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Abstract

Re-examining Metrics for Success in Machine Learning, from Fairness and Interpretability to
Protein Design

By
Frances Ding
Doctor of Philosophy in Computer Science
University of California, Berkeley
Assistant Professor Jacob Steinhardt, Co-chair

Associate Professor Moritz Hardt, Co-chair

Quantitative metrics, along with datasets to assess them with, are key ingredients that have
fueled rapid progress in machine learning (ML) in recent years. These metrics, datasets, and
benchmarks define priorities and facilitate efficient discovery of model designs that make
progress on those priorities. Ideally, metrics track real world goals, such that improvement
on them translates to improvement in related, real tasks. Creating metrics that achieve
this external validity is an ever-present challenge in ML. Thus, the science of metrics is an
iterative one, as identifying and resolving one issue allows other, more subtle ones, to become
apparent.

In this thesis, we describe a series of works that highlight limitations in metrics across
different subfields of ML and design new metrics to fill these gaps. We first examine
representation similarity metrics used in the interpretability subfield to compare neural
network representations. We show that current popular metrics often disagree on fundamental
observations, making it unclear which one we should believe. We develop practical, statistically
grounded tests to evaluate these metrics and find different weaknesses in each. We next
examine metrics and benchmarks for fair classification. We highlight idiosyncrasies in the
popular UCI Adult dataset that limit its external validity, and we contribute a suite of new
datasets derived from US Census surveys that extend the existing data ecosystem for research
on fair machine learning. Finally, we examine the subfield of protein modeling with ML.
We develop metrics to quantify a novel type of bias present in popular protein language
models—bias towards sequences from certain evolutionary taxa. We additionally introduce a
method to mitigate this bias. Across these works in diverse subfields, we demonstrate the
challenges and opportunities present in developing metrics that advance technical capabilities
in alignment with real world needs.
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Chapter 1

Introduction

Quantitative metrics, along with datasets to assess them with, are key ingredients that have
fueled rapid progress in machine learning (ML) in recent years. These metrics, datasets, and
benchmarks define priorities and facilitate efficient discovery of model designs that make
progress on those priorities. For example, the ImageNet Large Scale Visual Recognition
Challenge [108] provided one of the first demonstrations of deep learning’s effectiveness. As
ML has become increasingly deployed in application, the ML community has recognized
multifaceted priorities and developed new metrics with expanded scope. Commonly assessed
metrics now go beyond accuracy on a test set and evaluate many other desiderata, such as
robustness to distribution shift, fairness across demographic groups, and interpretability of
outputs.

Ultimately, metrics and benchmarks are meant to track real world goals, such that
improvement on them translates to improvement in related, real tasks. Creating benchmarks
that achieve this external validity is an ever-present challenge in the field, with many potential
pitfalls [77]. Thus, the science of benchmarking is an iterative one, as identifying and resolving
one issue allows other, more subtle ones, to become apparent.

In this thesis, we describe a series of works aimed at interrogating how well-known metrics
and benchmarks across different subfields of ML fall short on external validity, and how
to design new metrics and benchmarks. By examining fairness and interpretability, we
highlight the need for metrics that reflect social and practical considerations. We also explore
the emerging field of protein design, demonstrating how novel metrics are essential in ML
applications in the natural sciences. Through these works, we hope to pave the way for future
research that not only advances technical capabilities but also aligns closely with societal
values and needs.

We now describe each section in more detail.
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Evaluating Representation Similarity Metrics

In Chapter 2 we examine metrics used to understand and interpret neural network behavior,
specifically dissimilarity measures that compare different networks’ learned representations,
such as canonical correlation analysis (CCA), centered kernel alignment (CKA), and other
measures. Unfortunately, these widely used measures often disagree on fundamental obser-
vations, such as whether deep networks differing only in random initialization learn similar
representations. These disagreements raise the question: which, if any, of these dissimilarity
measures should we believe?

We provide a framework to ground this question through a concrete test: measures should
have sensitivity to changes that affect functional behavior, and specificity against changes
that do not. We quantify this through a variety of functional behaviors including probing
accuracy and robustness to distribution shift, and examine changes such as varying random
initialization and deleting principal components. We find that current metrics exhibit different
weaknesses, note that a classical baseline performs surprisingly well, and highlight settings
where all metrics appear to fail, thus providing a challenge set for further improvement.

This work appears as Ding, Denain, and Steinhardt [34].

Assessing Fair Machine Learning with New Datasets

In Chapter 3 we turn to benchmarks that assess whether ML algorithms satisfy fairness
considerations across demographic and other characteristics. Although the fairness community
has recognized the importance of data, researchers in the area primarily rely on UCI Adult
when it comes to tabular data. Derived from a 1994 US Census survey, this dataset has
appeared in hundreds of research papers where it served as the basis for the development
and comparison of many algorithmic fairness interventions. We reconstruct a superset of the
UCI Adult data from available US Census sources and reveal idiosyncrasies of the UCI Adult
dataset that limit its external validity. Our primary contribution is a suite of new datasets
derived from US Census surveys that extend the existing data ecosystem for research on fair
machine learning.

We also create new prediction tasks relating to income, employment, health, transportation,
and housing. The data span multiple years and all states of the United States, allowing
researchers to study temporal shift and geographic variation. We highlight a broad initial
sweep of new empirical insights relating to trade-offs between fairness criteria, performance
of algorithmic interventions, and the role of distribution shift based on our new datasets.
Our findings inform ongoing debates, challenge some existing narratives, and point to future
research directions in fair machine learning.

This work appears as Ding, Hardt, Miller, and Schmidt [35].
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Identifying Biases in Protein Language Models

In Chapter 4 we bring insights from benchmarking for interpretability and fairness to the
field of protein modeling. Recently, protein language models (PLMs) trained on large protein
sequence databases have been used to understand disease and design novel proteins. In design
tasks, the likelihood of a protein sequence under a PLM is often used as a proxy for protein
fitness, so it is critical to understand what signals likelihoods capture. In this chapter we show
that PLM likelihoods unintentionally encode a species bias: likelihoods of protein sequences
from certain species are systematically higher, independent of the protein in question. We
quantify this bias and show that it arises in large part because of unequal representation of
different branches of the evolutionary tree in popular protein sequence databases. We further
show that the bias can be detrimental for some protein design applications, such as enhancing
thermostability. Finally, we develop post-hoc bias mitigation strategies that reduce these
detrimental effects on design. These results highlight the importance of understanding and
curating PLM pre-training data to mitigate biases and improve protein design capabilities in
under-explored parts of sequence space.
This work appears as Ding and Steinhardt [33].



Chapter 2

Evaluating Representation Similarity
Metrics

2.1 Introduction

Understanding neural networks is not only scientifically interesting, but critical for applying
deep networks in high-stakes situations. Recent work has highlighted the value of analyzing
not just the final outputs of a network, but also its intermediate representations [75, 104].
This has motivated the development of representation similarity measures, which can provide
insight into how different training schemes, architectures, and datasets affect networks’ learned
representations.

A number of similarity measures have been proposed, including centered kernel alignment
(CKA) [63], ones based on canonical correlation analysis (CCA) [88, 105], single neuron
alignment [75], vector space alignment [8, 28, 114|, and others [4, 42, 68, 72, 76, 126].
Unfortunately, these different measures tell different stories. For instance, CKA and projection
weighted CCA disagree on which layers of different networks are most similar [63]. This
lack of consensus is worrying, as measures are often designed according to different and
incompatible intuitive desiderata, such as whether finding a one-to-one assignment, or finding
few-to-one mappings, between neurons is more appropriate [75]. As a community, we need
well-chosen formal criteria for evaluating metrics to avoid over-reliance on intuition and the
pitfalls of too many researcher degrees of freedom [70].

In this paper we view representation dissimilarity measures as implicitly answering a
classification question—whether two representations are essentially similar or importantly
different. Thus, in analogy to statistical testing, we can evaluate them based on their
sensitivity to important change and specificity (non-responsiveness) against unimportant
changes or noise.

As a warm-up, we first initially consider two intuitive criteria: first, that metrics should
have specificity against random initialization; and second, that they should be sensitive to
deleting important principal components (those that affect probing accuracy). Unfortunately,
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popular metrics fail at least one of these two tests. CCA is not specific — random initialization
noise overwhelms differences between even far-apart layers in a network (Section 2.3). CKA
on the other hand is not sensitive, failing to detect changes in all but the top 10 principal
components of a representation (Section 2.3).

We next construct quantitative benchmarks to evaluate a dissimilarity measure’s quality.
To move beyond our intuitive criteria, we need a ground truth. For this we turn to the func-
tional behavior of the representations we are comparing, measured through probing accuracy
(an indicator of syntactic information) [14, 100, 119] and out-of-distribution performance of
the model they belong to [30, 83, 89]. We then score dissimilarity measures based on their
rank correlation with these measured functional differences. Overall our benchmarks contain
30,480 examples and vary representations across several axes including random seed, layer
depth, and low-rank approximation (Section 2.4)!.

Our benchmarks confirm our two intuitive observations: on subtasks that consider layer
depth and principal component deletion, we measure the rank correlation with probing
accuracy and find CCA and CKA lacking as the previous warm-up experiments suggested.
Meanwhile, the Orthogonal Procrustes distance, a classical but often overlooked? dissimilarity
measure, balances gracefully between CKA and CCA and consistently performs well. This
underscores the need for systematic evaluation, otherwise we may fall to recency bias that
undervalues classical baselines.

Other subtasks measure correlation with OOD accuracy, motivated by the observation
that random initialization sometimes has large effects on OOD performance |83]. We find that
dissimilarity measures can sometimes predict OOD performance using only the in-distribution
representations, but we also identify a challenge set on which none of the measures do
statistically better than chance. We hope this challenge set will help measure and spur
progress in the future.

2.2 Problem Setup: Metrics and Models

Our goal is to quantify the similarity between two different groups of neurons (usually
layers). We do this by comparing how their activations behave on the same dataset. Thus
for a layer with p; neurons, we define A € RP*" the matrix of activations of the p;
neurons on n data points, to be that layer’s raw representation of the data. Similarly, let
B € RP2*" he a matrix of the activations of py neurons on the same n data points. We center
and normalize these representations before computing dissimilarity, per standard practice.
Specifically, for a raw representation A we first subtract the mean value from each column,
then divide by the Frobenius norm, to produce the normalized representation A*, used in
all our dissimilarity computations. In this work we study dissimilarity measures d(A*, B*)

LCode to replicate our results can be found at https://github.com/js-d/sim_metric.

2For instance, Raghu et al. [105] and Morcos et al. [88] do not mention it, and Kornblith et al. [63]
relegates it to the appendix; although Smith et al. [114] does use it to analyze word embeddings and prefers
it to CCA.
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that allow for quantitative comparisons of representations both within and across different
networks. We colloquially refer to values of d(A*, B*) as distances, although they do not
necessarily satisfy the triangle inequality required of a proper metric.

We study five dissimilarity measures: centered kernel alignment (CKA), three measures
derived from canonical correlation analysis (CCA), and a measure derived from the orthogonal
Procrustes problem.

Centered kernel alignment (CKA) uses an inner product to quantify similarity
between two representations. It is based on the idea that one can first choose a kernel,
compute the n x n kernel matrix for each representation, and then measure similarity as the
alignment between these two kernel matrices. The measure of similarity thus depends on
one’s choice of kernel; in this work we consider Linear CKA.:

IABT||%
[AAT| e[| BB ¢

dLinear CKA(A7 B) =1- (21)
as proposed in Kornblith et al. [63]. Other choices of kernel are also valid; we focus on Linear
CKA here since Kornblith et al. [63] report similar results from using either a linear or RBF
kernel.

Canonical correlation analysis (CCA) finds orthogonal bases (w%,w%) for two
matrices such that after projection onto w',wY, the projected matrices have maximally
correlated rows. For 1 < i < py, the i canonical correlation coefficient p; is computed as
follows:

(w," A, wiy" B)

po= e LD ] 22
sy [y Al - B
i T 5T . . i T i T . .
st. (why Aw)y A)=0,Vj<i (wy Bywp B)=0,Vj<i (2.3)

To transform the vector of correlation coefficients into a scalar measure, two options considered
previously [63] are the mean correlation coefficient, pcca, and the mean squared
correlation coefficient, R%q,, defined as follows:

1 1
dﬁCCA(‘A’B):]‘_p_lzp’U dRQCCA(A7B):1_p_12:O? (2'4)

To improve the robustness of CCA, Morcos et al. [88] propose projection-weighted
CCA (PWCCA) as another scalar summary of CCA:

; QiPi
dpweoa(A, B) =1 — —%.aé o= [(hiaj)] (2.5)
i j

where a; is the j™ row of A, and h; = wf4TA is the projection of A onto the i*" canonical
direction. We find that PWCCA performs far better than pcca and RZc,, so we focus on
PWCCA in the main text, but include results on the other two measures in the appendix.
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The orthogonal Procrustes problem consists of finding the left-rotation of A that is
closest to B in Frobenius norm, i.e. solving the optimization problem:

mI%n |B — RA||%, subject to R'TR = 1. (2.6)

The minimum is the squared orthogonal Procrustes distance between A and B, and

is equal to
dproc(A, B) = | A% + || BIIE — 2 A" B, (2.7)
where || - ||. is the nuclear norm [110]. Unlike the other metrics, the orthogonal Procrustes
distance is not normalized between 0 and 1, although for normalized A*, B* it lies in [0, 2].

Models we study

In this work we study representations of both text and image inputs. For text, we investigate
representations computed by Transformer architectures in the BERT model family [32] on
sentences from the Multigenre Natural Language Inference (MNLI) dataset [127]. We study
BERT models of two sizes: BERT base, with 12 hidden layers of 768 neurons, and BERT
medium, with 8 hidden layers of 512 neurons. We use the same architectures as in the open
source BERT release®, but to generate diversity we study 3 variations of these models:

1. 10 BERT base models pretrained with different random seeds but not finetuned for
particular tasks, released by Zhong et al. [132]%.

2. 10 BERT medium models initialized from pretrained models released by Zhong et al.
[132], that we further finetuned on MNLI with 10 different finetuning seeds (100 models
total).

3. 100 ])BERT base models that were initialized from the pretrained BERT model in [32]
and finetuned on MNLI with different seeds, released by McCoy et al. [83]°.

For images, we investigate representations computed by ResNets [52] on CIFAR-10 test
set images [65]. We train 100 ResNet-14 models® from random initialization with different
seeds on the CIFAR-10 training set and collect representations after each convolutional layer.

Further training details, as well as checks that our training protocols result in models
with comparable performance to the original model releases, can be found in Appendix 2.6.

2.3 Warm-up: Intuitive Tests for Sensitivity and
Specificity

When designing dissimilarity measures, researchers usually consider invariants that these
measures should not be sensitive to [63]; for example, symmetries in neural networks imply

3available at https://github.com/google-research/bert

4available at https://github.com/ruiqi-zhong/ac12021-instance-level

Savailable at https://github.com/tommccoyl/hans/tree/master/berts_of_a_feather
6from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py


https://github.com/google-research/bert
https://github.com/ruiqi-zhong/acl2021-instance-level
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Figure 2.1: PWCCA fails the intuitive specificity test. Top: PWCCA, CKA, and
Orthogonal Procrustes pairwise distances between each layer of two differently initialized
networks (Model A and B). Bottom: We zoom in to analyze the 7*" layer of Model A, plotting
this layer’s distance to every other layer in both networks; the dashed line indicates the
distance to the corresponding 7" layer in Model B. For PWCCA, none of the distances in
model A exceed this line, indicating that random initialization affects this distance more
than large changes in layer depth.

that permuting the neurons in a fully connected layer does not change the representations
learned. We take this one step further and frame dissimilarity measures as answering whether
representations are essentially the same, or importantly different. We can then evaluate
measures based on whether they respond to important changes (sensitivity) while ignoring
changes that don’t matter (specificity).

Assessing sensitivity and specificity requires a ground truth—which representations are
truly different? To answer this, we begin with the following two intuitions”: 1) neural network
representations trained on the same data but from different random initializations are similar,
and 2) representations lose crucial information as principal components are deleted. These
motivate the following intuitive tests of specificity and sensitivity: we expect a dissimilarity
measure to: 1) assign a small distance between architecturally identical neural networks that
only differ in initialization seed, and 2) assign a large distance between a representation A
and the representation A after deleting important principal components (enough to affect
accuracy). We will see that PWCCA fails the first test (specificity), while CKA fails the
second (sensitivity).

"Note we will see later that these intuitions need refinement.
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Specificity against changes to random seed

Neural networks with the same architecture trained from different random initializations show
many similarities, such as highly correlated predictions on in-distribution data points [83].
Thus it seems natural to expect a good similarity measure to assign small distances between
architecturally corresponding layers of networks that are identical except for initialization
seed.

To check this property, we take two BERT base models pre-trained with different random
seeds and, for every layer in the first model, compute its dissimilarity to every layer in both
the first and second model. We do this for 5 separate pairs of models and average the results.
To pass the intuitive specificity test, a dissimilarity measure should assign relatively small
distances between a layer in the first network and its corresponding layer in the second
network.

Figure 2.1 displays the average pair-wise PWCCA, CKA, and Orthogonal Procrustes
distances between layers of two networks differing only in random seed. According to
PWCCA, these networks’ representations are quite dissimilar; for instance, the two layer 7
representations are further apart than they are from any other layer in the same network.
PWCCA is thus not specific against random initialization, as it can outweigh even large
changes in layer depth.

In contrast, CKA can separate layer 7 in a different network from layers 4 or 10 in the
same network, showing better specificity to random initialization. Orthogonal Procrustes
exhibits smaller but non-trivial specificity, distinguishing layers once they are 4-5 layers apart.

Sensitivity to removing principal components

Dissimilarity measures should also be sensitive to deleting important principal components
of a representation.® To quantify which components are important, we fix a layer of a
pre-trained BERT base model and measure how probing accuracy degrades as principal
components are deleted (starting from the smallest component), since probing accuracy is
a common measure of the information captured in a representation [14]. We probe linear
classification performance on the Stanford Sentiment Tree Bank task (SST-2) [115], following
the experimental protocol in Tamkin et al. [117]|. Figure 2.3b shows how probing accuracy
degrades with component deletion. Ideally, dissimilarity measures should be large by the
time probing accuracy has decreased substantially.

To assess whether a dissimilarity measure is large, we need a baseline to compare to. For
each measure, we define a dissimilarity score to be above the detectable threshold if it is larger
than the dissimilarity score between networks with different random initialization. Figure 2.2
plots the dissimilarity induced by deleting principal components, as well as this baseline.

8For a representation A, we define A_ &, the result of deleting the k& smallest principal components from A,
as follows: we compute the singular value decomposition UXVT = A, construct U_;, € RP*P~F by dropping
the lowest k singular vectors of U, and finally take A_ = UT, A.
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Figure 2.2: CKA fails to be sensitive to all but the largest principal components.
We compute dissimilarities between a layer’s representation and low-rank approximations to
that representation obtained by deleting principal components, starting from the smallest
(solid lines). We also compute the average distance between networks trained with different
random seeds as a baseline (dotted line), and mark the intersection point with a star. The
starred points indicate that CKA requires almost all the components to be deleted before
CKA distance exceeds the baseline.

For the last layer of BERT, CKA requires 97% of a representation’s principal components
to be deleted for the dissimilarity to be detectable; after deleting these components, probing
accuracy shown in Figure 2.3b drops significantly from 80% to 63% (chance is 50%). CKA
thus fails to detect large accuracy drops and so fails our intuitive sensitivity test.

Other metrics perform better: Orthogonal Procrustes’s detection threshold is ~85% of the
principal components, corresponding to an accuracy drop 80% to 70%. PWCCA’s threshold
is ~55% of principal components, corresponding to an accuracy drop from 80% to 75%.

PWCCA’s failure of specificity and CKA'’s failure of sensitivity on these intuitive tests are
worrying. However, before declaring definitive failure, in the next section, we turn to making
our assessments more rigorous.

2.4 Rigorously Evaluating Dissimilarity Metrics

In the previous section, we saw that CKA and PWCCA each failed intuitive tests, based on
sensitivity to principal components and specificity to random initialization. However, these
were based primarily on intuitive, qualitative desiderata. Is there some way for us to make
these tests more rigorous and quantitative?

First consider the intuitive layer specificity test (Section 2.3), which revealed that random
initialization affects PWCCA more than large changes in layer depth. To justify why this is
undesirable, we can turn to probing accuracy, which is strongly affected by layer depth, and
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only weakly affected by random seed (Figure 2.3a). This suggests a path forward: we can
ground the layer test in the concrete differences in functionality captured by the probe.
More generally, we want metrics to be sensitive to changes that affect functionality, while
ignoring those that don’t. This motivates the following general procedure, given a distance
metric d and a functionality f (which assigns a real number to a given representation):

1. Collect a set S of representations that differ along one or more axes of interest (e.g. layer
depth, random seed).

2. Choose a reference representation A € S. When f is an accuracy metric, it is reasonable
to choose A = argmaxes f(A).°

3. For every representation B € S:

e Compute |f(A) — f(B)]
e Compute d(A4, B)

4. Report the rank correlation between |f(A) — f(B)| and d(A, B) (measured by Kendall’s
T or Spearman p).

The above procedure provides a quantitative measure of how well the distance metric d
responds to the functionality f. For instance, in the layer specificity test, since depth affects
probing accuracy strongly while random seed affects it only weakly, a dissimilarity measure
with high rank correlation will be strongly responsive to layer depth and weakly responsive
to seed; thus rank correlation quantitatively formalizes the test from Section 2.3.

Correlation metrics also capture properties that our intuition might miss. For instance,
Figure 2.3a shows that some variation in random seed actually does affect accuracy, and our
procedure rewards metrics that pick up on this, while the intuitive sensitivity test would
penalize them.

Our procedure requires choosing a collection of models S; the crucial feature of S is
that it contains models with diverse behavior according to f. Different sets S, combined
with a functional difference f, can be thought of as miniature “benchmarks" that surface
complementary perspectives on dissimilarity measures’ responsiveness to that functional
difference. In the rest of this section, we instantiate this quantitative benchmark for several
choices of f and S, starting with the layer and principal component tests from Section 2.3
and continuing on to several tests of OOD performance.

The overall results are summarized in Table 2.1. Note that for any single benchmark, we
expect the correlation coefficients to be significantly lower than 1, since the metric D must
capture all important axes of variation while f measures only one type of functionality. A

9Choosing the highest accuracy model as the reference makes it more likely that as accuracy changes,
models are on average becoming more dissimilar. A low accuracy model may be on the “periphery” of model
space, where it is dissimilar to models with high accuracy, but potentially even more dissimilar to other low
accuracy models that make different mistakes.
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Figure 2.3: Our perturbations induce substantial variation on probing tasks and
stress tests: (2.3a): Changing the depth of the examined BERT base layer strongly affects
probing accuracy on QNLI. The trend for each randomly initialized model is displayed
semi-transparently, and the solid black line is the mean trend. (2.3b): Truncating principal
components from pretrained BERT base significantly degrades probing accuracy on SST-2
(BERT layer 12 shown here). (2.3c): Training ResNet-14 on CIFAR-10 with different seeds
leads to variation in accuracies on CIFAR-10C corruptions (here Gaussian noise and contrast).
(2.3d): Pretraining and finetuning BERT medium with 10 different pretraining seeds and
10 different finetuning seeds per pretrained model leads to variation in accuracies on the
Antonymy (yellow scatter points) and Numerical (blue scatter points) stress tests [89].
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good metric is one that has consistently high correlation across many different functional
measures.

Benchmark 1: Layer depth. We turn the layer test into a benchmark for both text and
images. For the text setting, we construct a set S of 120 representations by pretraining 10
BERT base models with different initialization seeds and including each of the 12 BERT
layers as a representation. We separately consider two functionalities f: probing accuracy
on QNLI [124] and SST-2 [115]. To compute the rank correlation, we take the reference
representation A to be the representation with highest probing accuracy. We compute the
Kendall’s 7 and Spearman’s p rank correlations between the dissimilarities and the probing
accuracy differences and report the results in Table 2.1.

For the image setting, we similarly construct a set S of 70 representations by training
5 ResNet-14 models with different initialization seeds and including each of the 14 layers’
representations. We also consider two functionalities f for these vision models: probing
accuracy on CIFAR-100 [65] and on SVHN [90], and compute rank correlations in the same
way.

We find that PWCCA has lower rank correlations compared to CKA and Procrustes for
both language probing tasks. This corroborates the intuitive specificity test (Section 2.3),
suggesting that PWCCA registers too large of a dissimilarity across random initializations.
For the vision tasks, CKA and Procrustes achieve similar rank correlations, while PWCCA
cannot be computed because n < d.

Benchmark 2: Principal component (PC) deletion. We next quantify the PC deletion
test from Section 2.3, by constructing a set S of representations that vary in both random
initialization and fraction of principal components deleted. We pretrain 10 BERT base
models with different initializations, and for each pretrained model we obtain 14 different
representations by deleting that representation’s k& smallest principal components, with
k € {0,100, 200, 300, 400, 500, 600, 650, 700, 725, 750, 758, 763, 767}. Thus S has 10 x 14 = 140
elements. The representations themselves are the layer-¢ activations, for £ € {8,9,...,12},1°
so there are 5 different choices of S. We use SST-2 probing accuracy as the functionality of
interest f, and select the reference representation A as the element in .S with highest accuracy.
Rank correlation results are consistent across the 5 choices of S (Appendix 2.6), so we report
the average as a summary statistic in Table 2.1.

We find that PWCCA has the highest rank correlation between dissimilarity and probing
accuracy, followed by Procrustes, and distantly followed by CKA. This corroborates the
intuitive observations from Section 2.3 that CKA is not sensitive to principal component
deletion.

OFarlier layers have near-chance accuracy on probing tasks, so we ignore them.
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Table 2.1: Summary of rank correlation results. For Benchmarks #1-3 in both language
and vision, all dissimilarity measures successfully achieve significant positive rank correlation
with the functionality of interest—both CKA and PWCCA dominate certain benchmarks
and fall behind on others, while Procrustes is more consistent and often close to the leader.
Benchmark #4 is more challenging, and no dissimilarity measure achieves a high correlation.
The vision experiments do not have results for PWCCA because n < d.

#  Perturbation Sub-task Functionality Procrustes CKA PWCCA
Size p r p - P -
Modality: Language
1 Pretraining seed, 120 Probe: QNLI 0.862 0.670 0.876 0.685 0.763 0.564
layer depth 120 Probe: SST-2 0.890 0.707 0.905 0.732 0.829 0.637
p FPretrainingseed, ., o Probe: SST-2  0.860 0.677 0.751 0.564 0.870 0.690
PC deletion
3 Finetuning seed 100 x 12 QOD: HANS. 0.551 0.398 0.462 0.329 0.568 0.412
Lexical non-entailed
. 100 x g OOD:Antomymy g o 06 178 0927 0160 0204 0.152
4 Pretraining and stress test
finetuning seeds ] .
100 x g OOD: Numerical g 06 010 0,122 0.084 0,031 0.023
stress test
Total (language) 3740 Average 0.580 0.447 0.557 0.426 0.544 0.413
Modality: Vision
Training seed, 70 Probe: CIFAR-100 0.485 0.376 0.507 0.359 - -
layer depth 70 Probe: SVHN  0.363 0.272 0.372 0255 - -
4 Training seed 1900 x 14 OOD: CIFAR-10C 0.060 0.057 0.041 0.038 - -
Total (vision) 26740 Average 0.303 0.235 0.307 0.217 - -

Investigating variation in OOD performance across random seeds

So far our benchmarks have been based on probing accuracy, which only measures in-
distribution behavior (the train and test set of the probe are typically i.i.d.). In addition, the
BERT models were always pretrained on language modeling but not finetuned for classification.
To add diversity to our benchmarks, we next consider the out-of-distribution performance of
language and vision models trained for classification tasks.
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Benchmark 3: Changing fine-tuning seeds. McCoy et al. [83] show that a single
pretrained BERT base model finetuned on MNLI with different random initializations will
produce models with similar in-distribution performance, but widely variable performance on
out-of-distribution data. We thus create a benchmark S out of McCoy et al.’s 100 released
fine-tuned models, using OOD accuracy on the “Lexical Heuristic (Non-entailment)" subset
of the HANS dataset [82] as our functionality f. This functionality is associated with the
entire model, rather than an individual layer (in contrast to the probing functionality), but
we consider one layer at a time to measure whether dissimilarities between representations at
that layer correlate with f. This allows us to also localize whether certain layers are more
predictive of f.

We construct 12 different S (one for each of the 12 layers of BERT base), taking the
reference representation A to be that of the highest accuracy model according to f. As before,
we report each dissimilarity measure’s rank correlation with f in Table 2.1, averaged over the
12 runs.

All three dissimilarity measures correlate with OOD accuracy, with Orthogonal Procrustes
and PWCCA being more correlated than CKA. Since the representations in our benchmarks
were computed on in-distribution MNLI data, this has the interesting implication that
dissimilarity measures can detect OOD differences without access to OOD data. It also
implies that random initialization leads to meaningful functional differences that are picked
up by these measures, especially Procrustes and PWCCA. Contrast this with our intuitive
specificity test in Section 2.3, where all sensitivity to random initialization was seen as a
shortcoming. Our more quantitative benchmark here suggests that some of that sensitivity
tracks true functionality.

To check that the differences in rank correlation for Procrustes, PWCCA, and CKA are
statistically significant, we compute bootstrap estimates of their 95% confidence intervals.
With 2000 bootstrapped samples, we find statistically significant differences between all
pairs of measures for most choices of layer depth S, so we conclude PWCCA > Orthogonal
Procrustes > CKA (the full results are in Appendix 2.6). We do not apply this procedure for
the previous two benchmarks, because the different models have correlated randomness and
so any p-value based on independence assumptions would be invalid.

Benchmark 4: Challenge sets: Changing pretraining and fine-tuning seeds. We
also construct benchmarks using models trained from scratch with different random seeds (for
language, this is pretraining and fine-tuning, and for vision, this is standard training). For
language, we construct benchmarks from a collection of 100 BERT medium models, trained
with all combinations of 10 pretraining and 10 fine-tuning seeds. The models are fine-tuned
on MNLI, and we consider two different functionalities of interest f: accuracy on the OOD
Antonymy stress test and on the OOD Numerical stress test [89], which both show significant
variation in accuracy across models (see Figure 2.3d). We obtain 8 different sets S (one for
each of the 8 layer depths in BERT medium), again taking A to be the representation of the
highest-accuracy model according to f. Rank correlations for each dissimilarity measure are
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averaged over the 8 runs and reported in Table 2.1.

For vision, we construct benchmarks from a collection of 100 ResNet-14 models, trained
with different random seeds on CIFAR-10. We consider 19 different functionalities of interest—
the 19 types of corruptions in the CIFAR-10C dataset [53|, which show significant variation
in accuracy across models (see Figure 2.3c). We obtain 14 different sets S (one for each of
the 14 layers), taking A to be the representation of the highest-accuracy model according to
f. Rank correlations for each dissimilarity measure are averaged over the 14 runs and over
the 19 corruption types and reported in Table 2.1. Results for each of the 19 corruptions
individually can be found in Appendix 2.6..

None of the dissimilarity measures show a large rank correlation for either the language
or vision tasks, and for the Numerical stress test, at most layers, the associated p-values
(assuming independence) are non-significant at the 0.05 level (see Appendix 2.6). ' Thus we
conclude that all measures fail to be sensitive to OOD accuracy in these settings. One reason
for this could be that there is less variation in the OOD accuracies compared to the previous
experiment with the HANS dataset (there accuracies varied from 0 to nearly 60%). Another
reason could be that it is harder to correctly account for both pretraining and fine-tuning
variation at the same time. Either way, we hope that future dissimilarity measures can
improve upon these results, and we present this benchmark as a challenge task to motivate
progress.

2.5 Discussion

In this work we proposed a quantitative measure for evaluating similarity metrics, based
on the rank correlation with functional behavior. Using this, we generated tasks motivated
by sensitivity to deleting important directions, specificity to random initialization, and
sensitivity to out-of-distribution performance. Popular existing metrics such as CKA and
CCA often performed poorly on these tasks, sometimes in striking ways. Meanwhile, the
classical Orthogonal Procrustes transform attained consistently good performance.

Given the success of Orthogonal Procrustes, it is worth reflecting on how it differs from
the other metrics and why it might perform well. To do so, we consider a simplified case
where A and B have the same singular vectors but different singular values. Thus without
loss of generality A = A; and B = Ay, where the A; are both diagonal. In this case, the
Orthogonal Procrustes distance reduces to ||A; — As||%, or the sum of the squared distances
between the singular values. We will see that both CCA and CKA reduce to less reasonable
formulae in this case.

Orthogonal Procrustes vs. CCA. All three metrics derived from CCA assign zero distance
even when the (non-zero) singular values are arbitrarily different. This is because CCA

11See Appendix 2.6 for p-values as produced by sci-kit learn. Strictly speaking, the p-values are invalid
because they assume independence, but the pretraining seed induces correlations. However, correctly
accounting for these would tend to make the p-values larger, thus preserving our conclusion of non-significance
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correlation coefficients are invariant to all invertible linear transformations. This invariance
property may help explain why CCA metrics generally find layers within the same network to
be much more similar than networks trained with different randomness. Random initialization
introduces noise, particularly in unimportant principal components, while representations
within the same network more easily preserve these components, and CCA may place too
much weight on their associated correlation coefficients.

Orthogonal Procrustes vs. CKA. In contrast to the squared distance of Orthogonal
Procrustes, CKA actually reduces to a quartic function based on the dot products between
the squared entries of A; and Ay. As a consequence, CKA is dominated by representations’
largest singular values, leaving it insensitive to meaningful differences in smaller singular
values as illustrated in Figure 2.2. This lack of sensitivity to moderate-sized differences may
help explain why CKA fails to track out-of-distribution error effectively.

In addition to helping understand similarity measures, our benchmarks pinpoint directions
for improvement. No method was sensitive to accuracy on the Numerical stress test in our
challenge set, possibly due to a lower signal-to-noise ratio. Since Orthogonal Procrustes
performed well on most of our tasks, it could be a promising foundation for a new measure,
and recent work shows how to regularize Orthogonal Procrustes to handle high noise [102].
Perhaps similar techniques could be adapted here.

An alternative to our benchmarking approach is to directly define two representations’
dissimilarity as their difference in a functional behavior of interest. Feng et al. [42| take this
approach, defining dissimilarity as difference in accuracy on a handful of probing tasks. One
drawback of this approach is that a small set of probes may not capture all the differences
in representations, so it is useful to base dissimilarity measures on representations’ intrinsic
properties. Intrinsically defined dissimilarities also have the potential to highlight new
functional behaviors, as we found that representations with similar in-distribution probing
accuracy often have highly variable OOD accuracy.

A limitation of our work is that we only consider a handful of model variations and
functional behaviors, and restricting our attention to these settings could overlook other
important considerations. To address this, we envision a paradigm in which a rich tapestry
of benchmarks are used to ground and validate neural network interpretations. Other axes of
variation in models could include training on more or fewer examples, training on shuffied
labels vs. real labels, training from specifically chosen initializations [45], and using different
architectures. Other functional behaviors to examine could include modularity and meta-
learning capabilities. Benchmarks could also be applied to other interpretability tools beyond
dissimilarity. For example, sensitivity to deleting principal components could provide an
additional sanity check for saliency maps and other visualization tools [2].

More broadly, many interpretability tools are designed as audits of models, although it
is often unclear what characteristics of the models are consistently audited. We position
this work as a counter-audit, where by collecting models that differ in functional behavior,
we can assess whether the interpretability tools CKA, PWCCA, etc., accurately reflect
the behavioral differences. Many other types of counter-audits may be designed to assess
other interpretability tools. For example, models that have backdoors built into them to
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misclassify certain inputs provide counter-audits for interpretability tools that explain model
predictions—these explanations should reflect any backdoors present |26, 67, 74, 125]. We
are hopeful that more comprehensive checks on interpretability tools will provide deeper
understanding of neural networks, and more reliable models.

2.6 Supplementary Materials

Training details
BERT finetuning details

We fine-tuned models from Zhong et al. [132] and the original BERT models from Devlin et al.
[32] on three tasks — Quora Question Pairs (QQP)'?, Multi-Genre Natural Language Inference
(MNLI; Williams et al. [127]), and the Stanford Sentiment Treebank (SST-2; Socher et al.
[115]), and show each model’s accuracy on these tasks in Table 2.2. Our models generally
have comparable accuracy.

As in Turc et al. [122], we finetune for 4 epochs for each dataset. For each task and model
size, we tune hyperparameters in the following way: we first randomly split our new training
set into 80% and 20%; then we finetune on the 80% split with all 9 combination of batch size
[16, 32, 64| and learning rate [le-4, 5e-5, 3e-5], and choose the combination that leads to the
best average accuracy on the remaining 20%. Finetuning these models for all three tasks
requires around 500 hours.

Table 2.2: Comparing accuracy of our pretrained model (superscript °*) to the original
release by Devlin et al. [32] and Turc et al. [122] (superscript ©*9) on a variety of fine-tuned
tasks.

QQP MNLI SST-2
BERT medium °™"¢ 89.8% 79.6% 94.2%
BERT medium °™* 89.5% 78.9% 94.2%
BERT base °"& 90.8% 83.8% 95.0%
BERT base °*** 90.6% 81.2% 94.6%

ResNet training details
We trained ResNet-14 models on CIFAR-10 training data with the following hyperparameters:

e learning rate: 0.1

2https:/ /www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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e cpochs: 100
e learning rate decay: 0.1 at epoch 50 and epoch 75
e batch size: 128

The 100 models we trained have an average accuracy on the CIFAR-10 test set of 90.2%,
with standard deviation 0.2%. Training these models requires around 20 hours.

Licenses

The source code for BERT models available at https://github.com/google-research/
bert is licensed under the Apache License 2.0.

The model weights for the 100 BERT base models provided by McCoy et al. [83] are licensed
under the Creative Commons Attribution 4.0 International license, and their source code
is licensed under the MIT license (https://github.com/tommccoyl/hans/blob/master/
LICENSE. md) .

Layer-wise results

Some of the results presented in Table 2.1 were averaged over multiple layers, since rankings
between dissimilarity measures were consistent across different layers. Rank correlation scores
are higher across all measures for certain layers, however, so we include layer-by-layer results
here for completeness. We also include scores for pcca and R%, here, and note that they
are often similar to PWCCA, and generally dominated by other measures. We expand each
row of Table 2.1 into a subsection of its own. We also include p-values as reported by sci-kit
learn, although we note that because random seeds are shared among some representations,
these p-values are all inflated, with the exception of those for the experiment perturbing only
fine-tuning seed, and assessing functionality through HANS (2.6). The invalid p-values may
all be thought of as upper-bounds for the significance of the rank correlation results.

Perturbation: pretraining seed and layer depth

Tables 2.3 and 2.4 show the full results (including p-values and all 5 dissimilarity measures)
using the QNLI probe as the functionality of interest, for Spearman p and Kendall’s 7,
respectively. Table 2.5 and 2.6 present results for the probing task SST-2 as the functionality
of interest.


https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/tommccoy1/hans/blob/master/LICENSE.md
https://github.com/tommccoy1/hans/blob/master/LICENSE.md
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Table 2.3: Spearman p results for perturbing pretraining seed and layer depth, and assessing
functionality through the QNLI probe

Layer Procrustes CKA PWCCA PCCA R%C A

12 0.862 (6.5E-37) 0.876 (1.6E-39) 0.763 (2.2E-24) 0.849 (1.0E+00) 0.846 (1.0E+00)

Table 2.4: Kendall’s 7 results for perturbing pretraining seed and layer depth, and assessing
functionality through the QNLI probe

Layer Procrustes CKA PWCCA pcca R%C A

12 0.670 (1.1E-27) 0.685 (7.4E-29) 0.564 (3.2B-20) 0.652 (1.0E+00) 0.647 (1.0E+00)

Table 2.5: Spearman p results for perturbing pretraining seed and layer depth, and assessing
functionality through the SST-2 probe

Layer Procrustes CKA PWCCA PCCA RZca

12 0.890 (2.7E-42) 0.905 (5.3E-46) 0.829 (7.7E-32) 0.857 (1.0E+00) 0.854 (1.0E-+00)

Table 2.6: Kendall’s 7 results for perturbing pretraining seed and layer depth, and assessing
functionality through the SST-2 probe

Layer Procrustes CKA PWCCA PCCA R%C A

12 0.707 (1.2E-30) 0.732 (1.0E-32) 0.637 (3.1E-25) 0.662 (1.0E+00) 0.658 (1.0E+00)
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Perturbation: pretraining seed and principal component deletion

We find that for these experiments, results are consistent across the layers we analyze (the
last 6 layers of BERT base). Tables 2.7 and 2.8 show results for Spearman p and Kendall’s 7,
respectively.

Table 2.7: Layer-wise Spearman p results for perturbing pretraining seed and principal
component deletion, and assessing functionality through the SST-2 probe

Layer Procrustes CKA PWCCA PCCA R%a
8 0.764 (2.4E-36) 0.668 (3.2E-25) 0.776 (3.4E-38) 0.700 (1.9E-28) 0.700 (1.8E-28)
9 0.813 (2.1E-44) 0.706 (4.0E-29) 0.825 (9.2E-47) 0.728 (1.3E-31) 0.728 (1.2E-31)
10 0.873 (2.1E-58) 0.818 (2.7E-45) 0.874 (L.1E-58) 0.748 (3.2E-34) 0.749 (2.7E-34)
11 0918 (1.2E-74) 0.797 (L4E-41) 0.922 (1.7E-76) 0.781 (6.6E-39) 0.781 (7.0E-39)
12 0.932 (1.1E-81) 0.766 (1.1E-36) 0.955 (4.2E-97) 0.810 (6.1E-44) 0.810 (6.1E-44)

Table 2.8: Layer-wise Kendall’s 7 results for perturbing pretraining seed and principal
component deletion, and assessing functionality through the SST-2 probe

Layer Procrustes CKA PWCCA PCCA R%a
8 0.560 (L.8E-29) 0.479 (4.4E-22) 0.573 (L1E-30) 0.512 (6.8E-25) 0.512 (6.6E-25)
9 0.602 (1.2E-33) 0.509 (1.2E-24) 0.618 (2.5E-35) 0.542 (1.1E-27) 0.543 (9.7E-28)
10 0.684 (5.6E-43) 0.627 (2.1E-36) 0.685 (5.3E-43) 0.588 (2.9E-32) 0.589 (2.5E-32)
11 0.751 (2.8E-51) 0.616 (3.3E-35) 0.756 (6.4E-52) 0.648 (9.2E-39) 0.648 (9.2E-39)
12 0.787 (3.4E-56) 0.588 (2.9E-32) 0.819 (1.2E-60) 0.701 (4.7E-45) 0.701 (4.9E-45)
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Perturbation: fine-tuning seed, Functionality: HANS

Results for this experiment are similar across layers for Procrustes and all three CCA-based
measures, with middle layers of BERT base having a slightly higher rank correlation score in
general. For CKA, this effect is even more pronounced. Tables 2.9 and 2.10 show the results
for Spearman p and Kendall’s 7, respectively.

Table 2.9: Layer-wise Spearman p results for perturbing finetuning seed, and assessing
functionality through the HANS: Lexical (non-entailment) OOD dataset

Layer  Procrustes (p) CKA (p) PWCCA (p) pcca (p) R%., (p)
1 0.425 (5.1E-06) 0.361 (L.1E-04) 0.405 (LAE-05) 0.388 (3.4E-05) 0.389 (3.2E-05)
2 0.510 (3.1E-08) 0.410 (1.2E-05) 0.486 (1.5E-07) 0.488 (1.3E-07) 0.483 (1.8E-07)
3 0.531 (6.6E-09) 0.427 (4.6E-06) 0.538 (3.8E-09) 0.533 (5.6E-09) 0.532 (6.2E-09)
4 0.543 (2.6E-09) 0.506 (3.9E-08) 0.552 (1.4E-09) 0.555 (1.0E-09) 0.550 (1.5E-09)
) 0.563 (5.3E-10) 0.512 (2.6E-08) 0.570 (2.9E-10) 0.582 (1.1E-10) 0.580 (1.3E-10)
6 0.629 (1.2E-12) 0.641 (3.6E-13) 0.621 (2.8E-12) 0.621 (2.7E-12) 0.622 (2.5E-12)
7 0.647 (1.7E-13) 0.658 (5.0E-14) 0.647 (1.7E-13) 0.653 (9.0E-14) 0.650 (1.2E-13)
8 0.643 (2.7E-13) 0.552 (L.3E-09) 0.653 (9.5E-14) 0.651 (1.1E-13) 0.651 (1.2E-13)
9 0.589 (5.9E-11) 0.419 (7.1E-06) 0.641 (3.5E-13) 0.662 (3.3E-14) 0.660 (4.2E-14)
10 0.536 (4.6E-00) 0.437 (2.7E-06) 0.559 (7.3E-10) 0.612 (6.6E-12) 0.614 (5.4E-12)
11 0532 (6.2E-00) 0.426 (4.9E-06) 0.565 (4.7E-10) 0.619 (3.4E-12) 0.614 (5.5E-12)
12 0.465 (5.3E-07) 0.192 (2.8E-02) 0.574 (2.1E-10) 0.609 (9.2E-12) 0.610 (7.9E-12)

Table 2.10: Layer-wise Kendall’s 7 results for perturbing finetuning seed, and assessing
functionality through the HANS: Lexical (non-entailment) OOD dataset

Layer  Procrustes (p) CKA (p) PWCCA (p) pcca (p) RZ.a (p)
1 0.295 (6.7E-06) 0.269 (3.6E-05) 0.277 (2.2E-05) 0.265 (4.7E-05) 0.268 (4.0E-05)
2 0.363 (4.6E-08) 0.288 (1.1E-05) 0.343 (2.1E-07) 0.342 (2.3E-07) 0.342 (2.4E-07)
3 0.372 (2.1E-08) 0.200 (9.5E-06) 0.378 (1.3E-08) 0.375 (1.6E-08) 0.375 (1.6E-08)
4 0.393 (3.4E-09) 0.358 (6.6E-08) 0.401 (1.7E-09) 0.405 (1.2E-09) 0.403 (1.4E-09)
5 0.410 (7.7E-10) 0.367 (3.3E-08) 0.417 (4.1E-10) 0.428 (1.4E-10) 0.424 (2.0E-10)
6 0.464 (4.2E-12) 0.474 (15E-12) 0.460 (6.3E-12) 0.460 (5.8E-12) 0.461 (5.6E-12)
7 0483 (5.5B-13) 0.488 (3.3E-13) 0.481 (7.1E-13) 0.486 (3.9E-13) 0.483 (5.5E-13)
8 0.478 (9.2E-13) 0.392 (3.7E-09) 0.483 (5.7E-13) 0.481 (6.5E-13) 0.480 (7.7E-13)
9 0432 (1.0E-10) 0.293 (7.7E-06) 0.475 (1.2E-12) 0.496 (1.3E-13) 0.494 (1.6E-13)
10 0.380 (LOE-08) 0.306 (3.4E-06) 0.401 (L7E-09) 0.447 (2.3E-11) 0.448 (2.1E-11)
11 0.376 (1.5E-08) 0.292 (8.3E-06) 0.411 (6.9E-10) 0.448 (2.1E-11) 0.445 (2.7E-11)
12 0.330 (5.7E-07) 0.127 (3.1E-02) 0.416 (4.4E-10) 0.446 (2.5E-11) 0.447 (2.2E-11)
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Table 2.11: Layer-wise Spearman p results for perturbing pretraining seed and finetuning
seed, and assessing functionality through the Antonymy stress test

Layer Procrustes CKA PWCCA PCCA R%C A
1 0.252 (5.7E-03) 0.241 (7.8E-03) 0.168 (4.7E-02) 0.305 (L.OE+00) 0.327 (1.0E-+00)
2 0213 (1.7E-02) 0.145 (7.5E-02) 0.131 (9.7E-02) 0.047 (6.8E-01)  0.031 (6.2E-01)
3 0.260 (4.5B-03) 0.262 (4.2E-03) 0.208 (1.9E-02) 0.137 (9.1E-01)  0.111 (8.6E-01)
4 0.260 (4.5E-03) 0.265 (3.8E-03) 0.265 (3.8E-03) 0.276 (1.0E+00) 0.254 (9.9E-01)
5 0.273 (3.0E-03) 0.302 (1.1E-03) 0.278 (2.5E-03) 0.339 (1.0E+400) 0.310 (1.0E-+00)
6 0.330 (3.9E-04) 0.280 (2.4E-03) 0.346 (2.1E-04) 0.313 (1.0E+00) 0.304 (1.0E-+00)
7 0271 (3.2E-03) 0.315 (7.1E-04) 0.111 (1L4E-01) 0.091 (8.2E-01)  0.090 (8.1E-01)
8 0.084 (2.0E-01) 0.004 (4.8E-01) 0.123 (1.1E-01) 0.204 (9.8E-01)  0.198 (9.8E-01)

Table 2.12: Layer-wise Kendall’s 7 results for perturbing pretraining seed and finetuning seed,
and assessing functionality through the Antonymy stress test

Layer Procrustes CKA PWCCA PCCA R0
1 0199 (1L7E-03) 0.171 (5.9E-03) 0.126 (3.3E-02) 0.244 (1.OE+00) 0.243 (1L.OE+00)
2 0.179 (4.3E-03) 0.123 (3.5E-02) 0.118 (4.2E-02) 0.061 (8.1E-01)  0.042 (7.3E-01)
3 0.185 (3.3E-03) 0.186 (3.2E-03) 0.139 (2.0E-02) 0.110 (9.5E-01)  0.096 (9.2E-01)
4 0.187 (3.0E-03) 0.191 (2.6E-03) 0.188 (2.9E-03) 0.206 (1.0E400) 0.193 (1.0E+00)
5 0.192 (24E-03) 0.194 (2.2E-03)  0.202 (1.5E-03) 0.267 (1.0E+00) 0.242 (1.0E+00)
6 0.236 (2.7E-04) 0.197 (1.9E-03) 0.252 (L.1E-04) 0.229 (1.0E+00) 0.221 (1.0E+00)
7 0.189 (2.8E-03) 0.217 (7.3E-04) 0.091 (9.1E-02) 0.081 (8.8E-01)  0.082 (8.9E-01)
8 0.061 (1.9E-01) -0.000 (5.0E-01) 0.101 (6.9E-02) 0.155 (9.9E-01)  0.150 (9.9E-01)

Perturbation: pretraining seeds and finetuning seeds of BERT
medium

Rank correlation scores are low across the board for this task, suggesting that it is difficult for
all existing dissimilarity measures, regardless of the layer within a network. Results on the
Antonymy stress test for Spearman p and Kendall’s 7 are in Tables 2.11 and 2.12, respectively.
Results on the Numerical stress test for Spearman p and Kendall’s 7 are in Tables 2.13 and
2.14, respectively.
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Table 2.13: Layer-wise Spearman p results for perturbing pretraining seed and finetuning
seed, and assessing functionality through the Numerical stress test

Layer Procrustes CKA PWCCA PCCA R%CA
1 0.137 (8.7E-02) 0.108 (1.4E-01) 0.107 (1.4E-01) 0.072 (7.6E-01)  0.072 (7.6E-01)
2 -0.012 (5.5E-01) 0.060 (2.8E-01) 0.062 (2.7E-01)  0.004 (5.1E-01)  0.001 (5.0E-01)
3 -0.059 (7.2E-01) 0.011 (4.6E-01) -0.031 (6.2E-01) -0.060 (2.8E-01) -0.056 (2.9E-01)
4 0.041 (3.4E-01) 0.052 (3.0E-01) -0.026 (6.0E-01) -0.101 (1.6E-01) -0.084 (2.0E-01)
5 0.003 (4.9E-01) 0.131 (9.7E-02) -0.047 (6.8E-01) -0.061 (2.7E-01) -0.061 (2.7E-01)
6 0.092 (1.8E-01) 0.260 (4.5E-03) -0.029 (6.1E-01) -0.064 (2.6E-01) -0.056 (2.9E-01)
7 0.164 (5.2E-02) 0.250 (6.1E-03) 0.037 (3.6E-01)  0.040 (6.5E-01)  0.040 (6.5E-01)
8 0.202 (2.2E-02) 0.105 (1.5E-01) 0.175 (4.1E-02)  0.134 (9.1E-01)  0.143 (9.2E-01)

Table 2.14: Layer-wise Kendall’s 7 results for perturbing pretraining seed and finetuning seed,
and assessing functionality through the Numerical stress test

Layer Procrustes CKA PWCCA PCCA R%a
1 0.103 (6.5E-02) 0.083 (1.1E-01) 0.074 (1L4E-01) 0.050 (7.7E-01)  0.048 (7.6E-01)
2 -0.010 (5.6E-01) 0.046 (2.5E-01) 0.046 (2.5E-01)  0.006 (5.3E-01)  0.001 (5.0E-01)
3 -0.041 (7.3E-01) 0.014 (4.2E-01) -0.018 (6.0E-01) -0.047 (2.5E-01) -0.047 (2.4E-01)
4 0.031 (3.2E-01) 0.038 (2.9E-01) -0.020 (6.2E-01) -0.076 (1.3E-01) -0.065 (1.7E-01)
5 0.005 (4.7E-01) 0.086 (LOE-01) -0.031 (6.8E-01) -0.042 (2.7TE-01) -0.042 (2.7E-01)
6 0.060 (1.9E-01) 0.175 (5.1E-03) -0.020 (6.2E-01) -0.050 (2.3E-01) -0.046 (2.5E-01)
7 0112 (49E-02) 0.168 (6.8E-03) 0.030 (3.3E-01)  0.019 (6.1E-01)  0.024 (6.4E-01)
8 0.131 (27E-02) 0.063 (L8E-01) 0.125 (3.3E-02) 0.099 (9.3E-01)  0.103 (9.4E-01)
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CIFAR-10C subtask-wise results

Table 2.15: Results for perturbing training seed and assessing functionality through CIFAR-
10C

Table 2.16: Spearman p results Table 2.17: Kendall 7 results
Corruption Procrustes CKA Corruption Procrustes CKA
gaussian _noise 0.083 0.076 gaussian _noise 0.057  0.050
shot noise 0.171 0.161 shot noise 0.118 0.110
impulse noise 0.104 0.083 impulse noise 0.070  0.055
defocus blur -0.025  0.021 defocus blur -0.016  0.013
glass_blur 0.082  0.073 glass_blur 0.057 0.047
motion blur 0.033  0.035 motion blur 0.021  0.022
zoom __blur -0.023  0.020 zoom __blur -0.014  0.013
snow 0.087  0.060 sSnow 0.059 0.042
frost -0.062 -0.081 frost -0.046 -0.059
fog -0.029 -0.039 fog -0.020 -0.025
brightness 0.122 0.110 brightness 0.084 0.077
contrast -0.225 -0.145 contrast -0.158 -0.102
elastic_transform 0.137  0.122 elastic_transform 0.094 0.085
pixelate 0.118 0.098 pixelate 0.081 0.066
jpeg__compression 0.149 0.102 jpeg__compression 0.103  0.070
speckle noise 0.028 0.033 speckle noise 0.019 0.022
gaussian_blur 0.149 0.141 gaussian_ blur 0.102  0.095
spatter 0.089 0.079 spatter 0.059 0.053
saturate 0.143 0.135 saturate 0.100  0.096
Average 0.060  0.057 Average 0.041  0.038

Bootstrap significance testing for changing fine-tuning seeds

To assess whether the differences between rank correlations are statistically significant in the
experiments varying finetuning seed and comparing functional behavior on the OOD HANS
dataset, we conduct bootstrap resampling. Concretely, for every pair of metrics and every
layer depth, we do the following:

e Sample 100 models with replacement, and collect their representations at the specified
layer depth
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e Let the reference A be the representation corresponding to the sampled model with
maximum accuracy at that depth

e Compute the dissimilarities between A and the 100 sampled representations

e Compute the Kendall’s 7 and Spearman’s p rank correlations for Orthogonal Procrustes,
CKA, and PWCCA

e Record p(Procrustes) - p(CKA), p(PWCCA) - p(CKA), and p(PWCCA) - p(Procrustes),
and the same pairwise differences for Kendall’s 7.

e Repeat the above 2000 times

This gives us bootstrap distributions for the differences in rank correlations, and we
may compute the 95% confidence intervals for these distributions. When the confidence
interval does not overlap with 0, we conclude that the difference in rank correlation is
statistically significant. The figures below show the results for each layer. We see that in the
deeper layers of the network (layers 8-12), PWCCA has statistically significantly higher rank
correlation than Orthogonal Procrustes, which in turn has statistically significantly higher
rank correlation than CKA. In earlier layers, results are sometimes statistically significant,
but not always.
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Figure 2.4: Bootstrap comparison of p between metrics, layers 1-4
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Figure 2.5: Bootstrap comparison of p between metrics, layers 5-8
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Figure 2.6: Bootstrap comparison of p between metrics, layers 9-12
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Figure 2.8: Bootstrap comparison of 7 between metrics, layers 5-8
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Figure 2.9: Bootstrap comparison of 7 between metrics, layers 9-12
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Chapter 3

Assessing Fair Machine Learning with
New Datasets

3.1 Introduction

Datasets are central to the machine learning ecosystem. Besides providing training and testing
data for model builders, datasets formulate problems, organize communities, and interface
between academia and industry. Influential works relating to the ethics and fairness of
machine learning recognize the centrality of datasets, pointing to significant harms associated
with data, as well as better data practices [21, 47, 58, 94, 97]. While the discourse about data
has prioritized cognitive domains such as vision, speech, or language, numerous consequential
applications of predictive modeling and risk assessment involve bureaucratic, organizational,
and administrative records best represented as tabular data [16, 40, 96].

When it comes to tabular data, surprisingly, most research papers on algorithmic fairness
continue to involve a fairly limited collection of datasets, chief among them the UCI Adult
dataset [62]. Derived from the 1994 Current Population Survey conducted by the US Census
Bureau, this dataset has made an appearance in more than three hundred research papers
related to fairness where it served as the basis for the development and comparison of many
algorithmic fairness interventions.

Our work begins with a critical examination of the UCI Adult dataset—its origin, impact,
and limitations. To guide this investigation we identify the previously undocumented exact
source of the UCI Adult dataset, allowing us to reconstruct a superset of the data from
available US Census records. This reconstruction reveals a significant idiosyncrasy of the
UCIT Adult prediction task that limits its external validity.

While some issues with UCI Adult are readily apparent, such as its age, limited documen-
tation, and outdated feature encodings, a significant problem may be less obvious at first
glance. Specifically, UCI Adult has a binary target label indicating whether the income of
a person is greater or less than fifty thousand US dollars. This income threshold of $50k
US dollars corresponds to the 76th quantile of individual income in the United States in
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1994, the 88th quantile in the Black population, and the 89th quantile among women. We
show how empirical findings relating to algorithmic fairness are sensitive to the choice of
the income threshold, and how UCI Adult exposes a rather extreme threshold. Specifically,
the magnitude of violations in different fairness criteria, trade-offs between them, and the
effectiveness of algorithmic interventions all vary significantly with the income threshold. In
many cases, the $50k threshold understates and misrepresents the broader picture.

Turning to our primary contribution, we provide a suite of new datasets derived from US
Census data that extend the existing data ecosystem for research on fair machine learning.
These datasets are derived from two different data products provided by the US Census
Bureau. One is the Public Use Microdata Sample of the American Community Survey,
involving millions of US households each year. The other is the Annual Social and Economic
Supplement of the Current Population Survey. Both released annually, they represent major
surveying efforts of the Census Bureau that are the basis of important policy decisions, as
well as vital resources for social scientists.

We create prediction tasks in different domains, including income, employment, health,
transportation, and housing. The datasets span multiple years and all states of the United
States, in particular, allowing researchers to study temporal shift and geographic variation.
Alongside these prediction tasks, we release a Python package called folktables which
interfaces with Census data sources and allows users to both access our new predictions tasks
and create new tasks from Census data through a simple API!.

We contribute a broad initial sweep of new empirical insights into algorithmic fairness
based on our new datasets. Our findings inform ongoing debates and in some cases challenge
existing narratives about statistical fairness criteria and algorithmic fairness interventions.
We highlight three robust observations:

1. Variation within the population plays a major role in empirical observations and how
they should be interpreted:

(a) Fairness criteria and the effect size of different interventions varies greatly by state.
This shows that statistical claims about algorithmic fairness must be qualified
carefully by context, even though they often are not.

(b) Training on one state and testing on another generally leads to unpredictable
results. Accuracy and fairness criteria could change in either direction. This shows
that algorithmic tools developed in one context may not transfer gracefully to
another.

(¢) Somewhat surprisingly, fairness criteria appear to be more stable over time than
predictive accuracy. This is true both before and after intervention.

2. Algorithmic fairness interventions must specify a locus of intervention. For example, a
model could be trained on the entire US population, or on a state-by-state basis. The

!The datasets and Python package are available for download at https://github.com/zykls/
folktables.
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results differ significantly. Recognition of the need for such a choice is still lacking, as
is scholarship guiding the practitioner on how to navigate this choice and its associated
trade-offs.

3. Increased dataset size does not necessarily help in reducing observed disparities. Neither
does social progress as measured in years passed. This is in contrast to intuition from
cognitive machine learning tasks where more representative data can improve metrics
such as error rate disparities between different groups.

Our observations apply to years of active research into algorithmic fairness, and our work

provides new datasets necessary to re-evaluate and extend the empirical foundations of the
field.

3.2 Archaeology of UCI Adult: Origin, Impact,
Limitations

Archaeology organises the past to understand the present. It lifts the dust-cover off a world that
we take for granted. It makes us reconsider what we experience as inevitable.

— Jan Hacking

Although taken for granted today, the use of benchmark datasets in machine learning
emerged only in late 1980s [50]. Created in 1987, the UCI Machine Learning Repository
contributed to this development by providing researchers with numerous datasets each with
a fixed training and testing split [69]. As of writing, the UCI Adult dataset is the second
most popular dataset among more than five hundred datasets in the UCI repository. An
identical dataset is called “Census Income Data Set” and a closely related larger dataset goes
by “Census-Income (KDD) Data Set”.

At the outset, UCI Adult contains 48,842 rows each apparently describing one individual
with 14 attributes. The dataset information reveals that it was extracted from the “1994
Census database” according to certain filtering criteria. Since the US Census Bureau provides
several data products, as we will review shortly, this piece of information does not identify
the source of the dataset.

The fourteen features of UCI Adult include what the fairness community calls sensitive
or protected attributes, such as, age, sex, and race. The earliest paper on algorithmic fairness
that used UCI Adult to our knowledge is a work by Calders et al. [22] from 2009. The
availability of sensitive attributes contributed to the choice of the dataset for the purposes of
this work. An earlier paper in this context by Pedreschi et al. [99] used the UCI German credit
dataset, which is smaller and ended up being less widely used in the community. Another
highly cited paper on algorithmic fairness that popularized UCI Adult is the work of Zemel
et al. [130] on learning fair representations (LFR). Published in 2013, the work introduced
the idea of changing the data representation to achieve a particular fairness criterion, in this
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case, demographic parity, while representing the original data as well as possible. This idea
remains popular in the community and the LFR method has become a standard baseline.
Representation learning is not the only topic for which UCI Adult became the standard
test case. The dataset has become broadly used throughout the area for purposes including
the development of new fairness criteria, algorithmic interventions and fairness promoting
methods, as well as causal modeling. Major software packages, such as Al Fairness 360 [15]
and Fairlearn [17], expose UCI Adult as one of a few standard examples. Indeed, based on
bibliographic information available on Google Scholar there appear to be more than 300
papers related to algorithmic fairness that used the UCI Adult dataset at the time of writing.

Reconstruction of UCI Adult

Creating a dataset involves a multitude of design choices that substantially affect the validity
of experiments conducted with the dataset. To fully understand the context of UCI Adult
and explore variations of its design choices, we reconstructed a closely matching superset
from the original Census sources. We now describe our reconstruction in detail and then
investigate one specific design choice, the income binarization threshold, in Section 3.2.

The first step in our reconstruction of UCI Adult was identifying the original data source.
As mentioned above, the “1994 census database description in the UCI Adult documentation
does not uniquely identify the data product provided by the US Census Bureau. Based on
the documentation of the closely related “Census-Income (KDD) Data Set,”* we decided to
start with the Current Population Survey (CPS) data, specifically the Annual Social and
Economic Supplement (ASEC) from 1994. We utilized the IPUMS interface to the CPS data
[44] and hence refer to our reconstruction as IPUMS Adult.

The next step in the reconstruction was matching the 15 features in UCI Adult to the
CPS data. This was a non-trivial task: the UCI Adult documentation does not mention any
specific CPS variable names and IPUMS CPS contains more than 400 candidate variables for
the 1994 ASEC. To address this challenge, we designed the following matching procedure that
we repeated for each feature in UCI Adult: First, identify a set of candidate variables in CPS
via the IPUMS keyword search. For each candidate variable, use the CPS documentation
to manually derive a mapping from the CPS encoding to the UCI Adult encoding. Finally,
match each row in UCI Adult to its nearest neighbor in the partial reconstruction assembled
from previous exact variable matches.

We only included a candidate variable if the nearest neighbor match was exact, i.e., we
could find an exact match in the IPUMS CPS data for each row in UCI Adult that matched
both the candidate variable and all earlier variables also identified via exact matches. There
were only two exceptions to this rule. We discuss them in Appendix 3.6. After completing
the variable matching, our reconstruction has 49,531 rows when we use the same inclusion
criteria as UCI Adult to the extent possible, which is slightly more than the 48,842 rows in
UCI Adult. The discrepancy likely stems from the fact that UCI Adult used the variable

2Ron Kohavi is a co-creator of both datasets.
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Figure 3.1: Fairness interventions with varying income threshold on IPUMS Adult. We
compare three methods for achieving demographic parity: a pre-processing method (LFR), an
in-training method based on Agarwal et al. [3] (ExpGrad), and a post-processing adjustment
method [51]. We apply each method using a gradient boosted decision tree (GBM) as the
base classifier. Confidence intervals are 95% Clopper-Pearson intervals for accuracy and 95%
Newcombe intervals for DP.

“fnlwgt” in its inclusion criteria and we did not due to the lack of an exact match for this
variable. This made our inclusion criteria slightly more permissive than those of UCI Adult.
The fact that we found exact matches for 13 of the 15 UCI Adult variables and a very close
match for “native-country” is evidence that our reconstruction of UCI Adult is accurate.

Varying income threshold

The goal in the UCI Adult dataset is to predict whether an individual earns greater than
50,000 US dollars a year. The choice of the 50,000 dollar threshold is idiosyncratic and
potentially limits the external validity of UCI Adult as a benchmark for algorithmic fairness.
In 1994, the median US income was 26,000 dollars, and 50,000 dollars corresponds to the
76th quantile of the income distribution, and the 88th and 89th quantiles of the income
distribution for the Black and female populations, respectively. Consequently, almost all of
the Black and female instances in the dataset fall below the threshold and models trained on
UCT adult tend to have substantially higher accuracies on these subpopulations. For instance,
a standard logistic regression model trained on UCI Adult dataset achieves 85% accuracy
overall, 91.4% accuracy on the Black instances, and 92.7% on Female instances. This is
a rather untypical situation since often machine learning models perform more poorly on
historically disadvantaged groups.

To understand the sensitivity of the empirical findings on UCI Adult to the choice of
threshold, we leverage our IPUMS Adult reconstruction, which includes the continuous,
unthresholded income variable, and construct a new collection of datasets where the income
threshold varies from 6,000 to 70,000. For each threshold, we first train a standard gradient
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boosted decision tree and evaluate both its accuracy and its violation of two common fairness
criteria: demographic parity (equality of positive rates) and equal opportunity (equality of
true positive rates). See the text by Barocas et al. [13| for background. The results are
presented in Figure 3.1, where we see both accuracy and the magnitude of violations of these
criteria vary substantially with the threshold choice.

We then evaluate how the choice of threshold affects three common classes of fairness
interventions: the preprocessing method LFR [130] mentioned earlier, an in-processing or
in-training method based on the reductions approach in Agarwal et al. [3], and the post-
processing method from Hardt et al. [51]. In Figure 3.1, we plot model accuracy after applying
each intervention to achieve demographic parity as well as violations of both demographic
parity and equality of opportunity as the income threshold varies. In Appendix 3.6, we
conduct the same experiment for methods to achieve equality of opportunity. There are
three salient findings. First, the effectiveness of each intervention depends on the threshold.
For values of the threshold near 25,000, the accuracy drop needed to achieve demographic
parity or equal opportunity is significantly larger than closer to 50,000. Second, the trade-offs
between different criteria vary substantially with the threshold. Indeed, for the in-processing
method enforcing demographic parity, as the threshold varies, the equality of opportunity
violation is monotonically increasing. Third, for high values of the threshold, the small
number of positive instances substantially enlarges the confidence intervals for equality of
opportunity, which makes it difficult to meaningfully compare the performance of methods
for satisfying this constraint.

3.3 New datasets for algorithmic fairness

At least one aspect of UCI Adult is remarkably positive. The US Census Bureau invests
heavily in high quality data collection, surveying methodology, and documentation based
on decades of experience. Moreover, responses to some US Census Bureau surveys are
legally mandated and hence enjoy high response rates resulting in a representative sample.
In contrast, some notable datasets in machine learning are collected in an ad-hoc manner,
plagued by skews in representation [18, 23, 120, 128|, often lacking copyright [73] or consent
from subjects [101], and involving unskilled or poorly compensated labor in the form of crowd
workers [48].

In this work, we tap into the vast data ecosystem of the US Census Bureau to create new
machine learning tasks that we hope help to establish stronger empirical evaluation practices
within the algorithmic fairness community.

As previously discussed, UCI Adult was derived from the Annual Social and Economic
Supplement (ASEC) of the Current Population Survey (CPS). The CPS is a monthly survey
of approximately 60,000 US households. It’s used to produce the official monthly estimates
of employment and unemployment for the United States. The ASEC contains additional
information collected annually.
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Table 3.1: New prediction task details instantiated on 2018 US-wide ACS PUMS data

Task Features Datapoints Co'nstant LogReg acc  GBM acc
predictor acc

ACSIncome 10 1,664,500  63.1% 77.1% 79.7%

ACSPublicCoverage 19 1,138,289  70.2% 75.6% 78.5 %

ACSMobility 21 620,937 73.6% 73.7% 75.7%

ACSEmployment 17 3,236,107 56.7% 74.3% 78.5%

ACSTravelTime 16 1,466,648 56.3% 57.4% 65.0%

Another US Census data product most relevant to us are the American Community
Survey (ACS) Public Use Microdata Sample (PUMS). ACS PUMS differs in some significant
ways from CPS ASEC. The ACS is sent to approximately 3.5 million US households each
year gathering information relating to ancestry, citizenship, education, employment, language
proficiency, income, disability, and housing characteristics. Participation in the ACS is
mandatory under federal law. Responses are confidential and governed by strict privacy rules.
The Public Use Microdata Sample contains responses to every question from a subset of
respondents. The geographic information associated with any given record is limited to a level
that aims to prevent re-identification of survey participants. A number of other disclosure
control heuristics are implemented. Extensive documentation is available on the websites of
the US Census Bureau.

Available prediction tasks

We use ACS PUMS as the basis for the following new prediction tasks:

ACSIncome: predict whether an individual’s income is above $50,000, after filtering the
ACS PUMS data sample to only include individuals above the age of 16, who reported usual
working hours of at least 1 hour per week in the past year, and an income of at least $100.
The threshold of $50,000 was chosen so that this dataset can serve as a replacement to UCI
Adult, but we also offer datasets with other income cutoffs described in Appendix 3.6.

ACSPublicCoverage: predict whether an individual is covered by public health insur-
ance, after filtering the ACS PUMS data sample to only include individuals under the age
of 65, and those with an income of less than $30,000. This filtering focuses the prediction
problem on low-income individuals who are not eligible for Medicare.

ACSMobility: predict whether an individual had the same residential address one year
ago, after filtering the ACS PUMS data sample to only include individuals between the ages
of 18 and 35. This filtering increases the difficulty of the prediction task, as the base rate of
staying at the same address is above 90% for the general population.

ACSEmployment: predict whether an individual is employed, after filtering the ACS
PUMS data sample to only include individuals between the ages of 16 and 90.
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ACSTravelTime: predict whether an individual has a commute to work that is longer
than 20 minutes, after filtering the ACS PUMS data sample to only include individuals who
are employed and above the age of 16. The threshold of 20 minutes was chosen as it is the
US-wide median travel time to work in the 2018 ACS PUMS data release.

All our tasks contain features for age, race, and sex, which correspond to protected
categories in different domains under US anti-discrimination laws [12]|. Further, each prediction
task can be instantiated on different ACS PUMS data samples, allowing for comparison
across geographic and temporal variation. We provide datasets for each task corresponding to
1) all fifty US states and Puerto Rico, and 2) five different years of data collection: 2014-2018
inclusive, resulting in a total of 255 distinct datasets per task to assess distribution shift.
We also provide US-wide datasets for each task, constructed from concatenating each state’s
data. Table 3.1 displays more details about each prediction task as instantiated on the 2018
US-wide ACS PUMS data sample. Our new tasks constitute a diverse collection of prediction
problems ranging from those where machine learning achieves significantly higher accuracy
than a baseline constant predictor to other potentially low-signal problems (ACSMobility)
where accuracy improvement appears to be more challenging. We also provide the exact
features included in each prediction task, and other details, in Appendix 3.6. A datasheet [47]
for our datasets is provided in Appendix 3.7.

These prediction tasks are by no means exhausitive of the potential tasks one can construct
using the ACS PUMS data. The folktables package we introduce provides a simple API
that allows users to construct new tasks using the ACS PUMS data, and we encourage the
community to explore additional prediction tasks beyond those introduced in this paper.

Scope and limitations

One distinction is important. Census data is often used by social scientists to study the
extent of inequality in income, employment, education, housing or other aspects of life. Such
important substantive investigations should necessarily inform debates about discrimination
in classification scenarios within these domains. However, our contribution is not in this
direction. We instead use census data for the empirical study of algorithmic fairness. This
generally may include performance claims about specific methods, the comparison of different
methods for achieving a given fairness metric, the relationships of different fairness criteria in
concrete settings, causal modeling of different scenarios, and the ability of different methods
to transfer successfully from one context to another. We hope that our work leads to more
comprehensive empirical evaluations in research papers on the topic, at the very least reducing
the overreliance on UCI Adult and providing a complement to the flourishing theoretical work
on the topic. The distinction we draw between benchmark data and substantive domain-
specific investigations resonates with recent work that points out issues with using data about
risk assessments tools from the criminal justice domain as machine learning benchmarks [11].

A notable if obvious limitation of our work is that it is entirely US-centric. A richer
dataset ecosystem covering international contexts within the algorithmic fairness community
is still lacking. Although empirical work in the Global South is central in other disciplines,
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Figure 3.2: The effect size of fairness interventions varies by state. Each panel shows
the change in accuracy and demographic parity on the ACSIncome task after applying a
fairness intervention to an unconstrained gradient boosted decision tree (GBM). Each arrow
corresponds to a different state distribution. The arrow base represents the (accuracy, DP)
point corresponding to the unconstrained GBM, and the head represents the (accuracy, DP)
point obtained after applying the intervention. The arrow for HI in the LFR plot is entirely
covered by the start and end points.

there continues to be much need for the North American fairness community to engage with
it more strongly [1].

3.4 A tour of empirical observations

In this section, we highlight an initial sweep of empirical observations enabled by our new
ACS PUMS derived prediction tasks. Our experiments focus on three fundamental issues
in fair machine learning: (i) variation within the population of interest, e.g., how does the
effectiveness of interventions vary between different states or over time?, (ii) the locus of
intervention, e.g. should interventions be performed at the state or national level?, and (iii)
whether increased dataset size or the passage of time mitigates observed disparities?

Our experiments are not exhaustive and are intended to highlight the perspective a
broader empirical evaluation with our new datasets can contribute to addressing questions
within algorithmic fairness. The goal of the experiments is not to provide a complete overview
of all the questions that one can answer using our datasets. Rather, we hope to inspire other
researchers to creatively use our datasets to further probe these question as well as propose
new ones leveraging the ACS PUMS data.

Variation within the population

The ACS PUMS prediction tasks present two natural axes of variation: geographic variation
between states and temporal variation between years the ACS is conducted. This variation
allows us to both measure the performance of different fairness interventions on a broad
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Figure 3.3: Transfer from one state to another gives unpredictable results in terms of predictive
accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM trained on
a particular state on the ACSIncome task and evaluated both in-distribution (ID) on the
same state and out-of-distribution (OOD) on the 49 other states in terms of accuracy and
demographic parity violation. Bottom: Each panel shows an GBM with post-processing to
enforce demographic parity on the state on which it was trained and evaluated both ID and
OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson intervals for accuracy
and 95% Newcombe intervals for demographic parity.

collection of different distributions, as well as study the performance of these interventions
under geographical and temporal distribution shift when the test dataset differs from the one
on which the model was trained.

Due to space constraints, we focus our experiments in this section on the ACSIncome
prediction task with demographic parity as the fairness criterion of interest. We present
similar results for our other prediction tasks and fairness criteria, as well as full experimental
details in Appendix 3.6.

Intervention effect sizes vary across states. The fifty US states which comprise the
ACS PUMS data present a broad set of different experimental conditions on which to
evaluate the performance of fairness interventions. At the most basic level, we can train and
evaluate different fairness interventions on each of the states and compare the interventions’
efficacy on these different distributions. Concretely, we first train an unconstrained gradient
boosted decision tree (GBM) on each state, and we compare the accuracy and fairness
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criterion violation of this unconstrained model with the same model after applying one of
three common fairness intervention: pre-processing (LFR), the in-processing fair reductions
methods from Agarwal et al. [3] (ExpGrad), and the simple post-processing method that
adjusts group-based acceptance thresholds to satisfy a constraint [51|. Figure 3.2 shows the
result of this experiment for the ACSIncome prediction task for interventions to achieve
demographic parity. For a given method, performance can differ markedly between states.
For instance, LFR decreases the demographic parity violation by 10% in some states and in
other states the decrease is close to zero. Similarly, the post-processing adjustment to enforce
demographic parity incurs accuracy drops of less than 1% in some states, whereas in others
the drop is closer to 5%.

Training and testing on different states leads to unpredictable results. Beyond
training and evaluating interventions on different states, we also use the ACS PUMS data to
study the performance of interventions under geographic distribution shift, where we train a
model on one state and test it on another. In Figure 3.3, we plot accuracy and demographic
parity violation with respect to race for both an unconstrained GBM and the same model
after applying a post-processing adjustment to achieve demographic parity on a natural
suite of test sets: the in-distribution (same state test set) and the out-of-distribution test
sets for the 49 other states. For both the unconstrained and post-processed model, model
accuracy and demographic parity violation varies substantially across different state test sets.
In particular, even when a method achieves demographic parity in one state, it may no longer
satisfy the fairness constraint when naively deployed on another.

Fairness criteria are more stable over time than predictive accuracy. In contrast
to the unpredictable results that occur under geographic distribution shift, the fairness
criteria and interventions we study are much more stable under temporal distribution shift.
Specifically, in Figure 3.4, we plot model accuracy and demographic parity violation for GBM
trained on the ACSIncome task using US-wide data from 2014 and evaluated on the test
sets for the same task drawn from years 2014-2018. Perhaps unsurprisingly, model accuracy
degrades slightly over time. However, the associated fairness metric is stable and essentially
constant over time. Moreover, this same trend holds for the fairness interventions previously
discussed. The same base GBM with pre-processing (LFR), in-processing (ExpGrad), or
post-processing to satisfy demographic parity in 2014, all have a similar degradation in
accuracy, but the fairness metrics remain stable. Thus, a classifier that satisfies demographic
parity on the 2014 data continues to satisfy the constraint on 2015-2018 data.

Specifying a locus of intervention

On the ACSPUMs prediction task, fairness interventions can be applied either on a state-
by-state basis or on the entire US population. In Table 3.2, we compare the performance of
LFR and the post-processing adjustment method applied at the US-level with the aggregate
performance of both methods applied on a state-by-state basis, using a GBM as the base
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Figure 3.4: Fairness criteria are more stable over time than accuracy. Left: Models trained in
2014 on US-wide ACSIncome with and without fairness interventions to achieve demographic
parity and evaluated on data in subsequent years suffer a drop in accuracy over time.
Right: However, the violation of demographic parity remains essentially constant over time.
Confidence intervals are 95% Clopper-Pearson intervals for accuracy and 95% Newcombe
intervals for demographic parity.

Table 3.2: Comparison of two different strategies for applying an intervention to achieve demo-
graphic parity (DP) on the US-wide ACSIncome task. US-level corresponds to training one
classifier and applying the intervention on the entire US population. State-level corresponds
to training a classifier and applying the intervention separately for each state and then aggre-
gating the results over all states. Here, DP refers to P(Y = 1 | White) — P(Y = 1 | Black).
Confidence intervals are 95% Clopper-Pearson intervals for accuracy and 95% Newcombe
intervals for DP.

US-level State-level
US-level acc DP violation State-level acc DP violation

Unconstrained GBM 81.7£01% 17.7£02% 828+01% 16.9+0.2%
GBM w/ LFR 787+01% 16.6+0.2% 79.4 4+ 0.1% 14.0 £ 0.2%

GBM w/ post-processing (DP) 79.2+0.1% 03+0.3% 80.2+0.1%  —0.6+0.3%

classifier. In both cases, applying the intervention on a state-by-state improves US-wide
accuracy while still preserving demographic parity (post-processing) or further mitigating
violations of demographic parity (LFR).
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Table 3.3: Disparities persist despite increasing dataset size and social progress.

Dataset Year Datapoints GBM acc TPR White TPR Black TPR disparity
IPUMS Adult 1994 49,531 86.4% 58.0% 46.5 % 11.5%
ACSIncome 2018 1,664,500 80.8% 66.5% 51.7% 14.8%

Increased dataset size doesn’t necessarily mitigate observed
disparities

To mitigate disparities in error rates, commonly suggested remedies include collecting a)
larger datasets and b) more representative data reflective of social progress. For example, in
response to research revealing the stark accuracy disparities of commercial facial recognition
algorithms, particularly for dark-skinned females [21], IBM collected a more diverse training
set of images, retrained its facial recognition model, and reported a 10-fold decrease in error
for this subgroup [103]. However, on our tabular datasets, larger datasets collected in more
socially progressive times do not automatically mitigate disparities. Table 3.3 shows that
unconstrained gradient boosted decision tree trained on a newer, larger dataset (ACSIncome
vs. IPUMS Adult), does not improve disparities such as in true positive rate (TPR). A
fundamental reason for this is the persistent social inequality that is reflected in the data. It
is well known that given a disparity in base rates between groups, a predictive model cannot
be both calibrated and equal in error rates across groups [27], except if the model has 100%
accuracy. This observation highlights a key difference between cognitive machine learning
and tabular data prediction — the Bayes error rate is zero for cognitive machine learning.
Thus larger and more representative datasets eventually address disparities by pushing error
rates to zero for all subgroups. In the tabular datasets we collect, the Bayes error rate of
an optimal classifier is almost certainly far from zero, so some individuals will inevitably be
incorrectly classified. Rather than hope for future datasets to implicitly address disparities,
we must directly contend with how dataset and model design choices distribute the burden
of these errors.

3.5 Discussion and future directions

Rather than settled conclusions, our empirical observations are intended to spark additional
work on our new datasets. Of particular interest is a broad and comprehensive evaluation of
existing methods on all datasets. We only evaluated some methods so far. One interesting
question is if there is a method for achieving either demographic parity or error rate parity
that outperforms threshold adjustment (based on the best known unconstrained classifier) on
any of our datasets? We conjecture that the answer is no. The reason is that we believe on
our datasets a well-tuned tree-ensemble achieves classification error close to the Bayes error
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bound. Existing theory (Theorem 5.3 in [51]) would then show that threshold adjustment
based on this model is, in fact, optimal. Our conjecture motivates drawing a distinction
between classification scenarios where a nearly Bayes optimal classifier is known and those
where there isn’t. How close we are to Bayes optimal on any of our new prediction tasks is a
good question. The role of distribution shift also deserves more attention. Are there methods
that achieve consistent performance across geographic contexts? Why does there appear to
be more temporal than geographic stability? What does the sensitivity to distribution shift
say about algorithmic tools developed in one context and deployed in another? Answers to
these questions seem highly relevant to policy-making around the deployment of algorithmic
risk assessment tools. Finally, our datasets are also interesting test cases for causal inference
methods, which we haven’t yet explored. How would, for example, methods like invariant
risk minimization [7] perform on different geographic contexts?

3.6 Supplementary Materials

Adult reconstruction
Additional reconstruction details

We only included a candidate variable if the nearest neighbor match was exact, i.e., we could
find an exact match in the IPUMS CPS data for each row in UCI Adult that matched both
the candidate variable and all earlier variables also identified via exact matches. There were
only two exceptions to this rule:

e The UCI Adult feature ‘“native-country”. Here we could match the vast majority of
rows in UCI Adult to the IPUMS CPS variable “UH_NATVTY A1”. To get an
exact match for all rows, we had to map the country codes for Russia and Guyana in
“UH_NATVTY A1” to the value for “unknown”. The documentation for UCI Adult
also mentions neither Russia nor Guyana as possible values for “native-country”. We do
not know the reason for this discrepancy.

e The UCI Adult feature “fnlwgt”. This column is actually not a demographic feature of
an individual but a weight value computed by the Census Bureau to make the sample
representative for the US population. We compared the “fnlwgt” data to all weight
variables available in IPUMS CPS but did not find an exact match. The closest match
is the variable “UH_ WGTS A1”, which has a similar distribution. Since we did not
identify an exact match for “fnlwgt” and the variable is not a property of an individual,
we do not utilize it further in our experiments.

Varying the income threshold experiments

In our experiments, we randomly split the 49,531 examples in the IPUMS Adult reconstruction
into a training set of size 32,094 and a test-set of size 13,755. We vary the threshold from
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6,000 to 72,000. Concretely, for a given threshold, e.g. 25,000, the task is to predict whether
the individual’s income is greater than 25,000. We use a one-hot encoding for the categorical
features, and we use the same clustering preprocessing for the Education-Num and Age
features as Bellamy et al. [15]. All features are further scaled to be zero-mean and have unit
variance.

In our experiments, as the “unconstrained” base classifier, we use the gradient boosted
decision tree classifier provided by Pedregosa et al. [98] with exponential loss, num__estimators
5, max_depth 5, and all other hyperparameters set to the default. We found this to slightly
outperform the default gradient boosting machine at threshold 50,000. For the three fairness
interventions, we used the implementation of LFR [130] provided by Bellamy et al. [15] with
hyperparameters Ax le-4, Ay 1.0, Az 1000, maxiter 20000, and maxfun 20000, which were
chosen by a grid search at threshold 50,000 to maximize the difference between accuracy and
the demographic parity disparity. We used the implementation of the reductions approach
of Agarwal et al. [3] provided by Bird et al. [17] with the default hyperparameters, and we
used implementation of post-processing [51]| provided by Bellamy et al. [15].

In Figure 3.1 in the main text, we compare the performance of these three fairness
interventions when enforcing demographic parity as the threshold varies. In Figure 3.5, we
additionally compare the performance of in-processing method (ExpGrad) and the post-
processing method when enforcing equality of opportunity (EO). We exclude LFR from the
comparison because this method does not enforce equality of opportunity without additional
modification. The results from this experiment are very similar to the experiment enforcing
demographic parity. As the threshold varies, the accuracy drop needed to enforce EO varies
substantially, as does the trade-off between criteria when enforcing EO. Moreover, for high
values of the threshold, the small number of positive instances substantially increases the
confidence intervals around the report EO values and makes it difficult to compare the
different interventions.

New prediction task details

In this section we detail the target variable, features, and filters that comprise each of our
prediction tasks; more information about each feature can be found from the ACS PUMS
documentation.? For each feature, we list the variable code as provided by the ACS PUMS
data sample, its extended description in parentheses, and finally the range of values for the
variable.

ACSIncome
Predict whether US working adults’ yearly income is above $50,000.

3https://www.census.gov/programs-surveys/acs/microdata/documentation.html
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Figure 3.5: Fairness interventions with varying income threshold on IPUMS Adult. Com-
parison of in-processing and post-processing methods for achieving equality of opportunity
(EO). LFR does not target EO, so we exclude it from the comparison. Confidence intervals
are 95% Clopper-Pearson intervals for accuracy and 95% Newcombe intervals for equality of
opportunity.

Target: PINCP (Total person’s income): an individual’s label is 1 if PINCP > 50000,
otherwise (0. Note that with our software package, this chosen income threshold can be
toggled easily to label the ACS PUMS data differently, and construct a new prediction task.

Features:
e AGEP (Age): Range of values:
— 0-99 (integers)

— 0 indicates less than 1 year old.

e COW (Class of worker): Range of values:

N/A (not in universe)

— 1: Employee of a private for-profit company or business, or of an individual, for
wages, salary, or commissions

Employee of a private not-for-profit, tax-exempt, or charitable organization
Local government employee (city, county, etc.)

State government employee

Federal government employee

Self-employed in own not incorporated business, professional practice, or farm

Self-employed in own incorporated business, professional practice or farm

|

Working without pay in family business or farm
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— 9: Unemployed and last worked 5 years ago or earlier or never worked
e SCHL (Educational attainment): Range of values:
— N/A (less than 3 years old)

— 1: No schooling completed

— 2: Nursery school/preschool

— 3: Kindergarten

— 4: Grade 1

— 5: Grade 2

— 6: Grade 3

— 7: Grade 4

— &8 Grade 5

— 9: Grade 6

— 10: Grade 7

— 11: Grade 8

— 12: Grade 9

— 13: Grade 10

— 14: Grade 11

— 15: 12th Grade - no diploma

— 16: Regular high school diploma

— 17: GED or alternative credential

— 18: Some college but less than 1 year
— 19: 1 or more years of college credit but no degree
— 20: Associate’s degree

— 21: Bachelor’s degree

— 22: Master’s degree

— 23: Professional degree beyond a bachelor’s degree

— 24: Doctorate degree
e MAR (Marital status): Range of values:

— 1: Married
— 2: Widowed
— 3: Divorced
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— 4: Separated

— 5: Never married or under 15 years old

e OCCP (Occupation): Please see ACS PUMS documentation for the full list of occupation
codes

e POBP (Place of birth): Range of values includes most countries and individual US
states; please see ACS PUMS documentation for the full list.

e RELP (Relationship): Range of values:

<

Reference person
Husband /wife

Biological son or daughter

Adopted son or daughter
Stepson or stepdaughter
Brother or sister

Father or mother
Grandchild

Parent-in-law

|

Son-in-law or daughter-in-law

: Other relative

| \
—_ =
= O

: Roomer or boarder

|
—
[\

: Housemate or roommate

|
—
w

: Unmarried partner
: Foster child

: Other nonrelative

| \
—_ =
(G RN

—
D

. Institutionalized group quarters population

— 17: Noninstitutionalized group quarters population
e WKHP (Usual hours worked per week past 12 months): Range of values:

— N/A (less than 16 years old / did not work during the past 12 months)
— 1 - 98 integer valued: usual hours worked

— 99: 99 or more usual hours

e SEX (Sex): Range of values:
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— 1: Male

— 2: Female
e RACIP (Recoded detailed race code): Range of values:

White alone

1:
— 2: Black or African American alone
— 3: American Indian alone
4: Alaska Native alone

— 5: American Indian and Alaska Native tribes specified, or American Indian or
Alaska Native, not specified and no other races

— 6: Aslan alone
— 7: Native Hawaiian and Other Pacific Islander alone
— &8: Some Other Race alone

— 9: Two or More Races

Filters:

e AGEP (Age): Must be greater than 16

PINCP (Total person’s income): Must be greater than 100

WKHP (Usual hours worked per week past 12 months): Must be greater than 0

PWGTP (Person weight (relevant for re-weighting dataset to represent the general US
population most accurately)): Must be greater than or equal to 1

ACSPublicCoverage

Predict whether a low-income individual, not eligible for Medicare, has coverage from public
health insurance.

Target: PUBCOV (Public health coverage): an individual’s label is 1 if PUBCOV == 1
(with public health coverage), otherwise 0.

Features:
e AGEP (Age): Range of values:
— 0-99 (integers)

— 0 indicates less than 1 year old.
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e SCHL (Educational attainment): Range of values:
— N/A (less than 3 years old)

— 1: No schooling completed

— 2: Nursery school/preschool

— 3: Kindergarten

— 4: Grade 1

— 5: Grade 2

— 6: Grade 3

— 7: Grade 4

— 8: Grade 5

— 9: Grade 6

— 10: Grade 7

— 11: Grade 8

— 12: Grade 9

— 13: Grade 10

— 14: Grade 11

— 15: 12th Grade - no diploma

— 16: Regular high school diploma

— 17: GED or alternative credential

— 18: Some college but less than 1 year
— 19: 1 or more years of college credit but no degree
— 20: Associate’s degree

— 21: Bachelor’s degree

— 22: Master’s degree

— 23: Professional degree beyond a bachelor’s degree

— 24: Doctorate degree
e MAR (Marital status): Range of values:

— 1. Married

— 2: Widowed
3: Divorced
— 4: Separated
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— 5: Never married or under 15 years old
e SEX (Sex): Range of values:

— 1: Male

— 2: Female
e DIS (Disability recode): Range of values:

— 1. With a disability
— 2: Without a disability

e ESP (Employment status of parents): Range of values:

— N/A (not own child of householder, and not child in subfamily)

Living with two parents: both parents in labor force
— 2: Living with two parents: Father only in labor force
Living with two parents: Mother only in labor force
Living with two parents: Neither parent in labor force
Living with father: Father in the labor force

Living with father: Father not in labor force

Living with mother: Mother in the labor force

|

Living with mother: Mother not in labor force
e CIT (Citizenship status): Range of values:
: Born in the U.S.

: Born in Puerto Rico, Guam, the U.S. Virgin Islands, or the Northern Marianas

1
2
— 3: Born abroad of American parent(s)
4: U.S. citizen by naturalization

5

: Not a citizen of the U.S.

e MIG (Mobility status (lived here 1 year ago): Range of values:
— N/A (less than 1 year old)

— 1: Yes, same house (nonmovers)
— 2: No, outside US and Puerto Rico
— 3: No, different house in US or Puerto Rico

e MIL (Military service): Range of values:
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— N/A (less than 17 years old)

— 1: Now on active duty

— 2: On active duty in the past, but not now

— 3: Only on active duty for training in Reserves/National Guard

— 4: Never served in the military

ANC (Ancestry recode): Range of values:

1: Single

— 2: Multiple

— 3: Unclassified

— 4: Not reported

— &8: Suppressed for data year 2018 for select PUMAs

NATIVITY (Nativity): Range of values:

— 1: Native

— 2: Foreign born

DEAR (Hearing difficulty): Range of values:

— 1: Yes
— 2: No

DEYE (Vision difficulty): Range of values:

— 1: Yes
— 2: No

DREM (Cognitive difficulty): Range of values:
— N/A (less than 5 years old)
— 1: Yes
— 2: No

PINCP (Total person’s income): Range of values:

— integers between -19997 and 4209995 to indicate income in US dollars
— loss of $19998 or more is coded as -19998.
— income of $4209995 or more is coded as 4209995.
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e ESR (Employment status recode): Range of values:
— N/A (less than 16 years old)

Civilian employed, at work

Civilian employed, with a job but not at work

1:
2:

— 3: Unemployed
4: Armed forces, at work
D:

— 5: Armed forces, with a job but not at work
— 6: Not in labor force

e ST (State code): Please see ACS PUMS documentation for the correspondence between
coded values and state name.

e FER (Gave birth to child within the past 12 months): Range of values:

— N/A (less than 15 years/greater than 50 years/male)
— 1: Yes
— 2: No

e RACIP (Recoded detailed race code): Range of values:

White alone

1:
— 2: Black or African American alone
— 3: American Indian alone
4: Alaska Native alone

— 5: American Indian and Alaska Native tribes specified, or American Indian or
Alaska Native, not specified and no other races

— 6: Aslan alone
— 7: Native Hawaiian and Other Pacific Islander alone
— 8: Some Other Race alone

— 9: Two or More Races

Filters:
e AGEP (Age) must be less than 65.

e PINCP (Total person’s income) must be less than $30,000.
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ACSMobility

Predict whether a young adult moved addresses in the last year.
Target: MIG (Mobility status): an individual’s label is 1 if MIG == 1, and 0 otherwise.

Features:
e AGEP (Age): Range of values:

— 0- 99 (integers)

— 0 indicates less than 1 year old.
e SCHL (Educational attainment): Range of values:
— N/A (less than 3 years old)

No schooling completed

Nursery school /preschool
Kindergarten

Grade 1

Grade 2

Grade 3

Grade 4

Grade 5

Grade 6

: Grade 7

: Grade 8

: Grade 9

: Grade 10

: Grade 11

12th Grade - no diploma

|

| \ | | | \ |
= = R e e s e
D U R W N = O

: Regular high school diploma

[
—
~J

: GED or alternative credential

\
—_
oo

: Some college but less than 1 year

|
—
@

1 or more years of college credit but no degree

|
Do
oS

: Associate’s degree
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21: Bachelor’s degree

22: Master’s degree

23: Professional degree beyond a bachelor’s degree

24: Doctorate degree

e MAR (Marital status): Range of values:

1:
2:
3:
4:
D:

Married
Widowed
Divorced
Separated

Never married or under 15 years old

SEX (Sex): Range of values:

— 1: Male

— 2: Female

DIS (Disability recode): Range of values:

— 1: With a disability
— 2: Without a disability

ESP (Employment status of parents): Range of values:

N/A (not own child of householder, and not child in subfamily)

Living with two parents: both parents in labor force
Living with two parents: Father only in labor force
Living with two parents: Mother only in labor force
Living with two parents: Neither parent in labor force
Living with father: Father in the labor force

Living with father: Father not in labor force

Living with mother: Mother in the labor force

Living with mother: Mother not in labor force

e CIT (Citizenship status): Range of values:

— 1: Born in the U.S.
— 2: Born in Puerto Rico, Guam, the U.S. Virgin Islands, or the Northern Marianas
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— 3: Born abroad of American parent(s)
— 4: U.S. citizen by naturalization
— 5: Not a citizen of the U.S.

MIL (Military service): Range of values:
— N/A (less than 17 years old)

— 1: Now on active duty
— 2: On active duty in the past, but not now
— 3: Only on active duty for training in Reserves/National Guard

— 4: Never served in the military

e ANC (Ancestry recode): Range of values:

— 1: Single
2: Multiple
— 3: Unclassified
4:

Not reported
— 8: Suppressed for data year 2018 for select PUMAs

NATIVITY (Nativity): Range of values:

— 1: Native

— 2: Foreign born

RELP (Relationship): Range of values:

Reference person
Husband /wife

Biological son or daughter

Adopted son or daughter
Stepson or stepdaughter
Brother or sister

Father or mother
Grandchild

Parent-in-law

|

Son-in-law or daughter-in-law
— 10: Other relative
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— 11: Roomer or boarder

— 12: Housemate or roommate

— 13: Unmarried partner

— 14: Foster child

— 15: Other nonrelative

— 16: Institutionalized group quarters population

— 17: Noninstitutionalized group quarters population

DEAR (Hearing difficulty): Range of values:

— 1: Yes
— 2: No

DEYE (Vision difficulty): Range of values:

— 1: Yes
— 2: No

DREM (Cognitive difficulty): Range of values:
— N/A (less than 5 years old)
— 1: Yes
— 2: No

RACIP (Recoded detailed race code): Range of values:
— 1: White alone

— 2: Black or African American alone
— 3: American Indian alone
— 4: Alaska Native alone

— 5: American Indian and Alaska Native tribes specified, or American Indian or
Alaska Native, not specified and no other races

— 6: Aslan alone
— 7: Native Hawaiian and Other Pacific Islander alone
— 8: Some Other Race alone

— 9: Two or More Races
e GCL (Grandparents living with grandchildren): Range of values:
— N/A (less than 30 years/institutional GQ)
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— 1: Yes
— 2: No

e COW (Class of worker): Range of values:

N/A (not in universe)

1:

Employee of a private for-profit company or business, or of an individual, for

wages, salary, or commissions

Employee of a private not-for-profit, tax-exempt, or charitable organization
Local government employee (city, county, etc.)

State government employee

Federal government employee

Self-employed in own not incorporated business, professional practice, or farm
Self-employed in own incorporated business, professional practice or farm
Working without pay in family business or farm

Unemployed and last worked 5 years ago or earlier or never worked

e ESR (Employment status recode): Range of values:

N/A (less than 16 years old)

1:
2:
3:
4:
D:

6:

Civilian employed, at work

Civilian employed, with a job but not at work
Unemployed

Armed forces, at work

Armed forces, with a job but not at work

Not in labor force

e WKHP (Usual hours worked per week past 12 months): Range of values:

— N/A (less than 16 years old / did not work during the past 12 months)

— 1 - 98 integer valued: usual hours worked

— 99: 99 or more usual hours

e JWMNP (Travel time to work): Range of values:

— N/A (not a worker or a worker that worked at home)

— integers 1 - 200 for minutes to get to work

— top-coded at 200 so values above 200 are coded as 200
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e PINCP (Total person’s income): Range of values:

— integers between -19997 and 4209995 to indicate income in US dollars
— loss of $19998 or more is coded as -19998.
— income of $4209995 or more is coded as 4209995.

Filters:

e AGEP (Age) must be greater than 18 and less than 35.

ACSEmployment

Predict whether an adult is employed.

Target: ESR (Employment status recode): an individual’s label is 1 if ESR == 1, and 0
otherwise.

Features:
e AGEP (Age): Range of values:
— 0-99 (integers)

— 0 indicates less than 1 year old.
e SCHL (Educational attainment): Range of values:
— N/A (less than 3 years old)

No schooling completed
— 2: Nursery school/preschool
Kindergarten

Grade 1

Grade 2

Grade 3

Grade 4

Grade 5

Grade 6

— 10: Grade 7

— 11: Grade 8

— 12: Grade 9

|
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— 13: Grade 10

— 14: Grade 11

— 15: 12th Grade - no diploma

— 16: Regular high school diploma

— 17: GED or alternative credential

— 18: Some college but less than 1 year

— 19: 1 or more years of college credit but no degree
— 20: Associate’s degree

— 21: Bachelor’s degree

— 22: Master’s degree

— 23: Professional degree beyond a bachelor’s degree

— 24: Doctorate degree
e MAR (Marital status): Range of values:

1: Married
2: Widowed
— 3: Divorced
4:
D:

Separated

Never married or under 15 years old

SEX (Sex): Range of values:
— 1: Male

— 2: Female

DIS (Disability recode): Range of values:

— 1: With a disability
— 2: Without a disability

ESP (Employment status of parents): Range of values:

— N/A (not own child of householder, and not child in subfamily)
— 1: Living with two parents: both parents in labor force

— 2: Living with two parents: Father only in labor force

— 3: Living with two parents: Mother only in labor force

— 4: Living with two parents: Neither parent in labor force
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— 5: Living with father: Father in the labor force
— 6: Living with father: Father not in labor force
— 7: Living with mother: Mother in the labor force

— 8: Living with mother: Mother not in labor force

MIG (Mobility status (lived here 1 year ago): Range of values:
— N/A (less than 1 year old)

— 1: Yes, same house (nonmovers)
— 2: No, outside US and Puerto Rico
— 3: No, different house in US or Puerto Rico

CIT

—~

Citizenship status): Range of values:

Born in the U.S.
Born in Puerto Rico, Guam, the U.S. Virgin Islands, or the Northern Marianas
Born abroad of American parent(s)

U.S. citizen by naturalization

Not a citizen of the U.S.

\

MIL (Military service): Range of values:
— N/A (less than 17 years old)

— 1: Now on active duty
— 2: On active duty in the past, but not now
— 3: Only on active duty for training in Reserves/National Guard

— 4: Never served in the military

e ANC (Ancestry recode): Range of values:

— 1: Single
2: Multiple
— 3: Unclassified
4:

Not reported

— 8: Suppressed for data year 2018 for select PUMAs

NATIVITY (Nativity): Range of values:

— 1: Native
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— 2: Foreign born

e RELP (Relationship): Range of values:

Reference person
Husband /wife

Biological son or daughter

Adopted son or daughter
Stepson or stepdaughter
Brother or sister
Father or mother

Grandchild

Parent-in-law

|

Son-in-law or daughter-in-law

: Other relative

\ |
—_ =
= O

: Roomer or boarder

|
—
[\

: Housemate or roommate

|
—
w

: Unmarried partner
. Foster child

: Other nonrelative

| |
—_ =
Sy Ot >

. Institutionalized group quarters population

— 17: Noninstitutionalized group quarters population
e DEAR (Hearing difficulty): Range of values:

— 1: Yes
— 2: No

e DEYE (Vision difficulty): Range of values:
— 1: Yes
— 2: No
e DREM (Cognitive difficulty): Range of values:
— N/A (less than 5 years old)
— 1: Yes
— 2: No
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e RACIP (Recoded detailed race code): Range of values:

White alone

Black or African American alone

1:
2:

— 3: American Indian alone
4: Alaska Native alone

— 5: American Indian and Alaska Native tribes specified, or American Indian or
Alaska Native, not specified and no other races

— 6: Asian alone
— 7: Native Hawaiian and Other Pacific Islander alone
— &: Some Other Race alone

— 9: Two or More Races
e GCL (Grandparents living with grandchildren): Range of values:
— N/A (less than 30 years/institutional GQ)
— 1: Yes
— 2: No
Filters:
e AGEP (Age) must be greater than 16 and less than 90.

e PWGTP (Person weight) must be greater than or equal to 1.

ACSTravelTime

Predict whether a working adult has a travel time to work of greater than 20 minutes.

Target: JWMNP (Travel time to work): an individual’s label is 1 if JWMNP > 20, and 0
otherwise.

Features:
e AGEP (Age): Range of values:
— 0-99 (integers)

— 0 indicates less than 1 year old.

e SCHL (Educational attainment): Range of values:
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— N/A (less than 3 years old)

— 1: No schooling completed

— 2: Nursery school/preschool

— 3: Kindergarten

— 4: Grade 1

— 5: Grade 2

— 6: Grade 3

— 7: Grade 4

— &8 Grade 5

— 9: Grade 6

— 10: Grade 7

— 11: Grade 8

— 12: Grade 9

— 13: Grade 10

— 14: Grade 11

— 15: 12th Grade - no diploma

— 16: Regular high school diploma

— 17: GED or alternative credential

— 18: Some college but less than 1 year
— 19: 1 or more years of college credit but no degree
— 20: Associate’s degree

— 21: Bachelor’s degree

— 22: Master’s degree

— 23: Professional degree beyond a bachelor’s degree

— 24: Doctorate degree
e MAR (Marital status): Range of values:

Married
Widowed

Divorced

Separated

Never married or under 15 years old
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e SEX (Sex): Range of values:

1: Male

2: Female

e DIS (Disability recode): Range of values:

1: With a disability
2: Without a disability

e ESP (Employment status of parents): Range of values:

N/A (not own child of householder, and not child in subfamily)
Living with two parents: both parents in labor force

Living with two parents: Father only in labor force

Living with two parents: Mother only in labor force

Living with two parents: Neither parent in labor force
Living with father: Father in the labor force

Living with father: Father not in labor force

Living with mother: Mother in the labor force

Living with mother: Mother not in labor force

e MIG (Mobility status (lived here 1 year ago): Range of values:

N/A (less than 1 year old)

1: Yes, same house (nonmovers)

2: No, outside US and Puerto Rico

3: No, different house in US or Puerto Rico

e RELP (Relationship): Range of values:

0: Reference person
Husband /wife

Biological son or daughter
Adopted son or daughter
Stepson or stepdaughter
Brother or sister

Father or mother
Grandchild

67
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8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

Parent-in-law
Son-in-law or daughter-in-law
Other relative
Roomer or boarder
Housemate or roommate
Unmarried partner
Foster child
Other nonrelative
Institutionalized group quarters population

Noninstitutionalized group quarters population

e RACIP (Recoded detailed race code): Range of values:

1:
2:
3:
4:

5%

White alone

Black or African American alone
American Indian alone

Alaska Native alone

American Indian and Alaska Native tribes specified, or American Indian or

Alaska Native, not specified and no other races

6:
T
8:
9:

Asian alone
Native Hawaiian and Other Pacific Islander alone
Some Other Race alone

Two or More Races

e PUMA (Public use microdata area code (PUMA) based on 2010 Census definition
(areas with population of 100,000 or more, use with ST for unique code)): Please see
ACS PUMS documentation for details on the PUMA codes (which range from 100 to
70301)

e ST (State code): Please see ACS PUMS documentation for the correspondence between
coded values and state name.

e CIT (Citizenship status): Range of values:

— 1: Born in the U.S.

— 2: Born in Puerto Rico, Guam, the U.S. Virgin Islands, or the Northern Marianas

— 3: Born abroad of American parent(s)
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— 4: U.S. citizen by naturalization
— 5: Not a citizen of the U.S.

e OCCP (Occupation): Please see ACS PUMS documentation for the full list of occupation
codes

e JWTR (Means of transportation to work): Range of values:

— N/A (not a worker-not in the labor force, including persons under 16 years,
unemployed, employed, with a job but not at work, Armed Forces, with a job but
not at work)

— 1: Car, truck, or van

Bus or trolley bus

Streetcar or trolley car (carro publico in Puerto Rico)
Subway or elevated

Railroad

Ferryboat

Taxicab

Motorcycle

|

Bicycle

— 10: Walked;

— 11: Worked at home
— 12: Other method

e POWPUMA (Place of work PUMA based on 2010 Census definitions): Please see ACS
PUMS documentation for details on PUMA codes

e POVPIP (Income-to-poverty ratio recode): Range of values:
- N/A
— integers 0-500
— 501 for 501 percent or more
Filters:
e AGEP (Age) must be greater than 16.
e PWGTP (Person weight) must be greater than or equal to 1.

e ESR (Employment status recode) must be equal to 1 (employed).
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Dataset access and license

We provide a flexible software package to download ACS PUMS data and construct both
the new prediction tasks discussed in Section 3.3, as well as new tasks using ACS PUMS
data products. The ACS PUMS data itself is governed by the terms of service from the US
Census Bureau. For more information, see https://www.census.gov/data/developers/
about/terms-of-service.html Similarly, the IPUMS adult reconstruction is governed by
the IPUMS terms of use. For more information, see https://ipums.org/about/terms.

Table 3.1 experiment details

For each of the tasks listed in Table 3.1 (ACSIncome, ACSPublicCoverage, ACSMobility,
ACSEmployment, ACSTravelTime), we use the 1-year 2018 US-Wide ACS PUMS data. We
use a maximum of 100,000 examples from each state, and randomly subsample states that
have more than 100,000 examples. We randomly split 80% of the dataset into a training split
and the remaining 20% into a test split. All features are standardized to be zero-mean and
unit-variance. Constant Predictor refers to the majority class baseline, LogReg refers to a
logistic regression baseline, and GBM refers to a gradient boosted decision tree classifier. For
each models, we use the implementation provided by Pedregosa et al. [98] with the default
hyperparameters.

Tour of empirical observations: missing experimental details

Models and hyperparameters. All of the experiments in this section use the same
unconstrained base model: a gradient boosted decision tree (GBM). We chose this model
because it trains quickly and consistently achieved higher accuracy than other baseline
models we considered (logistic regression and random forests) in the unconstrained setting;
experiments using other base models also produced qualitatively similar results, so we focus
on GBM in this paper. We use the implementation provided by Pedregosa et al. [98] and use
exponential loss, num estimators 5, max depth 5, and all other hyperparameters set to the
default. These hyperparameters were chosen via a small grid search to maximize accuracy on
the ACSIncome task. We use the implementation of LFR [130] from Bellamy et al. [15] with
hyperparameters k=10, Ax=0.1, Ay=1.0, Az = 2.0, maxiter=5000, and maxfun=5000. The
hyperparameters are the same as those used in the UCI Adult tutorial provided by Bellamy
et al. [15]. For the in-processing method (ExpGrad) from Agarwal et al. [3], we use the
implementation from Bird et al. [17] with the default hyperparameters, and for the post-
processing method, we use the threshold adjustment method of Hardt et al. [51], which is
also implemented in Bellamy et al. [15]. In Section 3.4, we use all of the methods to enforce
demographic parity. We detail additional experiments enforcing equality of opportunity in
Appendix 3.6.


https://www.census.gov/data/developers/about/terms-of-service.html
https://www.census.gov/data/developers/about/terms-of-service.html
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Datasets. Throughout this section, we use the ACSIncome task described in Section 3.3
and Appendix 3.6. With the exception of the distribution shift across time experiments,
we use the 2018 1-Year ACS PUMS data. For each state, we randomly split 80% of the
dataset into a training split and use the remaining 20% as a test split. The US-Wide dataset
is constructed by combining these training and testing sets over all 50 states and Puerto

Rico. For the distribution shift across time experiments, we use the same procedure for the
2014-2017 1-Year ACS PUMS data.

Confidence intervals. To account for random variation in estimating model accuracies
and violations of demographic parity and equality of opportunity, we report each of these
metrics with appropriate confidence intervals. We report and plot accuracy numbers with
95% Clopper-Pearson intervals. We report and plot violations of demographic parity and
equality of opportunity with 95% Newcombe intervals for the difference between two binomial
proportions.

Compute environment. All of our experiments are run on CPUs on a cluster computer
with 24 Intel Xeon E7 CPUs and 300 GB of RAM.

Additional experiments

In this section, we conduct the same set of experiments conducted in Section 3.4 on the 5
other prediction tasks we introduced in Section 3.3. Throughout we keep the experimental
details (models, hyperparameters, etc) identical to those detailed in Appendix 3.6.

Intervention effect sizes across states

As in Section 3.4, we train an unconstrained gradient boosted decision tree (GBM) on each
state, and we compare the accuracy and fairness criterion violation of this unconstrained model
with the same model after applying one of three common fairness intervention: pre-processing
(LFR), the in-processing fair reductions methods from Agarwal et al. [3] (ExpGrad), and the
simple post-processing method that adjusts group-based acceptance thresholds to satisfy a
constraint [51]. Figure 3.6 shows the result of this experiment for the ACSIncome prediction
task for interventions to achieve equality of opportunity.

In Figure 3.7, we conduct the same experiment for demographic parity on four other
ACS data tasks: ACSPublicCoverage, ACSEmployment, ACSMobility, and ACSTravelTime,

respectively.

Geographic distribution shift

In Figure 3.8, we plot accuracy and equality of opportunity violation with respect to race for
both an unconstrained GBM and the same model after applying a post-processing adjustment
to achieve equality of opportunity on a natural suite of test sets: the in-distribution (same
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Figure 3.6: The effect size of fairness interventions varies by state. Each panel shows the
change in accuracy and equality of opportunity violation (EO) on the ACSIncome task after
applying a fairness intervention to an unconstrained gradient boosted decision tree (GBM).
Each arrow corresponds to a different state distribution. The arrow base represents the
(accuracy, EO) point corresponding to the unconstrained GBM, and the head represents the
(accuracy, EO) point obtained after applying the intervention. The arrow for HI in the LFR
plot and ME in all three plots is entirely covered by the start and end points.

state test set) and the out-of-distribution test sets for the 49 other states. This is the same
experiment as in Section 3.4, but with equality of opportunity rather than demographic parity
as the metric of interest. In Figures 3.9, 3.10 3.11, and 3.12 we conduct the same experiment
for demographic parity on four other ACS data tasks: ACSPublicCoverage, ACSEmployment,
ACSMobility, and ACSTravel Time, respectively.

Temporal distribution shift

In Figure 3.13, we plot model accuracy and equality of opportunity violation for a GBM
trained on the ACSIncome task using US-wide data from 2014 and evaluated on the test sets
for the same task drawn from years 2014-2018. This is the same experiment as conducted in
Section 3.4; however, here we consider interventions to satisfy equality of opportunity rather
than demographic parity. In Figure 3.14, we conduct repeat this experiment for interventions
to satisfy demographic parity on 4 other ACS PUMS predictions tasks: ACSPublicCoverage,
ACSMobility, ACSEmployment, and ACSTravel Time.
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Figure 3.7: The effect size of fairness interventions varies by state. Each panel shows the
change in accuracy and demographic parity violation (DP) on the ACSIncome task after
applying a fairness intervention to an unconstrained gradient boosted decision tree (GBM).
Each arrow corresponds to a different state distribution. The arrow base represents the
(accuracy, DP) point corresponding to the unconstrained GBM, and the head represents the
(accuracy, DP) point obtained after applying the intervention. When only a single point
is visible, the entire arrow is covered by the point, representing an intervention that has
essentially no effect.
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Figure 3.8: Transfer from one state to another gives unpredictable results in terms of predictive
accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM trained on
a particular state on the ACSIncome task and evaluated both in-distribution (ID) on the
same state and out-of-distribution (OOD) on the 49 other states in terms of accuracy and
equality of opportunity violation. Bottom: Each panel shows an GBM with post-processing
to enforce equality of opportunity on the state on which it was trained and evaluated both
ID and OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson intervals for
accuracy and 95% Newcombe intervals for equality of opportunity violation.
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Figure 3.9: Transfer from one state to another gives unpredictable results in terms of predictive
accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM trained on a
particular state on the ACSPublicCoverage task and evaluated both in-distribution (ID) on
the same state and out-of-distribution (OOD) on the 49 other states in terms of accuracy and
demographic parity violation. Bottom: Each panel shows an GBM with post-processing to
enforce demographic parity on the state on which it was trained and evaluated both ID and
OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson intervals for accuracy
and 95% Newcombe intervals for demographic parity.
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Figure 3.10: Transfer from one state to another gives unpredictable results in terms of
predictive accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM
trained on a particular state on the ACSEmployment task and evaluated both in-distribution
(ID) on the same state and out-of-distribution (OOD) on the 49 other states in terms of
accuracy and demographic parity violation. Bottom: Each panel shows an GBM with
post-processing to enforce demographic parity on the state on which it was trained and
evaluated both ID and OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson
intervals for accuracy and 95% Newcombe intervals for demographic parity.
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Figure 3.11: Transfer from one state to another gives unpredictable results in terms of
predictive accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM
trained on a particular state on the ACSMobility task and evaluated both in-distribution
(ID) on the same state and out-of-distribution (OOD) on the 49 other states in terms of
accuracy and equality of opportunity violation. Bottom: Each panel shows an GBM with
post-processing to enforce equality of opportunity on the state on which it was trained and
evaluated both ID and OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson
intervals for accuracy and 95% Newcombe intervals for demographic parity.
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Figure 3.12: Transfer from one state to another gives unpredictable results in terms of
predictive accuracy and fairness criteria. Top: Each panel shows an unconstrained GBM
trained on a particular state on the ACSTravelTime task and evaluated both in-distribution
(ID) on the same state and out-of-distribution (OOD) on the 49 other states in terms of
accuracy and equality of opportunity violation. Bottom: Each panel shows an GBM with
post-processing to enforce equality of opportunity on the state on which it was trained and
evaluated both ID and OOD on all 50 states. Confidence intervals are 95% Clopper-Pearson
intervals for accuracy and 95% Newcombe intervals for demographic parity.
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Figure 3.13: Fairness criteria are more stable over time than accuracy. Left: Models trained
in 2014 on US-wide ACSIncome with and without fairness interventions to achieve equality
of opportunity and evaluated on data in subsequent years. Right: Violations of equality
of opportunity for the same collection of models. Although accuracy drops over time for
most problems, violations of equality of opportunity remain essentially constant. Confidence
intervals are 95% Clopper-Pearson intervals for accuracy and 95% Newcombe intervals for
equality of opportunity violations.
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Figure 3.14: Fairness criteria are more stable over time than accuracy. Left: Models trained
in 2014 on US-wide ACS data with and without fairness interventions to achieve demographic
parity and evaluated on data in subsequent years. Right: Violations of demographic parity
for the same collection of models. Although accuracy drops over time for most problems,
violations of demographic parity remain essentially constant. Confidence intervals are 95%
Clopper-Pearson intervals for accuracy and 95% Newcombe intervals for demographic parity.
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3.7 Datasheet

This datasheet covers both the prediction tasks we introduce and the underlying US Census
data sources. However, due to the extensive documentation available about the US Census
data we often point to relevant available resources rather than recreating them here. For
the most up-to-date version of this datasheet, please refer to https://github.com/zykls/
folktables/blob/main/datasheet.md.

Motivation

e For what purpose was the dataset created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.

The motivation for creating prediction tasks on top of US Census data was to extend the
dataset ecosystem available for algorithmic fairness research as outlined in this paper.

e Who created the dataset (e.g., which team, research group) and on behalf of
which entity (e.g., company, institution, organization)?

The new prediction tasks were created from available US Census data sources by Frances
Ding, Moritz Hardt, John Miller, and Ludwig Schmidt.

¢ Who funded the creation of the dataset? If there is an associated grant, please
provide the name of the grantor and the grant name and number.

Frances Ding, Moritz Hardt, and John Miller were employed by the University of California
for the duration of this research project, funded by grants administered through the
University of California. Ludwig Schmidt was employed by Toyota Research throughout
this research project.

e Any other comments?
No.

Composition

e What do the instances that comprise the dataset represent (e.g., documents,
photos, people, countries)? Are there multiple types of instances (e.g., movies, users,
and ratings; people and interactions between them; nodes and edges)? Please provide a
description.

Each instance in our IPUMS Adult reconstruction represents an individual. Similarly, our
datasets derived from ACS contains instances representing individuals. The ACS data our
datasets are derived from also contain household-level information and the relationship
between households and individuals.


https://github.com/zykls/folktables/blob/main/datasheet.md
https://github.com/zykls/folktables/blob/main/datasheet.md
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e How many instances are there in total (of each type, if appropriate)?

Our IPUMS Adult reconstruction contains 49,531 rows (see Section 3.2). Table 3.1 contains
the sizes of our datasets derived from ACS.

e Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so,
please describe how this representativeness was validated /verified. If it is not representative
of the larger set, please describe why not (e.g., to cover a more diverse range of instances,
because instances were withheld or unavailable)

Both TPUMS Adult and our ACS datasets are samples of the US population. Please
see Sections 3.2 & 3.3 and the corresponding documentation provided by the US Census
Bureau. Note that the per-instance weights have to be taken into account if the sample is
meant to represent the US population.

e What data does each instance consist of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please provide a description.

Each instance consists of features. IPUMS Adult uses the same features as the original
UCI Adult dataset. Appendix 3.6 describes each feature in our new datasets derived from
ACS.

e Is there a label or target associated with each instance? If so, please provide a
description.

Similar to UCI Adult, our IPUMS Adult reconstruction uses the income as label (where
the continuous values as opposed to only the binarized values are now available). Appendix
3.6 describes the labels in our new datasets derived from ACS.

e Is any information missing from individual instances? If so, please provide a
description, explaining why this information is missing (e.g., because it was unavailable).
This does not include intentionally removed information, but might include, e.g., redacted
text.

Some features (e.g., the country of origin in IPUMS Adult) contain missing values. We
again refer to the respective documentation from the US Census Bureau for details.

e Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)? If so, please describe how these relationships are made
explicit.

Our versions of the datasets contain no relationships between individuals. The original
data sources from the US Census contain relationships between individuals and households.
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e Are there recommended data splits (e.g., training, development /validation,
testing)? If so, please provide a description of these splits, explaining the rationale behind
them.

For IPUMS Adult, it is possible to follow the same train / test split as the original UCI
Adult. In general, we recommend k-fold cross-validation for all of our datasets.

e Are there any errors, sources of noise, or redundancies in the dataset? If so,
please provide a description.

Our IPUMS Adult reconstruction contains slightly more rows than the original UCI Adult,
see Section 3.2. Beyond IPUMS Adult, we refer to the documentation of CPS and ACS
provided by the US Census Bureau.

e Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g., websites, tweets, other datasets)? If it links to or relies on external
resources, a) are there guarantees that they will exist, and remain constant, over time;
b) are there official archival versions of the complete dataset (i.e., including the external
resources as they existed at the time the dataset was created); ¢) are there any restrictions
(e.g., licenses, fees) associated with any of the external resources that might apply to
a future user? Please provide descriptions of all external resources and any restrictions
associated with them, as well as links or other access points, as appropriate.

Due to restrictions on the re-distribution of the original IPUMS and ACS data sources,
we do not provide our datasets as standalone data files. Instead, we provide scripts to
generate our datasets from the respective sources.

Both the US Census Bureau and IPUMS aim to provide stable long-term access to their
data. Hence we consider these data sources to be reliable. We refer to the IPUMS website
and the website of the US Census Bureau for specific usage restrictions. Neither data
source has fees associated with it.

e Does the dataset contain data that might be considered confidential (e.g., data
that is protected by legal privilege or by doctor patient confidentiality, data
that includes the content of individuals’ non-public communications)? If so,
please provide a description.

Our datasets are subsets of datasets released publicly by the US Census Bureau.
e Does the dataset contain data that, if viewed directly, might be offensive,

insulting, threatening, or might otherwise cause anxiety? If so, please describe
why.

No.
e Does the dataset relate to people? If not, you may skip the remaining questions in
this section.

Yes, each instance in our datasets corresponds to a person.
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e Does the dataset identify any subpopulations (e.g., by age, gender)? If so,
please describe how these subpopulations are identified and provide a description of their
respective distributions within the dataset.

Our datasets identify subpopulations since each individual has features such as age, gender,
or race. Please see the main text of our paper for experiments exploring the respective
distributions.

e Is it possible to identify individuals (i.e., one or more natural persons), either
directly or indirectly (i.e., in combination with other data) from the dataset?
If so, please describe how.

To the best of our knowledge, it is not possible to identify individuals directly from our
datasets. However, the possibility of reconstruction attacks combining data from the US
Cenus Bureau (such as CPS and ACS) and other data sources are a concern and actively
investigated by the research community.

e Does the dataset contain data that might be considered sensitive in any way
(e.g., data that reveals racial or ethnic origins, sexual orientations, religious
beliefs, political opinions or union memberships, or locations; financial or health
data; biometric or genetic data; forms of government identification, such as
social security numbers; criminal history)? If so, please provide a description.

Our datasets contain features such as race, age, or gender that are often considered sensitive.
This is by design since we assembled our datasets to test algorithmic fairness interventions.

e Any other comments?
No.

Collection process

e How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred /derived from
other data, was the data validated /verified? If so, please describe how.

The data was reported by subjects as part of the ACS and CPS surveys. The respective doc-
umentation provided by the US Census Bureau contains further information, see https://
WWW . census.gov/programs-surveys/acs/methodology/design-and-methodology.html
and also https://www.census.gov/programs-surveys/cps/technical-documentation/
methodology.html.

e What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?
How were these mechanisms or procedures validated?


https://www.census.gov/programs-surveys/acs/methodology/design-and-methodology.html
https://www.census.gov/programs-surveys/acs/methodology/design-and-methodology.html
https://www.census.gov/programs-surveys/cps/technical-documentation/methodology.html
https://www.census.gov/programs-surveys/cps/technical-documentation/methodology.html
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The ACS relies on a combination of internet, mail, telephone, and in-person interviews.
CPS uses in-person and telephone interviews. Please see the aforementioned documentation
from the US Census Bureau for detailed information.

e If the dataset is a sample from a larger set, what was the sampling strategy
(e.g., deterministic, probabilistic with specific sampling probabilities)?

For the ACS, the US Census Bureau sampled housing units uniformly for each county. See
ACS docs, Chapter 4 (https://www2.census.gov/programs-surveys/acs/methodology/
design_and_methodology/acs_design_methodology_report_2014.pdf) for details.

CPS is also sampled by housing unit from certain sampling areas, see Chapters 3 and 4 in
https://www.census.gov/prod/2006pubs/tp-66.pdf.

e Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdwork-
ers paid)?

The US Census Bureau employs interviewers for conducting surveys. According to online
job information platforms such as indeed.com, an interviewer earns about $15 per hour.

e Over what timeframe was the data collected? Does this timeframe match the
creation timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the
instances was created.

Both CPS and ACS collect data annually. Our IPUMS Adult reconstruction contains data
from the 1994 CPS ASEC. Our new tasks derived from ACS can be instantiated for various
survey years.

e Were any ethical review processes conducted (e.g., by an institutional review
board)? If so, please provide a description of these review processes, including the
outcomes, as well as a link or other access point to any supporting documentation.

Both ACS and CPS are regularly reviewed by the US Census Bureau. As a government
agency, the US Census Bureau is also subject to government oversight mechanisms.

e Does the dataset relate to people? If not, you may skip the remainder of the
questions in this section.
Yes.

e Did you collect the data from the individuals in question directly, or obtain it
via third parties or other sources (e.g., websites)?

Data collection was performed by the US Census Bureau. We obtained the data from
publicly available US Census repositories.


https://www2.census.gov/programs-surveys/acs/methodology/design_and_methodology/acs_design_methodology_report_2014.pdf
https://www2.census.gov/programs-surveys/acs/methodology/design_and_methodology/acs_design_methodology_report_2014.pdf
https://www.census.gov/prod/2006pubs/tp-66.pdf
indeed.com
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e Were the individuals in question notified about the data collection? If so, please
describe (or show with screenshots or other information) how notice was provided, and
provide a link or other access point to, or otherwise reproduce, the exact language of the
notification itself.

Yes. A sample ACS form is available online: https://www.census.gov/programs-surveys/
acs/about/forms-and-instructions/2021-form.html

Information about the CPS collection methodology is available here: https://www.census.
gov/programs-surveys/cps/technical-documentation/methodology.html

e Did the individuals in question consent to the collection and use of their data?
If so, please describe (or show with screenshots or other information) how consent was
requested and provided, and provide a link or other access point to, or otherwise reproduce,
the exact language to which the individuals consented.

Participation in the US Census American Community Survey is mandatory. Partic-
ipation in the US Corrent Population Survey is voluntary and consent is obtained
at the beginning of the interview: https://www2.census.gov/programs-surveys/cps/
methodology/CPS-Tech-Paper-77.pdf

e If consent was obtained, were the consenting individuals provided with a
mechanism to revoke their consent in the future or for certain uses? If so,
please provide a description, as well as a link or other access point to the mechanism (if
appropriate).

We are not aware that the Census Bureau would provide such a mechanism.

e Has an analysis of the potential impact of the dataset and its use on data
subjects (e.g., a data protection impact analysis) been conducted? If so, please
provide a description of this analysis, including the outcomes, as well as a link or other
access point to any supporting documentation.

The US Census Bureau assesses privacy risks and invests in statistical disclosure control. See
https://www.census.gov/topics/research/disclosure-avoidance.html. Our derived
prediction tasks do not increase privacy risks.

e Any other comments?
No.

Preprocessing / cleaning / labeling

e Was any preprocessing/cleaning/labeling of the data done (e.g., discretization
or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction,
removal of instances, processing of missing values)? If so, please provide a description.
If not, you may skip the remainder of the questions in this section.


https://www.census.gov/programs-surveys/acs/about/forms-and-instructions/2021-form.html
https://www.census.gov/programs-surveys/acs/about/forms-and-instructions/2021-form.html
https://www.census.gov/programs-surveys/cps/technical-documentation/methodology.html
https://www.census.gov/programs-surveys/cps/technical-documentation/methodology.html
https://www2.census.gov/programs-surveys/cps/methodology/CPS-Tech-Paper-77.pdf
https://www2.census.gov/programs-surveys/cps/methodology/CPS-Tech-Paper-77.pdf
https://www.census.gov/topics/research/disclosure-avoidance.html
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We used two US Census data products — 1) we reconstructed UCI Adult from the
Annual Social and Economic Supplement (ASEC) of the Current Population Survey
(CPS), and 2) we constructed new prediction tasks from the American Community
Survey (ACS) Public Use Microdata Sample (PUMS). Before releasing CPS data pub-
licly, the Census Bureau top-codes certain variables and conducts imputation of certain
missing values, as documented here: https://www.census.gov/programs-surveys/cps/
technical-documentation/methodology.html. In our IPUMS Adult reconstruction, we
include a subset of the variables available from the CPS data and do not alter their values.

The ACS data release similarly top-codes certain variables and conducts imputation of cer-
tain missing values, as documented here: https://www.census.gov/programs-surveys/
acs/microdata/documentation.html. For the new prediction tasks that we define, we
further process the ACS data as documented at the folktables GitHub page, https:
//github.com/zykls/folktables. In most cases, this involves mapping missing values
(NaNs) to —1. We release code so that new prediction tasks may be defined on the ACS
data, with potentially different preprocessing. Each prediction task also defines a binary
label by discretizing the target variable into two classes; this can be easily changed to
define a new labeling in a new prediction task.

e Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)? If so, please provide a link or other
access point to the “raw” data.

Yes, our package provides access to the data as released by the U.S. Census Bureau. The
“raw” survey answers collected by the Census Bureau are not available for public release
due to privacy considerations.

e Is the software used to preprocess/clean/label the instances available? If so,
please provide a link or other access point.
The software to is available at the folktables GitHub page, https://github.com/zykls/
folktables.

e Any other comments?
No.

Uses

e Has the dataset been used for any tasks already? If so, please provide a description.

In this paper we create five new prediction tasks from the ACS PUMS data:

1. ACSIncome: Predict whether US working adults’ yearly income is above $50,000.

2. ACSPublicCoverage: Predict whether a low-income individual, not eligible for Medi-
care, has coverage from public health insurance.


https://www.census.gov/programs-surveys/cps/technical-documentation/methodology.html
https://www.census.gov/programs-surveys/cps/technical-documentation/methodology.html
https://www.census.gov/programs-surveys/acs/microdata/documentation.html
https://www.census.gov/programs-surveys/acs/microdata/documentation.html
https://github.com/zykls/folktables
https://github.com/zykls/folktables
https://github.com/zykls/folktables
https://github.com/zykls/folktables
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3. ACSMobility: Predict whether a young adult moved addresses in the last year.
4. ACSEmployment: Predict whether a US adult is employed.

5. ACSTravelTime: Predict whether a working adult has a travel time to work of greater
than 20 minutes.

Further details about these tasks can be found at the folktables GitHub page, https:
//github.com/zykls/folktables, and in Appendix 3.6.

e Is there a repository that links to any or all papers or systems that use the
dataset? If so, please provide a link or other access point.

At the folktables GitHub page, https://github.com/zykls/folktables, any public forks
to the package are visible, and papers or systems that use the datasets should cite the
paper linked at that Github page.

e What (other) tasks could the dataset be used for?

New prediction tasks may be defined on the ACS PUMS data that use different subsets of
variables as features and/or different target variables. Different prediction tasks may have
different properties such as Bayes error rate, or the base rate disparities between subgroups,
that can help to benchmark machine learning models in diverse settings.

e Is there anything about the composition of the dataset or the way it was
collected and preprocessed/cleaned/labeled that might impact future uses? For
example, is there anything that a future user might need to know to avoid uses that could
result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service
issues) or other undesirable harms (e.g., financial harms, legal risks) If so, please provide a
description. Is there anything a future user could do to mitigate these undesirable harms?

Both the CPS and ACS are collected through surveys of a subset of the US population, and
in their documentation, they acknowledge that statistical trends in individual states may
be noisy compared to those found by analyzing US data as a whole, due to small sample
sizes in certain states. In particular, there may be very few individuals with particular
characteristics (e.g. ethnicity) in certain states, and generalizing conclusions from these
few individuals may be highly inaccurate. Further, benchmarking fair machine learning
algorithms on datasets with few representatives of certain subgroups may provide the
illusion of “checking a box” for fairness, without substantive merit.

e Are there tasks for which the dataset should not be used? If so, please provide a
description.

This dataset contains personal information, and users should not attempt to re-identify
individuals in it. Further, these datasets are meant primarily to aid in benchmarking
machine learning algorithms; Census data is often crucial for substantive, domain-specific
work by social scientists, but our dataset contributions are not in this direction. Substantive


https://github.com/zykls/folktables
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investigations into inequality, demographic shifts, and other important questions should
not be based purely on the datasets we provide.

e Any other comments?
No.

Distribution

e Will the dataset be distributed to third parties outside of the entity (e.g.,
company, institution, organization) on behalf of which the dataset was created?
If so, please provide a description.

The dataset will be available for public download on the folktables GitHub page, https:
//github.com/zykls/folktables.

e How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
Does the dataset have a digital object identifier (DOI)?

The dataset will be be distributed via GitHub, see https://github.com/zykls/folktables.
The dataset does not have a DOL

e When will the dataset be distributed?

The dataset will be released on August 1, 2021 and available thereafter for download and
public use.

e Will the dataset be distributed under a copyright or other intellectual property
(IP) license, and/or under applicable terms of use (ToU)? If so, please describe
this license and/or ToU, and provide a link or other access point to, or otherwise reproduce,
any relevant licensing terms or ToU, as well as any fees associated with these restrictions.

The folktables package and data loading code will be available under the MIT license.
The folktables data itself is based on data from the American Community Survey (ACS)
Public Use Microdata Sample (PUMS) files managed by the US Census Bureau, and it is
governed by the terms of use provided by the Census Bureau. For more information, see
https://www.census.gov/data/developers/about/terms-of-service.html

Similarly, the IPUMS adult reconstruction is governed by the IPUMS terms of use. For
more information, see https://ipums.org/about/terms.

e Have any third parties imposed IP-based or other restrictions on the data
associated with the instances? If so, please describe these restrictions, and provide a
link or other access point to, or otherwise reproduce, any relevant licensing terms, as well
as any fees associated with these restrictions.

The folktables data and the adult reconstruction data are governed by third-party terms of
use provided by the US Census Bureau and IPUMS, respectively. See https://www.census.


https://github.com/zykls/folktables
https://github.com/zykls/folktables
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gov/data/developers/about/terms-of-service.html and https://ipums.org/about/
terms for complete details. The IPUMS Adult Reconstruction is a subsample of the IPUMS

CPS data available from cps.ipums.org These data are intended for replication purposes

only. Individuals analyzing the data for other purposes must submit a separate data

extract request directly via [IPUMS CPS. Individuals should contact ipums@umn.edu for

redistribution requests.

Do any export controls or other regulatory restrictions apply to the dataset or
to individual instances? If so, please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any supporting documentation.

To our knowledge, no export controls or regulatory restrictions apply to the dataset.

Any other comments?
No.

Maintenance

Who is supporting/hosting/maintaining the dataset?

The dataset will be hosted on GitHub, and supported and maintained by the folktables
team. As of June 2021, this team consists of Frances Ding, Moritz Hardt, John Miller, and
Ludwig Schmidt.

How can the owner/curator /manager of the dataset be contacted (e.g., email
address)?

Please send issues and requests to folktables@gmail. com.

Is there an erratum? If so, please provide a link or other access point.

An erratum will be hosted on the dataset website, https://github.com/zykls/folktables.

Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?

The dataset will be updated as required to address errors and refine the prediction problems
based on feedback from the community. The package maintainers will update the dataset
and communicate these updates on GitHub.

If the dataset relates to people, are there applicable limits on the retention of
the data associated with the instances (e.g., were individuals in question told
that their data would be retained for a fixed period of time and then deleted)?
If so, please describe these limits and explain how they will be enforced.

The data used in folktables is based on data from the American Community Survey (ACS)
Public Use Microdata Sample (PUMS) files managed by the US Census Bureau. The


https://www.census.gov/data/developers/about/terms-of-service.html
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data inherits and will respect the corresponding retention policies of the ACS. Please
see https://www.census.gov/programs-surveys/acs/about.html for more details. For
the Adult reconstruction dataset, the data is based on Current Population Survey (CPS)
released by IPUMS and thus inherits and will respect the corresponding retention policies
for the CPS. Please see https://cps.ipums.org/cps/ for more details.

e Will older versions of the dataset continue to be supported /hosted /maintained?
If so, please describe how. If not, please describe how its obsolescence will be communicated
to users.

Older versions of the datasets in folktables will be clearly indicated, supported, and
maintained on the GitHub website. Each new version of the dataset will be tagged with
version metadata and an associated GitHub release.

e If others want to extend/augment/build on/contribute to the dataset, is there
a mechanism for them to do so? If so, please provide a description. Will these
contributions be validated /verified? If so, please describe how. If not, why not? Is there a
process for communicating/distributing these contributions to other users? If so, please
provide a description.

Users wishing to contribute to folktables datasets are encouraged to do so by submitting a
pull request on the website https://github.com/zykls/folktables/pulls. The contri-
butions will be reviewed by the maintainers. These contributions will be reflected in new
version of the dataset and broadcasted as part of each Github release.

e Any other comments?
No.


https://www.census.gov/programs-surveys/acs/about.html
https://cps.ipums.org/cps/
https://github.com/zykls/folktables/pulls
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Chapter 4

Identifying Biases in Protein Language
Models

4.1 Introduction

Proteins are the building blocks and workhorses of life, performing essential roles in human
and ecosystem health. Inspired by natural language processing, many protein language models
(PLMs) have been trained to model the distribution of naturally occurring protein sequences
[5, 36, 79, 80, 106]. PLMs have been successfully used to predict protein 3D structure [79],
catalytic activity [39], and other biophysical properties [20, 57|, generally with supervision
for fine-tuning. Excitingly, without needing additional supervision, likelihoods from PLMs
have been shown to correlate with protein fitness, i.e. desirable qualities such as catalytic
activity, stability, and binding affinity [85, 91, 92].

Because of this correlation with fitness, PLM likelihoods are increasingly used in protein
design. They have been used to screen for potentially beneficial mutations [59], to design
libraries of protein candidates with higher hit rates than previously state-of-the-art synthetic
libraries [113], and to efficiently evolve human antibodies without any additional supervision
[55].

In this work we find that likelihoods from popular PLMs have a species bias: likelihoods
of naturally occurring protein sequences are systematically higher in certain species, which
can be detrimental for some protein design applications. We describe the extent of this
species bias, show that it arises from imbalanced representation of different evolutionary taxa
in training data, measure the impact of the bias on protein design, and develop a post-hoc
bias mitigation strategy that reduces these impacts.

To our knowledge, this work is the first to identify subgroups that protein language models
are systematically biased against, even though these subgroups are present in training data.
Similarly to how new methods were developed to identify and quantify biases in language and
vision models [18, 111, 118], our contributions include a generalizable framework for assessing
bias in protein language models through Elo rating comparisons between subgroups.
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In Section 4.3 we identify and quantify species bias, showing that across the many different
proteins we study, certain species almost always have higher PLM likelihoods for their protein
sequences than other species. For example, in the data we collect, fruit fly proteins have
higher likelihoods than the C. elegans (roundworm) versions of the same proteins 92% of the
time, even though there is no biological reason for fruit fly proteins to be uniformly “fitter”
or more canonical. We find consistent species bias in the commonly used Progen2 and ESM2
model families, across several model sizes.

Next, in Section 4.4 we show that the bias can be largely explained by representation
of different branches of the evolutionary tree in protein databases. Understanding the bias
requires analyzing the hierarchical organization of the tree of life, rather than considering each
species as independent of other species. We find that each individual species’ representation
in these sequence databases only has a 0.2-0.25 Spearman correlation with the per-species
bias, while the sample count incorporating evolutionarily close species achieves a 0.6-0.75
Spearman correlation.

In Section 4.5 we examine the implications for protein design. The bias causes protein
designs to gravitate towards sequences from arbitrarily favored species, which can lead to
worse outcomes. For example, proteins from heat-tolerant microbes are indispensable tools for
research and industrial applications because of their stability at high temperatures. However,
they are under-represented in sequence databases. Using them as starting points for protein
design guided by PLM likelihoods, we find that a majority of designs lose thermostability.
Similarly, proteins from salt-tolerant microbes tend to lose their salt tolerance after PLM-
guided design.

Finally, in Section 4.6 we mitigate the bias by training an auxiliary model to correct
sequences’ PLM likelihoods. This likelihood correction strategy reduces the loss in thermosta-
bility and salt tolerance in protein designs, and provides a proof of concept for many possible
avenues of bias mitigation.

Overall, we find biases of unexpectedly large magnitude in PLMs, with detrimental impacts
on PLM-guided design. Looking forwards, these results suggest that protein designers should
use PLM likelihoods carefully and consider whether the species bias should be corrected for
a given application. We additionally argue that in the long-term, the protein design field
would benefit from more deliberate curation of training data, potentially tailored to different
contexts.

4.2 Related work

Mismatches between pre-training and downstream tasks Self-supervised pre-training
produces strong results in both natural language processing (NLP) and protein modeling,.
However, recent work has shown that standard pre-training objectives can imbue language
models with properties that are undesirable for downstream tasks, such as lower accuracy
when correct outputs contain infrequent words [84], self-delusions [95], and more [78|. In this
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Figure 4.1: Overview of this chapter’s main findings. We find that 1) under popular
PLMs, the likelihood of a protein sequence from certain species (e.g. humans, mice, and
E. coli) is much higher than other species, 2) this bias arises from training data imbalance
between different branches of the evolutionary tree of life, and 3) protein design guided by
PLM likelihood systematically introduces mutations that increase similarity to high ranking
species’ sequences.

work we show how protein LMs inherit related properties from their pre-training, and show
their impacts on the unique application of protein design.

Training data bias Biases in training data are reflected in downstream models. Under-
represented subgroups can suffer lower accuracy due to insufficient weight in the training
data |21, 25, 61, 111], and socially undesirable biases in data are often amplified by models
[18, 23, 118]. Various papers have studied how re-weighting or curating datasets can mitigate
these biases [109, 121, 128, 131], even finding that overall performance is improved by over-
weighting minority groups and actively increasing diversity in datasets [46, 71, 107|. In each
of these settings, identifying the precise subgroups models are biased against and connecting
training representation to downstream harms has required careful experimental design. This
work presents the case for applying similar scrutiny to protein sequence datasets—we identify
species bias in PLMs, suggesting the existence of other, yet uncharacterized biases that affect
the usefulness of PLMs.

Protein language models Many protein language models (PLMs) have been trained
using transformers [36, 37, 43, 54, 79, 85, 91, 106], CNNs [129], and other architectures [6].
PLMs can generate sequences that successfully fold into functional proteins [5, 80, 123]. To
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Figure 4.2: Overview of PLM training and use in protein design. Left: PLMs are
trained on amino acid sequences from protein databases (most commonly UniProt) with
either next-token prediction or masked language modeling tasks. Right: After training,
PLMs may be used directly for protein design by picking a starting sequence and then
iteratively generating a set of possible mutations, computing likelihoods of sequences with
those mutations, and sampling based on these likelihoods. This designs sequences with high
PLM likelihoods, which hopefully corresponds to high fitness.

modify existing proteins with enhanced properties, PLM likelihoods have been used as a
proxy for fitness in the absence of experimental measurements for supervision [41, 55, 85|.
If experimental measurements are available, various strategies can combine this supervision
with PLMs to improve fitness prediction |56, 93]. Recent work has identified a tendency for
PLMs and other protein models to classify a sequence as lower fitness if it has more mutations
from a naturally occurring sequence (i.e., is more out-of-distribution), referred to as sequence
similarity bias [112]. Our work focuses on a different bias arising from species identity, which
is present even for protein sequences present in PLM training data, and which can compound
the effect of sequence similarity bias.

4.3 PLM likelihoods are higher for sequences from
certain species

We now turn to empirically investigating what factors affect PLM likelihoods. We collect
a dataset of orthologous® sequences across the tree of life and across diverse protein types,
and we compute PLM likelihoods for each sequence. Unsurprisingly, some protein types have
much higher overall likelihoods than others (due to intrinsic disorder, conservation, etc.), but
surprisingly, we find that some species also have much higher likelihoods than others (across
proteins), and that this generalizes across PLMs with different training objectives and data
sampling.

LOrthologs are genes/proteins in different species that evolved from a common ancestral gene/protein by
speciation, and, in general, orthologs retain the same function during the course of evolution.
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Dataset creation To create our protein dataset, we started with the top 100 most sequenced
species in the UniProt database [29], filtered for redundancy, then augmented this list with
additional model organisms that had whole genomes sequenced, resulting in 133 species total.
Next we collected all protein sequences in the Swiss-Prot database [9] (the human-annotated
subset of UniProt) associated with any of the species in our list. Based on their annotations,
we divided the proteins into orthologous sets to be able to compare orthologs to each other.
The vast majority of sequences were bacterial, so to create a balanced dataset with many
points of comparison between eukaryotes and bacteria, we restricted our attention to proteins
with at least 15 eukaryotic orthologs, resulting in 203 distinct protein types, and a total of
7545 sequences in our dataset, 40% being eukaryotic.

PLMs we study We focus on two families of PLMs in this work: the Progen2 suite [91]
(in 5 sizes: xlarge, BFD90, large, base, and medium) and the ESM2 suite [79] (in 3 sizes:
15B, 3B, and 650M). These models are among the most popular for downstream use and
achieve the best performance among PLMs on many benchmark tasks in ProteinGym [92].
Progen2 is an autoregressive transformer trained with next-token prediction on the UniRef90
database (a curated subset of UniProt clustered at 90% sequence identity). ESM2 has a
bidirectional transformer architecture and is trained with the masked language modeling
objective on data collected in a two-tiered sampling scheme: first randomly select a UniRef50
database member, and then sample a training data point from the UniRef90 cluster that
member belongs to. For ESM models, we compute a pseudo-likelihood by masking each token
in the sequence, as in Lin et al. [79].

Results

Variance explained by species identity We first investigate what factors explain PLM
likelihoods in our dataset. We compute linear regressions of PLM likelihood against species,
protein-type, and both at once, and report R? values in Table 4.1. We also compute the
fraction of variance explained by the species after controlling for protein type. Protein type
explains some of the variance, as expected, since proteins vary in prevalence, conservation,
and other factors that intuitively affect likelihood. Surprisingly, species identity also explains
a significant amount of the variance in PLM likelihoods; for example, for likelihoods from
Progen2-xlarge, species accounts for 50% of the variance by itself, and 67% of the variance
after controlling for protein type. This suggests that likelihoods have a species bias that
holds consistently across the diverse universe of proteins.

We next quantify the bias associated with each species without assuming a linear model
of likelihoods. Since each protein is only found in a subset of species, species cannot be
fairly compared by a simple average likelihood score. To solve this, we use the Elo rating
system, described below, to summarize how often one species has higher likelihoods than
another. Note this provides a general framework for assessing bias against subgroups when we
must handle “missing data” in the real world (in contrast to settings where we can construct
synthetic experiments holding all variables equal except subgroup).
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Table 4.1: Variance in likelihood explained by species and protein type. R%pecieS|Pmtein

is the fraction of variance explained by species identity, after controlling for protein type.
(Example R2 derivation: 0.67 = (0.81 - 0.42)/(1 - 0.42).)

Species|Protein

Model R%pecies Rl%rotein R]230th R%peciesﬂ’rotein
Progen2-xlarge 0.50 0.42 0.81 0.67
Progen2-BFD90 0.49 0.51 0.85 0.69
Progen2-large 0.46 0.60 0.87 0.67
Progen2-base 0.25 0.64 0.84 0.55
Progen2-medium 0.44 0.59 0.86 0.66
ESM2-15B 0.25 0.42 0.60 0.32
ESM2-3B 0.26 0.46 0.63 0.32
ESM2-650M 0.19 0.62 0.72 0.26

Quantifying species bias via Elo The Elo rating system was developed to calculate
the relative skill levels of players in zero-sum games [38]. The difference in two players’ Elo
ratings directly translates to the probability of one player winning in a match against the
other; for example, the 400 Elo difference between a chess grandmaster and a candidate
master implies that the grandmaster is expected to win 90% of matches. In our setting,
each time two species have different sequences of the same protein type, we count this as a
“match”, where the winner is the species with the higher likelihood for their sequence. If a
species has multiple sequences of the same protein, its median likelihood is used to determine
the match result. All species start with a baseline Elo rating of 1500, and each pair-wise
matchup updates the winner’s rating upwards and the loser’s downwards in a stochastic
gradient descent-like step. We use the standard Elo update algorithm with K = 32 and
average results over 50 permutations of the matchups to ensure results are robust [19].

Figure 4.3 plots Elo ratings for each species in our dataset, annotated by phylogenetic
taxa. FElo ratings vary widely across species. Using Progen2-xlarge likelihoods, the 25th
percentile species (A. baylyi) has an Elo rating of 1235 while the 75th percentile species (S.
glossinidius) has an Elo rating of 1745. This Elo difference of 510 implies that S. glossinidius
has a higher likelihood for its orthologs 95% of the time. Similarly, if we use ESM2-15B
pseudo-likelihoods to compute Elo ratings, there is a 220 Elo difference between the 25th and
75th percentile species, which implies an 80% chance of a higher likelihood. Both models
thus have a significant species bias, with Progen2’s being somewhat larger.

Progen2 and ESM2 also show largely similar biases: Elo ratings from Progen2-xlarge
and ESM2-15B have a Pearson correlation of 0.83 (see Appendix 4.8 for correlations for all
pairs of PLMs). Figure 4.3 further shows that the species bias has some interpretable trends:
within eukaryotes, animals have the highest Elo ratings, and within animals, mammals do.
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Figure 4.3: Elo ratings for different species. Elo ratings computed from Progen2-xlarge
and ESM2-15B (top and bottom).

This species bias motivates understanding how it arises, which we study in the next section.

4.4 Bias is largely explained by species representation in
sequence databases

We investigate what factors explain the species bias and find that species representation in
popular sequence databases plays a major role. We test an initial hypothesis that Elo ratings
will correlate with the number of sequences a species has in a database, and find that this only
explains a small part of the bias. We next note that likelihoods may be influenced not only
by a given species’ sample counts, but also by evolutionarily-close species’ counts. Taking
this second factor into account, we posit a second hypothesis: Elo ratings will correlate with
an “effective” sequence count weighted by evolutionary distance, and we show evidence for
this second hypothesis.

We assess the initial hypothesis by plotting Elo rating against sequence counts in the
SwissProt database in Figure 4.4 (a) and (c¢). Although a few species, such as H. sapiens,
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