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Abstract

Geometry-Inspired Sampling Algorithms and Random Graphs

by

Elizabeth Yang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Satish Rao, Chair

High-dimensional expansion, a generalization of graph expansion to higher-order edges, has
recently garnered significant attention in the theoretical computer science community for the
additional boost they give in applications like error-correction and approximate sampling.
In this thesis, we explore two problems related to high-dimensional expansion, using tools
from the geometry of polynomials as well as high-dimensional convex geometry.

First, we study approximate sampling from discrete distributions. The framework for sam-
pling obtained from high-dimensional expansion provides both a natural set of random walks
to use in MCMC algorithms, as well as a set of tools for their analysis. We show that the ge-
ometric properties (e.g. log-concavity) of a polynomial derived from the distribution allows
us to speed up the implementations of these random walks.

Next, we study a random graph model called the “random geometric graph,” with an eventual
goal of understanding its modeling capabilities as well as its high-dimensional expansion
properties. Along the way, we prove new results about distinguishing the random geometric
graph model from the Erdös-Rényi model, and develop a new geometric toolkit for analyzing
these graphs.
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Chapter 1

Introduction

But on a Wednesday in a cafe
I watched it begin again [Swi12]

An exciting trend in theoretical computer science is the incorporation of more and more
tools from continuous mathematics to design algorithms and analyze combinatorial objects.

For instance, continuous optimization has inspired many breakthroughs in discrete op-
timization. One of the earliest such examples is the Goemans-Williamson approximation
algorithm for max cut, based on semidefinite programming [GW95]. Linear programming
relaxations also yield competitive and interpretable solutions to many combinatorial prob-
lems like job scheduling, Steiner tree, and facility location [WS11]. The recently discovered
state-of-the-art algorithms for several classical graph problems, like max-flow and bipartite
matching, also rely on interior point methods [Che+22; Bra+20].

If we look beyond continuous optimization, and look at continuous mathematics in gen-
eral, we see even more examples. For one, Brownian motion is the basis of many rounding
algorithms designed for discrepancy minimization [Abb+22]. The entire subfield of Boolean
Fourier analysis is motivated by standard Fourier analysis for continuous functions [ODo14].
Barvinok’s polynomial method for approximate counting is related to some of the geometric
ideas surveyed in this thesis. In the field of approximate counting, Barvinok’s method uses
Taylor series expansion used to approximate partition functions such as the matching poly-
nomial or the independence polynomial [Bar16]. Its analysis relies on studying the locations
of the zeros of these polynomials.

In this thesis, we use geometric tools to tackle two problems related to “high-dimensional
expansion.” High-dimensional expanders have emerged in recent years as a promising con-
struction for obtaining improvements in error correction, derandomization, approximate sam-
pling, and beyond.
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1.1 Why high-dimensional expansion?

Expander graphs (expanders, for short) are sparse graphs with good connectivity properties.
“Connectivity” is usually quantified in two ways:

• Combinatorial: No matter how we split the vertices into two groups, the number of
edges crossing the groups is large. This is also known as having high “conductance.”

• Spectral: When we take a random walk on the graph, we converge quickly to the
stationary distribution of the walk. This is equivalent to having a large gap between
the top two eigenvalues of the (normalized) adjacency matrix of the graph.

These two notions of connectivity are very closely related, via Cheeger’s inequality [Chu07].
For the remainder of this work, “expansion” will refer to spectral expansion.

At a first glance, it is not clear that expander graphs should even exist, let alone be easy
to construct. Both combinatorial and spectral expansion encourage the graph to have as
many edges as possible, while sparsity (i.e. constant degree) forces an upper bound on the
number of edges in the graph. However, against these odds, we have discovered numerous
expander constructions ranging from the algebraic [LPS88a] to the combinatorial [RVW00]
to the probabilistic [Fri03]); expanders are now considered “commonplace” objects. For
instance, Friedman’s Theorem [Fri03] says that for constant d ≥ 3, any d-regular graph is
expanding with constant probability.

Because they simultaneously hold these conflicting, yet desirable properties, expanders
unsurprisingly form the backbone of numerous advances in theoretical computer science.
They have led to discoveries in error-correcting codes [SS96], pseudorandomness [INW94],
and probabilistically checkable proofs [Din07], just to name a few examples. The expander
“application area” that we will focus on for this thesis is the analysis of Markov chain Monte
Carlo (MCMC) algorithms [Jer03].

MCMC refers to a family of algorithms for approximate sampling from distributions,
whose supports are often exponential in the problem parameter, so techniques like rejection
sampling are inefficient. Such algorithms typically consist of a low-degree Markov chain that
mixes to the intended target distribution. In order for the algorithms to be efficient, we
require rapid mixing of the Markov chain. Many techniques used to analyze MCMC algo-
rithms, such as canonical paths [JS88] and Markov chain decomposition theorems [JSTV04],
are directly developed from the study of both combinatorial and spectral expansion in graphs.
In fact, any Markov chain’s transition matrix can be viewed as the normalized adjacency
matrix of a weighted graph, so if we can show that the graph is spectrally expanding, we
obtain mixing time bounds for the Markov chain.

In a sense, MCMC is not a directly “application” of an expander graph, but more so an
area that is deeply intertwined with the theory of expander graphs.
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1.1.1 The HDX advantage

A slew of recent breakthroughs [ALGV19; DELLM22; PK22] suggest that substituting high-
dimensional expanders (HDXes) in place of expander graphs gives us a “boost” in several
application areas. There are a few different definitions of high-dimensional expansion, each
of which generalize combinatorial and spectral expansion in different ways. In this thesis,
we focus on high-dimensional spectral expansion, which is also referred to as local spectral
expansion, and when we use the term “HDX,” it will refer to a local spectral expander. For
sake of this overview, we can think of HDXes as graphs that not only expand themselves, but
whose “neighborhoods” also expand; the definition of neighborhood depends on the HDX
dimension. We will precisely define everything in Chapter 2.

Graph expansion is a special case of high-dimensional expansion, for dimension 1. High-
dimensional expansion (for dimension ≥ 1) is a strictly stronger condition than expansion,
and an even more challenging one to satisfy from a mathematical standpoint due to the
tension between connectivity and sparsity. Most expander graphs are not high-dimensional
expanders; in fact, a random k-regular graph is 1-dimensionally expanding, but it is locally
tree-like, so the neighborhoods in the graph are sets of isolated vertices. The neighborhoods
are not even connected, let alone expanding, so random k-regular graphs are not high-
dimensionally expanding.

The current known “true” HDX constructions (which have constant degree, rather than
say, sub-linear degree) are primarily algebraic; there are a few combinatorial constructions for
2-dimensional expanders. The discovery of expander graphs has followed a similar trajectory,
with the algebraic constructions [LPS88a] preceding the the combinatorial ones [RVW00]
and probabilistic ones [Fri03]. It is still not known whether HDXes are as “commonplace”–
whether their construction is fundamentally bottlenecked beyond the algebraic constructions,
or if we will find additional combinatorial and probabilistid HDX constructions with time.

Another property of HDXes that set them apart from ordinary expander graphs is the
local-to-global property. It is this local-to-global property that provides the “boost” over
expander graphs in their various application areas. For instance, using expander graphs,
we could get error-correcting codes with constant distance and constant rate. However, an
HDX-like object helps us construct “c3 codes,” which satisy constant distance, constant rate,
and constant locality. Constant locality means that we can query a constant number of bits
in a string and decide whether or not it is a codeword with non-negligible probability. The
local-to-global property is critical for achieving constant locality, and standard expander
codes do not satisfy constant locality.

The local-to-global property also manifests in improvements to the design and (mainly)
analysis of many MCMC algorithms. At a high level, the local-to-global property tells us
that if we can encode a target distribution into an HDX, we obtain a natural Markov chain
that we call a higher-order random walk for this HDX. We can then compute spectral gap
and mixing time bounds for the higher-order random walk, which is a global object, solely
from analyzing the local 1-dimensional expansion of the HDX’s neighborhoods, which are
often much simpler objects.
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As a result, we obtain a unified framework for sampling from several interesting distri-
butions where we reduce the analysis of a large Markov chain to analyzing several smaller,
simpler chains. This framework has been successfully applied to several classic Markov
chains, such as the basis exchange walk for sampling a uniform random spanning tree of a
graph, or the Glauber dynamics for sampling independent sets in the graph.

1.2 Thesis overview

As mentioned before, there has been growing excitement and interest in incorporating tools
from continuous mathematics and geometry to studying discrete objects. We now ask: would
the study of expansion and high-dimensional expansion of graphs also benefit from additional
tools in continuous mathematics?

The answer is already yes, at least for the advances in MCMC for discrete distributions
using the HDX framework. Many recent results rely on deep connections between local
spectral expansion in HDXes and the geometry of polynomials, the study of particular mul-
tivariate polynomials and properties like the locations of their zeros and their log-concavity.
We elucidate this connection further in Section 2.4. Chapters 3 describes how to use a par-
ticular geometric property of a polynomial that encodes a discrete distribution to obtain
speedups in approximate sampling from the distribution.

We also mentioned that currently, constructions of HDXes are lacking, in comparison to
the plentiful constructions of expander graphs. Chapters 5, and 6 are motivated by whether
a fundamentally geometric construction of a graph can yield high-dimensional expanders.
Geometric graph constructions are also interesting as potential models for real-world net-
works. A big contribution of this work (primarily in Chapter 5, is a computer scientist’s
toolkit for the analyzing geometric graphs.

1.2.1 Chapter 3: Speedups of higher-order random walks

In Chapter 3 (with preliminaries in Chapter 2), we study the problem of approximately
sampling from discrete distributions µ over size-k subsets of some domain [n]. There are
many examples of distributions with such support, including the uniform distribution of
spanning trees on a graph, k-determinantal point processes, and distributions that help
count k-edge matchings in graphs. The prevailing algorithm used for this task is MCMC; in
particular, we use the higher-order random walks of an HDX that encodes a such distribution
µ :
(
[n]
k

)
→ R≥0.

We can quantify how “expanding” this HDX is using a measure called 1
α

-entropic inde-
pendence [AJKPV21a; AJKPV21b], where α ∈ [ 1

k
, 1], and a higher α corresponds to better

local spectral expansion. For a distribution µ satisfying 1
α

-entropic independence, there ex-
ists a higher-order random walk that generates samples from µ in time O(n1/α · poly(k)).
While the dependence on k is acceptable, we can hope to improve the dependence on n if
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we have access to the marginals of µ. Marginals here refers to estimates of PrS∼µ[i ∈ S] for
individual ground set elements i ∈ [n]

We propose and analyze a meta-algorithm called domain sparsification, which uses the
estimates of µ’s marginals to reduce the size of the domain [n] by a O(nα) factor for 1

α
-

entropically independent distributions. In settings where we need to repeatedly generate
samples from µ, we reduce the amortized cost of each sample by a factor of Ω(n). This
extends the work of [AD20], which is specialized to the α = 1 case.

The analysis of domain sparsification relies heavily on the connections between entropic
independence and the “geometry of polynomials.” Critically, we use the geometric charac-
terization of entropically independent distributions from [AJKPV21b].

This chapter is based on joint work with Nima Anari, Micha l Dereziński, and Thuy-Duong
(June) Vuong, published in [ADVY22].

1.2.2 Results on random geometric graphs

Random geometric graphs are useful models for real-world data, as well as promising candi-
dates for high-dimensional expanders. “Random geometric graph” can be defined in several
different ways, with many kinds of underlying geometries; we generally represent vertices
with vectors in Rd, and place edges based on the distance between their vectors. The under-
lying geometry imposed on the graph may better capture observed phenomena like triadic
closure than a geometry-agnostic network model, the Erdös-Rényi, can.

Graphs containing many triangles relative to its degree are promising candidates for high-
dimensional expanders. It is then a natural question to understand the expansion properties
of random geometric graphs. However, as we increase the underlying dimension d, random
geometric graphs often “lose their geometry” and start behaving more like Erdös-Rényi
graphs. It is known that Erdös-Rényi graphs are not good candidates for HDXes; by the
time they exhibit sufficient connectivity properties, they are far too dense. Thus, if we hope
for the random geometric graphs to be good HDXes, we need to choose their underlying
dimension d carefully. This motivates our work in Chapter 5.

Chapter 5: Detecting latent geometry in random graphs

In Chapter 5 (with preliminaries in Chapter 4), we introduce and nearly resolve a conjecture
regarding random geometric graphs.

We focus on a distribution we denote by Geod(n, p), where vertices are represented by
unit vectors in Rd (which lie on the sphere Sd−1) uniformly at random, and place edges
between pairs of vectors whose dot product exceeds a threshold τ . We can choose τ so the
edge probability is p. Formally, we answer a “Question 0” for Geod(n, p): for what dimension
d is Geod(n, p) statistically indistinguishable from the Erdös-Rényi model G(n, p)? In other
words, at what threshold for d does Geod(n, p) lose its underlying geometry?

We improve upon the known indistinguishability threshold from [BBN20] for all choices of
p. In the sparse regime when p = O

(
1
n

)
, we resolve the threshold question up to log factors,
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settling an open problem from [BDER16]. A key contribution of our work is a toolkit for
analyzing these graphs:

1. We use optimal transport maps to reduce questions about irregular distributions on
the unit sphere to tractable computations on the uniform distribution over Sd−1.

2. We apply the belief propagation algorithm to manually compute the distributions of
RGG embedding vectors, conditioned on the vectors forming a particular graph.

We will discuss our use optimal transport in detail; we’ll only provide a high-level outline of
how the belief-propagation argument works.

This chapter is based on joint work with Siqi Liu, Sidhanth Mohanty, and Tselil Schramm,
published in [LMSY22b].

Chapter 6: High-dimensional expansion of random geometric graphs

In Chapter 6 (with preliminaries in Chapters 2 and 4), we briefly outline a proof of the
2-dimensional expansion (with high probability) of graphs sampled from Geod(n, p) for d =
Θ(log n) and p = 1/n1−ε for any ε ∈ (0, 1). This distribution does not yield “true” 2-
dimensional expansion because the expected degree of these graphs is nε, but selecting ε as
a small constant does give us graphs with sublinear degree.

The choice of d is also influenced by our previous work on distinguishing Geod(n, p) and
G(n, p). Graphs sampled from G(n, p) do not exhibit 2-dimensional expansion until p≫ 1√

n
,

so we need to choose a dimension where Geod(n, p) and G(n, p) are distinguishable if we hope
to achieve 2-dimensional expansion for smaller values of p.

The analysis of high-dimensional expansion is helped by a local-to-global result, namely
Oppenheim’s trickle-down theorem, which reduced the task of establishing 2-dimensional ex-
pansion to establishing spectral expansion with gap > 1

2
for the neighborhoods of Geod(n, p).

As a corollary of our proof of 2-dimensional expansion, we also show that most graphs
sampled from Geod(n, p) yield examples of HDXes for which trickle-down is tight.

The key insight driving our analysis is the fact that the graph induced on the neighbor-
hood of a vertex in G ∼ Geod(n, p) is distributed like a random geometric graph on a sphere
cap of Sd−1. However, when d is high, most of the mass on the sphere cap is concentrated
near its boundary. Thus, we can approximate the neighborhood of with a graph sampled
from Geod−1(n, p

′), where p′ > p depends on the diameter of the sphere cap.
This chapter is based on joint work with Siqi Liu, Sidhanth Mohanty, and Tselil Schramm,

published in [LMSY22a].

1.3 Notation

• We use [n] to denote the set {1, 2, . . . , n}.
(
[n]
k

)
denotes all size-k subsets of [n].
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• Asymptotics: We use standard big-O notation, and we use Õ and Ω̃ to hide polylog(n)

factors. The notation f(x) ≫ g(x) to denote that limx→∞
g(x)
f(x)

= 0; the argument x
will be clear from context. We use ≃ to denote asymptotic equivalence.

• Eigenvalues: Given a matrix M ∈ Rn×n, we refer to its n eigenvalues by:

λ1(M) ≥ λ2(M) ≥ . . . ≥ λn(M)

• We use boldface for random variables (e.g. vvv, XXX). We’ll use XXX | E to denote the
random variable XXX sampled from the conditional distribution of XXX conditioned on the
event E .

• Binary entropy: We use log x to denote the natural base logarithm, and for x ∈ [0, 1],

H(x) = x ln
1

x
+ (1 − x) ln

1

1 − x

is the binary entropy function (with the understanding that H(0) = H(1) = 0).

• Unit sphere: We use Sd−1 to denote {x ∈ Rd : ∥x∥2 = 1}, the unit sphere in Rd,
which is inherently a (d− 1)-dimensional surface.

• p-norms of vectors and distributions: For v ∈ Rd and p ∈ (0,∞), we use ∥ · ∥p to
indicate the p-norm of v:

∥v∥p =

∑
i∈[d]

|vi|p
1/p

The 0-norm is ∥v∥0 = #{i ∈ [d] : vi ̸= 0} and the infinity-norm is ∥v∥∞ = maxi∈[d] |vi|.
In Chapter 5, we overload the same notation to denote the p-norm, for p < ∞, of a
function f : Sd−1 → R on the d-dimensional unit sphere as

∥f∥p := (Ezzz∼ρ|f(zzz)|p)1/p

and for p = ∞ as ∥f∥∞ := supz.

• Probability densities on Sd−1: We use ρ to denote the uniform distribution on Sd−1.
Given a distribution ν on Sd−1, we overload notation and use ∥ν∥p to denote ∥dν

dρ
∥p.

We will also frequently use the symbol ν itself to denote its relative density to ρ.

For a set A, we overload notation and use A to denote the uniform distribution on A
when it is clear from context.

• For two distributions µ and ν over Ω, their total variation distance is

dTV (µ, ν) :=
1

2
∥µ− ν∥1
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Their Kullback-Leibler divergence (KL divergence) or relative entropy is

DKL(µ∥ν) := Eω∼µ
[
log

(
µ(ω)

ν(ω)

)]
when ν is absolutely continuous with respect to µ. If ν is not, then their relative
entropy is ∞.

A simple but useful observation about relative entropy is the following.

Observation 1.3.1. If for all x ∈ Ω, dν
dµ

(x) ≤ C: (1) DKL(ν∥µ) ≤ lnC, and (2) for any

event E : ν(E) ≤ C · µ(E).

In Chapter 5, we will also use Pinsker’s inequality to bound the total variation distance
between two probability distributions in terms of the relative entropy.

Theorem 1.3.1 (Pinsker’s inequality). For distributions µ, ν over the same domain,

dTV (ν, µ)2 ≤ 1

2
DKL(ν∥µ)

Pinsker’s inequality is a standard information theoretic tool. See e.g. Theorem 2.16 of
[Mas07] for a proof.
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Chapter 2

Higher-Order Random Walks

I’m only up when you’re not down
Don’t wanna fly if you’re still on the ground [Swi06]

This chapter is intended as a friendly survey of the higher-order random walks that come
from simplicial complexes, as well as the tools from the geometry of polynomials to establish
their rapid mixing.

2.1 Markov chains and conventions

We refer to [Ber16] as a reference for the basics of Markov chains and their analysis.
A Markov chain is a stochastic process {Xt}t∈N specified by parameters (Ω, P, µ0). Ω is

a state space, specifying the values each Xt may take. P ∈ [0, 1]Ω×Ω is a transition matrix
that specifies the distribution of Xt+1 given the value of Xt. We use the convention

P (i, j) = Pr[Xt+1 = j|Xt = i]

for i, j ∈ Ω, so P is row-stochastic (i.e. every row sums to 1). µ0 is a distribution that
specifies where we start (X0). When µ0 is omitted, we assume a worst-case µ0.

Given a weighted graph G = (V,E,w), we can define a transition matrix using its:

weighted adjacency matrix A : A(i, j) = w(i, j)

weighted diagonal matrix D : D(i, i) =
∑
j∈Ω

w(i, j), otherwise D(i, j) = 0

We call D−1A the normalized adjacency matrix of M ; it is a transition matrix that describes
a Markov chain that is a random walk on G, with edge transitions proportional to w(·). It
is straightforward to verify that D−1A is row-stochastic.
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Remark 2.1.1. We will sometimes abuse language and refer to the eigenvalues of G’s nor-
malized adjacency matrix as simply “the eigenvalues of G,” even though G may have other
canonical matrices like A with different eigenvalues. Almost all graphs we discuss in this
work will be analyzed via their normalized adjacency matrices.

All of the Markov chains we consider with will be irreducible (we can reach j from i for
all i, j ∈ Ω) and aperiodic (we cannot find i, j ∈ Ω such that every path between i and j is
a multiple of some k ≥ 2). One property of an irreducible, aperiodic Markov chain is that
λ1(P ) = 1, so in particular, there exists a row vector µ with ∥µ∥1 = 1 such that µ = µP .
This particular eigenvector µ specifies a probability distribution over Ω, which we call the
stationary distribution of our Markov chain. When the chain is irreducible and aperiodic,
µ = limt→∞ vP t for any v ∈ RΩ, and moreover, µ is unique.

All of the Markov chains we consider will also be time-reversible, so in particular, they
satisfy the detailed balance equations:

µi · P [i, j] = µj · P [j, i] for all i, j ∈ Ω

While we always converge to µ with infinite time, whether or not a Markov chain can help
us efficiently sample from µ heavily depends on its mixing time, which lower bounds the rate
that the chain converges to µ. For a distribution ν over Ω and ε ∈ (0, 1),

tmix(P, ν, ϵ) = min{t ≥ 0 | dTV

(
νP t, µ

)
≤ ε}

tmix(P, ε) = max
x∈Ω

{tmix(P, δx, ε)}

where δx is the point mass distribution supported on x. When we don’t specify ε, assume
ε = 1

4
; any small constant suffices. This is due to the following well-known property of

mixing times:

Theorem 2.1.1. If an irreducible aperiodic Markov chain with stationary distribution µ
and transition matrix P satisfies dTV (νP t, µ) ≤ 1/4 for all distributions ν over Ω and some
t ≥ 1, then for any ε ∈ (0, 1/4],

tmix(P, ϵ) ≤ t log(1/ε).

The mixing time of a Markov chain can be analyzed by computing P ’s spectral gap, λ1(P )−
λ2(P ) = 1 − λ2(P ).

Theorem 2.1.2. Let µ be the stationary distribution of a Markov chain given by (Ω, P ),
and let µmin = minω∈Ω µ(ω).

tmix

(
P,

1

4

)
≤ 1

1 − λ2(P )

(
1

2
log

1

µmin

+ 1

)
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2.1.1 Mixing time via Poincaré and modified log-Sobolev

This section will not be critical for Chapter 3, Chapter 5, and Chapter 6, but may be
useful for context to understand some of the exposition in Chapter 2; we keep it here for
completeness.

Definition 2.1.2. Let µ be the stationary distribution of a Markov chain given by (Ω, P ).

• For f, g ∈ RΩ, the Dirichlet form of P is defined as

EP (f, g) = ⟨f, (I − P )g⟩µ = ⟨(I − P )f, g⟩µ.

• For a vector v ∈ RΩ, and a distribution ν over Ω, we use Eν [v] to denote Ei∼ν [vi].
For f ∈ RΩ, the variance of f is:

Varµ[f ] = Eµ
[
f 2
]
− (Eµ [f ])2

For f ∈ RΩ
≥0, its entropy is given by

Entµ[f ] = Eµ [f log f ] − Eµ [f logEµ[f ]]

• The Poincaré constant of P is defined to be

λ(P ) = inf

{
EP (f, f)

Varµ[f ]
: f ∈ RΩ,Varµ[f ] ̸= 0

}
• The modified log-Sobolev constant of P is defined to be

ρ(P ) = inf

{
EP (f, log f)

Entµ[f ]
: f ∈ RΩ

≥0,Entµ[f ] ̸= 0

}
Again, it suffices to consider f ∈ RΩ

≥0 satisfying Entµ[f ] ̸= 0 and Eµf = 1.

Fact 2.1.3. The Poincaré constant is equal to P ’s spectral gap, 1 − λ2(P ).

Thus, we can infer an upper bound on mixing time bounds from a lower bound on the
Poincaré constant, using Theorem 2.1.1.

Remark 2.1.4. For the rest of this work, we will almost always use the notation 1− λ2(P )
to refer to the spectral gap, rather than use the (confusing) notation λ(P ) for the Poincaré
constant.

The modified log-Sobolev constant provides an even stronger mixing time bound [BT03].

Theorem 2.1.3. Let µ be the stationary distribution of a Markov chain given by (Ω, P ),
and let µmin = minω∈Ω µ(ω).

tmix

(
P,

1

4

)
≤ 1

ρ(P )

(
log log

1

µmin

+ 1

)
Relatedly, it is usually more difficult to establish a lower bound on the modified log-Sobolev
constant than it is to establish a lower bound on the spectral gap.
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2.2 Basic HDX definitions

We borrow much of the notation for HDXes used in [ALGV19], though we define the weight
function w(·) differently.

The object underlying a high-dimensional expander is called a simplicial complex.

Definition 2.2.1. A simplicial complex X over a ground set [n] is a collection of downward-
closed sets S ⊆ [n]. Downward-closed means that if T ⊆ S and S ∈ X, then T ∈ X.

A simplicial complex is k-dimensional if its largest faces have size (k + 1). We assume that
all simplicial complexes have maximal faces of equal size.

Definition 2.2.2. Given simplicial complex X, let X(k′) be the set of its k′-faces, given by
{S ∈ X : |S| ≤ k′ + 1}.

There is this “off-by-one” in the definition because a simplex on (k + 1) vertices inherently
lives in k-dimensional space. For instance, a connected graph is a 1-dimensional complex X,
where size 2 sets in X are edges (1-dimensional, as they are line segments), and size 1 sets
are vertices (0-dimensional, as they are points).

Definition 2.2.3. The 1-skeleton of X is its “underlying graph,” X(1) ∪X(2).

We also have a high-dimensional analogue of “neighborhoods,” called “links.”

Definition 2.2.4. Let X be a simplicial complex, and T ∈ X be one of its faces. The link
of T , denoted by XT , is the simplicial complex given by {S \ T : S ∈ X,S ⊇ T}.

In a 1-dimensional simplicial complex (i.e. graph), the link of a single vertex coincides with
the usual notion of “neighborhood” in a graph.

Simplicial complexes naturally support weights as well. For a k-dimensional complex, let
w : X(k) → R≥0 be a weight function from the maximal (k-dimensional) faces to positive
real numbers. The weights for the remainder of the faces propagate downwards inductively:

For T ∈ X(i), w(T ) =
1

k − i
·

∑
S∈X(i+1):S⊃T

w(S)

It is not difficult to verify the following property of weights:

Proposition 2.2.5. Let X be a (k−1)-dimensional simplicial complex with weights specified
by w :

(
[n]
k

)
→ R≥0. Then, for T ∈ X(i) with i ≤ (k − 1):

w(T ) =
∑

S∈X(k−1):S⊃T

w(S)

If
∑

S⊆[n]:|S|=k+1w(S) = 1, so w specifies a distribution µ over X(k),

w(T ) = Pr
S∼µ

[T ⊆ S]
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2.2.1 Local spectral expansion and the trickle-down theorem

We remark that there are a few different notions of high-dimensional expansion. We focus
on local spectral expansion, which generalizes spectral expansion in graphs. Other widely
considered definitions of high-dimensional expansion include coboundary expansion [Gro10a;
LMM16] and cosystolic expansion [EK16a], which generalize combinatorial expansion in
graphs.

Definition 2.2.6. Let X be a simplicial complex, and let G denote its 1-skeleton, which
can be represented by a weighted graph. Let λ2(G) denote the second largest eigenvalue of
the normalized adjacency matrix of G.

The normalized adjacency matrix here refers to the transition matrix of the weighted random
walk on G. The top eigenvalue of the normalized adjacency matrix, λ1(G) is always equal
to 1, since there is an eigenvector corresponding to the stationary distribution.

In the expander graph literature, a family of (weighted) graphs {Gi}i∈N is spectrally
expanding if λ2(Gi) is bounded away from 1 by a constant for all i ∈ N, i.e. λ2(Gi) ≤ 1 − γ
for all i ∈ N and γ > 0. We also refer to such families of graphs as γ-spectral expanders.
We can generalize this definition to simplicial complexes. We use the definition below when
we talk about “HDXes:”

Definition 2.2.7. Let X be a weighted simplicial complex with maximal faces of size k,
and recall that XS is the link of S ∈ X. Let GS denote the 1-skeletons XS, respectively. X
is a (γ0, γ1, . . . , γk−2)-local spectral expander if λ2(GS) ≤ γi for all |S| = i, and 0 ≤ i ≤ k− 2.

Note that in any simplicial complex, the only size-0 face is ∅. The link of ∅ is just X itself,
so the condition that λ2(G∅) ≤ γ0 is equivalent to the underlying graph of X itself being
expanding. We also impose no conditions on GS for S satisfying |S| = k − 1 or |S| = k,
since these links do not have any 1-faces (edges).

Example 2.2.8. In the case where k = 2 (which is the lowest-dimensional non-graph sim-
plicial complex) and all of the 2-faces of X have uniform weight, X being a (γ0, γ1)-local-
spectral-expander just means that

• The graph on the neighborhood of every vertex in X is a γ1-expander.

• A weighted graph over all vertices of X is a γ0-expander.

This is why we approximately described a “high-dimensional spectral expander” in Chapter
1 by a graph that is itself expanding, and whose neighborhoods are also expanding.

As noted in Section 1.1.1, HDXes exhibit “local-to-global” behavior: that is, it suffices
to only study links (and often, only the links of the largest faces) to deduce bounds on the
expansion of objects like the down-up-walks that are defined over the whole complex. In
Chapter 6, we leverage a particular local-to-global result known as Oppenheim’s “trickle-
down” theorem:
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Theorem 2.2.1. (See [Opp18]) Let X be a (k−1)-dimensional simplicial complex satisfying
λ2(GS) < λ for all S of size ≤ (k − 2). If GS is connected for all S with 0 ≤ |S| ≤ k − 2,
then GS is a ( λ

1−(k−2)λ
, λ
1−(k−3)λ

, . . . λ
1−λ , λ)-spectral-expander.

In short, assuming only a mild constraint that the links of a simplicial complex are all
connected, we can deduce the expansion of all links in the simplicial complex, using only a
bound on λ2(GS) for |S| = k− 2. Thus, trickle-down helps us prove local spectral expansion
to understanding the expansion of only the simplest of links in the complex.

Remark 2.2.9. The trickle-down theorem also has a key weakness: we only obtain mean-
ingful results when λ < 1

k
, which is often too restrictive for many of the chains we see in

practice. A recent work [ALG22] tries to remedy this by controlling all of the eigenvalues of
GS at once, rather than only bounding λ2(GS) for S ∈ X(k− 3); they replace the condition
λ2(G2) ≤ λ with a matrix inequality instead.

2.3 Higher-order random walks

Now that we have formalized how weights and local spectral expansion are defined for a
simplicial complex X, we define the higher-order random walks associated with X.

To better understand the higher-order random walks, we’ll first take a somewhat redun-
dant view of the standard lazy random walk on a weighted graph, with a 1

2
probability we

stay at our current state in any given time step. In this walk, our state space is the vertex
set V , and in each step, if we are not lazy and stay at the current state, then we transition
to a neighbor of our current state, proportional to the weight of the edge to that neighbor.
We can view this walk as the composition of two distinct processes: an up operator that
starts at a vertex, and then selects an edge that contains it, and a down operator, where we
are at an edge and select one of the vertices that contains it.

Higher-order random walks generalize the standard vertex→edge→vertex (i.e. 0-face→ 1-
face→ 0-face) walk. They all can be decomposed into down and an up operators.

Definition 2.3.1. Let X be a simplicial complex with weights defined using w :
(
[n]
k

)
→ R≥0,

and choose ℓ < k. The down operator, denoted Dk→ℓ, is a transition matrix mapping X(k−1)
to X(ℓ− 1). The probability we transition from S ∈ X(k − 1) to T ∈ X(ℓ− 1) is:

Dk→ℓ(S, T ) =

{
1

(k
ℓ)

if T ⊂ S,

0 otherwise.

The up operator, denoted Uℓ→k, is a transition matrix mapping X(ℓ− 1) to X(k − 1). The
probability we transition from T ∈ X(ℓ− 1) to S ∈ X(k − 1) is:

Uℓ→k(T, S) =

{
w(S)
w(T )

if T ⊆ S,

0 otherwise.
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Figure 2.1: A diagram illustrating a single step of the down-up walk.

We note that in some other works (notably [ALGV19], [AL20]), the down and up operators
are from k-faces to ℓ-faces, rather than size-k sets to size-ℓ sets.

Here, we are following the convention of [AD20], [AASV21], [AJKPV21b], and [ADVY22],
which are closer related works to the content in Chapter 3.

Definition 2.3.2. The (k ↔ ℓ)-down-up walk associated with µ is a Markov chain over sets
in X(k − 1) with transition matrix Uℓ→kDk→ℓ.

Proposition 2.3.3. Let X be a simplicial complex with weights given using w :
(
[n]
k

)
→ R≥0,

and choose ℓ < k. The stationary distribution of the k-down-up walk is proportional to w(·).

This fact can be verified using detailed balance. In general, we can define down-up as well
as up-down walks (where we apply the up operator before the down operator) over arbitrary
X(i). However, since a key problem of interest for this work is sampling from µ :

(
[n]
k

)
→ R≥0,

we will primarily be working with the (k ↔ ℓ)-down-up walk.
This explains how we can design MCMC algorithms using simplicial complexes:

Remark 2.3.4. In typical approximate sampling problems, we only have oracle access to
a function f that is proportional to µ. For instance, if we want to sample uniformly from
the distribution of spanning trees in a graph, it is difficult to count the number of spanning
trees a priori to specify µ exactly. However, it is easy to check whether or not a subset of the
edges forms a spanning tree, so it is reasonable to assume we can access the weight function
w(T ) = 1 for a spanning tree T ⊆ E. Due to Proposition 2.3.3, having access to such a w(·)
is enough to set up a (k ↔ ℓ)-down-up-walk that mixes to µ.

When we implement a (k ↔ ℓ)-down-up-walk, the down step takes time polynomial in
k. However, the up step takes time polynomial in n, specifically nO(ℓ) time, because we need
to query w(S) for each S ⊇ T .
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Given a local spectral expander of dimension (k − 1), we can bound the spectral gap and
the mixing time of the 1-down-1-up walk on X(k − 1).

Theorem 2.3.1. ([AL20], [AASV21]) Let X be a simplicial complex that represents a dis-
tribution µ :

(
n
k

)
→ R≥0. If X is a (γ0, γ1, . . . , γk−2)-spectral expander, then:

1 − λ2 (Uℓ→kDk→ℓ) ≥
1

k

ℓ−1∏
i=0

(1 − γi)

Remark 2.3.5. The case of ℓ = k − 1 recovers the original theorem stated in [AL20]. The
version of the theorem produced above is not nearly as general as Theorem 47 of [AASV21];
we specialize it as follows:

• We use the same β(S) for S of the same size, so the contraction factor is 1
k

∏ℓ−1
i=0 βi.

We assume the same for the contraction factors α(S), from their Definition 46.

• We replace f -divergence with “variance,” which is equivalent to choosing f(x) = x2.

• A local variance contraction of α at S is equivalent to a 1−α
α

bound on the spectral gap
of GS if α ≥ 1

2
. See Fact 2.3.7 below.

Remark 2.3.6. Note that if we set ℓ = 0, the spectral gap of the (k ↔ 0)-down-up-walk is
1
k
, so we always have poly(k) time mixing for this walk. However, we rarely implement this

walk despite its fast mixing, because executing the up step takes time nO(k) (Remark 2.3.4).
The real game here is to choose ℓ as close as possible to k while our spectral gap is still at
least inverse polynomial in k.

We last describe how spectral gap relates to variance contraction between µDk→2 and µDk→1.

Fact 2.3.7. Let G be the 1-skeleton of a simplicial complex X corresponding to distribution
µ :
(
[n]
k

)
→ R≥0. Then, 1−λ2(G) ≥ 2·(1−α) if and only if µ satisfies a γ-variance contraction:

VarµDk→1
(νD2→1) ≤ α · VarµDk→2

(ν)

ν is an arbitrary function on
(
[n]
2

)
. It corresponds to the test function f in Definition 2.1.2.

Proof sketch. Let P2 = D2→1U1→2 and P1 = U1→2D2→1. It is straightforward to show that
λ2(P2) = λ2(P1). In the proof of Lemma 14 in [CGM19], we have the following identity:

VarµDk→1
(νD2→1) = VarµDk→2

(ν) − EP2(ν, ν)

If we incorporate the variance contraction inequality, we get EP2(ν, ν) ≥ (1− γ)VarµDk→2
(ν).

This tells us 1 − λ2(P1) = 1 − λ2(P2) = 1 − α. We conclude by seeing that

1 − λ2(P1) =
1

2
· (1 − λ2(G))

since P1 describes a lazy random walk on G with self-loop probability 1
2
.
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2.3.1 Spectral independence

We can also establish local spectral expansion, and thus, rapid mixing of the down-up walks,
by proving something called spectral independence for distributions µ. Spectral independence
(and the ensuing proof of local spectral expansion) has been at the crux of most of the recent
breakthroughs in MCMC ([ALG21], [CGŠV21], [JPV21], [FGYZ22], [Bla+22]).

Though our work in Chapter 3 does not rely on spectral independences itself, it is heavily
related to [AASV21], which employs spectral independence to establish rapid mixing of a
wide family of down-up walks. We thus include a brief introduction to spectral independence
for completeness.

Definition 2.3.8. For a distribution µ :
(
n
k

)
→ R≥0, its correlation matrix ψµ is a matrix

with rows and columns indexed by [n] and entries specified by

Ψµ(i, j) := Pr
S∼µ

[j ∈ S|i ∈ S] − Pr
S∼µ

[j ∈ S]

We drop the subscripts when the distribution is clear from the context.

Definition 2.3.9. A distribution µ :
(
n
k

)
is η-spectrally independent if

λ1(Ψµ) ≤ η

µ is (η0, η1, . . . , ηk−2)-spectrally independent if for all sets S of size i for 0 ≤ i ≤ k, the
distribution µ conditioned on S (i.e. the distribution corresponding to XS) is ηi-spectrally
independent.

Spectral independence also directly implies local spectral expansion.

Theorem 2.3.2. Let µ :
(
[n]
k

)
→ R≥0 be η-spectrally independent. Then, the 1-skeleton G∅

of its corresponding simplicial complex satisfies λ2(G∅) ≤ η
k−1

.

Proof sketch. We will establish a Poincare inequality (Fact 2.1.3) for the random walk on
G∅. It suffices to consider test vectors f ∈ R[n] that satisfy EµDk→1

[f ] = 0; we can shift f
by a constant without affecting its Dirichlet form or variance. (Here, µDk→1 describes the
distribution proportional to the marginals PrS∼µ[i ∈ S].)

We first decompose the correlation matrix as follows:

Ψµ = (k − 1)P∅ −M

Here, P is the transition matrix for G∅, while M is a matrix given by M(i, j) = PrS∼µ[j ∈ S].
The factor of (k − 1) comes from normalization and the fact that∑

j ̸=i

Pr
S∼µ

[j ∈ S|i ∈ S] = k − 1
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Let Π be the diagonal matrix satisfying Π(i, j). Since λ1(Ψµ) ≤ α, we have:

(k − 1) · fTΠPf − fTΠMf ≤ η · fTΠf

Using Eµ[f ] = 0, we can check that fTΠMf = 0. Rearranging the remaining terms, and
adding (k − 1) · fTΠf to both sides:

(k − 1 − η) · fTΠf = (k − 1) · fTΠ(I − P )f

The quantity fTΠf is precisely Varµ(f), while fTΠPf is EP (f, f).

Corollary 2.3.10. Let µ :
(
[n]
k

)
→ R≥0 be (η0, η1, . . . , ηk−2)-spectrally independent. Then,

its corresponding simplicial complex X is a ( η0
k−1

, η1
k−2

, . . . , η)-local spectral expander.

Corollary 2.3.11. If µ is (η0, η1, . . . , ηk−2)-spectrally independent, and ηi ≤ O(1) for all
0 ≤ i ≤ k − 1, then the (k ↔ k − 1)-down-up walk has spectral gap 1

poly(k)
. Furthermore, if

mixes in time O(poly(k) · log µ−1
min).

2.3.2 Entropic Independence

We can define entropic independence as a near-analogue of spectral independence: the quan-
tities we previously saw that included variance are (almost) replaced with entropy. This
yields modified log-Sobolev inequalities instead of Poincaré inequalities, which lead to much
stronger upper bounds on mixing time.

We refer to [AJKPV21b] for a more complete treatment of entropic independence.

Definition 2.3.12. A probability distribution µ :
(
[n]
k

)
→ R≥0 is (1/α)-entropically-independent

for α ∈ (0, 1], if for all distributions ν on
(
[n]
k

)
,

DKL(νDk→1∥µDk→1) ≤
1

αk
· DKL(ν∥µ)

Remark 2.3.13. We saw that spectral independence implied a variance contraction (Fact
2.3.7), but the corresponding entropy contraction

EntµDk→1
(νD2→1) ≤ c · EntµDk→2

(ν)

for c < 1 is actually stronger than the entropy contraction implied in Definition 2.3.12. In this
sense, entropic independence isn’t a perfect analogue of spectral independence. Example 38
in the appendix of [AJKPV21b] has an example of a 2-entropically-independent distribution
where the above entropy contraction does not hold.

Fact 2.3.14. Every distribution µ :
(
[n]
k

)
→ R≥0 is k-entropically independent.

The fact is a direct consequence of the data processing inequality.
We will revisit entropic independence again and further elaborate on its relationship to

spectral independence in Section 2.4.2.
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2.4 Relationship to the geometry of polynomials

The mixing times of higher-order random walks are deeply connected to geometric aspects
of a multivariate polynomial that encodes µ.

Definition 2.4.1. For a distribution µ :
(
[n]
k

)
→ R≥0, its generating polynomial gµ is

gµ(z1, . . . , zn) :=
∑
S

µ(S)
∏
i∈S

zi

In the expression for gµ, we may also replace µ(·) with w(·), a scalar multiple of µ(·), and
obtain the consistent definitions and the same results.

Definition 2.4.2. Let µ :
(
[n]
k

)
→ R≥0 be a distribution with generating polynomial gµ.

• We use µ|T to denote µ restricted to sets S ⊆ T rather than S ⊆ [n]. The generating
polynomial of µ|T equals gµ evaluated at zi = 0 for i /∈ T .

• We use ∂Tµ to denote the stationary distribution over the (k−|T |−1)-faces of the link
of T , when considering µ as a simplicial complex. ∂Tµ is equivalent to the probability
distribution specified by the polynomial

∂zi1 · · · ∂zi|T |
gµ(z1, . . . , zn) for T = {i1, . . . , i|T |}

The order we take the partial derivatives does not matter.

2.4.1 Log-concavity

Definition 2.4.3. A distribution µ :
(
[n]
k

)
→ R≥0 is log-concave if log gµ(z1, . . . , zn) is concave

over the positive orthant Rn
≥0

Remark 2.4.4. We depart from the definition of strongly log-concave that is used in [ALGV19]
and [CGM19]. Our Definition 2.4.3 also implies log-concavity of the derivatives. [AASV21]
justifies this by using the fact that scaling preserves log-concavity.

∂igµ(z1, . . . , zi−1, zi+1, . . . , zn) = lim
λ→∞

1

λ
gµ(λz1, . . . , λzi−1, zi, λzi+1, . . . , λzn)

Theorem 2.4.1. If µ :
(
[n]
k

)
is log-concave, then its corresponding simplicial complex X is

a (0, 0, . . . , 0)-local spectral expander.

Proof outline. A full proof is one of the central contributions of [ALGV19].
First consider gµ(z1, . . . , zn). We use the following chain of implications to relate log-

concavity to local spectral expansion.

• gµ(z1, . . . , zn) being log-concave at 1⃗ means that the Hessian of log gµ(z1, . . . , zn) is
negative semi-definite at 1⃗.
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• Using some tools from linear algebra, we can show that this implies that the Hessian
of gµ(z1, . . . , zn) has at most one positive eigenvalue.

• If we normalize the rows of the Hessian of gµ(z1, . . . , zn) at 1⃗, we obtain the (normalized)
adjacency matrix of G, the 1-skeleton of X. The positive eigenvalue corresponds to
λ1(G) = 1; we can then conclude (with some more linear algebra) that λ2(G) ≤ 0.

Log-concavity of all of the derivatives of gµ eventually translates to λ2(GS) ≤ 0 for all S
with size ≤ (k − 2), where GS is the 1-skeleton of XS.

Corollary 2.4.5. Let µ :
(
[n]
k

)
→ R be log-concave. Then, its (k ↔ k − 1)-down-up walk

has spectral gap 1
poly(k)

, and mixes in time O(poly(k) · log µ−1
min).

Next, we include a few examples of log-concave distributions.

Example 2.4.6. Let M = (E, I) be a matroid with bases B. Then, if µ is the uniform
distribution over B, it is log-concave. This example also encapsulates the uniform distribution
over spanning trees in a graph.

Example 2.4.7. Let L be a positive semidefinite matrix. The k-determinantal point process,
or k-DPP, with kernel L [DM21] is a distribution µ :

(
[n]
k

)
→ R≥0 defined by:

µ(S) ∝ det(LS,S)

Here, LS,S is the principal submatrix of L whose rows and columns correspond to S.
If we have a collection of vectors {v1, . . . , vn} and let L be its Gram matrix, we are then

sampling S ⊆ [n] proportionally to the volume spanned by {vi : i ∈ S}. Thus, we favor
sets of vectors that are almost orthogonal to each other, and ignore vectors that only span a
lower-dimensional space. The k-DPP is used in many applications in machine learning when
we need diverse samples.

2.4.2 Fractional log-concavity

Definition 2.4.8. A distribution µ :
(
[n]
k

)
→ R≥0 is α-fractionally-log-concave for parameter

α ∈ (0, 1] if log gµ(zα1 , . . . , z
α
n) is concave over the positive orthant (z1, . . . , zn) ∈ Rn

≥0. When
α = 1, we recover the definition of log-concavity.

Remark 2.4.9. Remark 2.4.4 also holds for fractionally log-concave polynomials. As a
result, we also get fractional log-concavity of the derivatives of gµ.

Fractionally log-concave distributions also satisfy spectral independence.

Theorem 2.4.2 (See Remark 70 of [AASV21]). Let µ :
(
[n]
k

)
→ R≥0 be α-fractionally-log-

concave. Then, µ is 1
α

-spectrally independent.
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Corollary 2.4.10. If µ :
(
[n]
k

)
→ R≥0 is α-fractionally-log-concave, then its (k ↔ k−⌈α−1⌉)-

up-down walk has spectral gap 1
poly(k)

, where the exponent of the polynomial depends on α−1.

Proof sketch of Corollary 2.4.10. We apply Theorem 2.3.1 using ℓ = k − ⌊α−1⌋. Note that
γi ≥ 1 for i ≥ ℓ; treating α as a constant, we only obtain constant γi for i ≤ ℓ− 1.

We next provide some examples of α-fractionally-log-concave polynomials and distributions
for α < 1. These examples are primarily from [AASV21]; they have proofs as well.

Example 2.4.11. If g is a degree-k homogeneous multi-affine polynomial, then it is (1/k)-

log-concave. Every monomial
∏

i∈S z
1/k
i is concave, since by Hölder’s inequality

∏
i∈S

(λzi + (1 − λ)yi) ≥

(
λ
∏
i∈S

z
1/k
i + (1 − λ)

∏
i∈S

y
1/k
i

)k

Now, g(z
1/k
1 , . . . , z

1/k
n ) is concave, since it is a (positive-weighted) sum of concave functions∏

i∈S z
1/k
i . Thus, log g(z

1/k
1 , . . . , z

1/k
n ) is also concave, as log is both monotone and concave.

Example 2.4.12. We present another toy class of α-fractionally-log-concave polynomials
that provides some intuition despite not having many applications.

Let µ be an α-fractionally-log-concave polynomial over the variables z1, . . . , zn. If we
replace each zi with the monomial

∏m
j=1 z

(j)
i , we obtain a degree mk, α

m
-fractionally-log-

concave polynomial over the variables {z(j)i : i ∈ [n], j ∈ [m]}. For example, if the starting
distribution µ is the uniform distribution over bases of a matroid, then α = 1, and the
resulting distribution will be (1/m)-fractionally log-concave.

Notice that if we treat this polynomial as a distribution, for any i ∈ [n], the elements
i(1), . . . , i(m) are all perfectly correlated. On the other hand, if i ̸= j, any two i(mi) and j(mj)

inherit the correlations from the log-concave distribution.

Example 2.4.13. Let G be a graph and k ∈ N. For each set S ⊆
(
V
2k

)
, let µ(S) be pro-

portional to the number of perfect matchings of the induced subgraph of G on S. Sampling
from µ allows us to approximately count the number of k-matchings, i.e., matchings using k
edges, in G. For any value of k, this distribution is fractionally log-concave with α ≥ 1

4
, and

it is conjectured to be fractionally log-concave with α ≥ 1
2
.

Not all choices of G result in efficient sampling algorithms. The implementation of an
oracle for µ (or a function w proportional to µ) involves counting perfect matchings over
S ⊆ V , and we do not have a poly(k) time algorithm for counting matchings in general
graphs. We thus only consider downward closed graph families with an FPRAS for counting
perfect matchings, e.g., bipartite graphs [JSV04], planar graphs [Kas67], certain minor-free
graphs [EV19], and small genus graphs [GL99].
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Example 2.4.14. Let L be a nonsymmetric positive semidefinite matrix, i.e., an n × n
matrix L that satisfies L+L⊺ ⪰ 0. Then, the nonsymmetric k-determinantal point process,
or nonsymmetric k-DPP with kernel L [GBDK19; GHDGB20; AV21], is defined by

µ(S) ∝ det(LS,S)

The nonsymmetric k-DPP is fractionally log-concave for α ≥ 1
4
.

The non-symmetric k-DPP is also conjectured to be fractionally log-concave with α ≥ 1
2
.

Example 2.4.15. Start with a measure µ0 on
(
[n]
k

)
that is Strongly Rayleigh (see [BBL09] for

a definition), such as a (symmetric) determinant point process, or the uniform distribution
over spanning trees of a graph. Suppose that we partition the ground set into a constant
number c = O(1) of parts: [n] = A1 ∪A2 ∪ · · · ∪Ac, and fix cardinalities k1, . . . , kc ∈ N, with
k1 + · · · + kc = k. Then the partition-constrained version of µ0 can be defined as

µ(S) ∝ µ0(S) · 1 [|S ∩ Ai| = ki for i = 1, . . . , c]

As long as c = O(1), this distribution µ will be Ω(1)-fractionally-log-concave. For some
discussion of partition-constrained Strongly Rayleigh measures, see [CDKSV16].

At a very high level, we can think of 1
α

-fractionally-log-concave distributions as having
some positive correlations among α−1-sized subsets of [n], and otherwise negative correla-
tions. Example 2.4.12 especially captures this intuition.

We also remark that many of the results from [AASV21], which introduces fractional log-
concavity, are actually stated and obtained for a property called sector-stability. Also, all of
the examples above have α-fractional-log-concavity that is deduced from 2α-sector stability.
Sector stability, which is stronger than fractional log-concavity, concerns the locations of
the zeros of gµ. It also generalizes real-stability, which is a stronger version of log-concavity.
Given the focus of this work on the higher-order random walks, only working with (fractional)
log-concavity suffices.

Connecting entropic independence and spectral independence

Finally, we formalize how α-fractional-log-concavity implies 1
α

-entropic independence.

Theorem 2.4.3 (Theorem 3 of [AJKPV21b]). µ is 1
α

-entropically independent if and only
if for all (z1, . . . , zn) ∈ Rn

≥0,

gµ(zα1 , . . . , z
α
n) ≤

(
n∑
i=1

pizi

)kα

(2.1)

where p = (p1, . . . , pn) := µDk→1 are the scaled marginals of µ.

Corollary 2.4.16. α-fractionally log concavity implies (1/α)-entropic independence.
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[AJKPV21b] also show that 1
α

-entropic independence under external fields (a stronger con-
dition than just entropic independence) is equivalent to fractional log-concavity:

Definition 2.4.17. For µ :
(
[n]
k

)
→ R≥0 and λ ∈ Rn

≥0, the distribution λ ∗ µ is defined by:

Pr
λ∗µ

[S] = µ(S) ·
∏
i∈S

λi

Equivalently, λ ∗ µ is the distribution given by polynomial gµ(λ1z1, . . . , λnzn).

Theorem 2.4.4 (Theorem 3 of [AJKPV21b]). If λ ∗ µ is 1
α

-entropically independent for all
λ ∈ Rn

≥0, then µ is α-fractionally log-concave.

Entropic independence of all conditionings (which is implied by fractional log-concavity) also
results in a modified log-Sobolev inequality for some higher order random walks:

Theorem 2.4.5 (Theorem 5 of [AJKPV21b]). Let µ and all of its conditionings µS satisfy
1
α

-entropic independence for 1
α
∈ Z. Then, for all distributions ν over

(
[n]
k

)
DKL(νDk→ℓUℓ→k∥µDk→ℓUℓ→k) ≤ DKL(νDk→ℓ∥µDk→ℓ)

≤

(
1 −

(
k − ℓ

α−1

)
·
(
k

α−1

)−1
)
DKL(ν∥µ)

We can then obtain mixing time bounds using the modified log-Sobolev inequalities.
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Chapter 3

Domain Sparsification and Entropic
Independence

Gave you too much but it wasn’t enough
But I’ll be all right, it’s just a thousand cuts [Swi19]

As noted in Chapter 1, this chapter is based on joint work with Nima Anari, Micha l
Dereziński, and Thuy-Duong (June) Vuong, published in [ADVY22].

3.1 Problem statement and summary of results

Consider a distribution µ :
(
[n]
k

)
satisfying 1

α
-entropic independence for all conditionings

(which is implied by α-fractional log-concavity), and the problem of approximately gener-
ating samples from µ. As noted in Remark 2.3.4, we actually have access to some weight
function w that is a scaling of µ, but we will only work with µ for the rest of this chapter;
the same algorithms can be implemented with only knowledge of w. Using Corollary 2.4.10
and Remark 2.3.4, the run-time of the k ↔ (k− ⌈α−1⌉)-down-up walk is O(n⌈α−1⌉ · poly(k)),
where the time-consuming “up” step takes time O(n⌈1/α⌉).

Can we speed up this sampling process if we have access to additional information about
µ? More specifically, if we have estimates pi of the single element marginals PrS∼µ[i ∈ S] for
all i ∈ [n], can we improve the runtime of the “up” step, by perhaps reducing the number of
sets we need to consider?

We can think of this as a question of how to “sparsify” the space of transitions that we
consider in the “up” step. This is not at all a novel concept. In the continuous setting, if we
have n data points lying in Rd, algorithms like the Johnson-Lindenstrauss transform and its
variants ([Mat08], [KN14]) allow us to project the data vectors into a lower-dimensional sub-
space and gain runtime improvements for downstream tasks such as linear regression. In the
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discrete world, cut sparsification and spectral sparsification algorithms ([BK96], [BSST13])
have been key subroutines in linear system solvers and other graph algorithms.

3.1.1 Approach and main result

Domain sparsification, or rather a simplification of it, is easiest to describe for the case
of uniform marginals (pi = k

n
for i ∈ [n]) and when the desired total variation distance

from our sample to µ is a constant. We first sample T ⊆ [n] uniformly at random, with
|T | ≃ n1−α · poly(k) elements from the ground set. Then, we sample S from the restricted
distribution µ|T , and as noted in Theorem 3.1.1, we establish that this sample S is close
enough in distribution to a sample we would have obtained from µ. We thus reduced the
size of the ground set, or the domain [n], by a factor of n1/α, before we begin sampling.

Remark 3.1.1. It suffices for µ to be 1
α

-entropically log-concave for our choice of T to yield
subsamples S that are close in distribution to µ. However, a stronger condition, like the
fractional log-concavity of µ, helps guarantee that S can be sampled efficiently.

To handle non-uniform pi, we first perform a transformation to µ, which algorithmically
translates to selecting elements of T in an i.i.d. fashion with probabilities dictated by pi
(Section 3.2.1). Furthermore, we do not need PrS∼µ[i ∈ S] to be exactly the same for all i.
Instead, it is enough to just have an estimate of these marginals.

Finally, in order to achieve better total variation distance to µ, we perform a Markov-
chain-based variant of the mentioned process; in each step of this Markov chain, we simply
add elements to the current set S0 in order to get S0 ∪ T0, and then subsample a new set
S1 ⊆ (S0∪T0). From here, we can add elements to S1 to get S1∪T1, and subsample S2 from
S1 ∪ T1, and so on. For a high level overview, see Figure 3.1.1. For details see Section 3.2.2.

Theorem 3.1.1 (Informal). Let µ :
(
[n]
k

)
→ R≥0 be (1/α)-entropically independent. Suppose

that we have access to estimates p1, . . . , pn of the marginals and an oracle that can produce
i.i.d. samples i ∈ [n] with Pr i ∝ pi; suppose that our estimates satisfy

p1 + · · · + pn = k and pi ≥ Ω( Pr
S∼µ

[i ∈ S]) for all i ∈ [n]

Then we can sample T ⊆ [n] with T ≤ O (n1−α · poly(k)) nonzero entries, in time n1−α ·
poly(k), such that a random sample S of µ|T approximately follows µ.

Theorem 3.1.1 follows directly from Proposition 3.2.4, Proposition 3.2.5, and Lemma 3.2.6.
The main application of domain sparsification is accelerating the time it takes to produce

multiple samples from a distribution µ :
(
[n]
k

)
→ R≥0. Suppose that an algorithm A can pro-

duce (approximate) samples from µ and any distribution µ|T obtained from it by restricting
the domain [n] to a subset T , in time T (m, k), which depends polynomially on m = |T |.
Then after a preprocessing stage, where we use A on the unrestricted domain to estimate the
marginals of µ, we can produce new samples in time T (n1−α · poly(k), k) per sample, which
is polynomially smaller than T (n, k), as long as k is smaller than some poly(n) threshold.
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Figure 3.1: An overview of the domain sparsification scheme combined with Markov chain
intermediate sampling. The first two panels demonstrate one step of the Markov chain to
generate a sample S1 approximately from µ, while the later two panels repeat the process to
generate an additional sample S2. Within each pair of panels, the blue sets T represent the
sparsified domain (using marginals), which is much smaller than [n].

The preprocessing step has to be done only once, and its cost gets amortized when we are
interested in obtaining multiple samples from µ. A careful implementation, directly adapted
from domain sparsification for log-concave polynomials by Anari and Dereziński [AD20], can
bootstrap domain sparsification with estimation of marginals to complete the preprocessing
step in roughly ≃ T (n, k) + n · poly(k, log n) · T (n1−α · poly(k), k) time.

Corollary 3.1.2 (Informal). Suppose that we have an algorithm A that can produce ap-
proximate samples from restriction of µ to a subset T ⊆ [n] in time T (m, k), where m = |T |.
Then we can produce the marginal estimates pi in time

O
(
T (n, k) + n · poly(k, log n) · T (n1−α · poly(k), k)

)
Furthermore, for any desired t, we can produce t i.i.d. approximate samples from µ in time

O
(
T (n, k) + max{t, n · poly(k, log n)} · T (n1−α · poly(k), k)

)
Sampling is also often used to solve the problem of approximate counting, or approxi-

mately computing the partition function when µ is specified by weights w:∑
S∈supp(µ)

w(S).

To obtain an ε-relative error approximation, known reductions between counting and sam-
pling [JVV86] introduce at least a multiplicative factor of 1/ε2 to the sampling time. Directly
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Distribution Reference Time w/out D.S. Amortized Time w/ D.S.

Matroid Bases Ex. 2.4.6 Õ(n · poly(k)) O(poly(k) · polylog(n))

k-DPP Ex. 2.4.7 Õ(n · poly(k)) O(poly(k) · polylog(n))

Matchings Ex. 2.4.13 Õ(n4 · poly(k)) Õ(n3 · poly(k))

Nonsymmetric DPP Ex. 2.4.14 Õ(n4 · poly(k)) Õ(n3 · poly(k))

Table 3.1: A summary of example distributions from Chapter 2 and the impact of domain
sparsification on their amortized sampling time when we need to generate many samples.
The column “Time w/out D.S.” refers to the runtime of the down-up-walk used for sampling
from (1/α)-entropically independent distributions.

adapting the same technique for log-concave polynomials [AD20] and combining with our
new domain sparsification result, we obtain an ε-relative error of the counts in time

≃ T (n, k) + max{n, 1/ε2} · poly(k, log n) · T (n1−α · poly(k), k)

Notice that here 1/ε2 is multiplied by the term T (n1−α ·poly(k), k) that can be substantially
smaller than T (n, k); as a result, we can get a substantially improved running time for the
high-precision regime where ε is inverse-polynomially small.

Corollary 3.1.3 (Informal, adapted from [AD20]). Suppose that we have an algorithm A
that can produce approximate samples from any restriction µ|T for T ⊆ [n] in time T (m, k),
where m = |T |. Then we can compute an ε relative error approximation of

∑
S µ(S) in time

O
(
T (n, k) + max{n, 1/ε2} · poly(k, log n) · T (n1−α · poly(k), k)

)
3.1.2 Applications

Our main results imply that as long as we estimate the probability of every vertex being part
of a random k-matching, we can reduce the task of sampling k-matchings on an n vertex
graph to graphs with only n3/4 · poly(k) many vertices. Recall the examples of α-fractionally
log-concave distributions from Section 2.4.2. We summarize the amortized speedups obtained
after applying domain sparsification in Table 3.1.2 Note that domain sparsification for α = 1
was already established in [AD20]; we include the results in our table for completeness.

3.1.3 Related work

A class of domain sparsification algorithms, related to the algorithms we used here, called in-
termediate sampling was first proposed by [DWH18; Der19] in the context of sampling from
Determinantal Point Processes (DPPs, [DM21]), also known as Volume Sampling [DRVW06;
DR10; GS12]. DPPs are a family of distributions (a small, but important, subset of dis-
tributions with log-concave generating polynomials) which arise for instance when sampling
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random spanning trees [Gue83], as well as in randomized linear algebra [DW17; DCMW19],
machine learning [KT11; KT+12; DKM20], optimization [NST22; DBPM20; MDK20], and
other areas [Mac75; HKPV06; BLMV17].

The complexity of intermediate sampling for DPPs was further improved by [DCV19;
CDV20], and the approach was extended to DPPs over continuous domains by [DWH22].
Crucially, these algorithms take advantage of the additional structure in DPPs, to enable
distortion-free intermediate sampling: instead of using a Markov chain, this uses rejection
sampling to draw exactly from the target distribution. This approach is not possible more
generally, since µ typically does not have a tractable partition function. However, [AD20]
showed that the original analysis of distortion-free intermediate sampling can largely be
retained for distributions with log-concave generating polynomials, as long as we switch to
a Markov chain implementation.

On the other hand, in this work, we largely abandon the original analysis in favor of a new
one which is specific to the Markov chain and requires less precision in marginal estimates.
As a result, we show that the preprocessing cost for Markov chain intermediate sampling is
substantially smaller than for distortion-free intermediate sampling. This leads to significant
improvements in time complexity even for DPPs, e.g., by reducing the preprocessing cost in
[DCV19] from Õ(n · k6 + k9) to Õ(n · k2 + k3), where Õ hides polylogarithmic terms.

3.2 The intermediate sampling algorithm

3.2.1 Isotropic transformation

We say a distribution µ is isotropic if for all i ∈ [n], the marginal probability PrS∼µ[i ∈ S] is
k
n
, as done in [AD20]. We remark that this is only similar in name and spirit, but different in

nature, to the analogous notion of isotropy for continuous distributions; the latter is defined
based on the covariance matrix of the distribution, while the former is defined based on
marginals. In this paper, isotropy captures “uniformity” over the elements of [n] in their
marginal probabilities. Below, we discuss a subdivision process [AD20] that transforms an
arbitrary distribution µ over

(
[n]
k

)
into a distribution µ′ that is nearly-isotropic.

Definition 3.2.1. Let µ :
(
n
k

)
→ R≥0 be an arbitrary probability distribution, and assume

that we have estimates p1, . . . , pn of the marginals with

p1 + . . .+ pn = k and pi ≥ Ω

(
Pr
S∼µ

[i ∈ S]

)
for all i ∈ [n]

Let ti := ⌈n
k
· pi⌉. We will create a new distribution out of µ and these ti: for each i ∈ [n],

create ti copies of the element i and let the collection of all these copies be the new ground
set: U =

⋃n
i=1{i(1), . . . , i(ti)}. Define the following distribution µ′ :

(
U
k

)
→ R≥0 from µ:

µ′
({
i
(j1)
1 , . . . , i

(jk)
k

})
:=

µ({i1, . . . , ik})

t1 · · · tk
.
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We call µ′ the isotropic transformation of µ. Another way we can define µ′ is that to produce
a sample from it, we first generate a sample {i1, . . . , ik} from µ, and then choose a copy i

(jm)
m

for each element im uniformly at random.

Remark 3.2.2. Subdivision is mostly a tool for analysis. In practice, we do not have to
formally perform subdivision; it suffices to sample elements proportionally to their marginals
or marginal estimates.

Remark 3.2.3. To obtain the estimates {pi} for all i, we can apply the proof of Lemma 23
in [AD20], with ε constant, rather than ε = O

(
1
k

)
. This provides a runtime reduction for

our preprocessing step, even in the case of log-concave polynomials.

There are three desirable properties of µ′ we need to establish for subdivision to be an
effective preprocessing step.

• Subdivision preserves (1/α)-entropic independence (see Proposition 19 of [ADVY22]).

• The marginals PrS∼µ′ [i
(j) ∈ S] are all close to k

|U | for all i(j) ∈ U ; in other words, µ′ is
actually close to isotropic.

• |U | ≤ O(n), so if we ran a sampling algorithm on µ′, the increased size of our ground
set does not accidentally inflate our desired asymptotic running times.

Formally, we show:

Proposition 3.2.4. Let µ :
(
n
k

)
→ R≥0, and let µ′ :

(
U
k

)
→ R≥0 be the subdivided distribu-

tion from Definition 3.2.1. The following hold for µ′:

1. Near-isotropy: For all i(j) ∈ U , the marginal PrS∼µ′ [i
(j) ∈ S] ≤ O

(
k
|U |

)
.

2. Linear ground set size: The number of elements |U | ≤ O(n).

Proof. First, we verify that |U | is at most O(n):

|U | =
n∑
i=1

ti ≤
n∑
i=1

(
1 +

n

k
· pi
)

= n+
n

k

n∑
i=1

pi = 2n.

Next, we check that for any i(j), the marginal probabilities PrS∼µ′ [i
(j) ∈ S] are at most

O
(

k
|U |

)
. Here, we interpret the sampling from µ′ as first sampling from µ, and then choosing

a copy for each element.

Pr
S∼µ′

[i(j) ∈ S] =
∑
S∋i

Pr[we chose copy j | we sampled S from µ] · Pr[we sampled S from µ]

=
∑
S∋i

1

ti
· µ(S) =

1

ti

∑
S∋i

µ(S) =
1

ti
· Pr
S∼µ

[i ∈ S]
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Since ti ≥ n
k
· pi ≥ n

k
· Ω (PrS∼µ[i ∈ S]), we get that

Pr
S∼µ′

[i(j) ∈ S] ≤ O

(
PrS∼µ[i ∈ S]

n
k
· PrS∼µ[i ∈ S]

)
= O

(
k

n

)
≤ O

(
k

|U |

)
.

3.2.2 Domain sparsification via Markov chain intermediate
sampling

Here, we first describe, for any general distributions µ, a Markov chain based on generating
intermediate samples T ⊆ [n], that mixes to µ. Then, in Lemma 3.2.6 and Proposition 3.2.7,
we state our main result that for distributions µ which are (1/α)-entropically independent
and nearly-isotropic, the size of T only needs to be n1−α · poly(k) for the mixing to occur in
one step.

For distribution µ :
(
[n]
k

)
→ R≥0, consider the Markov chain M t

µ defined for any positive
integer t, with the state space supp(µ). Starting from S0 ∈ supp(µ), one step of M t

µ is:

1. Sample T ∼
(
[n]\S0

t−k

)
.

2. Downsample S1 ∼ µ|S0∪T , and update S0 to be S1.

We note that the requirement S0 ∈ supp(µ) is not strictly necessary for this step to be
defined.

Proposition 3.2.5. For any distribution µ :
(
[n]
k

)
→ R≥0, the chain M t

µ for t ≥ 2k is
irreducible, aperiodic, and has stationary distribution µ.

Proof. Let P denote the transition probability matrix of M t
µ. Since t ≥ 2k, for any S, S ′ ∈

supp(µ), there is a positive probability that we sample T ⊇ (S ∪ S ′). Thus, we have
P (S, S ′) > 0, and P is both irreducible and aperiodic.

To derive the stationary distribution, suppose that we perform one step of the chain
starting from S0 ∼ µ. We first derive the distribution of the intermediate set R := S0 ∪ T .

For any R̃ ∈
(
[n]
t

)
, the probability of sampling R̃ for the intermediate set R is

Pr[R = R̃] =
∑

S0∈(R̃
k)

µ(S0) · Pr[T = R̃ \ S0] =
1(
n−k
t−k

) · µ(R̃).

Here, we are abusing notation and letting µ(R̃) =
∑

S⊆R̃ µ(S).
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For any S̃1 ∈ supp(µ), the probability of sampling S̃1 is

Pr[S1 = S̃1] =
∑

R̃∈([n]
r )

Pr[S1 = S̃1 | R = R̃] Pr[R = R̃]

=
∑

R̃∈([n]
t ):R̃⊇S̃1

µ(S̃1)

µ(R̃)
· 1(

n−k
t−k

) · µ(R̃)

= µ(S̃1)
∑

(R̃\S̃1)∈([n]\S̃1
t−k )

1(
n−k
t−k

) = µ(S̃1)

Above, we summed over all R̃ that contain the target set S̃1.

The following lemma is the key to analyzing the sampling algorithm, since it quantifies
the decrease in total variation distance after running one step of M t

µ. It will be proven in
Section 3.2.3.

Lemma 3.2.6. Let µ :
(
[n]
k

)
be a (1/α)-entropically independent distribution. Suppose

that for all i ∈ [n], we have PrS∼µ[i ∈ S] ≤ Ck
n

. Then, for any constant ε ∈ (0, 1
4
], and

t = Ω
(
n1−α(Ck2 log 1

1−ε)
α
)
, the output S1 of a single step of the Markov chain M t

µ starting
from S0 satisfies

∀S ∈
(

[n]

k

)
: Pr[S1 = S] ≥ µ(S) · (1 − ε)

Recall that if we used the marginal estimates required by Theorem 3.1.1, then by applying
Proposition 3.2.4, we get an equivalent distribution µ′ on a ground set of size O(n) that
satisfies the above assumption of PrS∼µ′ [i ∈ S] ≤ Ck

n
for some C = O(1) (see Lemma 3.2.6).

Proposition 3.2.7. Let µ :
(
[n]
k

)
be a (1/α)-entropically independent distribution, and let

ε ∈ (0, 1
4
] be a constant. Suppose PrS∼µ[i ∈ S] ≤ Ck

n
for all i. Choose the intermediate

sample size t according to Lemma 3.2.6. Then

dTV (P (S0, ·), µ) ≤ ε

and M t
µ mixes to a distribution that has TV distance ε′ < ε from µ in O

(
log
(
1
ε′

))
steps.

Proof. The bound on total variation distance follows via:

dTV (P (S0, ·), µ) =
∑

S∈([n]
k ): Pr[S1=S]<µ(S)

(µ(S) − Pr[S1 = S])

≤ ε
∑

S∈([n]
k ): Pr[S1=S]<µ(S)

µ(S) ≤ ε

The mixing time bound follows from Theorem 2.1.1.
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We have shown that M t
µ is fast mixing (in fact, mixing in one step for appropriately large

t). Next, we show that for a wide class of distributions, namely, the class of α-fractionally-
log-concave distributions with α = Ω(1) (see [AASV21] for examples), each step of M t

µ can
be implemented in poly(n, k) time via a local Markov chain, i.e., the (muti-step) down-up
random walk (see Definition 1 of [AASV21]).

Lemma 3.2.8 (Runtime analysis). Suppose µ is α-fractionally-log-concave, and we start

with S
(0)
0 such that µ(S

(0)
0 ) ≥ 2−nc

for some constant c > 1 and we run the chain for τ steps.
The down-sampling takes time

O

(
(t− k)⌈1/α⌉k1/α

(
c log n+ log τ + log log

1

1 − ε

))
and the total runtime is

O

(
τ(t− k)⌈1/α⌉k1/α

(
c log n+ log τ + log log

1

1 − ε

))
.

Proof. We first show that with probability ≥ 1−τ2−n, for all 0 ≤ i ≤ τ , the ith-step starting
point, denoted by S

(i)
0 , satisfies µ(S

(i)
0 ) ≥ 2−(nc+2ni). This can be proven via induction on i.

Conditioned on µ(S
(i)
0 ) ≥ 2−nc−2ni, we have

Pr[µ(S
(i+1)
0 ) ≤ 2−(nc+2(i+1)n)] = µ(S

(i)
0 ∪ T )−1

∑
S⊆(S

(i)
0 ∪T ):µ(S)≤2−(nc+2(i+1)n)

µ(S)

≤(1)
2−(nc+2(i+1)n) · 2n

µ(S
(i)
0 )

≤ 2−n.

where in (1) we use the crude bound
∣∣∣{S ⊆ (S

(i)
0 ∪ T ) : µ(S) ≤ 2−(nc+2(i+1)n)

}∣∣∣ ≤ 2n.

Suppose that this good event happens, i.e.

for all i ∈ [0, τ ] : µ(S
(i)
0 ) ≥ 2−nc−2ni.

We observe that α-fractional-log-concavity is preserved by subdividing and restricting to a
subset of the ground set ([AASV21]). In the down-sampling step, we run the (multi-step)

down-up walk starting at S
(i)
0 , and use Theorem 4 in [AJKPV21b] to bound the runtime and
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obtain the desired result. To this end, we need to bound

E
T∼([n]\S(i)

0
t−k )

[
log

(
1 + log

µ(S
(i)
0 ∪ T )

µ(S
(i)
0 )

)]
≤(1) log

(
1 + logE

T∼([n]\S(i)
0

t−k )

[
µ(S

(i)
0 ∪ T )

µ(S
(i)
0 )

])

= log

(
1 + log

1

Pr[S1 = S
(i)
0

]

)

≤(2) log

(
1 + log

1

µ(S
(i)
0 )(1 − ε)

)
≤(3) c log n+ log τ + log log

1

1 − ε
.

where (1) follows from Jensen’s inequality for the concave function f(x) = log(1 + log(x))

on [1,∞), (2) from Lemma 3.2.6 and (3) from lower bound on µ(S
(i)
0 ).

Remark 3.2.9. As a slight optimization, we can replace (t−k)⌈1/α⌉k1/α with k⌈1/α⌉(t−k)1/α

when both µ and its complement µcomp are α-fractionally-log concave. We can down-sample
from µcomp|S0∪T , then output the complement as S1, where µcomp :

(
[n]
n−k

)
→ R≥0 is the

complement of µ, defined by

µcomp([n] \ S) := µ(S) for all S ∈
(

[n]

k

)
In all important instances of α-fractionally-log-concavity, 1

α
∈ N and this optimization is

unnecessary. The bound on total runtime can be simplified into O(n1/α−1poly(k, log 1
ε
)).

Advantage over rejection sampling

While we use a similar intermediate sampling framework as [AD20], our novel analysis of
Markov chain intermediate sampling improves the runtime and applies to wider families
of distributions. In order to fully understand the advantages realized by our intermediate
sampling framework, we first need an overview of a rejection sampling-based implementation
of intermediate sampling [Der19], which inspired the analysis of [AD20]. We then provide an
example of 1

2
-log-concave distributions where Markov chain intermediate sampling succeeds

using a smaller intermediate sample size than what is required for rejection sampling.
Let S0 ∈ supp(µ). One step of rejection sampling is given by:

1. Sample T ∼
(
[n]\S0

t−k

)
.

2. Accept the set S0 ∪ T with probability

µ(S0 ∪ T )

max
T ′∈([n]\S0

t−k ) µ(S0 ∪ T ′)
.
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3. Downsample S1 ∼ µS0∪T .

The key difference between rejection sampling and our Markov chain intermediate sampling
algorithm is the rejection step, which is necessary if we want our chain to mix to the correct
stationary distribution µ. In order to have a sufficiently large acceptance probability, and
assuming µ is isotropic, we require that for all T ,

µ(T ) ≤
(
t

n

)k
· (1 + ε)k.

Here, ε is a parameter related to the guarantee on dTV (P (S0, ·), µ). Using this bound, we
can ensure that the expected acceptance probability is 1 −O(εk).

This inequality describes a “worst-case” condition on T . This ”worst-case” type analysis
originated from earlier works that introduced intermediate sampling for Determinantal Point
Processes [Der19]. The proof of our worst-case inequality on µ(T ) relies heavily on the fact
that the KL divergence between a log-concave distribution µ and an arbitrary distribution
ν contracts by a precise amount when applying the down operator Dk→m:

DKL(νDk→ℓ∥µDk→ℓ) ≤
ℓ

k
· DKL(ν∥µ)

This contraction is well-known for log-concave distributions [CGM19], but does not hold with
the factor ℓ/k for α-fractionally-log-concave distributions. On the other hand, the inequality
we need to show (from the proof of Lemma 3.2.6) is “average-case” in nature, and when µ
is isotropic, it takes the form:

E
T∼([n]

t )[µ(T )] ≤
(
t

n

)k
· 1

1 − ε

To concretely illustrate the advantage of Markov chain intermediate sampling, let us consider
an example where the worst-case inequality fails to hold. Suppose that k = 2, n is even, and
µ samples a set from

{
1, n

2
+ 1
}

,
{

2, n
2

+ 2
}

, . . . uniformly at random, so µ
({
i, n

2
+ i
})

= 2
n
.

This distribution is isotropic, 1
2
-sector stable [AASV21], and 1

2
-fractionally-log-concave, and

yet, according to the worst-case analysis, it does not yield enough acceptance probability
when t = o(n). For any set T, we have

µ(T ) ≤ t

2
· 2

n
=
t

n
.

Equality is achieved by selecting a subset T that contains as many pairs of the form {i, n
2

+i}
as possible, i.e., at least (t− 1)/2. Thus, the worst-case analysis would suggest that no non-
trivial intermediate sampling is possible for the distribution µ; this is because t

n
≫ (t/n)2

for small values of t.
However, our relaxed average-case analysis captures the fact that realistically, not every

element of T will be paired up. In fact, we expect only a constant number of pairs when
t = O(

√
n), so for this example, we have:

E
T∼([n]

t )[µ(T )] ≤ C · 2

n
≤ O

(
1

n

)
= O

(
t2

n2

)
.
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3.2.3 Proof of Lemma 3.2.6

In this section, we will prove Lemma 3.2.6.

Lemma 3.2.10. Let U, V be a sets of size u, v ≤ k respectively with U ∩ V = ∅. We have:(
t− (u+ v)

n− (u+ v)

)u
≤ Pr

T∈([n]\V
t−v )

[U ⊆ T ] ≤
(
t− v

n− v

)u
.

Proof. Since we are sampling the elements of T uniformly at random from [n],

Pr
T∈([n]\V

t−v )
[U ⊆ T ] =

(
n−v−u
t−v−u

)(
n−v
t−v

) =
(t− v)(t− v − 1) · · · (t− v − u+ 1)

(n− v)(n− v − 1) · · · (n− v − u+ 1)
≤
(
t− v

n− v

)u
.

Similarly, we also have:

Pr
T∈([n]\V

t−v )
[U ⊆ T ] ≥

(
t− v − u+ 1

n− v − u+ 1

)u
≥
(
t− (u+ v)

n− (u+ v)

)u
.

Proof of Lemma 3.2.6. Let R = S0 ∪ S, and let r = |S0 ∪ S|. Note that |S \ S0| = r− k and

Pr[S1 = S] = E
T∼([n]\S0

t−k )

[
µ(S)∑

S′⊆(S0∪T ) µ(S ′)
| S ⊆ T

]
· Pr
T∼([n]\S0

t−k )
[(S \ S0) ⊆ T ]

= E
T ′∼([n]\R

t−r )

[
µ(S)∑

S′⊆(R∪T ′) µ(S ′)

]
· Pr
T∼([n]\S0

t−k )
[(S \ S0) ⊆ T ]

≥(1)
µ(S)

E
T ′∼([n]\R

t−r )

[∑
S′⊆(R∪T ′) µ(S ′)

] · Pr
T∼([n]\S0

t−k )
[(S \ S0) ⊆ T ]

≥(2)
µ(S)

E
T ′∼([n]\R

t−r )

[∑
S′⊆(R∪T ′) µ(S ′)

] · ( t− r

n− r

)r−k
.

Inequality (1) is an application of Jensen’s inequality to the function f(x) = c
x
, which is

convex when x > 0. Inequality (2) use Lemma 3.2.10 with U = (S \ S0) and V = S0.

Now if we bound E
T ′∼([n]\R

t−r )

[∑
S′⊆(R∪T ′) µ(S ′)

]
by ( t−r

n−r )
r−k · 1

1−ε , then we are done.

E
T ′∼([n]\R

t−r )

 ∑
S′⊂(T ′∪R)

µ(S ′)

 =
∑

S′∈([n]
k )

µ(S ′) · Pr
T ′∼([n]\R

t−r )
[(S ′ \R) ⊆ T ′]

≤
∑

S′∈([n]
k )

µ(S ′) ·
(
t− r

n− r

)|S′\R|

.
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In the very last line, we applied Lemma 3.2.10 with U = S ′ \R and V = R. If we set

zi =

{(
n−r
t−r

)1/α
if i ∈ (S0 ∪ S)

1 otherwise

then we can rewrite∑
S′∈([n]

k )

µ(S ′) ·
(
t− r

n− r

)|S′\(S0∪S)|

=

(
t− r

n− r

)k ∑
S′∈([n]

k )

µ(S ′) ·
(
n− r

t− r

)|S′∩(S0∪S)|

=

(
t− r

n− r

)k
· gµ (zα1 , . . . , z

α
n)

Applying Equation 2.1 to gµ(zα1 , . . . , z
α
n) and noting that pi =

PrS∼µ[i∈S]
k

, we obtain

gµ (zα1 , . . . , z
α
n) ≤

(
n∑
i=1

PrS∼µ[i ∈ S]

k
· zi

)kα

log gµ (zα1 , . . . , z
α
n) ≤ kα log

(
n∑
i=1

PrS∼µ[i ∈ S]

k
· zi

)

≤(1) kα

(
−1 +

n∑
i=1

PrS∼µ[i ∈ S]

k
· zi

)

=(2) kα

(
n∑
i=1

PrS∼µ[i ∈ S]

k
· (zi − 1)

)

= α
n∑
i=1

Pr
S∼µ

[i ∈ S] · (zi − 1),

where in (1), we use log x ≤ x − 1 for x ∈ (0,∞) and in (2) we use
∑n

i=1
PrS∼µ[i∈S]

k
= 1.

Substituting zi as specified above into the final inequality, we get

log gµ (zα1 , . . . , z
α
n) ≤ α

∑
i∈(S0∪S)

Ck

n
·
(
n− r

t− r

)1/α

=
Cαkr

n

(
n− r

t− r

)1/α

≤ 2Ck2

n

(
n− r

t− r

)1/α
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3.3 Lower bound on intermediate sampling

We first show that the dependence of our domain sparsification analysis on n is optimal.
Consider the uniform distribution µ0 over singletons of a ground set of n

k
elements. Any

distribution on singletons (k = 1) is log-concave as the generating polynomial is linear, and
thus, log-concave.

Now apply the construction of Example 2.4.12 with m = k to µ0 to obtain a new dis-
tribution µ on

(
[n]
k

)
. This distribution is uniform over the parts of a particular partition of

the ground set [n] into n
k

sets S1, . . . , Sn/k. Note that this distribution is also isotropic and
k-entropically independent.

If we sample a uniformly random set T of size t, then the chance that Si is contained in
T can be upperbounded by (

n− k

t− k

)
·
(
n

t

)−1

≃
(
t

n

)k
.

Thus, the chance that any of the Si are contained in T can be upper bounded (via a union
bound) by roughly

n ·
(
t

n

)k
.

Thus, as long as t ≪ n1−1/k, the above is negligible. Without having any Si in the support
with high probability, we cannot faithfully produce a sample of µ from subsets of T .

Next we construct an example showing that even higher-order marginals cannot remove
this dependence on n for entropically independent distributions (in sharp contrast with
Conjecture 7.1.1). Our construction is based on Reed-Solomon codes.

Lemma 3.3.1. Let q be a prime number and Fq the finite field of size q. Fix k points
{x1, . . . , xk} ⊆ Fq where k is a constant and choose a set of k random permutations from
Fq to Fq and call them π1, . . . , πk. Let µ :

(
Ω
k

)
→ R≥0 be the uniform distribution over sets

{(xi, yi) : i ∈ [k]} such that p(xi) = πi(yi) for some polynomial p of deg(p) ≤ d < k. The
ground set Ω is {x1, . . . , xk} × Fq. Then

1. µ satisfies (1/α)-entropic independence, with α = d+1
k

.

2. Any domain sparsification scheme to sample from µ requires t = Ω̃(n1−α), even when
we are allowed to sample higher order marginals.

Proof. The distribution µDk→(d+1) is uniform over {(xj, yj) : j ∈ J ⊆ [k], |J | = (d + 1)},
because for any such set, there exists a unique polynomial p of degree at most d such that
p(xj) = πj(yj) for all j ∈ J . Thus, high-order marginals, up to order (d+1), are independent
of the choice of permutations π1, . . . , πk.

The support of µDk→(d+1) forms the basis of a partition matroid. For each x = xi, we
have a block consisting of all points {(x, y) : y ∈ Fq}, and for each set in the support of
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µDk→(d+1), we have at most one element per block. Since we have a uniform distribution
over matroid bases, µDk→(d+1) is log-concave, and thus it satisfies 1-entropic independence.

We use this to upper bound DKL(νDk→1∥µDk→1), and from here, conclude d+1
k

-entropic
independence of µ:

DKL(νDk→1∥µDk→1) = DKL

(
νDk→(d+1))D(d+1)→1∥(µDk→(d+1))D(d+1)→1

)
≤ 1

d+ 1
· DKL

(
νDk→(d+1)∥µDk→(d+1)

)
≤ 1

d+ 1
· DKL(ν∥µ) =

1
d+1
k

· k
· DKL(ν∥µ).

The second line follows from µDk→(d+1) satisfying 1-entropic independence, and the third
line comes from the data processing inequality.

We now prove that for all t ≤ o (n1−α), no domain sparsification scheme exists, even with
access to higher order marginals. For d′ ≤ (d + 1), the distribution µDk→d′ is uniform over
the size d′ independent sets of the partition matroid defined above. One consequence of the
independence of high-order marginals from the choice of permutations π1, . . . , πk is that the
higher order marginals do not provide any information about the identity of µ.

Suppose that we choose our sample in domain sparsification from a distribution whose
ground set is the sparse subset T . We want an upper bound on the probability (over the
choice of permutations) that T contains some S ∈ supp(µ).

In order for T to contain a valid S, there must be some subset in S ∈
(
T
k

)
associated to

a degree ≤ d polynomial p satisfying p(xi) = πi(yi). However it is easy to see that for any
particular set S the probability (over the choice of permutations) that S is in the support of
µ is ≃ 1/qk−d−1. We can upper bound Pr[S ⊆ T for some S ∈ supp(µ)] as follows:(

t

k

)
· 1

qk−d−1
≤ tk

qk−d−1
.

This implies that for any t ≤ o
(
q(k−d−1)/k

)
≤ o

(
n(k−d−1)/k

)
, the probability of containing

a set in the support is negligible. Note that we have α = d+1
k

, so 1 − α = k−d−1
k

, which
completes the lower bound.
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Chapter 4

Sphere Caps and Random Graphs

As if the street lights pointed in an arrowhead
Leading us home [Swi19]

In this chapter, we introduce some of the preliminaries required for Chapters 5 and 6.
In particular, we have amassed an extensive collection of concentration inequalities about
sphere caps in high dimensions that may have use cases outside of our work.

4.1 Sphere caps and dot products of unit vectors

Here, we introduce some useful bounds on the measure of sphere caps, and a concentration
bound on the dot products of two unit vectors.

Definition 4.1.1. Fix x ∈ Sd−1. For p ∈ [0, 1
2
], we let τ(p, d) be the threshold τ at which

Pr
yyy∼ρ

[⟨x,yyy⟩ ≥ τ ] = p

Definition 4.1.2 (p-cap). For a vector v ∈ Sd−1, its p-cap is

capp(v) := {x ∈ Sd−1 : ⟨v, x⟩ ≥ τ(p, d)}

Similarly, we define its p-anticap as

capp(v) := {x ∈ Sd−1 : ⟨v, x⟩ < τ(p, d)}

We drop the p in the subscript when its value is clear from context.
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4.1.1 Fine-grained estimates of the inner product distribution

For a refresher on some of the notation related to Sd−1 and the distribution ρ, see Section
1.3. In order to study sphere caps, it is natural that we need a good handle on the density
ψd, which describes the distribution of ⟨xxx,yyy⟩ when xxx,yyy ∼ ρ.

ψd(x) =
Γ
(
d
2

)
Γ
(
d−1
2

)√
π
·
(
1 − x2

)(d−3)/2
.

ψd is supported on [−1, 1]. We’ll overload notation a bit and also use ψd when we reference
the distribution described by the density.

Remark 4.1.3. ψd(x) also describes the distribution of ⟨x,yyy⟩ for fixed x ∈ Sd−1 when yyy ∼ ρ.
It is invariant under choice of x.

We use Zd to denote the normalizing constant
Γ( d

2)
Γ( d−1

2 )
√
π
. The quantity Zd shows up in

[LMSY22a]; though it won’t be needed in this thesis, we include Fact 4.1.4 for completeness.

Fact 4.1.4. Zd ≤ O(
√
d).

Using elementary techniques, we can get a sharp estimate of the tail of ψd.

Lemma 4.1.5. Let Φψd
(t) := PrX∼ψd

[X ≤ t] be the CDF of ψd, and let Φψd
(t) = 1−Φψd

(t).
Then, for t ≥ 0:

Zd
t(d− 1)

·
(
1 − t2

)(d−1)/2 ·
(

1 − 4 log (1 + d · t2)
d · t2

)
≤ Φψd

(t) ≤ Zd
t(d− 1)

·
(
1 − t2

)(d−1)/2

Proof. It suffices to upper and lower bound
∫ 1

t
(1 − x2)(d−3)/2. We first upper bound:∫ 1

t

(
1 − x2

)(d−3)/2
dx =

1

t

∫ 1

t

t
(
1 − x2

)(d−3)/2
dx

≤ 1

t

∫ 1

t

x
(
1 − x2

)(d−3)/2
dx

= − 1

t(d− 1)
·
(
1 − x2

)(d−1)/2

∣∣∣∣∣
1

t

=
1

t(d− 1)
·
(
1 − t2

)(d−1)/2
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Now we prove the lower bound. For any ε > 0 such that t ·
√

1 − ε+ ε
t2

≤ 1, we define
δ := ε

t2
− ε. Then:∫ 1

t

(1 − x2)(d−3)/2dx ≥ 1

t
√

1 + δ

∫ t
√
1+δ

t

(
t
√

1 + δ
) (

1 − x2
)(d−3)/2

dx

≥ 1 − δ

t

∫ t
√
1+δ

t

x
(
1 − x2

)(d−3)/2
dx

= − 1 − δ

t(d− 1)
·
(
1 − x2

)(d−1)/2

∣∣∣∣∣
t
√
1+δ

t

=
1 − δ

t(d− 1)
·
(
1 − t2

)(d−1)/2 ·
(
1 − (1 − ε)(d−1)/2

)
where the second line uses 1√

1+δ
≥ 1−δ and the last equality uses 1−t2(1+δ) = (1−t2)(1−ε).

Choosing ε =
2 log(1+dt2)

d−1
yields:∫ 1

t

(
1 − x2

)(d−3)/2 ≥ 1

t(d− 1)
·
(
1 − t2

)(d−1)/2 ·
(

1 − 4 log (1 + dt2)

dt2

)

We also have the following constant factor approximation for the measure of a sphere cap

in terms of the threshold τ(p, d), when τ(p, d) ≥
√

2
d

given by Lemma 2.1(b) of [Bri+01]:

Theorem 4.1.1. Consider a p-cap where τ(p, d) ≥
√

2
d
. Then:

1

6τ(p, d)
√
d

(
1 − τ(p, d)2

)(d−1)/2 ≤ p ≤ 1

2τ(p, d)
√
d

(
1 − τ(p, d)2

)(d−1)/2

We lastly present a lemma from [BBN20] that contains additional facts about ψd.

Lemma 4.1.6 (Lemma 5.1 of [BBN20]). Let τ(p, d) and ψd be defined as above. Then:

1. For 0 ≤ τ ≤ 1
2

and δ > 0, we have:

ψd(τ − δ)

ψd(τ)
≤ exp(2τdδ).

2. ψd(τ) ≤ C4.1.6 · p · max{
√
d, dτ} for a universal constant C4.1.6.
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4.1.2 Simpler estimates for sphere cap measures

In this section, we present some cruder estimates of sphere cap measures (alternatively, tail
bounds for ψd) that are often good enough for many of our results.

Recall Lévy’s theorem for concentration of measure on the unit sphere (Theorem 14.1.1
of [Mat13]). We use it to upper bound the measure of a sphere cap with threshold τ .

Lemma 4.1.7. Let y ∈ Sd−1 be any vector. Then,

Pr
www∼ρ

[|⟨www, y⟩| ≥ τ ] ≤ 4 exp(−τ 2d/2)

This is also equivalent to a tail bound on ψd:

Φψd
(τ) ≤ 4 exp(−τ 2d/2)

While this upper bound is off from the upper bound in Lemma 4.1.5 by a factor of
√
d, we

see the same sub-Gaussian tail present in both bounds.
We now present a convenient upper bound on the dot product threshold τ(p, d) of a

p-cap.

Lemma 4.1.8. For any p ≤ 1
2
, we have τ(p, d) ≤

√
2 log(1/p)

d
.

Proof. We case on whether τ(p, d) is smaller or larger than
√

2
d
. In the first case observe

that log(1/p) ≥ 1 by our bound on p, so τ(p, d) ≤
√

2
d
≤
√

2 log(1/p)
d

.

When τ(p, d) ≥
√

2
d
, we use the upper bound in Theorem 4.1.1. Let τ ′ =

√
2 log(1/p)

d
, and

let p′ denote its corresponding tail probability Prx,y∈Sd−1 [⟨x, y⟩ ≥ τ ′]. If we can show p′ ≤ p,
then we know τ(p, d) ≤ τ ′.

p′ ≤ 1

2τ ′
√
d
·
(
1 − t2

)(d−1)/2
=

1

2
√

log(1/p)
·
(

1 − 2 log(1/p)

d

)(d−1)/2

≤ 1

2
√

log(1/p)
· p ≤ p

Since p′ ≤ p, this tells us τ ≤ τ ′ as well, giving us the desired inequality.

The next lemma helps us understand the deviations in cap volume p when we make small
adjustments to its dot product threshold τ(p, d).

Lemma 4.1.9. Fix x ∈ Sd−1. Let τ ≥ 0 and p := Przzz∼ρ[⟨x,zzz⟩ ≥ τ ]. For any ε ≥ 0, there is
a universal constant C4.1.9 such that:

Pr
zzz∼ρ

[τ − ε ≤ ⟨x,zzz⟩ ≤ τ + ε] ≤ p ·
(
C4.1.9 · ε · exp(2dτε) ·

√
d log(1/p)

)
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Understanding the joint distribution of two independently chosen unit vectors in Sd−1 helps
complete the proof of this lemma.

Proof. When t ≥ 0, the density ψd(t) is a decreasing function in t. Thus:

Pr
zzz∼ρ

[τ − ε ≤ ⟨x,zzz⟩ ≤ τ + ε] =

∫ τ+ε

τ−ε
ψd(t)dt

≤ (2ε) · [ψd(τ) · exp(2dτε)]

In the last line, we used Part 1 of Lemma 4.1.6, and noted that this is an upper bound even
when ε > τ . Using Part 2 of Lemma 4.1.6, and Lemma 4.1.8, we can upper bound ψd(τ):

ψd(τ) ≤ C4.1.6p · max{
√
d, dτ} ≤ p ·

(
C4.1.6

√
2 ·

√
d ·
√

log(1/p)
)

from which the desired bound follows.

4.2 Basic results about random graphs

The core problem solved in Chapter 5 is to distinguish between two random graph models:
the widely studied Erdös-Rényi model, and the random geometric graph. We first provide
some basic facts about both of these distributions.

• For a graph G = (V,E), and a subset of vertices S ⊆ V , we use G[S] to denote the
induced subgraph of G on S.

• BG(v, ℓ) to denotes the ball of radius-ℓ around a vertex v in graph G (i.e. all vertices
of distance ≤ ℓ from v).

• NG(i) denotes the neighbors of vertex i in graph G.

Definition 4.2.1 (G(n, p)). To sample a graph G = (V,E) from the Erdös-Rényi distribu-
tion, denoted G(n, p), we let V = [n] and for each pair of vertices (i, j), we place (i, j) ∈ E
with probability p.

Definition 4.2.2 (Geod(n, p)). Given a set of vectors V = (v1, . . . , vn) ∈
(
Sd−1

)n
the associ-

ated geometric graph gg(V, p) = ([n], E) is given by choosing the edge set as all (i, j) where
⟨vi, vj⟩ ≥ τ(p, d). In particular, when VVV ∼ ρ⊗n, gg(VVV , p) is distributed as Geod(n, p).

For an n-vertex graph G, ρG denotes the conditional distribution ρG = ρ⊗n | gg(V, p) = G.

First, we state a high-probability upper bound of O
(

logn
log logn

)
on the maximum degree

in both random graph models when p = α
n

for constant α. Since the degree of each vertex
is distributed like Binom(n, p), by applying the standard tail bound for a Binomial random
variable and taking a union bound over all vertices we get the following.
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Lemma 4.2.3. Let ∆(G) denote the maximum degree of a graph G. If p = α
n

, then for both
GGG ∼ G(n, p) and GGG ∼ Geod(n, p) and for all d:

Pr[∆(GGG) ≥ k] ≤ n ·
(
k

eα

)−k

.

Remark 4.2.4. This allows us to ignore graphs where the max degree is too high when
we upper bound dTV (G(n, p),Geod(n, p)), since such graphs comprise a negligible fraction of
each distribution.

More generally, we know the following bound on the number of vertices in an Erdös-Rényi
graph at distance at most ℓ from any given vertex, as well as a high probability statement
about their structure.

Lemma 4.2.5 (Lemma 29 of [BLM15]). Let GGG ∼ G(n, p) for p = α
n

for constant α. Define
hhht(v) as the number of vertices with distance exactly t from v in GGG. Then for any vertex v,
there are constants c, C such that:

Pr
[
there exists t ≥ 0 : hhht(v) > sαt

]
≤ C exp(−cs).

Lemma 4.2.6 (Lemma 30 of [BLM15]). Let GGG ∼ G(n, p) for p = α
n

for constant α, and let
BGGG(v, t) be the set of all vertices with distance ≤ t from vertex v in GGG. Then, for any vertex
v, there is a constant c′ such that:

Pr[BGGG(v, t) is not a tree] ≤ c′αt

n

Given an n-vertex graph G, we are interested in VVV ∼ ρ⊗n|gg(VVV , p) = G, whose distribu-
tion we shorten to ρG. A simple but crucial observation for us is the following.

Observation 4.2.7. Let f :
(
Sd−1

)n → {0, 1} be a Boolean function. If EVVV∼ρ⊗nf(VVV ) ≤ δ,
then:

Pr
GGG∼Geod(n,p)

[
EVVV∼ρGGGf(VVV ) ≥

√
δ
]
≤

√
δ.

Proof. We can write:

EVVV∼ρ⊗nf(VVV ) = EGGG∼Geod(n,p)EVVV∼ρGGG [f(VVV )] ≤ δ

The statement then follows from Markov’s inequality.

To conclude these preliminaries, we state one more result that we can find a coupling that
“sandwiches” a random geometric graph with edge probability p between two Erdös-Rényi
graphs with edge probabilities slightly above and slightly below p. The full proof of this
result is in Section 6 of [LMSY22b].
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Proposition 4.2.8. Let n, d be positive integers, and let p ∈ R≥0, satisfying α
n
≪ p ≤ 1

2
for

α a fixed constant, (nH(p) + ln2 n)3 lnn≪ d ≤ n100. Let

ε > C ·

√
n ·H(p) + log2 n

d

for C > 0 a universal constant. Then there exists a three-way “coupling” C of

G(n, (1 − ε)p),Geod(n, p),G(n, (1 + ε)p)

so that with probability at least 1 − n−10 over (GGG−,GGG,GGG+) ∼ C, with GGG− ∼ G(n, (1 − ε)p),
GGG ∼ Geod(n, p), and GGG+ ∼ G(n, (1 + ε)p), it holds that

GGG− ⊆ GGG ⊆ GGG+
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Chapter 5

Testing for Geometry in Graphs

Well, I thought you might be different than the rest
I guess you’re all the same [Swi21]

This chapter is based on joint work with Siqi Liu, Sidhanth Mohanty, and Tselil Schramm,
published in [LMSY22b].

5.1 Problem statement and summary of results

The Erdös-Rényi graph model (Definition 4.2.1, and reproduced below) has arisen as a
valuable tool for combinatorialists and theoretical computer scientists alike.

Definition 5.1.1 (Restatement of Definition 4.2.1). To sample a graph G = (V,E) from
the Erdös-Rényi distribution, denoted G(n, p), we let V = [n] and for each pair of vertices
(i, j), we place (i, j) ∈ E with probability p.

Due to the independence between edges, it is a very tractable model to study for establishing
theoretical results. Graphs sampled from the Erdös-Rényi model have been employed in
conjunction with the probabilistic method, most notably to to prove the existence of graphs
with simultaneously high girth and high chromatic number (see [Erd59; AS04]), and have
also been used in the average-case analysis of graph algorithms (see [FK01; BCCFV10]).

However, the assumption that edges are placed independently makes Erdös-Rényi graph
unattractive for modeling many real-world networks. For instance, they do not capture net-
works where the vertex degree distribution exhibits a power law (such as the web graph);
the Barabasi-Albert model ([AB02]), which implements a preferential attachment mecha-
nism, is instead able to capture this empirically observed behavior. Erdös-Rényi graphs also
have a low clustering coefficient, which is counter to what we see in social networks; the
Watts-Strogatz model ([WS98]) attempts to remedy this.
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Figure 5.1: A demonstration of triadic closure with d is small: The threshold τ(p, d) is high,
and v1 being close to v2, v3 also forces v2, v3 to be closer.

It is also natural to model random networks with an underlying geometry in mind.
Almost all of the data we see today, including network data, can be embedded into some
high-dimensional space, with the coordinates representing different features about the data.
It is then natural to place edges between nodes based on the proximity of their embeddings.
While such embedding-inspired graphs may be difficult to analyze in full generality, as a first
step towards the theory of random graphs, we assume all of the vectors are embedded on a
high-dimensional unit sphere (Definition 4.2.2).

Definition 5.1.2 (Restatement of Definition 4.2.2). Given a set of vectors V = (v1, . . . , vn) ∈(
Sd−1

)n
the associated geometric graph gg(V, p) = ([n], E) is given by choosing the edge set

as all (i, j) where ⟨vi, vj⟩ ≥ τ(p, d). In particular, when VVV ∼ ρ⊗n, gg(VVV , p) is distributed as
Geod(n, p).

The random geometric graph distribution on the unit sphere, Geod(n, p), behaves very dif-
ferently depending on the value of d relative to n and p. When d is very small, graphs
sampled from Geod(n, p) behave much like discretizations of the unit sphere. In such cases,
we observe triadic closure, which is a tendency towards seeing triangles conditioned on two
of the edges already being present.

In other words, if we have edges (i, j) and (i, k), the dot products between their associated
vectors ⟨vi, vj⟩ and ⟨vi, vk⟩ are also high; this makes it likelier that ⟨vj, vk⟩ is high as well.

When d is very large, we lose this dependence between edges, and Geod(n, p) looks more
and more like G(n, p). This begs a “Question 0” about Geod(n, p): for what dimension d is
Geod(n, p) statistically indistinguishable from G(n, p)? In other words,

At what threshold for d (in terms of n, p) does Geod(n, p) lose its underlying geometry?
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In a sense, this is also asking “at what dimension d do these random geometric graphs lose
their modeling power over the Erdös Rényi model?

In more formal mathematical terms, we are asking:

For what d (in terms of n, p) does limn→∞ dTV (G(n, p),Geod(n, p)) = 0?

5.1.1 Related work

The first work that initiates study in this question is [BDER16], who show that a variant of
the triangle counts (called “signed triangle counts”) are sufficient for distinguishing between
G(n, p) and Geod(n, p) when d ≪ n3 for p = Θ(1), and when d ≪ log3(n) for p = Θ

(
1
n

)
.

In [LMSY22b], we extend their results and also show that their signed triangle statistic is a
good distinguisher when d≪ n3H(p)3 for general p.

[BDER16] also show that their distinguisher is optimal in the dense regime p = Θ(1),
using tools from random matrix theory:

Theorem 5.1.1 (Theorem 1(c) of [BDER16]). For p = Θ(1), if d≫ n3, then

lim
n→∞

dTV (G(n, p),Geod(n, p)) = 0

They also conjecture that the signed triangle counts are the optimal distinguisher (up to
polylog(n) factors) for p = Θ

(
1
n

)
; we extend their conjecture to all p.

Conjecture 5.1.3. If d≫ n3H(p)3, then

lim
n→∞

dTV (G(n, p),Geod(n, p)) = 0

In particular, when p = Θ
(
1
n

)
, the above statement holds for d≫ log3(n).

More recently, the work of [BBN20] improve upon the indistinguishability threshold for
general p.

Theorem 5.1.2. If d≫ min{pn3 log 1
p
, p2n7/2polylog(n)}, then

lim
n→∞

dTV (G(n, p),Geod(n, p)) = 0

In particular, if p = Θ
(
1
n

)
, the above holds for d≫ n3/2polylog(n).

5.1.2 Main results and technical overview

Our main results are twofold:

• First, we have an improved indistinguishability bound for general p = Ω
(
1
n

)
.



CHAPTER 5. TESTING FOR GEOMETRY IN GRAPHS 49

Theorem 5.1.3. For any fixed constant α > 0, if α
n
< p < 1

2
and d = Ω̃(p2n3),

lim
n→∞

dTV (Geod (n, p) ,G (n, p)) = 0.

This improves, by polynomial factors in p and n, on the previous best-known bound of
[BBN20]. However, this result is not tight (at least for small p); in particular it does
not recover Theorem 5.1.4.

• We also present an indistinguishability result for sparse random geometric graphs and
Erdös-Rényi graphs when the dimension d exceeds polylog(n).

Theorem 5.1.4. For any fixed constant α ≥ 1, if d = Ω(log36 n), then

lim
n→∞

dTV

(
Geod

(
n, α

n

)
,G
(
n, α

n

))
= 0.

Our result settles the conjecture of [BDER16] up to logarithmic factors, and gave an
exponential improvement over the previous bound of [BBN20], which required d ≫
n3/2. We remark that we have not made an effort to optimize the logarithmic factors;
it is possible that our current proofs in combination with chaining-style arguments will
yield log3 n, matching their conjecture.

In this thesis, we will prove Theorem 5.1.3, with an emphasis on the geometry-inspired
and optimal transport-inspired toolkit for analyzing sphere caps. We will not fully prove
Theorem 5.1.4, but rather just highlight one portion of the belief propagation argument that
also heavily relies on the geometry of sphere caps.

We now provide technical outlines of the proofs of Theorems 5.1.3 and 5.1.4.

Relative entropy tensorization

Our goal is to determine the dimension d at which the total variation distance

dTV (G(n, p),Geod(n, p))

goes to 0 as n → ∞. Like the authors of [BBN20], we relate the TV distance between
these two distributions to their relative entropy DKL(Geod(n, p)∥G(n, p)) via Pinsker’s in-
equality (Theorem 1.3.1), and then apply the tensorization of the relative entropy (Claim
5.4.1). Roughly, the tensorization says that given a decomposition of G(n, p) as a product
distribution, we can reduce the problem of bounding DKL(Geod(n, p)∥G(n, p)) to bounding
the relative entropy over (potentially simpler) distributions with smaller support.

G(n, p) is conveniently a product distribution over edges. However, unlike [BBN20], we
do not use this straightforward decomposition of G(n, p) by edge. Instead, let µt be the
distribution of vertex t’s edges to [t − 1] under G(n, p). Similarly, let νt be the marginal
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distribution of vertex t’s edges to [t− 1] over the graph being sampled from Geod(n, p). Our
bound via tensorization now becomes

DKL(Geod(n, p)∥G(n, p)) =
n∑
t=1

EGGGt−1∼Geod(t−1,p) [DKL (νt(· | GGGt−1) ∥µt)]

≤ n · EGGGn−1∼Geod(n−1,p) [DKL (νn(· | GGGn−1) ∥µn)]

where the final inequality follows from the chain rule for relative entropy (Claim 5.4.2).

The coupling view. The tensorization inequality reduces bounding the TV distance to
comparing the probability distribution of the neighborhood of the “final” vertex in G(n, p)
and Geod(n, p). Specifically, we study EGGGn−1∼Geod(n−1,p) [DKL (νn(· | GGGn−1) ∥µn)] by consider-
ing the following scenario: we already have a graph GGGn−1 sampled on n− 1 vertices, and we
want to incorporate vertex n into our graph.

By the definition of G(n, p), µn will sample the neighbor set S ⊆ [n− 1] with probability
p|S|(1 − p)n−1−|S|. For a random geometric graph, we can sample a vector vvvn ∼ Sd−1, and
take its dot products to vectors vvv1, . . . , vvvn−1 sampled uniformly from Sd−1 conditioned on
producing GGGn−1, to determine the neighbors of n in GGG (which we denote by NGGG(n)).

Our goal now is to compare, for S ⊆ [n− 1],

Pr
GGG∼G(n,p)

[NGGG(n) = S] and Pr
GGG∼Geod(n,p)

[NGGG(n) = S]

A geometric interpretation of neighborhood probability

For GGG ∼ Geod(n, p), if vertex i is associated to a (random) vector vvvi, and (i, j) is an edge,
we consequently know that ⟨vvvi, vvvj⟩ ≥ τ . On the sphere Sd−1, the locus of points where vvvj
can be, conditioned on (i, j) being an edge, is a sphere cap centered at vvvi with a p fraction
of the sphere’s surface area, which we denote by cap(vvvi). Similarly, if we know that i and
j are not adjacent, the locus of points where vvvj can fall is the complement of a sphere cap,
which we call an “anti-cap,” with measure 1 − p.

Equipped with this geometric picture, we can view the probability that vertex n’s neigh-
borhood is exactly equal to S ⊆ [n − 1] as the measure ρ(LLLS), where ρ is the uniform
distribution over Sd−1 and LLLS ⊆ Sd−1 is a random set defined as

LLLS :=

(⋂
i∈S

cap(vvvi)

)
∩

(⋂
i/∈S

cap(vvvi)

)

To show that the distance between Geod(n, p) and G(n, p) is small, we must show that ρ(LLLS)
concentrates around p|S|(1−p)n−1−|S|, which is the probability that n’s neighborhood is equal
to S under the Erdös-Rényi model.
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Optimal transport. The backbone of our result is a (to our knowledge) novel application
of optimal transport. In Section 5.2, we prove for a generic distribution ν supported on Sd−1,
and zzz independently sampled from ρ that

Pr
xxx∼ν

[⟨xxx,zzz⟩ ≥ τ ] ∈ (1 ± ε) · p for ε ≤ Õ

(√
ln ∥ν∥∞

d

)
with high probability over zzz.

In other words, how tightly the random variable Xν(zzz) = Prxxx∼ν [⟨xxx,zzz⟩ ≥ τ ] concentrates

is directly related to the maximum value of its relative density, ∥ν∥∞ = maxx∈Sd−1
dν(x)
dρ(x)

.
To give some intuition for this result, first consider the case when ν = ρ, the uniform

distribution over Sd−1. Then, the variable Xρ(zzz) = Pryyy∼ρ[⟨yyy,zzz⟩ ≥ τ ] = p deterministically.
Now, when ν ̸= ρ, we can work with a transport map D between ρ and ν, and we can couple
xxx ∼ ν and yyy ∼ ρ according to D, so that

Xν(z) = Pr
xxx∼ν

[⟨xxx, z⟩ ≥ τ ] = Pr
(xxx,yyy)∼D(ν,ρ)
eee=xxx−yyy

[⟨yyy, z⟩ ≥ τ − ⟨eee, z⟩].

The smaller ∥ν∥∞ is, the smaller the average of the transport distance ∥eee∥ = ∥xxx−yyy∥; further
when zzz ∼ ρ the quantity ⟨eee,zzz⟩ concentrates tightly in a ± 1√

d
∥eee∥ window around 0. In this

way, we translate the concentration of transport distance into tail bounds on |Xρ(zzz)−Xν(zzz)|.
To analyze ρ(LLL) for LLL the intersection of caps and anti-caps defined above, we will apply

the above in sequence inside a martingale concentration argument, building up LLL one cap at
a time (Lemma 5.3.1, Corollary 5.3.10). Using this approach, our transport result alone is
enough to conclude Theorem 5.1.3. (The proof is assembled in Section 5.4.1.)

The need to resample vectors. In the general p setting, we can think of our analysis of
νn(·|GGGn−1) as considering a fixed vector embedding vvv1, . . . , vvvn−1 of GGGn−1, and then analyzing
the probability that n connects to some S ⊆ [n− 1]. When p = α

n
, this does not yield tight

results; moreover, one can show that this is not due to loose tail bounds on ρ(LLL), as our
concentration results have matching anti-concentration results.

Hence, in order to prove Theorem 5.1.4, we must additionally consider the concentration
of ρ(LLLS) on average over vector embeddings of GGGn−1 as well.

We will first sample GGGn−1, and then for each set S, we bound the deviation in the ran-
dom variable ρ(LLLS) = ρ(

⋂
i∈S cap(uuui) ∩

⋂
j ̸∈S cap(uuuj)) conditioned on uuu1, . . . ,uuun−1 producing

GGGn−1. To do this, we will use a “cavity-method” style argument: we will view all vectors at
distance > ℓ = logn

log logn
from S as fixed and arbitrary, and then exactly compute the marginal

distributions over uuui for i at distance ≤ ℓ from S, conditional on forming GGGn−1.

Neighborhood containment as a constraint satisfaction problem.

We first reduce the need for high-probability estimates for PrGGG∼Geod(n,p)[NGGG(n) = S] where
S ⊆ [n− 1] to obtaining estimates for PrGGG∼Geod(n,p)[NGGG(n) ⊇ S] instead. This simplification
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is possible because the measure of anti-cap intersections concentrates dramatically better
than the measure of cap intersections. With this step, we eliminate the need to study
anti-correlations between vvvi, vvvj that do not have an edge between them.

Given S and GGGn−1 (and its corresponding vectors), we fix all vectors except those corre-
sponding to the depth- logn

log logn
neighborhood of S in GGGn−1, which is with high probability a

union of trees. To formally analyze the distribution of the unfixed vectors upon resampling
them, we set up a 2-CSP (constraint satisfaction problem) instance over a continuous alpha-
bet that encodes the edges of GGGn−1 within the trees around S: each node has a vector-valued
variable in Sd−1, and the constraints are that nodes joined by an edge must have vectors
with inner product at least τ .

Belief propagation. Since our 2-CSPs are over trees, the belief propagation (BP) algo-
rithm exactly computes the marginal distribution of each variable vector (see Section 5.5 for
the definition of BP).

Using our results on the concentration of Prxxx∼ν [⟨xxx,zzz⟩ ≥ τ ] over zzz ∼ ρ, we can quantify the
TV distance between the marginal distributions of our resampled vectors and the uniform
distribution over Sd−1. At a high level, the farther some vvvi is from a fixed vector in our
2-CSP, the closer its distribution is to uniform.

The key insight is that the message from i to its neighbor j in our belief propagation
algorithm correspond to a convolution of the marginal distribution of vvvi with a spherical cap.
We can then use our concentration of measure for spherical caps from Section 5.2 to show
that convolutions of spherical caps mix to uniform rapidly, causing the correlations between
far away vertices to decay.

This can also be seen as a form of the “decay of correlations” phenomenon. This analysis
gives us the finer-grained control over Pr[NGGG(n) = S] needed to conclude Theorem 5.1.4. 1

5.2 Concentration via optimal transport

In this section we establish that for a probability distribution ν over Sd−1, a random p-cap on
the sphere contains a p-fraction of ν’s measure with high probability, where the strength of
the concentration depends on ∥ν∥∞. We do so by analyzing the optimal transport mapping
D between ν and the uniform measure ρ.

5.2.1 Optimal transport and the Wasserstein metric

The Wasserstein metric quantifies the “physical distance” between a pair of probability
distributions. We say π(x, y) is a transport coupling between distributions µ and ν if

π(x, ·) = µ(x) and π(·, y) = ν(y)
1Unfortunately, this analysis only works for p = α

n ; otherwise the neighborhoods around vertices in S are
only trees at a depth which is too shallow for the correlations to decay sufficiently, so the resampled vectors’
distributions are not close enough to uniform.
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Definition 5.2.1 (Wasserstein Distance). Let µ and ν be two probability distributions
over Ω, and Π be the set of all transport couplings π(x, y) between µ and ν. Then, the
Wasserstein-2 distance between µ and ν is

W2(µ, ν) :=

√
inf
π∈Π

∫
Ω×Ω

∥x− y∥22dπ(x, y)

It is straightforward to verify that W2(·, ·) is in fact a metric.

In other words, the square of the Wasserstein distance is the average squared Euclidean
distance ∥xxx − yyy∥2 between (xxx,yyy) ∼ π for the most efficient “transport coupling” π. For
intuition, we may think of µ’s density of a pile of sand over Ω, and of π as a map that
shifts grains of sand from µ to form the shape of ν in such a way that minimizes the average
distance traveled.

Fact 5.2.2 (Proposition 9.1.2 of [BGL13]). Given two probability distributions µ and ν over
Ω, there exists a coupling π such that:∫

Ω×Ω

∥x− y∥22dπ(x, y) = W2(µ, ν)2.

We call any such π an optimal coupling.

We specifically will need bounds on the Wasserstein-2 distance between an arbitrary
distribution ν on the unit sphere and the uniform distribution on the unit sphere ρ. We
obtain a handle on the distances we need via an entropy-transport inequality, which bounds
the Wasserstein-2 distance in terms of the relative entropy. The following is a direct corollary
of Theorem 22.17(i) of [Vil08] and Corollary 2 of [DEKL14].

Lemma 5.2.3 (Talagrand’s T2 inequality on the sphere). For any distribution ν on Sd−1,
and ρ the uniform measure on Sd−1,

W2(ν, ρ) ≤
√

2

d− 1
· DKL(ν∥ρ).

For a reader interested in the proof of Lemma 5.2.3, we recommend the proof of the
analogous statement in Gaussian space by [Tal96] due to its relative simplicity. In fact, it

is possible to derive a slightly weaker bound of
√

2
d
· DKL(ν∥ρ) + 2√

d
from the Gaussian case

via an elementary proof. We also find it worthwhile to point to Theorem 9.2.1 of [BGL13]
for a comprehensive exposition.
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5.2.2 The concentration of sphere cap measure

Let ρ be the uniform measure over Sd−1, let ν be a probability measure over Sd−1, and let
D be a coupling between them. For (xxx,yyy) ∼ D we use the convention that xxx is distributed
according to ν and yyy is distributed according to ρ. We first prove quantitative bounds on
the concentration of ∥xxx− yyy∥ when (xxx,yyy) ∼ D.

Lemma 5.2.4. Let ν be a distribution over Sd−1 and let D be the optimal transport coupling
of ν and ρ. Then for all t > 0,

Pr
(xxx,yyy)∼D

[
∥xxx− yyy∥ ≥ t+

√
2
d−1

ln ∥ν∥∞
]
≤ exp

(
−d− 1

8
· t2
)
.

Proof. Let (xxx,yyy) ∼ D with xxx ∼ ν and yyy ∼ ρ. Let Es be the event that ∥xxx− yyy∥ ≥ s, and let
ps := PrD[Es]. Let Ds = D|Es, and let Ds

ν ,Ds
ρ be the marginal distributions of Ds on xxx and

yyy respectively. We claim
W2(Ds

ν ,Ds
ρ) ≥ s.

Indeed, suppose not; then, one could obtain a coupling which further decreases the transport
distance between ν and ρ, contradicting the optimality of D. Now, since W2 is a metric:

s ≤ W2(Ds
ν ,Ds

ρ) ≤ W2(Ds
ρ, ρ) +W2(Ds

ν , ρ)

≤
√

2

d− 1
DKL(Ds

ρ∥ρ) +

√
2

d− 1
DKL(Ds

ν∥ρ), (5.1)

where we have used the triangle inequality in conjunction with Talagrand’s T2 inequality
(Lemma 5.2.3). Finally, since Ds

ρ(x) = ρ(x|Es) ≤ 1
ps
ρ(x),

DKL(Ds
ρ∥ρ) =

∫
Sd−1

Ds
ρ(x) · ln

Ds
ρ(x)

ρ(x)
dx ≤

∫
Sd−1

Ds
ρ(x) · ln

1

ps
dx = ln

1

ps
,

and similarly, because Ds
ν(x) = ν(x|Es) ≤ 1

ps
ν(x) ≤ ∥ν∥∞

ps
ρ(x),

DKL(Ds
ν∥ρ) =

∫
Sd−1

Ds
ν(x) · ln

Ds
ν(x)

ρ(x)
dx ≤

∫
Sd−1

Ds
ν(x) · ln

∥ν∥∞
ps

dx = ln
1

ps
+ ln ∥ν∥∞.

Putting these together with Equation 5.1 and using
√
a+ b ≤

√
a+

√
b, we have

s ≤ 2

√
2

d− 1
ln

1

ps
+

√
2

d− 1
ln ∥ν∥∞,

and then re-arranging we have

ps ≤ exp

−d− 1

8

(
s−

√
2

d− 1
ln ∥ν∥∞

)2
 ,

when s ≥
√

2
d−1

ln ∥ν∥∞. Applying a change of variables completes the proof.



CHAPTER 5. TESTING FOR GEOMETRY IN GRAPHS 55

Having established in Lemma 5.2.4 that the optimal transport map π(ν, ρ) between xxx ∼ ν
and yyy ∼ ρ has bounded length with high probability, we can translate this into a tail bound
for the inner product ⟨zzz,xxx− yyy⟩ for a random vector zzz ∼ ρ.

Lemma 5.2.5. Let ν be a distribution on Sd−1, and let D be the optimal transport coupling
of ν and ρ. For z ∈ Sd−1, t ∈ R≥0 and any κ > 0, define X(z, t) as:

X(z, t) := Pr
(xxx,yyy)∼D

[
|⟨z,xxx− yyy⟩| ≥

(√
2

d− 1
ln ∥ν∥∞ +

√
8κ

d− 1

)
· t

]
.

Then:
Pr
zzz∼ρ

[
X(zzz, t) ≥ 2 exp(−dt2/4) + exp(−κ)

]
≤ 2 exp(−dt2/4).

Remark 5.2.6. One should think of X(z, t) as a measure of how often a randomly chosen
transport vector xxx− yyy, with (xxx,yyy) ∼ D, has a large projection in the z direction.

Proof of Lemma 5.2.5. For any z ∈ Sd−1 and (xxx,yyy) ∼ D, suppose

|⟨z,xxx− yyy⟩| ≥

(√
2

d− 1
ln ∥ν∥∞ +

√
8κ

d− 1

)
· t

Then |⟨z,xxx− yyy⟩| ≥ ∥xxx− yyy∥ · t or ∥xxx− yyy∥ ≥
√

2
d−1

ln ∥ν∥∞ +
√

8κ
d−1

. Defining

Y (z, t) := Pr
(xxx,yyy)∼D

[|⟨z,xxx− yyy⟩| ≥ ∥xxx− yyy∥ · t] ,

we can write

X(z, t) ≤ Y (z, t) + Pr
(xxx,yyy)∼D

[
∥xxx− yyy∥ ≥

√
8κ

d− 1
+

√
2

d− 1
ln ∥ν∥∞

]
≤ Y (z, t) + exp (−κ)

(5.2)
where to obtain the upper bound we have applied Lemma 5.2.4. Next, we prove that

Pr
zzz∼ρ

[
Y (zzz, t) ≥ 2 exp(−dt2/4)

]
≤ 2 exp(−dt2/4), (5.3)

by showing E [Y (zzz, t)] ≤ 4 exp(−dt2/2), which implies Equation 5.3 via Markov’s inequality.

Ezzz∼ρ [Y (zzz, t)] = Pr
zzz∼ρ

(xxx,yyy)∼D

[|⟨zzz,xxx− yyy⟩| ≥ ∥xxx− yyy∥ · t] = Pr
zzz∼ρ

(xxx,yyy)∼D

[
|⟨zzz, xxx− yyy

∥xxx− yyy∥
⟩| ≥ t

]
≤ 4 exp(−dt2/2) by Lemma 4.1.7

We can then complete the proof starting at Equation 5.3 as follows:

Pr
zzz∼ρ

[
Y (zzz, t) + exp (−κ) ≥ 2 exp(−dt2/4) + exp (−κ)

]
≤ 2 exp(−dt2/4)

Pr
zzz∼ρ

[
X(zzz, t) ≥ 2 exp(−dt2/4) + exp(−κ)

]
≤ 2 exp(−dt2/4). (by Equation 5.2)

This yields the desired conclusion.
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Since a p-cap around x is given by the set of vectors z with inner product ⟨x, z⟩ ≥ τ(p, d),
and ⟨x, z⟩ = ⟨y, z⟩ ± | ⟨x− y, z⟩ |, we can finally use Lemma 5.2.5 to relate

X(z) = Pr
xxx∼ν

[⟨z,xxx⟩ > τ(p, d)]

the measure of ν that falls into the p-cap of z, to

p = Pr
yyy∼ρ

[⟨z,yyy⟩ > τ(p, d)]

That is, we can now show that X(zzz) for zzz ∼ ρ concentrates tightly around p, so that most
vectors in Sd−1 contain very close to a p-fraction of ν’s mass in their p-caps.

Lemma 5.2.7. Let ν be a distribution on Sd−1. For z ∈ Sd−1, let X(z) := Prxxx∼ν [⟨xxx, z⟩ >
τ(p, d)], and for any κ > 0, let u(t) :=

(√
8
d−1

ln ∥ν∥∞ +
√

8κ
d−1

)
· t. Then for any t ≥ 0:

Pr
zzz∼ρ

[|X(zzz) − p| > p · ε(t)] ≤ 2 exp(−dt2/4)

where ε(t) := C4.1.9 · u(t) · exp (2d · τ(p, d) · u(t)) ·
√
d log 1

p
+ 2 exp(−dt2/4)+exp(−κ)

p
.

Proof. Let D be the optimal coupling between ν and ρ. For any z ∈ Sd−1 and t ≥ 0:

X(z) = Pr
(xxx,yyy)∼D

[⟨yyy, z⟩ > τ(p, d) − ⟨z,xxx− yyy⟩]

≤ Pr
(xxx,yyy)∼D

[⟨yyy, z⟩ > τ(p, d) − max{⟨z,xxx− yyy⟩, u(t)}]

≤ Pr
yyy∼ρ

[⟨yyy, z⟩ > τ(p, d) − u(t)] + Pr
(xxx,yyy)∼D

[|⟨z,xxx− yyy⟩| > u(t)]

≤ p

(
1 + C4.1.9 · u(t) · exp (2dτ(p, d)u(t)) ·

√
d log

1

p

)
+ Pr

(xxx,yyy)∼D
[|⟨z,xxx− yyy⟩| > u(t)]

(5.4)

where the last step of the chain of inequalities follows from Lemma 4.1.9. Identically,

X(z) ≥ p

(
1 − C4.1.9 · u(t) · exp (2dτ(p, d)u(t)) ·

√
d log

1

p

)
− Pr

(xxx,yyy)∼D
[|⟨z,xxx−yyy⟩| > u(t)] (5.5)

Then by Lemma 5.2.5, when zzz ∼ ρ, we can obtain an upper bound of 2 exp(−dt2/4)+exp(−κ)
on the second term in the right hand side of Equation 5.4 and Equation 5.5 that holds except
with probability 2 exp(−dt2/4), which implies

Pr
zzz∼ρ

[
|X(zzz) − p| > p · C4.1.9 · u(t) · exp (2dτ(p, d)u(t)) ·

√
d log

1

p
+ 2 exp(−dt2/4) + exp(−κ)

]
≤ 2 exp(−dt2/4).

thus completing the proof.
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5.2.3 Different parameterizations of the sphere cap concentration

We’ll now derive a few useful corollaries of Lemma 5.2.7. First, for intuition, consider the
following immediate consequence regarding the intersection of a set in Sd−1 with a random
sphere cap.

Corollary 5.2.8. Let d ≥ log10 n and let Q ⊆ Sd−1 be a set such that ρ(Q) ≥ 1

nlog3 n
. Then

for zzz ∼ ρ:
ρ (cap(zzz) ∩Q)

ρ (cap(zzz)) · ρ(Q)
/∈
(

1 ± log5 n√
d

± n− log2 n

)
with probability at most n−Ω(log3 n).

We will make use of the following convenient specialization of Lemma 5.2.7.

Corollary 5.2.9. Let ν be a distribution on Sd−1 and for z ∈ Sd−1, let

X(z) := Pr
xxx∼ν

[⟨xxx, z⟩ ≥ τ(p, d)]

Then for s ≤ 1 and for some constant C5.2.9,

Pr
zzz∼ρ

[|X(zzz) − p| > ps] ≤ 2 exp

− ds2

C5.2.9

(√
ln ∥ν∥∞ +

√
ln d

p

)2
· log 1

p
· log d

p


Proof. The idea is to apply Lemma 5.2.7 by setting κ = 4 ln d

p
and using the parameterization

t =
s

2
(√

8 ln ∥ν∥∞ +
√

32 ln 1
p

)√
ln 1

p

.

Clearly, the statement is true when

s ≤
√
C5.2.9

2d
·

(√
ln ∥ν∥∞ +

√
ln
d

p

)
·

√
log

1

p
· log

d

p

since Pr [|X(z) − p| > ps] ≤ 1 < 2 exp
(
−1

2

)
. Hence, we restrict our attention to when

s ∈ H :=

[√
C5.2.9

2d
·

(√
ln ∥ν∥∞ +

√
ln
d

p

)
·

√
log

1

p
· log

d

p
, 1

]
Let ε(t) and u(t) be as in the statement of Lemma 5.2.7. Using s ≤ 1 and Lemma 4.1.8, we
know exp(2dτ(p, d)u(t)) ≤ O(1). This tells us that for some constant C,

ε(t) ≤ C

√ 8

d− 1
ln ∥ν∥∞ +

√
32 ln 1

p

d− 1

√d log
1

p
t+

2 exp(−dt2/4) + p4

d4

p
.



CHAPTER 5. TESTING FOR GEOMETRY IN GRAPHS 58

We can choose our constant C5.2.9 to be a large enough so that when s ∈ H, then t ≥ 4

√
log d

p

d
.

Observe that once t ≥ 4

√
log d

p

d
, for large enough d:

ε(t) ≤ 2C

√ 8

d− 1
ln ∥ν∥∞ +

√
32 ln 1

p

d− 1

√d log
1

p
t

= C ′ · 2

(√
8 ln ∥ν∥∞ +

√
32 ln

1

p

)
·
√

ln
1

p
· t

= C ′s

for some other constant C ′. Then by Lemma 5.2.7, when s ∈ H:

Pr [|X(z) − p| > ps] ≤ 2 exp

− ds2

4C ′2
(√

8 ln ∥ν∥∞ +
√

32 ln 1
p

)2
ln 1

p


≤ 2 exp

− ds2

C5.2.9

(√
ln ∥ν∥∞ +

√
ln d

p

)2
· log 1

p
· log d

p


where the second inequality arises from choosing C5.2.9 to be large enough, which completes
the proof.

Corollary 5.2.9 can be extended to the case when zzz ∼ µ with a worse quantitative upper
bound depending on µ from Observation 1.3.1.

Corollary 5.2.10. Let ν and µ be distributions on Sd−1 and for z ∈ Sd−1, let X(z) :=
Prxxx∼ν [⟨xxx, z⟩ > τ(p, d)]. Then for s ≤ 1 we have:

Pr
zzz∼µ

[|X(zzz) − p| > ps] ≤ 2 exp

− ds2

C5.2.9

(√
ln ∥ν∥∞ +

√
ln d

p

)2
· log 1

p
· log d

p

 · ∥µ∥∞

5.3 Intersections of caps and anti-caps

In this section, we prove concentration of measure for the intersection of random p-caps and
p-anticaps with any fixed set L ⊆ Sd−1.

Lemma 5.3.1 (Concentration for the intersection of j caps and k − j anti-caps). Let ρ
be the uniform measure over Sd−1, and let L ⊂ Sd−1, and let k > 0 be an integer. For
(vvv1, . . . , vvvk) ∼ ρ⊗k, let

SSSi :=

{
cap(vvvi) if i ≤ j

cap(vvvi) if i > j,
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and let LLLt = L ∩
⋂t
i=1SSSi. Then the ratio RRR := ρ(LLLk)

ρ(L)·pj ·(1−p)k−j is concentrated as follows:

Pr [|RRR− 1| > s] ≤ ε1(s) + kε1(.5) + ε2

where

ε1(s) := 2 exp

(
− ds2

C ′(j + (k − j)p2)F (j)

)
ε2 :=

4k

p2
· exp

(
− d

CF (j)

)

F (j) :=
(√

ln 1
ρ(L)

+ j ln 1
p

+ (k − j) ln 1
1−p +

√
ln d

p

)2
log 1

p
log d

p
, and C,C ′ > 0 are universal

constants.

Before proving the lemma, we will articulate one useful corollary: extremely good con-
centration for intersections anti-caps. For example, in the p = α

n
regime, an intersection of

m = Θ(n) anti-caps will have measure (1 − p)m(1 ± ε) with typical deviations ε = o(
√

1/n)
if d > polylog(n) for a sufficiently large power of log n. (See also Corollary 5.3.10 for another
application of Lemma 5.3.1).

Corollary 5.3.2 (Intersection of anti-caps). Suppose m,n, d ∈ Z≥0, a ≥ 1, and p ∈ R≥0

satisfy m ≤ n, d ≤ n100, 1
n2 ≪ p ≤ 1

2
, and mp ≤ loga n for n sufficiently large. Let L ⊂ Sd−1

with ρ(L) ≥ e− loga n. Let vvv1, . . . , vvvm ∼ Sd−1 uniformly at random, and let

AAA = {w ∈ Sd−1 | ⟨w,vvvi⟩ ≤ τ(p, d) ∀i ∈ [m]}

be the intersection of anti-caps of the vvvi’s. Then there exist universal constants C,C ′ such
that for all n sufficiently large, for all t ≥ 0,

Pr
AAA

[∣∣∣∣ ρ(AAA ∩ L)

(1 − p)mρ(L)
− 1

∣∣∣∣ > t ·
√
mp2

]
≤ exp

(
−C min

{
t2 · d

(lnn)a+4
,
d− C ′(lnn)2a+5

(lnn)2a+4

})
.

Proof. Using that ln(1 + x) ≤ x for x > 0,

1

log 1
p

log d
p

√
F (j) =

√
ln 1

ρ(L)
+m ln(1 + p

1−p) +
√

ln d
p

≤
√

ln 1
ρ(L)

+

√
m

p

1 − p
+
√

ln d
p

≤ c · lna/2 n

for c > 0 a universal constant, where in the final inequality we have applied the assumption
p ≤ 1

2
and the assumption p ≫ n−2. Re-arranging, we have F (j) ≤ c′(lnn)a+4 for some
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constant c′. Hence, Lemma 5.3.1 implies that there exist constants c′′, c′′′ so that for n
sufficiently large,

Pr
AAA

[∣∣∣∣ ρ(AAA ∩ L)

(1 − p)mρ(L)
− 1

∣∣∣∣ > s

]
≤ 2 exp

(
−c′′ ds2

mp2(lnn)a+4

)
+

(
2k +

4m

p2

)
· exp

(
−c′′′ d

(lnn)2a+4

)
,

where we used our bounds on p, k,m to combine the ε2 and kε1(
1
2
) terms from Lemma 5.3.1

into our second term. The conclusion now follows by substituting s = t
√
mp2 and applying

asymptotic simplifications.

Our proof proceeds by a martingale argument. First, we notice that the (rescaled) area
of the intersection of sets is a martingale.

Observation 5.3.3 (Scaled intersection is a martingale). Let

LLLt = L ∩
t⋂
i=1

SSSi and RRRt :=
ρ(LLLt)

ρ(L)
∏t

i=1 ρ(SSSi)

as introduced in Lemma 5.3.1. Then (RRRt)t∈[k] is a martingale with respect to the filtration
(Vt)t∈[k] induced by vvv1, vvv2, . . ., with

E[RRRt | Vt−1] = RRRt−1 and |RRRt| ≤
1

pj(1 − p)k−j

Proof. The quantities ρ(SSSi) are fixed for all i. ρ(LLLt) ≤ ρ(L) implies RRRt ≤ 1
pj(1−p)k−j .

By definition RRRt = ρ(SSSt∩LLLt−1)

ρ(L)·
∏t

i=1 ρ(SSSi)
. Since vvvt ∼ Sd−1 independently of Vt−1, Evvvt∼Sd−1 [ρ(SSSt ∩

LLLt−1)] = ρ(SSSt) · ρ(LLLt−1). The conclusion now follows, since Evvvt∼Sd−1 [RRRt] = RRRt−1.

We will next need concentration inequalities for martingales that arise as sums of sub-
Gaussian random variables.

Definition 5.3.4. The sub-Gaussian norm of a real-valued random variable XXX is

∥XXX∥gauss := inf
{
K > 0 : E

[
exp(XXX2/K2)

]
≤ 2
}
.

We say XXX is a sub-Gaussian random variable if ∥XXX∥gauss <∞.

We will need a version of Azuma’s inequality for martingales with centered sub-Gaussian
increments. A proof may be found in [Van14], Lemma 3.7.

Lemma 5.3.5 (sub-Gaussian martingale concentration). There exists a constant C5.3.5 > 0
such that if XXX0,XXX1, . . . ,XXXm is a martingale sequence with respect to a filtration (Vt)t∈[m]

and Ki := supVi−1
∥XXX i −XXX i−1|Vi−1∥gauss <∞ for all i ∈ [m], then:

Pr [|XXXm −XXX0| ≥ t] ≤ 2 exp

(
−C5.3.5 ·

t2∑m
i=1K

2
i

)
.
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Also, we will make use of the following statement to bound the sub-Gaussian norm of a
random variable in terms of its tail probabilities.

Lemma 5.3.6 (Proposition 2.5.2 of [Ver18]). There exists constant C5.3.6 > 0 such that if

XXX is a random variable satisfying Pr[|XXX| > t] ≤ 2 exp
(
− t2

K2

)
for all t ≥ 0, then

∥XXX∥gauss ≤ C5.3.6 ·K

Now, we will sketch the proof of concentration for the martingale introduced in Observa-
tion 5.3.3, using the concentration inequality for martingales with sub-Gaussian increments,
Lemma 5.3.5. The (RRRt)t∈[k] do not quite have sub-Gaussian increments as described. Thus
we must “tame” them by making some minor technical modifications.

Proof sketch for Lemma 5.3.1. Recall the martingale sequence RRRt defined in Observation
5.3.3. We are then interested in deviation bounds for |RRRk − 1|. Our proof strategy is to couple
RRRt with a more well-behaved martingale sequence and use the sub-Gaussian martingale
concentration inequality on the more well-behaved sequence. Let TTT be the first time at
which RRRTTT > 2 or RRRTTT <

1
2
. Define the process (QQQt)t≥1 so that

QQQi =

{
RRRi i ≤ TTT

RRRTTT otherwise.

Note that the sequence (QQQt)t≥1 is a martingale. This is because when t ≤ TTT , QQQt−QQQt−1 | Vt−1

has the same distribution as RRRt −RRRt−1 | Vt−1 and hence E[QQQt −QQQt−1 | Vt−1] = 0, and when
t ≥ TTT , QQQt −QQQt−1 | Vt−1 is identically zero. We will need to make an additional modification
on top ofQQQi to make the random variable well-behaved, since Corollary 5.2.9 only guarantees
that Pr [|QQQi −QQQi−1| > s] remains sub-Gaussian up to s = 1. We will truncateQQQi as described
by the following definition:

Definition 5.3.7 ((α, β)-truncation). Given a centered random variable XXX, we define a

random variable XXXα,β for α, β ∈ R≥0. First, let θ = min
(

Pr[|XXX|>α]
β

, 1
)

. Now, define

XXXα,β :=


XXX | |XXX| ≤ α with probability (1 − θ) Pr[|XXX| ≤ α]

E [XXX | |XXX| > α] · β with probability (1 − θ) · θ
0 otherwise.

XXXα,β is well-defined; in the case when θ = 1 it takes value 0 deterministically, and otherwise
if θ < 1 the probabilities sum to 1.

We make two useful observations about (α, β)-truncations.

Observation 5.3.8. For a random variable XXX and parameters α, β, EXXXα,β = (1 − θ) · EXXX.
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Observation 5.3.9. For a random variable XXX and parameters α, β satisfying β ≤ 1,

dTV (XXX,XXXα,β) ≤ 2θ

For now, we take these observations without proof and proceed with the proof of Lemma
5.3.1. Define ∆∆∆i := QQQi −QQQi−1, and define ∆̃∆∆i | Vi−1 := (∆∆∆i | Vi−1)α,β where

α =

{
1 if i ≤ j
p

1−p if i > j.

and β = p2α. We have chosen α such that Corollary 5.2.9 guarantees that we can control
the tail probability Pr[|∆∆∆i| > t] for t < α. Since |∆∆∆i| ≤ 1

p
, |E [∆∆∆i | |∆∆∆i| > α]| · β ≤ pα, and

consequently |∆̃∆∆i| ≤ α. Let (Q̃QQt)t≥1 be the random process obtained by setting Q̃QQ1 = QQQ1 and
Q̃QQt = Q̃QQt−1 + ∆̃∆∆t for t ≥ 2. By Observation 5.3.8, (Q̃QQt)t≥1 is a martingale.

Using Corollary 5.2.9 and Lemma 5.3.6, we can bound the sub-Gaussian norms of ∆̃∆∆i | Vi.
Once we have the sub-Gaussian norms, we can use Lemma 5.3.5 to obtain high-probability
upper bounds on |Q̃QQi − 1|. We lastly use Observation 5.3.9 to relate Q̃QQ back to RRR.

We refer to [LMSY22b] for more proof details. The proofs of our observations regarding
truncated variables can also be found in [LMSY22b]; we will omit them in this work.

Lastly, we present a convenient corollary of Lemma 5.3.1.

Corollary 5.3.10 (Area of ≈ pk caps and ≈ (1 − p)k anti-caps). Let n, j, k, d ∈ Z≥0, and
let p ∈ R≥0, satisfying 1

n2 ≪ p ≤ 1
2
, 1 ≤ d ≤ n100, j ≤ k ≤ n, with j = pk + ∆. Sample

vvv1, . . . , vvvk uniformly from Sd−1 and let LLL =
(⋂j

i=1 cap(vvvi)
)
∩
(⋂k

i=j+1 cap(vvvi)
)

. Then there

exist constants C5.3.10, C
′
5.3.10 > 0 such that for all n sufficiently large,

Pr


∣∣∣∣∣∣∣

ρ(LLL)

e−kH(p)
(

p
1−p

)∆ − 1

∣∣∣∣∣∣∣ ≥ t


≤ exp

(
−C5.3.10 · min

(
dt2

M(k, p,∆)2 lnn
,

d

M(k, p,∆)2 lnn
− C ′

5.3.10 log n

))
where M(k, p,∆) = max(kH(p), |∆| ln 1

p
, lnn).

We omit the proof and refer to [LMSY22b] for the details.

5.4 Total variation bound

In this section, we prove Theorem 5.1.3 and Theorem 5.1.4. As was done in the prior work
by Brennan, Bresler, and Nagaraj [BBN20], we use an analogue of the tensorization of the
relative entropy for non-product measures:
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Claim 5.4.1 (Relative entropy tensorization, similar to Lemma 2.1 of [BBN20]). Suppose
µ = µ1 ⊗ · · · ⊗ µn is a product measure and ν is a measure over the same domain. Let νt
denote the marginal of ν on the t-th coordinate xt, and let xa:b denote coordinates a through
b of x. Then

DKL(ν ∥µ) =
n∑
t=1

Ex1:t−1∼ν [DKL (νt(xt | x1:t−1) ∥µt)] .

Proof. By the chain rule for relative entropy,

Exxx∼ν log
ν(xxx)

µ(xxx)
=

n∑
t=1

Exxx∼ν log
νt(xxxt | xxx1:t−1)

µt(xxxt)

=
n∑
t=1

Exxx1:t−1∼ν

(
Exxxt∼νt|xxx1:t−1 log

νt(xxxt | xxx1:t−1)

µt(xxxt)

)
,

by linearity of expectation and by definition of the marginal distribution. The expression on
the right simplifies using the definition of the relative entropy, completing the proof.

In combination with Pinsker’s inequality, this lemma reduces bounding the TV distance
between a product measure µ and a general measure ν, to bounding the relative entropy
DKL (νt(xt | x1:t−1) ∥µt).

Claim 5.4.2. Let µt be the distribution of the neighborhood of t to vertices [t − 1] under
G(n, p), and let νt(· | Gt−1) be the distribution of the neighborhood of t under Geod(n, p),
conditioned on the subgraph GGGt−1 ∼ Geod(t− 1, p) on the vertices [t− 1]. Then,

2dTV (Geod(n, p),G(n, p))2 ≤ n · EGGGn−1∼Geod(n−1,p) [DKL (νn(· | GGGn−1) ∥µt)]

Proof. Applying Pinsker’s inequality (Theorem 1.3.1), 2 · dTV (ν, µ)2 ≤ DKL(ν ∥µ). We then
apply Claim 5.4.1 with µ = G(n, p) and ν = Geod(n, p), and µt, νt as defined in the claim:

2dTV (Geod(n, p),G(n, p))2 ≤
n∑
t=1

EGGGt−1∼Geod(t−1,p) [DKL (νt(· | GGGt−1) ∥µt)]

Let GS denote a graph over vertices S, and let νSt , µSt refer to the distribution of vertex t’s
neighbors in S under Geod(n, p) and G(n, p) respectively. By symmetry,

Ex[n]\t∼ν

[
DKL

(
ν
[n]\t
t (· | x[n]\t) ∥µn

)]
is the same for all t ∈ [n]. Via the chain rule for relative entropy, and the non-negativity of
relative entropy,

DKL

(
ν
[n]\t
t (· | G[n]\t) ∥µn

)
≥ DKL

(
ν
[t−1]
t (· | G[n]\t) ∥µ[t−1]

t

)
= DKL

(
ν
[t−1]
t (· | Gt−1) ∥µ[t−1]

t

)
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The final equality comes from the fact that t’s neighbors in [t− 1] only depends on GGGt−1.
Upper bounding each DKL (νt(· | GGGt−1) ∥µt) by DKL (νn(· | GGGn−1) ∥µn) completes the proof.

5.4.1 Bounding neighborhood relative entropy

Via Claim 5.4.2, our goal now is to upper bound:

EGGGn−1∼Geod(n−1,p) [DKL (νn(· | GGGn−1) ∥µt)] = EGGGn−1∼ν[n−1]
ESSS∼νn(·|Gn−1) ln

νn(SSS | Gn−1)

µn(SSS)

≤ o

(
1

n

)
For most events under ν[n−1] and νn(·|Gn−1), we will upper bound the relative entropy via
a Chi-square-like quantity: we use the Chi-squared distance, but we allow the omission of a
low-probability event E (to allow the removal of events which cause the Chi-square distance
to blow up).

We then specialize the resulting Chi-square-like bound (Lemma 5.4.3) by removing dif-
ferent low-probability events for the general p case (Section 5.4.1) and the sparse case, and
separately conclude Theorem 5.1.3 and Theorem 5.1.4. We now formally state the Chi-square
bound:

Lemma 5.4.3. Let E be an event satisfying both

Pr
GGGn−1∼Geod(n−1,p),SSS∼νn(·|GGGn−1)

[E ] ≤ o

(
1

n2 lnn

)
and Pr

GGGn−1∼Geod(n−1,p),SSS∼µn
[E ] ≤ o

(
1

n2 lnn

)
and for S ⊆ [n− 1], define ∆Gn−1(S) = νn(S|Gn−1)

µn(S)
− 1. Then,

EGGGn−1∼ν[n−1]
ESSS∼νn(·|GGGn−1) ln

νn(SSS | GGGn−1)

µn(SSS)
≤ EGGGn−1∼ν[n−1]

ESSS∼µn∆GGGn−1(SSS)2 · 1(E) + o

(
1

n

)
Proof. Before we introduce the Chi-square bound, we first perform some conditioning on E .

EGGGn−1∼ν[n−1]
ESSS∼νn(·|GGGn−1) ln

νn(SSS | GGGn−1)

µn(SSS)
= EGGGn−1∼ν[n−1]

ESSS∼νn(·|GGGn−1) ln
(
∆Gn−1(SSS) + 1

)
= EGGGn−1∼ν[n−1]

ESSS∼νn(·|GGGn−1) ln
(
∆GGGn−1(SSS) + 1

)
· 1(E)

+ max
S

(
ln
νn(S | GGGn−1)

µn(S)

)
· Pr
Geod(n,p)

[E ]

The maximum of ln νn(S|Gn−1)
µn(S)

is upper bounded by n ln 1
p
, which comes from bounding

νn(S | Gn−1) ≤ 1
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achieving the smallest possible µn(S) when |S| = n− 1. Applying our assumption on Pr[E ],

the term max
(

ln νn(S|Gn−1)
µn(S)

)
· Pr[E ] is at most o

(
1
n

)
.

We now turn our attention to the remaining expectation term:

EGGGn−1∼ν[n−1]
ESSS∼νn(·|Gn−1) ln

(
∆Gn−1(SSS) + 1

)
· 1(E)

≤ EGGGn−1∼ν[n−1]
ESSS∼νn(·|Gn−1)∆Gn−1(SSS) · 1(E)

= EGGGn−1∼ν[n−1]
ESSS∼µn(1 + ∆Gn−1(SSS))∆Gn−1(SSS) · 1(E)

= EGGGn−1∼ν[n−1]
ESSS∼µn∆Gn−1(SSS) · 1(E) + EGGGn−1∼ν[n−1]

ESSS∼µn∆Gn−1(SSS)2 · 1(E)

The inequality follows because 1 + x ≤ ex for all x, and the second equality follows from a
change in the randomness of S, and because (1 + ∆Gn−1(S)) = νn(S|Gn−1)

µn(S)
.

By the definition of ∆Gn−1 , we can further simplify the expectation of ∆Gn−1(S) · 1(E):∣∣∣EGGGn−1∼ν[n−1]
ESSS∼µn∆Gn−1(SSS) · 1(E)

∣∣∣ =

∣∣∣∣ Pr
GGGn−1∼Geod(n−1,p),SSS∼µn

[E ] − Pr
GGGn−1∼Geod(n−1,p),SSS∼νn(·|GGGn−1)

[E ]

∣∣∣∣
≤ Pr

GGGn−1∼Geod(n−1,p),SSS∼µn
[E ] + Pr

GGGn−1∼Geod(n−1,p),SSS∼νn(·|GGGn−1)
[E ]

≤ o

(
1

n2 lnn

)

Remark 5.4.4. We will ultimately choose the event E based on when the Chi-square es-
timate is too loose of an upper bound on the relative entropy. If the conditions of Lemma
5.4.3 hold, the overall TV bound we want would follow from

EGGGn−1∼Geod(n−1,p)ESSS∼Binom(n−1,p)

[(
νn(SSS | GGGn−1)

p|SSS|(1 − p)n−1−|SSS| − 1

)2

· 1(E)

]
= o

(
1

n

)
. (5.6)

The general p case

The goal of this section is to prove Theorem 5.1.3.

Proof. We apply Lemma 5.4.3, when E is the failure of degree concentration: |S| ≥ pn+ ∆,
with ∆ = 10 max(log n, pn). Via Lemma 4.2.3, E has probability O(n−3), regardless of
whether S ∼ µn or S ∼ νn(·|GGGn−1) and GGGn−1 ∼ Geod(n − 1, p). (The latter distribution is
equivalent to GGGn ∼ Geo.) We thus satisfy:

Pr
GGGn−1∼Geod(n−1,p),S∼µn

[E ], Pr
GGGn−1∼Geod(n−1,p),S∼νn(·|GGGn−1)

[E ] ≤ o

(
1

n2 lnn

)



CHAPTER 5. TESTING FOR GEOMETRY IN GRAPHS 66

After the reduction to Equation 5.6 in Remark 5.4.4, we complete the proof by bounding:

EGGGn−1∼ν[n−1]
ESSS∼Binom(n−1,p)

[(
νn(S | GGGn−1)

p|S|(1 − p)n−1−|S| − 1

)2

· 1(E)

]

≤
∫ ∞

0

Pr
GGGn−1∼ν[n−1],SSS∼Binom(n−1,p)

[(
νn(S | GGGn−1)

p|S|(1 − p)n−1−|S| − 1

)2

> t | E

]
dt

We now apply Corollary 5.3.10 to control these tail probabilities. By conditioning on E , we
may assume ∆ = 10 max(pn, log n) in the tail bound, as this choice of ∆ leads to the worst
case tail probability for all |S| ≤ pn+∆. Recall that M(n, p,∆) = max(nH(p), |∆| ln 1

p
, lnn)

in Corollary 5.3.10, and note that p|S|(1 − p)n−1−|S| = e−nH(p) ·
(

p
1−p

)∆
.

∫ ∞

0

Pr

[(
νn(S | GGGn−1)

p|S|(1 − p)n−1−|S| − 1

)2

> t | E

]
dt

≤
∫ 1

n logn

0

1 · dt+

∫ 1

1
n logn

exp

(
−C5.3.10d · t

M(n, p,∆)2 lnn

)
dt

+

∫ e2nH(p)·( p
1−p)

∆

1

exp

(
−C5.3.10d

M(n, p,∆)2 lnn
+ C ′

5.3.10 log n

)
dt

≤ 1

n log n
− M(n, p,∆)2 lnn

C5.3.10d
exp

(
−C5.3.10d · t

M(n, p,∆)2 lnn

) ∣∣∣1
1

n logn

+ e2nH(p) ·
(

p

1 − p

)∆

· exp

(
−C5.3.10d

M(n, p,∆)2 lnn
+ C ′

5.3.10 log n

)
In the first line, we split the integral based on the appropriate tail bound expression in Corol-

lary 5.3.10, and also remark that it suffices to consider t ≤ e2nH(p) ·
(

p
1−p

)∆
, as νn(S|GGGn−1)

p|S|(1−p)n−1−|S|

is maximized at that value when |S| ≤ np + ∆. If we choose d ≥ n · M(n, p,∆)2 ·
ln3 n, we can bound each summation term individually to obtain the desired bound on

EGGGn−1∼ν[n−1]
ESSS∼Binom(n−1,p)

[(
νn(S|GGGn−1)

p|S|(1−p)n−1−|S| − 1
)2

· 1(E)

]
.

∫ ∞

0

Pr

[(
νn(S | GGGn−1)

p|S|(1 − p)n−1−|S| − 1

)2

> t | E

]
dt ≤ 1

n log n
+

1

n
· e− logn + e2nH(p) · e−Cn ln2 n

≤ o

(
1

n

)
We note that M(n, p,∆) ≤ max(np lnn, ln2 n) for 1

n
≤ p ≤ 1

2
, so we can restate our require-

ment on d as d = Ω̃(n3p2).
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5.5 Belief propagation over a continuous alphabet

In this section, we sketch some of the techniques used to prove Theorem 5.1.4. Full proofs are
in [LMSY22b]. As mentioned in Section 5.1.2, to obtain stronger bounds on PrGGG∼Geod(n,p)[NGGG(n) =
S], we need to average over different vector embeddings that still form GGG.

Let’s make this a bit more concrete. Say we instead want to compare

Pr
GGG∼Geod(n,p)

[NGGG(n) ⊇ S] to Pr
GGG∼G(n,p)

[NGGG(n) ⊇ S] = p|S|

Without loss of generality, let {vvv1, . . . , vvv|S|} be the vectors representing S. If somehow,
conditioned on {vvv1, . . . , vvvn−1} forming GGGn−1, the vectors {vvv1, . . . , vvv|S|} were independent and
each distributed according to ρ, then we would conclude that PrGGG∼Geod(n,p)[NGGG(n) ⊇ S] = p|S|

as well. Sadly, this is incorrect: {vvv1, . . . , vvvn−1} are not independent so long as GGGn−1 is
connected, and the dependences between them are potentially complex, based on how they
are connected within GGGn−1.

However, if there are no edges among them (which is the case when p = Θ
(
α
n

)
, it is

the case that {vvv1, . . . , vvvn−1} are independent conditioned on fixing {vvv|S|+1, . . . , vvvn−1}. This
is good news, but conditioning on the placements of the entire set {vvv|S|+1, . . . , vvvn−1} is
prohibitive. The marginals of each vector in {vvv1, . . . , vvv|S|} will not resemble ρ.

The game here is to condition on enough vectors to treat {vvv1, . . . , vvvn−1} independently,
but also have these vectors correspond to vertices far away from S, so the marginals of each
vector in {vvv1, . . . , vvvn−1} can get as close as possible to ρ. We found that when p = Θ

(
1
n

)
, the

logn
log logn

-neighborhoods around each vvvi for i ∈ S will be disconnected, and thus independent.
To estimate the marginal distributions of each vvvi for i ∈ S, we use the belief propagation
algorithm, detailed below.

5.5.1 Basics of CSPs and belief propagation

Definition 5.5.1. A constraint satisfaction problem instance (CSP instance) I consists of
a variable set V and a constraint set E:

• The variables v ∈ V each belong to an alphabet Σ.

• The constraints f ∈ E consist of a k-tuple of variables ∂f and a function

ψf : Σk → {0, 1}

Here, a value of 1 corresponds to a constraint being satisfied.

An assignment to variables c : V → Σ is satisfying if for each constraint f ∈ F ,

ψf (c(∂f)) = 1
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Definition 5.5.2. We can represent any CSP instance I as a bipartite graph F , which we
call a factor graph. The two sides of the bipartition are V and E, and we place an edge
between v ∈ V and f ∈ E if the variable v participates in constraint f . We use ∂v and ∂f
to denote the neighborhoods of variables v and clauses f , respectively, in this graph.

When the factor graph F does not contain cycles, the marginal on a variable v can be
computed exactly from the fixed point of the belief propagation algorithm.

Definition 5.5.3. A belief propagation fixed point for a factor graph F is a collection of
messages {

mv→f ,mf→v
}
v∈V,f∈E

for all pairs v, f such that f is a neighbor of v, where each message is a probability distribution
on Σ, such that

mf→v(x) ∝
∫
c|∂f :c(v)=x

ψf (c|∂f )
∏

v′∈∂f\v

mv′→f (c(v′)) (5.7)

mv→f (x) ∝
∏

f ′∈∂v\f

mf ′→v(x) (5.8)

Theorem 5.5.1 (Theorem 14.1 of [MM09]). Suppose F is a forest factor graph corresponding
to a CSP instance I where every vertex is attached to a unary constraint. Then there is a
unique belief propagation fixed point and the marginal distribution ν on variable v over the
uniform distribution over satisfying assignments to i is given via the following formula.

ν ∝
∏
f∈∂v

mf→v.

5.5.2 Belief propagation for sparse random geometric graphs

We want to set up a CSP that captures configurations of vectors {vvv1, . . . , vvvn−1} that form a
particular graph GGGn−1. Recall that we want to understand the marginals of vectors that are
within a logn

log logn
-depth neighborhood around S. Let K denote this set of vectors.

For vertices outside of K, we fix their vectors (i.e. they follow a Dirac delta distribution).
Let R = [n− 1] \K represent these vectors.

• The alphabet Σ is the unit sphere Sd−1, and the variables are vectors {vvvi} for i ∈ K.

• Unary constraints: We require each vi to respect their non-edges (and sometimes,
edges) to the vertices in R. Define

LLLi :=

 ⋂
j∈R\N(i)

cap(vvvj)

 ∩

 ⋂
j∈R∩N(i)

cap(vvvj)


Thus, we have constraints of the form f(vvvi) = 1 if vvvi ∈ LLLi and f(vvvi) = 0 otherwise.
Such f are unary ; they do not depend on multiple variables.
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Figure 5.2: The factor graph without non-edge constraints. Here, all circles with arrows
represent variable nodes, and solid circles represnet constraint nodes. The red variables
represent fixed vectors. The red solid circles are the unary constraints (which are non-edge
constraints to fixed vectors) while the blue solid circles are the edge constraints.

• Edge constraints: For each edge (i, j) in GGGn−1, we define a constraint f such that
f(vvvi, vvvj) = 1 when ⟨vvvi, vvvj⟩ ≥ τ(p, d) and f(vvvi, vvvj) = 0 otherwise.

• Non-edge constraints: For each non-edge (i, j), we have a constraint f that equals
1 when ⟨vvvi, vvvj⟩ < τ(p, d) and 0 otherwise (i.e. the opposite of the edge constraints).

For the rest of the chapter, we will assume the following simplifications:

Assumption 5.5.4. It suffices to consider the above CSP without non-edge contraints.

When p = Θ
(
1
n

)
, the likelihood that two random vectors do not have an edge is very

close to 1, and the non-edge constraints actually do not affect the solution space in a no-
ticeable way. Specifically, a random solution for the CSP without the non-edge constraints
is also a solution for the CPS with non-edge constraints with high probability. (We formally
prove this in Section 7.4 of [LMSY22b].)

Under these assumptions, and conditioned on Gn−1[K] being a forest, our factor graph
will also be a forest, depicted in Figure 5.2.
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In our setting, the BP equations are the following:

Variable-to-constraint messages:

mv→f =

∏
e∈∂v\f m

e→v∫ ∏
e∈∂v\f m

e→v(x)dρ(x)
(5.9)

Unary constraint-to-variable messages:

mf→v =
f∫

f(x)dρ(x)
(5.10)

Edge constraint-to-variable messages: Let ∂f = {v, w}, then:

mf→v(xv) =

∫
f(xv, xw) ·mw→f (xw)dρ(xw)∫ ∫

f(xv, xw) ·mw→f (xw)dρ(xw)dρ(xv)
(5.11)

Perhaps the unary constraint-to-variable messages are simplest to interpret; they are simply
the uniform distribution over LLLi, which depends on fixed (in the sense they are not BP
variables) but randomly chosen vectors corresponding to R.

Edge constraint-to-vertex messages as convolutions

The denominator in the case of edge constraint-to-vertex messages further simplifies:∫ ∫
f(xv, xw) ·mw→f

t (xw)dρ(xv)dρ(xw) =

∫
mw→f
t (xw)

∫
1[⟨xv, xw⟩ ≥ τ(p, d)]dρ(xv)dρ(xw)

= p

∫
mw→f
t (xw)dρ(xw)

= p

The final equality comes from the fact that each message mw→f
t is a distribution. For binary

constraints f such that ∂f = {v, w}, we can rewrite the constraint-to-vertex messages as:

mf→v
t+1 (xv) =

∫
f(xv, xw)

p
mw→f
t (xw)dρ(xw),

which, in particular, can be written as Pmw→f for a linear operator P , defined as follows:

Definition 5.5.5. Let P be the linear operator defined so that for any function h : Sd−1 → R,

Ph(x) =
1

p

∫
capp(x)

h(y) dρ(y),

which we alternately denote 1
p
· h(capp(x)).

In words, the operator P convolves its input with the uniform distribution over a spherical
cap. Since P is a convolution operator, it preserves the ℓ1-norm of nonnegative functions.
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Observation 5.5.6. Suppose ν is a nonnegative function, then ∥Pν∥1 = ∥ν∥1. Additionally,
for an arbitrary function ν, ∥Pν∥1 ≤ ∥ν∥1.

When ν is a distribution in particular, P can be construed as the transition operator of
the Markov chain on Sd−1 where a single step entails walking from v to a uniformly random
point in cap(v). The following useful observation is immediate from how we define P .

Observation 5.5.7. For any function ν, ∥Pν∥∞ ≤ ∥ν∥1
p

. This is because ν(cap(z)) ≤ ∥ν∥1
for any z ∈ Sd−1. In particular, if ν is a distribution, ∥Pν∥∞ ≤ 1

p
.

We will to show that P “flattens” the distribution; to quantify this “flatness,” we study the
spread of the distribution.

Definition 5.5.8. Given a function ν on Sd−1, its deviation profile is

Devν(ε) := Pr
zzz∼ρ

[ν(zzz) /∈ Eyyy∼ρ[ν(yyy)] ± ε · ∥ν∥1]

The spread profile of ν, denoted Sprν(δ), is

Sprν(δ) := inf {ε ∈ R≥0 : Devν(ε) ≤ δ} .

Smaller spread implies tighter concentration of ν(zzz) around its mean. Below, we see that

applying P reduces the spread of any function ν on the unit sphere by a factor of Õ
(

1√
d

)
.

Lemma 5.5.9. Let ν be any function on Sd−1 with Eyyy∼ρ[ν(yyy)] = 0. If

d ≥ log10 n ·
(

1 + log3 ∥ν∥∞
∥ν∥1

)
Then:

DevPν

(
ε · ∥ν∥1

∥Pν∥1

)
≤ n− log4 n

where ε :=
√

C log11 n
d

·
(

2 ln ∥ν∥∞
∥ν∥1 + 8 ln d

p

)
for C an absolute constant. Thus,

SprPν(n
− log4 n) ≤ ε · ∥ν∥1

∥Pν∥1

Now, let LLL :=
⋂
j∈R cap(vvvj). Recall we will overload notation and also use LLL to denote

the uniform distribution over LLL.
Many of the unary constraints–in fact, all of them above the roots of the BP factor tree–

involve the uniform distribution over LLL; when we perform the variable-to-constraint updates,
we will be continually taking restrictions of distributions over LLL. We thus establish that P
gives us a “spread contraction” for distributions close to the uniform distribution over LLL.
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Lemma 5.5.10. Let ν be a distribution over Sd−1 such that ∥ν∥∞ ≤ nlog5 n, and let

δ = dTV (ν,LLL)

Then, for a universal constant C,

SprPν

(
2n− log4 n

)
≤ max

2

√
log11 n

nd
, C · δ ·

√
log23 n

d


Our results from Section 5.2 help us prove these lemmas; the spread of Pν at any point is
precisely controlled by the concentration of the measure of a random sphere cap under ν. In
Section 5.5.3, we provide some additional analysis of the P operator.

Analyzing vertex-to-constraint messages.

Recall that our vertex-to-constraint messages are given as a product of the vertex’s incoming
messages. Each vertex’s incoming messages are themselves measures over Sd−1 that have
bounded spread; we show that as long as a vertex’s degree is bounded, the spread of their
product is not too large.

Lemma 5.5.11. Let ν1, . . . , νj be distributions over Sd−1 with intersecting support. For
each i ∈ [j], suppose Sprνi(ε) ≤ η and ∥νi∥∞ ≤ 1

p
. Further, assume η(j + 1) < 1

2
and jε

pj
≤ η.

Let ν be the distribution whose density is ν(x) ∝
∏j

i=1 νi(x). Then,

Sprν(j · ε) ≤ 8jη and ∥ν∥∞ ≤ 2

pj
.

As a consequence of Observation 5.5.17:

dTV (ν, ρ) ≤ 10jη.

Tracking “spread” up the BP tree

Starting from the leaves of the factor graph (Figure [fig:factor-graph]), we will track both
the infinity norm of the messages as well as their spread.

Definition 5.5.12. For a variable vertex v ∈ F , we use Ch(v) to denote the set of constraint
vertices corresponding to edges {v, w} for w that are children of v in T .

Definition 5.5.13. Given a vertex i ∈ V (T ) we say its tier is the distance to its closest
neighbor in R. In particular,

Tier(v) = min{β : v has a distance β to R}.

We use the convention that v is a descendant of itself and hence Tier(v) = 0 when v ∈ R.
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We make the following simplification, which holds with high probability when p = Θ
(
1
n

)
.

Assumption 5.5.14. We assume that the degree of every vertex in T is bounded by log2 n,
and that for every i ∈ V (T ), the ρ(Li) ≥ n− log3 n.

In Lemma 7.22 of [LMSY22b], we prove:

Lemma 5.5.15. For a variable vertex i in F , let νi be the distribution

νi ∝
∏

a∈Ch(i)

ma→i.

Then, for a universal constant C and ε := C
√

log27 n
d

:

Sprνi

(
n− log4 n/2

)
≤ min

ε,max

εTier(i), C

√
log15 n

nd


 and ∥νi∥∞ ≤ 2

plog
2 n
.

The thrust of the proof is sketched below:

Proof sketch. We proceed up the BP factor tree level by level. The outgoing messages from

any “edge constraint” node experience a Õ
(

1√
d

)
factor decrease in spread (Lemma 5.5.10),

and the outgoing messages also have ∞-norm upper bounded by 1
p

(Observation 5.5.7).

Then, when we consider a “variable” node νi, the bound ∥νi∥∞ ≤ 2

plog2 n
is immediate after

combining Lemma 5.5.11 with Assumption 5.5.14. We also obtain the correct contraction in
spread, using j ≤ log2 n; Lemma 5.5.11 also tells us that when we combine edge constraints
to a variable node, the spread only takes a polylog(n) hit.

5.5.3 A potential function for sphere cap convolutions

Recall the definition of deviation and spread, reproduced below.

Definition 5.5.16. Given a function ν on Sd−1, its deviation profile is

Devν(ε) := Pr
zzz∼ρ

[ν(zzz) /∈ Eyyy∼ρ[ν(yyy)] ± ε · ∥ν∥1]

The spread profile of ν, denoted Sprν(δ), is

Sprν(δ) := inf {ε ∈ R≥0 : Devν(ε) ≤ δ} .

In the special case where ν is a relative density of a distribution with respect to ρ,

Devν(ε) = Pr
zzz∼ρ

[|ν(zzz) − 1| > ε].

We comment that we can think of the spread profile as an “inverse” to the deviation profile,
since it takes in a tail probability and returns the corresponding deviation ε.

It now follows from averaging arguments that the deviation profile and spread profile of
a distribution ν give us useful upper and lower bounds on dTV (ν, ρ).
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Observation 5.5.17. For any ε > 0 and distribution ν,

Devν(ε) · ε ≤ dTV (ν, ρ) ≤ ε+ Devν(ε) · ∥ν∥∞

Similarly, for any δ > 0 and distribution ν,

δ · Sprν(δ) ≤ dTV (ν, ρ) ≤ Sprν(δ) + δ · ∥ν∥∞

We list some properties of the deviation and spread profiles that will be useful in our analysis.

Observation 5.5.18. Both the deviation profile and spread profile are non-increasing.

Observation 5.5.19. We have Devρ(ε) = 0 for all ε > 0 and Sprρ(δ) = 0 for all δ > 0.

Observation 5.5.20. Both the deviation and spread profiles are invariant under a constant
factor multiplication to ν, i.e. for α ̸= 0:

Devαν(ε) = Devν(ε) and Sprαν(δ) = Sprν(δ)

Observation 5.5.21. For ν = ν1 + ν2, and ε > 0, the deviation profile satisfies:

Devν

(
ε · ∥ν1∥1 + ∥ν2∥1

∥ν∥1

)
≤ Devν1(ε) + Devν2(ε)

The “triangle inequality” follows from the following containment of events:

{ν(zzz) /∈ Eyyy∼ρ[ν(y)] ± ε · (∥ν1∥1 + ∥ν2∥1)}
⊆ {ν1(zzz) /∈ Eyyy∼ρ[ν1(y)] ± ε · ∥ν1∥1} ∪ {ν2(zzz) /∈ Eyyy∼ρ[ν2(y)] ± ε · ∥ν2∥1}.

Similarly, we also have a “triangle inequality” for the spread profile. For ν = ν1 + ν2 and
δ1, δ2 > 0:

∥ν∥1 · Sprν(δ1 + δ2) ≤ ∥ν1∥1 · Sprν1(δ1) + ∥ν2∥1 · Sprν2(δ2)

We can think of the left hand side as the (1− δ1 − δ2)-confidence interval of ν, and the right
hand terms as the (1 − δ1)- and (1 − δ2)-confidence intervals of ν1 and ν2, respectively.

Proof of Lemma 5.5.9

The key property we use to establish Lemma 5.5.9 is that the value of ν(cap(zzz)) concentrates
when zzz is chosen uniformly at random from Sd−1 and ∥ν∥∞ is reasonably bounded. This was
already shown in Section 5.2; it is a nice coincidence that our prior results found additional
application here.

Proof of Lemma 5.5.9. First, let us write ν = ν+ − ν− where

ν+ = max(ν, 0) and ν− = −min(ν, 0)
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Here, both ν+ and ν− are nonnegative functions, and ∥ν∥ = 2∥ν+∥ = 2∥ν−∥ = ∥ν+∥+ ∥ν−∥
for ∥ ·∥ any ℓp norm. Since Pν = Pν+−Pν−, by Observation 5.5.21 and Observation 5.5.20:

DevPν

(
ε · ∥Pν

+∥1 + ∥Pν−∥1
∥Pν∥1

)
≤ DevPν+(ε) + DevPν−(ε) = Dev

P ν+

∥ν+∥
(ε) + Dev

P ν−
∥ν−∥

(ε).

Note that 1
∥ν+∥1ν

+ and 1
∥ν−∥1ν

− are both probability measures. By Definition 5.5.5, for any

x ∈ Sd−1:

Pν+(x)

∥ν+∥1
=

1

p
· ν

+(cap(x))

∥ν+∥1
and

Pν−(x)

∥ν−∥1
=

1

p
· ν

−(cap(x))

∥ν−∥1

By Corollary 5.2.9 with s set as 1
d
· C log5 n ·

(
2 ln ∥ν+∥∞

∥ν+∥1 + 8 ln d
p

)
for some constant C > 0:

Pr
xxx∼ρ

[∣∣∣∣1p · ν
+(cap(xxx))

∥ν+∥1
− 1

∣∣∣∣ > C · C5.2.9

√
1

d
· log

(
1

p

)
· log5(n) ·

(
2 ln

∥ν+∥∞
∥ν+∥1

+ 8 ln
d

p

)]
≤ 1

2
· n− log4 n.

Using p ≥ 1
n
, ∥ν+∥∞ ≤ ∥ν∥∞ and ∥ν+∥1 = 1

2
∥ν∥ we can conclude:

Dev Pν+

∥ν+∥
(ε) ≤ 1

2
n− log4 n.

Identically, Dev Pν−
∥ν−∥

(ε) ≤ 1
2
n− log4 n, and thus:

DevPν

(
ε · ∥Pν

+∥1 + ∥Pν−∥1
∥Pν∥1

)
≤ n− log4 n.

Since ν+ and ν− are nonnegative functions, ∥Pν+∥ = ∥ν+∥ and ∥Pν−∥ = ∥ν−∥, and the
desired statement then immediately follows.

Proof of Lemma 5.5.10

Lemma 5.5.22. Define

g (GGGn−1) := Pr
www1,...,wwwn−1∼ρGGGn−1

[
DevPLLL(ε) > n− log4 n

]
= Pr

www1,...,wwwn−1∼ρGGGn−1

[
SprPLLL

(
n− log4 n

)
> ε
]

for ε =
√

log11 n
nd

. Then, g (GGGn−1) is at most O
(
n− log2 n

)
except with probability O

(
n− log2 n

)
.
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Proof of Lemma 5.5.10. We can express ν = LLL+ ∆. Then, the triangle inequality for SprPν
as articulated in Observation 5.5.21 implies:

SprPν(2n
− log4 n) ≤ SprPLLL(n− log4 n) + ∥P∆∥1 · SprP∆(n− log4 n) (5.12)

By Lemma 5.5.22, SprPLLL(n− log4 n) ≤
√

log11 n
nd

.

We now turn our attention to P∆. We would like to understand P∆ through Lemma

5.5.9, but the lower bound on d of log10 n ·
(

1 + log3 ∥ν∥∞
∥ν∥1

)
in the hypothesis of its statement

prevents us from applying it when δ is too small, and hence we case on the value of δ.
Suppose δ ≤ n−2 log4 n, then by Observation 5.5.6, ∥P∆∥1 ≤ n−2 log4 n and thus by Markov’s
inequality SprP∆(n− log4 n) ≤ nlog4 n. Plugging this into Equation 5.12 gives:

SprPν(2n
− log4 n) ≤

√
log11 n

nd
+ n− log4 n ≤ 2

√
log11 n

nd
.

When δ > 2n− log4 n, by Lemma 5.5.9, we have for some constant C:

SprP∆(n− log4 n) ≤
√

1

d
· C log5.5 n ·

(
2 ln

nlog5 n

∥∆∥1
+ 8 ln

d

p

)
· ∥∆∥1
∥P∆∥1

≤
√

1

d
· C log5.5 n ·

(
4 log6 n+ 8 ln

d

p

)
· ∥∆∥1
∥P∆∥1

where the second inequality uses ∥∆∥1 = δ > n−2 log4 n. Consequently, plugging into Equation
5.12,

SprPν

(
n− log4 n

)
≤

√
log11 n

nd
+ C

√
log23 n

d
· δ

which completes the proof.
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Chapter 6

Random Geometric Graphs as HDXes

I would be complex
I would be cool [Swi19]

This chapter is based on joint work with Siqi Liu, Sidhanth Mohanty, and Tselil Schramm,
published in [LMSY22a]. We do not include full proofs; we only state some relevant results.

6.1 Problem statement and summary of results

While we have algebraic and combinatorial constructions of HDXes (for dimension 2), we are
quite far from a result like Friedman’s Theorem [Fri03] for expander graphs; we do not know
of a natural distribution over simplicial complexes from which to sample high-dimensional
expanders. Whether high-dimensional expanders are highly contrived objects or relatively
commonplace is still not known. See the upcoming Section 6.1.2 for a more thorough survey
of existing HDX constructions.

In this chapter, we study a natural distribution over 2-dimensional simplicial complexes,
inspired by the Geod(n, p) distribution, and prove that (with high probability), complexes
sampled from this distribution have local spectral expansion bounded away from 1

2
. Ideally,

these complexes would have constant degree, but we settle for average degree Θ(nε) for ε < 1.
To prove that these 2-dimensional simplicial complexes are local spectral expanders, it

suffices to just understand the expansions of the vertex neighborhoods (i.e. the links of the
vertices), because of Oppenheim’s trickle-down theorem:

Theorem 6.1.1 (Restatement of Theorem 2.2.1). Let X be a 2-dimensional simplicial com-
plex. If its 1-skeleton is connected, and the second eigenvalue of every link’s random walk
matrix is at most λ, then the second absolute eigenvalue of the random walk matrix of the
1-skeleton of X is at most λ

1−λ .
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This theorem explains the significance of λ = 1
2
, since when λ < 1

2
, local expansion “trickles

down” to imply global expansion. We will show that random geometric graphs, in a carefully-
chosen parameter regime, have sufficient link expansion.

6.1.1 Our results

We first describe how we use Geod(n, p) to sample a 2-dimensional simplicial complex.

Definition 6.1.1 (Random geometric complex). The random geometric k-complex Geo
(k)
d (n, p)

is the distribution defined by sampling GGG ∼ Geod(n, p) and taking the downward-closure of
the complex whose k-faces are the cliques of size (k + 1) in GGG.

Our main result proves that under mild conditions, random geometric 2-complexes of
degree nε are high-dimensional expanders enjoying the trickling-down phenomenon:

Theorem 6.1.2. For every 0 < ε < 1, there exist constants Cε and δ = exp(−O(1/ε)) such

that when HHH ∼ Geo
(2)
d (n, n−1+ε) for d = Cε log n, with high probability every vertex link of

HHH is a (1
2
− δ)-expander, and hence its 1-skeleton is a

(
1 − 4δ

1+2δ

)
-expander.

Remark 6.1.2. The complexes arising from Theorem 6.1.2 have degree bounded by O(n2ε)
with high probability, as the number of triangle a vertex participates in is the square of its
degree in the 1-skeleton.

Along the way to proving Theorem 6.1.2, we also analyze the spectrum of GGG ∼ Geod(n, p)
directly and obtain sharper control of its second eigenvalue in a more general setting, bound-
ing the spectral gap of random geometric graphs in the full high-dimensional (d →n ∞)
regime. To our knowledge, previous results in this vein are only for d ∼ n1/k for fixed
integers k [El 10; CS13; DV13; Bor13; FM19; LY22].

Theorem 6.1.3. Let GGG ∼ Geod(n, p) and τ := τ(p, d). Then GGG is a µ-expander w.h.p., with

µ := (1 + o(1)) · max

{
(1 + odτ2 (1)) · τ, log4 n

√
pn

}
and odτ2(1) denotes a function that goes to 0 as d · τ(p, d)2 → ∞.

Our family of random geometric 2-complexes also exhibits an example where Oppen-
heim’s trickle-down theorem is tight.

Proposition 6.1.3 (Trickling-down theorem is tight). For each λ ∈ (0, 1
2
] and η > 0 there

exists a 2-dimensional expander in which all vertex link eigenvalues are at most λ for which
the 1-skeleton is connected with eigenvalue at least λ

1−λ − η.
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Spectra of random restrictions

Theorem 6.1.3 (and morally Theorem 6.1.2) is a consequence of a more general theorem that
we prove concerning the spectral properties of random restrictions of graphs. We describe
this result here, both because it may be of independent interest, and because it may help
demystify Theorem 6.1.2.

Random restriction is a procedure for approximating a large graph X by a smaller graph
GGG: one selects a random subset of vertices SSS, and then takesGGG to be the induced graph X[SSS].
The random restriction GGG is now a smaller (and often sparser) approximation to X. This
idea has been useful in a number of contexts in theoretical computer science (e.g. [GGR98;
AVKK03; BHHS11; LRS15; Hop+17]). The core question here is: to what extent do random
restrictions actually inherit properties of the original graph? We will show that if random
walks on X mix rapidly enough, then random restrictions inherit the spectral properties of
the original graph.

To see the relevance of this result in our context, notice that a random geometric graph
on the sphere is a random restriction of the (infinite) graph with vertex set Sd−1 and edge
set {(u, v) | ⟨u, v⟩ ≥ τ}. Theorem 6.1.2 is then a consequence of the fact that the sphere is
itself a 2-dimensional expander. We state the theorem precisely below.

Definition 6.1.4 (Random restriction). Suppose X is a (possibly infinite) graph, and that
the simple random walk on X has unique stationary distribution ρ. We define an n-vertex
random restriction of X to be a graph GGG ∼ RRn(X) sampled by sampling n vertices inde-
pendently according to ρ, SSS ∼ ρ⊗n, then taking GGG = X[SSS] to be the graph induced on those
vertices.

We show that if the average degree in GGG is not too small, λ2(GGG) reflects the rapid mixing
of the random walk on X.

Theorem 6.1.4. Let X be a (possibly infinite) vertex-transitive graph on which the asso-
ciated simple random walk has a unique stationary distribution ρ, and let

p = Pr
GGG∼RRn(X)

[(i, j) ∈ E(GGG)]

be the marginal edge probability of a n-vertex random restriction of X. Suppose there exist
C ≥ 1 and λ ∈ [(np)−1/2, 1] such that for any k ∈ N, k-step walks on X satisfy the following
mixing property: for any distribution α over V (X),

dTV

(
Xkα, ρ

)
≤ C · λk,

where Xk denotes the k-step random walk operator on X. Furthermore, suppose pn ≫
C6 log4 n. Then for any constant γ > 0,

Pr
GGG∼RRn(X)

[∣∣∣λ2(ÂGGG)
∣∣∣ , ∣∣∣λn(ÂGGG)

∣∣∣ ≤ (1 + o(1)) · max

(
λ,

log4 n
√
pn

)]
≥ 1 − n−γ,

where ÂGGG is the (normalized) adjacency matrix of GGG.
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Remark 6.1.5. It is likely that some of the conditions of Theorem 6.1.4 could be weakened.
The decay of total variation could plausibly be replaced with a (much weaker) assumption
about the spectral gap of X; this would not impact our results for Sd−1, but may be useful
in other applications. Transitivity is assumed mostly to make the proof of Theorem 6.1.4 go
through at this level of generality; to prove Theorem 6.1.2 we re-prove a version of Theorem
6.1.4 for the specific non-transitive case where X is a link of a vector in the sphere (i.e. a
random geometric graph restricted to a spherical cap).

6.1.2 Related work

While so far we have focused on a spectral notion of high-dimensional expanders (HDX),
there are two additional notions: coboundary and cosystolic expansion. These are meant to
generalize the Cheeger constant, a cut-based measure of graph expansion.

Distributions over high-dimensional expanders

The existence of natural distributions over sparse HDXs has been a question of interest since
sparse HDX were first shown to exist (and this was highlighted as an important open problem
in e.g. [Lub18; Lub22]).

The early work of Linial and Meshulam [LM06] considered the distribution over 2-
dimensional complexes in which all edges

(
[n]
2

)
are included, and each triangle is included

independently with probability p; they identified the phase transition at p for coboundary
connectivity for this distribution (see also the follow-ups [BHK11; MW09; LP16]). This dis-
tribution has the drawback that the 1-skeleton of these complexes is Kn, and so the resulting
complex is far from sparse.

In [FGLNP12], the authors show that a union of d random partitions of [n] into sets of
size k+1 with high probability produces a geometric expander [Gro10b], which is a notion of
expansion which measures how much the faces must intersect when the complex is embedded
into Rk. The resulting complexes have disconnected links when d≪

√
n, and so they fail to

be spectral HDXs.
The work of [LMY20] introduces a distribution over spectral expanders with expansion

exactly 1
2

by taking a tensor product of a random graph and a HDX; the authors show that
down-up walks on these expanders mix rapidly, and [Gol21] introduces a reweighing of these
complexes which yields improved mixing time bounds. However, the links in these complexes
fail to satisfy λ < 1

2
, and so fall outside of the range of the trickling-down theorem. The

same drawback applies to [Con19; CTZ20]: they show that up-down walks mix on random
polylogarithmic-degree graphs given by subsampling a random set of generators of a Cayley
graph. However, these graphs do not satisfy the conditions of the trickling-down theorem.
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Explicit constructions of HDXes

One of the first constructions of sparse high-dimensional spectral expanders was the Ramanu-
jan complex of [CSŻ03; Li04; LSV05a; LSV05b], which generalize the Ramanujan expander
graphs of [LPS88b]. Not only are these spectral expanders, but [KKL14; EK16b] also show
that they are co-systolic expanders. These Ramanujan complexes are algebraic by nature,
constructed from the Cayley graphs of PSLd(Fq). Other algebraic constructions include that
of [KO18]; the authors analyze the expansion properties of coset complexes for various ma-
trix groups. They achieve sparse spectral expanders, with local expansion arbitrarily close to
0. More recently, [OP22] extend the coset complex construction to the more general family
of Chevalley groups.

A few combinatorial constructions for HDX are also known. [CLP20] prove that objects
called (a, b)-expanders are two-dimensional spectral expanders; they give a graph-product-
inspired construction of a family of such expanders, and show that other known complexes
[CSŻ03; Li04; LSV05a; LSV05b; KO18] are also (a, b)-expanders. Their work is extended by
[FI20] to higher dimensions.

Random geometric graphs and random kernel matrices

Random restrictions of metric spaces such as Sd−1 and [−1, 1]d are well-studied in the fixed-
dimensional regime, where d = O(1) and n → ∞ (see the survey of Penrose [Pen03]). In
our work, we are interested in the high-dimensional setting, where d → ∞ with n. The
high-dimensional setting was first studied only recently, initiated by [DGLU11; BDER16],
and many mysteries remain in this young area of study.

Our Theorem 6.1.3 is related to the study of kernel random matrices : random n × n
matrices whose (i, j)-th entry is given by fd (⟨uuui,uuuj⟩), for fd : R → R and uuu1, . . . ,uuun sampled
independently from some distribution over Rd. The special case of uuui ∼ Unif(Sd−1) and
fd(x) = 1[x ≥ τ(p, d)] yields the adjacency matrix of Geod(n, p). A line of work initiated by
[KG00] studies the spectrum of kernel random matrices [El 10; CS13; DV13; Bor13; FM19],
and the most recent work [LY22] characterizes the limiting empirical spectral distribution
when d = Θ(n1/k) for k a fixed constant and f can be “reasonably” approximated by
polynomials (in a sense that is flexible enough to capture the indicator fd(x) = 1[x ≥
τ(p, d)]). In comparison with our results, they characterize the entire empirical spectral
distribution, but we do not need to restrict d ∼ n1/k for integer k, which is crucial for our
applications.

6.1.3 Technical Overview

We now explain how we prove Theorem 6.1.2, which states that for a complex sampled from
HHH ∼ Geo

(2)
d (n, p) for p = n−1+ε with 0 < ε < 1 and d = Cε log n, with high probability

every link of HHH is a
(
1
2
− δ
)
-expander for some δ = exp(−O(1/ε)), and its 1-skeleton is a(

1 − 4δ
1+2δ

)
-expander. By the trickling-down theorem, it suffices for us to prove:
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1. All n vertices’ corresponding links in HHH are
(
1
2
− δ
)
-expanders with high probability.

2. The 1-skeleton of HHH is connected with high probability.

To show Item 2, it is enough to show that some reweighting of the 1-skeleton expands;
Item 1 implies that every edge (i, j) must participate in at least one triangle (otherwise
the link would contain isolated vertices), so the unweighted 1-skeleton is just the adjacency
matrix of an unweighted graph from Geod(n, p). En route to proving Item 1 we’ll prove that
unweighted random geometric graphs expand, by this logic yielding Item 2 a consequence.

Analyzing link expansion

We establish Item 1 by showing that that each of the n links is a
(
1
2
− δ
)
-expander with

probability 1 − o(1/n), then applying a union bound.
We can think of sampling the link of vertex iw in HHH by first choosing the number of

neighbors rrr ∼ Binom(n−1, p), then sampling rrr points vvv1, . . . , vvvrrr independently and uniformly
from a measure-p cap in Sd−1 centered at some point w (corresponding to the vector of the
link vertex iw), placing an edge between every i, j such that ⟨vvvi, vvvj⟩ ≥ τ(p, d). Finally, we
remove any isolated vertices; here, we’ll show that the graph expands with high probability
before removing these isolated vertices, which implies that no isolated vertices have to be
removed. For the remainder of the overview, let τ = τ(p, d). We’ll show that:

Theorem 6.1.5 (Informal). LetGGG be the link of some point w ∼ Sd−1 induced by vvv1, . . . , vvvm ∼
capp(w) . Then with high probability GGG is a µ-expander where

µ := (1 + o(1)) · max

{
τ

τ + 1
,

log4m
√
qm

}
+ od(1).

Here q = Pru,v∼Sd−2

[
⟨u, v⟩ ≥ τ

τ+1

]
.

Links are essentially random geometric graphs in one lower dimension

Since most of the measure of the cap lies close to its boundary, intuitively the link is dis-
tributed almost like a random geometric graph with points drawn independently from the
cap boundary, i.e. shellp(w) := {x : ⟨x,w⟩ = τ}. Our proof of Theorem 6.1.5 must pay
attention to the fluctuations in ⟨vvvi, w⟩− τ , but to simplify our current discussion, we assume
each link is in fact a random geometric graph on shellp(w).

Observe that a uniformly random vvv from shellp(w) is distributed as

τ · w +
√

1 − τ 2 · uuu

where uuu is a uniformly random unit vector orthogonal to w. Using this decomposition,

⟨vvvi, vvvj⟩ ≥ τ if and only if ⟨uuui,uuuj⟩ ≥
τ

1 + τ
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Thus, under our simplifying assumption, the link is distributed exactly like a random geo-
metric graph on Sd−2 with inner product threshold τ

1+τ
. Hence (up to the difference between

capp(w) and shellp(w)), to understand link expansion we can study the second eigenvalue of
a random geometric graph on the sphere.

Remark 6.1.6 (Requiring d = Θ(log n)). In light of Theorem 6.1.5 (and even the heuristic
discussion above), it turns out that d = Θ(log n) is the only regime for which the links can
be connected while the 1-skeleton has average degree ≪

√
n. To see this, we consider the

relationship between p, τ, and d:

p = Pr
vvv,vvv′∼Sd−1

[⟨vvv,vvv′⟩ ≥ τ ] = Θ
(

1
τd

)
·
(
1 − τ 2

) d−1
2 ≈ exp(−dτ 2/2). (6.1)

See Lemma 4.1.5 for a formal argument. The arguments above, in conjunction with Equation
6.1 imply that the probability that two vertices within a link are connected is also roughly

q = Pr
uuu,uuu′∼Sd−2

[
⟨uuu,uuu′⟩ ≥ τ

1+τ

]
= Θ

(
1
τd

)
·
(

1 − τ2

(1+τ)2

) d−2
2
,

since the link is like a random geometric graph on shellp(w).
Connectivity within the links in conjunction with sparsity requires us to have d ∈

Θ(log n): the number of vertices inside each link concentrates around m = np, so the average
degree inside the link is qm ≈ qpn. We must have the average link degree qpn ≥ 1, otherwise
the link is likely disconnected.

Now, if τ = o(1), then τ ≈ τ
1+τ

and p ≈ q, so

qpn ≥ 1 ⇒ p2n ⪆ 1 ⇒ p ⪆ n−1/2

ruling out a 1-skeleton with average degree ≪
√
n. Hence we need τ = Ω(1). Given that

τ = Ω(1), Equation 6.1 implies that to have the average 1-skeleton degree
√
n ≥ pn ≥ 1 we

need d ∈ Θ(log n).

Spectral expansion in random geometric graphs

We now explain how to prove near-sharp second eigenvalue bounds for random geometric
graphs (Theorem 6.1.3).

As mentioned above, Theorem 6.1.3 is a consequence of the more general Theorem 6.1.4
about the second eigenvalue of random restrictions of vertex-transitive graphs, and the in-
ner product threshold τ = τ(p, d) appears as the mixing rate of the random walk on Sd−1

where a step originating at v walks to a random vector in capp(v). Via standard concen-
tration arguments applied to the vertex degrees, to prove the above it suffices to bound
∥AGGG − EAGGG∥ ≤ µ · pn, where AGGG is the (unnormalized) adjacency matrix of GGG. We’ll focus
on the regime where pn≫ polylogn, so that µ ≈ τ .
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Trace method for random geometric graphs

To bound ∥AGGG − EAGGG∥, we employ the trace method, bounding the expected trace of a power
of AGGG−EAGGG. This is sufficient for the following reason: for convenience, let AGGG = AGGG−EAGGG,
and let ℓ be any non-negative, even integer. Since ℓ is even,∥∥AGGG∥∥ℓ =

∥∥∥AℓGGG∥∥∥ ≤ tr
(
A
ℓ

GGG

)
And so applying Markov’s inequality,

Pr

(∥∥AGGG∥∥ ≥ eε
(
Etr

(
A
ℓ

GGG

))1/ℓ)
= Pr

(∥∥AGGG∥∥ℓ ≥ eεℓEtr
(
A
ℓ

GGG

))
≤ exp(−εℓ).

Thus, our goal reduces to bounding the expectation of tr
(
A
ℓ

GGG

)
for a sufficiently large even

ℓ; in particular, if we choose ℓ≫ log n, then since AGGG has n eigenvalues, tr
(
A
ℓ

GGG

)1/ℓ
is a good

“soft-max” proxy for
∥∥AGGG∥∥, and we will obtain high-probability bounds.

We now explain why properties of random walks on Sd−1 naturally arise when applying

the trace method. Concretely, tr
(
A
ℓ

GGG

)
is a sum over products of entries of AGGG corresponding

to closed walks of length ℓ in the complete graph Kn on n vertices:

tr
(
A
ℓ

GGG

)
=

∑
i0,...,iℓ−1∈[n]

ℓ−1∏
t=0

(AGGG)itit+1 modℓ
,

The walk i0, i2, . . . , iℓ−1, i0 can be represented as a directed graph. When we take the expec-
tation, the symmetry of the distribution means that all sequences i0, . . . , iℓ−1 which result
in the same graph (up to relabeling) give the same value. That is, letting Wℓ be the set of
all such graphs, and for each W ∈ Wℓ letting NW be the number of ways it can arise in the
sum above,

Etr
(
A
ℓ

GGG

)
=
∑
W∈Wℓ

NW · E
∏

(i,j)∈W

(AGGG)ij. (6.2)

To bound this sum, we must bound the expectation contributed by each W ∈ Wℓ. For the
sake of this overview we will consider only the case when W = Cℓ, the cycle on ℓ vertices,
as it requires less accounting than the other cases; however it is reasonable to restrict our
attention to this case for now, as bounding it already demonstrates our main ideas, and
because this term roughly dominates the sum with NCℓ

≫ NW ′ for all other W ′ ∈ Wℓ at
ℓ = polylogn and pn≫ polylogn.1

We now bound the expectation for the case W = Cℓ; readers uninterested in the finer
details may skip to the conclusion in Equation 6.4. We expand the product using that

1 Briefly, this is because whenever i0, . . . , iℓ−1 are all distinct elements of [n], the resulting walk’s graph
is a cycle, and when ℓ = polylogn, ℓ indices sampled at random from [n] are all distinct with high probability.
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(AGGG)ij = AAAij − p (since E[AAAij] = p):

E
ℓ∏
i=1

(AAAi,i+1 − p) =
∑
T⊆[ℓ]

(−p)ℓ−|T |E
∏
i∈T

AAAi,i+1

=
∑
T⊆[ℓ]

(−p)ℓ−|T | Pr[{(i, i+ 1) : i ∈ T} is subgraph of GGG]. (6.3)

and thus our focus is to understand subgraph probabilities in a random geometric graph. It is
not too hard to see that when the edges specified by T form a forest, its subgraph probability
is p|T |, identical to its counterpart in an Erdös-Rényi graph; the nontrivial correlations
introduced by the geometry only play a role when T has cycles. Hence, the sum 6.3 simplifies,

E
ℓ∏
i=1

(AGGG)i,i+1 =
∑
T⊊[ℓ]

(−p)ℓ−|T |p|T | + Pr[Cℓ is subgraph of GGG]

= Pr[Cℓ is subgraph of GGG] − pℓ, (6.4)

where we used that the binomial sum is equal to (p− p)ℓ = 0.
Hence it remains to estimate the subgraph probability of a length-ℓ cycle. We will now

see how subgraph probabilities are related to the mixing rate of a random walk on Sd−1.

Subgraph probability of a cycle in a random geometric graph

For the cycle Cℓ = 0, 1, . . . , ℓ− 1, 0, by Bayes’ rule:

Pr[Cℓ ∈ GGG] =
ℓ−1∏
i=0

Pr[(i, i+ 1) ∈ GGG | ∀j < i, (j, j + 1) ∈ GGG]

= pℓ−1 · Pr[(ℓ− 1, 0) ∈ GGG | 0, 1, . . . ℓ− 1 ∈ GGG],

since in all but the step i + 1 = ℓ, the graph in question is a forest. Identifying each i with
a point xxxi on Sd−1, for any choice of xxx0 the above probability can equivalently be written as

pℓ−1 · Pr [⟨xxxℓ−1,xxx0⟩ ≥ τ | ⟨xxxi,xxxi+1⟩ ≥ τ : 0 ≤ i ≤ ℓ− 2]

Denoting with P the transition kernel of the random walk we alluded to earlier, where in
one step we walk from a point x to a uniformly random point in capp(x), we can write
the distribution of xxxℓ | {xxx0, ⟨xxxi,xxxi+1⟩ ≥ τ : 0 ≤ i ≤ ℓ− 2} as P ℓ−1δxxx0 where δxxx0 refers to the
point mass probability distribution supported at xxx0. In turn, we can write the subgraph
probability as:

pℓ−1 · Pr
xxxℓ−1∼P ℓ−1δxxx0

[
xxxℓ−1 ∈ capp(xxx0)

]
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If xxxℓ−1 were sampled from the uniform distribution ρ on Sd−1 then the probability of landing
in capp(xxx0) would be p, which lets us upper bound the subgraph probability by:

pℓ−1 ·
(
p+ dTV

(
P ℓ−1δxxx0 , ρ

))
.

The terms for more complicated subgraphs W ′ ∈ Wℓ also similarly depend on the mixing
properties of P via subgraph probabilities. Our next goal then is to understand the mixing
properties of P .

Remark 6.1.7. To prove 6.1.4 about random restrictions, the same strategy is used to relate
subgraph probabilities with mixing rate of the random walk on the original graph we start
with.

Mixing properties of P

We show that the walk over Sd−1 with transition kernel P contracts the TV distance by
coupling this discrete walk with the continuous Brownian motion Ut over Sd−1. Then via a
known log-Sobolev inequality for Brownian motion on spheres, we can prove the following
contraction property for P .

Theorem 6.1.6 (Informal). For any probability measure α over Sd−1 and integer k ≥ 0,

dTV

(
P k
p α, ρ

)
≤ ((1 + odτ2(1)) · τ)k−1 ·

√
1

2
log

1

p
,

where Pp denotes the transition kernel in which every x ∈ Sd−1 walks to a uniformly random
point in the measure-p cap around it and odτ2(1) denotes a function that goes to 0 as
dτ 2 → ∞.

In brief, the reason we are able to execute this coupling is that the probability mass
in Pδxxx0 concentrates around shell=τ (xxx0), and most of the ( 1

d−1
log 1

τ
)-step Brownian motion

starting from xxx0 concentrates at shell=τ (xxx0), so when t = 1
d−1

log 1
τ

the operators P and Ut
have similar action.

We can now apply Theorem 6.1.6 to bound dTV

(
P ℓ−1δxxx0 , ρ

)
with α = δxxx0 and k = ℓ− 1:

dTV

(
P ℓ−1δxxx0 , ρ

)
≤ ((1 + o(1))τ)ℓ−2

√
1
2

log 1
p
.

Spectral norm of random geometric graph

We now return to bounding the expected trace of A
ℓ

GGG; putting together the above, we have
the bound

E
∏

(i,j)∈Cℓ

(AGGG)ij ≤ Pr[Cℓ ∈ GGG] − pℓ

≤ pℓ−1
(
p+ dTV

(
P ℓ−1δxxx0 , ρ

))
− pℓ

≤ pℓ−1((1 + o(1))τ)ℓ−2
√

1
2

log 1
p
.
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The coefficient NCℓ
in front of the W = Cℓ term in Equation 6.2 is the number of

sequences i1, . . . , iℓ ∈ [n] which yield an ℓ-cycle graph; this happens if and only if all of the
indices are distinct, so NCℓ

= ℓ! ·
(
n
ℓ

)
≤ nℓ. Hence the contribution of the ℓ-cycle to the sum

is at most ((1 + o(1))npτ)ℓ−2 · poly(n) when p > 1/n. By a careful accounting similar to the
above for all graphs W ∈ Wℓ, one can show that in the parameter regime pn ≫ polylog(n)
and ℓ = polylogn, the term W = Cℓ contains (1 − o(1)) of the total value of this sum, so we
obtain the bound[

Etr(A
ℓ

GGG)
]1/ℓ

≤
(
(1 + o(1)) · ((1 + o(1))npτ)ℓ−2 · poly(n)

)1/ℓ
= (1 + o(1))npτ,

when we choose ℓ = ω(log n). Applying Markov’s inequality we conclude that

∥AGGG∥ ≤ (1 + o(1))npτ

with high probability, and normalizing by the degrees (which concentrate well around np)
we conclude our upper bound of τ in Theorem 6.1.3.
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Chapter 7

Conclusion and Open Problems

So many things that you wish I knew
But the story of us might be ending soon [Swi10]

Throughout this thesis, we have seen several instances of the interplay between geometric
ideas and techniques with the fundamentally discrete study of higher-order random walks
and high-dimensional expansion.

We now survey some open problems in several distinct directions, building off of discrete
sampling (Chapters 2 and 3), the toolkit for analyzing random geometric graphs (Chapters
4 and 5), and constructions of high-dimensional expanders (Chapter 6).

7.1 Additional questions about domain sparsification

The question of higher-order marginals. We saw in Section 3.3 that our analysis of our
domain sparsification scheme is tight for distributions satisfying 1

α
-entropic independence.

However, our analysis is not necessarily tight if we instead impose the stronger condition of
fractional log-concavity. In this case, if we use the higher-order marginals, could we sparsify
domains to sizes as small as O(poly(k) · polylog(n))? We make the following conjecture.

Conjecture 7.1.1 (Informal). Let µ be an α-fractionally-log-concave distribution for some
α = Ω(1). Given access to estimates for high-order marginals of the form PrS∼µ[T ⊆ S] for
all T of size ℓ ≃ 1/α, and an oracle that produces i.i.d. samples from these marginals, there is
a domain sparsification scheme for µ which reduces the domain size to O(poly(k)·polylog(n)).

We suspect that obtaining these domain sparsification schemes likely require entirely
new ideas. In fact, the original problem we set out to solve was: given pairwise marginals
and a 1

2
-fractionally log-concave distribution, can we sparsify the domain to the desired

O(poly(k) · polylog(n)) size? If we wanted to generalize the strategy of [AD20] to pairwise
marginals, we would need to count matchings in non-bipartite graphs, which still does not
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admit a FPRAS. Perhaps a reasonable starter question, specifically for α = 1
2

is whether we
can find such a domain sparsification scheme for the matching distribution or the asymmetric
DPP, which each have additional structure that might make the problem more tractable.

Extension to continuous domains. To our knowledge, the framework of higher order
random walks has not been formally extended to distributions over size-k subsets of a con-
tinuous domain; for instance, there is no explicit local-to-global theorem for continuous
domains. However, the work of [GR18] suggests that this is feasible. Their “Gibbs sampler”
implements a continuous version of a down-up walk, which is a higher-order walk known to
rapidly mix on HDXes.

One distribution of interest where the domain is continuous is the uniform distribution
over all vector embeddings {v1, . . . , vk} that realize a particular k-vertex graph G. From
our work on random geometric graphs, this problem is likely easier when the underlying
dimension d is high since the intersections of sphere caps exhibit tighter concentration.
Unfortunately, this is also the less-interesting setting where random geometric graphs are
statistically indistinguishable from Erdős-Rényi graphs anyways. It would be interesting to
find a regime where d is small, and the higher-order random walks allow us to sample from
this distribution.

If we could understand higher-order random walks in continuous domains, we can also ask
if we can implement domain sparsification. Does some version of subsampling to a discrete
subdomain suffice? Or could we be even use an inherently continuous method, like random
subspace projection?

7.2 Geometric graphs for modeling and data science

Alternative geometric graph models. One particular family of random geometric graphs
that could model communities and clustering is the geometric generalization of the stochastic
block model. There has been some prior work in the area ([GMPS18b]) that defines the
geometric block model by first sampling unit vectors uniformly from Rd, choosing an arbitrary
partition of the vectors into two “communities,” and then connecting vectors within each
community using a lower dot product threshold than vectors between the two communities.
The techniques we developed in [LMSY22b] could potentially be applied to understand when
we can distinguish the geometric block model from the stochastic block model.

We could impose even more structure to the block model: for instance, we can form the
block model’s communities based on geometric criteria rather than choosing them arbitrarily.
As an example, we could use a random hyperplane to divide the vectors. This may be a more
realistic model for the communities we see in practice, where feature vectors for members
in the same community tend to be closer. In this setting, we would hope that information
about the underlying geometry of the communities will give us more effective community
recovery algorithms.
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Other interesting models of random geometric graphs include those where edges are
placed between vectors probabilistically ([LR21b; LR21a]), or where edges are placed be-
tween vectors if the Euclidean distance between them falls into a range rather than exceeds
a threshold ([GMPS18a]). Recently, [MLS22] also study the problem of distinguishing an
Erdös-Rényi graph from a random geometric graph living in hyperbolic (negatively-curved)
space, as opposed to spherical (positively-curved) space. Fascinatingly, pure triangle counts,
which were effective for detecting spherical geometry ([BDER16]) are not effective tests for
underlying hyperbolic geometry. The question of indistinguishability in hyperbolic space
also remains open, and could be an interesting avenue of exploration as well.

Higher-order network analysis. Higher-order network analysis is an emerging research
area, motivated by the observation that some network dynamics cannot be modeled solely
using pairwise interactions (i.e. edges). In fact, there are networks we encounter in ecology
and neuroscience where models that include “higher-order” interactions, i.e. hypergraphs
networks, are suspected to provide better insights on the network behavior ([BGH21]).

Several natural theory questions ensue. What kinds of structural assumptions do we need
to place, so that we can get theoretical guarantees on the hypergraph algorithms used in
practice, like higher-order PageRank and clustering ([GLY15; YBLG17])? Also, does domain
sparsification admit a reasonable heuristic for speeding up such algorithms in practice?

7.3 New constructions of HDXes

As noted in Chapter 1, the study of high-dimensional expansion is still a emerging field, and
we do not fully understand their power over expander graphs in many application areas.
Finding additional application areas where HDXes have a demonstrated advantage is itself
an ongoing open problem.

We also remarked earlier that we don’t know many constructions of HDXes, to either use
in applications or, at a more basic level, to gain understanding of their inner workings. We
took a step towards this by proving local spectral expansion of random geometric graphs, but
they left something to be desired, as the parameters we required for local spectral expansion
forced polynomial average degree.

Another shortcoming of our construction is that we only obtain 2-dimensional expanders,
rather than k-dimensional ones for any constant k. However, we attribute this to a bottleneck
in analysis rather than a lack of confidence in the expansion of the k-faces’ links in Geod(n, p).
To analyze expansion of links of faces with more than one vertex, we would need to analyze
the random walk of the intersection of multiple sphere caps, which has a much more irregular
structure than a single sphere cap.

The random restriction route. We may hope to obtain HDXes with better parameters
if we consider different underlying geometries, rather than just the unit sphere. As noted
in Section 6.1.1, the random geometric complex fits in the broader framework of random
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restrictions of simplicial complexes: starting with a dense high-dimensional expander X, we
sample a subset of vertices SSS of X to produce the sparser induced complex X[SSS].

We have shown in Section 6.1.4 that X[SSS] (to some extent) inherits the spectral properties
of X itself, and we’ve leveraged this to show that for any polynomial average degree, one
can produce a 2-dimensional expander by taking a random restriction of X the sphere in
a particular dimension and with a particular connectivity distance. We hope that Section
6.1.4 (or a strengthening thereof, see Remark 6.1.5) might help us identify additional natural
distributions over sparser and/or higher-dimensional complexes. More specifically,

Is there a simplicial complex X whose random restrictions yield high-dimensional
expanders, whose links have eigenvalue < 1

2
, of sub-polynomial or polylogarithmic

degree?

We note that constant average degree would likely require additional work; this is not just
because of the polylogarithmic factors appearing in the statement of Theorem 6.1.4, but
because in a random restriction, the degree distribution of each vertex is Binom(n, p) and
so when p = Θ(1/n), we will have isolated vertices. This is the same as the phenomenon
wherein Erdös-Rényi graphs of degree O(1) are not expanders until one restricts to the giant
component. As a starting point, we remark that geometric graphs on the unit sphere work
because the corresponding X itself has link expansion better than 1

2
, witnessing that Sd−1

itself is an expander.
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[BBL09] Julius Borcea, Petter Brändén, and Thomas Liggett. “Negative dependence
and the geometry of polynomials”. In: Journal of the American Mathematical
Society 22.2 (2009), pp. 521–567.

[BBN20] Matthew Brennan, Guy Bresler, and Dheeraj Nagaraj. “Phase transitions
for detecting latent geometry in random graphs”. In: Probability Theory and
Related Fields 178.3 (2020), pp. 1215–1289.

[BCCFV10] Aditya Bhaskara et al. “Detecting high log-densities: an O(n1/4) approxi-
mation for densest k-subgraph”. In: Proceedings of the forty-second ACM
symposium on Theory of computing. 2010, pp. 201–210.
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