Co-Designing for Transparency: Lessons from
Building a Document Organization Tool for the
Criminal Justice Domain

Hellina Hailu Nigatu
Lisa Pickoff-White
John F. Canny
Sarah Chasins

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-81
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-81.html

May 10, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to thank my advisors Sarah Chasins and John Canny for their
support and understanding. | would also like to thank Lisa Pickoff-White,
my co-author for all the feedback and support with this project. Julie
Ciccolini and the rest of the NACDL Full Disclosure Project team, all the
public defenders and journalists | have worked with; thank you. | am
grateful for the feedback from PLAIT and Canny lab. | thank SIGHPC for
giving me the Computational and Data Science Fellowship. Finally, | would
like to thank my parents Hailu Nigatu Yasin and Rehima Jemal Ahmed for
their constant boost of confidence, my grandma Zeyneba Eshetu Zele for
her love, my dearest friend Beza Zena for tirelessly listening to my
complaints and all of my family and friends who supported me through this
journey.

Co-Designing for Transparency: Lessons from Building a Document
Organization Tool for the Criminal Justice Domain

by Hellina Hailu Nigatu

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Pt Ch

Professor Sarah E. Chasins
Research Advisor

(Date)

kosk ok ok sk sk sk

/; ;//// 2 //‘
o
) 77
y

Professor John Canny
Second Reader

5/2/23
(Date)

Abstract

Investigative journalists and public defenders conduct the essential work of examining,
reporting, and arguing critical cases around police use-of-force and misconduct. In an
ideal world, they would have access to well-organized records they can easily navigate
and search. In reality, records can come as large, disorganized data dumps, increasing
the burden on the already resource-constrained teams. In a cross-disciplinary research
team of stakeholders and computer scientists, we worked closely with public defenders
and investigative journalists in the United States to co-design an Al-augmented tool that
addresses challenges in working with such data dumps. Our Document Organization
Tool (DOT) is a Python library that has Data Cleaning, Data Extraction, and Data
Organization features. Our collaborative design process gave us insights into the needs
of under-resourced teams who work with large data dumps, such as how some domain
experts became self-taught programmers to automate their tasks. To understand what
type of programming paradigms could support our target users, we conducted a user
study (n=18) comparing Visual, Programming-By-Example, and traditional Text-Based
programming tools. From our user study, we found that once users passed the initial
learning stage, they could use all three paradigms equally well. Our work offers insights
for designers working with under-resourced teams who want to consolidate
cutting-edge algorithms and Al techniques into unified, expressive tools. We argue that
user-centered tool design can contribute to the broader fight for accountability and
transparency by supporting existing practitioners in their work in domains like criminal
justice.

Co-Designing for Transparency: Lessons from Building a
Document Organization Tool in the Criminal Justice Domain

Hellina Hailu Nigatu
hellina_nigatu@berkeley.edu
UC Berkeley
USA

John Canny
canny@berkeley.edu
UC Berkeley
USA

ABSTRACT

Investigative journalists and public defenders conduct the essential
work of examining, reporting, and arguing critical cases around
police use-of-force and misconduct. In an ideal world, they would
have access to well-organized records they can easily navigate and
search. In reality, records can come as large, disorganized data
dumps, increasing the burden on the already resource-constrained
teams. In a cross-disciplinary research team of stakeholders and
computer scientists, we worked closely with public defenders and
investigative journalists in the United States to co-design an Al-
augmented tool that addresses challenges in working with such
data dumps. Our Document Organization Tool (DOT) is a Python
library that has data cleaning, extraction, and organization features.
Our collaborative design process gave us insights into the needs
of under-resourced teams who work with large data dumps, such
as how some domain experts became self-taught programmers to
automate their tasks. To understand what type of programming
paradigm could support our target users, we conducted a user study
(n=18) comparing visual, programming-by-example, and traditional
text-based programming tools. From our user study, we found that
once users passed the initial learning stage, they could comfortably
use all three paradigms. Our work offers insights for designers
working with under-resourced teams who want to consolidate
cutting-edge algorithms and Al techniques into unified, expressive
tools. We argue user-centered tool design can contribute to the
broader fight for accountability and transparency by supporting
existing practitioners in their work in domains like criminal justice.

CCS CONCEPTS

+ Human-centered computing — Interaction paradigms; User
studies; User interface design; User centered design; Interface design
prototyping; » Computing methodologies — Artificial intelli-
gence; Machine learning.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0192-4/23/06.
https://doi.org/10.1145/3593013.3594093

Lisa Pickoff-White
Ipickoffwhite@kqed.org
KQED
USA

Sarah E. Chasins
schasins@cs.berkeley.edu
UC Berkeley
USA

KEYWORDS

Co-Design, Document Organization, User-Centered Design, Col-
laborative Design

ACM Reference Format:

Hellina Hailu Nigatu, Lisa Pickoff-White, John Canny, and Sarah E. Chasins.
2023. Co-Designing for Transparency: Lessons from Building a Document
Organization Tool in the Criminal Justice Domain. In Proceedings of . ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3593013.3594093

1 INTRODUCTION

Access—or lack thereof—to Law Enforcement Agency [1] (LEA)
procedures and records in the United States shapes the interaction
between the public and the agencies in several ways. Firstly, the lack
of transparency influences the public’s view and trust of LEAs [24,
46]. Secondly, disclosure of data around LEAs allows investigative
journalists to hold institutions accountable and public defenders to
increase fairness in the criminal justice system [23, 42]. Historically,
there have been several efforts to increase transparency through
legislation [53], journalism work [23], and community advocacy
[43]. While such efforts have led to data disclosures around police
misconduct and use-of-force[36], the process of disclosing these
data is not so straightforward. In addition to ongoing efforts to
block data disclosures [32], when requests are successful, data are
released in large and messy formats [56], requiring large amounts
of cleaning and organizing before they can be useful for the public’s
understanding and trust of LEAs.

Entities like public defenders and investigative journalists play
the middle organizational role between the public and LEAs in terms
of data disclosures. Public defenders carry out the essential job of
holding LEAs accountable in a court of law by using the disclosed
data to support and form their cases [56]. Investigative journalists
focusing on data or record-based police accountability projects
[35, 42] conduct fieldwork and research to force agencies to release
the records necessary for producing articles, and help the public
understand the disclosed data. Usually, such entities are constrained
in time, money, and resources [2, 56], limiting the efforts they can
put into automation, while also constraining the person-hours they
can afford to spend on data cleaning and organization.

These teams, who have fought to access essential data for their
work, now find themselves in a “transparency paradox,” in pos-
session of large amounts of information but unable to distill and
utilize it [8]. While previous work at FAccT [5, 39] has argued for

https://doi.org/10.1145/3593013.3594093
https://doi.org/10.1145/3593013.3594093

structuring disclosed data to ensure those receiving it can easily use
it; current data management practices rarely produce easy-to-use
data, particularly in the case of LEAs. Data releases are sometimes
intentionally obfuscated, as in the case of “data overloads” [13]. In
this paper, we focus on resource-constrained teams who process
and utilize this kind of hard-to-use data releases.

We conducted 14 months of cross-disciplinary collaboration be-
tween (i) stakeholders who work on processing large “data dumps”
of police use-of-force and misconduct documents (journalists, pub-
lic defenders, and workers at public defender support organizations)
and (ii) computer scientists. Over the course of the collaboration, we
built Document Organization Tool (DOT), an open-source Python
library with data cleaning, extracting, and organizing features. Pre-
vious work [19, 22, 30, 58] has shown the importance of active
engagements between designers and their users. In line with this in-
sight, our design process emphasized frequent and open discussions
within our cross-disciplinary team alongside direct engagement
with the datasets our users process manually.

Through our engagements, we found a number of relevant ob-
servations for tool builders, such as how some of our users became
self-taught programmers to automate some of their data organiza-
tion tasks. Based on our user-centered co-design values, we wanted
to support users in how they were already thinking about the prob-
lem. Hence, we built a Python library and two programming tools
on top of our Python library, presenting DOT in three program-
ming paradigms—Visual, Programming-By-Example, and standard
Text-Based—to identify which programming environment made
the most sense to our self-taught, domain-expert practitioners.

Throughout this paper, we illustrate how user-centered co-design
can allow researchers to support domain experts in the broader fight
for transparency and accountability. Our contributions include:

e Lessons learned from a co-design process, building
a document organization tool with domain experts:
We discuss our co-design approach and detail the resultant
design goals in Section 4.2; Section 7.1 details the lessons we
learned.

e Implementation of DOT, a library for processing and
organizing disclosures from Law Enforcement: We out-
line the features of DOT and the design decisions that went
into its implementation in Section 5.

e A user study exploring the programming needs of
resource-constrained domain experts: We present the
study procedure and results in Section 6 and discuss the
implications in Section 7.2.

In this work, we show how co-designing with stakeholders
through an engaged process allows designers to augment domain
experts’ skills, particularly in high-stakes situations like the legal
domain. Our work contributes to the fairness and transparency
cause by (1) presenting our reflections from co-designing computa-
tional tools with domain experts, and (2) presenting an open source
tool for domain experts working with large amounts of disclosed
data. We hope that other designers working with such practitioners
will learn from our reflections and transfer the lessons to other
domains where large data disclosures are abundant.

2 RELATED WORK AND BACKGROUND
2.1 User-Centered Design of Data Tools

Outside of the computer science community, domain experts have
picked up computer programming for their computational needs
[27] across many domains [26, 28, 34, 45]. Prior work contributes
tools for domain experts in non-technical fields who program with
data, addressing data needs such as data collection [4, 57], data label-
ing [62], and data visualization and analysis [7, 21]. Domain experts’
needs differ greatly from professional software developers’—thus
designing for these audiences is substantially different [27]. In the
case of public defenders and investigative journalists, they care
not just about efficiency and speed but about the broader social
and political goals that motivate their work. Hence, our design pro-
cess must center community goals, shaping our design constraints
(Section 4.2).

In the case of “data disclosures,” previous literature in FAccT
argues for the re-conceptualization of information disclosures as
“interfaces’—designed for the needs, expectations and requirements
of the recipients they serve to inform” [39]. However, in some set-
tings, e.g., LEA disclosures, asking for usable formats may not
always produce releases in usable formats, both because LEAs may
wish to obfuscate data and because their own data practices may
make it difficult to release well-structured records. Previous work at
FAccT [41] argues a primary characteristic of ‘disclosure datasets’ is
how they are produced and reported by the same institutions they
are meant to hold accountable. This puts both the power and the re-
sponsibility in the hands of the disclosing agencies. Building on [39],
we lay out an alternative, complementary approach that revolves
around changing data recipient practices rather than data releaser
practices. Looking at disclosures from the perspective of receiving
agencies rather than disclosing agencies, we build on previous HCI
works to support end-user programmers working with large, dis-
closed data. Our work offers a demonstration that user-centered
design techniques can help researchers tackle high-leverage needs
in Fairness, Accountability, and Transparency. Although our work
primarily centers transparency, we anticipate user-centered tool
design could enhance work in a variety of spaces—for example,
community-driven dataset and algorithmic audits.

2.2 Large Data Dumps and Public Records

Dealing with messy data takes significant, valuable time from
resource-constrained teams such as public defenders and investiga-
tive journalists. As previous work shows, public defenders engage
in a “scavenger hunt” type of data searching and believe that their
lack of time, technical resources, and technical skills negatively
affect their ability to do their jobs [2, 56]. Through our co-design
process, we found that investigative journalists also have similar
data needs. In this paper, we offer one way of addressing this sys-
temic issue by supporting the technical skills they already possess
through user-centered tool design.

2.2.1 Nature of Data Dumps. Modern “data dumps” of public records
present profound challenges for organization, analysis, and dissem-
ination. Data includes a variety of PDF files, generated from many
diverse templates and formats. Data can also include several levels
of duplication—standard pages may be shared across multiple files,

and partial or full PDF files may be copies of each other. Data can
also differ based on scanning quality and redaction levels. The same
physical paper may have been scanned multiple times, resulting
in different images. It may appear in multiple different PDFs, even
redacted in different ways. Different pages within a single PDF
may include forms, narratives, interview transcripts, images and
drawings, or handwritten notes. Additionally, individual cases may
be spread across several files in different layers of folders, or several
cases might all be consolidated in one large PDF. Adding to the
complexity, records related to the same case may come from more
than one agency; for instance, a police department, district attorney,
medical examiner, and the state Department of Justice could all
have related files, all in separate documents.

3 CO-DESIGN METHODOLOGY

Our work centers on the collaboration of a cross-disciplinary team
of domain experts and tool-building experts that took place over the
course of 14 months. The two central members of our team were:
the first author, a computer scientist at the University of California,
Berkeley; and the second author, a journalist at KQED, a public
radio station in San Francisco. The team included: (i) additional
computer scientists from UC Berkeley, (ii) additional journalists
from KQED, (iii) public defenders from across the United Sates,
and (iv) programmers and engineers from the National Association
of Criminal Defense Lawyers (NACDL) Full Disclosure Project,
an organization aimed at supporting defense attorneys across the
United States. All team members from groups (ii)—(iv) regularly
worked with police misconduct data at the time of the co-design
work.

Research in HCI [20, 48, 49] points to the benefits of collabo-
ration when designing for domain experts. Designers have used
methodologies and frameworks such as action research [29] and
participatory design [33] to provide solutions that solve real-world
problems [19, 47]. Domain experts’ insights in such processes help
ground the solutions in practical ways; these frameworks also high-
light how subjective decisions by designers are desirable and nec-
essary to the process as opposed to threatening validity [30]. A
key emphasis in collaborative design processes is that such work
should center “transferability not reproducibility” [47]. Although
we initially started working with investigative journalists, our de-
sign process allowed us to transfer our tool capabilities to public
defenders with similar—but not identical—data needs. We discuss
transferability in more depth in Section 7.1.

Our design process followed what previous research in visualiza-
tion has termed design by immersion [17]: a methodology by which
experts from one domain engage with and participate in the work of
another domain. In particular, we practiced apprenticeship, whereby
the first author (designer) spent considerable time building first-
hand experience in processing the domain experts’ large datasets.
The initial stages of our design process emphasized understanding
how users manually conducted data cleaning and organization. The
first author spent time directly analyzing the datasets these practi-
tioners were working with and replicating the manual organization
processes herself. Getting hands-on experience with the data gave
us an intuition that helped structure our collaborative need-finding
and brainstorming phases. Our team shared early prototypes in

the form of computational notebooks and iterated on features and
methods we employed in our design. The second author (domain
expert) served as the navigator for the vast data dumps and focused
designer attention on edge-cases encountered by their team during
prototype usage. The entire design process of DOT took 14 months
of collaboration.

Averaged over the course of our collaboration, we met across
disciplinary boundaries more than once per week, with meeting
frequency varying according to need at various stages of the work.
Within-discipline meetings were also more than weekly. In addition
to meetings, we also communicated regularly both within and
across disciplinary boundaries over a shared Slack space; the Slack
space was limited to team members from KQED, the NACDL, and
UC Berkeley. Finally, we communicated regularly both within and
across disciplinary boundaries over email.

4 FINDINGS FROM CO-DESIGN

Over the course of our co-design process, we identified three main
data needs and five design goals we outline below.

4.1 Data Needs

In this subsection, we taxonomize the data needs we identified
through our collaborations and direct engagement with the data.

4.1.1 Data Cleaning. We identified the central role of data clean-
ing, especially de-duplication: identifying copies of the same data
spread across multiple parts of a data dump. We found two types
of duplication: (1) exact duplicates in which images of pages are
pixel-for-pixel copies of each other and (2) near duplicates in which
two images are not pixel-for-pixel identical, but both are images
of the same physical (paper) document in the real world. Exact du-
plicates happen in cases where (i) there are standard pages shared
across several files (e.g., header pages), (ii) PDF files are entirely or
partially included within larger PDF files, or (iii) exact copies of the
same file are shared repeatedly by the same party or from different
parties and appear across the document dump. Near duplicates
occur due to (i) multiple scans of the same document, which may
vary in orientation, scan quality, scan size, or physical damage to
the document (e.g., stains) and (ii) differences in redaction applied
to a single scan. Both types of duplication are a problem because
they (1) waste human time either by causing them to re-process the
same data or requiring them to go through the painstaking process
of manually identifying duplicates to avoid re-processing and (2)
take up storage space. Near duplicates come with the additional
issue that redacted copies may miss data contained in other copies.

4.1.2 Data Extraction. Practitioners also struggled to extract rele-
vant information such as names, dates, locations, and case numbers
from case files. Due to the different formats used by different agen-
cies as well as the different layouts of individual pages, extracting
data from such data dumps requires time and manual effort.

4.1.3 Data Organization. Finally, practitioners needed to organize
PDF files into individual cases. This requires both splitting and
grouping files, as (i) a single case might be spread across several
files in several folders, and (ii) multiple cases might appear in a
single, large PDF. In the first case, users have to look through many
files to collect the ones that belong together. In the second case,

users have to look through a PDF, identify the boundaries between
cases, and split it.

4.2 Design Goals

Via a combination of observations of stakeholder practice, direct
conversations with stakeholders, and conversations across the cross-
disciplinary team, we identified five key design goals: human control
and intervention, non-interference with existing practices, robustness
to data variants, high-level abstractions, and cost-sensitive solutions.
The collaborative nature of our team allowed us to identify the con-
straints of our users’ needs and practices and iteratively adapt our
design while refining our design goals. For instance, initially, our
design for the data organization (Section 5.3) task utilized clustering
algorithms, following trends in previous works [3, 31, 37, 50, 54].
However, we identified that our design had to allow for human
control and intervention (see Table 1). This is in line with previous
research on human-machine collaboration and hybrid decision-
making [5, 6, 9, 12, 39, 55], indicating design processes should pri-
oritize supporting, not replacing, users. Our design also had to be
sensitive to trade-offs that impact quality of output. For instance,
keeping with the design goal for cost-sensitive solutions, we had
to use a free, open-source OCR engine, which necessitated post-
processing for data extraction to make up for the lower-quality
results. Table 1 presents a summary of the core design goals that
we constructed via our cross-disciplinary co-design process.

5 IMPLEMENTATION OF DOT

This section covers the technical details of the implementation of
DOT. DOT is an open-source Python library available at: https:
//github.com/hhnigatu/DOT. First, we will discuss DOT’s features
for data cleaning: identifying exact and near duplicates in Section
5.1. Then we will present the features for data extraction in Section
5.2. Finally, we will describe DOT’s data organization features in
Section 5.3. We present details of available functions in Appendix
C.

5.1 Data Cleaning

Exact Duplicate Detection (EDD). We accomplish EDD by running
each page of the PDF through an MD5 hashing algorithm [44] and
collecting pages with the same hash value as duplicates. To avoid
reprocessing the same pages, we select a representative page from a
group of duplicates by choosing the first page in the list of duplicates.
At the final stage, all the data extracted from this page is copied
over to the other pages in the group of duplicates.

Near Duplicate Detection (NDD). We used vector embedding clus-
tering and image correlation for NDD. Through our iterative design
process, we found that calculating image correlation and setting
a threshold allowed us to capture the near duplicate pages in the
datasets. However, this approach had two issues: (1) calculating
pairwise correlation for large datasets takes too much time, and
(2) threshold value for correlation depended on the page layout.
We circumvented these problems by fine-tuning LayOutLMv2 [59]
on a subset of our data for sequence classification and using its
visual backbone to produce the vector embeddings for the pages.
We detail our fine-tuning efforts in Appendix A. We then used

FAISS ! k-means clustering to group similar pages and calculated
pairwise correlation values on subgroups of similar pages, reducing
processing time and resource consumption. NDD also catches pages
that picture the same physical document but have different hash
values (e.g, due to a slightly skewed scan). With these optimizations
in place, our clustering and correlation approach addressed users’
NDD needs.

5.2 Data Extraction

Page Type Classification. We used our fine-tuned LayOutLMv2
[59] model to classify each page in the data as a form, narrative,
image, handwritten note, or interview transcript. This step allowed
us to strategize how we do data extraction depending on the type of
the page. For instance, we observed that case numbers are usually
found in a specific place on forms and that Named Entity Recogni-
tion (NER) did not perform well for text extracted from forms.

Named Entity Recognition. We used BERT [10] to perform NER.
For narratives, NER was the best tool for extracting information
relevant to document grouping. In particular, we extracted names,
dates, and locations.

Regular Expressions. For case numbers, we found that fine-tuning
NER would take too much time and too many resources. We found
that case numbers usually had a pattern that can be matched with
regular expressions. We added the option to provide a bounding
box for our users to narrow down the range of text on which our
tool performs regular expression matching.

5.3 Data Organization

Splitting Large Files. We found that our users relied on, among
other things, patterns in the page type to decide where to split
a large PDF. For instance, if a large PDF had a pattern of forms
followed by narratives followed by interviews, our users would
break up the PDF at the first instance of a form while inspecting
the content. DOT gives users the option to use this type of domain
knowledge to split large PDFs into smaller chunks by specifying a
page type.

Grouping Files Associated with the Same Case. To decide which
files belong together, we observed that our domain experts rely, in
order, on: (i) case number matches, then (ii) the combination of a
name and incident date match. Following the steps described above,
DOT produces names, dates, and case numbers detected from each
file in a tabular format and highlights rows where those entities
match, suggesting to users which files likely relate to the same
case. The user has full control over whether to accept or reject the
suggestions.

6 FORMATIVE STUDY OF PROGRAMMING
PARADIGMS

Via the co-design process, we found that some domain experts had
become self-taught programmers, and we wanted to leverage those
skills. However, conversations within the cross-disciplinary team
were not sufficient to teach us what programming paradigm would
best equip our users to accomplish their tasks given their level of

!https://github.com/facebookresearch/faiss

https://github.com/hhnigatu/DOT
https://github.com/hhnigatu/DOT

Table 1: Design goals identified through our iterative co-design process. In this table, we outline the constraints we identified

and the design implications of the constraints.

Constraints

Design Goal

Design Implications

Human Control and Intervention

e Risks of mistakes in document classification are too
high for this domain.

o We found corrective actions to be more time and energy
consuming than active, incremental decisions.

Design should prioritize supporting users
exclusively in organizing the data rather
than automating the whole process.

Non-Interference with Existing
Practices

o Cross-team differences in data management and han-
dling practices.

e Conflicting needs: Privacy and security concerns with
using online platforms for one team conflicting with
lack of local storage space for large data size in another
team.

o Pre-existing workflows for post-data organization
tasks and file sharing.

Design should account for and be adoptable
to pre-existing workflows and practices.

Robustness to Data Variants

e Different teams with similar but not identical data.
e Changes in data structure due to differences between
LEAs themselves.

Potential solution would need to be resilient
to changing formats and representations
and inter-operable with similar but not iden-
tical datasets from others.

High-level Abstractions

e Plain programming languages like Python or R require
too much detailed technical knowledge to execute the
required tasks.

o Pre-built software solutions give limited flexibility to
our users.

Tools should prioritize meeting users where
they are with technical skills; requiring min-
imum training while allowing flexibility.

Cost-Sensitive Solutions

e Resource-constrained teams lack the monetary re-
source to employ commercial software for their tasks.
e Open-source software products do not produce same

When relying on open source software,
tools should identify trade-offs with qual-

level of quality results.

ity and ensure quality control with other
schemes.

technical expertise. As a final stage in our co-design process, we con-
ducted a formative user study focused on the data cleaning features
of our tool and built interfaces in three programming paradigms.
We aimed to use this formative study to complement the lessons
drawn from co-design and shape the final choices in our design
process. With the appropriate abstractions already implemented,
how should we present the abstractions to the target audience?

6.1 Programming Paradigms

We presented our tool in: (1) visual, (2) programming-by-example
(PBE) and (3) traditional text-based paradigms.

6.1.1 Visual. From block-based programming environments [11,
40] to click- and touch-based interfaces [38, 52], visual program-
ming offers an alternative way to construct programs, aside from
traditional text. Our visual interfaces were designed to provide
users with an overview of their data through histograms and pro-
vide a box representation of each DOT function call in the target
program. For interface details, see Figure 1a.

6.1.2 Programming-By-Example. In our PBE interface (Figure 1b),
we provide users with side-by-side displays of possible duplicates

(files in EDD and pages in NDD). Users either accept or reject each
pair, giving us a dataset of duplicates and non-duplicates. Behind
the scenes, a simple custom program synthesis ([16]) algorithm
uses the labeled examples to generate parameter settings. Users
may manually alter the generated parameters if desired.

6.1.3 Text-Based. In the text-based paradigm (Figure 1c), we present
our Python domain-specific library through a Jupyter notebook.

6.2 Study Procedures

We conducted a within-subjects, counterbalanced study, observing
each participant using each of the three paradigms described above.
We assigned participants to either EDD or NDD condition. For each
session, after giving consent, participants filled a pre-interview
survey which included questions about programming experience
and exposure to large document dumps. Then, participants watched
a tutorial for the first interface they would use. Once they finished
the tutorial, we gave participants remote access to the interface
and provided the set of tasks. When participants were done with
their tasks, we asked them to fill out the NASA Task Load Index
(TLX) [18], which measures perceived cognitive load and is a widely
used usability scale in human factors research. Once a participant

EXACT DUPLICATE PAGE DETECTION

NEAR DUPLICATE PAGE DETECTION

Near Duplicate Page Detection

Step 1. Classity the Pages in their alts of pages.

[nameaiceiongerind sascet

pesseae 9

(a) Visual interface for NDD.

(b) PBE Interface for EDD.

ort_ acencing=Fatsel

(c) Text-Based Interface for NDD.

Figure 1: (a) Visual Near Duplicate Detection. A histogram shows the distribution of correlation values for pairs of pages. On
the right, users can set correlation thresholds for form, image, or narrative page types. (b) PBE Exact Duplicate Detection. For a
pair of documents, users can indicate if the pair are duplicates or not. Pages that appear in both documents are colored green.
The interface shows the number of pages that matched across the two documents. (c) Text-Based Near Duplicate Detection. A
Jupyter Notebook; users write code that uses the DOT library functions.

completed the tasks on all three interfaces, we conducted a semi-
structured interview to understand their experience. Finally, we
debriefed participants about the process.

6.2.1 Tasks. We designed study tasks inspired by real scenarios
we observed through our interactions. The scenarios and tasks used
in the experiment are in Appendix B. We had two types of tasks
for both exact and near duplicate detection:

e Exploration Task: We asked participants to explore the
interface and write a program they believe would identify du-
plicates. For EDD, this task came last, meaning participants
already had some notion of what values yielded duplicate
documents, while for NDD this task came first. We switched
the sequence of the exploration task because we wanted to
see how participants’ behavior might change when they had
no prior exposure to the types of parameters they should
set.

o Fixed Task: In this task, we asked participants to write par-
ticular programs the researcher provided which would get
different quality outputs of duplicates in the data provided.
For both exact and near duplicates, we included two fixed
tasks, with varying levels of difficulty.

For EDD, we used reports of police use-of-force and misconduct
from a county within the United States. For NDD we used citi-
zen complaints about police use-of-force from one US state public
defender’s office. Table 2 gives details of data size.

6.2.2 Participants. We received 30 responses to our screening sur-
vey which we distributed through professional networks to jour-
nalists and public defenders. We conducted 18 sessions in total,
selecting users with prior experience in working with large data
dumps, with 12 sessions for EDD and 6 sessions for NDD. Partici-
pants varied across several axes, including prior work on identifying
exact or near duplicates, programming skill, and exposure to partic-
ular programming languages. We refer readers to Appendix E for a
detailed description of the participants. Throughout the paper, we
will refer to participants using the exact duplicate interfaces as PE

Table 2: Number of files and total number of pages in the data
used for Exact Duplicate Detection (EDD) and Near Duplicate
Detection (NDD) in study sessions.

Number of Documents Number of Pages

EDD 1515 62,311
NDD 862 12,400

(e.g., PEO, PE1, ..., PE11) and participants using the near duplicate
interfaces as PN (e.g., PNO, PN1, ..., PN6).

6.2.3 Consent and Compensation. Before participating in the study,
each participant signed a consent form in accordance with the UC
Berkeley Institutional Review Board. Each participant was compen-
sated $20 per hour of participation, with some participants donating
their compensation to a 501(c)(3) organization of their choice.

6.3 Results

6.3.1 Participant Performance. Overall, during the course of a ses-
sion, participants became competent with all three programming
paradigms, successfully implementing programs using visual, PBE,
and text-based interfaces.

Time. To understand variations in task completion time, we con-
ducted statistical significance tests using a one-way ANOVA test
with a significance level of @ = 0.05. Variation in task completion
times was statistically significant for: the second (p=0.02) task in
EDD and the first (p=0.04) and second (p=0.03) tasks in NDD. Vari-
ation in task completion times was not statistically significant for:
the first (p=0.06) and third (final) task (p=0.0.97) in EDD and the
third (final) task (p=0.70) in NDD. See Figure 2 for the time per task;
see Appendix D for time data broken down according to the order
in which participants used each interface.

We observed the highest variation during the first task, which
included the time participants took to learn how to use the pro-
gramming paradigm under test. Although participants were signifi-
cantly slower to complete the first task using traditional text-based

Overall time taken in Exact Duplicate Detection

W Visual W PBE Text
25

20

| ol mB

Task 1 Task 2 Task 3

(a) Average completion time for Exact Duplicate Detection tasks.

Overall time taken in Exact Duplicate Detection

W Visual W PBE Text
25

20

| ol ul

Task 1 Task 2 Task 3

(b) Average completion time for Near Duplicate Detection tasks.

Figure 2: Task completion times for participants using Visual,
PBE, and Text-Based paradigms. Overall, participants com-
plete tasks quickly with all paradigms by their third task.

programming (p=0.012), times were approximately even across all
paradigms by the third task (Figure 2).

Adherence to researcher-assigned task specifications. Participants’
adherence to the task specifications varied across paradigms. In the
case of EDD, all participants reached the researcher-assigned goal
for the simple fixed task (setting a particular percentage threshold)
using the visual and text-based paradigms, while only 50% of the
participants set the exact researcher-assigned threshold using PBE.
In the second and more difficult task of (i) creating a rule for only
a particular range of document sizes and (ii) using a particular
number of matched pages as the threshold, participant adherence
to the task dropped for all paradigms. Only one participant wrote
the assigned program using PBE. In the Visual paradigm, 83.33%
of participants used the researcher-provided thresholds, and in the
Text-Based paradigm, 66.67%.

For NDD, for the simple fixed task of setting thresholds for
both document types, 100% of participants used the researcher-
assigned thresholds with the visual paradigm, followed by 83.33%
with PBE and 66.67% with text. Interestingly, for the difficult fixed
task (setting a fixed threshold for only image pages), participant
adherence was highest with PBE at 83.33%, while both visual and
text-based paradigms produced adherence rates of 66.67%.

Workload and confidence. Despite participants becoming com-
petent with text-based programming by the ends of their sessions,
participants’ reported workload was highest for the text-based ap-
proach. Figure 3 shows participants reported the highest mental
workload for the text-based paradigm. For EDD, the text-based
and PBE paradigms elicited approximately even levels of reported
frustration, higher than the visual paradigm, but there was no statis-
tically significant difference between the three paradigms (p=0.18).
For NDD, text-based elicited more frustration, while PBE was re-
ported least frustrating; this difference was significant (p=0.02). Our
results also indicate that participants were least confident about
their performance when they used the text-based paradigm (see
“performance” in Figure 3); differences in reported confidence in
their performance were not statistically significant for EDD (p=0.19)
but were significant for NDD (p=0.01). For EDD, the visual para-
digm achieved the lowest (best) overall workload score (p=0.02);
for NDD, participants gave PBE the lowest overall workload score

(p=0.01).

6.3.2 Perception of Programming Paradigms: Perceived ease and
flexibility and the dangers of flawed mental models. Participants ex-
pressed that they found the visual paradigm tools to be “straightfor-
ward” and “easy to use” Visual cues helped them make predictions
about program output. For instance, we used shading ranges of a his-
togram to indicate how much of the input data a given rule—a pro-
gram indicating threshold values the user wants to set—would cover.
When participants designed rules to apply to all documents and the
shaded region covered the whole histogram, participants (PE0, PE1,
PE3, PE5) reasoned that their rule was covering everything in the
data, and so they would have many outputs. We observed similar
prediction practices for NDD when participants set low thresholds
and used the histogram to predict how many documents would
fall above those low thresholds. Overall, the visual programming
interfaces surfaced information that participants reported using to
make predictions about their program behaviors.

PBE interfaces prompted participants to speculate about how
the underlying synthesis algorithms worked. Some participants
correctly assumed that they were seeing rules based on the accu-
mulation of the examples they accepted. One participant (PE2) also
mentioned that the rules were useful for understanding what types
of examples they were accepting: “The rules also helped me un-
derstand what I was doing. It said 100% and 100%, so maybe I was
only clicking on things that were a high match” The most common
reported misconception in both EDD and NDD was the assumption
that the synthesizer would generate thresholds at or lower than
the minimum score from the participant-accepted pairs (even if
the participant had also rejected pairs with higher scores). In fact,
the synthesis algorithm used logistic regression on the participant-
labeled data points, and thus could choose thresholds above the
minima. This misinterpretation of the synthesizer’s actions led to
frustrations from participants, in line with previous research on
users’ mental models of program synthesizers [25]. For instance,
when PEO wanted a rule that matched documents if at least 50% of
their pages matched, then accepted an example pair in which the
paired documents exhibited a 50% match, they were disappointed
that the synthesized rule used 81% as its threshold: “So ... why
didn’t my rule change the condition? Nothing changed in terms of

NASA TLX: Exact Duplicate Detection
W visual W PBE Text

100

mental physical temporal performance effort frustration overall

NASA TLX: Near Duplicate Detection
W Visual W PBE Text
100

75

mental physical temporal performance effort frustration overall

Figure 3: Unweighted NASA TLX scores. For all workload sub-components (e.g., “mental,” “physical”), lower is better.

the rules. I thought once the rules appeared, I thought ... I thought
you take into account choices ...”

Participants (PE0, PE1, PE5, PE6, PE7, PE9, PE10, PNO, PN1, PN2,
PN3) reported they felt the text-based paradigm gave them more
control over what the tool was doing. Interestingly, two participants
(PNO and PE6) used the text-based interface to do something that
was not supported in the visual or PBE tools. PN2 also said they
felt the text-based interface “makes [them] understand what the
program is gonna do. It is easy to tell when you edit something if it
is doing what you want it to do”

6.3.3 Programming Errors. Errors in text-based interfaces were
mainly caused by copy and paste issues, misspellings, or misun-
derstanding function return values. When attempting to visualize
outputs, most participants (PE2, PE4, PE5, PE9, PE10, PE11, PNO,
PN4, PN5) encountered syntax errors when they started variable
names with numbers. This issue was common as participants tried
to use the name of the file they wanted to visualize as a variable
name, and all file names started with the year of the case they
were describing. Some participants (PE2, PNO) tried putting the file
names in quotes, resulting in another syntax error. PNO was able
to recover by adding “Doc_” before the name of the variable while
PE2 gave up. Another common error was from copying and past-
ing partial code. Participants recovered from this type of error by
recopying the cell. We observed that error messages were discour-
aging for participants using the text-based interface. Participants
used phrases like “please, don’t yell at me” (PE7) to address the
programming interface or “oh, no ... it [the programming interface]
is mad at me” (PE8) when seeing error messages. In the open-ended
interview, PE2 said:

I just didn’t understand because it’s not like it says,

“you have an extra space..” It just shows you so you

have to understand what the code is, you have to

know the language before you can ... be told what

we’re doing wrong.

For PBE interfaces, programming errors were usually related
to a lack of control over which documents they labeled and the
consequent difficulties in getting the desired types of rules. Partici-
pants (PE3, PNO, PN5) recovered by restarting the application or by
clicking the “Clear Examples” button, which erases the examples
the participant had given thus far and allows them to start from
scratch. In the visual interfaces, participants made errors such as

using a rule specified for form page types to set the threshold for
image page types but used the color cues to recover quickly.

6.3.4 Trends in Programming Practices. Participants tended to tweak
existing code rather than writing program from scratch. With text-
based programming, all but one of our participants copied from

the example notebooks instead of writing code from scratch, which

is in line with previous research on blank-page syndrome [14, 15].
Interestingly, people with no traditional programming experience

were able to accomplish the tasks using text-based programming.
By relying on the tutorial videos and example notebooks, four par-
ticipants who reported no prior exposure to Python or text-based

programming were still able to accomplish the given tasks.

6.4 Reflection and Influence on DOT

The formative user study allowed us to observe the programming
practices and common programming trends of the audience we
aim to serve. Combined with the insights we developed from our
co-deign process (Section 7.1), the results of our formative study
allowed us to answer the question: Once we design a tool with
features informed by collaboration with stakeholders, how can we
effectively present the tool to our users? Our formative study led
us to believe that it is not the programming paradigm, but rather
the abstractions in which we present the features of the tool that
mattered. We took the lessons from the relative strengths of each
paradigm and combined the histograms from our visual paradigm
with the expressiveness of our text-based paradigm to present DOT
as a text-based Python library with visualization support. Based on
the trends we observed in programming errors, we added features
in our tool for error handling by, for instance, describing to users
that there are no files in the paths they provided instead of throwing
syntax errors.

7 DISCUSSION

As discussed in Section 2.2, computational tools can play an instru-
mental role in ensuring large disclosed data from LEAs serves its
purpose: transparency. Through a long-term, collaborative design
process involving stakeholders and computer scientists, our work
centers the benefits of co-designing tools for non-computing do-
mains. This section reflects on lessons learned from our co-design

process, highlights key takeaways from our user study of program-
ming paradigms, and states the broader implication of building
tools for low-resource teams in high-stakes situations.

7.1 Reflections on Co-Designing with
Stakeholders

Cross-Team Transfer. In the initial stages of the design, we only
interacted with investigative journalists working on police use-of-
force and misconduct data. When we later found public defenders
working on complaints against police use-of-force, the two audi-
ences of domain experts believed they had different data needs.
The first author’s (designer) outsider perspective combined with
the hands-on experience she gained by processing data from both
teams allowed us to distill design goals that could accommodate
both teams, bridging the perceived difference in data needs.

On Long-Term Engagement. Our design process took 14 months
to complete, with frequent regularly scheduled engagements and
also on-demand need-driven meetings to resolve design issues. Our
deep, long-term engagement allowed us to create a communal,
cross-disciplinary team, lowered barriers to communication, and
created a shared vision. It also gave us the opportunity to iteratively
define our design goals and make design decisions that are in line
with our shared mission. Considering the sensitive and complicated
nature of the data and implications of such a tool in a high-stakes
environment, our priority was making design decisions that address
our users’ needs. Doing this process justice required a substantial
period of time, and we are confident that our solution would have
met fewer of the core design goals if we had halted the collaboration
earlier.

Benefits Gained from Co-Design. Although our co-design process
took considerable time, it allowed us to share intermediate outputs
from early prototypes that our users could use in their jobs. Whether
to get feedback on a particular output format or to fulfill one-off
requests, all of our back-and-forth with the early-stage tool outputs
informed the design process while also benefiting the stakeholders.
Our collaboration also allowed for the exchange of trainings and
workshops across disciplines, which supported both data handling
and tool usage.

Beyond Computational Tools. After pushes from lawmakers, ac-
tivists, journalists, and the public, the data released from LEAs are
large and messy (Sub-section 2.2). One possible reason is that LEAs
might benefit from withholding the information from the public,
and providing it in a way that is time- and labor-consuming as an
adversarial strategy. Another reason might be that LEAs themselves
are constrained by the money and resources needed to release the
data in usable, structured formats. Our tooling has the potential
to significantly reduce workload, but our work also taught us that
there are limits to what tooling can fix. The current state of re-
leased data suggests the need for policy that not only requires data
disclosures but also puts restrictions on how data is disclosed.

7.2 Future Work and Programming Practices

From our user study and our interaction with users, we observe
that contrary to popular belief, non-technical experts are able to
use text-based coding paradigms if the tools are designed to support

their needs. Our user study shows participants are able to accom-
plish their tasks in any of the provided paradigms once they are
familiar with the interface (i.e., arrived at the third task), regardless
of the user experience with the paradigm. However, there was a gap
in reported vs. observed performance when using the text-based
interfaces (Section 6.3.1) indicating that research in improving the
learnability and approachability of text-based programming could
improve accessibility of programming tools.

Qualitative analysis of our user study results suggests a variety
of jumping off points for future research on programming tools for
non-computing experts. Here we highlight three themes:

e We observed that our visual interfaces’ histograms allowed
users to learn about datasets and reason about how their
choices could affect program outputs. Designers may be
able to build on this insight to provide users with visualiza-
tions that give an overview of program inputs and program
state, to provide information that would have otherwise been
available only via users’ active attempts to acquire it. Visual
programming gives tool designers an opportunity to
offer information by default that programmers might
not think to uncover themselves.

e In the context of the programming-by-example paradigm,
we observed that participants could interact with their data
and learn about the range of appropriate parameter values
as they gave examples. For use cases that require low-level
control over program details (adherence to a fixed program),
PBE may be an unnatural fit relative to textual or visual
paradigms. However, designers may be able to use elements
of the PBE interaction to aid users in developing their speci-
fications. The PBE paradigm puts the focus on the data
rather than the program structure.

e Within the text-based paradigm, two participants were able
to import outside functions and use their previous knowledge
to try to achieve goals that the visual and PBE interfaces
did not support. Our subjective perception of participant
behaviors included the observation that participants tended
to explore more freely when using the text-based paradigms.
We observed that text-based programming offers low-
level control and flexibility to explore outside of the
designer-provided abstractions.

7.3 Bigger Picture: Impact of Organized and
Manageable Data

Discrimination and lack of police accountability within the United
States policing system [51, 60, 61] continues to tarnish the pub-
lic’s image of LEAs [24, 46]. Various stakeholders call for LEA
transparency to increase trust and hold institutions and systems
accountable [23, 43]. When LEAs share disorganized and messy
data, they delay the transparency that legislators, advocates, and
the public have demanded. Supporting data recipients to easily
navigate and extract useful information can support journalists
fighting for transparency, defense attorneys fighting for justice for
their clients, and advocates demanding an equitable justice system.

One goal of our work is to present lessons learned from long-
term co-designing process with stakeholders dealing with large data
dumps in hopes that our reflections could be transferred to other

domains where practitioners deal with large, disclosed datasets.
Our aim is to provide insights for designers working on building
computational tools for domain experts, particularly in high-stakes,
low-resource settings. Additionally, our work focuses on disclosures
from Law Enforcement Agencies, and provides an open source tool
for practitioners working to hold such institutions accountable.

We will end our discussion with a direct quote from California
Senate Bill 1421 (Peace Officers: Release of Records).

Concealing crucial public safety matters such as of-
ficer violations of civilians’ rights, or inquires into
deadly use-of-force incidents, undercuts the public
faith in the legitimacy of law enforcement, makes it
harder for tens of thousands of hardworking peace
officers to do their jobs and endangers public safety.

Limitations. Our user study used a small participant pool. Future
work could conduct similar but larger-scale comparisons with more
participants, more domains, more tools from the paradigms under
test, or more programming paradigms. Our user study is not an
evaluation, but rather informs our design via information about the
skill-sets of our users. However, the foundation of our work lies
in the co-design approach, which informed most of the decisions
about functionality as well as the user interaction model design. Our
co-design process mainly involved two sets of users: investigative
journalists and public defenders. Future work could expand beyond
LEA-stakeholder interaction and include the public’s needs.

8 CONCLUSION

Efforts by a variety of stakeholders have led to data disclosures
from Law Enforcement Agencies for the sake of transparency and
accountability. However, data released in these processes can be
large, messy, and disorganized. Processing them takes time from
already resource-constrained teams, such as public defenders and
investigative journalists, working towards justice and transparency.
This work presents a cross-disciplinary co-design approach to build-
ing a document organization tool for non-technical domain experts
working on police use-of-force and misconduct data. Calling for
the release of already clean and organized data from LEAs is one
avenue for improving transparency, but we show an alternative—
supporting teams who receive and analyse the released data. We
argue for empowering such teams by (i) co-creating design goals
that align with their work practices and (ii) building tools that allow
them to accomplish their tasks by complimenting their existing
skills. We also provide insights into the use of three programming
paradigms—visual, programming-by-example, and text-based—to
understand users’ interactions with our tool in different paradigms.
We show that with user-centered design and a deep understanding
of stakeholders’ design goals, it is possible to meet users where
they are in terms of technical skills necessary for programming.

Across the criminal justice domain, large and messy document
dumps can slow or hinder justice. Together with stakeholders, we
can build tools to support processing such data and alleviate prob-
lems in vital journalistic coverage, the work of public defenders,
and advocates’ fights for an equitable and fair justice system.

ACKNOWLEDGMENTS

This work is supported in part by NSF grants FW-HTF 2129008,
CA-HDR 1936731, and CA-HDR 2033558, as well as by gifts from
Google, Microsoft, and Sigma Computing. Sarah E. Chasins is a
Chan Zuckerberg Biohub Investigator. Hellina Hailu Nigatu is a
SIGHPC Computational and Data Science Fellow. We thank Julie
Ciccolini and the rest of the NACDL Full Disclosure Project team,
all the journalists and public defenders with whom we worked
over the course of the co-design process, and all our research study
participants. We would also like to thank members and friends of
PLAIT lab for feedback on this work.

REFERENCES

[1] [n.d.]. 34 US. Code § 10534 - James Guelff and Chris McCurley Body Armor Act
of 2002 34 U.S. Code § 10534 - James Guelff and Chris McCurley Body Armor
Act of 2002. https://www.law.cornell.edu/uscode/text/34/10534#c_2
2021. The public defense project. https://www.ischool.berkeley.edu/sites/default/
files/sproject_attachments/the_public_defense_project_final report_2021.pdf
[3] Arko Banerjee and Arun K. Pujari. 2014. Representative Based Document Clus-
tering. In Advanced Computing, Networking and Informatics- Volume 1 (Smart
Innovation, Systems and Technologies), Malay Kumar Kundu, Durga Prasad Mo-
hapatra, Amit Konar, and Aruna Chakraborty (Eds.). Springer International
Publishing, Cham, 403-411. https://doi.org/10.1007/978-3-319-07353-8_47
[4] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. ACM, Berlin Germany,
963-975. https://doi.org/10.1145/3242587.3242661
[5] Jennifer Cobbe, Michelle Seng Ah Lee, and Jatinder Singh. 2021. Reviewable
Automated Decision-Making: A Framework for Accountable Algorithmic Sys-
tems. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency (FAccT °21). Association for Computing Machinery, New York, NY,
USA, 598-609. https://doi.org/10.1145/3442188.3445921
[6] European Commission. 2019. Ethics guidelines for trustworthy Al | Shaping
Europe’s digital future. https://digital-strategy.ec.europa.eu/en/library/ethics-
guidelines-trustworthy-ai
[7] Robin Cura, Amélie Beaumont, Jean-Samuel Beuscart, Samuel Coavoux, Noé
Latreille de Foziéres, Brenda Le Bigot, Yann Renisio, Manuel Moussallam, and
Thomas Louail. 2022. Uplifting Interviews in Social Science with Individual
Data Visualization: the case of Music Listening. In CHI Conference on Human
Factors in Computing Systems Extended Abstracts. ACM, New Orleans LA USA,
1-9. https://doi.org/10.1145/3491101.3503553
[8] PAUL M. LEONARDI CYNTHIA STOHL, MICHAEL STOHL. 2016. Managing
Opacity: Information Visibility and the Paradox of Transparency in the Digital
Age. (2016). https://ijoc.org/index.php/ijoc/article/view/4466/1530
[9] Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric Horvitz, Kate Larson, and
Thore Graepel. 2021. Cooperative Al: machines must learn to find common
ground. Nature 593, 7857 (May 2021), 33-36. https://doi.org/10.1038/d41586-021-
01170-0 Bandiera_abtest: a Cg_type: Comment Number: 7857 Publisher: Nature
Publishing Group Subject_term: Machine learning, Computer science, Society,
Technology, Sociology, Human behaviour.
[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
http://arxiv.org/abs/1810.04805 arXiv:1810.04805 [cs].
Mark Dorling and Dave White. 2015. Scratch: A Way to Logo and Python. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
ACM, Kansas City Missouri USA, 191-196. https://doi.org/10.1145/2676723.
2677256
Therese Enarsson, Lena Enqvist, and Markus Naarttijarvi. 2022. Approaching the
human in the loop - legal perspectives on hybrid human/algorithmic decision-
making in three contexts. Information & Communications Technology Law 31, 1
(Jan. 2022), 123-153. https://doi.org/10.1080/13600834.2021.1958860
David Enrich. 2022. How Abbott Kept Sick Babies From Becoming a Scandal. The
New York Times (Sept. 2022). https://www.nytimes.com/2022/09/06/business/
abbott-baby-formula-lawsuits-jones-day.html
Olivier Goletti, Kim Mens, and Felienne Hermans. 2021. Tutors’ Experiences in
Using Explicit Strategies in a Problem-Based Learning Introductory Programming
Course. In Proceedings of the 26th ACM Conference on Innovation and Technology
in Computer Science Education V. 1. ACM, Virtual Event Germany, 157-163.
https://doi.org/10.1145/3430665.3456348
N Guibert, L Guittet, and P Girard. [n.d.]. A STUDY OF THE EFFICIENCY OF
AN ALTERNATIVE PROGRAMMING PARADIGM TO TEACH THE BASICS
OF PROGRAMMING. https://www.lias-lab.fr/publications/7164/2005- WCCE-

[2

(1]

[12

[15

https://www.law.cornell.edu/uscode/text/34/10534#c_2
https://www.ischool.berkeley.edu/sites/default/files/sproject_attachments/the_public_defense_project_final_report_2021.pdf
https://www.ischool.berkeley.edu/sites/default/files/sproject_attachments/the_public_defense_project_final_report_2021.pdf
https://doi.org/10.1007/978-3-319-07353-8_47
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3442188.3445921
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://doi.org/10.1145/3491101.3503553
https://ijoc.org/index.php/ijoc/article/view/4466/1530
https://doi.org/10.1038/d41586-021-01170-0
https://doi.org/10.1038/d41586-021-01170-0
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/2676723.2677256
https://doi.org/10.1145/2676723.2677256
https://doi.org/10.1080/13600834.2021.1958860
https://www.nytimes.com/2022/09/06/business/abbott-baby-formula-lawsuits-jones-day.html
https://www.nytimes.com/2022/09/06/business/abbott-baby-formula-lawsuits-jones-day.html
https://doi.org/10.1145/3430665.3456348
https://www.lias-lab.fr/publications/7164/2005-WCCE-Guibert.pdf

[16]

[17]

[18

[19

[20]

[21]

[22

[23

[24

[25]

[26

[27]

[28]

[29]

[30]

[31

[32]

[33

[34]

[35]

w
&

[37]

Guibert.pdf

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program synthesis.
Number 4.2017, 1-2 in Foundations and trends in programming languages. Now
Publishers, Hanover, MA Dellft.

Kyle Wm Hall, Adam J. Bradley, Uta Hinrichs, Samuel Huron, Jo Wood, Christo-
pher Collins, and Sheelagh Carpendale. 2020. Design by Immersion: A Trans-
disciplinary Approach to Problem-Driven Visualizations. IEEE Transactions
on Visualization and Computer Graphics 26, 1 (Jan. 2020), 109-118. https:
//doi.org/10.1109/TVCG.2019.2934790 arXiv:1908.00559 [cs].

Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Advances
in Psychology, Peter A. Hancock and Najmedin Meshkati (Eds.). Human Men-
tal Workload, Vol. 52. North-Holland, 139-183. https://doi.org/10.1016/S0166-
4115(08)62386-9

Gillian R. Hayes. 2011. The relationship of action research to human-computer
interaction. ACM Transactions on Computer-Human Interaction 18, 3 (July 2011),
1-20. https://doi.org/10.1145/1993060.1993065

Chris Hess and Sarah E. Chasins. 2022. Informing Housing Policy through Web
Automation: Lessons for Designing Programming Tools for Domain Experts. In
Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing
Systems (CHI EA °22). Association for Computing Machinery, New York, NY, USA,
1-9. https://doi.org/10.1145/3491101.3503575

Matt-Heun Hong, Lauren A. Marsh, Jessica L. Feuston, Janet Ruppert, Jed R.
Brubaker, and Danielle Albers Szafir. 2022. Scholastic: Graphical Human-AI
Collaboration for Inductive and Interpretive Text Analysis. In The 35th Annual
ACM Symposium on User Interface Software and Technology. ACM, Bend OR USA,
1-12. https://doi.org/10.1145/3526113.3545681

Matthew Horton, Janet C. Read, Emanuela Mazzone, Gavin Sim, and Daniel
Fitton. 2012. School friendly participatory research activities with children. In
CHI ’12 Extended Abstracts on Human Factors in Computing Systems. ACM, Austin
Texas USA, 2099-2104. https://doi.org/10.1145/2212776.2223759

Invisible Institute. [n. d.]. Citizens Police Data Project. https://invisible.institute/
police-data

Brian A Jackson. 2015. Strengthening Trust Between Police and the Public in an
Era of Increasing Transparency. (Oct. 2015).

Dhanya Jayagopal, Justin Lubin, and Sarah E Chasins. 2022. Exploring the
Learnability of Program Synthesizers by Novice Programmers. (2022), 15.

Mike Jeffries Jon Swords, Kye Askins and Catherine Butcher. 2013. Geographic
visualisation: lessons for learning and teaching. https://doi.org/10.11120/plan.
2013.00001

Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The state of the art in end-user software engineering. Comput. Surveys 43, 3
(April 2011), 1-44. https://doi.org/10.1145/1922649.1922658

Brendan Lawlor and Roy D Sleator. 2021. The roles of code in biology - Brendan
Lawlor, Roy D Sleator, 2021. https://journals.sagepub.com/doi/full/10.1177/
00368504211010570

Kurt Lewin. 1946. Action Research and Minority Problems. Journal of Social Issues
2,4 (1946), 34-46. https://doi.org/10.1111/j.1540-4560.1946.tb02295.x _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-4560.1946.tb02295 .
Nina McCurdy, Jason Dykes, and Miriah Meyer. 2016. Action Design Research
and Visualization Design. In Proceedings of the Sixth Workshop on Beyond Time
and Errors on Novel Evaluation Methods for Visualization. ACM, Baltimore MD
USA, 10-18. https://doi.org/10.1145/2993901.2993916

Vivek Mehta, Seema Bawa, and Jasmeet Singh. 2021. WEClustering: word em-
beddings based text clustering technique for large datasets. Complex & Intelligent
Systems 7, 6 (Dec. 2021), 3211-3224. https://doi.org/10.1007/s40747-021-00512-9
Carina Miller. [n.d.]. THE PARADOX OF S.B. 1421: A NEW TOOL TO SHED
LIGHT ON POLICE MISCONDUCT AND A PERVERSE INCENTIVE TO COVER
ITUP. ([n.d.]). https://www.swlaw.edu/sites/default/files/2021-06/49SwLRev537.
pdf

Michael J. Muller and Sarah Kuhn. 1993. Participatory design. Commun. ACM
36, 6 (June 1993), 24-28. https://doi.org/10.1145/153571.255960

Brad Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Amy Ko. 2008. How
designers design and program interactive behaviors. In 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing. 177-184. https://doi.org/10.
1109/VLHCC.2008.4639081 ISSN: 1943-6106.

Jonah Newman and Geoff Hing. 2017. Chicago Reporter.
chicagoreporter.com/99reforms/

nij. 2020. Overview of Police Use of Force. https://nij.ojp.gov/topics/articles/
overview-police-use-force

Zheng-Yu Niu, Dong-Hong Ji, and Chew-Lim Tan. 2004. Document clustering
based on cluster validation. In Proceedings of the thirteenth ACM international
conference on Information and knowledge management (CIKM "04). Association
for Computing Machinery, New York, NY, USA, 501-506. https://doi.org/10.
1145/1031171.1031267

https://www.

[38

[39]

[40

N
furg

[42

[43

[44

(46

[47

[48

N
o)

[50

[55

[56

o
=)

[58

Vesa Norilo and Alejandro Olarte. 2020. A Visual Programming Interface for
Digital Luthiery: Implementing Circuits with Veneer. Computer Music Journal
44, 4 (Dec. 2020), 8-25. https://doi.org/10.1162/comj_a_00578

Chris Norval, Kristin Cornelius, Jennifer Cobbe, and Jatinder Singh. 2022. Dis-
closure by Design: Designing information disclosures to support meaningful
transparency and accountability. In 2022 ACM Conference on Fairness, Account-
ability, and Transparency. ACM, Seoul Republic of Korea, 679-690. https:
//doi.org/10.1145/3531146.3533133

Erik Pasternak, Rachel Fenichel, and Andrew N. Marshall. 2017. Tips for creating
a block language with blockly. In 2017 IEEE Blocks and Beyond Workshop (B&B).
21-24. https://doi.org/10.1109/BLOCKS.2017.8120404

Lindsay Poirier. 2022. Accountable Data: The Politics and Pragmatics of Disclo-
sure Datasets. In 2022 ACM Conference on Fairness, Accountability, and Trans-
parency. ACM, Seoul Republic of Korea, 1446-1456. https://doi.org/10.1145/
3531146.3533201

Washington Post. 2023. Police shootings database 2015-2023: Search by race, age,
department. https://www.washingtonpost.com/investigations/interactive/2022/
police-shootings-database-2015-2022-search-by-race-age-department/

The Policing Project. 2019. Grounding Grassroots Advocacy: Salt Lake City Ac-
tivists Organize to Tackle Wide-Ranging Reforms. https://www.policingproject.
org/news-main/2019/3/26/grounding- grassroots-advocacy

Ronald L. Rivest. 1992. The MD5 Message-Digest Algorithm. Request for Comments
RFC 1321. Internet Engineering Task Force. https://doi.org/10.17487/RFC1321
Num Pages: 21.

M.B. Rosson, J. Ballin, and J. Rode. 2005. Who, what, and how: a survey of
informal and professional Web developers. In 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05). 199-206. https://doi.
org/10.1109/VLHCC.2005.73 ISSN: 1943-6106.

Michael S. Schmidt. 2015. A Call to Better Track Police Use of Guns. The New
York Times (Jan. 2015). https://www.nytimes.com/2015/01/16/us/politics/holder-
urges-better-data-for- shootings-involving-police.html

Michael Sedlmair, Miriah Meyer, and Tamara Munzner. 2012. Design Study
Methodology: Reflections from the Trenches and the Stacks. IEEE Transac-
tions on Visualization and Computer Graphics 18, 12 (Dec. 2012), 2431-2440.
https://doi.org/10.1109/TVCG.2012.213 Conference Name: IEEE Transactions on
Visualization and Computer Graphics.

Cathrine Seidelin, Yvonne Dittrich, and Erik Gronvall. 2020. Co-designing
Data Experiments: Domain Experts’ Exploration and Experimentation with self-
selected Data Sources. In Proceedings of the 11th Nordic Conference on Human-
Computer Interaction: Shaping Experiences, Shaping Society. ACM, Tallinn Estonia,
1-11. https://doi.org/10.1145/3419249.3420152

Logan Stapleton, Min Hun Lee, Diana Qing, Marya Wright, Alexandra Choulde-
chova, Ken Holstein, Zhiwei Steven Wu, and Haiyi Zhu. 2022. Imagining
new futures beyond predictive systems in child welfare: A qualitative study
with impacted stakeholders. In 2022 ACM Conference on Fairness, Account-
ability, and Transparency. ACM, Seoul Republic of Korea, 1162-1177. https:
//doi.org/10.1145/3531146.3533177

Michael Steinbach, George Karypis, and Vipin Kumar. [n.d.]. A Comparison of
Document Clustering Techniques. ([n. d.]).

Eric A. Stewart, Eric P. Baumer, Rod K. Brunson, and Ronald L. Simons. 2009.
Neighborhood Racial Context and Perceptions of Police-Based Racial Discrim-
ination Among Black Youth®. Criminology 47, 3 (2009), 847-887. https:
//doi.org/10.1111/j.1745-9125.2009.00159.x

Kathryn T Stolee. [n.d.]. Kodu Language and Grammar Specification. ([n. d.]).
Ram Subramanian and Leily Arzi. 2021. State Policing Reforms Since George
Floyd’s Murder | Brennan Center for Justice. https://www.brennancenter.org/our-
work/research-reports/state-policing-reforms-george-floyds-murder

S Thirumaran and R Nagarajan. 2021. Split and rule algorithm for documents
clustering in big data of research articles on Google scholar. IOP Conference
Series: Materials Science and Engineering 1070, 1 (Feb. 2021), 012068. https:
//doi.org/10.1088/1757-899X/1070/1/012068

Anna Trunk, Hendrik Birkel, and Evi Hartmann. 2020. On the current state of
combining human and artificial intelligence for strategic organizational decision
making. Business Research 13, 3 (Nov. 2020), 875-919. https://doi.org/10.1007/
540685-020-00133-x

Rachel B. Warren and Niloufar Salehi. 2022. Trial by File Formats: Exploring
Public Defenders’ Challenges Working with Novel Surveillance Data. Proceedings
of the ACM on Human-Computer Interaction 6, CSCW1 (March 2022), 1-26. https:
//doi.org/10.1145/3512914

Elliott Wen, Tharindu Indrajith Kaluarachchi, Shamane Siriwardhana, Vanessa
Tang, Mark Billinghurst, Robert W. Lindeman, Richard Yao, James Lin, and
Suranga Nanayakkara. 2022. VRhook: A Data Collection Tool for VR Motion
Sickness Research. In Proceedings of the 35th Annual ACM Symposium on User In-
terface Software and Technology (UIST °22). Association for Computing Machinery,
New York, NY, USA, 1-9. https://doi.org/10.1145/3526113.3545656

Cara Wilson, Margot Brereton, Bernd Ploderer, and Laurianne Sitbon. 2019. Co-
Design Beyond Words: "Moments of Interaction’ with Minimally-Verbal Children
on the Autism Spectrum. In Proceedings of the 2019 CHI Conference on Human

https://www.lias-lab.fr/publications/7164/2005-WCCE-Guibert.pdf
https://doi.org/10.1109/TVCG.2019.2934790
https://doi.org/10.1109/TVCG.2019.2934790
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1145/1993060.1993065
https://doi.org/10.1145/3491101.3503575
https://doi.org/10.1145/3526113.3545681
https://doi.org/10.1145/2212776.2223759
https://invisible.institute/police-data
https://invisible.institute/police-data
https://doi.org/10.11120/plan.2013.00001
https://doi.org/10.11120/plan.2013.00001
https://doi.org/10.1145/1922649.1922658
https://journals.sagepub.com/doi/full/10.1177/00368504211010570
https://journals.sagepub.com/doi/full/10.1177/00368504211010570
https://doi.org/10.1111/j.1540-4560.1946.tb02295.x
https://doi.org/10.1145/2993901.2993916
https://doi.org/10.1007/s40747-021-00512-9
https://www.swlaw.edu/sites/default/files/2021-06/49SwLRev537.pdf
https://www.swlaw.edu/sites/default/files/2021-06/49SwLRev537.pdf
https://doi.org/10.1145/153571.255960
https://doi.org/10.1109/VLHCC.2008.4639081
https://doi.org/10.1109/VLHCC.2008.4639081
https://www.chicagoreporter.com/99reforms/
https://www.chicagoreporter.com/99reforms/
https://nij.ojp.gov/topics/articles/overview-police-use-force
https://nij.ojp.gov/topics/articles/overview-police-use-force
https://doi.org/10.1145/1031171.1031267
https://doi.org/10.1145/1031171.1031267
https://doi.org/10.1162/comj_a_00578
https://doi.org/10.1145/3531146.3533133
https://doi.org/10.1145/3531146.3533133
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1145/3531146.3533201
https://doi.org/10.1145/3531146.3533201
https://www.washingtonpost.com/investigations/interactive/2022/police-shootings-database-2015-2022-search-by-race-age-department/
https://www.washingtonpost.com/investigations/interactive/2022/police-shootings-database-2015-2022-search-by-race-age-department/
https://www.policingproject.org/news-main/2019/3/26/grounding-grassroots-advocacy
https://www.policingproject.org/news-main/2019/3/26/grounding-grassroots-advocacy
https://doi.org/10.17487/RFC1321
https://doi.org/10.1109/VLHCC.2005.73
https://doi.org/10.1109/VLHCC.2005.73
https://www.nytimes.com/2015/01/16/us/politics/holder-urges-better-data-for-shootings-involving-police.html
https://www.nytimes.com/2015/01/16/us/politics/holder-urges-better-data-for-shootings-involving-police.html
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1145/3419249.3420152
https://doi.org/10.1145/3531146.3533177
https://doi.org/10.1145/3531146.3533177
https://doi.org/10.1111/j.1745-9125.2009.00159.x
https://doi.org/10.1111/j.1745-9125.2009.00159.x
https://www.brennancenter.org/our-work/research-reports/state-policing-reforms-george-floyds-murder
https://www.brennancenter.org/our-work/research-reports/state-policing-reforms-george-floyds-murder
https://doi.org/10.1088/1757-899X/1070/1/012068
https://doi.org/10.1088/1757-899X/1070/1/012068
https://doi.org/10.1007/s40685-020-00133-x
https://doi.org/10.1007/s40685-020-00133-x
https://doi.org/10.1145/3512914
https://doi.org/10.1145/3512914
https://doi.org/10.1145/3526113.3545656

Factors in Computing Systems. ACM, Glasgow Scotland Uk, 1-15. https://doi.
org/10.1145/3290605.3300251

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu,
Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou. 2022.
LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understand-
ing. http://arxiv.org/abs/2012.14740 arXiv:2012.14740 [cs].

Katharine H. Zeiders, Adriana J. Umaiia-Taylor, Stefanie Martinez-Fuentes, Kim-
berly A. Updegraff, Sara Douglass Bayless, and Laudan B. Jahromi. 2021. Latina/o
youths’ discrimination experiences in the U.S. Southwest: Estimates from three
studies. Applied Developmental Science 25, 1 (2021), 51-61. https://doi.org/10.
1080/10888691.2018.1527695 arXiv:https://doi.org/10.1080/10888691.2018.1527695
PMID: 33716491.

Katharine H. Zeiders, Adriana J. Umafia-Taylor, Selena Carbajal, and Alexandria
Pech. 2021. Police discrimination among Black, Latina/x/o0, and White adolescents:
Examining frequency and relations to academic functioning. Journal of Adoles-
cence 90, 1 (July 2021), 91-99. https://doi.org/10.1016/j.adolescence.2021.06.001
Yu Zhang, Yun Wang, Haidong Zhang, Bin Zhu, Siming Chen, and Dongmei
Zhang. 2022. OneLabeler: A Flexible System for Building Data Labeling Tools. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI °22). Association for Computing Machinery, New York, NY, USA, 1-22.
https://doi.org/10.1145/3491102.3517612

[59

[60]

o
=N

[62]

A PAGE TYPE CLASSIFICATION THROUGH
FINE-TUNING

We fine-tuned LayOutLMv2 with around 6000 pages of manually
annotated data for sequence classification. We found LayOutLMv2
to perform well for our datasets as an open sourced document pro-
cessing Al model. The training accuracy of our fine-tuning efforts
was 83.78%, validation accuracy was 84.11%, and test accuracy was
83.52%. Finetuning the model took 6 hours for model training and
6 hours for data labeling.

B USER-STUDY TASKS

Here, we present the content of the tasks document that the par-
ticipants saw during the think-out-loud user study sessions. We
present the tasks for both Exact Duplicate and Near Duplicate
Detection. The Scenarios and the the tasks are inspired by real
scenarios we observed from our interactions. We have two tasks:
Fixed tasks where the participants are asked to write a specific
program assigned by the researcher and Exploration tasks where
the participants are given the option to explore the interface and
write a program they want. Further details about the tasks is in
Section 6.2. We have anonymized the specific locations (specific
County and District Police Complaints Office) for the purpose of
this paper.

B.1 Exact Duplicate Detection

Scenario. You are in a team of investigative journalists who are
interested in police misconduct cases. You just got data dumps from
a County in the US with several case files in PDF form. You are
aware that there are several PDF files that are exact copies of each
other. Additionally, you know that some of the files are wholly or
partially included in larger PDF files. There are also files that share
standard forms/statements.

Data. There are over 1500 PDF files with a total of 62,000 pages
with pages per PDF ranging from 1 to 829 pages.

Path to dataset. : /home/user/user study dataset/
Fixed Tasks.

e Your team wants to look at case files where over half the
pages in one document appears in another document. Write

a program that will find duplicate documents where more
than 50% of pages in one document appear in the other.

e The county manager just contacted you and told you that
they have a 100 page manuscript for training officers that is
included in almost all of the larger case-files. Write a program
which will allow you to identify documents where at least 100
of the pages in one document are found in another document
for documents with a number of pages at least 150 and at
most 500.

Exploration Task.

e Write a program that you would be interested in working
with and believe will get the duplicate documents in this
dataset.

B.2 Near Duplicate Detection

Scenario. You are in a team of public defenders who are inves-
tigating complaints of police misconduct cases. You just got data
dumps from a US District’s Police Complaints Office with several
complaints in PDF format. You are aware that there are several PDF
files that have near duplicate pages due to difference in level and
type of redaction, difference in type of scanning, notes taken on
top of PDFs etc.

Data. There are over 862 PDF files with a total of 12,400 pages.
A single PDF could have pages of type: ‘form’, ‘image’, ‘narrative’,
‘interview’, or ‘other’. In this task, we are interested in form and
image page types.

Path to dataset. : /home/user/user study dataset/

Exploration Task.

e You just received the data dump described above and your
team is trying to find near duplicate pages so you can orga-
nize your files. Explore the different correlation values in
your dataset and set a threshold you believe will get the near
duplicates for ‘form’ and ‘image’ page types.

Fixed Tasks.

e Your teammate has done the exploration for you! (Bless their
heart) Set the threshold for ‘form’ to be 0.89 and ‘image’ 0.95.

® You are told that you have far more images that are near du-
plicates than any other page type. Set a correlation threshold
of 0.92 for ‘image’ page type.

C DOT FUNCTIONS

Here, we give an overview of the functions that are present in DOT.
We present the functions, their return values and a description of
what they do. We have dedicated one table for each of the three
features of DOT: Data Cleaning in Table 4, Data Extraction in Table
5, and Data Extraction in Table 6.

D FORMATIVE STUDY TASK COMPLETION
TIME
In this section, we include detailed breakdowns of participant task

completion time, with times separated according to whether partic-
ipants saw each programming paradigm first, second, or third in

https://doi.org/10.1145/3290605.3300251
https://doi.org/10.1145/3290605.3300251
http://arxiv.org/abs/2012.14740
https://doi.org/10.1080/10888691.2018.1527695
https://doi.org/10.1080/10888691.2018.1527695
https://arxiv.org/abs/https://doi.org/10.1080/10888691.2018.1527695
https://doi.org/10.1016/j.adolescence.2021.06.001
https://doi.org/10.1145/3491102.3517612

Task 1: Explore and set your own threshold Task 2:
W Visual W PBE © Text

1stinterface 2ndinterface 3rdinterface 1stInterface

(a) Time taken by participants for exploration

(b) Time taken by participants for fixed task to set
task. correlation threshold for image and form pages.

Set threshold for forms and images
W Visual W PBE © Text

2nd interface 3rd interface

Task 3: Set threshold for images only
W Visual M PBE © Text

1stinterface 2nd interface 3rd interface

(c) Time taken by participants for fixed task of
setting correlation threshold for just image pages.

Figure 4: Bar charts showing the average time taken by participants in Near Duplicate Detection. The x-axis of each histogram
shows whether the interface was the first, second, or third interface in the sequence a set of participants saw.

Task 1. Set minimum percentage of match

W Visual W PBE Text

Task 2: Set page range and minimum matched
W Visual W PBE Text

Task 3. Explore and set your own parameters
W Visual W PBE Text

mil - mm ml. Em

1stInterface 2nd interface 3rdinterface 1st Interface

(a) Time taken by participants for fixed task of
setting percentage threshold.

2nd interface 3rd interface

(b) Time taken by participants for fixed task to
set file page range and number of matched pages. task.

1stInterface 2nd interface 3rd interface

(c) Time taken by participants for exploration

Figure 5: Histograms showing the average time taken by participants in Exact Duplicate Detection. The x-axis of each histogram
shows whether the interface was the first, second, or third interface in the sequence a set of participants saw.

their sessions. See Figure 4 for details of Near Duplicate Detection
times. See Figure 5 for details of Exact Duplicate Detection times.
E USER STUDY PARTICIPANTS

In Table 3, we present full list of participants and details collected
from a pre-interview survey on field they are currently working in,

their programming experience, other programming tools they have
used prior to this study, the amount of time that has elapsed since
they wrote their first program, their comfort in writing programs on
a scale of 1-to-5, and weather or not they identify as a programmer.

Table 3: Self-reported information from user study participants. We had a total of 18 participants in our study. Only two self
identified as a programmer, regardless of their programming experience. The highest level of comfort for writing programs

was 3 (n=5) and the most frequent was 1 (n=7).

Programming

Programming

Time since first

Programming

Participant | Field Experience Tools Used program comfort (1-5) Identify as
PEO Journalism Self-taught I%Iictztojll(lp yter 2 months 1 non-programmer
Excel, Jupyter
PE1 Journalism Self-taught Notebook, 20 years 2 non-programmer
Tabeleau, R
PE2 Journalism No Experience Excel, Jupyter NA 1 non-programmer
Notebook
PE3 Communications | No Experience | Excel NA 1 non-programmer
PE4 Journalism Self-taught IE\:I)(()CtZEooJlS pyter 1 day 3 non-programmer
PE5 Journalism Self-taught IE\:I)(()ctonoJlS pyter 3 years 3 non-programmer
Formally Excel,
PE6 Data Reporter . Jupyter Note- | 6 months 2 non-programmer
trained
book Tabeleau
Excel,
PE7 Journalism Self-taught Jupyter Note- | 3 years 3 programmer
book Tabeleau
Excel,
PE8 Journalism Self-taught Jupyter Note- 20 years 2 non-programmer
book.Tabeleau,
Google Collab
PE9 Journalism No Experience | Excel, Tabeleau | NA 1 non-programmer
Excel,
PE10 Journalism No Experience | Jupyter Note- | 1 year 2 non-programmer
book Tabeleau
PE11 Journalism No Experience | Excel 1 day 1 non-programmer
Excel, Jupyter
Notebook,
PNO Journalism Self-taught g?clileizinl;isg 20 years 2 non-programmer
line, Google
collab, GitHub
. . . Excel, Jupyter
PN1 Social Justice, Di- Self-taught Notebook,py 7 years 3 programmer
rector
Tabeleau
PN2 Economics Self-taught Excel, Jupyter 2 years 2 non-programmer
Notebook
Defense Investi- .
PN3 No Experience | Excel NA 1 non-programmer
gator
PN4 II}VCiStlgathC Spe- No Experience | Excel NA 1 non-programmer
cialist
Self-taught Excel,
PN5 Journalism with some | Jupyter Note- | 3 years 3 programmer
formal training | book,Tabeleau

Table 4: Data Cleaning Functions. Includes functions for both Exact Duplicate and Near Duplicate Detection.

Function Name

Return Value

Description

Hashes all the pages in the given path and
returns a DataFrame with information about

HashPages(dataset_path, num_rep) DataFrame pages with the same hash value. Users can con-
trol how many replicated pages a single page
should have using num_rep.

Filters the files from the file_df based on the
threshold_by_percent(file_df, percentage of pages in one document found in
min_percent_value, max_percent_value, | Dictionary another. Users set the parameters to control how
min_page_in_file, max_page_in_file) many pages the file needs to have and where

the percent threshold should be.

Filters the files from the file_df based on the
threshold_by_matched_pages(file_df, number pages in one document found in an-
min_page_in_file_match, Dictionary other. Users set the parameters to control how
max_page_in_file_match, min_page_in_file, many pages the file needs to have and how
max_page_in_file) many of those pages need to be shared across

the pair of matched files.

Displays a list of pairs of files that match the
print_duplicate_info(List[conditions], out- passed conditions filong with what percer.lt and

None how many pages in each file are found in the
put_path) other. Users can specify where to save the
printed output.

ClassifyAndGetPairCorrelation(dataset_path, Classifies each page using ﬁrlle—tuned L.ay—

List[page_type]) DataFrame OutLMv2 an('i co'mputes pair wise correlation
value for the indicated page type.

Displays a list of pairs of files that have pages
print_near_duplicate_information(condition) | None mtatchmg the passed come fation threshold along

with how many pages in each document are

near duplicates in its pair.

Displays pair of files specified in the passed
visualize_file_pairs(path_one, path_two) Tuple paths with matching pages colored green and

non-matching pages colored in red.

Table 5: Data Extraction Functions.

Function Name

Return Value

Description

extract_with_bbox(List[bbox],encoded_dataset,

Searches for String matching the given Regular
Expression within the provided bounding box
within every page found in the lable_df. lable_df

processor, lable_df, reg_expression) List[String] has information about pages with a particular
format (form, narrative, interview, image, hand-
writing)
plot_extraction_suggestions(pages path Displays a where the pounding box Speciﬁed
file ;1ame) - ’ * | None falls on the pages specified so users can adjust
- bbox location if needed.
get_named_entity(file_df. entity type Uses BERT to extracted Named Entities passed
— - - — %7 | List[String] to the function within the pages that have the
page_type) page_type specified.
clean_entity list(stop_ words, List[entities] Takes the list of extracted entities and performs
- = — ’ > | List[String] normalization of date format, limiting String

minLen, maxLen, maxFreq)

length, and removing stop words.

Table 6: Data Organization Functions.

Function Name

Return Value

Description

set_entities_doc(page_df, doc_df)

DataFrame

Sets extracted values from each pages found
in page_df to each document and presents a
DataFrame.

highlight_text(doc_df, column, List[entities])

List[int]

Returns indexes of rows in the passed dataframe
where the names and dates match and high-
lights the text in each of the rows.

highlight_rows(doc_df,
List[casenumbers])

column,

List[int]

Returns indexes of rows in the passed dataframe
where case numbers match and highlights those
rows.

get_eligible_case(List[Object[Case]], doc_df,

similarity_score)

Tuple

Find documents with matching entities for
passed to the function and return their index.
For case numbers, since OCR might make char-
acter mistakes, users can specify a String Edit
distance threshold using similarity_score.

split_large_files(doc_df, extracted_info_df,

min_page_limit)

DataFrame

Break up large PDFs with page number above
the limit passed based on the provided page type
and add index on the file names to distinguish
they are split.

save_case_groups(List[indicies])

None

Saves the information about each of the files
found in the rows indicated by the passed in-
dices into a Python Object which also stores the
extracted entities from each file in the group.

output_organized_cases(List[Object[case]])

None

Displays the final list of group of files belonging
to individual case along with the entities from
each of the files in each group.

