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Abstract

Learning Open-World Robot Navigation from Experience

by

Dhruv Shah
Master of Science in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Sergey Levine, Chair

This report presents a novel approach to long-range robot navigation that combines
machine learning with high-level planning. We posit that robust navigation in challenging,
real-world environments requires both the ability to learn skills from past experience of
the robot, as well as an explicit memory for planning and search. For the former, we
describe an algorithm for experiential learning for visual navigation, where the robot can
learn navigation behaviors directly from its past experience in the real world. For the
latter, we design algorithms and systems that combine the low-level learned policy with
a high-level topological memory, enabling long-range navigation and exploration in a
scalable manner. By combining a learned policy with a topological graph, our system
can determine how to reach a visually indicated goal even in the presence of variable
appearance and lighting, making it robust for real-world deployment. To reach goals in
previously unseen environments, we use a learned latent goal model to learn a density
function of reachable future goals and plan over this distribution using the topological
memory. Finally, we extend this system so that it can utilize side information, such as
schematic roadmaps or satellite imagery, as a planning heuristic. Combining a learned
low-level policy with a high-level planner and a learned heuristic allows our learning-
based system to navigate kilometer-scale environments in a variety of locations and
lighting conditions without any human intervention or collisions. The robotic systems
developed in this report serve as a prototype for deploying machine learning models in
challenging real-world environments, using a combination of learning and planning.
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1
I N T R O D U C T I O N

Robot navigation is one of the most heavily studied topics in robotics [100]. It is often
approached in terms of mapping and planning: constructing a geometric representation of
the world from observations, then planning through this model using motion planning
algorithms [111, 12, 9]. However, such geometric approaches abstract away significant
physical and semantic aspects of the navigation problem that in practice leave a range
of real-world situations difficult to handle. These challenges require special handling,
resulting in complex systems with many components. Some works have sought to
incorporate machine learning techniques to either learn navigational skills from simulation
or to learn perception systems for navigation for human-provided labels. In this article, we
instead argue that learned navigational models, trained directly on real-world experience
rather than human-provided labels or simulators, provide the most promising long-term
direction for a general solution to navigation. We refer to such learning approaches
as experiential learning, because they learn directly from past experience of performing
real-world navigation [66]. We will also discuss how this experiential learning paradigm
can be combined with high-level planning to build robotic systems that can be robustly
deployed in challenging environments.

Geometry-based methods for navigation, based on mapping and planning, are appeal-
ing in large part because they simplify the navigation problem into a concise geometric
abstraction: if the 3D shape of the environment can be inferred from observations, this
can be used to construct an accurate geometric model, a path to the destination can be
planned within this model, and that path can then be executed in the real world. However,
although some idealized environments fit neatly into this geometric abstraction, real-
world settings have a tendency to confound it. Obstacles are not always rigid impassable
barriers (e.g., tall grass), and areas that appear geometrically passable might not be (e.g.,
mud, foliage, etc.). Real-world environments also exhibit patterns that are not used by
purely geometric approaches: roads often (but not always) intersect at right angles, city
blocks tend to be of equal size, and buildings are often rectangular. Such patterns can
lead to convenient shortcuts and intuitive behaviors that are often exploited by humans.

Machine learning can offer an appealing toolkit for addressing these complex situ-
ations and exploiting such patterns. In this article, we will focus on the paradigm of
experiential learning, where a robot learns how to navigate directly from its experience of
driving around in the real-world.

1



Introduction 2

Algorithms that learn robotic policies from experience often employ “end-to-end”
learning methods [67, 120]. This can either mean that the robot learns the task directly
from final task outcome feedback, or that it learns directly from raw sensory percep-
tion. Both have appealing benefits, but particularly the former is a critical strength
of experiential learning: only by associating actual real-world trajectories with actual
real-world outcomes can a robot acquire navigational skills that are not vulnerable to the
“leaky abstractions” that afflict other manually designed techniques. For example, the
abstraction of geometry doesn’t capture that tall grass is traversable. The abstraction of a
simulator that doesn’t model wheel slip doesn’t capture that wheels can become stuck in
mud. By learning about real outcomes from real data, such issues can be eliminated.

As we will discuss in subsequent chapters, learned navigation systems can (and
should) still employ modularity and compositionality to solve temporally extended tasks.
We will argue that effective learning systems, like conventional mapping and planning
methods, should still be divided into two parts: a memory or “mental map” of their
environment, and a high-level planning algorithm that uses this mental map to choose
a route. Conventional methods simply choose specific abstractions, such as meshes or
points in Cartesian space, to represent this map, whereas learning-based methods learn a
suitable abstraction from data. These learned abstractions are grounded in the things that
are actually important for real-world traversability, and they improve as the robot gathers
more and more experience in the environment.

The central principle behind experiential learning is to learn from actual experience of
attempting (and succeeding or failing) to perform a given task, as opposed to learning
from human-provided labels, such as semantic labels provided by humans (e.g., road
vs. not road), or demonstrations. Perhaps the best known framework for experiential
learning is reinforcement learning (RL) [106], which formulates the problem in terms
of learning to maximize reward signals through active online exploration. However, we
will make a distinction between the principle of experiential learning – learning how to
perform a task using experience – and the methodology prescribed by RL. This is because
the primary benefits really come from the use of experience, rather than the specific
choice of algorithm (RL or otherwise). The particular methods discussed in this report
use simple supervised learning methods, though they can be seen as a particularly naı̈ve
version of offline RL [68] and could likely utilize more advanced and modern offline RL
methods as well.

The goal of this report is to provide a high-level tutorial on how long-range open-
world navigational systems can be trained, provide pointers to relevant recent works,
and present the overall architecture that a navigational system learned from experience
should have. The remainder of this report will focus on building a long-range open-world
learned robotic system that can navigate previously unseen kilometer-scale environments,
such as suburban neighborhoods and university campuses. We will start by describing
the principle of experiential learning, as applied to training goal-reaching navigation
policies in Chapter 2. This system will use a combination of end-to-end learning and high-
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level planning using a topological memory, and be deployable in challenging real-world
environments. We will then extend the capabilities of this system in Chapter 3 by training
a data-driven exploration prior to explore novel environments. Lastly, in Chapter 4, we
will demonstrate how this robotic system can learn from external cues such as satellite
imagery or roadmaps to intelligently guide the robot in unseen environments, so that it
can explore semantic patterns such as driving on roads and hiking trails.

The robotic system developed in this report serves as a prototype of deploying
machine learning models, which can learn from their experience and improve over time,
in challenging real-world environments, using a combination of learning and planning.
The subsequent chapters of this report contain findings from the following research
articles, written over the period of 2020–21:

1. Shah et al., ”ViNG: Learning Open-World Navigation with Visual Goals” in Interna-
tional Conference on Robotics and Automation (ICRA), 2021

2. Shah et al., ”Rapid Exploration for Open-World Navigation with Latent Goal
Models” in Conference on Robot Learning (CoRL), 2021

3. Shah and Levine, ”ViKiNG: Vision-Based Kilometer-Scale Navigation with Geo-
graphic Hints” in Robotics: Science and Systems (RSS), 2022.
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L E A R N I N G O P E N - W O R L D N AV I G AT I O N W I T H V I S UA L G O A L S

Synopsis

We propose a learning-based navigation system for reaching visually indicated goals
in a previously seen environment, and demonstrate this system on a real mobile robot
platform. By combining a learned policy with a topological graph constructed out
of previously observed data, our system can determine how to reach this visually
indicated goal even in the presence of variable appearance and lighting. Three key
insights, waypoint proposal, graph pruning and negative mining, enable our method
to learn to navigate in real-world environments using only offline data, a setting where
prior methods struggle. We instantiate our method on a real outdoor ground robot and
show that our system, which we call ViNG, outperforms previously-proposed methods
for goal-conditioned reinforcement learning. We also study how ViNG generalizes
to unseen environments and evaluate its ability to adapt to such an environment
with growing experience. Finally, we demonstrate ViNG on a number of real-world
applications, such as last-mile delivery and warehouse inspection.

2.1 introduction

Visual navigation in complex environments poses several challenges: (i) difficulty in
faithfully modeling the complex dynamics and nuanced environmental interactions; (ii)
reacting to high-dimensional observations; (iii) cost and safety constraints on collecting
data, requiring learning from previously collected (i.e., “offline”) experience; and (iv)
generalizing effectively across different settings and environments. Planning algorithms
achieve many of these desiderata, but their efficacy depends on having the right rep-
resentation of the task; it remains unclear how to apply many planning algorithms to
tasks with image-based observations. On the other hand, humans seemingly have little
difficulty navigating complex environments from first-person observations, without GPS
or maps, if they have seen the environment before. Humans and animals are known to
use “mental maps” that rely on landmarks and other cues [80, 42, 35], and rely heavily
on learning. Further, in the absence of spatial positional information (e.g., GPS or maps),

Project website: sites.google.com/view/ving-robot
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Learning Open-World Navigation with Visual Goals 5

Figure 1: ViNG builds and plans over a learned topological graph consisting of previously seen
egocentric images, and uses a learned controller to execute the path to a visually indicated goal.
Unlike prior work, our method uses purely offline experience and does not require a simulator or
online data collection. Note that the graph constructed by our algorithm is not geometric and
nodes are not associated with coordinates in the world, but only with image observations – the
top-down satellite image is provided only for visualization and is not available to our method.

specification of a navigational goal itself becomes challenging, since locational goals
require the robot to be able to compare its location to the target.

In this chapter, we study learning-based methods for navigation that can similarly
utilize graph-structured “mental maps” that are non-geometric in nature, and can enable
a robot to navigate in the real-world. We use a natural and intuitive mechanism for
specifying goals – where the user provides the robot with a picture of the desired
destination. Inspired by humans navigating toward previously seen landmarks, our goal
is to enable the robot to navigate to a visually indicated goal. Crucially, such a goal
specification scheme does not presume any prior geometric knowledge of the scene, while
still providing enough information for the robot to perform the task. Fig. 1 shows an
example of such a task.

Towards satisfying these requirements, we present a fully autonomous, self-supervised
mobile robot platform for visual goal-reaching in outdoor, unstructured environments
which we call ViNG — Visual Navigation with Goals. Our approach combines the
strengths of dynamical distance learning and graph search. We first learn a function
that predicts the dynamical distance between pairs of observations, estimating how many
time steps are needed to transition between them. We then use this learned dynamical
distance to embed past observations into a topological graph, and plan over this graph.
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This process makes no geometric assumptions about the environment: reachability is
determined entirely by learning from data. Unlike pure planning-based approaches, our
method scales to high-dimensional observations and hard-to-model dynamics, and does
not assume access to any ground-truth spatial information. Unlike pure learning-based
approaches, our method effectively learns from offline experience and reasons over long
horizons. Unlike prior methods that combine planning and learning, ViNG learns from
offline, real-world data, and does not require a simulator or online data collection.

The primary contribution of this work is a self-supervised robotic system, ViNG,
that can efficiently learn goal-directed navigation behaviors in open-world environments
without access to spatial maps from an offline pool of data, including randomly collected
trajectories. Three key ideas, waypoint proposal, graph pruning and negative mining,
differentiate our method from prior work and are critical to the success of our method
in this offline setting. ViNG can learn to navigate to an arbitrary user-specified visual
goal in a variety of open-world settings, including urban, grassy, and rocky terrain,
learning only from offline data. Our experiments show that ViNG learns goal-conditioned
behaviors that can effectively plan over long horizons. We show that ViNG outperforms
several competitive offline RL and geometric baselines. Further, we show that the learned
behaviors transfer to novel environments using as little as 20 minutes of data from the
environment and that ViNG can adapt in such novel environments as it gathers more
data, resulting in an autonomous, self-improving system. Lastly, we demonstrate two
real-world applications enabled by ViNG in dense, urban neighborhoods – last-mile
delivery of food or mail, and autonomous inspection of warehouses.

2.2 related work

Prior work has studied vision-based mobile robot navigation in many real-world settings,
including indoor and outdoor navigation [89, 110, 7], autonomous driving [114, 116], and
navigation in extra-terrestrial and underwater environments [59, 23]. The combination of
mapping [113] and path planning [63] has been a cornerstone for a number of effective
systems [25, 101, 39] and underlies several state-of-the-art navigation systems [5, 2].
Many prior methods make restrictive assumptions, such as access to LIDAR or other
structured sensor information and accurate localization, which can limit their suitability
for deployment in unstructured environments [24]. Further, prior work often assumes
that geometric traversability is faithfully indicated through observations and not misled
by (say) non-obstacles such as tall grass [38]. Learning-based systems lift some of these
assumptions and can use learned models to perform perception [18, 117], planning [53,
61, 45], or both [67]. In practice, learning temporally extended long-horizon skills with
either reinforcement learning (RL) or imitation learning (IL) remains difficult [90, 30].

Recent methods address limitations of the above approaches by combining planning
and learning [31, 93, 13, 19, 33, 76]. These methods use learning (i.e., approximate
dynamic programming) to solve short-horizon tasks and plan (i.e., use exact dynamic
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Figure 2: Challenges with Real-World Navigation: (Top) Three observations taken from exactly
the same position at different times of day exhibit large differences. (Bottom) While tall grass and
inclined rocks are traversable, a hole filled with dry leaves is not. These examples highlight the
challenges with geometric reasoning about traversability.

programming) over non-metric topological graphs [75, 74] to reason over longer horizons.
This general approach simultaneously avoids the need for (1) high-fidelity map building
and (2) learning temporally-extended behaviors from scratch. However, prior instantia-
tions of this recipe make assumptions that limit their applicability to real-world settings:
assuming access to an exact simulation replica of the environment [37, 76], assuming
simplified action spaces [31, 93, 13], or requiring online data collection [31, 13]. Our
experiments in Section 2.5 demonstrate that prior methods fail when they are not allowed
to collect new experience in a simulator or the real-world.

Our method, ViNG, builds on these prior approaches by adding two key ideas:
graph pruning and negative sampling. These additional ingredients allow ViNG to lift
assumptions made by prior methods: it does not assume access to a simulator, and does
not require interactive access to an environment; it is trained using offline, real-world
data; and it operates directly on high-dimensional images and predicts continuous actions
for the robot. To the best of our knowledge, ViNG is the first system demonstrated on
a real-world ground robot that can learn from offline data to reach visually indicated
navigational goals over long time horizons without simulated training or hand-designed
localization and mapping systems.

2.3 problem statement and system overview

We consider the problem of goal-directed visual navigation: a robot is tasked with
navigating to a goal location G given an image observation oG taken at G. In addition
to navigating to the goal, the robot also needs to recognize when it has reached the goal,
signaling that the task has been completed. The robot does not have a spatial map of the
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environment, but we assume that it has access to a small number of trajectories that it has
collected previously. This data will be used to construct a graph over the environment
using a learned distance and reachability function. We make no assumptions on the nature
of the trajectories: they may be obtained by human teleoperation, self-exploration, or a
result of a random walk. Each trajectory is a dense sequence of observations o1, o2, . . . , on
recorded by its on-board camera. Since the robot only observes the world from a single
on-board camera and does not run any state estimation, our system operates in a partially
observed setting. Our system commands continuous linear and angular velocities.

2.3.1 Mobile Robot Platform

We implement ViNG on a Clearpath Jackal UGV platform – a small, fast, weatherproof
outdoor ground robot ideal for navigating in both urban and off-road environments
(see Fig. 1 and 2). The default sensor suite consists of a 6-DoF IMU, a GPS unit for
approximate global position estimates, and wheel encoders to estimate local odometry. In
addition, we added a forward-facing 170� field-of-view camera and an RPLIDAR 2D laser
scanner. Inside the Jackal is an NVIDIA Jetson TX2 computer. While the robot carries a
GPS and laser scanner, we use these sensors solely as a safety mechanism during data
collection. Our method solely operates using images taken from the onboard camera.

2.3.2 Data Collection & Labeling

ViNG can learn navigational behaviors from previously-collected, off-policy data – a
desideratum of real-world robots. To demonstrate this capability, we run our core
experiments using data exclusively from prior work [54]; we also collect a limited amount
of additional data for our environment generalization experiments using the same self-
supervised data collection strategy. The prior data was collected more than 10 months
prior to the experiments in this paper (see Fig. 2 (top)), and exhibits significant differences
in appearance, lighting, time of year, and time of day as compared to the evaluation
setting. This underscores the ability of ViNG to utilize offline data from diverse sources.

2.4 visual navigation with goals

We approach the problem of visual goal-conditioned navigation by combining non-metric
maps and learned, image-based, goal-conditioned policies. We describe our method
in two stages: (i) training two learned functions and (ii) deploying the system, which
entails using the learned functions together with past experience to execute goal-directed
behavior.

During training, we use previously collected experience to learn an environment-
independent traversability function T , as well as a relative pose predictor, P . During
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Algorithm 1 Training ViNG

1: Input transitions {t(k) = (o(k)1 , a(k)1 , o(k)2 , a(k)2 , · · · )}k=1,···

2: +  {(o(k)i , o(k)j , d = min(j� i, dmax))}ij,k=1,···

3: �  {(o(k)i , o(`)j , d = dmax)}i,j,k 6=`

4: Initialize T (oi, oj) and P(oi, oj)
5: while not converged do
6: B+ ⇠ +,B� ⇠ � . Sample batch.
7: T  UpdateDistanceFn(T ;B+ [ B�)
8: get relative pose: +  {((o(k)i , o(k)j , dij, pij}
9: P  UpdateRelativePoseFn(P ;B+ [ B�)

10: end while
11: return traversability function T , relative pose function P

deployment, the robot builds a topological graph of its environment: a directed graph
with vertices as observations and edges encoding traversability and proximity. At each
time step t, the robot localizes its current and goal observations (ot, oG) in the graph and
follows the best path to G, as determined by a graph search algorithm that outputs the
next waypoint for the controller. To close the loop, we need a goal-conditioned controller
that takes the current and goal observations, and outputs an action a. The controller
progressively follows the path directed by the planner until it reaches G.

While the general recipe of ViNG is similar to prior work [93, 76, 31], our experiments
demonstrate that two key technical insights contribute to significantly improved perfor-
mance in the real-world setting: graph pruning (Sec. 2.4.2) and negative mining (Sec. 2.4.1).
Our comparisons to prior methods in Section 2.5 and ablation studies in Section 2.5.4
demonstrate these novel improvements enable ViNG to learn goal-conditioned policies
entirely from offline data, avoiding the need for simulators and online sampling, while
prior methods struggle to attain good performance, particularly for long-horizon goals.

2.4.1 Learning Dynamical Distances

We aim to learn a traversability function T (oi, oj) 2 + that reflects whether any controller
can successfully navigate between observations oi and oj. More precisely, we will learn to
predict the estimated number of time steps required by a controller to navigate from one
observation to another. This function must encapsulate knowledge of physics beyond
just geometry. For example, tall grass and bushes might appear visually similar, but
grass is compliant and traversable whereas bushes are not. We explored two methods for
learning this traversability function: (1) supervised learning and (2) temporal difference
learning [107, 52]. To learn the distance function via supervised learning, we create a
dataset D+ of observation pairs (oi, oj) taken from the same trajectory and regress to
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the number of timesteps dij = j� i elapsed between these observations. The distance
predicted by this approach corresponds to the estimated number of time steps required
by the behavior policy (that which collected the experience) when navigating between
two observations. Thus, this approach is simple but may overestimate the true shortest
path distances.

The second approach to learning the distance function is via temporal difference
learning [52]. This approach uses the same experience as before. While this approach
adds additional complexity, in theory it converges to the shortest path distance. In our
experiments, we found little difference between these two approaches (see Table 2), but
expect that the temporal difference learning approach would be important when moving
to settings where the shortest path distance is much shorter than a random walk distance.

Negative Mining (Key Idea 1)

In our experiments, we found that training the distance function using only observation
pairs from the same trajectory performed poorly. We hypothesize that the root cause was
distribution shift: when building the topological graph we must evaluate the distance
function on observation pairs collected from different trajectories, possible from different
times of day. To mitigate this problem, we augment the dataset by adding a new dataset
D� obtained by sampling observations from different trajectories, labeled as dmax. We find
this augmentation, hereby referred to as negative sampling, to be critical in the successful
training and evaluation of T in our experiments, offering significant improvements over
prior methods.

2.4.2 The Topological Graph

We build a topological graph M using the learned distance function together with a
collection of previously-observed observations {ot}. Each node in the graph corresponds
to one of these observations. We add weighted edges between every node, using weights
predicted by the distance function T .

Graph Pruning (Key Idea 2)

As the robot gathers more experience, maintaining a dense graph of traversability across
all observation nodes becomes redundant and infeasible, as the graph size grows quadrat-
ically. For our experiments, we sparsify trajectories by thresholding the edges that get
added to the graph: edges that are easily traversable

�
T (oi, oj) < dsparsify

�
are not added

to the graph, since the controller can traverse those edges with high probability.
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Algorithm 2 Deploying ViNG
1: Input current image ot, goal image oG, and topological graph M.
2: Add ot, oG to the map M using distances from T .
3: ow1 , ow2 , · · · Dijkstra(start = ot, goal = oG,M)
4: Estimate relative pose of first waypoint: Dp P(ot, ow1)
5: ut  PD-Controller(Dp)
6: return control ut

Planning with the Graph

We localize the current observation ot and goal observation oG in the graph, adding
direct edges (weighed by their traversability) to their corresponding “most-traversable”
neighbors. We use the weighted Dijkstra algorithm to compute the shortest path to goal,
and the immediate next node in the planned path is then handed over to the controller.

2.4.3 Designing the Controller

After the planner predicts a waypoint observation, the controller must output an action
that takes the agent towards that waypoint. The main challenge in navigating to this
waypoint is that both the current state and waypoint are represented as high-dimensional
observations (e.g., images). To address this challenge, we learn a relative position
predictor P that takes as input two observations and predicts the relative pose between
these observations. We learn this relative pose predictor via supervised learning: for pairs
of observations (oi, oj) that occur nearby within the collected trajectories, we estimate
the relative pose Dpij using onboard odometry and use this relative pose as the label for
learning.

The complete controller works as follows. Given the current observation and waypoint
observation, we use the relative pose predictor to estimate the relative pose of the
waypoint relative to the robot’s current position. The robot then uses odometry and
a simple PD controller to steer toward this waypoint. We compare against alternative
controllers in Section 2.5.4.

2.4.4 Implementation Details

Inputs to the traversability function T and relative pose predictor P are pairs of observa-
tions of the environment, represented by a stack of two consecutive RGB images obtained
from the onboard camera at a resolution of 160⇥ 120 pixels. T comprises a MobileNet
encoder [49] followed by three densely connected layers to project the 1024�dimensional
latents to 50 class labels. P has a similar architecture as T , comprising of a MobileNet
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Figure 3: Real-World Navigation: While all non-random methods successfully reach nearby goals,
only ViNG reaches goals over 40 meters away. Here, success rate is defined as the average over
portion of the expert trajectory to goal that each run successfully completes.

encoder followed by three densely connected layers projecting the 1024�dimensional
latents to 3 outputs for waypoints: {Dx, Dy}. Both T and P use the same encoder.

We train the traversability function on D+[ D�, discretizing the timesteps dij into bins
{1, · · · , dmax = 50} and minimizing the cross entropy loss. The relative pose predictor
P is trained on D+ to minimize the `2 regression loss. We use a batch size of 128 and
perform gradient updates using the Adam optimizer [56] with learning rate l = 10�4.
Algorithms 1 and 2 summarize our approach in the training and deployment stages,
respectively.

2.5 experiments

We designed our experiments to answer three questions:

Q1. How does ViNG compare to prior methods for the task of goal-conditioned
visual navigation from offline data?

Q2. Does ViNG generalize to novel environments? Can it adapt on the fly?

Q3. What are the alternate design choices for the controller and how do they compare
against our choice in Section 2.4.3?
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2.5.1 Goal-Conditioned Visual Navigation from Offline Data

We perform our evaluation in a real-world outdoor environment consisting of urban and
off-road terrain. We train on 40 hours of data that was gathered in prior work [54] over
10 months prior to the experiments in this paper. The data shows significant variation in
appearance due to seasonal changes (see Fig. 2); learning navigational affordances and
traversability would require the algorithms to discard the irrelevant modes of variance
(e.g., appearance) and establish correspondence across seasons and times of day.

Since this evaluation takes place in the real world, we do not have the luxury of
training online RL policies or transfer from simulation. We evaluate ViNG against four
baselines:

SPTM: a dense topological graph combined with a controller that maps observation
pairs to motor commands, trained via supervised learning [93]

off-SoRB: an offline variant of SoRB that uses a topological graph and offline RL to
learn a distributional Q-function [31]

State Estimator: a naı̈ve baseline that uses a state estimator network that regresses
observations to ground-truth state (x, y, q), followed by a position controller; note
that this baseline has access to true position (from GPS), which is not available to
our method

Random: a random walk, as described in Section 2.4.3

While there have been other successful instantiations of methods combining planning
and learning, they make some limiting assumptions that make them difficult to apply to
our problem setting. LSTN [76] uses a photorealistic simulator to train its distance and
action models, using ⇠ 1.5M samples, while PRM-RL [37] uses a 3D kinematic simulator
simulation replica to train a reactive controller, coupled with physical rollouts in the real
world to build a PRM. ViNG does not assume access to any simulator, and learns directly
from offline real data.

Towards answering Q1, we evaluate the goal-reaching performance of ViNG. We select
6 {start, goal} image pairs in the original urban environment and compare the goal
reaching performance of each method (avg. of 3 trials). We report the success metric
as the average over portion of the expert trajectory to goal that each run successfully
completes.

As shown in Fig. 3, ViNG performs well on all tasks, achieving a success rate of 86%
on even the most challenging tasks. As expected, the random baseline, which ignores
the goal, fails to reach most goals. The state estimator baseline performs a bit better, but
struggles to reach more distant goals because it is not reactive, and hence cannot take
actions to avoid collisions. Off-SoRB performs well on nearby goals, but as the goals get
increasingly difficult to reach, it is unable to follow the planned trajectory. Visualizing the
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Figure 4: Qualitative Results in the urban Environment: Each approach was directed to a visual
goal ⇠ 50m away (marked by checkerboard circle) – with 3 runs per approach. ViNG is the only
approach that is consistently able to reach the goal while avoiding collisions or getting stuck.

topological graph built by SoRB uncovers many disconnected components, resulting in no
path to goal. We hypothesize that this is attributed to the difficulty in training Q-functions
from offline data. SPTM, which uses supervised learning instead of Q-learning, is effective
at solving the task on shorter horizons and outperforms off-SoRB on longer horizons.
However, ViNG still performs substantially better on all goal distances, especially those
over 30 meters. We attribute these improvements to the additional negative sampling and
graph pruning techniques discussed in Section 2.4. We visualize trajectories in Fig. 4.

2.5.2 Generalization and Adaptation

The experiments in the previous section evaluate navigation to new goals in a previously
seen environment. In this section, we additionally evaluate how quickly ViNG can adapt
to an entirely new, unseen environment, by constructing a new graph and finetuning
the models. We use the four settings shown in Fig. 5, all of which are distinct from the
setting used in our main experiments (Sec. 2.5.1). In each new environment, a human
controlled the robot to provide initial exploration data. After this initial data collection,



Learning Open-World Navigation with Visual Goals 15

Environment ViNG ViNG ViNG SPTM
Source Target Finetune Finetune

barracks 0.27 0.42 0.96 0.74
industrial 0.13 0.44 0.84 0.68
park 0.04 0.32 0.82 0.71
tall grass 0 0.38 0.79 0.56

Table 1: Generalization Results: Our approach to generalization (“ViNG -Finetune”) successfully
navigates learns to navigate in four new environments (shown in Fig. 5) using just 60 minutes of
experience in the new environment. Baselines that use only experience from the source or target
domains are substantially less successful. Applying our finetuning approach on top of SPTM
shows some generalization, but is outperformed by ViNG-Finetune.

the robot collected experience autonomously: it randomly sampled a previously-observed
image as thegoal and used ViNG to attempt to reach this goal. After each episode,
we used all experience from the new environment (both the expert trajectories and the
self-collected trajectories) to finetune T and P . We refer to this approach to generalization
as ViNG -Finetune.

In Fig. 5 we visualize trajectories after 60 min of data collection in the new environment
and observe that the robot successfully reaches the goal in most cases. We emphasize that
these environments are considerably different from those used in Sec. 2.5.1, on which our
models were initially trained. To illustrate the learning dynamics in this generalization
setting, we plot self-collected rollouts after 0 minutes, 20 minutes, and 60 minutes of
practice in the new environments. As shown in Fig. 6, the robot’s performance in the new
domain gets progressively better with more (autonomous) practice; after 60 minutes it
succeeds in reaching the goal in all three attempts.

Table 1 summarizes the success rate on the generalization task of our method and two
alternative versions of ViNG. ViNG-Source directly uses the traversability function and
relative pose function trained in the source domain (Sec. 2.5.1), without incorporating any
experience from the new environment. In contrast ViNG-Target learns these same models
using only experience from the new “target” domain, without leveraging any of the
previously-collected experience. ViNG-Finetune outperforms these baselines, highlighting
the importance of combining old and new experience. As an additional baseline, we take
the SPTM model from Sec. 2.5.1 and finetune it on experience from the new domain. We
observe that ViNG -Finetune also generalizes better than SPTM-Finetune, We hypothesize
that ViNG generalizes better than SPTM because of the additional hierarchical structure
of ViNG.
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Figure 5: Generalization Experiments: We evaluate ViNG in four new outdoor environments.
For each, we collect a few dozen minutes of experience to adapt the distance function and relative
pose predictor. Then, given a goal image (last column, checkerboard location in aerial view), the
robot attempts to navigate to the goal. Columns 4� 7 indicate that the robot succeeds in reaching
the goal image. Cyan lines indicate the actions taken by ViNG.

2.5.3 Comparisons to Online Methods

While Section 2.5.1 establishes that ViNG outperforms competitive offline methods for
the task of goal-conditioned navigation, here we also investigate the performance of our
method in comparison to popular online RL algorithms. Since the sample complexity of
online RL algorithms forbids us from testing this in the real world, we use a Unity-based
photorealistic outdoor navigation simulator. We include new additional baselines in the
simulated experiment:

PPO: a popular reactive controller for indoor visual navigation algorithms [96, 119]

SoRB: online version of the “off-SoRB” baseline [31]

We show results in Fig. 7. PPO performs poorly and is outperformed by ViNG,
suggesting that a single image-based reactive policy is insufficient for solving long-
horizon goal-reaching tasks, even when given access to 200 hours of online experience.
SoRB outperforms other baselines and performs on par with ViNG. However, whereas
ViNG requires 40 hours of offline data, SoRB requires 200 hours of online data, and must
recollect this data for every experiment.
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Figure 6: Fast Adaptation to a New Environment: After training ViNG in one environment, we
deploy the system in a novel environment, shown above. By practicing to reach self-proposed
goals and using that experience to finetune the controller, ViNG is able to quickly gain competence
at reaching distance goals in this new environment, using just 60 minutes of experience. Example
rollouts towards a goal 35m away (marked by checkerboard circle) demonstrate ViNG self-
improving from interactions in the barracks environment.
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Figure 7: Results from Simulated Navigation: ViNG is substantially more successful at reaching
distance goals than all offline baselines, while performing competitively with SoRB, a popular
online baseline combining Q-learning and topological graphs. We emphasize that SoRB and PPO
require 5⇥ online data collection, making them prohibitively expensive to apply in the real-world.

2.5.4 Ablation Experiments

A key design decision for ViNG that differentiates it from prior methods (e.g., [76,
31]) is how the controller generates actions to reach the next waypoint. We evaluate
variants of ViNG that use alternative controllers and present results in Table 2. Two
simple baselines, “direct actions” and “direct actions (discrete)”, use the goal-conditioned
behavior cloning method of [93, 27] to directly predict (discrete) actions from the current
and goal observations, without utilizing the topological map. Recall that our method uses
the planner to command waypoints and then uses the relative pose together with a PD
controller to reach each waypoint. We compared against a baseline that uses a different
low-level controllers to reach these same waypoints: “Waypoint, Discrete” takes actions
using the “direction actions (discrete)” controller described above. As an alternative
training scheme, “TD Waypoint” is a variant of our method that learns the traversability
function via TD learning instead of supervised learning. Finally, we compare to two
ablations of our method that skip the graph pruning and negative sampling stages of
ViNG.

2.5.5 Applications and Qualitative Results

ViNG’s ability to navigate using perception and landmarks, without access to maps or
localization, can enable a number of intuitive applications, which we illustrate through
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Success Rate @ Distance d (m)
Controller d=10 d=20 d=30 d=40 d=50

Direct Actions (Discrete) 0.87 0.81 0.74 0.65 0.45
Direct Actions 0.98 0.89 0.74 0.73 0.4
Waypoint, Discrete 1.0 0.95 0.91 0.82 0.7
Waypoint 1.0 1.0 0.95 0.88 0.81
TD Waypoint 1.0 1.0 0.96 0.87 0.87
Waypoint, No Pruning 1.0 0.88 0.81 0.79 0.52
Waypoint, Only Positives 1.0 0.91 0.75 0.76 0.43

Table 2: Ablation Experiments: We investigate design choices for the parametrization of the
controller. Using waypoints as a mid-level action space is key to the performance of ViNG, which
is particularly emphasized for distant goals. While training the models, we show that ViNG can
be trained with either supervised or TD learning and report similar performance. We also show
that the two key ideas presented – graph pruning and negative sampling – are indeed essential
for the performance of ViNG in the real-world.

qualitative results in this section. We constructed two demonstrations that reflect potential
applications of our system:

1. Contactless Last-Mile Delivery: We demonstrate last-mile delivery in a residential com-
plex by using ViNG to autonomously deliver mail and food to visually-indicated de-
livery locations. In this setting, users specify delivery destinations for the robot sim-
ply by taking a photograph of the desired destination, and the robot autonomously
navigates to this destination to deliver a package.

2. Autonomous Inspection: Densely constructed building complexes, like university
campuses, are often unmapped or lack accurate spatial localization. We reprogram
ViNG to periodically navigate to landmarks, specified as images, around the campus
to set up an autonomous patrolling system. Discrepancies can be identified by
comparing the observations to previous observations (stored in the topological
graph).

Figures 8 and 9 show ViNG successfully performing these tasks in the urban envi-
ronment. Videos of the qualitative results, generalization experiments, and real-world
applications can be found at the project website (sites.google.com/view/ving-robot).

2.6 discussion

In this paper, we proposed ViNG: a system for goal-directed navigation using visual
observations and goals on an outdoor ground robot. While conceptually similar to

https://sites.google.com/view/ving-robot
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Figure 8: Contactless Last-Mile Delivery Demo: Given a set of visually-indicated goals (a),
ViNG can perform contactless delivery in the urban neighborhood successfully, as shown in the
filmstrip (c). An overhead view (b) with starting position marked in yellow and respective goals
marked in orange and magenta shows the trajectory of the robot (cyan). Note: The satellite view (b)
is solely for visualization and is not available to the robot.

prior methods, we demonstrate that a few key design choices, such as pruning the
topological graph, parametrizing the controller in terms of a relative pose predictor and
sampling negatives while training to minimize distribution shift, allow ViNG to learn to
successfully navigate using only offline experience, a setting in which many prior methods
fail. Intriguingly, we also demonstrate that ViNG can be quickly adapted to navigate
in new environments. These generalization and self-improvement attributes highlight
that learning-based approaches are not only an effective mechanism for handling high-
dimensional observations, but are also amenable to fast adaptation to novel environments.
Further, we have demonstrated ViNG on a number of real-world applications in dense,
urban environments that may be unmapped or GPS-denied, and specifying visual goals
is convenient – contactless last-mile delivery and autonomous inspection.

Our method requires a static, offline dataset of observations over which we can
plan. Many real-world tasks are non-stationary, with the distribution of observations
shifting over time (e.g., lighting changes, dynamic objects, etc.). In future work, we
aim to incorporate representations of observations and goals that are robust to such
distributional shifts, which would expand the generalization capabilities of our method.
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Figure 9: Autonomous Inspection Demo: Given a set of visual landmarks (a–d) in a university
campus, ViNG can perform autonomous inspection by navigating to these goals periodically. An
overhead view (b) shows color-coded goals and the trajectory taken by robot (cyan) in one cycle.
Note: The satellite view (e) is solely for visualization and is not available to the robot.

acknowledgments

This research was funded by the Office of Naval Research, DARPA Assured Autonomy,
and ARL DCIST CRA W911NF-17-2-0181, with computing support from Google and
Amazon Web Services. The authors would like to thank Jonathan Fink and Ethan Stump
for their help setting up the simulation environment used for developing this research.



3
O P E N - W O R L D E X P L O R AT I O N W I T H L AT E N T G O A L M O D E L S

Synopsis

In this chapter, we build upon our robotic learning system by enabling it to perform
autonomous exploration and navigation in diverse, open-world environments. Our
core idea is to use a learned latent variable model of distances and actions, along with
a non-parametric topological memory of images. We use an information bottleneck to
regularize the learned policy, giving us (i) a compact visual representation of goals,
(ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible
goals for exploration. Trained on a large offline dataset of prior experience, the model
acquires a representation of visual goals that is robust to task-irrelevant distractors.
We demonstrate our method on a mobile ground robot in open-world exploration
scenarios. Given an image of a goal that is up to 80 meters away, our method leverages
its representation to explore and discover the goal in under 20 minutes, even amidst
previously-unseen obstacles and weather conditions.

3.1 introduction

Robustness is a key challenge in learning to navigate diverse, real-world environments.
A robotic learning system must be robust to the difference between an offline training
dataset and the real world (i.e., it must generalize), be robust to non-stationary changes in
the real world (i.e., it must ignore visual distractors), and be equipped with mechanisms
to actively explore to gather information about traversability. Different environments may
exhibit similar physical structures, and these similarities can be used to accelerate explo-
ration of new environments. Learning-based methods provide an appealing approach for
learning a representation of this shared structure using prior experience.

In this work, we consider the problem of navigating to a user-specified goal in a
previously unseen environment. The robot has access to a large and diverse dataset
of experience from other environments, which it can use to learn general navigational

Project website: sites.google.com/view/recon-robot
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Figure 10: System overview: Given a goal image (a), RECON explores the environment (b) by
sampling prospective latent goals and constructing a topological map of images (white dots),
operating only on visual observations. After finding the goal (c), RECON can reuse the map
to reach arbitrary goals in the environment (red path in (b)). RECON uses data collected from
diverse training environments (d) to learn navigational priors that enable it to quickly explore and
learn to reach visual goals a variety of unseen environments (e).

affordances. Our approach to this problem uses an information bottleneck architecture to
learn a compact representation of goals. Learned from prior data, this latent goal model
encodes prior knowledge about perception, navigational affordances, and short-horizon
control. We use a non-parametric memory to incorporate experience from the new
environment. Combined, these components enable our system to learn to navigate to
goals in a new environment after only a few minutes of exploration.

The primary contribution of this work is a method for exploring novel environments
to discover user-specified goals. Our method operates directly on a stream of image
observations, without relying on structured sensors or geometric maps. An important part
of our method is a compressed representation of goal images that simultaneously affords
robustness while providing a simple mechanism for exploration. Such a representation
allows us, for example, to specify a goal image at one time of day, and then navigate
to that same place at a different time of day: despite variation in appearance, the latent
goal representations must be sufficiently close that the model can produce the correct
actions. Robustness of this kind is critical in real-world settings, where the appearance of
landmarks can change significantly with times of day and seasons of the year.

We demonstrate our method, Rapid Exploration Controllers for Outcome-driven
Navigation (RECON), on a mobile ground robot and evaluate against 6 competitive
baselines spanning over 100 hours of real-world experiments in 8 distinct open-world
environments (Fig. 10). Our method can discover user-specified goals up to 80m away
after just 20 minutes of interaction in a new environment. We also demonstrate robustness
in the presence of visual distractors and novel obstacles. We make this dataset publicly
available as a source of real-world interaction data for future resesarch.
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3.2 related work

Exploring a new environment is often framed as the problem of efficient mapping, posed
in terms of information maximization to guide the robot to uncertain regions of the
environment. Some prior exploration methods use local strategies for generating control
actions for the robots [60, 8, 57, 108], while others use use global strategies based on the
frontier method [121, 15, 47]. However, building high-fidelity geometric maps can be
hard without reliable depth information. Further, such maps do not encode semantic
aspects of traversability, e.g., tall grass is traversable but a wire fence is not.

Inspired by prior work [93, 34, 31, 99, 76], we construct a topological map by learning a
distance function and a low-level policy. We estimate distances via supervised regression
and learn a local control policy via goal-conditioned behavior cloning [41, 71]. However,
these prior methods do not describe how to learn to navigate in new, unseen environments.
We equip RECON with an explicit mechanism for exploring new environments and
transferring knowledge across environments.

Well-studied methods for exploration in reinforcement learning (RL) utilize a novelty-
based bonus, computed from a predictive model [104, 84, 4, 11, 92, 94, 13], information
gain [48, 77], or methods based on counts, densities, or distance from previously-visited
states [6, 46, 65]. However, these methods learn to reason about the novelty of a state
only after visiting it. Recent works [102, 14] improve upon this by predicting explorable
areas for interesting parts of the environment to accelerate visual exploration. While
these methods can yield state-of-the-art results in simulated domains [72, 58], they come
at the cost of high sample complexity (over 1M samples) and are infeasible to train
in open-world environments without a simulated counterpart. Instead, our method
enables the robot to explore an environment from scratch in just 20 minutes, using prior
experience from other environments.

The problem of reusing experience across tasks is studied in the context of meta-
learning [29, 91, 78] and transfer learning [109, 64, 83, 44, 40]. Our method uses an
information bottleneck [115], which serves a dual purpose: first, it provides a represen-
tation that can aid the generalization capabilities of RL algorithms [50, 43], and second,
it serves as a measure of task-relevant uncertainty [3], allowing us to incorporate prior
information for proposing goals that are functionally-relevant for learning control policies
in the new environment.

The problem of learning goal-directed behavior has been studied extensively using
RL [52, 95, 86, 32] and imitation learning (IL) [28, 41, 71, 105, 103, 88]. Our method
builds upon prior goal-conditioned IL methods to solve a slightly different problem: how
to reach goals in a new environment. Once placed in a new environment, our method
explores by carefully choosing which goals to visit, inspired by prior work [87, 21, 123, 85,
69]. Unlike these prior methods, however, our method makes use of previous experience
in different environments to accelerate learning in the current environment.
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3.3 problem statement and system overview

We consider the problem of goal-directed exploration for visual navigation in novel
environments: a robot is tasked with navigating to a goal location G, given an image
observation og taken at G. Broadly, this consists of three separate stages: (1) learning
from offline data, (2) building a map in a new environment, and (3) navigating to goals
in the new environment. We model the task of navigation as a Markov decision process
with time-indexed states st 2 S and actions at 2 A. We do not assume the robot has access
to spatial localization or a map of the environment, or access to the system dynamics. We
use videos of robot trajectories in a variety of environments to learn general navigational
skills and build a compressed representation of the perceptual inputs, which can be used
to guide the exploration of novel environments. We make no assumption on the nature
of the trajectories: they may be obtained by human teleoperation, self-exploration, or as a
result of a preset policy. These trajectories need not exhibit intelligent behavior. Since the
robot only observes the world from a single on-board camera and does not run any state
estimation, our system operates in a partially observed setting. Our system commands
continuous linear and angular velocities.

3.3.1 Mobile Robot Platform

We implement RECON on a Clearpath Jackal UGV platform. The default sensor suite
consists of a 6-DoF IMU, a GPS unit for approximate global position estimates, and
wheel encoders to estimate local odometry. In addition, we added a forward-facing 170�

field-of-view RGB camera and an RPLIDAR 2D laser scanner. Inside the Jackal is an
NVIDIA Jetson TX2 computer. The GPS and laser scanner can become unreliable in some
environments [54], so we use them solely as safety controllers during data collection. Our
method operates only using images taken from the onboard RGB camera, without other
sensors or ground-truth localization.

3.3.2 Self-Supervised Data Collection & Labeling

Our aim is to leverage data collected in a wide range of different environments to enable
the robot to discover and learn to navigate to novel goals in novel environments. We
curate a dataset of self-supervised trajectories collected by a time-correlated random walk
in diverse real-world environments (see Fig. 10 (d,e)). This data was collected over a
span of 18 months and exhibits significant variation in appearance due to seasonal and
lighting changes. We make this dataset publicly available1 and provide further details in
Appendix A.1.

1 Available for download at sites.google.com/view/recon-robot/dataset.

https://sites.google.com/view/recon-robot/dataset
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3.4 recon : a method for goal-directed exploration

Our objective is to design a robotic system that uses visual observations to efficiently
discover and reliably reach a target image in a previously unseen environment. RE-
CON consists of two components that enable it to explore new environments. The first is
an uncertainty-aware, context-conditioned representation of goals that can quickly adapt
to novel scenes. The second component is a topological map, where nodes represent
egocentric observations and edges are the predicted distance between them, constructed
incrementally from frontier-based exploration, maintaining a compact memory of the
target environment.

3.4.1 Learning to Represent Goals

Our method learns a compact representation of goal images that is robust to task-irrelevant
factors of variation. We learn this representation using a variant of the information
bottleneck architecture [3, 1]. We use a context-conditioned representation of goals to
learn a control policy in the target environment. Letting I(·; ·) denote mutual information,
the objective in Eq. 1 encourages the model to compress the incoming goal image og into
a representation zg

t conditioned on the current observation ot that is predictive of the best
action ag

t and the temporal distance dg
t to the goal (upper-case denotes random variables):

I
�
(Ag

t , Dg
t ); Zg

t | ot
�
� bI(Zg

t ; Og | ot) (1)

Following [3], we approximate the intractable objective in Eq. 1 with a variational
posterior and decoder (an upper bound), resulting in the maximization objective:
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t )2D
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log qq

�
ag

t , dg
t | zg
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� bKL

�
pf(· | og, ot)||r(·)

�
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where we define the prior r(zg
t ) , N (0, I) and D is a dataset of trajectories character-

ized by (ot, og, ag
t , dg

t ) quadruples. The first term measures the model’s ability to predict
actions and distances from the encoded representation, and the second term measures
the model’s compression of incoming goal images.

As the encoder pf and decoder qq are conditioned on ot, the representation zg
t only

encodes information about relative location of the goal from the context – this allows
the model to represent feasible goals. If, instead, we had a typical VAE (in which the
input images are autoencoded), the samples from the prior over these representations
would not necessarily represent goals that are reachable from the current state. This
distinction is crucial when exploring new environments, where most states from the
training environments are not valid goals.
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Algorithm 3 RECON for Exploration: RECON takes as input an encoder pf, a decoder qq,
prior r, the current observation ot and goal observation og. d1, d2, e, b 2 R+; H, g 2 N are
hyperparameters.

1: function RECON (qq, pf, r, ot, og; d1, d2, e, b, g, H)
2: G  ∆,D  ∆ . Initialize graph and data
3: while not reached goal [d̄g

t < d1] do . Continue while not at goal
4: on  LeastExploredNeighbor(G, ot; d2)
5: zg

t ⇠ pf(z | ot, og) . Encode relative goal
6: if goal is feasible [r(zg

t ) > e] then
7: zw

t  zg
t . Will go to the goal

8: else if robot at frontier [d̄n
t < d1] then

9: zw
t ⇠ r(z) . Will explore from frontier

10: else
11: zw

t ⇠ pf(z | ot, on) . Will go to frontier
12: end if
13: Dw, ot  SubgoalNavigate(zw

t ; H)
14: D  D [Dw
15: ExpandGraph(G, ot)
16: Step L(f, q;D, b) for g epochs . Eq. 2
17: end while
18: return networks pf, qq and graph G
19: end function

3.4.2 Goal-Directed Exploration with Topological Memory

The second component of our system is a topological memory constructed incrementally
as the robot explores a new environment. It provides an estimate of the exploration
frontier as well as a map that the robot can use to later navigate to arbitrary goals. To
build this memory, the robot uses the model from the previous section to propose subgoals
for data collection. Note that this is done in the exploration phase, where we have a latent
goal model pre-trained on the offline dataset. Given a subgoal, our algorithm (Alg. 3)
proceeds by executing actions towards the subgoal for a fixed number of timesteps (Alg. 3
L13). The data collected during subgoal navigation expands the topological memory
(Alg. 3 L15) and is used to fine-tune the model (Alg. 3 L16). Thus, the task of efficient
exploration is reduced to the task of choosing subgoals.

Subgoals are represented by latent variables in our model, which may either come from
the posterior pf(z|ot, og), or from the prior r(z). Given a subgoal z and observation ot,
the model decodes it into an action and distance pair q(ag

t , dg
t |z, ot); the action is used

to control the robot towards the goal, and the distance is used to construct edges in the
topological graph. The choice of intermediate subgoal to navigate toward at any step is
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based on the robot’s estimate of the goal reachability and its proximity to the frontier. To
determine the frontier of the graph, we track the number of times each node in the graph
was selected as the navigation goal; nodes with low counts are considered to be on the
frontier. In the following, we use z̄g

t to denote the mean of the encoder pf(z | ot, og), and
d̄g

t to denote the distance component of the mean of the decoder qq(at, dt | z̄g
t , ot) (i.e., the

predicted number of time steps from ot to z̄g
t ). The choice of subgoal at each step is made

as follows:

Algorithm 4 RECON for Goal-Reaching: Af-
ter exploration, RECON uses the topological
graph G to quickly navigate towards the goal
og.

1: procedure GoalNavigate(G, ot, og; H)
2: vt  AssociateToVertex(G, ot)
3: vg  AssociateToVertex(G, og)
4: (vt, . . . , vg) ShortestPath(G, vt, vg)
5: for v 2 (vt, . . . , vg) do
6: z pf(z | ot, og = v.o)
7: Dw, ot  SubgoalNavigate(z; H)
8: end for
9: end procedure

(i) Feasible Goal: The robot believes it
can reach the goal and adopts the repre-
sentation of the goal image as the subgoal
(Alg. 3 L7). The robot’s confidence in reach-
ing the goal is based on the probability of
the current goal embedding zg

t under the
prior r(z). Large r(zg

t ) implies the relation-
ship between the observation ot and the
goal og is in-distribution, suggesting that
the model’s estimates of the distances is
reliable – intuitively, this means that the
model is confident about the distance to og
and can reach it.
(ii) Explore at Frontier: The robot is at
the “least-explored node” (frontier) on and
explores by sampling a random conditional
subgoal latent zw

t from the prior (Alg. 3 L9).
The robot determines whether it is at the frontier based on the distance (estimated by
querying the model) to its “least explored neighbor” d̄n

t – the node in the graph within a
distance threshold (d2) of the current observation that has the lowest visitation count. If
the distance to this node d̄n

t is low (threshold d1), then the robot is at the frontier.
(iii) Go to Frontier: The robot adopts its “least-explored neighbor” on as a subgoal (Alg. 3
L11).

The SubgoalNavigate function rolls out the learned policy for a fixed time horizon H
to navigate to the desired subgoal latent zw

t , by querying the decoder qq(at, dt|zw
t , ot) with

a fixed subgoal latent. The endpoint of such a rollout is used to update the visitation
counts in the graph G . At the end of each trajectory, the ExpandGraph subroutine is used
to update the edge and node sets {E ,V} of the graph G to update the representation of the
environment. We provide the pseudocode for these subroutines in Appendix A.2.1. We
also share broader implementation details including choice of hyperparameters, model
architectures and training details in Appendix A.2.2.
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Method Expl. Time (mm:ss) # Nav. Time (mm:ss) # SCT [122] "

PPO + RND [11] 21:18 00:47 0.22
InfoBot [43] 23:36 00:48 0.21
Active Neural SLAM (ANS) [13] 21:00 00:45 0.33
ViNG [99] 19:48 00:34 0.60
Ours + Episodic Curiosity (ECR) [94] 14:54 00:31 0.73
RECON (Ours) 09:54 00:26 0.92

Table 3: Exploration and goal reaching performance: Exploring 8 real-world environments,
RECON reaches the goal 50% faster than the best baseline (ECR). ANS takes up to 2x longer to
find the goal and NTS [102] fails to find the goal in every environment. On subsequent traversals,
RECON navigates to the goal 20–85% faster than other baselines, and exhibits > 30% higher
weighted success.

3.4.3 System Summary

RECON uses the latent goal model and topological graph to quickly explore new en-
vironments and discovers user-specified goals. Our complete system consists of three
stages:

A) Prior Experience: The goal-conditioned distance and action model (Sec. 3.4.1) is trained
using experience from previously visited environments. Supervision for training our
model is obtained by using time steps as a proxy for distances and a relabeling scheme
(Appendix A.1).

B) Exploring a Novel Environment: When placed in a new environment, RECON uses a
combination of frontier-based exploration and latent goal-sampling with the learned
model. The learned model is also fine-tuned to this environment. These steps are
summarized in Alg. 3 and Sec. 3.4.2.

C) Navigating an Explored Environment: Given an explored environment (represented by a
topological graph G) and the model, RECON uses G to navigate to a goal image by
planning a path of subgoals through the graph. This process is summarized in Alg. 4.

3.5 experimental evaluation

We designed our experiments to answer four questions:

Q1. How does RECON compare to prior work for visual goal discovery in novel environ-
ments?
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Q2. After exploration, can RECON leverage its experience to navigate to the goal effi-
ciently?

Q3. What is the range of perturbations and non-stationary elements to which RECON is
robust?

Q4. How important are the various components of RECON, such as sampling from an
information bottleneck and non-parametric memory, to its performance?

3.5.1 Goal-Directed Exploration in Novel Environments

Figure 11: Visualizing goal-reaching behavior of the system: (left) Example trajectories to goals
discovered by RECON in previously unseen environments. (right) Policies learned by the different
methods in one such environment. Only RECON and ECR reach the goal successfully, and
RECON takes the shorter route.

We perform our evaluation in a diverse variety of outdoor environments (examples in
Fig. 10), including parking lots, suburban housing, sidewalks, and cafeterias. We train our
self-supervised navigation model using an offline navigation dataset (Sec.3.3.2) collected
in a distinct set of training environments, and evaluate our system’s ability to discover
user-specified goals in previously unseen environments. We compare RECON to five
baselines, each trained on the same 20 hours of offline data as our method, and finetuned
in the target environment with online interaction.

1. PPO + RND: Random Network Distillation (RND) is a widely used prediction bonus-
based exploration strategy in RL [11], which we use with PPO [96, 119]. This com-
parison is representative of a frequently used approach for exploration in RL using a
novelty-based bonus.
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2. InfoBot: An offline variant of InfoBot [43], which uses goal-conditioned information
bottleneck, analogous to our method, but does not use the non-parametric memory.

3. Active Neural SLAM (ANS): A popular indoor navigation approach based on metric
spatial maps proposed for coverage-maximizing exploration [13]. We adapt it to the
goal-directed task by using the distance function from RECON to detect when the
goal is nearby.

4. Visual Navigation with Goals (ViNG): A method that uses random action sequences
to explore and incrementally build a topological graph without reasoning about
visitation counts [99].

5. Episodic Curiosity (ECR): A method that executes random action sequences at the
frontier of a topological graph for exploration [94]. We implement this as an ablation
of our method that samples random action sequences, rather than rollouts to sampled
goals (Alg. 3 Line 7).

We evaluate the ability of RECON to discover visually-indicated goals in 8 unseen
environments and navigate to them repeatedly. For each trial, we provide an RGB image
of the desired target (one per environment) to the robot and report the time taken by each
method to (i) discover the desired goal (Q1), and (ii) reliably navigate to the discovered
goal a second time using prior exploration (Q2). Additionally, we quantify navigation
performance using Success weighed by Completion Time (SCT), a success metric that
takes into account the agent’s dynamics [122]. We show quantitative results in Table 3,
and visualize sample trajectories of RECON and the baselines in Fig. 11.

RECON outperforms all the baselines, discovering goals that are up to 80m away
in under 20 minutes, including instances where no other baseline can reach the goal
successfully. RECON+ECR and ViNG discover the goal in only the easier environments,
and take up to 80% more time to discover the goal in those environments. RND, InfoBot
and ANS are able to discover goals that are up to 25m away but fails to discover more
distant goals, likely because using reinforcement learning for fine-tuning is data-inefficient.
We exclude reporting metrics on NTS, which fails to successfully explore any environment,
likely due to overfitting to the offline trajectories. Indeed, the simulation experiments
reported in each of these online algorithms require upwards of 1M timesteps to adapt to
new environments [43, 13, 102]. We attribute RECON’s success to the context-conditioned
sampling strategy (described in Sec. 3.4.1), which proposes goals that can accelerate the
exploration of new environments.

We then study RECON’s ability to quickly reach goals after initial discovery. Table 3
shows that RECON variants are able to quickly recall a feasible path to the goal. These
methods create a compact topological map from experience in the target environment, al-
lowing them to quickly reach previously-seen states. The other baselines are unsuccessful
at recalling previously seen goals for all but the simplest environments. Fig. 11 shows an
aerial view of the paths recalled by various methods in one of the environments. Only
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the RECON variants are successfully able to navigate to the checkerboard goal; all other
baselines result in collisions in the environment. Further, RECON discovers a shorter
path to the goal and takes 30% less time to navigate to it than ECR ablation.

3.5.2 Exploring Non-Stationary Environments

Figure 12: Exploring non-stationary environ-
ments: The learned representation and topologi-
cal graph is robust to visual distractors, enabling
reliable navigation to the goal under novel obsta-
cles (c–e) and appearance changes (f–h).

Outdoor environments exhibit non-stationarity
due to dynamic obstacles, such as automo-
biles and people, as well as changes in ap-
pearance due to seasons and time of day.
Successful exploration and navigation in
such environments requires learning a rep-
resentation that is invariant to such distrac-
tors. This capability is of central interest
when using a non-parametric memory: for
the topological map to remain valid when
such distractors are presented, we must
ensure the invariance of the learned rep-
resentation to such factors (Q3). To test
the robustness of RECON to unseen ob-
stacles and appearance changes, we first
had RECON explore in a new “junkyard”
to learn to reach a goal image contain-
ing a blue dumpster (Fig. 12-a). Then,
without any more exploration, we evalu-
ated the learned goal-reaching policy when
presented with previously unseen obstacles
(trash cans, traffic cones, and a car) and
and weather conditions (sunny, overcast,
and twilight). Fig. 12 shows trajectories
taken by the robot as it successfully navigates to the goal in scenarios with varying
obstacles and lighting conditions. These results suggest that the learned representations
are invariant to visual distractors that do not affect robot’s decisions to reach a goal
(e.g., changes in lighting conditions do not affect the trajectory to goal, and hence, are
discarded by the bottleneck).

3.5.3 Dissecting RECON

RECON explores by sampling goals from the prior distribution over state-goal representa-
tions. To quantify the importance of this exploration strategy (Q4), we deploy RECON to
perform undirected exploration in a novel target environment without building a graph of
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Figure 13: Exploration via sampling
from our context-conditioned prior
(right) allows the robot to explore 5
times faster than using random actions,
e.g. in ECR [94] (left).

Method Expl. Time # Nav. Time # SCT [122] "

Reactive 11:54 00:37.4 0.63
Rand. Actions 14:54 00:31.4 0.73
V. Sampling 14:06 00:28.7 0.83
Ours 09:56 00:25.8 0.92

Table 4: Ablation experiments confirm the importance
of using an information bottleneck and a non-parametric
memory.

the environment. We compare the coverage of trajectories of the robot over 5 minutes
of exploration when: (a) it executes random action sequences [94], and (b) it performs
rollouts towards sampled goals. We see that performing rollouts to sampled goals results
in 5x faster exploration in novel environments (see Fig. 13).

We also evaluate several variants of RECON that ablate its goal sampling and non-
parametric memory on the end-to-end task of visual goal discovery in novel environments:

- Reactive: our method deployed without the topological graph for memory.

- Random Actions: a variant of our method that executes random action sequences at the
frontier rather than rollouts to sampled goals. This is identical to the ECR baseline
described in Sec. 3.5.1.

- Vanilla Sampling: a variant of our method which learns a goal-conditioned policy and
distances without an information bottleneck to obtain compressed representations.

We deploy these variants in a subset of the unseen test environments and summarize
their performance in Table 4. These results corroborate the observations in Fig. 13:
learning a compressed goal representation is key to the performance of RECON. “Vanilla
Sampling”, despite sampling from a joint prior, performs poorly and is unable to discover
distant goals. We hypothesize that our method is more robust because the information
bottleneck helps learn a representation that ignores task-irrelevant information. We also
observe that “Reactive” experiences a smaller degradation in exploration performance,
suggesting that goal-sampling can help with the exploration problem even without
the graph. However, we find a massive degradation in its ability to recall previously
discovered goals, suggesting that the memory is key to the navigation performance of
RECON.
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3.6 discussion

We proposed a system for efficiently learning goal-directed policies in new open-world
environments. The key idea behind our method is to use a learned goal-conditioned dis-
tance model with a latent variable model representing visual goals for rapid goal-directed
exploration. The problem setup studied in this paper, using past experience to accelerate
learning in a new environment, is reflective of real-world robotics scenarios: collecting
new experience at deployment time is costly, but experience from prior environments can
provide useful guidance to solve new tasks.

In future work, we aim to provide theoretical guarantees for when and where we can
expect stochastic policies and the information bottleneck to provide efficient exploration.
One limitation of the current method is that it does not explicitly account for the value of
information. Accounting for such states can generate a better goal-reaching policy.
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4
K I L O M E T E R - S C A L E E X P L O R AT I O N W I T H G E O G R A P H I C H I N T S

Synopsis

In this chapter, we extend our robotic learning system so it can utilize side information
such as schematic roadmaps, satellite maps and GPS coordinates as a planning
heuristic, to achieve kilometer-scale robot navigation and exploration in previously
unseen environments. Our method, ViKiNG, incorporates a local traversability model,
which looks at the robot’s current camera observation and a potential subgoal to
infer how easily that subgoal can be reached, as well as a heuristic model, which
looks at overhead maps for hints and attempts to evaluate the appropriateness of
these subgoals in order to reach the goal. These models are used by a heuristic
planner to identify the best waypoint in order to reach the final destination. Our
method performs no explicit geometric reconstruction, utilizing only a topological
representation of the environment. Despite having never seen trajectories longer
than 80 meters in its training dataset, ViKiNG can leverage its image-based learned
controller and goal-directed heuristic to navigate to goals up to 3 kilometers away
in previously unseen environments, and exhibit complex behaviors such as probing
potential paths and backtracking when they are found to be non-viable. ViKiNG
is also robust to unreliable maps and GPS, since the low-level controller ultimately
makes decisions based on egocentric image observations, using maps only as planning
heuristics.

4.1 introduction

Robotic navigation has conventionally been approached as a geometric problem,
where the robot constructs a 3D model of the environment and then plans a path through
this model. End-to-end learning-based methods offer an alternative approach, where
the robot learns to correlate observations with traversability information directly from
experience, without full geometric reconstruction [124, 18, 53]. This can be advantageous

Project website: sites.google.com/view/viking-release
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Figure 14: Kilometer-scale autonomous navigation with ViKiNG: Our learning-based navigation
system takes as input the current egocentric image (c), a photograph of the desired destination
(b), and an overhead map (which may be a schematic or satellite image) (a) that provides a hint
about the surrounding layout. The robot (d) uses learned models trained in other environments to
infer a path to the goal (e), combining local traversability estimates with global heuristics derived
from the map. This enables ViKiNG to navigate previously unseen environments (e), where a single
traversal might involve following roads (f), off-road driving under a canopy (g), and backtracking
from dead ends (h).

because, in many cases, geometry alone is neither necessary nor sufficient to traverse an
environment, and a learning-based method can acquire patterns that are more directly
indicative of traversability, for example by learning that tall grass is traversable [54] while
seemingly traversable muddy soil should be avoided. More generally, such methods
can learn about common patterns in their environment, such as that houses tend to be
rectangular, or that fences tend to be straight. These patterns can lead to common-sense
inferences about which path should be taken through an unknown environment even
before that environment has been fully mapped out [79].

However, dispensing with geometry entirely may also be undesirable: the spatial
organization of the world provides regularities that become important for a robot that
needs to traverse large distances to reach its goal. In fact, when humans navigate new
environments, they make use of both geographic knowledge, obtained from overhead
maps or other cues, and learned patterns [118]. But in contrast to SLAM, humans
don’t require maps or auxiliary signals to be very accurate: a person can navigate a
neighborhood using a schematic that roughly indicates streets and houses, and reach a
house marked on it. Humans do not try to accurately reconstruct geometric maps, but
use approximate “mental maps” that relate landmarks to each other topologically [36].
Our goal is to devise learning-enabled methods that similarly make use of geographic
hints, which could take the form of GPS, roadmaps, or satellite imagery, without requiring
these signals to be perfect.

We consider the problem of navigation from raw images in a novel environment,
where the robot is tasked with reaching a user-designated goal, specified as an egocentric
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image, as shown in Figure 14. Note that the robot has no prior experience in the target
environment.The robot has access to geographic side information in the form of a
schematic roadmap or satellite imagery, which may be outdated, noisy, and unreliable,
and approximate GPS. This information, while not sufficient for navigation by itself,
contains useful cues that can be used by the robot. The robot also has access to a
large and diverse dataset of experience from other environments, which it can use to
learn general navigational affordances. We posit that an effective way to build such a
robotic system is to combine the strengths of machine learning with informed search, by
incorporating the geographic hints into a learned heuristic for search. The robot uses
approximate GPS coordinates and an overhead map as geographic side information to
help solve the navigation task, but does not assume that this information is particularly
accurate—resembling a person using a paper map, the robot uses the GPS localization
and an overhead map as hints to aid in visual navigation. Note that while we do assume
access to GPS, the measurements are only accurate up to 2-5 meters (4-10⇥ the scale of
the robot), and cannot be used for local control.

The primary contribution of this work is ViKiNG, an algorithm that combines elements
of end-to-end learning-based control at the low level with a higher-level heuristic planning
method that uses this image-based controller in combination with the geographic hints.
The local image-based controller is trained on large amounts of prior data from other
environments, and reasons about navigational affordances directly from images without
any explicit geometric reconstruction. The planner selects candidate waypoints in order
to reach a faraway goal, incorporating the geographic side information as a planning
heuristic. Thus, when the hints are accurate, they help the robot navigate toward the
goal, and when they are inaccurate, the robot can still rely on its image observations to
search through the environment. We demonstrate ViKiNG on a mobile ground robot
and evaluate its performance in a variety of open-world environments not seen in the
training data, including suburban areas, nature parks, and a university campus. Our local
controller is trained on 42 hours of navigational data, and we test our complete system
in 10 different environments. Despite never seeing trajectories longer than 80 meters in
its training data, ViKiNG can effectively use geographic side information in the form
of overhead maps to reach user-specified goals in previously unseen environments over 2
kilometers away in under 25 minutes.

4.2 related work

Robotic navigation has been studied from a number of different perspectives in differ-
ent fields. Classically, it is often approached as a problem of geometric mapping or
reconstruction followed by planning [112]. In unknown environments, the mapping
problem can be formulated in terms of information gain with local strategies [8, 57, 108],
global strategies based on the frontier method [121, 47, 15, 16], or by sampling “next-best
views” [22, 82, 97], but such methods typically aim to map or reconstruct an entire



Kilometer-Scale Exploration with Geographic Hints 38

environment, rather than achieve a single navigational goal. Active exploration methods
have sought to modify this by jointly incentivizing an exploration objective along with
reconstruction of the map [26, 70]. Both the goal-directed and mapping-focused methods
aim to reconstruct the geometry of their environment, and do not directly benefit from
training with prior data. Some approaches have sought to incorporate learning into
mapping and reconstruction [73, 51], which benefits from prior data, but still aims at
dense geometric reconstruction. Our approach uses a model that is trained with data
from prior environments to predict traversability rather than geometry, and this model is
then used in combination with geographic hints to plan a path to the goal.

In this respect, ViKiNG is also related to prior work on learning-based navigation,
which is often formulated in terms of the “PointGoal” task [72]. Many such works rely on
simulation and reinforcement learning, utilizing millions (or billions) of online trials to
train a policy [61, 119]. In contrast, our method learns entirely from previously collected
offline data, extrapolates to significantly longer paths than it is trained on, and does not
require any simulation or online RL.

A number of prior learning-enabled methods also combine learned models with
graph-based planning, using a topological graph to represent the environment [93, 10, 34,
99, 76]. These methods often assume access to data from the test environment to start
with a viable graph, which may not be available in a new environment. Some works
have studied this unseen setting by predicting explorable areas for semantically rich parts
of the environment to accelerate visual exploration [102, 14]. While these methods can
yield promising results in a variety of domains, they come at the cost of high sample
complexity (over 10M samples) [72], making them difficult to use in the real world—the
most performant algorithms take 10-20 minutes to find goals up to 50m away [98].

The closest prior work to ViKiNG is by Shah et al. (RECON) [98], which uses a learned
representation over feasible subgoals to uniformly explore the environment. Like RECON,
our method trains a local model that predicts temporal distances and actions for nearby
subgoals, and then incorporates this model into a search procedure that incrementally
constructs a topological graph in a novel environment. However, in contrast to RECON,
which performs an uninformed search, ViKiNG incorporates geographic hints in the
form of approximate GPS coordinates and overhead maps. This enables ViKiNG to reach
faraway goals, up to 25⇥ further away than the furthest goal reported by RECON, and to
reach goals up to 15⇥ faster than RECON when exploring a novel environment.

4.3 visual navigation with geographic hints

Our aim is to design a robotic system that learns to use first-person visual observations
to reach user-specified landmarks, while also utilizing geographic hints in the form
of approximate GPS coordinates and overhead maps. At the core of our approach
is a deep neural network that takes in the robot’s current camera observation ot, as
well as an observation ow of a potential subgoal w (we use “subgoal” and “waypoint”
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Figure 15: An overview of our method. ViKiNG uses latent subgoals z proposed by a learned
low-level controller, which operates on raw image observations ot, for global planning on a
topological graph T to reach a distant goal oG, indicates by a photograph and an approximate
GPS location. A learned heuristic parses the overhead image ct to bias this search towards the
goal.

interchangeably), and predicts the time to reach w (or “temporal distance”), the best
current action to do so, and the resulting spatial offset in terms of GPS coordinates. This
model can also sample latent representations of potential reachable waypoints from the
current observation ot, which are used as candidate subgoals for planning. The model
is trained on large amounts of data from a variety of training environments and, when
the robot is placed in a new environment that it has not seen, it is used to incrementally
construct a topological (non-geometric) graph to navigate to a distant user-specified goal.
This goal is indicated by a photograph with an approximate GPS coordinate, and may
be several kilometers away. The learned model alone is insufficient to navigate to such a
distant goal in one shot, and therefore our planner uses a combination of the model’s
predictions and geographic information to plan a sequence of subgoals that search for a
path through the environment, incrementally constructing the graph.

This process corresponds to a kind of heuristic search, where the geographic side
information provides a heuristic to bias the robot to explore towards the goal as it
constructs the topological graph. The latent goal model is used to determine reachability
in this topological graph, and the geographic heuristic is used to steer the graph by
exploring the environment. In a novel environment, the robot must incrementally build
this graph using physical search, by visiting new nodes and expanding its frontier. The
decision about where to actually go is determined by the first-person images, and the
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Figure 16: The learned models used by ViKiNG. The latent goal model (left) takes in the current
image ot. It also takes in either a true waypoint image ow, or samples a latent waypoint zw

t ⇠ r(zw
t )

from a prior distribution, and then predicts, its temporal distance from ot (dw
t ), the action to reach

it (aw
t ), and its approximate GPS offset (xw

t ). The heuristic model (right) takes in an overhead image
ct, the approximate GPS coordinates of the current location (xt) and destination (xG), and the
coordinates of the waypoint inferred by the latent goal model (xw), and predicts an approximate
heuristic value of the waypoint w for reaching the final destination.

geographic information is used only as a heuristic, allowing ViKiNG to remain robust to
noisy or unreliable side information. We overview our method in Figure 15.

4.3.1 Low-level Control with a Latent Goal Model

Our low-level model maps the current image observation ot and a waypoint observation
ow to: (1) the temporal distance dw

t to reach w from ot; (2) the first action aw
t that the robot

must take now to reach w; (3) a prediction of the (approximate) offset in GPS readings
between ot and w, xw

t . (1) and (3) will be used by the higher-level planner, and (2) will be
used to drive to w, if needed. We would also like this model to be able to propose, in a
learned latent space, potential subgoals w that are reachable from ot, and predict their
corresponding values of dw

t , aw
t , and xw

t .
We present the model in Figure 16, with precise architecture details in the supplemen-

tary materials. The model is trained by sampling pairs of time steps in the trajectories
in the training set. For each pair, the earlier time step image becomes ot, and the later
image becomes ow. The number of time steps between them provides the supervision for
dw

t , the action taken at the earlier time step supervises aw
t , and the later GPS reading is

transformed into the coordinate frame of the earlier time step to provide supervision for
xw

t . The model is trained via maximum likelihood. Note that by training the model on
data in this way, we not only enable it to evaluate reachability of prospective waypoints,
but also make it possible to inherit behaviors observed in the data. For example, in
our experiments, we will show that the model has a tendency to follow sidewalks and
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forest trails, a behavior it inherits from the portion of the dataset that is collected via
teleoperation.

Besides predicting dw
t , aw

t , and xw
t , our planner requires this model to be able to

sample potential reachabale waypoints from ot (see Figure 15). We implement this via a
variational information bottleneck (VIB) inside of the model that bottlenecks information
from ow. Thus, the model can either take as input a real image ow of a prospective
waypoint, or it can sample a latent waypoint zw

t ⇠ r(zw
t ) from a prior distribution. We

train the model so that sampled latent waypoints correspond to feasible locations that the
robot can reach from ot without collision.
Training the latent goal model: The full model, illustrated in Figure 16, can be split into
three parts: a waypoint encoder pf(zw

t |ow, ot), a waypoint prior r(zw
t ), and a predictor

qq({a, d, x}w
t |zw

t , ot). The latent waypoint representation zw
t can either be sampled from

the prior (which is fixed to r(zw
t ) , N (0, I)), or from the encoder pf(zw

t |ow, ot) if a
waypoint image ow is provided. This latent waypoint is used together with ot to predict
all desired quantities according to qq({a, d, x}w

t |zw
t , ot). The training set consists of tuples

(ot, ow, {a, d, x}w
t ), but the model must be trained so that samples zw

t ⇠ r(zw
t ) also produce

valid predictions. We accomplish this by means of the VIB [3], which regularizes the
encoder pf(zw

t |ow, ot) to produce distributions that are close to the prior r(zw
t ) in terms

of KL-divergence. We refer the reader to prior work for a derivation of the VIB [3], and
present our training objective for pf and qq below:

LVIB(q, f) = ED[�Epf

⇥
log qq

�
{a, d, x}w

t | zw
t , ot

�⇤

+ bKL
�

pf(zw
t | ow, ot)||r(zw

t )
�
] (3)

The outer expectation over all tuples (ot, ow, {a, d, x}w
t ) 2 D in the training distribution is

estimating using the training set. The first term causes the model to accurately predict the
desired information, while the second term forces the encoder to remain consistent with
the prior, which makes the model suitable for sampling latent waypoints according to
zw

t ⇠ r(zw
t ). As the encoder pf and decoder qq are conditioned on ot, the representation

zw
t only encodes relative information about the subgoal from the context—this allows

the model to represent feasible subgoals in new environments, and provides a compact
representation that abstracts away irrelevant information, such as time of day or visual
appearance. An analogous representation has been proposed in prior work [98], but
did not predict spatial offsets and was used only for uninformed exploration without
geographic hints.

4.3.2 Informed Search on a Topological Graph

The model described above can effectively reach nearby subgoals, for example those
on which the robot has line of sight, but we wish to reach goals that are more than a
kilometer away. To reach distant goals, we combine the model with a search procedure
that incorporates geographic hints from satellite images or roadmaps. The system does



Kilometer-Scale Exploration with Geographic Hints 42

Algorithm 5 ViKiNG-A⇤ for Physical Search
1: function ViKiNG-A⇤(start S, goal info oG, xG)
2: W {S}
3: while W not empty do
4: wt  min(W, f )
5: DriveTo(wt) . update visitations v on the way
6: observe image ot
7: add wt to graph T . use qq,f on ot to get distances
8: if close(ot, oG) finish . use qq,f({a, d, x}w

t |ot, oG)

9: remove wt from W
10: sample waypoints w near wt (Section 4.3.1)
11: for each w sampled near wt do
12: if not contains(W, w) then add w
13: end for
14: for each waypoint w 2 W do
15: f (w) = g(t, w) + dw

Pr[w] + h(w) + v(Pr[w])

16: end for
17: end while
18: return failure
19: end function

not require this information to be accurate, instead using it as a planning heuristic while
still relying on egocentric camera images for control. Our high-level planner plans over
a topological graph T that it constructs incrementally using the low-level model in
Section 4.3.1 as a local planner. We first describe a generic version of the algorithm for
any heuristic, and then describe the data-driven heuristic function that we extract from
the geographic hints via contrastive learning.
Challenges with physical search: Our “search” process involves the robot physically
searching through the environment, and is not purely a computational process. In
contrast to standard search algorithms (e.g., Dijkstra, A⇤, IDA⇤, D⇤, etc.), each “step” of
our search involves the robot driving to a subgoal and updating the graph. Standard
graph search algorithms assume (i) the ability to visit any arbitrary node, and (ii) access
to a set of neighbors for every node and the corresponding “edge weight,” before visiting
each neighbor. Physical search with a robot violates these assumptions, since robots
cannot “teleport” and visiting a node incurs a driving cost. Furthermore, the real world
does not provide “edge weights” and the robot needs to estimate the cost to reach an
unvisited node before actually driving to it.
An algorithm for informed physical search: To solve these challenges, we design ViKiNG-
A⇤, an A⇤-like search algorithm that uses our latent goal model and a learned heuristic
to perform physical search in real-world environments. While ViKiNG-A⇤ does prefer
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shorter paths, it does not aim to be optimal (in contrast to A⇤), only to reach the goal
successfully. We will use a heuristic h(w), fully described in the next section, which
we assume provides a comparative evaluation of candidate waypoints in terms of their
anticipated temporal distance to the destination. Algorithm 5 outlines ViKiNG-A⇤.

Like A⇤, ViKiNG-A⇤ maintains a priority queue “open set” W of unexplored fringe
nodes and a “current” node that represents the least-cost node in this set, which we refer
to as wt. It also maintains a graph with visited waypoints, T , where nodes correspond to
images seen at those nodes, and edges correspond to temporal distances estimated by the
model in Section 4.3.1. At every iteration, the robot drives to the least-cost node in the
open set (L5), using a procedure that we outline later. When it reaches wt, it observes the
image ot using its camera (L6). This allows it to add ot to the graph T (L7), connecting it
to other nodes by evaluating the distances using the model in Section 4.3.1. The graph
construction is analogous to prior work [99, 98]. If the robot is close to the final goal
image oG according to the model (L8), the search ends. ot also allows it to sample nearby
candidate waypoints using the model in Section 4.3.1 (L10): first sampling zw

t ⇠ r(zw
t )

from the prior, and then decoding distances dw
t , aw

t , and xw
t , from which it can compute

absolute locations as xw = xt + xw
t . Each sampled waypoint is stored in the open set, and

annotated with the current image ot and dw
t . We refer to wt as the parent of w, and index

it as Pr[w]. Note that we do not have access to the image ow, as we have not visited the
sampled waypoint w yet, and therefore we must store the current image ot instead. This
also means that we cannot connect these waypoints to the graph T except through their
parent. Next, we re-estimate the cost of each waypoint in the open set, including the
newly added waypoints.

The cost for each waypoint w 2 W from the current point wt consists of four terms
(L15): (1) g(t, w), the cost to navigate to the parent of w, which is part of the graph T ; this
can be computed as a shortest path on the graph T , and is zero for the current node. (2)
dw

Pr[w], the distance from the parent of w to w itself. (3) h(w), the heuristic cost estimate
of reaching the final goal from w (see Section 4.3.3). (4) v(Pr[w]), the visitation count of
Pr[w], computed as CN(Pr[w]), where C is a constant and N(Pr[w]) is a count of how
many times the robot drove to Pr[w] via the DriveTo subroutine; this acts as a novelty
bonus to encourage the robot to explore novel states, a strategy widely used in RL [62, 6].
Summing these terms expresses a preferences for nodes that are fast to reach from wt (1 +
2), get us closer to the goal (3), and have not been heavily explored before (4). At the next
iteration (L4), the robot picks the lowest-cost waypoint and again drives to it.

To navigate to a selected waypoint w (DriveTo), the robot employs a procedure
analogous to prior work on learning-based navigation with topological graphs [99, 98],
planning the shortest path through T , and selecting the next waypoint on this path.
Once the waypoint w is selected, the model qq,f({a, d, x}w

t |ot, ow) is used to repeatedly
choose the action aw

t based on the current image ot, until the distance dw
t becomes small,

indicating that the waypoint is reached and the robot can navigate to the next waypoint
(in practice, it’s convenient to replan the path at this point, as is standard in MPC). Each
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time the DriveTo subroutine reaches a node, it also increments its count N(w) which is
used for the novelty bonus v(w). The helper function close uses the model in Section 4.3.1
to check if the estimated temporal distance dw

t is less than e for two observations, and the
contains operation on a set checks if a given node is close to any node inside the set. These
modifications allow A⇤-like operations on the nodes of our graph, which are continuous
variables.

4.3.3 Learning a Goal-Directed Heuristic for Search

We now describe how we extract a heuristic h from geographic side information. As a
warmup, first consider the case where we only have the GPS coordinates for a waypoint
(xw) and final goal (xG). We can use kxg � xwk as a heuristic to bias the search to
waypoints in the direction of the goal, and this heuristic can be readily obtained from
the model in Section 4.3.1. However, we would like to compute the heuristic function
using some side information ct, such as a roadmap or satellite image, that does not lie in
a metric space. Thus, we need to learn the heuristic function from data. Since ViKiNG-A⇤

does not aim to be optimal (only seeking a feasible path), we do not require the heuristic
to be admissible.

We train the heuristic hover(xw, xG, xt, ct) to score the favorability of a sampled candi-
date waypoint w for reaching the goal G from current location xt, given side information ct.
In our case, ct is an overhead image that is roughly centered at the current location of the
robot. Our heuristic is based on an estimator for the probability pover(w! G|xw, xG, xt, ct)
that a given waypoint w lies on a valid path to the goal G. We use the same training set
as in Section 4.3.1 to learn a predictor for pover. Given pover, we can generate a heuristic
hover := lover(1� pover) to steer ViKiNG-A⇤ towards the goal (Alg. 5 L14). Note that,
since we evaluate the heuristic for sampled candidate waypoints, we do not have access
to xw, but we can predict it by using the model in Section 4.3.1 to infer the offset xw

t using
ot and the sampled latent code, and then calculate xw from xt and xw

t . Thus, the heuristic
is technically a function of ct, ot, xt, and xG.

Our procedure for training pover(w ! G|xw, xG, xt, ct) is based on InfoNCE [81], a
contrastive learning objective that can be seen as a binary classification problem between
a set of positives and negatives. At each training iteration, we sample a random batch B of
sub-trajectories k from our training set, where xS is the start of k and xE is the end, and cS
is an overhead image centered at xS. We sample a positive example by picking a random
time step in this subtrajectory, and using its position xw+ . The negatives xw� are locations
of other randomly sampled time steps from other trajectories, comprising the set W�.
In this way, we train a neural network model to represent pover(w! G|xw, xG, xt, ct) (see
Figure 16, right) via the InfoNCE objective:

LNCE = �EB


log

pover(w+ ! E|xw+ , xE, xS, cS)

Âw�2W� pover(w� ! E|xw� , xE, xS, cS)

�
(4)
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Figure 17: Examples of kilometer-scale goal-seeking in previously unseen environments using only
egocentric images (right) and a schematic roadmap or satellite image as hints (left). ViKiNG can
navigate in complex environments composed of roads, meadows, trees and buildings.

This heuristic can only reason about waypoints and goals at the scale of individual
trajectories in the training set (up to 50m). For kilometer-scale navigation, the heuristic
needs to make predictions for goals that are much further away, so we take inspiration
from goal chaining in reinforcement learning [17] and combine overlapping trajectories
in the training set (according to GPS positions) into larger trajectory groups. For a batch
B of trajectories, we combine two trajectories if they intersect in 2D space. The resulting
macro-trajectories thus have multiple start and goal positions, and can extend for several
kilometers. We then sample the sub-trajectories for xS, xE, and xw+ from these much
longer macro-trajectories, giving us positive examples between very distant xS, xE pairs.
This allows pover to be trained on a vast pool of long-horizon goals and improves the
reliability of the heuristic. We provide more details about this procedure in Appendix B.1.

4.4 viking in the real world

We now describe our experiments deploying ViKiNG in a variety of real-world outdoor
environments for kilometer-scale navigation. Our experiments compare ViKiNG to other
learning-based methods, evaluate its performance at different ranges, and study how it
responds to degraded or erroneous geographic information.

4.4.1 Mobile Robot Platform

We implement ViKiNG on a Clearpath Jackal UGV platform (see Fig. 14). The default
sensor suite consists of a 6-DoF IMU, a GPS unit for approximate global position estimates,
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and wheel encoders to estimate local odometry. Under open skies, the GPS unit is accurate
up to 2-5 meters, which is 4-10⇥ the size of the robot. In addition, we added a forward-
facing 170� field-of-view RGB camera. Compute is provided by an NVIDIA Jetson TX2
computer, and a cellular hotspot connection provides for monitoring and (if necessary)
teleoperation. Our method uses only the monocular RGB images from the onboard
camera, unfiltered measurements from onboard GPS, and overhead images (roadmap or
satellite) queried at the current GPS location, without any other processing.

4.4.2 Offline Training Dataset

Our aim is to leverage data collected in a wide range of different environments to (i)
enable the robot to learn navigational affordances that generalize to novel environments,
and (ii) learn a global planning heuristic to steer physical search in novel environments.
To create a diverse dataset capturing a wide range of navigation behavior, we use 30 hours
of publicly available robot navigation data collected using an autonomous, randomized
data collection procedure in office park style environments [98]. We augmented this
dataset with another 12 hours of teleoperated data collected by driving on city sidewalks,
hiking trails, and parks. Notably, ViKiNG never sees trajectories longer than 80 meters,
but is able to leverage the learned heuristic (Section 4.3.3) to reach goals over a kilometer
away at over 80% of the average speed in the training set. The average trajectory length in
the dataset is 45m, whereas our experiments evaluate runs in excess of 1km. The average
velocity in the dataset is 1.68 m/s, and the average velocity the robot maintains in testing
is 1.36 m/s. We provide more details about the dataset in Appendix B.2.

4.4.3 Kilometer-Scale Testing

For evaluation, we deploy ViKiNG in a variety of previously unseen open-world environ-
ments to demonstrate kilometer-scale navigation. Figure 17 shows the path taken by the
robot in search for a user-specified goal image and location. ViKiNG is able to utilize
geographic hints, in the form of a roadmap or satellite image centered at its current
position, to steer its search of the goal. In a university campus (Fig. 17(a, c)), we observe
that the robot can identify large buildings along the way and plan around it, rather than
following a greedy strategy. Since the training data often contains examples of the robot
driving around buildings, ViKiNG is able to leverage this prior experience and generalize
to novel buildings and environments. On city roads (Fig. 17(b)), the learned heuristic
shows preference towards following the sidewalks, a characteristic of the training data in
city environments. It is important to note that while the robot has seen some prior data
on sidewalks and in suburban neighborhoods, it has never seen the specific areas (see
Appendix B.2 for further details). For videos of our experiments, please check out our
project page.
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Figure 18: ViKiNG can follow a sequence of goal checkpoints to perform search in complex
environments, such as this 2.73km hiking trail.

These long-range experiments also exhibit successful backtracking behavior—when
guided into a cul-de-sac by the planner, ViKiNG turns around and resumes its search
for the goal from another node in the “openSet”, reaching the goal successfully (see
Figure 14(h)). While the learned heuristic provides high-level guidance, the local control
is done solely from first person images. This is illustrated in Figure 14(g), where the
robot navigates through a forest, where the satellite image does not contain any useful
information about navigating under a dense canopy. ViKiNG is able to successfully
navigate through a patch of trees using the image-based model described in Section 4.3.1.
We can also provide ViKiNG with a set of goals to execute in a sequence to provide more
guidance about the path (e.g., an inspection task with landmarks), as demonstrated in
the next experiment.
A hiking ViKiNG: We deploy ViKiNG, with access to satellite images as hints, on a 2.7km
hiking trail with a 70m elevation gain by providing a sequence of six checkpoint images
and their corresponding GPS coordinates. Algorithmically, we run ViKiNG-A⇤ on every
goal (one at a time) while reusing the topological graph T across goals. Figure 18 shows
a top-down view of the path taken by the robot—ViKiNG is able to successfully combine
the strengths of a learned controller for collision-free navigation with a learned heuristic
that utilizes the satellite images to encourage on-trail navigation between checkpoints.
Since the offline dataset contains examples of trail-following, the robot learns to stay
on trails when possible. This behavior is emergent from the data—there is no other
mechanism that encourages staying on the trails, and in several cases, a straight-line
path between the goal waypoints would not stay on the trail (e.g., the first checkpoint in
Figure 18).
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Figure 19: ViKiNG can utilize a satellite image to follow a sequence of visual landmarks (top) in
complex suburban environments, such as this 2.65km loop stretching across buildings, meadows
and roads.

Autonomous visual inspection: We further deploy ViKiNG in a suburban environment
for the task of visual inspection specified by five images of interest. ViKiNG is able to
successfully navigate to the landmarks by using satellite imagery, traveling a distance of
2.65km without any interventions. Figure 19 shows the specified images and a top-down
view of the path taken by the robot on the trail.

4.4.4 Quantitative Evaluation and Comparisons

We compare ViKiNG to four prior approaches, each trained using the same offline data
as our method. All methods have access to the egocentric images, GPS location, and
satellite images, and control the robot via the same action space, corresponding to linear
and angular velocities.



Kilometer-Scale Exploration with Geographic Hints 49

Behavioral Cloning: A goal-conditioned behavioral cloning (BC) policy trained on the
offline dataset that maps the three inputs to control actions [20, 99].
PPO: A policy gradient algorithm that maps the three inputs to control actions. This
comparison is representative of state-of-the-art “PointGoal” navigation in simulation [119].
GCG: A model-based algorithm that uses a predictive model to plan a sequence of actions
that reach the goal without causing collision [53]. We use GCG in the goal-directed mode
with a GPS target, using the onboard camera and satellite images as input modalities.
RECON-H: A variant of RECON, which uses a latent goal model to represent reachable
goals and plans over sampled subgoals to explore a novel environment [98]. We modify
the algorithm to additionally accept the GPS and satellite images as additional inputs
alongside the onboard camera image.

We evaluate the ability of ViKiNG to discover visually-indicated goals in 10 unseen
environments of varying complexity. For each trial, we provide an RGB image of the
desired target and its rough GPS location (accurate up to 5 meters). A trial is marked
successful if the robot reaches the goal without requiring a human disengagement (due
to a collision or getting stuck). We report the success rates of all methods in these
environments in Table 5 and visualize overhead plots of the trajectories in one such
environment in Figure 20.

ViKiNG outperforms all the prior methods, successfully navigating to goals that are
over up to 500 meters away in our comparisons, including instances where no other
method succeeds. RECON-H is the most performant of the other methods, successfully
reaching most goals in the easier environments. Visualizing the robot trajectories (Fig. 20)
reveals that RECON-H is unable to successfully utilize the geographic hints and explores
greedily on encountering an obstacle. It also gets stuck and is unable to backtrack in 2/10
instances. While GCG also performs well in simpler environments, it is limited by its
planning horizon (up to 5 seconds) and gets stuck. PPO and BC both are both unable to
learn from prior data and produce collisions with bushes and a parked car, respectively.
In contrast, ViKiNG is able to effectively use the local controller to avoid the obstacles
and reach the goal.

Analyzing the performance in the harder tasks with ranges of up to 500 meters
(Table 6), the average displacements and velocities before a user disengagement (due
to collision or getting stuck) during these runs further confirm that ViKiNG is able to
effectively use the geographic hints to steer the search without running into obstacles.
While RECON-H manages to reach some faraway goals, it takes a greedy path to do so
and is over 3⇥ slower than ViKiNG (see Fig. 20).

4.5 the role of geographic hints

In this section, we closely examine the role of geographic hints on the performance of
ViKiNG by studying how it deals with a low-fidelity roadmap (versus a satellite image),
and with incorrect hints and degraded geographic information. For the experiment in
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Method Easy Medium Hard
< 50m 50� 150m 150� 500m

Behavior Cloning 2/3 1/4 0/3
Offline PPO [96] 2/3 1/4 0/3
GCG [53] 3/3 2/4 0/3
RECON-H [98] 3/3 3/4 1/3
ViKiNG (Ours) 3/3 4/4 3/3

Table 5: Comparison of goal-seeking performance against baselines. ViKiNG successfully reaches
all goals. RECON-H and GCG succeed in simpler cases but are unable to utilize the hints
effectively for distant goals. PPO and BC fail in all but the simplest cases.

Method Avg. Displacement (m) Avg. Velocity (m/s)

Behavior Cloning 19.5 0.35
Offline PPO [96] 47.2 0.85
GCG [53] 78.3 1.40
RECON-H [98] 188.3 0.41
ViKiNG (Ours) 250.0+ 1.36

Table 6: Average robot displacement and velocity before disengagement. ViKiNG successfully
reaches all goals without requiring any disengagements. RECON-H also reaches some distant
goals, but the low avg. velocity suggests that it takes an efficient path.

ViKiNG (Ours)
BC

RECON-H [33][20]
PPO [45] [18] GCG [3][27]

40m

start

goal

Figure 20: Trajectories taken by the methods in a previously unseen environment. Only ViKiNG is
able to effectively use the overhead images to reach the goal (270m away) successfully, following a
smooth path around the building. RECON-H and GCG get stuck, while PPO and BC result in
collisions.
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start

goal
Roadmap Hint Satellite Hint

Figure 21: ViKiNG can use geographic hints in the form of a schematic roadmap or a satellite
image. Providing roadmap hints encourages ViKiNG to follow marked roads (left); with satellite
images, it is able to find a more direct path by cutting across a meadow (right).

Section 4.5.1, we use models trained on the same dataset, but using schematic roadmaps
as geographic hints. In Sections 4.5.2 and 4.5.3, we use the same satellite image model
from Section IV, with no additional retraining to accommodate missing or imperfect
geographic information.

4.5.1 Comparing Different Types of Hints

To understand the nature of hints learned by the heuristic for different sources of geo-
graphic side information, we compare two separate versions of ViKiNG: one trained with
schematic roadmaps as hints, and another trained with satellite images. Note that the
method is identical in both cases, only the hint image in the data changes. For identical
start-goal pairs, we observe that a model trained with roadmaps prefers following marked
roads, whereas one trained with satellite images often cuts across patches of traversable
terrain (e.g., grass meadows or trails) to take the quicker path, despite being trained on
the same data. We hypothesize that this is due to the ability of the learned models to
extract better correlations from the feature-rich satellite images, in contrast to the more
abstract roadmap. Figure 21 shows a top-down view of the paths taken by the robot in
the two cases in one such experiment.
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Original Path New PathAdded Obstacle

Before After

goal
start

Figure 22: On navigating with outdated hints, like the truck (top right) that is absent in the
satellite image, ViKiNG uses its learned local controller to propose feasible subgoals that avoid
obstacles and finds a new path (blue) to the goal that avoids the truck.

4.5.2 Outdated Hints

To test the robustness of ViKiNG to outdated hints, we set up a goal-seeking experiment
in one of the earlier environments and added a new obstacle—a large truck—blocking
the path that ViKiNG took in the original trial. Since the satellite images are queried from
a pre-recorded dataset, they do not reflect the addition of the truck, and hence continue
to show a feasible path. We observe that the robot drives up to the truck and takes an
alternate path to the goal, without colliding with it (see Figure 22). The lower-level latent
goal model is robust to such obstacles and only proposes valid subgoal candidates that
do not lead to collision; since the learned heuristic only evaluates valid subgoals, ViKiNG
is robust to small discrepancies in the hints.
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Figure 23: On navigation with invalid hints, like the map at a different location, ViKiNG deviates
from its original path (magenta) and reaches the goal by following the learned heuristic (blue).

4.5.3 Incorrect Hints

Next, we set up a goal-seeking experiment in one of the easy environments with modified
GPS measurements, so that the satellite images available to ViKiNG are offset by a ⇠5km
constant. As a result, this hints to the robot that there may be a road that it should
follow, where in fact there isn’t one (see Figure 23). We observe that the robot indeed
deviates from its earlier path (with a valid map, the robot drives straight to the goal);
upon overlaying this trajectory on the invalid map, we find that the learned heuristic
indeed encourages the robot to follow the curvature of the road, but this path is still
successful because it corresponds to open space.

4.5.4 A Disoriented ViKiNG

Finally, we analyze the effects of disabling the geographic hints and GPS localization
on the goal-seeking performance of ViKiNG. Towards this, we run two variants of our
algorithm:
No Overhead Image: We provide the robot with GPS, but no satellite images. To
accommodate this, we use a simple `2 heuristic hGPS(xw, xg, xt) = kxg � xwk.
No GPS: The robot does not have access to GPS or satellite images. To accommodate this,
we remove the heuristic h from ViKiNG-A⇤, making it an uninformed search algorithm.
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start

goal

Figure 24: Ablations of ViKiNG by withholding geographic hints. ViKiNG without overhead
images (magenta) acts greedily, driving close to buildings, gets caught into a cul-de-sac and
eventually reaches the goal 2.6⇥ slower that ViKiNG with access to satellite images (blue), which
avoids the building cluster by following a smoother dirt path. Search without GPS (cyan) performs
uninformed exploration and is unable to reach the goal in over 30 minutes.

Figure 24 summarizes the path taken by the robot, distance traversed, and time taken.
When we disable the overhead hints and only use hGPS, ViKiNG-A⇤ can still reach the
destination, but takes significantly longer to do so, initially exploring a dead-end path
that it then has to back out of. That said, this experiment also illustrates the ability of
ViKiNG-A⇤ to handle less useful heuristics: while the path is significantly longer, the
method is still able to eventually reach the destination, and in some sense the mistakes
the method makes are to be expected of any system that has no prior map information. If
we remove GPS as well, ViKiNG-A⇤ corresponds to a Dijkstra-like uninformed search
(resembling RECON [98]). In this case, the robot searches its environment without any
guidance and is unable to reach the goal in over 30 minutes.

4.6 discussion

We proposed a method for efficiently learning vision-based navigation in previously unseen
environments at a kilometer-scale. Our key insight is that effectively leveraging a small
amount of geographic knowledge in a learning-based framework can provide strong
regularities that enable robots to navigate to distant goals. We find that incorporating
geographic hints as goal-directed heuristics for planning enables emergent preferences
such as following roads or hiking trails. Additionally, ViKiNG only uses the hints for
biasing the high-level search; the learned control policy at the lower-level relies solely
on egocentric image observations, and is thus robust to imperfect hints. While we only
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use overhead images in our experiments, an existing avenue for future work is to explore
how such a system could use other information sources, including paper maps or textual
instructions, which can be incorporated into our contrastive objective.
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[91] Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. “Meta re-
inforcement learning with latent variable gaussian processes”. In: arXiv preprint
arXiv:1803.07551 (2018).

[92] Yash Satsangi et al. “Maximizing Information Gain in Partially Observable Envi-
ronments via Prediction Reward”. In: arXiv preprint arXiv:2005.04912 (2020).

[93] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. “Semi-Parametric Topo-
logical Memory for Navigation”. In: International Conference on Learning Representa-
tions. 2018.



Kilometer-Scale Exploration with Geographic Hints 62

[94] Nikolay Savinov et al. “Episodic curiosity through reachability”. In: International
Conference on Learning Representations (ICLR (2019).

[95] Tom Schaul et al. “Universal Value Function Approximators”. In: International
Conference on Machine Learning (ICML). 2015.

[96] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.
06347 [cs.LG].

[97] Magnus Selin et al. “Efficient Autonomous Exploration Planning of Large-Scale
3-D Environments”. In: IEEE Robotics and Automation Letters (2019).

[98] Dhruv Shah et al. “Rapid Exploration for Open-World Navigation with Latent
Goal Models”. In: 5th Annual Conference on Robot Learning. 2021.

[99] Dhruv Shah et al. “ViNG: Learning Open-World Navigation with Visual Goals”.
In: IEEE International Conference on Robotics and Automation (ICRA). 2021.

[100] Bruno Siciliano, Oussama Khatib, and Torsten Kröger. Springer Handbook of Robotics.
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A P P E N D I X A : O P E N - W O R L D E X P L O R AT I O N W I T H L AT E N T G O A L
M O D E L S

a.1 dataset

In this work, we emphasize that data collected from prior experience in unrelated
environments can be a rich source of supervision, even if the interactions in the dataset
are suboptimal. To demonstrate this, we curate a dataset of over 5000 self-supervised
trajectories collected over 9 distinct real-world environments. These trajectories capture
the interaction of the robot in diverse environments, including phenomena like collisions
with obstacles and walls, getting stuck in the mud or pits, or flipping due to bumpy
terrain. The dataset contains measurements from a wide range of sensors including a
pair of stereo RGB cameras, thermal camera, 2D LiDAR, GPS and IMU to support offline
evaluation using an alternative suite of sensors. While a lot of these sensor measurements
can be noisy and unreliable, we believe that learning-based techniques coupled with
multimodal sensor fusion can provide a lot of benefits in the real-world. This dataset was
collected over a span of 18 months, including parts collected by Kahn et al. [54] and Shah
et al. [99] for earlier research projects, and exhibits significant variation in appearance
due to seasonal and lighting changes.

This dataset is available for download at sites.google.com/view/recon-robot/dataset,
along with helper scripts to load and visualize the trajectories.

a.1.1 Self-Supervised Data Collection and Labeling

We design the data collection methodology to enable gathering large amounts of diverse
data with minimal human intervention. Due to the high cost of gathering data with
real-world robotic systems, we choose to use an off-policy learning algorithm in order
to be able to gather data using any control policy and train on all of the gathered data.
To ensure that the control policy achieves sufficient coverage of the environment while
also ensuring that the action sequences executed by the robot are realistic, we use a
time-correlated random walk to gather data. A naı̈ve uniform random control policy is
inadequate because the robot will primarily drive straight due to the linear and angular
velocity action interface of the robot, which will result in both insufficient exploration
and unrealistic test time action sequences.

During data collection using the random control policy, the robot requires a mechanism
to detect if it is in collision or stuck, and an automated controller to reset itself in order to
continue gathering data. We detect collisions in one of two ways, either using the LIDAR
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to detect when an obstacle is near or the IMU to detect when the robot is stuck due to an
obstacle or uneven terrain. We program an automated backup maneuver that drives the
robot out of collision (whenever possible) so it can initiate a new trajectory.

We also use these collision detectors as a weak source of supervision by generating
event labels for the collected trajectories, giving us a self-supervised relabeling pipeline as
proposed in BADGR [54]. We consider three different events: collision, bumpiness, and
position. A collision event is detected the LIDAR measures an obstacle to be close or, in
off-road environments, when the IMU detects a sudden drop in linear acceleration (jerk)
and angular velocity magnitudes. A bumpiness event is calculated as occurring when the
angular velocity magnitudes measured by the IMU are above a certain threshold. The
position is determined by an onboard state estimator that fuses wheel odometry and
the IMU to form a local position estimate. Note that all experiments reported in this
paper only use the collision labels; these labels are used to dissect the random walks into
smooth trajectories that end in collision.

a.1.2 Environments

To learn general navigational affordances across a wide range of environments, we curate
over 40 hours of trajectories in 9 diverse open-world environments of varying complexity
(see Figure 25).

Figure 26 shows the exploration and navigation performance of RECON and the
baselines (see Sec. 3.5 for details) on the individual environments. As the environment
complexity increases, most methods are not able to explore the environment efficiently to
discover the goal. For videos of our system exploring these environments, please check
out the supplemental video submission.

a.2 reproducibility

a.2.1 Algorithmic Components

The SubgoalNavigate function rolls out the learned policy for a fixed time horizon H to
navigate to the desired subgoal latent zw

t , by querying the decoder qq(at, dt|zw
t , ot) in an

open loop manner. The endpoint of such a rollout is used to update the visitation counts
v in the graph G using the AssociateToVertex subroutine. To nudge the robot to the
frontier, we use a heuristic LeastExploredNeighbor routine that uses the visitation counts
of the neighbors to identify unexplored areas in the local neighborhood. At the end of
each trajectory, the ExpandGraph subroutine is used to update the edge and node sets
{E ,V} of the graph G to update the non-parametric representation of the environment.
Pseudocode for these subroutines are given in Alg. 6.
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Algorithm 6 Pseudocode for subroutines referenced in the exploration algorithm shown
in Alg. 3

1: function SubgoalNavigate(zw
t ; H)

2: trajectory  ()
3: for t 2 [1, . . . , H] do
4: trajectory.append((ot, at, t))
5: at, dg

t ⇠ qq(at, dt | zw
t , ot) . []Sample action

6: ot  Env.step(at) . []Execute action
7: end for
8: vH  AssociateToVertex(G, oH)
9: vH.count vH.count + 1

10: Dw  ((ot, oH, at, H � t) for (ot, at, t) 2 trajectory)
11: return Dw, oH
12: end function

1: function AssociateToVertex(G = (V , E), ot)
2: d sort((d̄v

t , v) for v 2 V) . []Predict distances
3: v, d d[0] . []Associate ot with nearest vertex
4: return v
5: end function
1: function LeastExploredNeighbor(G = (V , E), ot, d2)
2: v AssociateToVertex(G, ot)
3: Vn  {v0 : E(v, v0) < d2, v0 2 V} . []Retrieve neighbors
4: c sort((v0.count, v0.o) for v0 2 Vn)
5: vc, oc  c[0] . []Retrieve neighbor with smallest count
6: return oc
7: end function
1: procedure ExpandGraph(G = (V , E), ot)
2: vt  Node(count = 1, o = ot) . []Create node for ot
3: E  E [ {(vt, vg) : d̄g

t , g 2 V} . []Add edges
4: V  V [ {vt} . []Add vertex
5: end procedure
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Hyperparam. Value Meaning

d1 4 Threshold of identification
d2 15 Threshold of neighbors
e 10�2 Exploration threshold on prior
b 1.0 Model complexity
g 10 Epochs to finetune model
H 5 seconds Horizon to navigate to subgoal

Table 7: Hyperparameters used in our experiments.

a.2.2 Implementation Details

Inputs to the encoder pf are pairs of observations of the environment – current and
goal – represented by a stack of two RGB images obtained from the onboard camera at a
resolution of 160⇥ 120 pixels. pf is implemented by a MobileNet encoder [49] followed
by a fully-connected layer projecting the 1024-dimensional latents to a stochastic, context-
conditioned representation zg

t of the goal that uses 64-dimensions each to represent the
mean and diagonal covariance of a Gaussian distribution. Inputs to the decoder qq are the
context (current observation) – processed with another MobileNet – and zg

t . We use the
reparametrization trick [55] to sample from the latent and use the concatenated encodings
to learn the optimal actions ag

t and distances dg
t . Details of our network architecture are

provided in Table 8. During pretraining, we maximize Eq. 2 with a batch size of 128 and
perform gradient updates using the Adam optimizer with learning rate l = 10�4 until
convergence. We provide the hyperparameters associated with our algorithms in Table 7.

Layer Input [Dimensions] Output [Dimensions] Layer Details

Encoder pf(z | ot, og) = N (·; µp, Sp)

1 ot, og [3, 160, 120] Ig
t [6, 160, 120] Concatenate along channel dimension.

2 Ig
t [6, 160, 120] Eg

t [1024] MobileNet Encoder [49]
3 Eg

t [1024] µp [64], sp [64] Fully-Connected Layer, exp activation of sp
4 sp [64] Sp [64, 64] torch.diag(sp)

Decoder qq(a, d | ot, zg
t ) = N (·; µq, Sq)

1 ot [3, 160, 120] Et [1024] MobileNet Encoder [49]
2 Et [1024], zg

t [64] F = Et � zg
t [1088] Concatenate image and goal representation

3 F [1088] µq [3], sq [3] Fully-Connected Layer, exp activation of sq
4 sq [3] Sq [3, 3] torch.diag(sq)
5 µq [3] āg

t [2], d̄g
t [1] Split into actions and distances.

Table 8: Architectural Details of RECON: The inputs to the model are RGB images ot 2
[0, 1]3⇥160⇥120 and og 2 [0, 1]3⇥160⇥120, representing the current and goal image.
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(a) Junkyard (b) Fire Station (c) Warehouse

(d) Cafeteria (e) Parking Lot 1 (f) Forest Cabin

(g) Farmlands (h) Parking Lot 2 (i) Residential

Figure 25: We collect data in 9 diverse environments. Example trajectories are shown in cyan.
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Figure 26: Exploring and learning to reach goals: (left) Amount of time needed for each method
to search for the goals in a new environment (# is better; hashed out bars represent failure).
(right) Amount of time needed to reach the goal a second time, after reaching the goal once and
constructing the map, in seconds (# is better).



A P P E N D I X B : K I L O M E T E R - S C A L E E X P L O R AT I O N W I T H
G E O G R A P H I C H I N T S

b.1 implementation details

Layer Input [Dimensions] Output [Dimensions] Layer Details

Encoder pf(z | ot, ow) = N (·; µp, Sp)

1 ot, ow [3, 160, 120] Iw
t [6, 160, 120] Concatenate along channel dimension.

2 Iw
t [6, 160, 120] Ew

t [1024] MobileNet Encoder [49]
3 Ew

t [1024] µp [64], sp [64] Fully-Connected Layer, exp activation of sp
4 sp [64] Sp [64, 64] torch.diag(sp)

Decoder qq(a, d, x | ot, zw
t ) = N (·; µq, Sq)

1 ot [3, 160, 120] Et [1024] MobileNet Encoder [49]
2 Et [1024], zw

t [64] F = Et � zw
t [1088] Concatenate image and goal representation

3 F [1088] µq [3], sq [3] Fully-Connected Layer, exp activation of sq
4 sq [5] Sq [5, 5] torch.diag(sq)
5 µq [5] āw

t [2], d̄w
t [1], x̄w

t [2] Split into actions, distances and offsets

Table 9: Architectural details of the latent goal model (Section 4.3.1)

b.1.1 Latent Goal Model (Section 4.3.1)

Inputs to the encoder pf are pairs of observations of the environment—current and
goal—represented by a stack of two RGB images obtained from the onboard camera at a
resolution of 160⇥ 120 pixels. pf is implemented by a MobileNet encoder [49] followed
by a fully-connected layer projecting the 1024-dimensional latents to a stochastic, context-
conditioned representation zw

t of the goal that uses 64-dimensions each to represent the
mean and diagonal covariance of a Gaussian distribution. Inputs to the decoder qq are the
context (current observation)—processed with another MobileNet—and zw

t . We use the
reparametrization trick [55] to sample from the latent and use the concatenated encodings
to learn the optimal actions aw

t , temporal distances dw
t and spatial offsets xw

t . Details of
our network architecture are provided in Table 9. During pretraining, we maximize LVIB
(Eq. 3) with a batch size of 128 and perform gradient updates using the Adam optimizer
with learning rate l = 10�4 until convergence.
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b.1.2 Learned Heuristic (Section 4.3.3)

Inputs to the encoder pover are (i) satellite image cS and (ii) the triplet of GPS locations
{xw, xS, xG}. pover is implemented as a multi-input neural network with a MobileNet
encoder [49] to featurize cS, which is then concatenated with the location inputs. This
is followed by a series of fully-connected layers [512, 128, 32, 1] down to a single cell to
predict the binary classification scores. During pretraining, we minimize LNCE with a
batch size of 256 and perform gradient updates using the Adam optimizer with learning
rate l = 10�4 until convergence.

b.1.3 Miscellaneous Hyperparameters

We provide the hyperparameters associated with our algorithms in Table 10.

Hyperparameter Value Meaning

Dt 0.5 Time step of the robot (s)
e 10 Threshold for close (Sec. 4.3.2)
C 20 Scaling constant for v (Alg. 5 L15)

lover 200 Scaling constant for hover (Sec. 4.3.3)

Table 10: Hyperparameters used in our experiments.

b.2 offline trajectory dataset

For the offline dataset discussed in Section 4.4.2, we use a combination of a 30 hours of
autonomously collected data, and 12 hours of human teleoperated data. The complete
dataset was collected by 3 independent sets of researchers over the course of 24 months
in environments spanning multiple cities. We provide more information below.

b.2.1 Autonomously Collected Data

We use the published dataset by Shah et al. [98], that contains over 5000 self-supervised
trajectories collected over 9 distinct real-world environments. These trajectories capture
the interaction of the robot in diverse environments, including phenomena like collisions
with obstacles and walls, getting stuck in the mud or pits, or flipping due to bumpy
terrain.

During data collection, a robot is equipped with a 2D LIDAR sensor to detect collisions
ahead of time and generate autonomous pseudo-labels for collision events. To ensure that
the control policy achieves sufficient coverage of the environment while also ensuring
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Training Dataset ViKiNG Deployment

Avg. Length 45m >1km
Avg. Velocity (m/s) 1.68 1.36

Table 11: Trajectory statistics for offline training dataset and real-world deployment.

Environment Type Amount of Data (hrs)

Paved Hiking Trails 01:45
City Sidewalks 02:15
Suburban Neighborhood Roads 01:30
Unpaved Grasslands 01:00
University/Office Campus 02:30
Miscellaneous 03:00

Total 12:00

Table 12: Approximate composition of various environment types in the teleoperated dataset.

that the action sequences executed by the robot are realistic, we use a time-correlated
random walk to gather data.

b.2.2 Human Teleoperated Data

The above dataset contains extremely diverse dataset that is great for learning general
notions of traversability and collision avoidance. However, the random nature of the
dataset means that it does not contain any semantically interesting behavior that may be
desired of a robotic system, such as following a sidewalk or through a patch of trees. To
enhance the quality of learned behaviors, we augment this dataset with about 12 hours
of human teleoperated data in semantically rich environments such as hiking trails, city
sidewalks, parking lots and suburban neighborhoods. These environments represent
realistic scenarios where such a robotic system would be deployed.

Table 11 summarizes key statistics of the trajectories, such as length and velocity.
Table 12 summarizes the various environments in which the dataset was collected, and
their relative composition. Figure 27 visualizes the geographic locations of these data
collection sites (location anonymized for the double-blind review process). We ensure no
overlap between the training and test environments—success in these test environments
requires true generalization to unseen environments.
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Train

Test

1km

Figure 27: Rough geographical locations of data collection by human teleoperation and testing
(Section 4.4)


