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Abstract

This project explores methods for motion synthesis from speech. Given a recorded speech sample we aim to generate joint angles for
body and hand motion that is realistic and corresponds to the input speech. We propose a diffusion-based method that uses Prosody
Embeddings as conditioning for a transformer encoder diffusion model. Our work emphasizes the importance of classifier-free guidance
during generation as a key factor in improving accuracy and realism of generated motion. We also find that using a velocity loss term is
a crucial aspect of learning motion patterns. Our results show that there is potential for Prosody Embeddings as conditioning for realistic
Motion synthesis, but additional conditioning may be necessary to generate motion with semantic connection to the input speech.

1 Introduction

Body and hand motion is one of the most important forms of non-
verbal communication and is used to convey emotion at a more
complex level than speech on its own. Motion can often provide
additional cues and context to the spoken words, by emphasiz-
ing key points or adding nuance to the speech content. In Al,
there is significant successful research work on building systems
from speech [13] and also from text [11] which explore a variety of
methods for generating realistic motion. Our work aims to explore
how conditioning from speech models can be used to potentially
improve motion synthesis.

The data sets we utilize for this work are the TalkSHOW [13]
data and a subset of the Beats v1.3 dataset [7]. This data comes
from speakers, talk show hosts, and lecturers, and captures ex-
pressive communication of speech and gestures. We work with a
train dataset of 13.5 thousand samples (most of which are 10 sec-
onds) and an evaluation set of 2k samples. We additionally train a
model on the TalkSHOW data of 11k train samples for evaluation
comparison with the TalkSHOW results.

Gesture generation for body and hand motion is a non-
deterministic problem when generating from speech or text, as
there are a vast amount of possible generations for given speech
that capture the intended emotion and expression. While model
training is achieved through Mean Squared Error, evaluating in
this style would not capture whether or not the model is general-
izing successfully. We evaluate for realism using Frechet distance
between ground truth and predicted latents (calculated using a
pretrained body motion auto encoder) to measure difference in la-
tent space probability distribution. Additionally, we will evaluate
diversity by calculating variance of outputted samples.

Through our experiments, we found that a variety of factors
influenced the success of our model. Two key findings were the
impact of classifier-free guidance and velocity loss. In this paper,
we will explore how these factors enable diffusion to successfully
generate realistic motion.

2 Related Work

2.1 Recent Methods for motion synthesis from speech

TalkSHOW: Generating Holistic 3D Human Motion from Speech
[13] provides the main dataset we utilize and approaches the
body/hand part of the problem through a compositional vector-

quantized variational autoencoder (VQ-VAE). This involves train-
ing encoders and decoders to map gestures to/from a discrete body
token codebook and hand token codebook. Then an autoregres-
sive model is trained to output these discrete tokens given audio
(post feature extraction). The TalkSHOW dataset is composed of
four main speakers (Conan, Chemistry, Oliver, Seth), three talk-
show hosts, and one lecturer who provide strong examples of ex-
pressive motion. The VQ-VAE method provides strong diversity of
generation and the cross-conditional autoregressive model should
provide both qualitative and quantitative evidence of realistic out-
put.

The EMAGE model [6] improves on the TalkSHOW method
through masked gesture generation as previously used in language
and vision models [3]. Similarly to TalkSHOW they leverage a VQ-
VAE discrete codebook for gesture reconstruction. Their method
shows that masked reconstruction can improve gesture genera-
tion, and is evaluated on a new dataset they compiled (BEAT 2.0).
While the TalkSHOW and EMAGE methods are quite successful,
neither utilize conditioning from existing Speech models and rely
on processing audio with their newly trained models. Thus, there
is potentially room for improvement through conditioned gener-
ation from successful Speech models.

2.2 Diffusion for Generative AI

One of the most successful recent methods for diverse conditioned
generation is Diffusion Probabilistic models, initially used for text
conditioned image generation [4]. Diffusion involves training a
model to "denoise" step by step to generate output. This is accom-
plished by adding noise to the training data and training the model
to learn the distribution difference between each diffusion step.
Then at generation the model can start from noise and through
several model steps denoise the data back to the ground-truth
distribution. A key aspect of this is conditioning the diffusion
model to guide the denoising process to the specific data the model
should generate.

In Human Motion Diffusion Model [11], diffusion is used to gen-
erate motion from text-based task descriptions, for example, "A
person walking in a straight line," or "A person tying their shoe."
This is achieved through a language embedding generated from
CLIP [9] used as a conditioning input for the diffusion model.
MDM’s success in using text conditioning inspired our method as
we attempt to apply diffusion for speech to motion synthesis.



Motion Diffusion from Speech

3 Method

For a given audio sample, we aim to generate motion that cor-
responds to the sample and appears realistic and accurate to the
speech. Gestures are measured in joint angles of labelled body
parts at 30 frames per second. For this work we focus on body and
hand joints, which are 39-dimensional vectors representing joint
angles of the upper body, and 90-dimensional vectors representing
angles of the hand joints. We explored deep learning methods and
decided to approach this problem through a diffusion framework
that is conditioned on a high-level representation of the input au-
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Figure 1. The MDM Diffusion process, starting from a noise distribution
and with each step outputting a prediction of the gestures (as opposed to

noise). This enables geometric loss terms that use the ground truth ges-
tures.

3.1 Motion Generation via Diffusion

Motion is both high dimensional and temporal, and thus it is dif-
ficult to train a single model to output Motion directly from au-
dio. TalkSHOW and Emage circumvent this by learning a discrete
codebook representation of gestures. Experiments with trans-
former systems (both autoregressive and non-autoreggresive)
were not successful at directly outputting the 129 dimensional ges-
tures, but Human Motion Diffusion Model [11] inspired us to ap-
proach this problem through denoising. Their model (MDM) is
a transformer encoder that can be conditioned through a single
CLIP language embedding vector that is summed with the diffu-
sion timestep conditioning and given as the first input to the trans-
former encoder. A key aspect of this system is it predicts the sam-
ple at each diffusion time step [10] instead of the noise as seen in
Figure 1 (contrary to how typical diffusion models output). The
input for the next step of denoising is calculated by diffusing the
predicted gestures up to the following timestep. Calculating the
raw gestures at each step enables calculating geometric loss terms,
such as using the ground truth for Mean Squared Error and us-
ing the generated motion for velocity loss. Additionally, this work
used classifier-free guidance through unconditioned training in
order to guide output generation to match the input conditioning
more closely. This is an important aspect of their method that was
pivotal to the realism of our speech-to-motion model generations.

[5].

3.2 Prosody Embeddings from Seamless Expressive

As our problem is from speech audio to motion, conditioning a
diffusion transformer is not easily solved in the same way MDM

uses CLIP Language Embeddings. This is where leveraging work
in Speech generation has potential to lead to strong motion syn-
thesis. Seamless Expressive [1] is a model system from Facebook
that translate speech to speech across several languages. This sys-
tem first encodes input speech represented as 80-dim MEL filter-
barks to high level XLSR units. Additionally they use a separate
model to encode the MEL filterbanks into a single vector prosody
embedding. Then, these units are converted to the translated lan-
guage using transformers conditioned on the target language and
these prosody embeddings.
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Figure 2. Visual from [1]. The PRETSSEL Textless acoustic Model utilizes
Expressivity encodings as conditioning for the audio synthesis pipeline to
maintain style and paralinguistics from source language during transla-
tion. We can use these encodings for a similar effect in motion synthesis.

Prosody in this context refers to paralinguistic communication,
pertaining not non-semantic aspects of the input speech including
style, emphasis and rhythm. In the context of language translation
this is crucial in maintaining the same vocal style in the output
speech. These embeddings are calculated using a expressivity en-
coder based on the ECAPA-TDNN architecture (strong at captur-
ing acoustic representations [2]) that extracts a 512-dimensional
vector directly from the input speech MEL filterbanks. This ex-
pressivity encoder is jointly trained with the PRETSSEL [1] text-
less acoustic model which outputs raw audio, and thus learns
temporally aligned prosody. During audio synthesis PRETSSEL
uses the expressivity embedding as conditioning at each step of
the generation process as seen in Figure 2. We propose that this
prosody vector can be used for a similar effect to the CLIP embed-
dings in body/hand motion generation.

We additionally experimented with using the Seamless PRETS-
SEL Model to encode XLSR unit representations of the input au-
dio for additional semantic conditioning, but experiments thus far
have been unsuccessful in consistently outputting reasonable mo-
tion (see Figure 6. This will be explored more in future work.
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Figure 3. We utilize prosody embeddings as conditioning for the MDM
model. The model input is a single conditioning vector of timestep +
prosody (sometimes masked out for unconditional generation), followed
by the gesture sequence at diffusion timestep t. The output is the corre-
sponding gesture sequence at t=0, which will be diffused back to timestep
t-1 for the next diffusion step.

3.3 Model and Training Experiments

Our diffusion model architecture is visualized in Figure 3, and
is centered around a Transformer encoder following the standard
architecture of Vaswani et al [12] and following hyperparameters
similar to Motion Diffusion Model (d,;,o4.; = 512). The additional
model components include:

« Expressivity Encoder: Calculates Prosody embeddings as
a single vector of size d,,,4¢; from input Audio (given as a
80-bin MEL filterbank).

« Timestep MLP: Encodes the input diffusion timestep to a

single vector of size dy,pge1- As seen in Figure 3 we sum this

conditioning with the Prosody embeddings

Positional Encoder: We use an unweighted positional en-

coder following [12] to encode the Timestep and in the input

to the transformer

« Gesture Upscale: Linear layer to project input gestures
from 129-dim vectors (39 body + 90 hand) to d,;,o g1

« Gesture Projection: Linear layer to downscale Transformer
outputs from d,,, 4. to gesture dim.

Initially our training experiments resulted in visually incorrect
outputs, even though MSELoss was decreasing the output would
be completely different from the ground truth (even training set
examples). Even when overfitting on a tiny subset of data (e.g.
16 data points) a shakiness would appear, when the loss would
indicate that the output should match the ground truth almost
exactly. Concretely, the output would match the pattern of the
ground truth but the hands and body would be jittering at a high
frequency that made the output unrealistic. This was solved at
generation time through classifier-free guidance [5]. In other dif-
fusion models guidance (specifically image generation) is applied
using image classifiers to ensure the model outputs what the con-
ditioning dictates. In Motion Diffusion Model they apply a clas-
sifier free guidance by weighing unconditioned output with con-
ditioned output which in the context of the text-to-motion model
effectively trades diversity in output for accuracy and adherence
to the text conditioning:

=

= Xuncond + Aguide (ffcond - JAcuncona') (1)
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In our application, adding this unconditioned output term with
a guidance scale of 2.5 seems to crucially improve the realism of
the outputs . This required training the model for unconditioned
examples as well, where we would mask out the prosody condi-
tioning randomly for a subset of each batch during training so
that the model learns to generate good motion without needing
prosody guidance.

When scaling up to the full dataset, another problem we
encountered was the model biasing towards less motion even af-
ter hundreds of epochs. One key finding we found experimentally
was the importance of velocity loss in synthesis from speech.
Velocity loss refers to adding a loss term equal to the average
delta on output gestures. With %% as output generation where
the sequence length is N, and x¢ as ground truth we can define
our training loss function.

Limse = (x0 - X:O)Z (2)
Lyer = Aver * (onl:N - xg:Nil) ®3)
Liot = Lmse + Lvel (4)

This loss term being added to the MSELoss should encourage the
model to match the velocity and frame changes of the ground
truth.

Our best model was trained with the following parameters:

H Parameter Value H
Encoder Dim 512
Attn Heads 4
Encoder Lyrs 8
Feedforward dim 1024
Batch Size 64
Learning Rate 0.0001
Avel 5.0
Uncond Training Prob 0.1
Num Diffusion Steps 1000
Total Train steps 500000

Table 1: Transformer Encoder and Training Hyperparameters

4 Results
4.1 Our Quantitative Metrics

+ Realism: We define FGD as the Frechet distance between

latent representations of ground truth gestures and predicted
gestures, and use FGD as our measure of realism.
Frechet distance is a metric for calculating the distance be-
tween two distributions, and is commonly used in Motion
synthesis [8][6]. Using TalkSHOW’s pretrained body au-
toencoder we could map our generated gestures and the
ground truth motion into a motion latent space to measure
distribution difference between generation and ground truth.
Define pip, % as the mean and covariance of the prediction
latents and Hg, Zg as the mean and covariance of the ground
truth latents.

FGD = d* = |y — pg| + tr(Sp + 59 — 2(2p%9) V%) (5)
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The closer the generated distribution is to the motion latent
space, the likelihood that the generations are visually real-
istic and coherent increases in accordance. This is a way to
measure the realism of our generations. In the TalkSHOW
paper they train a classifier for real and Al motion, but as
their classifier is unreleased, we shall use the Frechet dis-
tance as our primary metric of realism.
Diversity: We measure diversity in output generation with
variance. The variance Var is calculated from 8 samples gen-
erated for each input. For a particular input, Var is calculated
across the sample dim, then averaged over the gesture and
time dimensions. This gives us a metric for diversity, as a
model that has high output Variance and low Frechet dis-
tance is both realistic and diverse.
« Activity: To report the effect of velocity training, we can
calculate the max generated velocity MaxV (by magnitude)
for each sequence in the evaluation set. With XO;N as the i’th

output generation of length N for a evaluation set of size K,
we calculate MaxV as follows:

}2_(111)\/ _ )QO:N—1| (6)

1 K
MaxV = X i;)max ()

4.2 Quantitative Evaluation

To evaluate against the TalkSHOW model we use a version of the
model trained on our train/val/test split of the data with a code-
book size of 512 for hand and 512 body (original paper uses 1024
for both). The best TalkSHOW model from the original paper was
also cross conditioned with the face motion, which our problem
does not include. The main version of our Diffusion model was
trained on about 2k more datapoints from the Beats v1.3 dataset.
We additionally compare with a version of our model only trained
on the TalkSHOW data for direct comparison.

H Model FGD | Var? MaxV H
TalkSHOW 22.94 969 0.58
Ours (w/o beats) Aye; = 0.5 23.03 .487 0.53
Ours, Aye; = 0.0 135.90 669 5.58e-05
Ours, Age; = 0.2 2592 583 0.48
Ours (w/o CF guidance) A,e; = 0.5 137.32 .619 0.52
Ours, Age; = 0.5 2478 562 0.55

Table 2: Quantitative realism and diversity evaluation on
TalkSHOW test set. 1 and | indicate whether a higher number is
better or worse respectively.

Looking at the realism metric, our model with velocity =
0.5 and classifier-free guidance trained on the TalkSHOW data
exclusively led to the best result of 23.03, only 0.07 less then the
TalkSHOW model we trained. We can see the impact of both
guided generation and velocity training as models without these
additional elements were generating output very far away from
the ground truth latent space.

Our model was unable to match the same level of diversity as
the TalkSHOW model, in fact our best score on this metric came
from our model trained without velocity loss. This leads us to con-
clude that 1. Diversity is an important metric only if the model is
generating realistic results, and 2. Prosody Embeddings do not
give enough context for the model to learn a variety of gesture

patterns which results in our outputs following similar patterns
each generation.

We additionally see that without a velocity component in the
loss during training, Our method is unable to learn motion and
essentially learns to stand still as a way to minimize loss.

4.3 Qualitative Analysis

When visually inspecting the outputs from our trained model, 3
main takeaways stand out:

« Prosody embeddings preserve realistic motion and joint an-
gles are cohesive.

« Our generations are connected with the emotion of the
speaker but not with the words.

+ Our model lacks semantically meaningful generations.

Figure 4. 3 snapshots in order from top to bottom from a John Oliver Mo-
tion generation. Our generation is on the left and the ground truth is on the
right. The speech containing these frames is: "Maduro, The big banana fan
comes in because because he was Chavez’s hand picked successor but un-
fortunately had neither his booming economy nor his charisma, although
he is dead." Each bolded word corresponds with each frame in order.

Our model generates plausible motion that can often pass for
reasonable gestures, but fails to be expressive enough to be use-
ful yet. Example outputs appear robotic on occasion but usually
follow reasonable patterns and realistic motions.

However many outputs seem to be less expressive as the ground
truth, and often we can observe this as a lack of connection to the
specific words being spoken. For example, during a clip where
the speakers pitch changes to a more aggressive emotional tone,
the hand gestures will match the change in energy, but they are
unlikely to match the emphasis on syllables that are in the ground
truth.

Looking at the example in Figure 4, the beginning of the speech
matches the pose pretty well, but our generation switches to an al-

Journal X (2023) 12:684



ternate position earlier than the ground truth, By itself, this isn’t a
huge issue as long as the movement was realistic. Once in the new
position, the speaker (John Oliver) begins to emphasis words in a
way that the hands are forcefully motioning downwards with each
down-syllable. Specifically, He says "Hand Picked Successor",
which corresponds to the rhythm of the hand motion. Our gen-
eration has similar hand motion but doesn’t match the rhythm of
the ground truth.

Figure 5. 3 snapshots in order from top to bottom from a Conan motion
generation. Our generation is on the left and the ground truth is on the
right. The speech corresponding to the motion: "In a new interview, Pres-
ident Trump reveals that he tweets in bed...(pause)...yeah. When asked
about this.."

In addition to sometimes missing on rhythm, the generation
will occasionally output the correct gesture at the wrong time. For
example the Conan generation in Figure 5 includes Conan stating
a headline and pausing ironically. During the pause, he puts his
arms up in exasperation. In our generation, this particular motion
happens both before the pause and after the pause. Its certainly
difficult to learn a specific motion during speaker silence, but a
more realistic output would not have this motion during the Co-
nan’s recitation of the headline. This suggests that the Prosody
embeddings do not contain quite enough temporal information to
consistently output gestures at the precise time, especially during
pauses.

Our main attempt at solving this was through PRETSSEL [1]
encoded sequences, which are prosody conditioned semantic se-
quences, and after decoding can be up-sampled to audio. This
intermediate sequence seemed plausible to be used as in-context
inputted right before the gestures in our transformer encoder.
We conducted several experiments with this concept and it ap-
peared that this occasionally imparted the context we were look-
ing for, specifically gestures that were more connected with what
the speaker was saying. However, realistic gestures were only

Journal X (2023) 12:684
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Figure 6. 2 snapshots in order from top to bottom from a Oliver motion
generation using PRETSSEL encoder sequences as conditioning. Our gen-
eration is on the left and the ground truth is on the right. The sentence
being spoken is "Chavez was massively popular in venezuela, beloved
for both his generous social programs and his large.."".

achieved a fraction of the time, and more commonly the motion
would be random and unrealistic. Looking at Figure 6 the motion
does occasionally match the rhythm and cadence of the words be-
ing spoken but repeatedly enters unrealistic positions and wran-
gled motion: in this case the hands splay through each other un-
naturally on the word "Chavez" before returning to more normal
motion. While this method did not work we are still led to believe
that additional conditioning above prosody embeddings is neces-
sary to output better gestures.

5 Conclusion

Motion Diffusion from from speech can be approached in a variety
of ways, and we sought to use conditioning obtained from exist-
ing successful speech models. The Prosody Embeddings we used
from SeamlessExpressive resulted in motion comparably realistic
to the TalkSHOW model, achieved through our use of velocity loss
and classifier-free guidance. However our generations were not as
high in diversity of output and not as qualitatively connected to
the input speech. A main reason for this is that Prosody embed-
dings were not enough to connect motion to syllable level empha-
sis and word level meaning. As we build on this work, it will be
crucial to improve our conditioning to capture more information
about the speech while preserving realism.
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