, through tolls, instead of directly dictating commuters’ route selections,
(3) Mismatch between the latency function and entropy parameter estimates used by the
tolling authority to compute tolls (θt,−, βt), and the true parameters used by the commuters
to best-respond to the implemented toll (θ⋆, β⋆).

Lemma 7.4.2. Under the good event E:

R1 :=
T∑
t=1

∑
a∈A

(θ⋆a − θt,−a)(wta)
2 ≲ g2o |A|

√
T ln(Tgo). (7.24)

Proof. Take ã ∈ argmaxa∈A
{∑T

t=1(θ
⋆
a − θt,−a)(wta)

2
}
. Then, under the good event E:

R1 ≤ |A| ·
T∑
t=1

(θ⋆ã − θ
t,−
ã)(wta)

2

≤ |A|√go ·
T∑
t=1

(θ⋆ã − θ
t,−
ã)(wtã)

3/2

≤ |A|√go ·
T∑
t=1

min

{
Cθg

3/2
o ,

2γtã√
V t−1
ã

(wtã)
3/2

}

≤ 2
√
2|A|√go ·

T∑
t=1

min

{
Cθg

3/2
o ,

γtã√
V t−1
ã

·
√
⌊wtã⌋ · wtã

}
.

where in the final inequality, we have used the fact that, since wta ≥ 1 by assumption, we
have wta ≤ 2⌊wta⌋. Thus, the Cauchy-Schwarz inequality gives:

R1 ≤ 2
√
2Cθ|A|g2oγTã ·

T∑
t=1

min

{
1,

1√
V t−1
ã

·
√
⌊wtã⌋ · wtã

}

≲ |A|g2o
√

ln(Tgo) ·
√
T ·

√√√√ T∑
t=1

min

{
1,
⌊wtã⌋(wtã)2
V t−1
ã

}
≲ g2o |A|

√
T ln(Tgo),

where the final inequality follows from (7.3.4).

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 136

Next, recall that in (7.20), we defined the entropy term χ :W → R as follows:

χ(w) :=
∑

i∈I\{d}

∑
a∈A+

i

wa lnwa −

∑
a∈A+

i

wa

 ln

∑
a∈A+

i

wa


Lemma 7.4.3. For any w ∈ W, we have:

|χ(w)| ≤ go · (|I| − 1) ln

(
|A|
|I| − 1

)
Proof. First, fix D > 0 arbitrarily, and consider the following constrained optimization
problem on Rd:

min
x∈Rd

d∑
i=1

xi lnxi −

(
d∑
i=1

xi

)
ln

(
d∑
i=1

xi

)

s.t.
d∑
i=1

xi = D.

The Lagrangian of the above problem is given by:

L(x, λ, µ) =
d∑
i=1

xi lnxi −

(
d∑
i=1

xi

)
ln

(
d∑
i=1

xi

)
+ λ

(
d∑
i=1

xi −D

)
+

d∑
i=1

µixi.

The corresponding KKT conditions are therefore:

0 =
∂L
∂xi

= lnxi + 1− ln

(
d∑
j=1

xj

)
− 1 + λ+ µi = ln

(
xi∑d
j=1 xj

)
+ λ+ µi, ∀ i ∈ [d],

0 = µixi, ∀ i ∈ [d],

and
∑d

i=1 xi = D. The optimal solution is thus x⋆ = D
d
(1, · · · , 1), with corresponding

minimum value:

d∑
i=1

x⋆i lnx
⋆
i −

(
d∑
i=1

x⋆i

)
ln

(
d∑
i=1

x⋆i

)
= d · D

d
ln

(
D

d

)
−D lnD = −D ln d.

This implies that:∣∣∣∣∣∣
∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)∣∣∣∣∣∣ ≤
∑
a∈A+

i

wi · ln |A+
i |.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 137

Summing over all non-destination nodes, we obtain:∣∣∣∣∣∣
∑

i∈I\{d}

∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)∣∣∣∣∣∣
≤

∑
i∈I\{d}

∑
a∈A+

i

wa

 ln |A+
i |

≤go ·
∑

i∈I\{d}

ln |A+
i |

≤go · |I\{d}| ln

 ∏
i∈I\{d}

ln |A+
i |1/|I\{d}|


≤go · |I\{d}| ln

 1

|I\{d}|
∑

i∈I\{d}

|A+
i |


=go · (|I| − 1) ln

(
|A|
|I| − 1

)
,

where the final inequality follows from the arithmetic-geometric inequality.

Lemma 7.4.4. Under the good event E:

R2 :=
T∑
t=1

(
1

βt
− 1

β⋆

)
· χ(wt) ≲ g2o ·B(|I| − 1) ln

(
|A|
|I| − 1

)
·
√
T ln(Tgo). (7.25)

Proof. From Lemma 7.3.6:

T∑
t=1

|βt − β⋆| ≲ goB
√
T ln(Tgo).

This bound, together with the upper bound on χ provided by Lemma 7.4.3, completes the
proof.

Next, we bound R3, as presented below.

Lemma 7.4.5. Under the good event E:

R3 :=
T∑
t=1

∣∣L(w̄θ⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̄θ

t,−,βt

(pt), θt,−, βt
)∣∣ (7.26)

≲ g2o ln
2(go)|A|

√
T ln(Tgo) ·max

{
|I| ln

(
|A|
|I|

)
, B

}
.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 138

Proof. Define the map w̃ : R|A| × R × R|A| → R|A| by w̃(θ, β, p) := w̄θ,β(p). Observe that
L(·, θ, β) is continuously differentiable on W , for any fixed θ ∈ R|A|, β > 0; later, we will
establish that w̃ is continuously differentiable as well. Then, from the Fundamental Theorem
of Calculus to the maps L and w̃, we obtain:

L
(
w̄θ

⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̄θ

t,−,βt

(pt), θt,−, βt
)

=
[
L
(
w̄θ

⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̄θ

t,−,β⋆

(pt), θt,−, βt
)]

+
[
L
(
w̄θ

t,−,β⋆

(pt), θt,−, βt
)
− L

(
w̄θ

t,−,βt

(pt), θt,−, βt
)]

=

∫ 1

0

∂L

∂w

(
w̄θ

t,−+u(θ⋆−θt,−),βt

(pt), θt,−, βt
)

(7.27)

· ∂w̃
∂θ

(
θt,− + u(θ⋆ − θt,−), βt, pt

)
du · (θ⋆ − θt,−)

+

∫ 1

0

∂L

∂w

(
w̄θ

t,−,βt+u(β⋆−βt)(pt), θt,−, βt
)

· ∂w̃
∂θ

(
θt,−, βt + u(β⋆ − βt), pt

)
du · (β⋆ − βt,−).

For convenience, define:

Sw,θ :=
{
w̄θ

t,−+u(θ⋆−θt,−),βt

(pt) : u ∈ [0, 1]
}
,

Sw,β :=
{
w̄θ

t,−,βt+u(β⋆−βt)(pt) : u ∈ [0, 1]
}
,

S := Sw,θ ∪ Sw,β,

Sθ :=
{
θt,− + u(θ⋆ − θt,−) : u ∈ [0, 1]

}
Sβ :=

{
βt + u(β⋆ − βt) : u ∈ [0, 1]

}
.

Then, by applying the Cauchy-Schwarz inequality to (7.3.2), we obtain:

L
(
w̃θ

⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̃θ

t,−,βt

(pt), θt,−, βt
)

≤ max
w∈Sw

∥∥∥∥∂L∂w (w, θt,−, βt)

∥∥∥∥
2

(7.28)

·

[
max
θ∈Sθ

∥∥∥∥∂w̃∂θ (θ, β⋆, pt) · (θ⋆ − θt,−)
∥∥∥∥
2

+max
β∈Sβ

∥∥∥∥∂w̃∂β (θ⋆, β, pt)
∥∥∥∥
2

· |β⋆ − βt|

]
We bound each of the max terms in (7.28) below.

1. Bounding maxw∈Sw

∥∥ ∂L
∂w

(w, θt,−, βt)
∥∥
2
:

For each a ∈ A, and any w ∈ W , θ ∈ R|A|, and β > 0:

∂L

∂wa
(w, θ, β) = 2θawa +

1

β
ln

(
wa∑

a′∈A+
ia
wa′

)
.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 139

Note that |θt,−a | ≤ Cθ for each a ∈ A, and that for any w ∈ W , we have ∥w∥2 ≤∑
a∈Awa ≤ m(G)go. Moreover, by Lemma 7.4.3, and the assumption that wa ≥ 1 for

each a ∈ A (note that the set {w ∈ R|A| : wa ≥ 1, ∀a ∈ A} is convex), we have for each
w ∈ W : ∑

a∈A

∣∣∣∣∣ln
(

wa∑
a′∈A+

ia
wa′

)∣∣∣∣∣ = −∑
a∈A

ln

(
wa∑

a′∈A+
ia
wa′

)

≤ −
∑
a∈A

wa ln

(
wa∑

a′∈A+
ia
wa′

)
= |χ(w)|

≤go · (|I| − 1) ln

(
|A|
|I| − 1

)
(7.29)

Meanwhile: ∑
a∈A

∣∣∣∣∣ln
(

wa∑
a′∈A+

ia
wa′

)∣∣∣∣∣
2

≤ ln2(go)|A| (7.30)

Thus, we obtain that, for any w ∈ Sw:∥∥∥∥ ∂L∂wa (w, θt,−, βt)
∥∥∥∥
2

≤2Cθm(G)go +
1

cβ
min

{
ln(go)

√
|A|, go(|I| − 1) ln

(
|A|
|I| − 1

)}
. (7.31)

2. Bounding maxθ∈Sθ

∥∥∂w̃
∂θ
(θ, β⋆, pt) · (θ⋆ − θt,−)

∥∥
2
:

First, we verify that w̃ is indeed continuously differentiable, and compute the
Jacobians ∂L

∂w
, ∂w̃

∂θ
, and ∂w̃

∂β
. This requires the results of [20], Lemma 1, which we

summarize below. Define F :W × R|A| × R|A| × R× R|A| → R as follows—For each:

F (w, θ, β, p)

=
∑

[a]∈AO

∫ wa

0

[
θaz + pa

]
dz +

1

β

∑
i ̸=d

[∑
a∈A+

i

wa lnwa −

(∑
a∈A+

i

wa

)
ln

(∑
a∈A+

i

wa

)]

Note that F (·, θ, β, p) is strongly convex, with parameter at least cθ.

Next, observe that W is a compact subset of a strict affine subspace in R|A|. Let
d be the dimension of the smallest affine subspace containing W . Then, there exist
M ∈ R|A|×|I\{d}| with orthonormal columns, and b ∈ R|I\{d}| such that:

W = {w ∈ R|A| :M⊤w + b = 0, wa ≥ 0, ∀a ∈ A}.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 140

Let B ∈ R|A|×(|A|−|I\{d}|) consist of orthonormal columns orthogonal to the columns
of M . We then use the theory of constrained optimization to completely characterize
w̃(θ, β, p) = w̄θ,β(p). In particular, w = w̃(θ, β, p) if and only if the following implicit
equation, characterized by the map J : R|A| × R|A| → R|A| defined below, is satisfied:

J(w, θ, β, p) :=

[
M⊤w + b

B⊤∇wF (w, θ, β, p)

]
= 0.

Moreover, the proof of [20], Lemma 1 establishes that, for any fixed θ ∈ R|A|, β > 0,
p ∈ R|A|:

∂J

∂w
(θ, β, p) =

[
M⊤

B⊤∇2
wF (w, θ, β, p)

]
∈ R|A|×|A|

is non-singular. By the Implicit Function Theorem, this establishes the continuous
differentiability of w̃. We can then compute ∂w̃

∂θ
∈ R|A|×|A| at any (θ, β, p) ∈ R|A|×R×

R|A| as:

∂w̃

∂θ
(θ, β, p) =

[
∂J

∂w
(θ, β, p)

]−1
∂J

∂θ
(θ, β, p)

=

[
M⊤

B⊤∇2
wF (w, θ, β, p)

]−1 [
0

B⊤ ∂
∂θ
∇wF (w, θ, β, p)

]
= B(B⊤∇2

wF (w, θ, β, p)B)−1B⊤ · ∂
∂θ
∇wF (w, θ, β, p),

where we have used the fact that by construction,
[
M B

]
is an orthogonal matrix

(see [20], Appendix A).

Now, observe that the (a, a′)-entry of ∂
∂β
∇wF (w, θ, β, p) ∈ R|A|×|A| is given by:

∂2

∂θa′∂wa
F (w, θ, β, p) = 2wa · 1{a′ = a}, ∀a ∈ A,

Substituting back into (7.28) and applying the Cauchy-Schwarz inequality, we obtain
that, for each θ ∈ Sθ:

∂w̃

∂θ
(θ, β⋆, pt) · (θ⋆ − θt,−) =B(B⊤∇2

wF (w, θ, β, p)B)−1B⊤ ·
(
(θ⋆ − θt,−)wta

)
a∈A.

Applying the Cauchy-Schwarz inequality, we obtain:

max
θ∈Sθ

∥∥∥∥∂w̃∂θ (θ, β⋆, pt) · (θ⋆ − θt,−)
∥∥∥∥
2

≤∥B(B⊤∇2
wF (w, θ, β, p)B)−1B⊤∥2 · ∥

(
(θ⋆ − θt,−)wta

)
a∈A∥2.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 141

Since the columns of B are orthonormal, we have ∥B(B⊤∇2
wF (w, θ, β, p)B)−1B⊤∥2 ≤

∥∇2
wF (w, θ, β, p)∥2 ≤ 1/cθ. Moreover, we can upper bound ∥

(
(θ⋆ − θt,−)wta

)
a∈A∥2 ≤

∥
(
(θ⋆ − θt,−)wta

)
a∈A∥1 =

∑
a∈A(θ

⋆ − θt,−)wta. We thus obtain:

max
θ∈Sθ

∥∥∥∥∂w̃∂θ (θ, β⋆, pt) · (θ⋆ − θt,−)
∥∥∥∥
2

≤ 1

cθ
·
∑
a∈A

(θ⋆ − θt,−)wta. (7.32)

3. Bounding maxβ∈Sβ

∥∥∥∂w̃∂β (θ⋆, β, pt)∥∥∥
2
· |β⋆ − βt|:

In the same manner that we used to compute ∂w̃
∂θ

above, we can compute ∂w̃
∂β
∈ R|A|

at any (θ, β, p) ∈ R|A| × R× R|A| as:

∂w̃

∂β
(θ, β, p) =

[
∂J

∂w
(θ, β, p)

]−1
∂J

∂θ
(θ, β, p),

=

[
M⊤

B⊤∇2
wF (w, θ, β, p)

]−1 [
0

B⊤ ∂
∂β
∇wF (w, θ, β, p)

]
= B(B⊤∇2

wF (w, θ, β, p)B)−1B⊤ · ∂
∂β
∇wF (w, θ, β, p),

Now, observe that the a-th entry of ∂
∂β
∇wF (w, θ, β, p) ∈ R|A| is:

∂2

∂β∂wa
F (w, θ, β, p) = − 1

β2
ln

(
wa∑

a′∈A+
ia
wa′

)
.

Using (7.29) and (7.30), we obtain:∥∥∥∥ ∂∂β∇wF (w, θ, β, p)

∥∥∥∥
2

≤ 1

β2
·min

{
ln(go)

√
|A|, go(|I| − 1) ln

(
|A|
|I| − 1

)}
Finally, we conclude that:

max
β∈Sβ

∥∥∥∥∂w̃∂β (θ⋆, β, pt)
∥∥∥∥
2

· |β⋆ − βt|

≤∥B(B⊤∇2
wF (w, θ, β, p)B)−1B⊤∥2 ·

∥∥∥∥ ∂∂β∇wF (w, θ, β, p)

∥∥∥∥
2

· |β⋆ − βt|

≤ 1

cθβ2
·min

{
ln(go)

√
|A|, go(|I| − 1) ln

(
|A|
|I| − 1

)}
· |β⋆ − βt|. (7.33)

Substituting (7.31), (7.32), (7.33) back into (7.28), we obtain that:

R3 =
T∑
t=1

∣∣L(w̄θ⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̄θ

t,−,βt

(pt), θt,−, βt
)∣∣

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 142

≲

(
m(G)go +

1

cβ
· go · (|I| − 1) ln

(
|A|
|I| − 1

))
(7.34)

·

[
T∑
t=1

∑
a∈A

(θ⋆ − θt,−)wta +min

{
ln2(go) · |A|, go|I| ln

(
|A|
|I|

)}
·

T∑
t=1

|β⋆ − βt|

]

Applying Lemmas 7.3.5 (with p = 1) and 7.3.6, we obtain:

R3 ≲

(
m(G)go +min

{
ln(go)

√
|A|, go|I| ln

(
|A|
|I|

)})

·

[
go|A|

√
T ln(Tgo) + min

{
ln(go)

√
|A|, go|I| ln

(
|A|
|I|

)}
· goB

√
T ln(Tgo)

]
≲ g2om(G)|A|

√
T ln(Tgo) + g2o ln(go)m(G)

√
|A|B

√
T ln(Tgo)

+ g2o |A||I| ln
(
|A|
|I|

)√
T ln(Tgo) + go ln

2(go)|A|B
√
T ln(Tgo)

≲ g2o ln
2(go)|A|

√
T ln(Tgo) ·max

{
|I| ln

(
|A|
|I|

)
, B

}
.

Note that we have used the fact that m(G) ≤ |I|.

Finally, we combine the results of Lemmas 7.4.2, 7.4.4, and 7.4.5 in the above sections
to conclude our proof of Theorem 7.4.1.

Proof of Theorem 7.4.1, Continued. Lemmas 7.4.2, 7.4.4, and 7.4.5, we have:

R1 ≲ g2o |A|
√
T ln(Tgo),

R2 ≲ g2o ·B|I| ln
(
|A|
|I|

)
·
√
T ln(Tgo),

R3 ≲ g2o ln
2(go)|A|

√
T ln(Tgo) ·max

{
|I| ln

(
|A|
|I|

)
, B

}
.

Note that R1 ≲ R3 and R2 ≲ R3. We thus conclude that:

R = R1 +R2 +R3

≲ g2o ln
2(go)|A|

√
T ln(Tgo) ·max

{
|I| ln

(
|A|
|I|

)
, B

}
.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 143

7.5 Experiments

Here, we present numerical results on simulated traffic networks that validate the regret
bounds presented in Theorem 7.4.1. In particular, we run Algorithm 14 for T = 2500
iterations, with go = 100, on the parallel-arc network in Figure 7.1 (left), with underlying
parameters θ⋆ := (1.5, 2.5, 3.5, 4.5, 5.5, 6.5) ∈ R6, and β⋆ = 0.25, and on the more general
network in Figure 7.1 (right), with underlying parameters θ⋆ := (0.6, 0.4, 0.4, 0.4, 0.6, 0.6) ∈
R6, and β⋆ = 0.25. To suppress constants in the cumulative regret, we selected λa = 0.01
for each a ∈ [6] .

For convenience, for each iteration t ∈ [T], let Lt := L(wθ
⋆,β⋆

(pt), θ⋆, β⋆) denote the cost
incurred at iteration t, let L⋆ := L

(
wθ

⋆,β⋆
(p⋆), θ⋆, β⋆

)
denote the minimum possible cost, and

let Rt :=
∑t

τ=1

[
L
(
wθ

⋆,β⋆
(pτ), θ⋆, β⋆

)
− L

(
wθ

⋆,β⋆
(p⋆), θ⋆, β⋆

)]
denote the cumulative regret

up to iteration t. In Figure 7.2, we detail the growth of the cumulative regret Rt − L⋆t
as a function of t. We also provide logarithmic plots that describe the decay of the stage-
wise regret Lt −L⋆, the magnitude of the latency function parameter estimation error ∥θ∥2,
and the magnitude of the entropy parameter estimation error |βt − β|. For both networks,
the cumulative regret increases as a sub-linear function of the iteration count, while the
cumulative regret, θ estimation error, and β estimation error decrease gracefully to 0.

Figure 7.2: (Left to right) The cumulative regret Rt − L⋆t, logarithm of stage-wise regret
ln(Lt−L⋆), logarithm of θ-estimation error ln(∥θt−θ⋆∥2), and logarithm of stage-wise regret
ln(|βt − β⋆|) for the parallel-arc network in Figure 7.1 (top) and the more general network
in Figure 7.1 (bottom). Note the sub-linear growth of the cumulative regret with respect
to the iteration count, and the rapid decay of the stage-wise regret, θ-estimation error, and
β-estimation error to 0, as the iteration count t increases.

CHAPTER 7. ONLINE LEARNING FOR ADAPTIVE TOLLING 144

7.6 Discussion

This work presents a novel online learning algorithm to learn the latency function and en-
tropy parameters that characterize commuters’ arc-selection decisions on a single source-
single destination traffic network, while simultaneously implementing tolls to minimize the
overall network congestion. We characterize a notion of regret using the accumulation across
iterations of the gap between the incurred and minimum costs, and prove that our cumu-
lative regret metric increases sub-linearly in the number of iterations t. Finally, we present
numerical results illustrating the performance of our regret algorithm on simulated traffic
networks.

145

Part IV

Future Work

146

Chapter 8

Conclusion

The previous chapters of this thesis presented contributions towards safe and efficient societal-
scale autonomous navigation along three crucial dimensions—A fast and reliable optimization
template for localization and mapping (Part 1), dynamic game theory-based algorithms for
joint prediction and motion planning (Part 2), and adaptive tolling schemes to reduce con-
gestion on large transportation networks (Part 3). Below, we discuss promising directions of
future work aimed at bringing the promise of autonomous navigation closer to reality.

8.1 Part 1

Interesting avenues of ongoing work along the direction of localization and mapping include
establishing a rapprochement of learning-based and model-based state estimation meth-
ods for downstream path planning. Another interesting research direction involes deploy-
ing SLAM algorithms in challenging, high-speed settings, such as autonomous racing, to
stress-test their computational efficiency and robustness in extreme instances of autonomous
navigation, while ensuring safe operation at all times.

• Rapprochement of learning-based perception and model-based estimation.
An important open problem in my ongoing research is to enable robust state estimation
across a wide range of different environments, which necessitates a principled fusion of
learning- and model-based perception methods in a unified framework. Learning-based
perception can provide semantic interpretations of the environment, but often struggles
to perform accurate metric reconstruction when necessary, such as for the generation
of safe trajectories for an agent in cramped or cluttered surroundings. Meanwhile,
visual SLAM algorithms can generate consistent metric maps, but are often slow, and
do not provide semantic information relevant to the downstream navigation task. I
plan to investigate how these two approaches, learning-based and model-based, should
be combined, to support an autonomous navigation framework that is computation-
ally efficient, enjoys a high goal-reaching success rate, and is robust with respect to
challenging and unpredictable scenes.

CHAPTER 8. CONCLUSION 147

Figure 8.1: Indy Autonomous racecars in motion at the Las Vegas Motor Speedway racetrack.

• Autonomous Racing. In the Indy Autonomous Challenge (IAC), self-driving race
cars must complete laps around a professional racetrack at high speed (> 150 mph),
without incurring collisions or violating lane-following regulations (Figure 8.1). How-
ever, state estimation during racing poses an intimidating challenge, since motion blur
at such high speeds precludes the use of cameras for tracking lateral (perpendicular to
the race tracks) displacement. Moreover, the irregularly shaped tracks often lack easily
discernible features. To meet these challenges, my collaborators and I have proposed a
SLAM architecture that uses LiDAR sensor data for lateral tracking, and stereo cam-
eras for longitudinal tracking. We are excited to perform extensive experiments across
a wide range of autonomous racetracks, such as the Las Vegas Motor Speedway and
the Monza Racetrack in Italy.

8.2 Part 2

In the realm of dynamic game-theory-based motion planning algorithm design, many promis-
ing directions of future work await investigation. The first involves extending the defensive
driving and GTP-SLAM frameworks (Chapters 4 and 5) to capture more nuanced multi-
agent interactions in real-world traffic scenarios. The second direction involves applying
iterative dynamic game algorithms to analyze control theory and mechanism design prob-
lems in societal-scale, non-atomic settings, such as adaptive tolling (Chapters 6 and 7).

CHAPTER 8. CONCLUSION 148

Figure 8.2: The Monza Motor Speedway racetrack is irregularly shaped, and lacks features
commonly used for localization in real-life traffic, such as traffic signals.

• Defensive Driving. I aim to explore more flexible approaches for encoding defensive
behavior in games. For example, in many real-life scenarios, vehicle dynamics should
be modeled with stochastic, partial observations, and should account for occlusions
and dynamic disturbances. Also, the ego agent may wish to select the adversarial
time horizon more flexibly. Of particular interest are cases where the ego agent may
choose to vary Tadv from one non-ego agent to another. For example, the ego may
observe that some non-ego agents are behaving more adversarially than others, and
respond accordingly by associating such players with higher values of Tadv, compared
to other non-ego agents. In addition, the ego may wish to allocate different parts of
the overall time horizon to be adversarial, rather than simply the first Tadv seconds.
For example, choosing the adversarial time horizon to be the final Tadv seconds of the
overall time horizon, rather than the first Tadv seconds, would transform the game from
an adversarial-to-cooperative type to a cooperative-to-adversarial type. This would be
useful in situations where the ego agent predicts that the surrounding non-ego agents
are currently cooperative, but may become momentarily distracted in the near future.
For example, such a formulation may motivate the ego agent to gradually approach an
intersection at which other agents might run a red light.

• SLAM with Game-Theoretic Priors. Regarding my work on SLAM algorithms
that use game-theoretic priors, our current experiments do not yet consider loop clo-
sures, which are essential for the long-term recovery of static scenes in SLAM tasks.
It is thus critical to study how to best incorporate game-theoretic priors when detect-

CHAPTER 8. CONCLUSION 149

ing and enforcing loop closures. Moreover, our current method was implemented in
full-graph optimization problems; in practice, however, SLAM graphs are often opti-
mized incrementally, as measurements are acquired in real-time. Our approach readily
extends to this setting. Finally, our method only computes open-loop game strate-
gies, corresponding to feedforward, rather than feedback, controls. Future work will
investigate game-theoretic SLAM priors in more complicated strategy spaces.

• Dynamic feedback large-scale games. Another promising direction for future re-
search is to design dynamic game theory-based algorithms to model non-cooperative
interactions between hundreds or thousands of self-interested dynamic agents. In the
literature, non-atomic games are generally solved under a static setting or an open-loop
information pattern, which generally struggle to capture more nuanced interactions be-
tween dynamic agents in atomic games. I aim to address this gap by developing algo-
rithms for solving dynamic feedback non-atomic games, to characterize the aggregate
behavior of non-cooperative, self-interested autonomous agents at large scales.

8.3 Part 3

Future work for adaptive toll design will target the removal of certain assumptions placed on
the formulation presented in Chapters 6 and 7. These assumptions may be overly stringent
in practice, or fail to account for aspects of social welfare, such as fairness.

1. Studying Transient Effects in Traffic. Chapters 6 and 7 focus on a static and
asymptotic model of social optimality. In other words, any tolling mechanism or route
assignment scheme that asymptotically steers the aggregate traffic allocation towards
latency-minimizing flow levels is declared to be socially optimal. This paradigm does
not capture certain complex, non-asymptotic phenomena that often cause significant
disruptions in traffic flow in real life. A prominent example is the occurrence of traffic
accidents that block several lanes on a busy highway, causing vehicular pileup, excessive
congestion, and possibly even additional accidents beyond the first. It is thus of interest
to develop arc assignment methods that can swiftly disperse vehicles towards alternate
routes when such an emergency event occurs at a crowded traffic scene.

2. Heterogeneous Tolling for Fairness and Robustness. The tolling mechanism
proposed in Chapter 6 assumes that in a transportation network with fixed tolls, all
travelers on the same arc perceive the same overall cost, obtained by summing the
toll and a monetary value associated with the travel time. However, in real-life traffic,
travelers may select routes in different, nuanced ways that are not well-modeled by
this simplified framework. For example, some commuters may take other factors of
the traffic network into account, such as paving quality or neighborhood safety, when
performing route selection. Moreover, individuals with lower income may respond
more drastically to the deployment of a toll, while individuals with higher income may

CHAPTER 8. CONCLUSION 150

completely ignore tolls imposed on the network. This example additionally raises issues
of fairness, since it is undesirable to considerably increase the commute costs faced by
low-income communities. Future work will aim to address the above concerns, to
implement an adaptive incentive design scheme on a transportation network that more
accurately captures nuances in the route selection decisions of different populations
of travelers, while ensuring that travelers from all communities are treated fairly and
humanely.

3. Online Learning for Adaptive Tolling. A natural avenue of future work, for
the online learning and adaptive tolling project (Chapter 7), is to extend the online
learning algorithm of Chapter 7 to traffic networks with multiple origin-destination
pairs, and possibly bi-directional edges. Such settings pose particular challenges to the
estimation of the entropy parameters, since each arc in the network could be shared
among commuters representing a diverse range of travel histories and destinations. It
would also be interesting to explore whether one could relax the assumption that the
central authority possesses knowledge of a lower bound cβ > 0 for β⋆. Yet another
direction of future inquiry would be to study the effect of a non-constant input flow
go on the growth of the cumulative regret. Finally, it would be interesting to run
Algorithm 14 on larger simulated or real-life traffic networks, to fully investigate the
empirical dependence of the cumulative regret growth on the network parameters.

151

Bibliography

[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. “Improved Algorithms for
Linear Stochastic Bandits”. In: Advances in Neural Information Processing Systems.
Ed. by J. Shawe-Taylor et al. Vol. 24. Curran Associates, Inc., 2011.

[2] Takashi Akamatsu. “Decomposition of Path Choice Entropy in General Transport
Networks”. In: Transportation Science 31.4 (Nov. 1997), pp. 349–362. doi: 10.1287/
trsc.31.4.349.

[3] Jean-Bernard Baillon and Roberto Cominetti. “Markovian Traffic Equilibrium”. In:
Mathematical Programming (Feb. 2008). doi: 10.1007/s10107-006-0076-2.

[4] Somil Bansal et al. “Hamilton-Jacobi Reachability: A Brief Overview and Recent
Advances”. In: (2017), pp. 2242–2253.

[5] Tamer Basar and Geert Jan Olsder. Dynamic Noncooperative Game Theory. Vol. 23.
SIAM, 1999.

[6] B. Bell. “The Iterated Kalman Smoother as a Gauss-Newton Method”. In: SIAM J.
Optim. 4 (1994), pp. 626–636.

[7] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–37.

[8] M. E. Ben-Akiva. Discrete Choice Analysis: Theory and Application to Travel De-
mand. Cambridge: MIT Press, 1985.

[9] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control (Two Volume Set).
2nd. Athena Scientific, 2001. isbn: 1886529086.

[10] Vivek Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cam-
bridge University Press, 2008.

[11] Vivek S Borkar. “Cooperative Dynamics and Wardrop Equilibria”. In: Systems &
control letters 58.2 (2009), pp. 91–93.

[12] Neal E. Boudette and Bill Vlasic. “Tesla Self-Driving System Faulted by Safety
Agency in Crash”. In: The New York Times (Sept. 12, 2017). url: https://www.
nytimes.com/2017/09/12/business/self-driving-cars.html.

https://doi.org/10.1287/trsc.31.4.349
https://doi.org/10.1287/trsc.31.4.349
https://doi.org/10.1007/s10107-006-0076-2
https://www.nytimes.com/2017/09/12/business/self-driving-cars.html
https://www.nytimes.com/2017/09/12/business/self-driving-cars.html

BIBLIOGRAPHY 152

[13] Michael Burri et al. “The EuRoC Micro Aerial Vehicle Datasets”. In: The Interna-
tional Journal of Robotics Research (2016). doi: 10.1177/0278364915620033. eprint:
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.

full.pdf+html. url: http://ijr.sagepub.com/content/early/2016/01/21/
0278364915620033.abstract.

[14] C. Cadena et al. “Past, Present, and Future of Simultaneous Localization and Map-
ping: Toward the Robust-Perception Age”. In: IEEE Transactions on Robotics 32.6
(2016), pp. 1309–1332.

[15] Haipeng Chen et al. “DyETC: Dynamic electronic toll collection for traffic congestion
alleviation”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32.
1. 2018.

[16] Chih-Yuan Chiu. Simultaneous Localization and Mapping: A Rapprochement of Filter-
ing and Optimization-Based Approaches. 2021. url: https://www2.eecs.berkeley.
edu/Pubs/TechRpts/2021/EECS-2021-76.pdf (visited on 05/14/2021).

[17] Chih-Yuan Chiu. “SLAM Backends with Objects in Motion: A Unifying Framework
and Tutorial”. In: 2023 American Control Conference (ACC). 2023, pp. 1635–1642.
doi: 10.23919/ACC55779.2023.10155957.

[18] Chih-Yuan Chiu and David Fridovich-Keil. “GTP-SLAM: Game-Theoretic Priors for
Simultaneous Localization and Mapping in Multi-Agent Scenarios”. In: 2022 IEEE
61st Conference on Decision and Control (CDC). 2022, pp. 247–252. doi: 10.1109/
CDC51059.2022.9992656.

[19] Chih-Yuan Chiu and Shankar Sastry. “Parameter Estimation in Optimal Tolling
for Traffic Networks Under the Markovian Traffic Equilibrium”. In: (Submitted to):
American Control Conference (2024).

[20] Chih-Yuan Chiu et al. “Dynamic Tolling in Arc-based Traffic Assignment Models”.
In: (Accepted at): 59th Annual Allerton Conference on Communication, Control, and
Computing (2023).

[21] Chih-Yuan Chiu⋆, David Fridovich-Keil⋆, and Claire Tomlin. “Encoding Defensive
Driving as a Dynamic Nash Game”. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). 2021, pp. 10749–10756. doi: 10.1109/ICRA48506.
2021.9560788.

[22] Chih-Yuan Chiu⋆ et al. “Arc-based Traffic Assignment: Equilibrium Characterization
and Learning”. In: (Accepted at:) 62nd IEEE Conference on Decision and Control
(CDC) (2023).

[23] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. “ALGAMES: A Fast
Solver for Constrained Dynamic Games”. In: arXiv preprint arXiv:1910.09713 (2019).

[24] Anna Dai et al. “Fast Frontier-based Information-driven Autonomous Exploration
with an MAV”. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). 2020, pp. 9570–9576. doi: 10.1109/ICRA40945.2020.9196707.

https://doi.org/10.1177/0278364915620033
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-76.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-76.pdf
https://doi.org/10.23919/ACC55779.2023.10155957
https://doi.org/10.1109/CDC51059.2022.9992656
https://doi.org/10.1109/CDC51059.2022.9992656
https://doi.org/10.1109/ICRA48506.2021.9560788
https://doi.org/10.1109/ICRA48506.2021.9560788
https://doi.org/10.1109/ICRA40945.2020.9196707

BIBLIOGRAPHY 153

[25] Andrew J. Davison. FutureMapping: The Computational Structure of Spatial AI Sys-
tems. 2018. eprint: 1803.11288 (cs.AI).

[26] Andrew J. Davison and Joseph Ortiz. FutureMapping 2: Gaussian Belief Propagation
for Spatial AI. 2019. eprint: 1910.14139 (cs.AI).

[27] F. Dellaert. “Factor Graphs for Robot Perception”. In: Foundations and Trends® in
Robotics 6.1-2 (2017), pp. 1–139.

[28] Frank Dellaert et al. “Gtsam”. In: URL: https://borg. cc. gatech. edu (2012).

[29] Frank Dellaert, Michael Kaess, et al. “Factor Graphs for Robot Perception”. In: Foun-
dations and Trends® in Robotics 6.1-2 (2017), pp. 1–139.

[30] Frank Dellaert and Michael Kaess. “Square Root SAM: Simultaneous Localization and
Mapping via Square Root Information Smoothing”. In: The International Journal of
Robotics Research 25.12 (2006), pp. 1181–1203. doi: 10.1177/0278364906072768.
eprint: https://doi.org/10.1177/0278364906072768. url: https://doi.org/
10.1177/0278364906072768.

[31] Bolei Di and Andrew Lamperski. “Local First-Order Algorithms for Constrained Non-
linear Dynamic Games”. In: 2020 American Control Conference (ACC). IEEE. 2020,
pp. 5358–5363.

[32] Bolei Di and Andrew Lamperski. “Newton’s Method and Differential Dynamic Pro-
gramming for Unconstrained Nonlinear Dynamic Games”. In: (2019), pp. 4073–4078.

[33] Noel E Du Toit and Joel W Burdick. “Robot Motion Planning in Dynamic, Uncertain
Environments”. In: IEEE Transactions on Robotics 28.1 (2012), pp. 101–115.

[34] Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang. “Closed-Form Preintegration
Methods for Graph-based Visual-Inertial Navigation”. In: The International Journal
of Robotics Research 38 (2019), pp. 563–586.

[35] L. C. Evans and P. E. Souganidis. “Differential Games and Representation Formulas
for Solutions of Hamilton-Jacobi-Isaacs Equations”. In: Indiana University mathe-
matics journal 33.5 (1984), pp. 773–797.

[36] Farbod Farshidian and J. Buchli. “Chance-Constrained Optimal Covariance Steering
with Iterative Risk Allocation”. In: ArXiv abs/1512.07173 (2015).

[37] Farbod Farshidian and J. Buchli. “Risk Sensitive, Nonlinear Optimal Control: Itera-
tive Linear Exponential-Quadratic Optimal Control with Gaussian Noise”. In: ArXiv
abs/1512.07173 (2015).

[38] Jaime Fisac et al. “Reach-Avoid Problems with Time-Varying Dynamics, Targets and
Constraints”. In: Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control. 2015, pp. 11–20.

[39] Jaime F Fisac and S Shankar Sastry. “The Pursuit-evasion-defense Differential Game
in Dynamic Constrained Environments”. In: 54th Conference on Decision and Control
(CDC). IEEE. 2015, pp. 4549–4556.

1803.11288
1910.14139
https://doi.org/10.1177/0278364906072768
https://doi.org/10.1177/0278364906072768
https://doi.org/10.1177/0278364906072768
https://doi.org/10.1177/0278364906072768

BIBLIOGRAPHY 154

[40] Jaime F Fisac et al. “Hierarchical Game-Theoretic Planning for Autonomous Vehi-
cles”. In: arXiv preprint arXiv:1810.05766 (2018).

[41] Michael Florian and Donald Hearn. Network Equilibrium and Pricing. Vol. 23. Jan.
2003, pp. 373–411. doi: 10.1007/0-306-48058-1_11.

[42] Alejandra Fonseca-Morales and OnÃ©simo Hernández-Lerma. “Potential Differen-
tial Games”. In: Dynamic Games and Applications 8.2 (2018), pp. 254–279.

[43] Christian Forster et al. “IMU Preintegration on Manifold for Efficient Visual-Inertial
Maximum-a-Posteriori Estimation”. In: Georgia Institute of Technology. 2015.

[44] F. Fraundorfer and D. Scaramuzza. “Visual Odometry, Part II: Matching, Robustness,
Optimization, and Applications”. In: IEEE RAM 19.2 (2012), pp. 78–90.

[45] U. Frese, R. Wagner, and T. Röfer. “A SLAM Overview from a User’s Perspective”.
In: Künstliche Intelligenz 24 (2010), pp. 191–198.

[46] David Fridovich-Keil et al. “Efficient Iterative Linear-Quadratic Approximations for
Nonlinear Multi-Player General-Sum Differential Games”. In: arXiv preprint arXiv:1909.04694
(2019).

[47] Drew Fudenberg and David K Levine. The Theory of Learning in Games. Vol. 2. MIT
press, 1998.

[48] Sreenivas Gollapudi et al. “Online Learning for Traffic Navigation in Congested Net-
works”. In: International Conference on Algorithmic Learning Theory (2023).

[49] David González-Sánchez and Onésimo Hernández-Lerma. “Dynamic Potential Games:
The Discrete-Time Stochastic Case”. In: Dynamic Games and Applications 4 (2014),
pp. 309–328.

[50] G. Grisetti et al. “A Tutorial on Graph-Based SLAM”. In: IEEE Intelligent Trans-
portation Systems Magazine 2.4 (2010), pp. 31–43. doi: 10.1109/MITS.2010.939925.

[51] C. Hua and L. Dou. “A New Algorithm Merging Static Game with Complete Infor-
mation Into EKF For Multi-Robot Cooperative Localization”. In: Zhongnan Daxue
Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Tech-
nology) 44 (Nov. 2013), pp. 4534–4541.

[52] S. Huang and G. Dissanayake. “A Critique of Current Developments in Simultaneous
Localization and Mapping”. In: IJARS 13.5 (2016), p. 1729881416669482. doi: 10.
1177/1729881416669482.

[53] R Isaacs. “Differential games, parts 1-4”. In: The Rand Corpration, Research Memo-
randums Nos. RM-1391, RM-1411, RM-1486 55 (1954).

[54] Rufus Isaacs. Differential Games: a Mathematical Theory with Applications to War-
fare and Pursuit, Control and Optimization. Courier Corporation, 1999.

[55] Rufus Isaacs. Games of Pursuit. Tech. rep. Rand Corporation, 1951.

https://doi.org/10.1007/0-306-48058-1_11
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1177/1729881416669482
https://doi.org/10.1177/1729881416669482

BIBLIOGRAPHY 155

[56] M. Kaess et al. “iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree”.
In: IJRR 31 (2 Feb. 2012), pp. 217–236.

[57] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. “iSAM: Incremental Smooth-
ing and Mapping”. In: Robotics, IEEE Transactions on 24 (Jan. 2009), pp. 1365–1378.
doi: 10.1109/TRO.2008.2006706.

[58] Noriko Kanekoa, Daisuke Fukudab, and Qian Gec. “Optimal Congestion Tolling Prob-
lem under the Markovian Traffic Equilibrium”. In: Sustainability (2021).

[59] Talha Kavuncu, Ayberk Yaraneri, and Negar Mehr. “Potential iLQR: A Potential-
Minimizing Controller for Planning Multi-Agent Interactive Trajectories”. In: Robotics:
Science and Systems (July 2021).

[60] Mingxing Ke et al. “An EKF based Overlapping Coalition Formation Game for
Cooperative Wireless Network Navigation”. In: IET Communications 15.19 (2021),
pp. 2407–2424. doi: https://doi.org/10.1049/cmu2.12279.

[61] Kasra Khosoussi, Shoudong Huang, and Gamini Dissanayake. “A Sparse Separable
SLAM Back-End”. In: IEEE Transactions on Robotics 32.6 (2016).

[62] Markus Koschi et al. “Set-Based Prediction of Pedestrians in Urban Environments
Considering Formalized Traffic Rules”. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) (2018), pp. 2704–2711.

[63] Forrest Laine et al. “The Computation of Approximate Generalized Feedback Nash
Equilibria”. In: arXiv preprint arXiv:2101.02900 (2021).

[64] Tor Lattimore and Csaba SzepesvÃ¡ri. Bandit Algorithms. Cambridge University
Press, 2020. doi: 10.1017/9781108571401.

[65] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. “LUCIDGames: Online
Unscented Inverse Dynamic Games for Adaptive Trajectory Prediction and Plan-
ning”. In: Robotics and Automation Letters 6.3 (2021), pp. 5485–5492.

[66] J.J. Leonard and H.F. Durrant-Whyte. “Simultaneous Map Building and Localization
for an Autonomous Mobile Robot”. In: IEEE IROS. Vol. 3. 1991, pp. 1442–7.

[67] Stefan Leutenegger et al. “Keyframe-based Visual-Inertial Odometry using Nonlinear
Optimization”. In: The International Journal of Robotics Research 34 (2015), pp. 314–
334.

[68] Ana Ley. “How Might Congestion Pricing Actually Work in New York?” In: (2023).

[69] Mingyang Li and Anastasios I. Mourikis. “Improving the Accuracy of EKF-based
Visual-Inertial Odometry”. In: 2012 IEEE International Conference on Robotics and
Automation (2012), pp. 828–835.

[70] Mingyang Li and Anastasios I. Mourikis. “Optimization-based Estimator Design for
Vision-aided Inertial Navigation: Supplemental Materials”. In: Robotics: Science and
Systems (2012).

https://doi.org/10.1109/TRO.2008.2006706
https://doi.org/https://doi.org/10.1049/cmu2.12279
https://doi.org/10.1017/9781108571401

BIBLIOGRAPHY 156

[71] MLA Lourakis and Antonis A Argyros. “Is Levenberg-Marquardt the most efficient
optimization algorithm for implementing bundle adjustment?” In: Tenth IEEE Inter-
national Conference on Computer Vision (ICCV’05) Volume 1. Vol. 2. IEEE. 2005,
pp. 1526–1531.

[72] Chinmay Maheshwari et al. “Dynamic Tolling for Inducing Socially Optimal Traffic
Loads”. In: 2022 American Control Conference (ACC). 2022, pp. 4601–4607. doi:
10.23919/ACC53348.2022.9867193.

[73] Michael Manville. “How and Why Would Congestion Pricing Work?” In: (2021).

[74] Kostas Margellos and John Lygeros. “Hamilton-Jacobi Formulation for Reach-avoid
Differential Games”. In: Transactions on Automatic Control 56.8 (2011), pp. 1849–
1861.

[75] Donald W Marquardt. “An algorithm for least-squares estimation of nonlinear pa-
rameters”. In: Journal of the society for Industrial and Applied Mathematics 11.2
(1963), pp. 431–441.

[76] Peter S. Maybeck et al. Stochastics Models, Estimation, and Control: Introduction.
1979.

[77] Hamid Mirzaei et al. “Enhanced Delta-tolling: Traffic Optimization via Policy Gra-
dient Reinforcement Learning”. In: 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). 2018, pp. 47–52. doi: 10.1109/ITSC.2018.8569737.

[78] Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. “A Time-dependent
Hamilton-Jacobi Formulation of Reachable Sets for Continuous Dynamic Games”.
In: IEEE Transactions on automatic control 50.7 (2005), pp. 947–957.

[79] Anastasios I. Mourikis and Stergios I. Roumeliotis. “A Multi-State Constraint Kalman
Filter for Vision-aided Inertial Navigation”. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation (2007), pp. 3565–3572.

[80] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Busi-
ness Media, 2006.

[81] M. Ono, L. Blackmore, and B. C. Williams. “Chance Constrained Finite Horizon
Optimal Control with Nonconvex Constraints”. In: Proceedings of the 2010 American
Control Conference. 2010, pp. 1145–1152.

[82] Yuki Oyama, Yusuke Hara, and Takashi Akamatsu. “Markovian Traffic Equilibrium
Assignment Based on Network Generalized Extreme Value Model”. In: Transportation
Research Part B: Methodological 155 (2022), pp. 135–159.

[83] Yuki Oyama and Eiji Hato. “A Discounted Recursive Logit Model for Dynamic Grid-
lock Network Analysis”. In: Transportation Research Part C: Emerging Technologies
85 (2017), pp. 509–527.

https://doi.org/10.23919/ACC53348.2022.9867193
https://doi.org/10.1109/ITSC.2018.8569737

BIBLIOGRAPHY 157

[84] Yuki Oyama and Eiji Hato. “Prism-based Path Set Restriction for Solving Markovian
Traffic Assignment Problem”. In: Transportation Research Part B: Methodological 122
(2019), pp. 528–546.

[85] Jong-Shi Pang and Gesualdo Scutari. “Nonconvex Games with Side Constraints”. In:
SIAM Journal on Optimization (2021).

[86] C. Pek and M. Althoff. “Computationally Efficient Fail-safe Trajectory Planning for
Self-driving Vehicles Using Convex Optimization”. In: 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC) (2018), pp. 1447–1454.

[87] Lasse Peters et al. “Inferring Objectives in Continuous Dynamic Games from Noise-
Corrupted Partial State Observations”. In: Robotics: Science and Systems. 2021.

[88] Michael JD Powell. “A new algorithm for unconstrained optimization”. In: Nonlinear
programming. Elsevier, 1970, pp. 31–65.

[89] Wei Qiu, Haipeng Chen, and Bo An. “Dynamic Electronic Toll Collection via Multi-
Agent Deep Reinforcement Learning with Edge-Based Graph Convolutional Net-
works”. In: Proceedings of the Twenty-Eighth International Joint Conference on Arti-
ficial Intelligence, IJCAI-19. International Joint Conferences on Artificial Intelligence
Organization, July 2019, pp. 4568–4574. doi: 10.24963/ijcai.2019/635. url:
https://doi.org/10.24963/ijcai.2019/635.

[90] Benjamin Recht and Stephen Wright. Optimization for Modern Data Analysis. Cam-
bridge University Press, 2021. isbn: 1316518981.

[91] Paul B. Reverdy and Naomi Ehrich Leonard. “Parameter Estimation in Softmax
Decision-Making Models With Linear Objective Functions”. In: IEEE Transactions
on Automation Science and Engineering 13 (2015), pp. 54–67.

[92] Tim Roughgarden. “Algorithmic Game Theory”. In: Communications of the ACM
53.7 (2010), pp. 78–86.

[93] William H. Sandholm. Population Games And Evolutionary Dynamics. Economic
Learning and Social Evolution, 2010.

[94] Shankar Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer, 1999.

[95] Amay Saxena⋆ et al. “Simultaneous Localization and Mapping: Through the Lens
of Nonlinear Optimization”. In: IEEE Robotics and Automation Letters 7.3 (2022),
pp. 7148–7155. doi: 10.1109/LRA.2022.3181409.

[96] D. Scaramuzza and F. Fraundorfer. “Visual Odometry, Part I: The First 30 Years
and Fundamentals”. In: IEEE RAM 18.4 (2011), pp. 80–92.

[97] Gabe Sibley, Larry H. Matthies, and Gaurav S. Sukhatme. “Sliding window filter with
application to planetary landing.” In: J. Field Robotics 27.5 (2010), pp. 587–608. url:
http://dblp.uni-trier.de/db/journals/jfr/jfr27.html#SibleyMS10.

[98] Joan Solà. “Simultaneous localization and mapping with the extended Kalman filter”.
In: arXiv (2014).

https://doi.org/10.24963/ijcai.2019/635
https://doi.org/10.24963/ijcai.2019/635
https://doi.org/10.1109/LRA.2022.3181409
http://dblp.uni-trier.de/db/journals/jfr/jfr27.html#SibleyMS10

BIBLIOGRAPHY 158

[99] Alan Wilbor Starr and Yu-Chi Ho. “Further Properties of Nonzero-sum Differential
Games”. In: Journal of Optimization Theory and Applications 3.4 (1969), pp. 207–
219.

[100] Alan Wilbor Starr and Yu-Chi Ho. “Nonzero-sum Differential Games”. In: Journal
of optimization theory and applications 3.3 (1969), pp. 184–206.

[101] H. Strasdat, J.M.M. Montiel, and A. J. Davison. “Visual SLAM: Why Filter?” In:
IVC 30.2 (2012), pp. 65–77. issn: 0262-8856.

[102] Duy-Nguyen Ta, Marin Kobilarov, and Frank Dellaert. “A Factor Graph Approach
to Estimation and Model Predictive Control on Unmanned Aerial Vehicles”. In: In-
ternational Conference on Unmanned Aircraft Systems (ICUAS) (2014).

[103] Chao Tang and Lihua Dou. “An Improved Game Theory-Based Cooperative Lo-
calization Algorithm for Eliminating the Conflicting Information of Multi-Sensors”.
In: Sensors 20.19 (2020). issn: 1424-8220. doi: 10.3390/s20195579. url: https:
//www.mdpi.com/1424-8220/20/19/5579.

[104] Akio Tanikawa, Hiro Mukai, and Min Xu. “Local Convergence of the Sequential
Quadratic Method for Differential Games”. In: Transactions of the Institute of Sys-
tems, Control and Information Engineers 25.12 (2012), pp. 349–357.

[105] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005. isbn: 0262201623.

[106] S. Tully et al. “Iterated Filters for Bearing-only SLAM”. In: 2008 IEEE International
Conference on Robotics and Automation. 2008, pp. 1442–1448. doi: 10.1109/ROBOT.
2008.4543405.

[107] S. Umeyama. “Least-Squares Estimation of Transformation Parameters Between Two
Point Patterns”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
13.4 (1991), pp. 376–380. doi: 10.1109/34.88573.

[108] S. Vaskov et al. “Not-at-Fault Driving in Traffic: A Reachability-Based Approach”.
In: 2019, pp. 2785–2790.

[109] Yiheng Wang, Hexi Jin, and Guanjie Zheng. “CTRL: Cooperative Traffic Tolling via
Reinforcement Learning”. In: Proceedings of the 31st ACM International Conference
on Information and Knowledge Management. 2022, pp. 3545–3554.

[110] Zijian Wang, Riccardo Spica, and Mac Schwager. “Game Theoretic Motion Planning
for Multi-Robot Racing”. In: (2018).

[111] Zijian Wang, Riccardo Spica, and Mac Schwager. “Game Theoretic Motion Planning
for Multi-robot Racing”. In: Distributed Autonomous Robotic Systems. Springer, 2019,
pp. 225–238.

[112] Hai Yang and Hai-Jun Huang. “Principle of Marginal-Cost Pricing: How Does it
Work in a General Road Network?” In: Transportation Research Part A: Policy and
Practice 32.1 (1998), pp. 45–54.

https://doi.org/10.3390/s20195579
https://www.mdpi.com/1424-8220/20/19/5579
https://www.mdpi.com/1424-8220/20/19/5579
https://doi.org/10.1109/ROBOT.2008.4543405
https://doi.org/10.1109/ROBOT.2008.4543405
https://doi.org/10.1109/34.88573

BIBLIOGRAPHY 159

[113] Ming-Yuan Yu, R. Vasudevan, and Matthew Johnson-Roberson. “Risk Assessment
and Planning with Bidirectional Reachability for Autonomous Driving”. In: 2020
IEEE International Conference on Robotics and Automation (ICRA) (2020), pp. 5363–
5369.

[114] Alessandro Zanardi et al. “Urban Driving Games With Lexicographic Preferences
and Socially Efficient Nash Equilibria”. In: IEEE Robotics and Automation Letters
6.3 (2021), pp. 4978–4985.

[115] J. Zhang et al. “VDO-SLAM: A Visual Dynamic Object-aware SLAM System”. In:
arXiv. 2020. arXiv: 2005.11052 [cs.RO].

[116] Yetong Zhang et al. “MR-iSAM2: Incremental Smoothing and Mapping with Multi-
Root Bayes Tree for Multi-Robot SLAM”. In: International Conference on Intelligent
Robots and Systems (IROS) (2021), pp. 8671–8678.

[117] Zhengyou Zhang. “Parameter Estimation Techniques: a Tutorial with Application
to Conic Fitting”. In: Image and Vision Computing 15.1 (1997), pp. 59–76. issn:
0262-8856. doi: https : / / doi . org / 10 . 1016 / S0262 - 8856(96) 01112 - 2. url:
http://www.sciencedirect.com/science/article/pii/S0262885696011122.

https://arxiv.org/abs/2005.11052
https://doi.org/https://doi.org/10.1016/S0262-8856(96)01112-2
http://www.sciencedirect.com/science/article/pii/S0262885696011122

	Contents
	Introduction
	SLAM: A Generalized Optimization Framework
	Static SLAM
	Introduction
	SLAM: Formulation on Euclidean Spaces
	SLAM: Formulation on Manifolds
	Main Algorithm
	Gauss-Newton Descent
	Marginalization of States
	Main Algorithm on Manifolds

	Equivalence of Filtering and Optimization
	Extended Kalman Filter (EKF) on Euclidean Spaces, Standard Formulation
	Extended Kalman Filter (EKF) on Euclidean Spaces, in an Optimization Framework
	Multi-State Constrained Kalman Filter (MSCKF), Standard Formulation
	Multi-State Constrained Kalman Filter (MSCKF), on Manifolds
	State-of-the-Art SLAM Algorithms
	Experiments
	Discussion

	Game-Theoretic Motion Planning for Autonomous Vehicles
	Defensive Driving
	Related Work
	Preliminaries
	Methods
	Implementation Details: ILQGames
	Results
	Discussion

	Game-Theoretic Priors for SLAM
	Related Work
	Setup and Notation
	Methods
	Experiment Results
	Discussion

	 Adaptive Tolling for Transportation Networks
	Adaptive Tolling for Arc-Based Traffic Assignment
	Preliminaries
	Optimal Toll: Existence and Uniqueness
	Dynamics and Convergence
	Experiment Results
	Discussion

	Online Learning for Adaptive Tolling
	Preliminaries
	Main Algorithm
	Lemmas for Regret Analysis
	Regret Analysis
	Experiments
	Discussion

	 Future Work
	Conclusion
	Part 1
	Part 2
	Part 3

	Bibliography

