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Abstract
Automated Testing, Verification and Repair of RTL Hardware Designs
by
Kevin Laufer
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Koushik Sen, Chair

All modern marvels of computer technology are built on microchips — grains of sand turned
into computational components. Over more than five decades, we have seen rapid progress
in computing performance, primarily thanks to semiconductor technology improvements
that lowered power consumption and raised clock speeds. Recently, progress has stalled,
and general-purpose hardware can no longer keep up with rising computational demands.
Specialized hardware is the only way. Low-volume specialization is often not profitable,
though, because chips are too expensive to design. While modern software developers have
access to tools that allow them to innovate rapidly, hardware design tools are difficult to
access and use. For this thesis, I investigated how ideas from modern software engineering
can be applied to the hardware design domain.

Inspired by work on software compilers, I developed a new approach for adding coverage
feedback to hardware designs such that many different simulators can be targeted with
minimal effort. I built the RFUZZ tool, which uses coverage feedback to generate new test
inputs, taking inspiration from work on mutational fuzz testing for software. I added support
for formal verification to the open-source ChiselTest library, focusing on accessibility for new
users. Finally, I designed the RTL-REPAIR tool, which automatically generates plausible
repairs from a buggy hardware description and a failing test case through a combination of
formal methods and simulation.

All four projects illustrate how we can improve the state-of-the-art hardware testing, verifi-
cation, and debugging tools by integrating with the open-source ecosystem and applying a
compiler engineering mindset. This approach has allowed me to quickly build superior cover-
age feedback and formal verification infrastructure for the new Chisel hardware language. It
has also enabled the first hardware fuzzer, RFUZZ, which spawned a new line of research on
hardware fuzzing, and the RTL-REPAIR tool, which provides correct repairs within seconds,
several orders of magnitude faster than prior work.
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Chapter 1

Introduction

The ability to execute programs at super-human speed and accuracy is the primary enabler
of applied computer science. Most computation now happens on integrated digital chips
comprising billions of transistors manufactured on a silicon wafer. Over the previous half-
century, engineers have developed an elaborate stack of abstractions that enable us to build
such complex systems [38, 125].

Many innovations have happened at the transistor and manufacturing level, making it
possible to fit more transistors yearly on the same chip area, often for the same price. Gordon
Moore at Intel observed in 1975 that the number of transistors doubled roughly every two
years without an increase in cost, thus coining the term Moore’s Law [34]. Dennard scaling
enabled increased compute frequency for each semiconductor generation. By lowering the
supply voltage, the power needed to switch a transistor is reduced, and thus, the switching
frequency can be increased [40]. However, Dennard scaling does not consider that a minimum
threshold voltage needs to be met for a transistor to switch reliably. Also, once the energy
used to switch a transistor is sufficiently reduced, the so-called leakage current, consumed by
any transistor powered on, becomes an essential factor. Thus, the frequencies at which digital
VLSI designs could realistically be run stopped improving in the early 2000s [18]. The end of
Dennard Scaling led to new power-aware designs that would selectively power down unused
transistors or scale the operating frequency dynamically to stay within a defined power
budget [139]. However, nowadays, in 2024, most experts agree that the pace of technological
advancement has slowed down, the number of transistors is no longer increasing at the same
speed, and the cost per transistor is not falling as rapidly anymore, thus spelling out the end
of Moore’s Law [140].

The vast improvements in transistor density and power consumption from the 1970s to
the mid-2000s led to a focus on programmable general-purpose processor designs. There
was little incentive to invest significant engineering resources into specialized chip designs
if, by the time that design was finished, a programmable CPU manufactured in a new
VLSI technology would be performant enough to make the specialized design obsolete. The
electronic design automation (EDA) software that emerged is still heavily influenced by this
singular focus. The tools are built for large teams of experts focused on heavily optimizing a
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single design. It is very much acceptable for a single EDA tool to require a dedicated engineer
to configure and run. The focus on detailed optimizations means very little modularization
and reuse.

In software engineering, however, development speed and time to market are paramount.
Software development will always be different from hardware because it is feasible to update
software, while changing a VLSI design after it has been fabricated is impossible. However,
maturing VLSI technology and the need for specialization make it feasible and necessary
to forgo some performance optimizations for lower engineering costs '. Small teams can
use mature open-source compilers and libraries to build sophisticated software applications
quickly. On the other hand, state-of-the-art industrial hardware design projects rely on
proprietary simulators and synthesis tools of varying quality and feature support. Reuse
mostly happens on a very coarse grain level of IP blocks. It often consists of copying source
code into a project instead of linking to a library version that receives continuous updates.

The academic and open-source community has started to address some of these issues
over the last 15 years. Work on new hardware construction languages (HCLs) has tried to
answer the reuse problem by providing the means to implement flexible hardware generator
libraries. Important examples are Chisel [7], Migen [20], Amaranth [150], SpinalHDL [116],
Magma [142] and PyMTL [88]. The open-source yosys [153] synthesis tool enabled numer-
ous new research tools that take advantage of its Verilog frontend and the RTL-IR circuit
representation. Yosys can convert Verilog circuits into the much simpler botr2 [111] format,
enabling a new generation of academic model checkers to work with standard circuits. Yosys
is also an integral component of the OpenROAD project, which aims to provide a fully open-
source flow for compiling register transfer level circuit descriptions into mask sets that can
be fabricated [3]. An important research goal of OpenROAD is to allow for this conversion
with minimal configuration and no human intervention. There is also a new generation of
accelerator design languages (ADLs) which aim to raise the level of design abstraction such
that abstract algorithm descriptions can be compiled down to efficient hardware [112, 124,
129].

New HCLs and ADLs offer a promising approach to making hardware designers more
productive. However, just as important as creating the designs is to test that they work
as expected. A recent study [56] reports that commercial semiconductor projects generally
have more engineers working on verification than on design. These numbers reflect both the
fact that testing and formal verification are paramount for a project’s success, as well as the
problem that current industry practices and tools require a lot of human engineering effort.
In contrast to industry, a recent academic study found that many open-source hardware
projects include few tests. Of the 50 most popular open-source projects for FPGAs on
GitHub, “88% do not include test cases to reproduce bugs” [90]. This thesis presents four
projects and tools that promise to make hardware verification engineers more productive,

Intel, for example, decided to rely more on standard cells for their recent Lion Cove design, sacrificing
maximum performance for faster time to market and reduced engineering costs. https://chipsandcheese.
com/2024/06/03/intels-1lion-cove-architecture-preview/
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Figure 1.1: The agile RTL hardware development flow.

complementing the prior research on improving hardware design productivity.

Digital hardware is designed at many levels of abstraction: Functional simulators, RTL
descriptions, and physical and standard cell design are all part of the process. However,
most bugs are introduced at the register transfer level (RTL) [56]. RTL code is written
by designers who use informal natural language descriptions of the expected functionality,
which offers many opportunities to introduce incorrect behaviors. The RTL code precisely
specifies the circuit’s cycle-by-cycle behavior, and generating a mask set for tape-out is a
mostly automated process, leaving little room for human-introduced errors. In the hardware
context, verification refers to both testing an RTL design by executing it with a simulator
(dynamic verification), as well as verifying a design with model checkers, proof assistants,
or other formal tools (formal verification). The term testing is often used to talk about the
process of finding manufacturing defects, which needs to take implementation details below
the register transfer level into account. Throughout this thesis, which I write from a mixed
software and hardware engineering perspective, I use RTL testing and dynamic verification
interchangeably to try to bridge both worlds.

Through my research and my interactions with RTL designers in academia and industry,
I have developed an idealized mental model of how RTL is or should be, written. This model
is somewhat aspirational in treating verification as an integral part of development, similar
to the test-driven development [11] methodology in software engineering. This lofty goal
often falls short in practice because hardware designers feel they do not have time to write
tests or because testing the whole system is too slow. Testing individual components is too
difficult because of a lack of a cleanly defined interface or functionality. Nonetheless, this
model has the advantage of being simple and helpful in illustrating verification ideas while
being close enough to reality - especially for greenfield RTL projects - so they are not entirely
irrelevant.

Figure 1.1 illustrates the agile RTL hardware development flow. The RTL designer writes
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RTL code and then executes any available tests. If a test fails, they will have to look into the
failure, figure out what is going wrong, and then update the RTL design to fix a bug. If all
tests pass, this might mean that the RTL design is done and working as expected. However,
it might also indicate insufficient testing, which means the engineer must expand the test
suite. Throughout this thesis, I present four tools that promise to address the testing and
debugging experience for RTL designers.

When RTL engineers write tests that simulate their design under test, they want to
measure how thoroughly the existing tests cover the design functionality and identify parts
of the design that require further testing. Coverage metrics quantify how often different
features of a design are executed. Simple automated metrics check how many lines in the RTL
source code are executed, how many states in a finite state machine are visited, or how many
bits in a signal are toggled during a test’s execution. More sophisticated functional coverage
metrics require user input to define high-level features that must be covered. An example
would be if the RTL designer writes code to capture how often the RTL implementation of
a cache component executes a particular memory transaction.

While these coverage metrics are helpful, well known, and well supported in commercial
SystemVerilog simulators, none of the simulators created for new hardware construction lan-
guages like Chisel supported them, and there were not enough engineers to painstakingly
implement support for each metric in each simulator individually. Instead, I developed a
new approach where coverage metrics are implemented only once as instrumentation passes
in the FIRRTL compiler, which processes every Chisel-generated circuit. These passes gen-
erate synthesizable hardware, which simulators already had to support, and one new cover
statement construct. I carefully designed this statement to be easy to implement across var-
ious simulators — from interpreters to FPGA-accelerated simulation — while being powerful
enough to represent all standard coverage metrics. Chapter 3 shows how different coverage
metrics and simulator support were implemented and that performance overhead is generally
negligible.

Traditionally, engineers use the feedback from coverage metrics to extend and enhance
their test suite manually. Would it be possible to use the coverage feedback to generate
new test inputs directly, leading to greater coverage? I developed such a tool based on
coverage-directed mutational fuzz testing, which had previously only been applied to finding
security vulnerabilities and other bugs in software projects. Chapter 4 details the necessary
steps to adapt the idea to hardware. I define a new coverage feedback metric that is easy to
instrument, a way of mapping fuzzer-produced inputs to the cyclic execution of digital RTL
circuits. I also demonstrate a tool architecture and isolation techniques that make it feasible
to fuzz test designs running on an FPGA.

Simulation-based tests are easy to set up, and the required tools are widely available.
However, they suffer from the fact that it is infeasible for all but the simplest circuits to
explore all possible inputs exhaustively. On the other hand, formal verification promises
to prove properties of a given design for all possible inputs and execution traces. However,
formal verification tools have a reputation for requiring extensive background knowledge and
being difficult to use. In Chapter 5, I detail my work on integrating bounded model checking
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into the ChiselTest library, making this powerful capability available to all Chisel users. This
support was first released with ChiselTest 0.5.0 in 2021 and has since been used to write
exhaustive tests for components from the Chisel standard library.

Finding a bug in the RTL design is only half the work. Once designers are faced with
a failing test case, they still need to invest countless hours in analyzing the failure and
developing a fix for the design. Automatic program repair promises to automate that task
fully. However, results from a prior attempt to build such a tool for RTL designs were
disappointing. The genetic algorithm-based tool would take minutes or hours to come up
with a plausible repair, and many of these repairs would actually introduce new subtle
bugs where the design would pass simulation, but the circuit generated from the high-level
description would be buggy. Chapter 7 describes my RTL-REPAIR tool, which uses a novel
repair algorithm based on ideas from bounded model checking to quickly (within seconds)
generate repairs with a low false-positive rate. Since repairs are generated very quickly and
with minimal changes, RTL-REPAIR has the potential to become an integral part of an RTL
designer’s workflow.

This thesis presents four tools for automated testing, verification, and repair of RTL
hardware designs. All tools take advantage of and contribute back to the emerging new
generation of open-source tools for chip design. While the majority of tools I built during
the seven years of my PhD will not be successful in their own right, I believe they form
a blueprint for how we can innovate in this new landscape of open EDA tools. We need
to question and re-build the fundamentals of EDA software instead of trying to perform
research on top of commercial tools, which we cannot modify or introspect. I could not
build RTL-REPAIR without the formal verification library I built for ChiselTest and the
yosys synthesis tool from the open-source community. The FIRRTL compiler and the open-
source Verilator simulator enabled me to build the high-performance RFUZZ fuzzing tool. A
commercial simulator would have made the task much more difficult.



Chapter 2

Background

This chapter introduces basic concepts, tools, and methodologies for developing digital hard-
ware. We define the register transfer level (RTL) of abstraction used by all hardware designs
discussed in this thesis. All four tools from this thesis ingest descriptions of hardware de-
signs expressed in a hardware description language (HDL) or hardware construction language
(HCL). Thus, we provide context on both concepts. We then discuss in detail how bugs in
RTL designs are found through simulation-based dynamic verification and formal verifica-
tion.

2.1 Register Transfer Level (RTL) Circuit Design

Each chip design undergoes multiple levels of abstraction, eventually resulting in a set of
photolithography masks used to fabricate the chip on a wafer. Each level of abstraction
reduces the designer’s cognitive load by limiting the degrees of freedom and the number of
physical phenomena that need to be considered. Engineers always designed chips at various
levels of abstraction, simulating a CPU design in software before drawing schematics and
later polygons for photolithography masks. However, nowadays, the formerly painstaking
and error-prone process of manually translating between abstraction layers has been mostly
automated with software [38, 125]. Design still happens at all levels of abstraction. Still, most
circuits are now designed at a high abstraction level and then automatically mapped to small
primitives designed at a lower level of abstraction. For example, a high-level CPU description
gets mapped to adders, flip-flops, SRAM memories, and other standard cells. Some common
levels of abstraction are functional models, register transfer models, which include cycle
accurate timing, gate-level models with gate delay information, gate-level netlists, which use
standard cells of a particular VLSI process, circuit model simulations (SPICE), and mask
sets.

In this thesis, we exclusively work with digital, synchronous circuits. Digital means that
every wire in our resulting circuit carries either a zero or one value encoded as a voltage
above or below a defined threshold. The voltage will fluctuate during computation, but the
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wire should carry a clear digital value when looking at converged instead of transient states.
Synchronous means that state elements like registers and memories are all updated together
with one global clock event. This implies that the slowest path for signal propagation
through the circuit will determine the maximum frequency at which we can update our
state elements. One single path determining the maximum frequency, a significant factor in
computation speed, is a major downside that can be mitigated through various approaches,
such as automated or manual retiming. The advantage of the synchronous approach is that
fully automated tools exist to go from a high-level (RTL) description to a working circuit.
Static timing analysis tools analyze the gate-level graph to ensure that no timing violations
can happen. While asynchronous circuit design can mitigate the problem of the longest
path determining computation speed, designing them requires much more manual effort,
and often, the trade-offs are not worth it.

We define register transfer level (RTL) to mean that the designer explicitly defines each
state element, like registers and memories. In our model, non-state, i.e., combinational
circuit elements, do not carry delay information; outputs change instantaneously with the
inputs. We can thus define each output bit as a boolean function of all input and state
bits in the circuit. Circuit state elements are updated synchronously whenever a clock event
happens. Fach state bit’s value after the clock event — the next value — is defined by a
boolean function of all input and state bits before the clock event. Instead of working with
boolean variables and operators directly, we often define output and next functions in terms
of a finite bit-vector logic that simplifies our expressions while maintaining a straightforward
lowering to boolean functions. This lowering is often called bit-blasting.

There are many ways of encoding the functions for the next value of a state element
or the value of a circuit output. This thesis broadly distinguishes structural and behavioral
descriptions. A structural description generally consists of a directed graph in which each
node represents a combinational circuit element like a logic gate or adder, and edges denote
connections between outputs and inputs and outputs of these elements. This description
closely matches the resulting circuit of standard cells. It is also akin to the concept of
a dataflow graph in the compiler literature. A behavioral description, on the other hand,
is essentially a pure function that performs a bounded amount of computation over the
function inputs and yields the output value as a result. Please note that the term behavioral
in particular has carried various definitions in the literature, so our definition might not
always agree with how other texts and researchers use the term.

Converting Behavioral to Structural RTL

We can lower a behavioral function into a structural dataflow graph through symbolic ex-
ecution where each function argument is initialized to a symbol; computations are applied
symbolically to build up the data flow graph, and all possible branches through the pro-
gram are explored. Branches are integrated into the data flow graph as If-Then-Else (ITE)
expressions or multiplexers. ITE is the name used in the software domain; 2-input multi-
plexers are muxes that fulfill the same function in the hardware domain. Figure 2.1 shows



CHAPTER 2. BACKGROUND

module Counter(
input clock, input reset, input enable,
output reg [3:0] count, output reg overflow
);
always_ff @(posedge clock) begin
if (reset) begin
count <= 'dO;
overflow <= 1'bl;
end else begin
if (enable) begin
count <= count + 'dl;
end
if (count == 4'b1111) begin
overflow <= 1'bl;
end
end
end
endmodule

(a) Behavioral RTL description

module Counter(
input clock, input reset, input enable,
output reg [3:0] count, output reg overflow
¥
// wire declarations elided ...
// registers
always @(posedge clock)
count <= count_next;
always @(posedge clock)
overflow <= overflow_next;

// structural combinational logic

assign count_plus_1 = count + 32'dl;

assign count_is_15 = count == 4'hf;

assign count_mux = enable 7 count_plus_1[3:0] : count;

assign count_next = reset 7 4'h0 : count_mux;

assign overflow_mux = count_is_15 7 1'hl : overflow;

assign overflow_next = reset 7 1'hl : overflow_mux;
endmodule

(b) Structural RTL description

Figure 2.1: Lowering a counter from a behavioral to a structural RTL description.
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module FalsePath(input a, input b, output logic [2:0] c);
logic [2:0] 4;
always_comb begin
if(a) d = 'do0;
else d = 'di;
if(a & d) c = 'd2;
else c = 'd3;
end
endmodule

(a) Behavioral RTL description. The assignment on the highlighted line is unreachable.

module FalsePath(input a, input b, output logic [2:0] c);
assign ¢ = (a & (@ ? 3'h0 : 3'hl)) ? 3'h2 : 3'h3;
endmodule

(b) Structural RTL description

module FalsePath(input a, input b, output logic [2:0] c);
assign ¢ = 3'h3;
endmodule

(¢) Structural RTL description after Optimization

Figure 2.2: Lowering of a behavioral design with an unreachable branch using yosys [153].
Naive symbolic execution creates a mux that includes the unreachable path condition a & d.
Optimization can discard the false path.

the behavioral description of a simple counter circuit as well as the structural description of
the same circuit. The open-source synthesis tool yosys [153] was used to parse the behavioral
Verilog and to lower it into a structural version using the proc command. The resulting
Verilog was then cleaned up manually to reduce the number of intermediate signals and to
provide better names for signals generated by yosys. We see how every register is connected
to two muxes, which reflects the three possible values they might transition to. The count
register can either be reset to zero, updated with the sum of its prior value and one, or stay
the same, which is expressed by assigning the old value.

There are two major challenges when converting a behavioral to a structural description:
(1) naive approaches will include false paths with mutually exclusive path conditions, and
(2) finding correct bounds for unrolling loop is hard. False paths are generally avoided
through heuristics that let hardware compilers filter out trivially unreachable paths. This is
often sufficient since behavioral hardware descriptions are often much simpler than general
software programs. Figure 2.2 shows an example where the yosys synthesis tool includes
a false path when lowering from behavioral to structural RTL (using the proc command).
The false path is later optimized away through the synth command. The issue of bounding
loops can be avoided by not allowing loops, like in the Chisel language [7], or by requiring
that loop bounds must only depend on compile time known values like in the synthesizable
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subset of SystemVerilog [62].

2.2 Hardware Description Languages

The concept and challenges of register transfer level design are generally independent of the
concrete hardware language that implements them. While countless languages have more
narrowly focused on register transfer modeling, the industry’s most popular hardware de-
scription languages are SystemVerilog [62] and VHDL [64]. Both languages support modeling
circuits across several levels of abstraction, from behavioral RTL down to analog components
and precise circuit delays. The underlying execution model of SystemVerilog and VHDL is
based on parallel processes that emit and are scheduled in response to events such as value
changes. The event-based model enables developers to simulate a wider variety of circuit
components; however, efficiently mapping arbitrary circuit descriptions to an actual circuit
implementation is essentially impossible. Thus, while simulators generally support all lan-
guage constructs, other tools, like circuit synthesis or formal verification tools, work with
much smaller synthesizable subset of the language [61, 38]. This thesis uses SystemVerilog
and its predecessor language, Verilog, in various examples, such as Figure 2.1 and 2.2 in this
chapter. A paper on “Verilog HDL and Its Ancestors and Descendants” [50] contains a more
thorough historical perspective on the SystemVerilog language.

Synthesizability. Not all simulation constructs have a mapping to actual hardware, which
leads to the definition of a synthesizable subset of the language [61, 135]. The mix of
simulation language and automated translation can complicate hardware design: Circuits
that seem to work well in simulation might fail to synthesize. A much more severe problem
is synthesis-simulation mismatch, where a design is quietly accepted by the synthesis tool,
but the resulting hardware behaves differently from the high-level HDL description [102].
Standard approaches to detect simulation-synthesis mismatch are combinational equivalence
checking [77], which attempts to prove equivalence between the high-level RTL and the low-
level netlist and gate-level simulations [50].

X-Propagation. In a SystemVerilog program, most values are 4-state bit-vectors: each
bit can take on a value of 0, 1, Z, or X. The Z value is used to model tri-state buses. The X
value is used to model unknown values. For example, these can originate from uninitialized
state variables, out-of-bounds reads, unconnected signals, or explicit assignments of a signal
to X [144]. Simulation with X values could be considered abstract interpretation since an X
can stand for 0 and 1. However, in SystemVerilog, execution with X values is neither sound
nor complete, meaning that for some computations with X, the result is over-approximated,
and for others, it is under-approximated. Over-approximation, also known as X-optimism,
can lead to a mismatch between the 4-state simulation and the 2-state circuit generated by
the synthesis tool. X-propagation is thus a common source of synthesis-simulation mismatch.
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Shortcomings of Traditional HDLs

While SystemVerilog remains one of the most widely used languages in the industry, it has
several significant problems: (1) language complexity, (2) semantic gap between event-driven
execution model and circuits, and (3) lack of powerful meta-programming. The following
paragraphs describe each problem in detail.

The complexity of language means that as of 2024, 19 years after IEEE first standardized
it, there are no open-source tools that fully support the SystemVerilog standard !. Also, while
hard data is difficult to come by, industry tools are also known to be lacking in full standard
compliance, leading each semiconductor company to define its own subset of SystemVerilog
that is safe to use with all tools. Static analysis tools called linters are then employed to
ensure all code is written in the approved subset. In software development, on the other
hand, many modern programming languages 2 feature only a single official frontend which
defines all the languages semantics and thus all language features can be used and should
work across development setups. In the past, older languages like C and C++ have struggled
with similar problems to SystemVerilog, where different compilers would implement different
versions of the language. Lots of standardization work and consolidation of compilers have
mostly solved this problem. Currently, only three remaining C++ compilers follow the
standard: Clang, GCC, and Microsoft Visual C++. ARM, IBM, and Intel abandoned
their custom C++4 frontends and now use Clang to process the input to their proprietary
compilers [101, 35, 33].

The flexibility of the event-driven execution model makes it challenging to implement
tools that need to extract a circuit view of a design. This includes circuit synthesis tools
that lower a SystemVerilog description to a gate-level netlist, most formal verification tools,
and circuit instrumentation tools for scan-chain insertion. While defining a synthesizable
subset helps, it can be difficult for SystemVerilog users to understand which features are
synthesizable. Even circuit descriptions that stay within the synthesizable subset can experi-
ence simulation synthesis mismatch. Strict linting rules can mitigate this problem. However,
linters need to be purchased and configured.

While SystemVerilog features powerful circuit modeling capabilities, its features to gen-
erate circuit descriptions programmatically remain limited. Circuits can be parameterized
using SystemVerilog parameters, generate-for and generate-if blocks, and compile-time evalu-
ated loops and if-statements. These features are often used to set the bit widths of signals and
configure optional features of circuit components. However, there are two general problems:
(1) some approaches, like relying on partial evaluation at compile-time to generate hardware,
depend on the sophistication of the particular compiler and thus are not guaranteed to be
portable (2) more sophisticated generators that need to read in files or process information
with custom data-structures are hard or impossible to implement with SystemVerilog. The

'The slang parser claims full SystemVerilog support, however, parsing is only a small step and - for
example - the most popular open-source SystemVerilog simulator Verilator only supports a small subset of
the language.

2Examples of modern programming languages with one a single official compiler are Rust, Go, and Swift.
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standard approach for generating networks on chips or bus interconnects is thus to write a
program in a general-purpose programming language like Perl or Python, which then gen-
erates SystemVerilog source code. Producing SystemVerilog strings directly, without going
through a robust abstraction, can be error-prone and hard to debug, though.

These issues make it difficult to create reusable hardware components that can be shared
across companies and teams. The language complexity also makes it very difficult to build
new, innovative developer tools without a large team of engineers. Basic RTL descriptions
are very simple, but SystemVerilog has evolved to contain a lot of accidental complexity [21],
which must be dealt with to build reliable tools. Academic research is still feasible by focusing
on a subset of SystemVerilog features required for the benchmarks used in a particular paper.
However, none of these tools ever make it into the hands of end users since supporting
arbitrary SystemVerilog designs is too difficult.

2.3 Hardware Construction Languages

While the languages discussed in the previous section focus on describing hardware behavior,
a new generation of so-called hardware construction languages (HCLs) instead shifts the
focus to writing reusable hardware generators. With ever-increasing SoC complexity, many
designers aim to write RTL generators that can be extensively parameterized and reused. A
prime example is the RocketChip SoC generator, which essentially takes in a list of devices
to instantiate (e.g., cores, peripherals, accelerators) and automatically generates an RTL
implementation of interconnects and device instantiations [6].

Hardware construction languages (HCLs), a term coined by the Chisel paper [7], provide
a simple hardware description language that is in a general-purpose programming language
that allows for powerful meta-programming. A Chisel generator is a Scala [113] program,
which uses various functions from the Chisel package to build up a circuit description while
executing. This process is called elaboration. Chisel is deeply embedded in the Scala host
language since it builds up the circuit representation in memory [51].

The main contrast to previous approaches of generating, e.g., Verilog from a Perl script,
is that the RTL constructs are not just strings but native objects in the host language,
leading to better type safety and maintainability. Many HCLs are designed to make non-
parameterized circuits look like they were written in a regular hardware description language.
Chisel, for example, provides a when branch construct and assignment operators that work
similarly to non-blocking assignments in Verilog.

Other HCLs are migen [20], which had its first commit in 2011, shortly after Chisel
development had started and before the first paper on Chisel was published. Migen is
embedded in Python. Its successor, which was rewritten from scratch, is Amaranth [150],
which, among other things, generates hierarchical RTL descriptions. Migen would place all
circuitry in a single module, making the output harder for humans to read and for backend
tools to process. Other well-known HCLs are Magma [142] and PyMTL [88, 69], both of
which are embedded in Python, as well as SpinalHDL [116] which is embedded in Scala.
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class Counter extends Module {
val enable = I0(Input(Bool()))
val count = I0(Output(UInt(4.W)))
val overflow = I0(Output(Bool()))

val count_reg = RegInit(0.U(4.W))
count := count_reg

val overflow_reg = RegInit(false.B)
overflow := overflow_reg

when (enable) {

count_reg := count_reg + 1.U
b
when(count === "b1111".U) {
overflow_reg := true.B
X

}

(a) Behavioral Chisel description

module Counter :
// wire declarations elided ...
// registers
reg count_reg : UInt<4>, clock with :
reset => (UInt(0), count_reg)
reg overflow_reg : UInt<l>, clock with :
reset => (UInt(0), overflow_reg)

// structural combinational logic

node count_plus_1 = add(count_reg, UInt(1))

node count_is_15 = eq(count, UInt(15))

node count_mux = mux(enable, tail(count_plus_1, 1), count_reg)
count_reg <= mux(reset, UInt(0), count_mux)

node overflow_mux = mux(count_is_15, UInt(1l), overflow_reg)
overflow_reg <= mux(reset, UInt(0), overflow_mux)

ol

(b) Structural LoFIRRTL description

Figure 2.3: The counter from Figure 2.1 expressed in behavioral Chisel and its structural
FIRRTL description.
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2.4 RTL Intermediate Representations and Compilers

We first need to compile the Scala source code of a Chisel generator into Java byte code.
Then, we execute the resulting binary, which uses the Chisel library to generate a circuit
description. Some HCLs are implemented in a host language that does not need to be
compiled, so we can skip the compilation step. However, the elaboration phase in which the
generator is executed to create a circuit description is common to all HCL implementations.
After elaboration, we generally want to obtain a description of the generated circuit that can
be simulated, formally verified, or mapped to an FPGA or ASIC implementation. Commonly,
HCLs produce an RTL description of the circuit in a subset of the Verilog or SystemVerilog
language. Verilog is used as an interchange format since it is supported by virtually all
open-source and commercial backend tools.

Some HCLs directly generate a Verilog description during elaboration. However, many
HCLs feature an intermediate representation (IR) that represents the circuit after elabora-
tion and a compiler that converts the IR to a Verilog output. Chisel used to generate Verilog
directly, but since the Chisel 3 release, it utilizes the FIRRTL IR and compiler to perform
the lowering from high-level, Chisel-like IR into a normalized structural circuit representa-
tion [67]. The low-level representation can then be exported into a subset of Verilog that
was chosen as a common subset supported by the majority of backend tools. The introduc-
tion of a compiler simplifies the conversion from Chisel circuit constructs to an equivalent
description in Verilog. The compiler implements type-checking, width inference, lowering of
behavioral constructs and advanced data types, and some simple optimizations as individual
passes. It is generally easier to correctly implement these individual passes than a single
monolithic conversion to Verilog during elaboration. Other HCLs also feature an IR similar
to FIRRTL [142, 150].

When [ started working on this thesis in 2017, the FIRRTL compiler was under heavy
development, and Chisel 3, the first version to rely on a compiler, was about to be released.
While the most crucial advantage of the new architecture was to make correct Verilog gener-
ation more reliable and easier to maintain, Jack Koenig and Adam Izraelevitz were already
looking for other applications that would benefit from this new compiler. I quickly picked
up my colleagues’ enthusiasm, and finally, three of the four projects I present in this thesis
heavily use the FIRRTL compiler. For more details on the Chisel and FIRTL, I recommend
reading Adam’s PhD thesis [66].

The fuzzing framework I present in Chapter 4 features several new FIRRTL passes to col-
lect coverage information and implement isolation techniques that allow us to quickly reset
the design on an FPGA between running different fuzzer-generated inputs. Chapter 3 gen-
eralizes the coverage instrumentation approach using the newly developed cover construct
to implement various coverage metrics as FIRRTL passes. The generated instrumentation
is independent of the backend simulator, showing how the concept of retargetable compiler
also applies to RTL development. Finally, the formal verification infrastructure presented
in Chapter 5 relies on a new backend to the FIRRTL compiler, which I developed to turn
RTL designs into transition systems that a model checker can consume. The new past
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construct presented in that chapter is a good showcase of the extensibility of the FIRRTL
compiler, which makes it possible to easily post-process circuit primitives through annota-
tions that attach meta-data to them and automatically schedule associated compiler passes
to be executed. The simplicity of the FIRRTL representation allowed these tools to work
with virtually all Chisel circuits. In contrast, academic tools for SystemVerilog-based de-
signs, for which no open-source compiler or IR exists, tend to be brittle and only work for
benchmarks used in the respective papers.

Since Adam Izraelevitz graduated from UC Berkeley in 2019, most of the Chisel and
FIRRTL infrastructure has transitioned from being maintained by graduate students to a
team of full-time engineers primarily working for the SiFive semiconductor company. SiFive
started re-implementing the FIRRTL compiler in 2020 under the leadership of Chris Lat-
tner and using C++ and the MLIR compiler framework [82] to deal with larger designs and
changing business requirements. Converting large designs at SiFive from FIRRTL to Ver-
ilog would often take several minutes up to half an hour with the old Scala-based research
compiler. With the new compiler, this time has been drastically reduced [43].

Internally, SiFive builds most of its RISC-V CPU cores using Chisel. It then sells this IP
to customers who receive the generated Verilog code. When these customers need to debug
their design containing SiFive RISC-V cores, they thus need to rely on the output, rather
than the input of the FIRRTL compiler, to investigate what is going wrong. This challenges
the assumptions under which the original FIRRTL compiler was built. It is generally much
easier, less error-prone, and compatible with many more tools to stick with simple Verilog
constructs. Everyone who worked on the first Chisel-based designs at Berkeley had access to
the original Chisel code. Thus, the generated Verilog could be treated as akin to assembly
generated by a software compiler. In transitioning to the new compiler, SiFive engineers
spent much energy and time to generate SystemVerilog output that would look better to
customers by incorporating more advanced SystemVerilog features. While more bug-prone
and time-consuming to implement, this approach does make sense when transitioning Chisel
from academia to industry.

Open-source compilers and intermediate representations are not limited to hardware
construction languages. There has been recent work in the area of high-level synthesis [112,
124, 129], as well as for established industry languages like Verilog [127, 153], and the
CIRCT project which is trying to grow from a new implementation of the FIRRTL compiler
to become a unifying compiler framework for hardware construction [43]. The open-source
synthesis tool yosys also features an internal representation called RTL-IL [153]. Many ideas
developed for this thesis can be applied to any of these new compilers, sometimes even
for more significant gain. The CIRCT project, for example, is currently close to gaining a
way to import SystemVerilog designs and compile them down to the simple core dialects.
Thus, if someone re-implements the system for unified coverage that I represent in Chapter 3
for CIRCT, we would be able to obtain, e.g., a single toggle coverage pass that works not
only for Chisel designs (via the FIRRTL frontend of CIRCT) but also for SystemVerilog
and combined Chisel / SystemVerilog designs. Recently, I advised a Master’s thesis on
implementing some of the ideas I present in Chapter 5 with CIRCT, which will make them
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available for SystemVerilog designs once CIRCT gains the import capabilities [41].

2.5 Simulation-based Testing of RTL Designs

Designing hardware at the register transfer level can be difficult and error-prone, even with
modern languages like Chisel. Digital hardware executes in a highly parallel manner; complex
operations must be manually broken up and mapped to multiple cycles to meet timing;
physical concerns like power efficiency must be addressed; and designers need to add extra
complexity to enable testing the resulting semiconductor chip for manufacturing defects.
Thus, it is paramount to test or verify each RTL hardware design comprehensively.

To obtain the highest level of fidelity and test execution speed, we would have to man-
ufacture the hardware design. We would then be able to execute our tests on the final
implementation. This approach is prohibitively expensive; circuit manufacturing takes a
long time, and the visibility of the manufactured design is poor. Instead, the most common
approach to executing an RTL description for testing is to use a software simulator or accel-
erated simulation with specialized chips. Testing designs in simulation is often referred to
as dynamic verification in the hardware community:.

RTL Hardware Simulators

A variety of open-source and commercial simulators exist. Most of them focus on traditional
hardware description languages like SystemVerilog and VHDL [136, 52]. Still, some recent
options build on the FIRRTL compiler and thus exclusively work with circuits described
in Chisel [97, 73, 10]. Software simulator implementations navigate a spectrum of latency
vs. throughput regardless of the input language trade-offs. Simulators that interpret the
RTL circuit description with little preprocessing are low latency in that they take very little
time before simulation of the first cycle of execution. However, interpretation is generally
slow; the number of cycles simulated per second, i.e., the throughput, tends to be low. Most
commercial Verilog simulators started as interpreters because they are easy to implement [50]
before switching to compiled simulation. The open-source simulator Icarus Verilog [151] and
the Treadle [97] simulator for FIRRTL both use the interpreter approach.

The simulation throughput can be improved by converting the RTL circuit description
into a compiled simulation. Open-source tools like Verilator [131] and ESSENT [10] achieve
this by generating a simulation as C++ code, which is then compiled to optimized native
machine code through a C++ compiler. Generating and compiling the C++ code takes
significant time, thus increasing the latency but leading to much higher throughput.

For even higher throughput, we need specialized hardware that can take advantage of
the massive amount of fine-grain parallelism contained in RTL designs [38]. RTL designs
can be mapped to a network of small compute cores, enabling high throughput with some
increase in latency that is required to perform the process of mapping the design across a
large number of processing elements. Recent work has explored this option with custom bulk
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parallel processors as well as using off-the-shelf machine learning accelerators [45, 44]. There
are also commercial products that use similar techniques, but details are hard to come by.

Even higher throughput can be achieved through FPGA-accelerated simulation as imple-
mented by the FireSim tool [73, 76, 74, 94, 12] for Chisel designs. Unfortunately, mapping
an RTL design to an FPGA after transforming it with the Golden Gate compiler [93] can
take hours or nearly one day. In addition to that, the visibility is poor since the internal
design state cannot easily be transferred out of a running design. There are options to gain
more visibility. However, they require the design to be paused every time we need to inspect
state [149]. Similar to the bulk synchronous option, there are also commercial products that
use FPGAs to simulate RTL designs, but few details are publically available [12]. Simulating
RTL designs on specialized hardware has the downside in that software testbenches can not
easily be used to drive the design since the cost of communicating with the design on the
simulation accelerator on a per-cycle basis is too high.

Testbenches

The ability to simulate the execution of a given RTL hardware design is necessary but not
sufficient to test the design. Most hardware designs are not closed systems. Instead, they
feature input and output pins that communicate with the environment. In order to test a
given design under test (DUT), we need to provide values to the input pins and check that
the values on the outputs match our expectations. Often, we might also want to initialize
states like registers and memories or check that they contain the values we expect them to
contain. Thus, we need a setup called a testbench that lets us provide inputs to a DUT
running in a simulator. This testbench generally takes on the form of a program interacting
with the DUT, an event-driven model of some external hardware interacting with the DUT,
extra RTL hardware used for testing that will not be included in the final design, or a
combination of all three.

SystemVerilog Testbenches

A simple testbench can be directly implemented in Verilog. Since Verilog is primarily a
simulation language, it is not restricted to circuit descriptions but also features verification
constructs. A Verilog testbench consists of a top-level module with no input or output pins
- a closed system - which instantiates the DUT and connects to its input and output pins.
The clock input of the DUT can be driven by toggling a variable between zero and one using
a simple Verilog process and the delay construct to define the clock period. The other inputs
are driven to chosen test inputs, also called test stimuli, through assignments in another
process. Output values are checked with a simple if statement, and the finish statement
can be used to terminate the simulation if there is a failure. Verilog also supports printing
values to a file or standard output, which can be used to implement a check against a file
containing the expected outputs. A recent study found that a large number of open-source
RTL projects do not include self-checking testbenches [90]. Instead, a developer presumably
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checked the outputs as they were implementing the RTL design. These manual checks are
often performed on a wave dump, i.e., a record of all signal values over time during a given
simulation run. These wave dumps can be visualized with a waveform viewer like GTKWave
or Surfer to aid debugging.

SystemVerilog [62] was developed to allow developers to program elaborate testbenches.
It contains many features from general-purpose programming languages, like classes, meth-
ods, and functions, as well as specialized hardware testing features. SystemVerilog makes it
possible to randomly initialize struct according to user constraints. This enables constrained
random testing in which test engineers guide the random stimuli generation to explore the
behavior of the design under test thoroughly. SystemVerilog Assertions provide an expres-
sive, declarative temporal property language for runtime monitoring and formal verification.
The Universal Verification Methodology (UVM) [63] is an industry-standard verification
framework that takes advantage of many of SystemVerilog’s new features. Unfortunately,
no open-source simulator currently supports enough SystemVerilog features to run UVM
testbenches. The reason for this is that a language that is meant to be useful for verification
and hardware modeling incurs a lot of complexity, making it hard to implement support for
the whole language.

Simulator APIs

The open-source community and the vast majority of new hardware languages have thus
taken a different approach. Instead of adding testing constructs to the hardware language,
one can interface with the simulator from a general-purpose programming language and
use that to implement a testbench. A classic example is Verilator, which converts an RTL
design into the C++ source of a simulation of said design. The generated simulation code
can then be instantiated and driven by a C++ program. As the testbench is compiled with
the simulation, this approach leads to fast testbenches. Unfortunately, the API is fairly
barebone, difficult to use, and simulator-specific, making testbenches non-portable.

Testbench Libraries

Testbench libraries implemented in a general-purpose programming language provide a more
powerful and user-friendly approach. Cocotb is an open-source library implemented in
Python that allows users to interface with hardware designs simulated in a wider variety
of commercial and open-source simulators [59]. Like Verilog, it uses an event-driven pro-
gramming model, allowing users to implement processes that interact with the design under
test based on Python async/await co-routines. Cocotb uses the standard DPI interface [62],
which makes it compatible with many simulators. Unfortunately, DPI and the even-driven
paradigm can lead to slow test execution. The Amaranth language features a testing li-
brary that uses Python co-routines for low overhead threading but interfaces directly with
a Python-based simulator, thus reducing the communication overhead [150].
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ChiselTest

The ChiselTest library provides a rich Scala-based API to interact with Chisel-based designs
under test [87, 42]. I was the maintainer and most frequent contributor between 2021 and
2024, taking over from Richard Lin, who started the project in 2018. ChiselTest originated
from many prior attempts to support easy unit testing for Chisel designs and - in true Chisel
tradition - eschews any event-based modeling. Instead, time only progresses when the clock
of a synchronous design is stepped. Outputs that depend combinational on inputs take on
their value immediately after an input has changed. This enables a simple interface, where
users interact with a circuit by poking values to its inputs, peeking values at its outputs, and
stepping the clock when needed.

This simple interaction model allows for more efficient simulator bindings. While Verilog
simulators like VCS [136] and Icarus Verilog [151] are supported through DPI, similar to
how cocotb works, ChiselTest generates a custom C++ harness for Verilator, which is then
compiled to a shared library and loaded into the JVM before executing the Scala-based test.
This architecture leads to fairly fast simulation speeds. For small designs, simulator startup
time (latency) and the overhead of calling into a native simulator binary from the JVM
prevail. Thus, ChiselTest also features a native FIRRTL interpreter called Treadle [97].
Since Treadle is written in Scala, the just-in-time compiler of the JVM can optimize the
combination of test and simulator. Another option to avoid the overhead of calling into
native code from the JVM is to turn a given circuit description into a simulation written in
Java, similar to how Verilator generates C++ code. This approach was explored by two of
my undergraduate advisees [47]. The Java code is compiled into byte code and loaded into
the JVM, enabling even better cross-optimizations between testbench and circuit simulation.
However, the startup overhead is higher than that of Treadle due to the compilation steps
involved.

We have previously discussed how hardware designs are highly parallel. Thus, it is no
surprise that more sophisticated testbenches might also benefit from concurrency. Often,
multiple interfaces on the DUT need to be exercised, which is most naturally expressed as
multiple threads of execution. These threads generally yield for a single clock event. Thus,
it is often the case that each testbench thread needs to be scheduled at least once for ev-
ery simulated clock cycle. Some designs simulate at multiple MHz, thus requiring several
million thread switches per second. This is the reason why Python-based frameworks all
use co-routine-based threads. Unfortunately, such lightweight, compiler-based concurrency
techniques did not exist on the JVM until recently. Thus, ChiselTest is forced to use JVM
threads, which generally map onto relatively heavy-weight operating system threads. This
leads to relatively large slowdowns for multi-threaded testbenches. This effect is most promi-
nent for small designs that simulate quickly; larger designs will spend more simulation time
per cycle, and thus, the overhead is less noticeable.
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Staged Test Execution

So far, all hardware testing libraries we discussed are based on an eager evaluation of simula-
tion constructs. Inputs and outputs are immediately updated, and new values are retrieved
from the simulator. This way, testbenches can easily use facilities of the host language to
generate inputs on the fly and to process outputs with complicated checkers. It also al-
lows users to easily single-step through their testbenches using a standard Python or Scala
debugger. On the other hand, the fault testing library implements its testing API as a
deeply embedded domain-specific language [143]. Instead of directly communicating with
the simulator, a testbench program is generated by executing a Python program, similar to
a Python-embedded HCL, which would generate a hardware description. The syntax tree
of the testbench program can then be lowered to a much wider variety of testing backends.
Beyond simple RTL hardware simulators, fault also targets analog circuit simulators and
formal verification tools. The extended flexibility comes with a much higher implementa-
tion complexity since fault cannot take advantage of Python constructs for control flow or
computation. Instead, everything the test should do must be expressable in the fault IR.

Coverage

Since dynamic verification looks at concrete executions of the design, a feedback mechanism
is needed to know whether the simulated executions explore all interesting behaviors of
the DUT. To this end, various notions of coverage have been developed [117]. While high
coverage is insufficient to declare the verification process a success, it can serve as a progress
indicator and help test engineers decide which parts of the DUT to prioritize when writing
new testbenches. Coverage metrics broadly fall into two categories: structural or automated
coverage and functional coverage.

When an RTL designer writes a line of hardware description code, we assume it is there
for a reason. Without that line, the hardware would malfunction. This simple intuition
forms the basis of all structural coverage metrics. Since these metrics only need to analyze
the structure of the hardware description, they generally do not require additional user
input. They can be implemented fully automatically by a given hardware simulator. We
have already introduced the concept of line coverage, where we are trying to see if all lines of
a given hardware description code have been executed. Another popular automated metric
is toggle coverage. This coverage metric checks for every signal in the circuit how many bits
are toggled from one to zero or from zero to one at least once. If a signal bit always carries
the same constant value during all tests, it could either be removed or there is a behavior
not covered by the current set of testbenches. Finite state machine (FSM) coverage is a
structural metric that can be automated if state machines are explicitly encoded in the
target language. For SystemVerlog and Chisel, this is not the case. However, there are only
a handful of recommended patterns, such that — in many cases — FSMs states and transitions
can be inferred, and thus coverage can be collected automatically. Chapter 3 details how I
implemented line, toggle, and FSM coverage for Chisel-based designs in a manner that works
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with a wide variety of available simulators.

While structural coverage is very easy for RTL designers to use — they just need to enable
the respective feature in their simulator — it does lack high-level design insights and can thus
be misleading. It might also generate some noise in that missing toggle coverage might
indicate a bug, but it could also often just not be worth achieving since no additional high-
level functionality is tested by trying to get to full toggle coverage. This problem is solved
by functional coverage. Instead of relying on the circuit simulator to automatically infer
low-level functionality from the RTL description, functional coverage requires RTL designers
to annotate high-level design functionality and intent manually. For example, the designer
might annotate the combination of signals that indicate that a processor pipeline resolves a
read-after-write hazard. This functional coverage point can track how often each testbench
exercises this feature. While defining good functional coverage can be quite a challenge for
the RTL designer, it is quite easy to implement from the simulator’s perspective since it is
completely user-defined and does not require RTL analysis. However, there is an interesting
design space of frontend language features that simplify the process of defining functional
coverage points. SystemVerilog, for example, features a rich vocabulary of high-level coverage
definitions. In Chisel, a similar result could be achieved by a generator library for coverage.
However, no such library has been implemented so far.

2.6 Formal Verification of RTL

Simulator-based dynamic verification means executing the DUT concretely using a mix of
manually defined or randomly generated test inputs. Unfortunately, the space of possible
inputs for many designs is extremely large (2™P4%i) for even a single execution cycle. It is
essentially infinite if we want to guarantee that the design will execute correctly, no matter
how many cycles it is executed for. This does not mean that dynamic verification is ineffective
at finding bugs. Still, for most realistic designs, we won’t be able to guarantee that no bugs
exist and need to use coverage as a crutch to ensure that we tested enough diverse inputs.

An alternative is formal verification, the umbrella term for various techniques that aim to
analyze the design to prove correct functionality mathematically. In the hardware domain,
these proofs are generally computer-assisted to scale to realistic designs. Properties can be
proven with interactive proof assistants [30, 29, 46, 146] or more automated methods like a
combination of symbolic execution and abstract interpretation [57, 155] or model-checking
based on binary decision diagrams (BDDs) [23, 99], satisfiability (SAT) [98] or SMT [9, §].
In this thesis, we focus on SAT and SMT-based methods.

The boolean satisfiability problem poses the following question: Given a boolean formula,
does there exist an assignment to the inputs such that the formula evaluates to true? This
problem was proven to be NP-complete and thus might take a prohibitively long time to
solve for general problem instances. However, researchers have found heuristics that work
well on a large set of SAT instances that reflect real-world problems. Nowadays so, so-called
SAT solvers can solve formulas with many input variables [98]. However, there will always
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be even small instances that cannot be solved within a reasonable amount of time; it just so
happens that these are often not reflective of real-world problems.

As discussed in Section 2.1, any RTL circuit can be described by boolean functions that
model how outputs and state updates are calculated. Thus, if we are provided with an
assertion, i.e., a boolean formula over the inputs and states in the circuit that we expect to
always hold, we can ask the question of whether there exists an assignment to the circuit
inputs and the circuit state such that the assertion is violated. We can expand our check
to more than a single cycle of execution by unrolling the RTL design. This means that we
combine output and state update functions to describe the assertion truth-value as a boolean
function over the starting state as well as the inputs in steps one and two. This technique
is called bounded model checking [13] and can be implemented with an RTL compiler that
takes a given circuit and compiles it down to a boolean formula in conjugating normal form
(CNF), which can then be provided to a SAT solver. If the solver provides an assignment, we
have found a way to drive the design into a state where it violates our assertion. Otherwise,
we are guaranteed (assuming the SAT solver and our conversion do not have bugs) that the
assertion holds for at least k cycles where k is the number of unrollings.

Instead of lowering an RTL design directly into a boolean formula, modern word-level
model-checking implementations generate a first-order logic formula using the theory of bit-
vectors and arrays. These theories are standardized as part of the SMTLib specification [8].
The process of generating the formula is essentially the same as turning behavioral into
structural RTL as described in Section 2.1. A large number of different SMT solvers are able
to process these formulas and check them for satisfiability. The higher level of abstraction
allows SMT-solvers to perform word-level rewrites, often eliminating large parts of a formula
before bit-blasting it [109]. By using the theory of arrays, we avoid having to model each
memory bit of every memory entry as a boolean variable, as would be required for bit-
blasting. SMT-based model checking is implemented by a range of tools like AVR [54],
Pono [96] and SymbiYosys [152]. Chapter 5 details my implementation of an SMT-based
model checker for Chisel, released as part of the ChiselTest library.

Bounded model checking is beneficial for finding bugs since it will be able - at least in
theory - to provide us with a concrete testbench or waveform that we can use to debug the
counter examples as if a concrete simulation test discovered it. However, if no inputs that
violate an assertion are discovered, BMC only guarantees that no bug can be found if the
design is executed for up to k cycles. In practice, BMC often becomes exponentially slower
with increasing k, and thus, realistic values for k are often under 100 steps, while the final
circuit will execute at millions or billions of cycles per second. Model-checking with BDDs
can provide unbounded guarantees because it is able to detect when the BDD has reached
a steady state, and thus all reachable states are described by it. However, model checking
with BDDs generally does not scale well to larger circuits. SAT and SMT-based model
checking can deal with larger designs, and several approaches to unbounded proofs have
been developed. The simplest is k-induction [130], which tries to prove that the assertion
holds through induction over £ unrollings. K-induction often requires engineers to manually
supply strengthening invariants to restrict the state space. Property-directed reachability
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(PDR, also called IC3) automatically generates invariants but is much harder to debug when
it fails or times out. Neither k-induction nor PDR can provide the user with a true counter-
example demonstrating the bug. If no proof is found, this does not necessarily mean that the
assertion is falsifiable; instead, better-strengthening invariants might be needed. Deciding
whether a failing proof is caused by an actual bug is left to the verification engineer. Often,
BMC is employed in conjunction with proof techniques to rule out any bugs that can be
easily discovered with BMC.
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Chapter 3

Simulator Independent Coverage

Simulation-based testing, as introduced in Section 2.5, is the most commonly used technique
to verify RTL designs. Simulators, waveform viewers, and testbench libraries are readily
available and easy to use. However, to assess the quality of our tests, we require feedback
on how well they exercise the functionality of the design under test. While the coverage
metrics that we introduced in Section 2.5 are well known to provide valuable feedback to
test engineers, they are not well supported among new hardware construction languages
and simulators. Instead of following the path taken by the old generation of commercial
simulator tools for Verilog, we propose a new approach to coverage collection that leverages
the advantages of the modern open-source eco-system for hardware languages. Our approach
was published at ASPLOS in 2023 [80]. We identified several issues with the status quo of
coverage instrumentation and collection that need to be addressed:

1. Most open-source or innovative research simulators lack support for collecting and report-
ing automated coverage metrics [10, 97, 131, 73].

2. For tools that do support these metrics, their custom implementation makes merging cov-
erage across various software or FPGA-accelerated simulators and formal tools difficult.

3. New hardware languages generally lack support for source-level coverage metrics. While
we can get coverage metrics for the generated Verilog, there is no automated way to map
the coverage results back to the original Chisel code.

In this chapter, we present our new approach that relies on a compiler to lower common
automated coverage metrics to a single cover primitive that can be easily implemented for
a wide range of different simulators. Each metric is implemented as a compiler pass that
generates only cover primitives in addition to synthesizable constructs, which are already
supported by all simulators. It also collects metadata that allows a report generator to map
the coverage counts back to the high-level information, such as which lines were covered.
The simulator implements the cover primitive as a counter, which is incremented every
time the input signal is true at a clock event and reports back the counts at the end of the
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simulation. A simulator-independent report generator then consumes the metadata from the
compiler pass as well as the cover counts from the simulator and thus creates a user-readable
report. Since the coverage counts reported by simulators are all in the same format, we
can trivially merge results from different simulators before extracting the high-level coverage
reports. Figure 3.1 provides an overview of our system.

We implemented our approach for the Chisel hardware construction language and the
FIRRTL compiler [7, 67]. Over a short period of time, we were able to implement line, toggle,
and finite state machine coverage, thus exceeding the number of automated coverage metrics
offered by any open-source RTL simulator today. For the coverage metrics that are natively
supported by the open-source Verilator simulator, we found no slowdown for our simulator-
independent solution. While implementing new coverage metrics can be challenging, adding
support for new simulators was fairly simple. Besides Verilator, we also provide support for
a FIRRTL simulator called treadle, for the ESSENT simulator [10], the FPGA-accelerated
FireSim simulator [73] as well as a formal tool for trace generation.

Automated Coverage on the Structural Verilog

Since new hardware construction and high-level synthesis (HLS) languages generate struc-
tural Verilog in order to target existing backend tools, one may think that the easiest way to
get automated coverage would be to just use the coverage collection flags that are already
built into the existing Verilog simulators. However, automated coverage generally relies on
patterns in the code that are written by the designer.

For example, if we create a mux with a branch statement (if in Verilog, when in Chisel),
the condition will be taken into account when calculating line or branch coverage. However,
if we create a mux through a conditional assignment or through an explicit exclusive-or
gate, it does not show up in the line coverage report. Figure 3.3 shows an example where
a branch in Chisel gets lowered into a conditional assignment by the FIRRTL compiler in
order to simplify the structural Verilog generation. This is perfectly valid, as it preserves the
semantics of the original Chisel code !, however, it means that achieving 100% line coverage
on the generated Verilog may not always result in complete line coverage for the original
code written by the designer.

Another example is finite state machine (FSM) coverage: While the pattern that design-
ers use for FSMs is clear in the original Chisel, it is not recognized by Verilog simulators
that only have access to the generated structural Verilog.

3.1 Simulator Independent Coverage Interface

A typical Chisel testing flow can involve different simulators, depending on the desired start-
up speed, throughput, and debugging features. In order to support coverage on all of them,

n Verilog, changing a branch into a conditional assignment changes the semantics of the code due to
X-propagation. In Chisel, there is no X-propagation, and thus the semantics are preserved.
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Figure 3.1: Overview: Traditionally, automated coverage collection is part of a monolithic
simulator. Users are limited to the coverage metrics that the simulator authors have chosen
to provide. We instead implement every coverage metric as a single instrumentation pass in
the FIRRTL compiler and a simulator-independent report generator. Only support for our
proposed cover primitive needs to be added to a new simulator to take advantage of all our
coverage metrics.
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when en
cover (clk, gt(data, 100), 1): data gt 100

i lowering to structural RTL
cover (clk, gt(data, 100), en): data gt 100

always @ (posedge clock) Immediate
if (en) cover(data > 8'h64); | Assertion

data gt 100 : cover property
—> (@ (posedge clock)
en & data > 8'he4);

Concurrent
Assertion

Figure 3.2: After lowering the cover statement to structural RTL, it can be emitted to
SystemVerilog as an immediate or concurrent assertion.

we developed a simple interface that takes advantage of existing coverage features in Verilog
simulators and can easily be implemented for the five very different verification tools that
we worked with.

All our simulators support simulating any synchronous RTL circuit that can be generated
from Chisel. The one IR primitive we add is a cover statement which samples a signal on
the rising edge of a clock and increments a counter if and only if the covered signal is true.
Each cover statement also carries a name that uniquely identifies it inside the module it
is declared in. This way, simulators can report coverage results as a simple map from the
cover statement’s name (including its path in the module instance hierarchy) to a non-
negative integer representing the count. Different simulators may use counters with different
bit-widths as long as the count is saturating. This allows important optimizations in FPGA-
accelerated simulators. We implemented support for the cover statement in five different
backends.

Treadle

Treadle [97] is a Java Virtual Machine based simulator for circuits represented in the FIR-
RTL IR. While it does not achieve the simulation speeds possible with a compilation-based
approach, it features quick spin-up times and integrates well into the Scala-based Chisel
ecosystem, and is thus the preferred simulator for shorter simulation runs and smaller- to
medium-sized designs. Adding support for the cover statement took less than one work
week and around 200 lines of Scala code. Treadle had existing support for a stop statement
which also samples a condition at a positive edge. This code was easy to adapt for the
cover statement — we just needed to increment a counter when the condition is true instead
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when (in) {

out := 1.U Chisel to assign out =
} .otherwise { Structural in ? 2'hl
out := 2.0 Verilog 2'h2;

}

\

Figure 3.3: In this example, the translation to structural Verilog replaces a branch with a
conditional assignment. Therefore, 100% line coverage on the generated Verilog does not
necessarily imply complete line coverage of the Chisel source.

of stopping the simulation. At the end of the simulation run, all counts are transferred into
a map from a cover point name to a count.

Verilator

Verilator [131] is a popular open-source Verilog simulator. It analyzes and optimizes the
input Verilog and generates C++ source code for a simulation which is then compiled to a
binary with a standard C++ compiler. This approach generally leads to higher simulation
speeds, but it does increase the time spent building the simulation, which is why it lends
itself to longer simulation runs where the startup cost can be amortized.

In order to simulate a Chisel design, it needs to be compiled into structural Verilog which
will then be turned into a simulation by Verilator. Our cover statement can be mapped to
a concurrent or an immediate assertion in the Verilog generated by the FIRRTL compiler as
shown in Figure 3.2. By default, we generate immediate cover statements [62] as those are
the only form supported by the open-source Yosys [153] synthesis tool covered in Section 3.1.

This way we make use of the built-in support for user-defined coverage in Verilator.
We do not re-use any of the Verilog line- or toggle coverage provided by Verilator. At the
end of the simulation run, Verilator generates a coverage data file that contains the counts
associated with each SystemVerilog cover statement. We also implemented a converter that
parses the custom coverage format used by Verilator and re-associates the counts with the
cover statements in the FIRRTL source. Our interface code thus generates the exact same
map from cover statement names to counts as provided by our native implementation for
Treadle.

FireSim

FireSim [73] is an open-source, cycle-accurate FPGA-accelerated RTL simulator, which at
its core, uses a custom compiler based on FIRRTL [93] to decouple the clock of the simulated
RTL from the FPGA clock. This allows for deterministic, cycle-accurate composition with
software simulations of components like network switches and FPGA-optimized multi-cycle
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Figure 3.4: We generate saturating counters and a scan chain for all cover statements for
FPGA-accelerated simulation with FireSim.

simulation models, e.g., of multi-ported register files or DRAM models with realistic access
latencies.

While FireSim’s compiler supports some conventionally non-synthesizable debug primi-
tives, like assertions and prints, it currently has no means to implement cover statements,
which cannot directly be mapped onto an FPGA. We added a new compiler pass to FireSim
which replaces each cover statement with a saturating counter that is then connected to a
per-clock-domain scan chain (Figure 3.4). The counter’s bit width is a parameter set by the
user to trade off FPGA resources and cover count accuracy. The pass also generates a list
with the names of all cover statements in the order in which they are connected throughout
the scan chain. The scan chain is controlled by an FPGA-hosted simulation module and
C++ driver program, which can pause the simulation, freeze all coverage counts, and then
clock out all coverage counts. Using the metadata generated by the newly added coverage
scan-chain insertion pass for FireSim, we can then map the counts to the cover statement
names. We thus get the exact same coverage information from the FPGA-accelerated simu-
lation as provided by the software simulators Treadle and Verilator.

Formal Verification with SymbiYosys

The most common use of formal verification tools is to verify assertions. The tool will either
find a series of inputs that lead to an assertion violation or provide a proof showing that
the assertion can never be violated. In addition to that, the open-source SymbiYosys tool
(like many commercial tools) also supports coverage trace generation [152]. Given a design
annotated with cover points, it will try to find sequences of inputs that will lead to each
of the cover points. Since we already emit our cover primitive as a standard immediate
assertion for the Verilator simulator, the same generated Verilog can be used by SymbiYosys
to automatically find inputs that will maximize any of our automated coverage metrics.
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Table 3.1: Lines of code (LoC) for coverage passes and report generators. Lines of new
library code in parenthesis.

LoC Instrum. | LoC Report

Common Library 106 290

Line Coverage 89 64

Toggle Coverage 279 (+131) 51+

FSM Coverage 144 (+228) 34
Ready/Valid Coverage 78 26

ESSENT

ESSENT is a high-performance simulator prototype [10] with no debugging support. After
the basic idea had been validated with the other four backends, we recorded the time spent
to get a sense of how hard it would be to add support for a fifth tool. Overall, it took us
around 5 hours and 60 lines of code to add support for our cover primitive and thus allow
ESSENT users to make use of all our coverage metrics.

3.2 Coverage Instrumentation and Report Generators

In this section, we describe how we implemented a number of automated coverage met-
rics. Our methodology relies on the assumption that most automated coverage metrics
can be implemented using the cover statement introduced in Section 3.1. To demonstrate
this, we implemented line coverage, toggle coverage, and FSM coverage as well as a cus-
tom Ready/Valid coverage metric. Each metric is implemented as an instrumentation pass
that analyzes the circuit represented in the FIRRTL IR, adds cover statements and emits
metadata as well as a report generator that consumes the simulator output and turns it into
a high-level coverage report. To provide a sense of implementation complexity, Table 3.1
contains an overview of all coverage metrics implemented for this chapter, along with the
number of lines of Scala code for the associated instrumentation and report generator. All
our report generators are bare-bones and generate simple ASCII reports only. Many poten-
tial improvements could be made to generate interactive HTML reports or similar, which
would significantly increase the amount of code in the report generators.

Branch and Line Coverage

Branch coverage counts how often a branch is taken in the HDL or HCL source code. Line
and statement coverage can be derived from this information by counting the number of lines
or statements that are executed when a particular branch is taken. In order to implement
a branch coverage instrumentation pass we rely on the fact that the FIRRTL compiler
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Figure 3.5: The line coverage pass instruments every when statement in the FIRRTL circuit.
As part of the standard lowering in the FIRRTL compiler, the branch conditions will be
pulled into the enable condition of the cover statement. The mapping from lines to branches
is used to generate the coverage report from the counts reported by the simulator.

automatically turns the dominating branch condition of a statement into an enable signal
for the statement. This is done during lowering to structural RTL as shown in Figure 3.2.
Thus, we place our instrumentation pass before that lowering happens and just add a cover
statement right after every branch. This is shown in Figure 3.5. We also make sure to skip
branches that have no statements in them or that only contain a cover statement inserted
by the designer, as trying to cover these branches would not be helpful.

In order to turn the branch coverage information into actual line coverage, additional
information is needed. We scan all statements directly inside a given branch and extract
their line numbers and source file information. Thus, we build up a map from a cover point
to the lines it covers. After the simulation finishes, the map is used by our report generator
to turn coverage counts from the simulator into a textual report that annotates the Scala
source file with counts of how often each line was executed.
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Figure 3.6: The toggle coverage pass adds a register and a xor gate. It avoids redundant
instrumentation for signals that always have the same value.

Toggle Coverage

We implemented our toggle coverage as a compiler pass that runs on the structural RTL after
optimizations such as constant propagation and dead code elimination have been performed.
We distinguish between 1/O signals, registers, memories, and wires and allow the user to
choose which category they want to instrument. For every selected signal, we add a register
in order to record its value in the previous clock cycle. A xor gate allows us to detect whether
a bit in the signal changed. Counting rising and falling edges, i.e., toggles from zero to one or
one to zero, separately would be a simple extension that would use two instead of one cover
statement per bit. We also add a register that is zero in the first cycle of the simulation
and one after in order to disable all toggle cover statements during the first cycle when the
previous value has not been updated yet.

We implemented a global alias analysis, which analyzes the design hierarchy and reports
groups of signals that are guaranteed to always carry the same value. For example, in
Figure 3.6 the “signal” wire in the top module always carries the same value as the “in”
ports of the two child modules. Our toggle coverage pass uses the alias information to
instrument only a single signal from each alias group. An important example is the global
reset signal, which is instrumented only once in the top-level module instead of once in every
module in the hierarchy. The global alias analysis pass is necessary to make toggle coverage
perform well.

Finite State Machine Coverage

Finite State Machines (FSMs) are commonly used to implement the controls for RTL mod-
ules. In modern Chisel, designers generally create a ChiselEnum that contains all the states
and a state register of their custom enum type. To implement our instrumentation pass,
we take full advantage of the annotation system which allows Chisel libraries, like the
ChiselEnum library, to annotate circuit elements in Scala. We use the annotation to find
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input Chisel circuit

ml—“object S .. {val A, B, C= Value }

&) val state = RegInit(S.A)

_ switch (state) {

o”a is(S.A) { state := Mux(in, S.A, S.B) }
= is(S.B) { when (in) { state := S.B }

Q: .otherwise { state := S.C } } }
g lowered Firrtl (simplified)

C || node n0 = mux(in, UInt(1), UInt(2))

.g node nl = mux (eqUInt(l), state), n0, state)
g node n2 = mux(in, UInt(0), UInt(l))

g node n3 = mux (eqUInt(0), state), n2, nl)
g state <= mux(reset, UInt(0), n3)

g —» (1) analyze next state expression by cases v

Start (reset = 1): UInt(0) = A
A (state = 0 && reset = 0):

mux (in, UInt(0), UInt(l)) = {A, B}
B (state = 1 && reset = 0):

mux (in, UInt(l), UInt(2)) = {B, C}
C (state = 2 && reset = 0):

state » UInt(2) 2 {C}

(2) add cover statements (simplified example)

cover (.., eq(state, UInt(0)),..) : state_A

; we track the previous state in a register
state prev <= state

state prev valid <= not (reset)

cover (...,
and (eg(state prevInt(0)),eqg(state,UInt(1))),
state prev valid,.) : state A to B

Figure 3.7: Finite state machine (FSM) coverage assumes that the state register uses a
ChiselEnum. We first analyze all possible next states by simplifying the state update ex-
pression for each possible current state. We then add cover statements for all states and
possible transitions.
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Table 3.2: Software simulation benchmarks and the number cover points generated by the
line and toggle coverage instrumentation passes.

Design | Cycles Executed | Run Time | # Line | # Toggle
riscv-mini [75] 126,550 3.34s 157 4,042
TLRAM [6] 816,473 1.45s 8 2,532
serv-chisel 828,931 1.05s 79 725
NeuroProc [121] 53,455,204 40.38 s 809 4,786

registers that contain values from a ChiselEnum. The annotation also tells us all legal states
that were defined as part of the enum. Figure 3.7 shows an example where the enum S
contains the three possible values A, B, and C.

With this information, we analyze the next expression of the register. In our example,
there are four cases that we need to analyze: One case when the system is in reset, and
one case for each possible state. In each case, we apply constant propagation, replacing the
reset and state symbols with their assignments. Thus, we collect all possible next-state
assignments and derive all possible transitions. In cases where — after simplification — we
end up with an expression that is not a constant or a mux, we over-approximate, assuming
all states are possible next states. Thus, our analysis is conservative in that it will only over-
report possible transitions and never miss any transitions. One example where our analysis
fails is an FSM in RocketChip [6] where the next state signal goes through a submodule that
is invisible to our (module scoped) analysis. After analyzing the possible transitions, we add
cover points for every state and transition in a second step.

Ready/Valid Coverage

One of the most commonly used interfaces from the Chisel standard library is a DecoupledIO
bundle. A data transfer happens during cycles in which the ready and valid wires are both
asserted. We developed a custom coverage pass that analyzes the ports of all modules in
the design and adds a cover statement for every decoupled interface it finds in order to
count how often data is transferred. Thanks to all the code we had previously developed,
we were able to implement and test this new coverage metric in around 3h. This shows how
new metrics that may be specific to a design ecosystem can easily be added by using our
simulator-independent approach. Traditionally RTL designers might have manually added
cover statements as part of the functional coverage, however, our pass is more economical
since it works across a wide range of designs using DecoupledI0 without manual annotations.
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Figure 3.8: Coverage instrumentation overhead with Verilator v4.034. For TLRAM, the
measured overhead of our FIRRTL line coverage is close to zero.

3.3 Evaluation

Prior sections already discussed how our approach allowed us to quickly implement four
different coverage metrics for five different backends. In this section, we investigate the run
time and/or area overhead of our simulator-independent coverage solution.

Software Simulator Coverage Overhead

Making use of generic cover statements instead of hard-coding line coverage into the simu-
lator allows us to support new simulators with little effort. However, one might suspect that
using a more generic coverage collection mechanism compared to built-in line coverage might
create additional overheads. We measure the overhead of our coverage metrics on simulation
speed and compare it to the built-in Verilog coverage of the open-source Verilator simulator.
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Our benchmarks come from various open-source projects written in Chisel. Table 3.2
provides an overview. We picked long-running tests, recorded a waveform VCD and then
generated a minimal testbench that only replays the top-level inputs from the VCD. This
way we can isolate the simulator run time from the time it takes to generate stimuli and
any overhead in the verification environment. This careful isolation means that the reported
overhead may be less noticeable in practice 2.

Figure 3.8 shows the run time overhead of various coverage instrumentation over the
baseline. We find that in general, our instrumentation causes the same or slightly less
overhead compared to Verilator’s built-in coverage. This can be attributed to the fact that
Verilator appears to internally follow an approach similar to ours.

While we are prohibited from reporting data for commercial simulators in a meaningful
way, we observed that our generic approach does negatively impact the performance of event-
driven simulators. However, Verilator with our coverage is generally significantly faster than
any commercial tool with its native coverage. By providing extensive coverage support
for open-source simulators, we remove one of the common reasons that prevent users from
switching to faster simulators like Verilator.

FireSim Coverage Overhead

We applied our line coverage instrumentation to two different SoC designs from the Chip-
yard framework [5]. The first includes four, in-order scalar Rocket [6] cores and the second
uses a single out-of-order BOOM [160] core. This results in 8060 cover statements in the
RocketChip design and 12059 cover statements for the BOOM SoC. We then ran our scan
chain insertion pass and transformed the designs into a cycle-accurate FPGA-accelerated
simulation with FireSim [73]. Both simulators target a Xilinx Ultrascale+ VU9P device,
the FPGA supplied by Amazon EC2 F1 instances, and were compiled using Xilinx Vivado
2018.3.

Figure 3.9 shows the resource usage for different counter sizes and compares them to
a baseline without any coverage instrumentation. We include numbers for up to 48 bit of
resolution which would be sufficient to prevent counter-saturation in practically all appli-
cations. Wide coverage counters lead to significant increases in resource usage, but as long
as we are only interested in finding lines that have never been covered, small counters of-
fer minimal area overhead. Figure 3.10 illustrates the f,,, scaling trends versus increasing
counter widths. For counter widths up to 8 bit for the Rocket and 2 bit for the BOOM-based
design, the overhead from our coverage support falls within the noise introduced by differing
placements.

We used our instrumented SoCs with 16 bit coverage counters to boot Linux and obtain
line coverage results. For the RocketChip design the simulation executed 3.3 B cycles in 50.4 s

2Chisel testbenches normally slow down the simulation by 2x-1000x. Industry insiders tell us that well-
optimized commercial SystemVerilog testbenches often present a 50% overhead leading to a 2x slowdown
compared to raw simulation speed. Thus the raw simulation overhead that we measured will be less noticeable
with a real testbench.
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Figure 3.9: FireSim simulator FPGA resource utilization versus counter width on two dif-
ferent processor designs.

(65 MHz). Scanning out the 8060 cover counts at the end of the simulation took 12ms. For
the BOOM design the simulation executed 1.7 B cycles in 42.6 s (40 MHz). Scanning out the
12059 cover counts at the end of the simulation took 17 ms. In the future, we might be able
to trade off simulation time and FPGA resource usage by using smaller counters that are
sampled more frequently.

Coverage Merging and Removal

Adding full line coverage to a large SoC design can have a significant area impact if we want
to obtain high-resolution coverage counts. Also, note that mapping a FireSim simulation
to the FPGA can take multiple hours. We can take advantage of the fact that we use the
same coverage instrumentation for both FPGA and software-based simulation to filter out
coverage points already caught in software simulation.

After merging the coverage results from running a RISC-V test suite with Verilator, we
were able to reduce the number of coverage counters by 42 % by excluding the ones that
were covered at least 10 times by the tests. As shown in Figure 3.9, resource consumption
is dominated by coverage hardware for wide counters, with LUT utilization increasing by
2.8x in the 32 bit case. Once redundant points are removed, this falls to 2.0x, a tremendous
saving that could be further improved with a more comprehensive suite of initial tests.
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Figure 3.10: FireSim simulator f,,,, versus counter width. A bit width of zero represents
the baseline with no coverage support. Note, the 48 bit BOOM configuration did not place
due to resource limitations.

Formal Trace Generation

As explained in Section 3.1 we can use our automated coverage instrumentation together
with a formal tool to automatically generate traces that exercise our cover statements. We
instrumented the open-source RISC-V Mini processor core and used bounded model checking
to find cover points that cannot be reached in 40 cycles. RISC-V Mini was not a design
that we were previously familiar with. Using formal trace generation with our line coverage
instrumentation, we discovered that the RTL for the instruction and data caches are the
same, but the instruction cache is read-only, and thus, the code blocks for write accesses
are never exercised. When we used finite state machine coverage, we discovered a bug in
our FSM analysis pass that resulted in an overestimate of transitions in the FSM. Formal
verification revealed that these transitions could never be covered.

Thus, by moving the coverage instrumentation out of the simulator and into the FIRRTL
compiler we are able to expand it to new use cases, such as automated coverage generation
with a simple formal tool. This allows designers to explore their design easily and can also
be very convenient for finding bugs in coverage instrumentation passes.

3.4 Limitations

We show that the most common types of coverage can be represented using synthesizable
constructs and a cover statement. However, while working on this project, we uncovered
one limitation that we would like to share: In the special case where we have a large number
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input signal : UInt<4>
cover-values (clk, signal, enabled)

¢ lowering to cover (~ exponential blowup )

cover (clk, eqg(signal, UInt( 0)), enabled)
cover (clk, eqg(signal, UInt( 1)), enabled)
; 2 ... 14 omitted

cover (clk, eqg(signal, UInt(15)), enabled)

i C++ simulation (simplified)

if (enabled && signal == 0) cnt 0 +=1;
if (enabled && signal == 1) cnt 1 +=1;
// 2 ... 14 omitted

if (enabled && signal == 15) cnt 15 +=1;

— direct lowering to a C++ simulation

if (enabled) cnt[signal] += 1;

— direct lowering to hardware (e.g., for FireSim) - sketch

signal V addr Read data >
| ____________ N
»addr enabled—

\
o
2
o

Figure 3.11: Covering all signal values with the cover statement leads to an exponential
blowup. A cover-values statement could be lowered directly to significantly more efficient
software and hardware implementations.

of events that we know are mutually exclusive, i.e., only one of them can occur in any
given cycle, the use of multiple cover statements is sub-optimal since we cannot exploit
the fact that only one of the counters will need to be incremented each cycle. A good
example is that we might like to count how often a signal’s value falls into certain cover
bins. Implementing these cases efficiently requires a new cover-values primitive which
counts how often a signal takes on each possible value. cover-values can be implemented
in software by indexing into an array of counters or using a block RAM on the FPGA. This
optimization becomes important when we want to cover a wide range of values, like in some
fuzz testing applications [60]. Figure 3.11 demonstrates the exponential blowup when trying
to use our cover statement and sketches efficient software and hardware implementations of
cover-values inspired by prior work [60].
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3.5 Discussion

Modern hardware verification flows rely on various simulators, emulators, and formal ver-
ification tools. This chapter demonstrates how a compiler-centered approach that lowers
automated coverage metrics to a single primitive allows for uniform coverage support across
backends. Support for a new simulator can be added in as little as a single day of work, and -
by design - every coverage metric will be available from the start. We demonstrate coverage
support for the Verilator and ESSENT simulators, which are significantly faster than many
commercial tools [131] as well as the FPGA accelerated FireSim simulator, which simulates
a four-core SoC at 65 MHz effective target frequency. In contrast, commercial emulators are
generally known to be significantly slower.

Besides broad support for all coverage metrics, our technique enables features that would
be difficult to support with a monolithic design where every coverage metric is hard-coded
into the simulator. We can use a formal tool to generate coverage traces for all automatic
metrics, including custom user-defined metrics like our ready/valid coverage. We can use
coverage from a software simulation of a design to remove easily reachable cover points before
instrumenting an FPGA-accelerated simulation with coverage counters.
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Chapter 4

Coverage-Directed Fuzz Testing of
RTL on FPGAs

In Chapter 3, we presented the cover statement abstraction, which allows us to quickly
implement various coverage metrics for a wide variety of different simulators. The coverage
numbers that are thus collected serve as valuable feedback to the RTL test designer. In this
Chapter, we show how — instead of using coverage for humans to interpret — we can use a
computer program to directly generate new test inputs based on the coverage feedback. Our
solution is based on feedback-directed mutational fuzz testing, which was popularized for
software testing by the AFL tool [156]. We were the first to adapt this technique to RTL
testing and to demonstrate the feasibility of fuzzing a design while it is being simulated on
an FPGA when we published at ICCAD in 2018 [81].

When the coverage feedback is used to drive the input generation, this problem is known
as Coverage Directed Test Generation (CDG). Various solutions have been proposed over the
last two decades. However, we argue that they are either designed for a very narrow class
of DUTs or require a good amount of expert time, such as for constructing a DUT-specific
Bayesian network [49]. This might explain why generator-based approaches, which require
the test engineer to manually specify biases from coverage reports, are still the most widely
used technique today.

Over the last couple of years, coverage-guided mutational fuzz testing has emerged as
one of the most effective testing techniques for finding correctness bugs and security vulner-
abilities in real-world software systems [156]. This technique relies on the fact that many
interesting programs can be run quickly with arbitrary bytes as input. The program under
test is augmented with lightweight instrumentation that provides feedback on the coverage
achieved by a particular input. Starting from one or several seed inputs, the fuzz engine tries
to achieve new coverage by mutating previously discovered inputs. Once a new interesting
input is discovered after running the program under test on it, it is added to the input pool
to serve as a new starting point in the input space exploration. Compared to more formal
techniques such as symbolic execution, fuzz testing has been able to scale up to much bigger
real-world programs with a smaller setup and engineering effort.
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We believe that coverage-guided mutational fuzz testing is a new and interesting design
point for solving the CDG problem. The approach of treating the test input as a series of
bits or bytes allows this technique to be applied to a wide range of different circuits. Using
FPGA-accelerated RTL simulation and synthesizable coverage feedback, we can achieve a
high test execution speed similar to how some clever engineering techniques enabled fast fuzz
testing speeds for software. In this regard, fuzz testing is — to the best of our knowledge —
the first CDG technique to be designed specifically with FPGA emulation in mind [105].

In this chapter, we lay the groundwork for applying coverage-guided mutational fuzz test-
ing to the CDG problem: We define the test stimuli in such a way that mutation algorithms
from software testing can be directly applied. We solve the problem of deterministic test
execution in FPGA-accelerated simulation by introducing transformations for MetaReset
transformation and Sparse Memories. We define the notion of Mux Toggle Coverage that
can be acquired during FPGA-accelerated simulation and used as feedback to the fuzz testing
process. We empirically evaluate the performance of the proposed solutions on a variety of
real-world RTL circuits ranging from communication peripheral IPs to CPU cores. Finally,
we make our high-performance implementation of the proposed testing approach available
to the research community as open-source software that can easily be used on a public cloud
infrastructure for FPGA-accelerated fuzz testing experiments.

4.1 Coverage-Directed Mutational Fuzz Testing

Algorithm 1 Coverage-guided mutational fuzzing

Given: program p, set of initial inputs [
Returns: a set of generated test inputs
1. S« 1
2: totalCoverage <+ ()
3: repeat
4. for input in S do
5 for 1 <i < NUMCANDIDATES(input) do
6 candidate <— MUTATE(input, S)
7 coverage <— RUN(p, candidate)
8 if coverage € totalCoverage then
9 S « S U {candidate}
10: totalCoverage < totalCoverage U coverage

11: until given time budget expires
12: return §

In this section, we introduce the basic coverage-directed mutational fuzz testing compo-
nents and algorithm as used by the popular software fuzzer AFL [156] and various work that
builds on top of it. A coverage-directed mutational fuzz testing tool (fuzzer) consists of three
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Table 4.1: Deterministic mutation techniques.

Name Description

bitflip 1/1 | flip single bit

bitflip 2/1 | flip two adjacent bits

bitflip 4/1 | flip four adjacent bits

bitflip 8/8 | flip single byte

bitflip 16/8 | flip two adjacent bytes

bitflip 32/8 | flip four adjacent bytes

arith 8/8 treat single byte as an 8-bit integer, add/sub values from 0 to 35
arith 16/8 | treat two adjacent bytes as 16-bit big/little endian integer, add/sub
values from 0 to 35

arith 32/8 | treat four adjacent bytes as 32-bit big/little endian integer, add/sub
values from 0 to 35

components: (1) A fuzz server that snapshots the program under test and quickly resets it
before every test. (2) A static or dynamic instrumentation pass that augments the program
under test to provide feedback about its behavior during execution. (3) A fuzz engine which
implements the algorithms to select parent inputs, mutate them, and analyze the feedback
from the instrumentation.

The program under test (PUT) is modeled as a pure function that takes an arbitrary
length byte array as input. The behavior of the PUT should only depend on the selected
input, and thus, a given input precisely describes a test execution. In order to guarantee that
all test results are reproducible, it is imperative that all program state is reset in between
tests. The fuzz server uses memory snapshot techniques to perform the reset before rerunning
the PUT with a new input provided by the fuzz engine.

The goal of the instrumentation pass is to augment the program so that it provides
coverage feedback for every execution. The feedback is used by the fuzz engine to guide
its search of the input space and to create a test corpus with high coverage. In order to
be effective, the chosen coverage metric needs to be lightweight enough to not slow down
test execution significantly, detailed enough to be able to guide the fuzz engine, but also
abstract enough to not overburden the fuzzer with every little detail of the PUT behavior.
The coverage feedback used by AFL that has shown to be successful in practice for software
testing is an approximate version of branch coverage: During instrumentation, every basic
block in the PUT is assigned a random ID. Once the program takes a transition in the
control flow graph, the source and destination ID are hashed together and used to index
into a 65536 entry table of 8-bit counters. The selected counter entry is then incremented.
In a post-processing step, the counter values, which range from 0 to 255, are placed into 8
exponentially increasing buckets. The intuition behind this is that traversing an edge twice
instead of once is new and interesting, whereas going from 6 to 7 transitions is normally not
relevant. This technique has good accuracy for small to medium-sized programs, is relatively
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Figure 4.1: Input definition.

easy to implement, and has an acceptable performance overhead.

At the core of a fuzz testing system, the fuzz engine is responsible for selecting new test
inputs to be evaluated and analyzing the resulting coverage feedback from the PUT. The
algorithm (shown in Algorithm 1) starts with an initial set of seed inputs, e.g., a set of small
PNG images when testing a PNG parser. Sometimes, a single empty input is used as a
starting point. All seed inputs are placed in the test set data structure S. In the main loop,
the fuzz engine selects one input from S and applies a set of mutations to it. Each result of
a mutation is executed by the fuzz server and the resulting coverage is analyzed. If a new
coverage point is reached, the input that caused it is added to S. After a user-controlled
timeout, the fuzzing process terminates, and the inputs in S can be used as a test corpus.

The mutation algorithm uses two kinds of mutators: deterministic and non-deterministic.
A mutator is a function that takes a test as input and modifies it in order to generate
several new child tests. An example of a deterministic mutator in AFL is the bitflip 1/1
mutation, which generates one child per bit in the parent input with the corresponding bit
inverted. A list of all deterministic mutators that are relevant to this chapter can be found
in Figure 4.1. The non-deterministic mutations are performed in the so-called havoc stage of
AFL. In each application of the havoc mutation, between 2 and 128 random mutations are
performed on the parent input. A list of all possible submutations is presented in Figure 4.2.
While deterministic mutations mutate every position in the input, non-determinist mutators
randomly choose the position to mutate.

The main advantages of coverage-directed mutational fuzzing compared to more formal
techniques such as symbolic execution are the smaller engineering effort, better scalability to
large real-world programs such as web browsers, and the portability of the approach due to
its relative simplicity. The generated test corpus contains inputs that tend to be small. If a
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Table 4.2: Non-deterministic havoc mutations.

Name Description

bitflip flip a random bit

interest 8 | overwrite a random 8-bit integer with interesting value

interest 16 | overwrite a random 16-bit integer with interesting value

interest 32 | overwrite a random 32-bit integer with interesting value

arith 8/8 | treat random single byte as an 8-bit integer, add/sub one value from
0 to 35

arith 16/8 | treat two random adjacent bytes as 16-bit big/little endian integer,
add/sub one value from 0 to 35

arith 32/8 | treat four random adjacent bytes as 32-bit big/little endian integer,
add/sub one value from 0 to 35

random 8 | overwrite random byte with random value

delete delete a random sequence of bytes

clone clone a random sequence of bytes

overwrite | overwrite a random sequence of bytes
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bug is uncovered while fuzzing (e.g., if a program crash is observed), the test input serves as
a witness of the bug and can be used to debug the problem. The simple input definition of
an array of bytes works on a wide range of programs and the coverage feedback is carefully
engineered for good test performance.

4.2 Fuzz Testing of RTL Circuits

While coverage-directed mutational fuzz testing is an input generation technique that uses
coverage feedback, it cannot be directly applied to the CDG problem for hardware designs:
A digital circuit is not a binary file format parser that can read an arbitrary number of
bytes. Instead, it has a number of input wires that can take different values in each cycle.
In addition to that, the memory snapshotting techniques used to reset software to a known
state before each test [156] cannot be directly applied to FPGA-accelerated RTL simulation.
Instead, we need a way to quickly reset the RTL state without changing the behavior of the
DUT. Furthermore, while its notion exists in HDLs for RTL simulation, branch coverage
does not directly apply to RTL designs. Branches in the HDL source code are mapped to
multiplexers in the circuit which output one of two input values during each cycle, which is
different from sequential software where only one branch is active at a given point in time. In
this section we therefore discuss how a test input for RTL circuits can be defined, the work
necessary to make DUTSs resettable on the FPGA, and how the notion of branch coverage
can be translated to testing RTL circuits.



CHAPTER 4. COVERAGE-DIRECTED FUZZ TESTING OF RTL ON FPGAS 46

Input Definition

RTL circuits are commonly represented as module hierarchy featuring one top-level module
that will be connected to the test harness or external pins. In our methodology, the top-
level input pins are connected to the testing tool. We concatenate all input pins and map
the resulting bit vector to a series of bytes representing the input values in one particular
test cycle. To allow the fuzz engine to apply a different value during each test cycle, we
concatenate single-cycle test inputs to form a multi-cycle input. We thus concatenate inputs
in space and time as illustrated in Figure 4.1. The number of cycles a particular test runs
for is thus determined by the number of test input bits divided by the number of input bits
to the top-level module of the DUT. Since the DUT is reset to a known state before each
test execution, the test inputs fully describe the test execution. Reproducing coverage or
assertion violations thus only requires knowledge of the DUT and the test input.

Deterministic Test Execution

Fuzz testing requires the program or device under test to be started from a known state to
make tests deterministic and repeatable. This ensures that only the test inputs affect the
behavior that will be observed by the fuzz engine and thus, a test can be fully reproduced as
long as the inputs are known. Resetting a program to a known state can require a non-trivial
amount of time. The simplest approach, to restart the program under test for every test
invocation, includes the cost of loading the program into memory and process creation, which
limits the number of test executions per second. The popular fuzzer AFL takes advantage
of the fork system call and copy-on-write optimization by the operating system to reduce
the overhead.

Quickly resetting an RTL circuit mapped onto an FPGA poses its own set of challenges
which need to be addressed in order to apply fuzz testing to this domain. In the following
sections, we discuss two major problems and how they are solved in our work: (1) for
efficiency reasons, many registers are not reinitialized during device reset; (2) memories do
not feature reset circuitry and can only be initialized one word at a time

Register Meta Reset

Reset circuitry for registers takes up space on the wafer and is thus omitted from designs
whenever possible. The initial value of these registers is thus undefined when the DUT
comes out of reset. Classic circuit simulators deal with this fact by introducing an X value,
which marks an uninitialized wire (in 4-state simulation) or by randomizing the initial values
of the register (in a 2-state simulation). Since this work is targeted at FPGA-accelerated
simulation, we would like to make use of a 2-state solution in order to prevent the blowup
in size that would result from emulating a 4-state simulation. Randomizing the register
values on the FPGA, however, is also a non-trivial endeavor and could lead to sporadic
tests. Instead, there are two promising solutions: (1) we can treat the initial register state
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reg [31:0] r;
always Q@(posedge clk) begin
if (metaReset) begin

r <= 32'hO0;
reg [31:0] r; end else begin
always @(posedge clk) begin if (reset) begin
if (reset) begin r <= 32'h1993;
r <= 32'h1993; end else begin
end else begin r <= r_next;
r <= r_next; end
end end
end end
(a) Register With Reset (b) Register With MetaReset

Figure 4.2: Meta reset transformation.

as part of the input and load the values through a scan chain before each test (2) we can
reset all registers to a predefined value before each test.

In this work, we implement solution 2 in a transformation pass that works on the interme-
diate representation (IR) of the circuit and adds a MetaReset wire, which resets all registers
in the circuit to zero. As an example, Figure 4.2 illustrates the addition of a MetaReset to
a register description in Verilog. Our test harness thus applies the following sequence before
each individual test: First, the MetaReset is activated for one cycle in order to initialize
each register to zero. Next, the MetaReset is released and the actual Reset of the DUT is
asserted in order to take the device through the reset procedure envisioned by its designer.
During this phase, it is essential to provide deterministic inputs to the DUT because a reg-
ister might be hardwired directly to a top-level input in the original design. We again chose
all zeros as a deterministic input. This approach is sound since starting the design with all
registers set to zero is allowed by the RTL (an X can be any value), but incomplete since
other possible values are not explored.

Sparse Memories

Memories are rarely meant to be reset when the circuit is turned on. Memories are often
mapped to SRAM cells, which generally contain arbitrary values when powered on. The
concept of a memory can be mapped to a much more area-efficient implementation compared
to a register because only a small number of memory words (bounded by the number of write
ports) can be updated in each cycle. This restriction sets the lower bound for the number of
cycles needed to fully reset a memory to be the memory size in words divided by the number
of write ports. This number can be very high in practice, especially when considering the
data or program memory of a processor design.

The task of resetting memories is not as difficult as the upper bound mentioned above
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might suggest. To see why it is important to consider the details of the fuzz testing scenario
proposed in this chapter: The core idea is to mutate the seed inputs as often as possible and
to evaluate every generated input on the instrumented DUT. In order for this to be feasible,
the test size and thus, the number of cycles it takes to execute a given test is relatively small.
Thus, the number of writes that may occur during a single test for a given memory is bound
by the number of write ports times the number of test cycles. If we can keep track of the
memory locations that have been written in a test execution, we are able to undo all the
changes made and thus reset the DUT on the FPGA. This solution would require a memory
for every write port to remember the addresses that have been written to in addition to
the actual memory that stores the values. In the worst case, resetting this kind of memory
would take as many cycles as the previous test took to execute.

Going back to the observation that we will only observe a small number of writes, we can
refine the design of our resettable memory: Since the number of writes is small, most memory
locations will contain the reset value which we define to be zero, just as for registers. The read
port of such a sparse memory needs to work in the following manner: If the address that is
requested has been written to, return the last written value. If the address that is requested
has never been written to, it is uninitialized, and thus, we need to return zero. We can keep
track of the addresses that have been written to, by using a content addressable memory
(CAM). The CAM can also be used to map the requested address to a much smaller memory
that only needs to be able to hold as many values as may be written during a maximum-
length test. Thus, this kind of sparse memory needs oftentimes much less SRAM than the
original version. The CAM can easily be reset in a single cycle by connecting the valid bit of
each entry to the Reset signal of the DUT. Implementing a custom transformation pass on
the RTL of the DUT, we can automatically replace memories by a sufficiently large sparse
memory.

Using the MetaReset and the SparseMem transformations, we can ensure that the DUT
can be reset to a fully deterministic state in only two clock cycles. This allows for rapid and
repeatable test execution, thus enabling fuzz testing of RTL circuits on FPGAs.

Coverage Definition

We require precise definitions of our coverage metrics for two reasons: (1) To define an end-
to-end metric that can be used to measure how well our implementation of mutational fuzz
testing for RTL compared to a baseline technique; (2) To define an intermediate coverage
metric that serves as feedback to the fuzz engine in order to guide the search of the input
space. While prior industrial work [138, 145, 19] uses functional coverage models manually
specified by verification engineers, these test suites are expensive to create and, thus, gener-
ally unavailable to the broader research community. Instead, we focus on automatic coverage
that can be derived directly from our suite of open-source benchmark circuits. This kind of
coverage has been used in related academic [133] and industrial [65] work.

Most automatic coverage definitions focus on the description of the circuit expressed in a
common HDL like Verilog or VHDL [117]. However, our system works with any RTL circuit
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regardless of the hardware description or generation language it is written in. We thus define
our coverage metric in relation to the synthesizable structure of the circuit as represented
in an HDL-agnostic IR. This also ensures that we can synthesize and thus collect coverage
information during FPGA-accelerated simulation.

We look at mux control coverage which treats each 2:1 multiplexer select signal as an
independent cover point. Multiplexers with more than two inputs can be trivially converted
into a series of 2:1 multiplexers. We chose this metric as it can be automatically applied to
any RTL circuit as long as the multiplexers are explicitly modeled. It is also well-suitable
for FPGA-accelerated simulation since we do not need any additional circuitry to evaluate
the cover points.

For a mux control condition to be fully covered, we require that it evaluates to true as
well as to false during a single test. On the FPGA, this requires only minimal additional
hardware — two 1bit registers and two 1bit multiplexers — to remember the observed
values. We combine the coverage observed in multiple tests by calculating the union of mux
control conditions covered. Note that by this definition it is not enough for a condition to
always be true in one test and always be false in another test to be counted as covered.
Instead, both values need to be observed in a single test.

The coverage used in Algorithm 1 is thus defined to be the set of multiplexers in the
DUT which had their control signal toggle during test execution. If a test input manages to
toggle a mux control signal that had never been toggled before, it is considered interesting
and is added to the test data structure S.

Mutation Algorithms

Our input definition allows us to directly implement the mutation heuristics from the suc-
cessful AFL fuzz testing tool [156] presented in Section 4.1. Similar to AFL, every new entry
in our test set is first mutated with the deterministic mutation techniques listed in Table 4.1.
Once we run out of deterministic mutations to apply, we switch to our implementation of
the AFL havoc stage which makes use of the mutations presented in Table 4.2. For any
mutation that changes the size of the input array, we pad with zeros when necessary in order
to maintain an input size that is a multiple of the bytes needed in a single cycle.

Constrained Interfaces

In hardware testing, many interfaces make assumptions that have to be respected by the
stimuli generator. An example for this is a memory bus which can rely on the fact that
any participant will respect the protocol specification. To this end, a test input generator
in traditional directed random testing needs to be implemented in such a way as to not
violate the guarding assumptions. A similar solution could be applied to fuzz testing by
implementing an RTL adapter that takes the unconstrained inputs from the fuzzer and —
by construction — generates valid bus transactions from them.



CHAPTER 4. COVERAGE-DIRECTED FUZZ TESTING OF RTL ON FPGAS 50

However, the feedback-directed manner of the fuzzing approach allows for a more conve-
nient solution: We observe that modern HDLs allow designers to specify interface constraints
through assume statements in the DUT source code. In our benchmarks which make ex-
tensive use of the TileLink bus, this mechanism is used to implement a synthesizable bus
monitor which detects invalid transactions. Taking the conjunction of all assumptions in the
monitor over all cycles in a test, we can derive a binary signal which indicates whether the
given test inputs exercise the DUT in a valid manner. This valid signal is included by the
test harness on the FPGA with the regular mux condition coverage as feedback to the fuzz
engine. The simplest way of using this signal is to reject all invalid inputs before updating
the coverage map. This is comparable to rejection sampling in random directed testing.

The authors of the open source Java fuzz testing tool JQF ! have extended the core fuzz
testing method described in Algorithm 1 to take advantage of the feedback regarding the
validity of a generated test input. They keep two separate coverage maps: one for the total
coverage and one for the coverage achieved by valid inputs only. A new input is added to
the test set S when it achieves new total coverage or if it is valid and achieves new valid
coverage. This extension allows the fuzz engine to discover valid inputs from invalid ones.
We implemented the JQF technique using two coverage maps in our testing tool.

4.3 Implementation

We implemented the proposed testing methodology in an open-source tool called RFUZZ2. Tt
consists of an instrumentation and harness generation component that works on arbitrary
RTL circuits described in the FIRRTL IR [67]. The first part of our tool is an instrumentation
and harness generation component, which works on arbitrary RTL circuits described in the
FIRRTL IR [67]. It automatically generates a test harness for software or FPGA-accelerated
simulation. The second part of our tool is the actual input generator, which connects to the
test harness running in software or on the FPGA to provide DUT inputs and analyze the
resulting coverage.

Our tool is language-agnostic since it can work on arbitrary RTL designs expressed in
the FIRRTL IR [67]. Once a target design is translated into FIRRTL IR from its source
HDL, we can apply compiler passes for the target RTL regardless of its source HDL. RFUZZ
is also fully automated as the target RTL is instrumented through compiler passes, and the
fuzzer uses the target information generated by the compiler. Only some parameters to the
fuzzer, such as the mutation technique and seed inputs to use, need to be specified by the
user.

https://github.com/rohanpadhye/jqf
’https://adept.eecs.berkeley.edu/papers/rfuzz


https://github.com/rohanpadhye/jqf
https://adept.eecs.berkeley.edu/papers/rfuzz

CHAPTER 4. COVERAGE-DIRECTED FUZZ TESTING OF RTL ON FPGAS o1

___________________________________

Verilator

Input
Buffer

Buffer

_::::::::::I_I

Input
L Buffer

:LI

Coverage
L Buffer

(b) Fuzzer with FPGA-accelerated simulation.

Figure 4.3: Shared memory implementations for communication between the fuzzer and the
test harness.

Instrumentation

Custom transforms are implemented as compiler passes that plug into the FIRRTL compiler.
We use the compiler’s dead code elimination and constant folding to minimize the redundant
expressions before instrumenting the coverage signals. This helps us keep the size of the
automated coverage feedback as small as possible.

The MuzCov (Section 4.2) pass automatically identifies intermediate coverage wires by
traversing the circuit description. In our implementation, we consider multiplexer control
conditions, memory read and write enables, and memory masks for the coverage feedback to
the fuzzer. Coverage wires automatically identified by the circuit traversal are then rewired
through the module hierarchy to be available as outputs of the top-level module so that
coverage wire values are observed by the test harness. This pass also generates a metadata
file containing information about the coverage and the input pins in the RTL design for the
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Table 4.3: Benchmarks.

Name ‘ Input Width Mux Cover Points Lines of FIRRTL

Sodor1Stage 35 714 3617
Sodor3Stage 35 746 4021
SodorbStage 35 945 4088
12C 165 301 2373
SPI 167 323 4046
FET 259 195 1545
Rocket Chip 239 4517 43856

test harness generation.
The details of our MetaReset and SparseMem passes are explained in Section 4.2 and
Section 4.2, respectively.

Test Harness Generation

The test harness generator automatically generates a wrapper for any RTL design by con-
suming the target design information, including input and coverage pins generated, by the
instrumentation passes. It instantiates the instrumented DUT and connects the coverage
pins inserted by the instrumentation pass to toggle detection circuitry. It also automatically
derives a buffer format definition for the required input and coverage size and emits Verilog
and C++ code for the software and FPGA-accelerated simulation environments to interface
with the buffers.

The test harness is further automatically transformed by FIRRTL compiler passes for
efficient token-based simulation on the FPGA [76], dramatically reducing manual effort for
FPGA-accelerated simulation. Our tool also automatically generates the buffer stream unit
mapped on the FPGA and integrates it with the test harness for communication with the
fuzzer. Finally, the test harness generator emits target-specific information about coverage
counters, top-level inputs, and buffer formats, which the fuzzer consumes to test a particular
circuit design.

Fuzzer

Whereas the DUT and the coverage counters can be synthesized onto an FPGA, the input
generation and coverage analysis are performed by a fast fuzzer on the CPU. Implementing
this part in software allows for greater flexibility in investigating new mutation and feedback
strategies. While an integrated solution on the FPGA could be even faster, we achieve good
performance with a high bandwidth DMA channel.
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Figure 4.3 shows how the fuzzer efficiently communicates with the test harness through
shared memory buffers. The fuzzer is unaware of whether the test harness is run in software
simulation or on the FPGA. The fuzzer allocates multiple buffers in the shared memory
region, and test inputs and coverage feedback are batched to the buffers (Figure 4.3a).
When the test harness is run in software simulation, the software simulator directly accesses
these buffers. To cope with high round-trip latency between CPU and FPGA, when the test
harness is run in the FPGA, these buffers are transferred through a high bandwidth DMA
to the buffer stream unit that post-processes the data in the buffers (Figure 4.3b).

4.4 FEvaluation

We evaluate the proposed testing methodology using our RFUZZ tool on a range of open-
source RTL designs:

1. TileLink Peripheral IP: These consist of a SPI and [2C peripheral IP which are
used in the commercial SiFive Freedom SoC platform 3. They interface with the fuzzer
through a TileLink port which includes a synthesizable bus monitor. The feedback
from the monitor is used to ensure that only valid inputs are included in the reported
coverage.

2. FFT: As an example of a DSP block, we use a FFT implementation produced by an
open-source FFT generator .

3. RISC-V Sodor Cores: We selected three different educational RISC-V cores main-
tained by the LibreCores project ®. In order to directly affect the executed instructions,
we create a special fuzz testing top-level module which — instead of instantiating a
scratchpad memory — directly wires the instruction memory interface to the top-level
inputs. This allows our testing tool to act as the instruction memory and directly
supply the core with instructions to execute.

4. RISC-V Rocket Core: In order to test the scalability of our approach, we use the
RISC-V Rocket Chip [6] as our final benchmark. This 64-bit in order core is supported
by industry and is able to boot the Linux operating system. Its size impacts the
execution speed of software simulation and thus allows us to evaluate the benefits of
an FPGA-accelerated simulation approach to the CDG problem.

A detailed list of the benchmarks is available in Table 4.3.

For our evaluation we use software simulation on the public AWS cloud infrastructure
to quickly evaluate various configurations in parallel. Each fuzz testing run was performed
on its own virtual core. Since several of the proposed mutation techniques make random

3https://github.com /sifive/sifive-blocks
4https://github.com /ucb-art /{ft
Shttps://github.com /ucb-bar/riscv-sodor
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Table 4.4: Speedup: FPGA vs software simulation.

‘SodorSStage Rocket ‘

Verilator 345 kHz 6.89 kHz
FPGA 1.7 MHz 1.46 MHz
Speedup 4.9x 212x

Table 4.5: Machine specifications for speedup evaluations.

Local Machine (Verilator) Amazon F1 (FPGA)
CPU AMD Ryzen 7 1700X 8 vCPUs
Memory 32GB 122GB
FPGA - Xilinx UltraScale+ VU9P
DMA bandwidth - 1.5GB/s

decisions when generating new test inputs, we rerun experiments four times with different
seeds to the pseudo-random number generator and average the results.

During each testing run, we save all generated inputs that make it into the test set S
to disk. In order to evaluate the achieved coverage independently from our testing tool, we
use a series of Python scripts to calculate end-to-end coverage metrics. Since speed does not
matter in this context, we are able to restart the software simulation for each entry can thus
be confident that various tests are indeed independent and do not affect each other. The end-
to-end analysis scripts also exclude any invalid inputs as indicated by an assumption failure
during the test run. We can thus ensure that — independent from RFUZZ — our coverage
numbers only include valid inputs as checked by the monitors and assume statements. All
coverage in this section is measured as a fraction of the maximum mux control toggle coverage
as indicated by the number of multiplexers in the design. It might be impossible for some
mux control wires to be influenced from the inputs controlled by the fuzzer and thus there
is no guarantee that 100 % coverage can be achieved.

Comparison to Random Testing

Similar to our proposed technique, random testing is applicable to any RTL circuit without
DUT-specific setup costs. We implement random testing in our tool in order to measure
whether coverage-directed mutational fuzz testing provides any advantages over the simple
random baseline. In order to implement the baseline, we replace the normal mutation algo-
rithms that modify a given test input to generate a new independent random input instead.
Figure 4.4 shows the results for all of our benchmarks. As we can see, the random base-
line quickly saturates, whereas the coverage-guided fuzz testing is able to make progress by
mutating previously discovered inputs.
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Figure 4.4: Mux control toggle coverage over time: RFUZZ vs. random testing.
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Constrained Interfaces

As explained in Section 4.2 we can deal with constrained interfaces by observing the as-
sumption failures that result from invalid test inputs. All tests in Figure 4.4 used the JQF
technique to generate valid inputs. As we can see, this provides a significant improvement
over the random baseline for the TileLink 12C and SPI peripherals.

Software vs. FPGA-Accelerated Simulation

For small circuits, generating the test inputs and analyzing the resulting coverage takes the
majority of time, but this changes as the design becomes bigger. The simulation time is
the major bottleneck for large designs such as a real-world 64-bit processor. As mentioned
throughout Section 4.2, we took specific care to design our testing methodology in such a
way that the device under test can be simulated on the FPGA.

To show how FPGA-accelerated simulation enables us to scale to test complete large-scale
systems, we measured the execution speed for a small educational processor (Sodor3Stage)
and a productized in-order processor (Rocket). Table 4.5 shows the specifications for the
machines we used in this evaluation. We compiled bitstreams for FPGA-accelerated simula-
tions using Vivado 2017.1, and both designs closed timing at 75 MHz. The FPGA synthesis
time was 2~5 hours.

Table 4.4 shows the speedup of FPGA-accelerated simulation over software simulation for
two designs. As expected, we can achieve significant speedup for a complex design, but even
a small design can benefit from FPGA-accelerated simulation. Notably, software simulation
slows significantly with complex designs, while FPGA-accelerated simulation provides high
simulation rates regardless of design complexities. With FPGA-accelerated simulation, the
simulation speed is bottlenecked by the speed at which our fuzzing software analyses coverage
and generates new inputs. Thus, shifting some of that functionality from the fuzzer to the
FPGA could significantly improve the simulation rates in the future.

4.5 Advanced Coverage Metrics as Fuzzing Feedback

The work on coverage-directed mutational fuzz testing was done before we generalized the
approach taken to implement mux-toggle coverage to the universal solution presented in
Chapter 3. Thus, all our evaluations were limited to looking at mux-toggle coverage. How-
ever, with the cover statement-based approach, any metric that we implemented an in-
strumentation pass for can be used as fuzzing feedback. We thus created a simple fuzzing
setup, connecting the AFL fuzzer [156] to a rfuzz-style harness [81] using the RTL Fuzz Lab
infrastructure [48]. The coverage counts serve as direct feedback to AFL instead of going to
a report generator. This way, we can mix and match various metrics easily.

We implemented the mux toggle coverage metric from rfuzz in our framework and com-
pared it to using our line coverage as feedback when fuzzing an 12C peripheral. Figure 4.5
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Figure 4.5: Cumulative line coverage of inputs to the I2C peripheral discovered through
fuzzing with various feedback metrics. Averaged over five runs.

shows cumulative line coverage for different feedback metrics. We see that increasing mux-
toggle coverage generally increases line coverage as well. Mux-toggle coverage can be imple-
mented over low-level structural RTL, while line coverage generally works best on behavioral
RTL. Thus, there may be situations in which it is best to use the mux-toggle coverage proxy.
However, Figure 4.5 does show a slight advantage of using line coverage directly instead of
a proxy metric when it comes to achieving maximum final coverage.

4.6 Discussion

In this chapter, we show how coverage-directed mutational fuzz testing can automatically
test arbitrary RTL circuits on FPGAs. We provide a high-performance implementation
of this technique based on the FIRRTL compiler and a new fuzzer implementation that
decouples input generation from coverage analysis to effectively hide the latency inherent
to communicating with a design under test on an FPGA. Our evaluation shows consistent
improvements over random testing, especially for circuits that provide feedback on test input

validity.
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Chapter 5

Open-Source Formal Verification for
Chisel

In Chapter 4, I demonstrated how feedback-directed mutational fuzzing can use coverage
metrics to generate new and interesting inputs to a design under test. However, we might still
miss corner case bugs even with diverse test inputs. An alternative approach, as introduced
in Section 2.6, is formal verification. During my PhD, I extended the ChiselTest verification
library with formal verification capabilities. In this work, I focused on providing a good user
experience by integrating formal verification as tightly as possible with existing simulation-
based testing infrastructure. The work described in this chapter has been published at the
Workshop on Open-Source EDA Technology (WOSET) [78] and as part of a more extensive
journal paper on ChiselTest-based verification [42]. All features have been part of the open-
source ChiselTest library since the 0.5.0 release in 2021. T have used the formal verification
support for my interactive guest lecture on formal verification for an agile hardware design
course at UC Santa Cruz, which I was invited to give in 2022, 2023, and 2024.

There is a long tradition of open-source formal verification systems from the academic
community [96, 99, 31, 114, 54, 147, 103]. However, because of the traditional academic
incentive structure, these research systems are often complicated to use and lack support for
advanced Verilog features, preventing them from being widely used by a community of open-
source RTL designers. This has changed with the introduction of the yosys [153] tool, which
has become the de facto standard for processing Verilog for synthesis or formal verification.
Yosys allows academics to focus on developing model checkers for the simple btor2 [111] or
aiger [14] formats without worrying about supporting the much more complicated Verilog
standard. The open-source SymbiYosys [152] tool wraps yosys and various formal verification
engines to allow users to verify their designs. All a user has to provide are the Verilog
sources of their design, including assertions and assumptions, and a small configuration
script. SymbiYosys translates any failing traces it discovers into Verilog test benches and
VCD waveform dumps for the user to inspect. With the open-source GHDL plugin, yosys
also supports formally verifying circuits written in the VHDL language.

In this chapter, we describe our approach to providing Chisel users with an easy way to
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Figure 5.1: When working in a standard Scala IDE like the open-source IntelliJ IDEA with
the Scala plugin, the user can launch the formal check with the press of a button. The
success or failure will be communicated like any other unit test. A VCD waveform dump is
automatically generated to help debug failing checks.

formally verify their designs, similar to what SymbiYosys provides for RTL designs written in
Verilog. We adopt many good ideas from yosys and build several new convenience features,
taking advantage of the existing compiler infrastructure for Chisel. We added several novel
Chisel-specific features that will make formal verification accessible to all Chisel users. Our
system can automatically add reset assumptions, thanks to Chisel modules always having
a known reset pin. We employ simulation replay to help users investigate failing inputs
found with bounded model checking. We carefully designed a formal backend for the FIR-
RTL compiler to ensure that undefined values in Chisel are correctly modeled and that the
model checker can explore all possible behaviors. We also use the extensibility of the Chisel
library and FIRRTL compiler to implement a past expression for simple and safe temporal
assertions.

5.1 Our Formal Verification Flow

Before we dive into some of the details of our implementation, we want to present the
workflow that our tools enable from a user’s perspective to illustrate how easy it can be
to get started with formal verification of a Chisel circuit. The recommended way to start
a Chisel project is to use the open-source Chisel template repository. The resulting Scala
project automatically includes dependencies on the Chisel and ChiselTest libraries, which
the Scala build tool downloads automatically for the user.

The template contains an example of using the ChiselTest library to test a greatest
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common denominator (GCD) circuit in simulation. The full source code of the circuit and
its test can be found in the appendix in Listing 1 and Listing 2. The user can execute
this test through their Scala IDE or from a shell with the sbt test command. To turn
this test into a formal check, we just need to substitute the test (new DecoupledGed(16))
command with verify(new DecoupledGecd(16), as well as provide the type of verification
job as BoundedCheck(10) and extend the testing class with the Formal trait:

class GCDSpec extends AnyFreeSpec with ChiselScalatestTester with Formal {
"Gecd should verify" in {
verify(new DecoupledGcd(16), Seq(BoundedCheck(kMax = 10)))
b
+

If the user clicks the test icon again or runs the sbt test command, a formal bounded check
will be executed for ten cycles after reset instead of a simulation test. The only program
required in addition to the normal Scala development setup is a copy of the open-source
SMT solver Z3 [39]. Figure 5.1 illustrates the IDE based workflow.

The check will succeed trivially, no matter which changes we make to the circuit since
there are no assertions in the GCD source code. A lack of assertions means there is nothing
to tell the solver if the circuit misbehaves. To have something to verify, we can add assertions
directly to the circuit by using the Chisel assert statement. The decoupled GCD circuit
used as an example has an input and an output channel as well as a 1-bit busy register.
We expect that while the circuit is busy, no new input is accepted:

when (busy) {
verification.assert(!input.fire())

b

This assertion could easily fail in the first execution cycle since the busy register starts in
an unknown state when the circuit is powered on. By default, Chisel registers all start in an
unknown state and only take on their initial values when the implicit reset wire is asserted for
at least one cycle, closely modeling the behavior of actual hardware implementations. How-
ever, the assertion actually passes, and the GCD circuit correctly implements the expected
behavior. This is because our system always implicitly adds the assumption that the reset
pin is asserted during the first cycle of the formal check, similar to how the dynamic testing
interface runs the design through a reset cycle before executing the user test. In addition,
assertions in Chisel are guarded by the reset signal by default. Thus, the property at hand
is only checked after a successful reset, and thus, it holds. Our implementation allows the
user to disable the automatic reset behavior for special cases; however, since Chisel typically
mandates reset conventions, our automated reset assumptions are what users generally want.
We thus simplify formal verification by making the standard case the default while allowing
power users to opt out.
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Next, we introduce a minor bug into the GCD circuit by connecting input.ready to
true.B and rerun the test. ChiselTest reports an assertion violation one cycle after reset. It
also presents the user with an error message indicating the Scala line number of the failing
assertion. To debug the problem, they can find a VCD waveform dump in the standard test
directory created by our ChiselTest library. Since we replay the test on a concrete simulator,
the error message and VCD will be precisely the same as if the user were running a simulation
test. Any improvements to our simulation interface or error reporting will thus immediately
benefit formal verification users.

A more advanced property we expect to hold is that if the input and output channels
are idle, the busy signal will remain the same in the next cycle:

when(past(!input.fire() && 'output.fire())) {
verification.assert(stable(busy))

}

Here, we use our past function for temporal properties, described in Section 5.4. Our system
automatically delays the assertion to only be checked one cycle after reset to ensure that
past values of the expressions exist.

Memory Behavior Verification Example

Figure 5.2 shows how we can use ChiselTest with our newly added verification capabilities
to verify the read-under-write behavior of memories in the Chisel language. Read-under-write
occurs when both the read and the write port of a memory access the same address in the
same execution cycle. The Chisel memory primitive can be configured to resolve the conflict
in three different ways. The memory can return the old data at the address (ReadFirst), the
newly written data (WriteFirst), or an arbitrary value (Undefined). In the example, we
encode the WriteFirst behavior as a temporal assumption using our new past statement.
The check fails if WriteFirst is substituted with ReadFirst or Undefined (Section 5.2).

A blogpost ! with a similar example written in the Verilog language served as inspiration.
However, in the Verilog version, the user must manually encode the restriction that the
assertion may only be checked after one cycle because otherwise, the $past operator in
Verilog returns an invalid x value. In the Chisel version, the assertion is automatically delayed
until at least one cycle after reset, when there are valid past values available (Section 5.4). A
bounded model check is executed by the verify command, which is called from a standard
Scala unit test (Section 5.1). When the check fails, the failing inputs and starting states are
replayed on a simulator, resulting in a waveform file identical to the output we would get
from a dynamic verification run. However, since we used bounded model checking to find
the failing trace, it will be as short as possible. In our example, the design must be executed
for two cycles after reset to trigger a failure of the property. The first cycle contains the read

'https://zipcpu.com/answer/2021/07/03/fv-answer15.html
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class Quizl5 extends Module {
/* [...] I/0 definitions */
val mem = SyncReadMem (256, UInt(32.W), WriteFirst)
when(iWrite) { mem.write(iWAddr, iData) }
oData := mem.read(iRAddr, iRead)

when(past (iWrite && iRead &&
iWAddr === iRAddr)) {
verification.assert(oData === past(iData))
}
}

class ZipCpuQuizzes extends AnyFlatSpec
with ChiselScalatestTester with Formal {
"Quiz15" should "pass with WriteFirst" in {
verify(new Quizil5, Seq(BoundedCheck(5)))

}
}
Signals Waves
Tlme IlIlIllllllIIllIlIlIBthllIllllIl|lIllllllllslnlslllllllllll
clock=0 || | ] ]
reset=0 ||
iRead=1 ||
iWrite=1 || | 1
iRAddr[7:0]=0 | (T 0 1
iWAddr[7:0]1=0 ||e 0
iData[31:0]=0 | e 0
oData[31:0]=0 | le 1 1 (#0)

cycle #0: read and write  cycle #1: read datais 1,

issued from/to address 0  but write data was 0
Figure 5.2: ZipCPU verification quiz implemented with ChiselTest.

and write requests. The second cycle observes the arbitrary result on the read port if we set
the memory behavior to Undefined for read/write conflicts.

5.2 A Formal Backend for FIRRTL

The verify command introduced in the previous section elaborates on the Chisel design,
translates it into a format that an open-source model checker or SMT solver can understand,
invokes that solver, and then communicates the result. In this section, we describe how we
pre-process the FIRRTL description of the generated design and finally convert it into the
btor2 or SMTLib formats, depending on which backend engine we use. Structural RTL
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Figure 5.3: The verify command is implemented as part of the ChiselTest library and
uses several compiler passes that make up the FIRRTL formal backend. We hook into the
FIRRTL compiler to model undefined behavior with DefRandom statements and to delay
temporal assertions as part of our safe past construct. We then add reset assumptions,
flatten the system, convert to a formal transition system and then serialize the system to
SMTLib or btor2. We provide bindings to launch various formal engines from ChiselTest. If
a counter-example is found, we convert the DefRandom nodes in the circuit to registers before
loading the circuit into the treadle simulator to replay the failure and obtain a simulation
quality VCD and error message.



CHAPTER 5. OPEN-SOURCE FORMAL VERIFICATION FOR CHISEL 64

in the LoFIRTL format (see Section 2.1 for more background) is semantically close to the
supported backend format and can be translated rather straightforwardly. We did have to
add passes to carefully model arbitrary values in FIRRTL, ensuring the model checker can
exploit them to find corner-case bugs in the design under test. Finally, we explicitly designed
our system to ensure that any counter-example found by a formal backend can be faithfully
replayed on our normal simulation infrastructure. We use the treadle interpreter to replay
failure-inducing inputs, thus providing the user with high-quality VCD waveforms and easy
debugging with Chisel’s print statements. Figure 5.3 shows our compilation flow in more
detail.

Output for Model Checkers

Most modern open-source model checkers consume circuits in the simple btor2 format [111].
This format supports no notions of a module hierarchy; all one can express is a circuit
that comprises a single module. Thus, our backend flattens the design under test by inlining
everything into a single module. To ensure that we produce an excellent waveform dump, the
counter-example will be replayed on the non-inlined circuit. We use the FIRRTL compiler’s
built-in annotation support to automatically track the name changes of all registers and
memories in the design as they are inlined. This way, we can map initial states found by
the formal engine back to their hierarchical names to accurately initialize the state before
replaying a failure-causing input in simulation.

Once the circuit has been flattened, the conversion to a transition system is fairly straight-
forward. We implemented an SMTLib and btor2 encoding very similar to the one pioneered
by yosys. We used the FIRRTL specification to accurately translate FIRRTL expressions to
the bit-vector expression language defined by the SMTLib format [8]. Our backend supports
memory and registers initialization using the same user annotations as the Verilog backend.
Multi-clock support through a clock stuttering pass is a work in progress; for now, only
circuits with a single clock domain are officially supported.

Modelling Non-Deterministic Behaviors

Users want their Chisel designs implemented with as little hardware as possible. The FIR-
RTL specification was crafted to allow some operations to result in arbitrary results, allowing
for better compiler optimizations and avoiding unnecessary hardware. For example, a wire
connected to DontCare or to the result of a division by zero carries an arbitrary value. Read-
ing from a memory while the read port is disabled, reading from the same address another
port is writing to, or writing from two memory ports to the same address all generate an
arbitrary value result. The Verilog code generated by the FIRRTL compiler does not reflect
all arbitrary behaviors. This is because the compiler is free to substitute arbitrary with
(more) concrete values, like always returning a memory read result even when the read port
is disabled or assigning a priority to write operations so that at least one will complete.
Thus, if we first generate Verilog and then use yosys, we only verify one concrete design



CHAPTER 5. OPEN-SOURCE FORMAL VERIFICATION FOR CHISEL 65

translation. Still, there may be other legal translations that would violate the property.
Alternative translations might be produced, e.g., in the context of memories, when we use
an external SRAM compiler that might try to rely on the fact that write-write collisions
can have arbitrary results to generate better hardware. Thus, it is crucial that we carefully
model arbitrary values as part of the FIRRTL compiler’s new formal backend.

Initially, we implemented arbitrary-value modeling as part of the translation from LoFIR-
RTL to btor2 or SMTLib output. However, this approach has two downsides: (1) It com-
plicates the backend pass since translation and arbitrary-value modeling need to be handled
in the same implementation, and (2) to accurately model arbitrary values in the circuit de-
scribed by the user code, this modeling has to take place at the beginning of the compiler
pipeline, since some existing transformations might otherwise prematurely change or remove
behaviors.

Our new approach uses a new DefRandom statement to decouple arbitrary-value model-
ing and emission. It provides a named arbitrary value that can change every clock cycle,
much like a anyseq annotated wire in Verilog. Our btor2 and SMTLib emission implements
DefRandom nodes as additional inputs to the design. These inputs are freely controlled by
the formal engine, thus allowing any value to be chosen on each step. We implemented a pass
that replaces expressions that produce arbitrary values with a value from a new DefRandom
node. This takes care of explicit assignments with DontCare and divisions, which have an
undefined result when the divisor is zero. A second pass takes care of modeling four non-
deterministic behaviors around memories. (1) when the same address is accessed from a read
and a write port in the same cycle, the value on the read port output is arbitrary (2) when a
read port is not enabled, the output is arbitrary (3) when the same address is updated from
two different write ports, then the address is updated to an arbitrary value (4) when a value
is read outside of the memory range, the value on the read port is arbitrary. Out-of-bounds
reads can happen because FIRRTL memories can have an arbitrary number of entries. Their
depth does not have to be a power of two.

Interoperability with Simulation

Once the formal engine finds starting states and inputs that lead to an assertion violation,
we need to help the user debug their design. Since we do not have the extensive resources of
a major EDA vendor, we would like to reuse as much of the existing simulator infrastructure
as possible. If we can replay the failing trace on our existing simulator, the VCD waveform
dump and the error reporting will be the same quality as when writing a concrete test bench.
We carefully designed our arbitrary value modeling — explained in the previous section — to
allow for exact replay. While no simulator supports DefRandom, we can replace them with
registers as part of a compiler pass. We then take the arbitrary values provided by the formal
backend and apply them to the registers in the simulator for accurate replay. We also collect
metadata to map the names of registers and DefRandom nodes in the flattened design back
to the hierarchical names used by the simulator.
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5.3 Reset Assumptions

In Chisel, users rarely need to worry about resets. Registers with reset values are auto-
matically connected to the default reset port of the module, and module instances inherit
their reset domain from their parent. In Verilog, users must manually ensure that assertions
are only triggered after the circuit has been properly reset. We decided to provide sensible
defaults instead. Assertion statements are automatically disabled, closely following the be-
havior of print and stop statements, which have been part of Chisel since the first release.
As part of our formal verification support, we provide a FIRRTL pass that automatically
adds a constraint for the rest of the top-level module to be active during the first execution
cycle. Thus, by default, users do not have to worry about resetting. Their assumptions will
only fire after their circuit has been properly reset, and hence, we ensure that there are no
false positives. We provide options for power users to write assertions that are active during
reset and to disable reset assumptions or increase the number of reset cycles.

5.4 Simple Temporal Assertions

While a simple assert statement allows us to specify a property over signals during a single
cycle, it is not enough to express properties that require us to reason about multiple cycles.
The traditional answer to this problem is temporal assertion languages like SystemVerilog
Assertions [62]. However, these are complex to implement efficiently, and no successful open-
source implementation has been reported as of now. The community around SymbiYosys
has instead advocated for the use of plain assertions with the Verilog past function. This
function returns the previous value of an expression and thus allows us to write properties
that span multiple cycles.

While conceptually simple, the past construct, as defined by the Verilog standard, has
one major problem: In the first cycle of the circuit execution, there is no past value, and
the past function always returns X. Thus, the user has to take care to keep track of how
many cycles have passed since the verification started and only enable assertions once all
past values are valid. This particular pitfall is often the topic of a popular formal verification
quiz. In addition to that, past values can also be invalid because they happened while the
circuit was going through reset.

We made use of some of the unique capabilities offered by Chisel in order to implement
what we consider to be a safer version of the past function. In the front end, our past
is a Scala function which creates an appropriate amount of delay registers in the current
clock and reset domain. That alone provides functionality similar to the Verilog version of
past. We go further by annotating the delay register and asking for a FIRRTL pass to
be run when lowering the design. This pass looks at a graph of all past delay registers
and assertions in a module. An edge indicates that the input to the assertion or register
is connected to the output of a delay register through combinatorial logic. We traverse the
resulting tree (by design there can be no cycles) starting at each assertion to find the longest
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Figure 5.4: The temporal assertion from Figure 5.2 results in a circuit with two registers
created by the past function: One to delay the condition from the when statement and the
other to delay the input data before it is compared to the current output data. By default,
an assertion is only enabled when reset is inactive and the surrounding when condition is
true. Our compiler pass analyzes the connectivity graph with the result that both the enable
condition as well as the predicate are delayed by a single past register. Thus, the assertion
enable signal is automatically extended to include the condition that at least 1 cycle must
have passed since the last reset. The new enable condition is derived from a synthesizable,
saturating cycle counter, which is created by the compiler pass.

path of past delay registers in order to determine the number of cycles the assertion needs
to be delayed. Finally, we generate a cycle counter register and use its value to guard the
individual assertions. Since our past function only relies on synthesizable hardware, it can
also be used in software and FPGA-based simulation testing [73].

5.5 Advantages over SymbiYosys for Chisel

Since Chisel designs can be compiled to SystemVerilog for simulation and physical design, it
would be possible to use SymbiYosys to formally verify them. This is, in fact, the approach
that some Chisel community members explored after Verilog emission of assert and assume
statements was added to Chisel in 2020. However, we encountered multiple problems with
that approach, which led us to the implementation presented in this chapter. One problem
is that SymbiYosys relies on academic model checkers to generate counter-example wave-
form dumps for the user to debug. As we pointed out before, academic tools are good at
implementing new verification algorithms, but usability features like good Verilog support
or good VCD generation are not necessarily their strength. Thus, the generated VCDs are
generally of lower quality than the ones our simulator generates. Another problem with
SymbiYosys is that it models undefined values in the emitted Verilog code, which differs
from those in the original Chisel design. This mismatch can lead to missed bugs as well as
false counter-examples.
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5.6 Discussion

We introduced a new formal verification infrastructure for RTL designs written in Chisel.
Everything we described is integrated with our open-source FIRRTL compiler and Chisel Test
testing library and thus available to all Chisel users. To lower the barrier to entry, we added
default reset assumptions and a safer version of the past function for temporal assertions. We
carefully designed the formal backend of the FIRRTL compiler to model worst-case behaviors
from the FIRRTL specification and to ensure that our system can replay all counter-examples
in simulation.

Since we published the formal verification capabilities for ChiselTest in 2021, several
community members have started using them in their projects. I have used this function-
ality to verify a gray code generator that I contributed to the Chisel standard library and
for an interactive, Jupyter-notebook-based guest lecture on formal verification for the agile
hardware design class at UC Santa Cruz. Unfortunately, the Scala-based FIRRTL compiler
has recently been deprecated (see Section 2.4) and replaced with an MLIR-based compiler
for the Chisel 6 release. Thus, to make formal verification with ChiselTest work on the
latest version of Chisel, we have to port all passes to the new compiler. A Master’s student
under my supervision recently tackled this task. She managed to upstream a rudimentary
btor2 backend and has added support for advanced sequence-based assertions [41]. The new
compiler is currently missing the arbitrary-value modeling, reset assumptions pass, simulator
replay, safe past operator, and support for FIRRTL memories. 1 hope this thesis can serve
as a blueprint for anybody who wants to work on better formal verification support.
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Chapter 6

A Study on Random Testing and
BMC for RTL Designs

We previously discussed feedback-directed mutational fuzz testing, a form of random testing,
in Chapter 4 and bounded model checking (BMC) in Chapter 5. But how do they compare?
Is one always better than the other? This chapter defines the three components required
for automated bug finding: the input generator, input constraints, and the checker. We
discuss how the choice of dynamic or formal verification technology impacts all three and
how seamlessly switching between different input generators might be possible.

We present a small study comparing both approaches based on three benchmark sets.
We will see how a simple BMC-based baseline can beat the RFUZZ tool on the benchmarks
used in Chapter 4 using an idea from Chapter 3. Furthermore, we show how random testing
strongly outperforms BMC on a different benchmark set and how BMC can be a significant
improvement over dynamic symbolic execution of hardware when used with the correct
constraints. The findings in this chapter inspired the RTL-REPAIR tool, which uses a clever
combination of dynamic and formal verification techniques and is presented in Chapter 7. All
benchmarks discussed in this chapter are available at github.com /ekiwi/comparing-random-
testing-and-bmc.

6.1 Anatomy of Automated Bug Finding for RTL

Many hardware verification papers, such as a recent paper on security verification [158] and a
recent paper on processor testing [71], propose end-to-end solutions for automatically detect-
ing classes of bugs. While these end-to-end scenarios show exciting results and demonstrate
the feasibility of the methods in a real-world scenario, they make it hard to compare and
contrast different algorithmic approaches. If every paper creates a new verification system
from scratch, it is impossible to tell which component contributes to the observed success.
Thus, we propose decomposing these verification setups into three core components, which
could be mixed and matched to study individual improvements and create more powerful
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testing systems. The three components are:

1. An input generator which produces bug revealing inputs.

2. Declarative or generative input constraints ensure the produced execution trace is
feasible.

3. One or multiple checkers which detect traces that indicate a bug in the circuit.

Checkers

Checkers are part of a testing setup that detects that a circuit under test malfunctions.
They can take on many different shapes depending on their level of sophistication and the
verification environment they are used in. In a unittest style setup, the testbench contains
hard-coded inputs and expected outputs. The verification engineer has to design scenarios
and determine the expected output values manually. With more sophisticated approaches
to dynamic verification such as random or constrained random verification checkers are
often decoupled from the input generator. Monitoring automatons, temporal assertions, or
scoreboards monitor the execution of the circuit and raise an alarm if an error is detected. In
a recent paper on generating security explits [158], the checkers are synthesizable assertions
from prior papers [159, 58]. In a recent paper on processor testing [71], bugs are detected by
comparing the processor RTL’s architectural state against a functional ISA model. Another
option is temporal assertions like SystemVerilog Assertions (SVA) [62], which can generally
be used with dynamic as well as (commercial) formal verification. Scoreboards and monitors
implemented in the non-synthesizable subset of SystemVerilog and often using the UVM
library are generally inaccessible to formal verification tools. Tests against a golden software
model are also often inaccessible to formal hardware verification tools, which are meant to
model-check synthesizable hardware and are incapable of reasoning about arbitrary program
code.

Input Generators

In the simplest setup, the verification engineer hard-codes inputs to the design under test.
More sophisticated solutions use pseudo-randomness to generate a stream of different in-
put values. Random testing often requires developers to encode the input constraints into
the generator, as discussed in the next section. Instead of generating inputs for concrete
simulation of the design under test, we can use formal techniques to generate inputs that
satisfy a desired property. Different model-checking and dynamic symbolic execution-based
techniques are discussed in Section 2.6. In this chapter, we use the term automated input
generator to refer to both formal and random generator techniques.
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Input Constraints

For an automated input generator to produce legal stimulus, it needs to be provided with
input constraints that describe the hardware component’s environment assumptions and
interaction restrictions. These constraints are often overlooked or only partially stated.
They are often heavily tied to the input generator used and thus present the biggest hurdle
to combining formal and dynamic techniques.

Dynamic verification environments generally encode complex input constraints in the
form of generators, which may, in turn, sample from declarative constraints. A good example
is the open-source RISC-V program generator RISCV-DV [122] that can be used to test
RISC-V processor implementations. This generator describes a space of RISC-V programs
from which we can sample. Unfortunately, model-checking tools generally cannot extract
the implicit RISC-V program constraints since they cannot reason about the verification
constructs used in RISCV-DV.

In formal verification, on the other hand, constraints are generally provided as state
predicates, which are assumed to hold in every valid execution. These assumptions are easy
enough for dynamic tools to consume and check. However, while it is easy to check whether
a given input violates an assumption, it can be challenging for random input generators to
generate inputs that do not violate complex assumptions efficiently. In the general case,
they have to use rejection sampling in which inputs are discarded as soon as an assumption
is violated [81]. Rejection sampling can be very slow and inefficient when it is likely that -
given a random input - an assumption will be violated.

6.2 Coverage Based Fuzz Testing Evaluation

In this section, we compare the performance of coverage-directed fuzz testing and model-
checking for hardware.

Checkers. Recent hardware fuzzers have been evaluated based on achieving high cover-
age [81, 141, 24] and on how many bugs they have discovered [60, 72, 22]. Unfortunately, all
fuzzers that report bugs are specialized for RISC-V CPUs and use a functional simulator to
reveal bugs in the RTL. A formal tool cannot easily analyze the functional simulator; thus,
comparing formal and fuzzer in this area is difficult. Coverage is a much easier target for
model-checkers since the coverage instrumentation discussed in Chapter 3 uses synthesizable
hardware constructs supported by all tools.

We can treat each coverage metric as a set of predicates on the state of the hardware
design or the history of states, and thus, hitting a cover point can be formulated as a model-
checking problem. This is particularly easy for the benchmarks used in the RFUZZ paper.
The tool adds a meta-reset signal, which ensures that all states of the design under test
are reset. It makes it fairly straightforward to ensure that the bounded model checking
tool does not just reach certain coverage by starting from a cleverly chosen initial state. In
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Figure 6.1: Mux control toggle coverage over time. BMC-based coverage generators generally
outperform the fuzzer and the random baseline.
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addition, the RFUZZ instrumentation exposes all mux control signals that need to be covered
as outputs of the design under test and signals that indicate whether an assertion fires.

To set up the model checking problem for a given RFUZZ benchmark, we create a Verilog
test harness that instantiates the instrumented design under test. We then add assumptions
that ensure that the meta-reset is active in the first cycle and the real reset pin of the design
is active in the second cycle of the execution. For each mux control signal, we add two
cover statements that are active after the first two cycles: one to cover the signal being true
and one for the signal being false. Thus, we directly encode the coverage metric used by
RFUZZ in a way that is usable for bounded model checking. We also add an assumption
that ensures that none of the assertions from the original design fire. This is important to
avoid generating invalid inputs. The original RFUZZ paper also uses this signal to guide the
mutation. See Chapter 4 for more details.

Once we have created the formal harness, we use SymbiYosys [152] in cover mode to
generate traces that hit one or more coverage statements. Afterward, we parse the generated
traces and turn them into JSON files identical to the ones generated by the original RFUZZ
tool. We then run the original evaluation script from RFUZZz, which re-runs the fuzzer and
BMC-generated inputs on the same RTL simulator to measure the coverage achieved. This
ensures a fair comparison.

We find that BMC beats RFUZZ on all benchmarks from the original paper, often with
a good margin. However, there is some variability with the different BMC tools. Boolec-
tor [110], for example, ran out of memory on all the Sodor benchmarks, and we had to switch
the btormc. In some cases, one model-checking tool generated better coverage than another,
even though both explored all possible inputs up to the same bound. It is unclear whether
this is due to simulation mismatch, bugs in the encoding, or the tools themselves. In theory,
all BMC tools should be able to get identical coverage for a given depth k. The best BMC
tool was btormc for all benchmarks besides Sodor 3 Stage where it quickly finished a run up
to k = 100 but without reaching maximum coverage. On four benchmarks, btorme always
finished in less than 20 seconds and generated better coverage than the fuzzer. On the FFT
benchmark, all tools quickly get stuck, indicating that most coverpoints in that design are
most likely unreachable. Figure 6.1 shows coverage plots over time, combining the original
RFUZZ results from Chapter 4 with our BMC-based comparison. Table 6.1 shows the num-
ber of coverage holes and the time it takes to achieve maximum coverage for the different
approaches.

This comparison shows that the benchmarks we used to evaluate RFUZZ are unsuitable
for highlighting the strengths of fuzzing tools since most of them are easily beaten by the
btorme model checker. Going beyond this particular set of benchmarks, our results also
indicate that BMC should be used for all automated testing papers to establish a baseline
to beat. This is especially true when working with small to medium size RTL designs.
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Design ‘ random rfuzz boolector  btormc z3
12C 62 (1s) 5-60 (80min) 4 (151s) (148)
SPI 69 (8s) T7- 69 (45m1n) 100 (3) 4 (4s)
FFT 85 (< 1s) 85 (< 1s) 85 (6s) 85 (4s)
Sodor 1 11 13 (3s) 4 (12min) OOM 2 (14s) 5 ( 67min)
Sodor 3 -8 (68min) -2 (46min) OOM 16 (15s) 1 ( 54min)
Sodor 5 | 12- 13 (38min) 4 (35min) OOM 2 (20s) 92 ( 112min)

Table 6.1: Number of coverage holes and best time to achieve maximum coverage across
rfuzz benchmark designs and input generators. Note that for fuzzing, we do not consider the
time it takes to compile the simulation of the design under test, while BMC times include
the time it takes to parse and load the design.

6.3 OR1200 Processor Security Bugs

In the previous section on fuzz testing, we could not study CPU fuzzers because they used
a complex functional simulator to check for bugs. While we could not find any CPU fuzzing
papers that we could easily use with a model-checker, we found a different line of work
that uses simple hardware assertions to discover security bugs in the open-source OR1200
CPU [58, 159, 158]. The initial papers from 2015 and 2017 mostly rely on hand-crafted
exploits to test the assertions. However, the final paper proposes using a dynamic symbolic
execution-based approach to generate instructions that expose bugs in the processor design
by violating one of the provided security assertions [158]. In this section, we present the
results of a small case study using bounded-model checking instead of symbolic execution to
discover the bugs in the original paper.

We use the OR1200 CPU core combined with the assertions and bug implementations
found in the paper artifact available online !. Unfortunately, the artifact only includes these
for two of the 31 bugs discussed in the paper. We emailed the authors asking for the other
assertions used in the paper but did not receive a reply. Thus, we can only discuss bugs 20
and 24 from the original paper.

The original paper compares their symbolic execution-based input generator to a com-
mercial model checker from Cadence and the EBMC model checker. However, the authors
report that while these tools find many bugs, often the generated inputs do not allow them
to trigger the bug on a simulated processor, i.e., they are not repeatable. This includes the
two bugs we are looking at. While the paper lacks an artifact that would allow us to repeat
the exact experiment, our own experimentation leads us to the following theory: We often
require a specific constant in a particular processor register to trigger a security assertion.
By default, the Verilog implementation of the register file leaves the initial values uncon-
strained. Since BMC will always find the shortest execution to trigger a bug, the model

lhttps://github.com/rzhang2285/Coppelia
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checkers choose a specific initialization of the register file that contains the correct magic
number. However, on a real processor, we cannot control the initialization of the register
file. Instead, we must execute additional instructions to initialize the register file properly.

The problem with correctly initializing the register file demonstrates an issue with tra-
ditional formal verification systems: Since they were designed to prove the absence of bugs,
it is enough to show that an initial state exists that allows them to trigger the bug. How-
ever, showing that such an initial state exists is not enough to be able to replay the bug on
real hardware where we do not control the initial values of registers and memories. Thus,
to obtain repeatable exploits, we manually instrumented the processor design such that all
memories and registers contain zero in the initial state. Thus, we force the model checker
to generate instructions that synthesize any non-zero constants needed to trigger a partic-
ular bug. We also modeled an uninitialized instruction memory and disabled access to the
data memory to force the model checker to generate a self-contained instruction stream that
developers can easily run on a real processor. The only caveat of our approach is that one
would have to supply some instructions to manually initialize all registers to zero. However,
the original papers also rely on additional instructions to make their exploits feasible.

With our setup, we found that a bounded model checker based on yosys [153] and the
boolector SMT solver [110] can generate a counterexample for each bug in under five seconds,
including two seconds of actual solving time. While the original paper did not include the
time to find bug 20 with dynamic symbolic execution, it does state that after several opti-
mizations, the fastest time to solve bug 24 was 2m33s. Thus, BMC is significantly faster than
the new symbolic execution technique proposed by the authors. We also found the restric-
tions we imposed to generate repeatable exploits to work well. The original paper reports
that the Cadence model checker only generates a single instruction: 1.addi , , O.
This instruction requires the registers r0 and rl to be initialized to a particular constant.
Our solution, on the other hand, generates an additional preceding 1.movhi , 0x409
instruction, ensuring that r0 is non-zero.

Overall, the two security bugs for which buggy RTL code and security assertion are avail-
able can be solved quickly by a standard open-source BMC tool. The most difficult challenge
is to design a test bench that ensures repeatable results. If we want more engineers used to
dynamic verification to take advantage of BMC, we need them to have the option to produce
witnesses independent of the starting state. Our findings demonstrate why comparing dif-
ferent input generators is important, but also how incompatible input constraints can make
a comparison difficult.

6.4 Deepbugs

We observed bounded model checking to excel at the RFUZZ and the security benchmarks
discussed in the previous sections. However, are there any benchmarks where random testing
has an advantage over formal approaches? A recent paper investigates partial order reduction



CHAPTER 6. A STUDY ON RANDOM TESTING AND BMC FOR RTL DESIGNS 76

DEEP BuG BENCHMARK

= 100 = 10%F
B o0 r
C%D : 5 10° |
L - g
g 107} i
[} r =) 2 |
£ I = 10° ¢
EH 102 - B ;
gb i 10! -
% L | | | | | | | | | | | | <% E | | | | | | | | | | | |
123456 78 10 12 123456 78 10 12
Depth Depth
CIRCULAR POINTER FIFO
= 10% | = 10* |
o0 -
8 101 [ % 10 §
o) [
g g ol
10| = 0°F
) ) i
3 Z 10t ¢
< 10_3 = | L | L | L | I L | < E | | | | | | | | | |
4 8 16 64 256 4096 4 8 16 64 256 4096
SHIFT REGISTER FIFO
o = 107}
~— + [
je10) N
@ 107 g 104
m — B
w §
% 100 | é 10° E
E =
= = 102
) —2 | 80 &
<> 10 <> 101 g | | | | | |
4 8 16 64 128
——random —— bme
—— random--universal —— bmec-+tuniversal

- -- 64-bit instead of 8-bit

Figure 6.2: Average time to find a bug and average length of the witness over the depth of
the design.



CHAPTER 6. A STUDY ON RANDOM TESTING AND BMC FOR RTL DESIGNS 77

CREDIT COUNTER WITH 2 FIFOS (ARBITRATED)

E 10* 8
%0 E 5 103 =
m = 8
= | g
= 1071 F = 10° ;
80 B o0 i
: £
1072 10" |

E | | | | | | | | | | E | | | | | | | | | |

4 8 16 64 256 2048 4 8 16 64 256 2048
CREDIT COUNTER WITH 3 FIFOS (ARBITRATED)

108 £ 10°
— o
\z)_g 102 ; 4510 [
2 g0
e 10 2
) I jé I
5 100 g = 102 -
101} @
= g = N
I 10 ¢
-2 L F

10 E | | | | | | | | | | L | | | | | | | | | |

4 8 16 64 256 2048 4 8 16 64 256 2048
——random —— bme
random-+universal —— bmec-+universal

- -- 64-bit instead of 8-bit

Figure 6.3: Average time to find a bug and average length of the witness over the depth of
the design on a second set of benchmarks.



CHAPTER 6. A STUDY ON RANDOM TESTING AND BMC FOR RTL DESIGNS 78

to improve model checking performance for some packet mover benchmarks, which seem to
take an exceedingly long time to solve with SAT and SMT-based BMC tools [95].

We ported all of the open-source benchmarks described in the paper to the Chisel hard-
ware construction language [7], allowing for easy parameterization and creation of various
test harnesses. Our random tester is based on the Treadle interpreter for the FIRRTL
intermediate representation [67], which we introduced in Section 2.5.

Our random testing relies on two different kinds of software harnesses: One is a design-
agnostic harness that applies a new random value to each input pin on every cycle. This is
similar to how inputs are provided to designs under test by the RFUZZ fuzzer described in
Chapter 4. While this harness is very flexible, it does not know about any input constraints
and does not include a checker. Thus, it has to rely on the design under test or an additional
hardware harness to encode constraints and assertions. This is similar to how we encode these
constraints for bounded model checkers. The second kind of software harness is specific to
the device under test. We created one for the FIFOs and one for the arbitrated design, which
ensures that push and pop commands are only applied if they won’t violate an assumption
of the design under test. These software harnesses also contain instances of the Queue
class from the Scala standard library, which serve as software models for the FIFOs in the
hardware design and allow us to check dequeued values in software and raise an exception
if a bug is detected. This harness design is close to how software testbenches are normally
written. However, it is incompatible with formal approaches.

The random tester ensures that the reset pin of the design under test is activated for the
first cycle of execution and remains de-asserted after that, no matter which version of the
harness we use. The tester keeps executing the software harness until an exception is thrown
either by software or through an assertion failure in the hardware under test. We rerun all
random testing 10 times and report the average time to find a bug and the average length
of the counter-example found to account for the stochastic nature of the tool.

The Deep Bug design, which serves as an artificial example in the original paper, has
no input constraints and contains a single assertion indicating that the bug was detected.
Thus, it can be directly used with a bounded model checker or our random tester using the
design-agnostic software harness described in the previous section.

The next benchmark features two FIFOs with no assertions or assumptions. Instead, the
original paper relies on a magic packet tracker that remembers the value of a packet that
enters the FIFO in an arbitrary cycle and counts the number of packets exiting the FIFO
until the tracked data is expected. This circuit relies on a non-deterministic decision about
which packet to track. This is sufficient for formal methods but not very suitable for random
testing. If we randomly choose whether to track a packet or not, it makes it much less likely
that we detect a bug, even if all other design inputs are chosen correctly. Thus, we track
all packets going through the FIFO using a Scala Queue in our specialized software harness.
We also add some logic to all harnesses to ensure that no push happens when the FIFO
is full and that no pop happens when the FIFO is empty. Using a golden model, like our
Scala Queue implementation, is standard practice for software testbenches but makes them
unusable for formal tools.
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In addition to the software-only harness, we also designed a universal harness that can
be used with both the random and the bounded model checker. To do so, we essentially
implement the exhaustive tracking of all FIFO packets in hardware through a trusted refer-
ence queue implementation from the Chisel standard library. While this universal harness
revealed the bug with about the same counterexample size as the software harness, it gen-
erally proved slower for both random testing and BMC. We tested FIFOs with an 8-bit and
a 64-bit entry size, but the difference in runtime and counter-example length was mostly
negligible. While the universal approach is slightly slower, the fact that it is input generator
independent could save a lot of developer time.

The final benchmark is an arbitrated credit counter circuit, which instantiates several
FIFOs and credit counters. It has the most complicated input constraints of any benchmark.
We implemented a software-only harness using several Scala Queues as golden reference
models and a universal harness that implements a simple hardware reference model based
on the queue implementation from the Chisel standard library. Both harnesses also contain
logic to encode the input constraints to avoid driving illegal inputs to the design under test.

The results of our benchmarks are shown in Figure 6.2 and in Figure 6.3. Random testing
was much faster than BMC, which often timed out after 15 minutes. We manually calculated
the minimum size of the counter-example for all depths. In general, random testing resulted
in a counter-example (or witness) around two times as long as the minimum counter-example
BMC would find. The only exception is the shift register FIFO benchmark, for which random
testing is timing out after a depth of 128 and generally produces longer counterexamples.
This indicates that hitting this particular bug is less likely than in the other benchmarks.

Our results show that simple random testing can outperform BMC significantly, even on
small RTL components like hardware queues. Some manual work was required to design a
software harness for each benchmark, and counterexamples are longer than needed, likely
making it harder to debug them. If these two problems could be addressed, random testing
might be competitive with BMC tools at solving buggy benchmarks, for example, at the
hardware model checking competition [118].

6.5 Discussion

In this chapter, we investigate bug-finding benchmarks from three prior works with surprising
results: The coverage over time metric used to evaluate some fuzzing tools can often be
beaten quite easily with a bounded model checker. Processor security exploits for which a
prior paper developed a new dynamic symbolic execution-based input generator can quickly
be synthesized by bounded model checking with easily replayable results as long as the test
harness is designed with that in mind. A set of packet mover benchmarks that are hard to
solve with BMC are actually quite easy to solve — in many cases — by random testing, with
the only major downside being the increased counter-example length. Overall, we show that
both techniques are often complementary, and users might benefit from being able to quickly
switch the input generator that they are using.
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Our experiments show that bounded model checking is an important baseline when veri-
fying small to medium-size RTL designs from FIFOs to CPU cores. While formal verification
tools that work directly with standard hardware languages like Verilog [153] and Chisel [7§]
are now widely available, many pitfalls remain. We thus recommend following our test
harness approach, which prefers soundness, i.e., the ability to easily replay every bug over
completeness by initializing all registers and memories to zero. Using generators instead of
declarative input constraints and checkers that do not rely on non-deterministic decisions, it
is possible to create test harnesses that work for both BMC and random testing.

Other benchmarks are challenging for BMC, but random testing can quickly find assertion
violations. Unfortunately, we had to manually re-write testbenches originally designed for
BMC to make them work well with random testing. This effort prevents developers from
easily experimenting with different input generators. Suppose we could develop an automated
transformation for this process and combine it with automated test case reduction to counter
the fact that random witnesses are unnecessarily long. In that case, one might be able to
develop a tool that vastly outperforms BMC for finding bugs on specific benchmarks.

Conversely, constraint random testbenches written for dynamic verification could benefit
from a model checker-driven exploration. The main challenge would be to soundly turn the
information in a software testbench into a formula for an SMT solver. Dynamic symbolic
execution of the testbench where every random decision is represented with a new auxiliary
variable could be a viable candidate. If the testbench is written in a language with good
bounded model checking support, hardware and testbench model could also be combined
directly [32].

Our findings show that neither BMC nor random or fuzz testing can solve all benchmarks
perfectly. We look forward to new ideas on combining them, which can be incorporated into
new testing languages, tools, and methodologies.
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Chapter 7

Fast Symbolic Repair of Hardware
Design Code

So far we have presented new approaches to automatically generate inputs for our design
under test through fuzzing (Chapter 4) and bounded model checking (Chapter 5). However,
only discovering bugs by finding a failing test input is not enough. An engineer still needs to
analyze the failing trace to determine how to fix the problem. In this Chapter, we present an
automated tool called RTL-REPAIR, which takes in a circuit written in the Verilog hardware
description language as well as a failing test bench in the form of a trace of inputs to the
design under test as well as executed outputs. From this information, RTL-REPAIR tries
to generate a change to the original Verilog that will make the repaired circuit pass the I/O
trace. Our work on RTL-REPAIR was published as ASPLOS in 2024 [79].

The failing I/O trace could be obtained from a manually written test, from fuzzing, or
from an SMT solver, which produced a counter-example for a property using bounded model
checking. The classic way of debugging this failing trace is for the designer to look at a ren-
dering of it and use their knowledge of the design to try and find a way to fix it. Some recent
academic work has also looked into source-level debugging for hardware languages [157], but
traditional debugging tools from software, such as step-through debugging, are not always
as useful in the hardware context. While software programmers are used to thinking of
their programs as executing strictly in program order, multi-threaded programs break this
abstraction, which makes them much more challenging to reason about. In hardware, there

Table 7.1: RTL-Repair vs state-of-the-art tool.

RTL-REPAIR CIrFIX [2]

# median max # median max
v Correct Repairs 16 0.70s 13.17s 10 2.53min 14.19h
8 Wrong Repairs 2 0.51s 0.68s 11 2.03h  9.50h
O Cannot Repair 14 5.64s 59.81s 11 16.00h 16.00h
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are no sequential programs. Results and state updates are all computed concurrently. HDLs
reflect that by modeling components as a composition of parallel processes (in Verilog [62]
and VHDL [64]) or by allowing signals to be used before they are assigned (last-connect se-
mantics in Chisel [7]). RTL-REPAIR sidesteps this problem by directly suggesting relevant
changes to the RTL developer.

The software engineering community has long been working on automated program re-
pair [83, 55, 100, 89]. In the standard scenario, we are provided with program source code
and test cases, at least one of which currently fails. The tool then tries to find one or several
changes to the source code, which makes all test cases pass. Unfortunately, most automated
program repair tools take several hours to run and often provide unsatisfying repairs, which
remove program functionality [119]. Recent work on a tool called CIRFIX shows that au-
tomated program repair can be applied to hardware descriptions as well [2, 126]. However,
CIRF1X can take several hours to come up with a repair and often results in unsatisfactory
repairs.

In this paper, we present RTL-REPAIR, which produces more correct repairs than
CIRFIX in a fraction of the time (Table 7.1). We demonstrate how to combine the re-
pair template idea from CIRFIX with symbolic analysis-based repair and how to address
scalability issues associated with long-running testbenches. RTL-REPAIR is available on
github: https://github.com/ekiwi/rtl-repair. We also provide an artifact with scripts
to reproduce all our results. Our paper makes the following contributions:

o We propose a new symbolic, template-based repair algorithm

o We introduce an adaptive windowing technique that allows us to scale to long-running
testbenches

» We define a new output/state divergence delta (OSDD) metric that helps reason about
the hardness of bugs

o We perform a thorough evaluation of RTL-REPAIR and CIRFI1X, including gate-level
simulation as a new way to automatically verify repairs of hardware

o We further evaluate RTL-REPAIR on real bugs mined from open-source projects [90]

7.1 Repair Example

To illustrate key components of the RTL-REPAIR algorithm, we present an example before
diving into details in Section 7.2. We are going to repair the Verilog description of a simple
counter circuit (Figure 7.1a). This is the same example circuit that was used in the CIRFIX
paper [2]. We first illustrate how the circuit can be converted to perform BMC with an
SMT-solver before showing how RTL-REPAIR adapts BMC for its repair algorithm.
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module first counter (
input clock, input reset, input enable,
output reg [3:0] count,
output reg overflow

) ;

always @ (posedge clock) begin

if (reset == 1'bl) begin
// count reset is missing:
// count <= 4'b0;
overflow <= 1'Db0;

end else if (enable == 1'bl) begin
count <= count + 1;
end
if (count == 4'bl1111) begin
overflow <= 1'bl;
end
end
endmodule

(a) Verilog source code.

overflow' =
(ite (= count ( bvl5 4)) true
(ite reset false overflow))
count' =
(ite reset count
(ite enable (bvadd count (_ bvl 32))

(b) Next state expressions in SMTLib format.

Figure 7.1: A counter circuit with a missing reset value.
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Transition System Encoding. Before we can formally analyze the circuit, we need to
convert the Verilog code into a format that is amenable to formal analysis. We use the
open-source synthesis tool yosys [153] to turn the event-driven simulation into a circuit-like
transition system representation that encodes the clock updates for the count and overflow
registers as SMTLib [8] bit-vector expressions (Figure 7.1b).

I/O Trace. The bug we are looking to fix is revealed by a simple test: After we reset the
circuit, we expect the count output to be zero. However, currently, it is X since the count
register is missing a reset assignment. RTL-REPAIR accepts concrete tests in the form of
I/O traces — essentially tables with one row for every execution cycle and one column for
every input and expected output value. Figure 7.2a shows the trace for our small example
test. Besides manual entry, an I/O trace can be recorded from a concrete testbench, similar
to how CIRFIX obtains expected outputs for its fitness function. It could also be returned
by a BMC tool that has discovered a bug in the circuit. We designate inputs that could be
set to any value with X. For outputs, an X indicates that the value of the output at that
particular time step does not matter, i.e., it is not checked by the testbench.

Repair Template. RTL-REPAIR analyses the Verilog source code and enumerates all
possible changes to the circuit that fit a certain template. In our example, we consider
assigning a constant to a signal somewhere in code. For each assignment, we create two
new inputs: ¢; and «;. «; represents a constant that can be freely chosen by the repair
synthesizer. ¢; indicates whether the assignment should be included. Figure 7.2b shows
how we add two possible new assignments to the circuit. Generally, we will add a lot more
possible assignments. However, we restrict ourselves to two in this example to make the
resulting synthesis query easy to understand. For a more thorough description of the various
repair templates, please see Section 7.2. The instrumented Verilog AST is converted into a
transition system using yosys [153].

The Basic Repair Synthesizer. RTL-REPAIR unrolls the transition system exactly as
we would for bounded model checking. However, instead of asking the solver to choose the
inputs, we assert that the input and output values are equal to the ones from the given I/O
trace and ask the solver to provide an assignment to our synthesis variables ¢; and «a; such
that the circuit correctly follows the I/O trace. Such a repair query is shown in Figure 7.2c.
Figure 7.2d shows two solutions found by the solver. Both solutions add an assignment to
the reset block. The difference is that the second solution also adds an assignment in the
overflow code block. The I/O trace never increments the counter all the way to 15, which
makes this new statement dead code in terms of the test we provided. However, assigning
count to 0 in the overflow block, as the solver suggests, introduces a new bug in our circuit,
which is revealed if we test the overflow behavior. We generally find that the fewer changes
we make, the more likely we will arrive at a valid repair. We thus implement an algorithm
that ensures a repair with a minimal number of changes.
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reset ‘ enable ‘ count ‘ over flow

1 | x | X | X

0 0 0 X
(a) I/O Trace Generated from a Testbench.

module first counter (
// [...] I/0 from original circuit
input ©or input [3:0] oy
input ¢,, input [3:0] aﬂ;

always@ (posedge clock) begin

if (reset == 1'bl) begin

overflow <= 1'b0;
if (p,) count <= o;

end else if (enable == 1'bl) begin
count <= count + 1;

end

if (count == 4'b1111) begin

overflow <= 1'bl;
if (p,) count <= a;
end
end
endmodule

(b) Simplified conditional overwrite template

applied.
; random concrete initial state
(assert (= overflow@O true))
(assert (= count@0 (_ bv8 4)))
; next state
(define-fun count@l () ( BitVec 4)
(ite (and (= count@O0 ( bvl5 4)) e¢,) oy

(ite (and reset@O 9,) o
(ite (and (not reset@0) enable@O)

(bvadd count@0 (_ bvl 4)) count@0))))
; I/0 trace
(assert reset@0)
(assert (= count@l ( Dbv0 4)))
; limit number of changes to one
(assert (= #b01 (bvadd

(ite phil #b01 #bO00O)
(ite phiO #b01l #b00))))

(c) Repair query.
o0 ‘ ) ‘ 01 ‘ o1 ‘ change size: ZfVZQ i
1 00| X 1
1 0 1 0 2

(d) Possible solutions.

Figure 7.2: Repairing the counter circuit from Figure 7.1
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First, we use the solver to check whether a solution with any number of changes exists at
all. If that is the case, we then search for a solution with a minimal number of changes by
calculating va ¢; in the SMT query and successively increasing the number of changes we
want to see until the solver returns a satisfying assignment. This constraint is demonstrated
at the bottom of Figure 7.2c. By restricting the number of changes to one, we obtain
the minimal solution with ¢y = 1 and ¢; = 0. While simple, the major downside of the
basic repair synthesis approach is that we always unroll the system for all cycles in the 1/O
trace. This leads to scalability issues with long testbenches, which can be solved by our new
adaptive windowing approach described in Section 7.2.

Repairing the Verilog Code. We use the repair synthesizer’s assignment to the synthesis
variables to generate the repaired Verilog code. We remove any assignment where ¢; is false.
This can be thought of as plugging in the assignment from the synthesizer and running a
simple dead-code elimination. We inline the concrete value for «; for all remaining code,
where ¢; is true, and thus, the assignment happens unconditionally. After making these
changes on the AST, we serialize it into a repaired Verilog file.

7.2 The RTL-Repair Repair Algorithm

The RTL-REPAIR tool accepts a buggy Verilog module and an I/O trace as input. It first
runs a standard static analysis tool to address some straightforward errors that would lead
to non-synthesizable code. Next, RTL-REPAIR applies a series of repair templates, each
implemented as a compiler pass over the Verilog AST, which adds different ways for the
repair synthesizer to fix the circuits. Our repair synthesizer takes the transition system
(converted from Verilog with yosys) and the testbench in the form of an I/O trace as input.
It then tries to find a minimal change from the space of changes described by the repair
template that will make the circuit pass the test. If such a minimal change is found, it
is applied to the Verilog AST, resulting in a repaired source code. If the change is large
(va ¢; > 3), then we keep on trying out templates to see if a smaller repair can be found
with a different template. If no change can make the I/O trace pass, RTL-REPAIR will
move on to the next repair template. Once all repair templates have been tried with no
success, the user is notified that no repair could be found. The whole process is illustrated
in Figure 7.3.

Preprocessing with Static Analysis

RTL-REPAIR’s symbolic repair algorithm requires the buggy design to be synthesizable [61,
135]. This is generally not a problem. In industry, static analysis tools called linters enforce
coding standards that guarantee that the circuit can be synthesized. Modern hardware lan-
guages like Chisel allow users only to express synthesizable circuits [7]. A study of bugs in



CHAPTER 7. FAST SYMBOLIC REPAIR OF HARDWARE DESIGN CODE 87

testbench.csv buggy design.v fixed design.v
" Frontend— | Apply Repair Template ~ ——— t- —
: (encodes all possible fixes) @patch verilog |
1
|| static Q) Q) replace literal <=3 !
' | analysis = > |
| - —> @ add guard - 2 I
. | driven pre- A= try a 7
' | processing @ conditional different :
I overwrite I
| i template :
yosys: btor2 Cannot Repair _ Su_ccess:
Y * Py X, 0= Y, -

Synthesizer
Tries to find minimal change based on repair template.

3 ¢, a.. correct output s.t. min(sum(y,) )

Figure 7.3: RTL-REPAIR Flow

open-source hardware projects found no issues with synthesizability in practice [90]. How-
ever, novices might still make these kinds of mistakes in Verilog, which are pervasive in
the benchmarks targeted by CIRFIX [2]. Thus, we employ the open-source Verilog simu-
lator Verilator as a linter [131] to deal with two common issues preventing a circuit from
synthesizing.

Blocking and Non-Blocking Assignments. Synthesizable Verilog for synchronous cir-
cuits generally consists of two different kinds of processes: Ones that describe combinational
logic, marked by a sense list that triggers re-computation on the change of any signal, and
processes triggered by clock events that describe synchronous logic (registers and memo-
ries). By convention, combinational processes use blocking assignments, and synchronous
logic processes use non-blocking assignments [37]. If the linter warns about the wrong kind
of assignment, we automatically change it to the appropriate version depending on the type
of process to ensure correct synthesis with yosys [153].

Latches are state elements that get updated when their input changes. In modern ASIC
technologies, latches are generally disallowed in favor of clock edge-triggered flip-flops. Latches
also cannot be represented in the transition system format used by RTL-REPAIR. Many
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Verilog beginners will unintentionally write code that describes a latch instead of the com-
binational logic they intended to encode because of a missing assignment in a process. We
remove any latches in the Verilog description by providing a default value for a signal when-
ever there is a warning from the static analysis tool about a latch. We use zero as a default
value since it is always valid to assign regardless of the bit-width of the signal. If needed for
a repair, the default can be overwritten by the Replace Literals repair template introduced
in the next section.

Repair Templates

A repair template is a compiler pass that analyzes the Verilog AST and adds a range of
possible changes, thus describing a space of possible repairs for the repair synthesizer. Each
change is guarded by an indicator variable ¢;, which will disable the change when set to
zero. Besides that, many templates introduce additional free variables «a;, which represent
constants in the Verilog code that the repair synthesizer can freely choose. If va o; =0,
we turn off all changes and obtain the original circuit. The repair synthesizer will try to
find an assignment to all synthesis variables ¢; and «; that makes the circuit obey the 1/O
trace subject to min Zf\] ¢;. Minimizing the number of changes has two advantages: (1) it
ensures that the synthesizer does not change code that is not relevant to the given I/0 trace,
making it more likely that the fix will generalize to other tests (2) the smaller the suggested
repair, the easier it will be for a developer to verify. We have developed three different repair
templates that can fix a wide range of bugs. In our framework, new repair templates can
be easily added without any changes to the repair synthesizer as long as they use ¢; and «;
variables as described above.

Our symbolic repair templates are inspired by the templates used by CIRF1x [2]. How-
ever, while applying a CIRFIX template will produce a single concrete change to the RTL
description, applying a RTL-REPAIR template encodes a large set of changes that the syn-
thesizer can choose from. Concretely, while CIRF1X’s Conditional repair template will pick
a single random conditional to invert, our Add Guard template will present the synthesizer
with the possibility to invert every single condition in the RTL description. Our templates
are thus much more powerful compared to CIRFI1X’s, which explains why three templates
are enough for RTL-REPAIR to solve many benchmarks.

Replace Literals Template. This template allows the repair synthesizer to replace literal
integer values with a freely chosen constant. To ensure that we obtain a synthesizable
circuit, we restrict the integer literals that can be replaced with the ones appearing in 1-
value expressions. Thus, we exclude integer literals that specify signal types (bit-width),
parameters, and any other integer literals that cannot be replaced with a non-constant
expression. Figure 7.6 shows some examples of integer literals that can and cannot be
replaced.
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always @ (posedge clk) begin

11 (ESE) 1?egln ® analyze assignments
a <= k?o' , type: <=, vars: a, b
end else if(cnd) begin
b <= Db + 1; @extract conditions:
end rst, cnd
—>
end @ create conditional assignments for each variable
if(9,)
for 2 if (cpiﬂ? (O(iﬂ? rst : l!rst) : 1'bl &&
and b cpi+2? (O(i+2? cnd : !cnd) : 1'bl)
a <= o g

(@) insert copies at start and end of process

Figure 7.4: Conditional Overwrite Template: Allows the repair synthesizer to assign
every variable to an arbitrary constant at the start and end of every process. This assignment
can be guarded by conditions mined from the same process.

Add Guard Template. This template allows the repair synthesizer to invert or add a
guard to the condition of any if-statement or the right-hand side of any 1-bit assignment
in the circuit. The transform follows this template e — (=?)e A ((=?)a(V(=7?)b)?), where
e is the original expression, =7 indicates an optional negation and (V(=7)b)? an optional
second part of the guard. The cost of inverting e is one, the cost of adding a simple guard
Aa is one, and the cost of adding a more complex guard A(a V b) is two. For a and b, the
synthesizer is able to pick from a list of 1-bit variables that are part of the circuit. Care has
to be taken not to create new combinational loops in the circuit since that would prevent us
from synthesizing it. We thus first calculate all combinational dependencies in the original
input circuit and then restrict @ and b to variables that won’t create any new dependencies
for the left-hand side of the assignment. Figure 7.5 demonstrates our conservative approach
with an example.

Conditional Overwrite Template. This template allows the repair synthesizer to insert
new assignments of a freely chosen constant value to any signal. These assignments can
happen either at the start or the end of a process and can optionally be guarded. The guard
is composed of conditions extracted from the same process. Figure 7.4 shows an example.
The cost of adding an unconditional assignment is one («; in Figure 7.4). Each guard within
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@build combinational dependency graph:
ba: {b, a}, a next: {d}, a: {}

v

assign ba = b & a;
/s ..k !

always @ (posedge clk) begin
if(rst) begin

a <= 1"b0;
//
always @ (*) begin
if(d) begin
a next =1"'b0;

/]

@ for each condition, find possible guards:
ba: V a({} S {b,a}), V/ rst({} S {b,a}),
K a next ({d} ¢ {b, a}),
using a_next as guard would add a new edge to the
dependency graph (ba «— d)

synchronous
dependencies are
ignored

Q) instantiate guard template: example for ba

assign ba = ((@,? 1'b0 : 1'bl) ~ (b & a)) &

(0,52
((O(i? 1'b0 ¢ 1'bl) * (a. .? a : rst)) |

1'00) m—————— -
)+ 1'b1) | optional negation |

Figure 7.5: Add Guard Template: Allows the synthesizer to append a guard to certain
1-bit expressions. We conservatively choose possible guards to ensure that no combinational
cycles are created and synthesizability is maintained.
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reg :_[%_9]_1: out; w------- constant expression may be

localparam P =,2'd1; < - - required —not replaced

case(sel) - gl literals that can be replaced
2'b00: |qut <= ' #l 1a; with a non-const expression
[ out <=1l 1a + pral] =——

endcase — | ((@)7? o = 2'dl)

Figure 7.6: Replace Literals Template: Conservatively replaces literals in places where
the expression is not required to evaluate to a constant at compile time.

the assignment has an additional cost of one (a;41 and «;;2). To maintain synthesizability,
our compiler pass first analyzes each process to determine which signals are assigned to in it
and whether it uses blocking or non-blocking assignments. This is necessary since assigning
the same signal from multiple different processes leads to race conditions in the Verilog
simulation and is thus undesirable. We also want to maintain the invariant that only one
type of assignment is used throughout a single process.

Basic Synthesizer

We first discuss a very basic version of our synthesizer. The next section covers how adaptive
windowing can help us scale to larger benchmarks.

Inputs. Our synthesizer takes in a circuit design with synthesis variables ¢; and «; from
the application of a repair template as well as a testbench. The design is provided in the
btor2 format, which is obtained by running the synthesis tool yosys on the Verilog code.
This step will fail if the design is not synthesizable. The testbench is in the format of a table
with rows for each cycle of execution and columns for each input and output signal of the
circuit that we are trying to repair.

Unknown Values. All registers start out uninitialized, and some input signals might
not be defined in certain cycles of the test execution because the testbench author did not
consider their value to be relevant for the test. These unknown values are modeled with Xs
in Verilog. In our synthesis procedure, we either randomize or set unknown values to zero.
We chose to randomize when the original testbench was using X values, as is the case for
all benchmarks from CIRFIX. We set unknown to zero if the original testbench was using
Verilator to match the behavior of that simulator.
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Synthesizing a Repair. Having chosen concrete values for initial states and unspecified
inputs, we unroll the circuit and assert that inputs and outputs have the values assigned to
them from the testbench while keeping the synthesis variables ¢; and «; symbolic. Then, we
query the SMT-solver to obtain an assignment to the synthesis variables that will make the
testbench pass. If the solver returns unsatisfiable, we know that the given template cannot
repair the circuit, so we move on to the next template. If the solver returns a solution, we
try to minimize the number of changes.

Synthesizing a Minimal Repair. We observed in our experiment that when a solution
exists, the minimal solution generally only takes a small number of changes (see Table 7.5).
We thus start searching for a minimal solution in a linear search, starting with one change.
We encode the number of changes as a constraint into our SMT query. If a solution exists,
we found a minimal solution, which is returned to the frontend to repair the Verilog code.
If the solver returns unsatisfiable, we increase the number of expected changes by one. This
optimization can be framed as an instance of the Max-SMT problem [15]. However, most
solvers that perform well on hardware circuits do not implement Max-SMT directly. We
thus stick with our customized algorithm, which allows us to use a wide range of specialized
SMT solvers.

Adaptive Windowing

As part of our basic synthesis process, we need to unroll the system once for every cycle in the
testbench execution. Unfortunately, bounded model checking, and thus also our synthesis
algorithm, scales poorly with how many times we unroll the system. Adaptive windowing
allows us to synthesize repairs while unrolling the system for only a small number of cycles.
We observed that human developers often start investigating a bug by looking at the signal
values around the cycle where the first violation occurred. To make debugging tractable,
developers may assume that the state of the circuit a couple of cycles before the bug manifests
is correct, as this makes it simpler to trace the signal values to find a reason for the divergence.
We can make use of this assumption to reduce the scope of our unrolling.

We define two values: kpqs: and kgypyre, which specify how many cycles before and after
the first output divergence we unroll our system. Our algorithm starts with both values set
to zero. Thus, in the first iteration, our tool concretely executes the original circuit until the
step at which the output divergence occurred and then starts the symbolic unrolling from
the concrete state reached after those steps. If all state update functions are correct and
there is only a bug in how the output is computed from the current state and inputs, then
this would be enough to obtain a correct repair.

We generally sample all minimal repairs for a given kpqs: and kypure and then evaluate
them through a concrete simulation using the repaired circuit. If the test passes, we have
found a correct repair, which we return from the synthesizer. If none of the repairs work, we
analyze their failures. If all of them failed at or before the same cycle as the original failure,
then we assume that some state update in the past went wrong, and we need to increase
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the symbolic execution window towards the past. We thus increment k,,s by a constant.
Generally, we chose step size two. If, on the other hand, there exists a repair that makes the
earlier failure go away but then leads to a failure later in the circuit execution, we assume
that we are missing some future context. Therefore, we increase kjfypure so that our repair
window includes the newly failing cycle. The window size is the sum of ks, and kpypure. In
our RTL-REPAIR implementation, we set the maximum window size to 32, after which the
tool will give up and declare that it cannot find a repair. We also observed that when there
are many failing repairs, it generally pays off to go to a larger window size immediately. Our
implementation thus advances to the next window sizer after finding four failing repairs.

We have found this new adaptive windowing technique to improve scalability for bench-
marks with longer testbenches drastically. One benchmark, in particular, went from timing
out after one hour to being repaired in less than ten seconds.

7.3 Output / State Divergence Delta

We formalize the insight behind our adaptive windowing technique through the output/state
divergence delta (OSDD) metric. We assume that we are provided with a working digital
synchronous circuit (the ground truth), a buggy version of the same design, a sequence of
test inputs, and a starting assignment to all state variables. We then calculate the OSDD
by comparing outputs and state variables on every cycle of the test execution. We note
the distance between the first divergence in state values and the first divergence in output
values. If the state never diverges, then the OSDD is zero. Otherwise, the OSDD is the
number of steps from when the state first diverges to when the output diverges, plus one.
An illustrated example of this is shown in Figure 7.7. This definition requires that the state
and output variables are the same between the buggy and ground-truth versions which is
true for all benchmarks that can be correctly repaired by RTL-REPAIR and CIRFIX.

We empirically calculated the OSDD by discretizing the testbench waveforms and ex-
tracting output and state (register) information from the synthesized netlist of the circuits.
Our results are shown in Table 7.2. The benchmark with the largest OSDD that was suc-
cessfully repaired is sdram_ k2, with an OSDD of 25. However, our static analysis-based
preprocessing step solved this benchmark, which does not require any unrollings (see Ta-
ble 7.5). The next benchmark is i2c_k1 with an OSDD of 13, which was actually solved by
the unrolling-based repair synthesizer. Both RTL-REPAIR and CIRFIX were only able to
solve benchmarks with low OSDD. High OSDD benchmarks are difficult because both tools
try to reason about the execution of the system.

For all benchmarks repaired by RTL-REPAIR’s synthesis engine, the OSDD provides a
lower bound for how far the repair window needs to be expanded into the past. The i2¢_ k1
benchmark only requires a repair window of size 4, which is lower than the OSDD. While the
buggy register value diverges already 12 cycles before the bug manifests, it is also updated
only four cycles in the past, allowing our repair synthesizer to generate the correct repair with
only 4 cycles of context. Other benchmarks require larger repair windows because future
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Table 7.2: Output / State Divergence Delta Evaluation: Testbench (TB) length
in cycles, first error (output divergence), output/state divergence delta (OSDD), size of

the repair window used by RTL-Repair as well as repair results. Two i2¢ benchmarks are
excluded as they are not clocked, and thus, the OSDD is not defined.

& > >
& F 9 ¢ K
Q S S & VS

Benchmark S <> O N < O
decoder w1l 28 0 0 [0..10] v %
decoder w2 28 0 0 [0..200 ® O
counter_wl 27 4  nja o v
counter_ k1 26 3 1 [2.0 v ¢
counter w2 26 19 1 [2.0 ¢v ¥
flop. wl 11 0 1 [1.0 ¢v ¥
flop_ w2 11 0 1 [2.1 v ¢
fsm wl 37 32 1 O O
fsm s2 37 9 1 v
fsm_ w2 37 2 3 v %
fsm_ sl 37 10 11 vV
shift wl 27 8 1 v
shift w2 27 0 1 [1.0 v ¢
shift_ k1 29 7  nja x v
mux_ k1 151 10 1 o O
mux_ w2 151 20 1 [0..10] v %
mux_ wl 151 10 1 [0..200 v %
i2c k1 171957 1238 13 [4.0] ¢ ¥
sha3 wl 357 24 1 O v
sha3 rl 357 24 1 O O
sha3 w2 357 46  n/a O O
sha3 sl 129 31 1 [2.0 v %
pairing w1l 74149 74119 73346 o O
pairing k1 74149 775 2 o O
pairing w2 74149 74119 74109 o O
reed_bl 166166 2967 2963 o O
reed ol 166166 0 0 O %
sdram_ w2 636 130 1 [4..5 ¢v O
sdram k2 636 64 25 v O
O %

sdram w1l 636 1 1
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correct: (5) @ @ @
same initial L i %, 0 i ;2 output dlverges
state i | | | 0, i —bug is revealed
buggy: @ @ @ @

state may diverge somewhere in between

(a) We start the correct and the buggy system in the same state and execute
both with the same inputs until the outputs become unequal, which happens
in our example after two state updates.

OSDD=0, output functions are different

comee: p— O €
same initial L iy i ,1 ;2 output d1verges
state i | i | i '| | bi —bug is revealed
buggy: @ @ @

(b) If all states before the output divergence are equivalent, then we define the
OSDD to be zero.

OSDD=1, state update is buggy

y =TS
correct: () @ CopsarCo— .
I b .
same initial L ; 1L output diverges
|
I

—bug is revealed

. P
same initial L ; - : ;2 output dlverges
PL, —bug is revealed
1

(d) For a failure at cycle 2, the maximum OSDD is 3.

Figure 7.7: Output / State Divergence Delta (OSDD) Example
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information needs to be taken into account. For example, the decoder benchmarks contain
no state variables, and their OSDD is 0. However, several different inputs and, therefore,
several cycles of test execution are needed in order to reveal all the bugs in the design.

7.4 Evaluation

We compare RTL-REPAIR to the prior state-of-the-art tool CIRFIX in terms of the quality of
repairs and how quickly the repairs are provided. RTL-REPAIR provides more correct repairs
and is often orders of magnitude faster than CIRF1X. We also performed a detailed analysis
of the various components of RTL-REPAIR and how they contribute to its performance.

Experimental Setup

All our experiments were run on a server with 252GiB of RAM and two 8-core Intel Xeon
E5-2667 CPUs with hyperthreading. While the core algorithms of both RTL-REPAIR and
CIRF1X could benefit from multiple cores, their current implementations are strictly sequen-
tial, and thus, multiple cores are only used to run different benchmarks in parallel to speed
up our evaluation. We observed that CIRFI1X would run slower on our machine than re-
ported in the original paper. This could be due to the slower CPU, or VCS might have
higher startup costs on our machine due to a different license server setup. We increased the
timeout from 12h to 16h to ensure that CIRFIX has the time to generate all repairs reported
by the original paper.

The RTL-REPAIR prototype consists of a frontend that uses the PyVerilog [137] library
to implement our symbolic repair templates. The Yosys [153] tool converts Verilog designs
into a transition system in the btor2 format [111]. A synthesis engine written in Rust takes
the I/O trace and transition system to find a suitable repair. While the synthesis engine
can work with many different SMT solvers, we use bitwuzla [109] in our experiments since
it offers the best performance on average.

We extended the CIRFIX prototype [2] to allow us to run different benchmarks in parallel
in order to speed up the evaluation. The core algorithm remains untouched, and our results
are comparable to those reported in the CIRFIX paper. Table 7.3 shows the benchmarks
from the CIRFIX paper that are used in our evaluation and maps them to the short names
used throughout this paper. We created 1/0 traces from the provided ground truth versions
of each circuit. We had to manually remove a tri-state bus and an asynchronous reset for
two benchmarks as these constructs are not supported by RTL-REPAIR. This conversion
could be automated in the future. The source code of RTL-REPAIR, our modified version of
CIrRF1x and all experimental scripts are available on GitHub: https://github.com/ekiwi/
rtl-repair
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Table 7.3: Benchmark Overview. Relates benchmarks from CirFix [2] to the short names
used throughout this paper.

Project Defect Short Name
decoder 3-8  Two separate numeric errors decoder_ wl
Incorrect assignment decoder_ w2
counter Incorrect sensitivity list counter_ wl
Incorrect reset counter k1
Incorrect incremental of counter counter_ w2
flip flop Incorrect conditional flop_ wl
Branches of if-statement swapped flop_ w2
fsm full Incorrect case statement fsm wl
Incorrectly blocking assignments fsm_ s2
Assignment to next state and default in case statement omit-
fsm w2
ted
Assignment to next state omitted, incorrect sensitivity list  fsm_ sl
Ishift reg Incorrect blocking assignment shift_ wl
Incorrect conditional shift w2
Incorrect sensitivity list shift_ k1
mux 4 1 1 bit instead of 4 bit output mux_ k1
Hex instead of binary constants mux_ w2
Three separate numeric errors mux_ wl
i2¢ Incorrect sensitivity list i2¢_wl
Incorrect address assignment i2c_w2
No command acknowledgement i2c_kl
sha3 Off-by-one error in loop shad wl
Incorrect bitwise negation sha3d_rl
Incorrect assignment to wires shad_ w2
Skipped buffer overflow check sha3d_ sl

tate pairing

Incorrect logic for bitshifting

pairing wl

Incorrect operator for bitshifting pairing k1

Incorrect instantiation of modules pairing w2
reed-solomon Insufficient register size reed_ bl
decoder Incorrect sensitivity list for reset reed_ ol
sdram- Numeric error in definitions sdram_ w2
controller Incorrect case statement sdram_ k2

Incorrect assignments to registers during synchronous reset sdram_ wl
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Table 7.4: Repair Correctness Evaluation

Symbols: ¢ test passed, 8 test failed, O no repair to test

An empty cell means that the test did not apply. Overall a repair is judged a success (V)
if all applicable tests pass. The number in the right-most column denotes the number of

changes comprising the repair. o

»O A
RPN ANINNG S N\ ' eve
Benchmark Tool @00\% @esn‘oe ot G%‘e&

decoder_wl rtlrepair
cirfix

decoder_ w2 rtlrepair
cirfix

counter_ wl rtlrepair
cirfix

counter_k1 rtlrepair
cirfix

counter_ w2 rtlrepair
cirfix

flop_ w1l rtlrepair
cirfix

flop_ w2 rtlrepair
cirfix

fsm_s2 rtlrepair
cirfix

fsm_ w2 rtlrepair
cirfix

fsm_ sl rtlrepair
cirfix

shift_ w1l rtlrepair
cirfix

shift_ w2 rtlrepair
cirfix

shift_ k1 rtlrepair
cirfix

mux_ w2 rtlrepair
cirfix

mux_ wl rtlrepair
cirfix

i2c_wl rtlrepair
cirfix

i2c_ w2 rtlrepair
cirfix

i2c_kl1 rtlrepair
cirfix

sha3_wl rtlrepair
cirfix

sha3_sl rtlrepair
cirfix

reed_ol rtlrepair
cirfix

sdram_ w2 rtlrepair
cirfix

sdram_ k2 rtlrepair
cirfix

sdram_ w1l rtlrepair
cirfix
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decoder_w1: Two separate numeric errors RTL-Repair (0.4s,

- ({en,a,B,C} — 4'b10T0)? 8'b1111 1011 :- ({en,A,B,C} == 4'b1000)2 8'b1111 1011 : Replace Literals):

+ ({en,A,B,C} == 4'b1000)? 8'b1111 1011 :+ ({en,A,B,C} 4'p1010)? 8'b1111 1011 : Max-SMT
({en,A,B,C} == 4'b1011)? 8'b1111 0111 : ({en,A,B,C} 4'p1011)2? 8'b1111 0111 : guaranteesa
({en,7,B,C} == 4'b1100)? 8'b1110 1111 : ({en,A,B,C} == 4'b1100)? 8'b1110 1111 : minimal number of
({en,A,B,C} == 4'b1101)? 8'b1101 1111 : ({en,A,B,C} == 4'b1101)? 8'b1101 1111 : changes in the
({en,A,B,C} == 4'b1110)? 8'b1011 1111 : ({en,A,B,C} 4'p1110)2 8'b1011 1111 : golution and thus no
({en,A,B,C} == 4'b1111)? 8'b0111 1111 : ({en,A,B,C} == 4'b1111)? 8'DOIIL 1111 : | o ing

- . 8'b1111 1111; - - - 8'b0111 1111 ; functionality i
diff original vs. bug 8'p0111 1111; + | diff bug vs. our repair | 8'b1111 1111, lunctionalityis
- - changed.

- ({en,A,B,C} == 4'b1000)? 8'b1111 1011 ———

+ ({en,A,A,C} == 4'b1000)? 8'b1111 1011 :| counter_wl: Incorrect sensitivity list

- ({en,2,B,C} == 4'b1011)? 8'b1111 0111 :| _ .yuays o (EBEEEEMc1k) begin : COUNTER

+ ({en,A,B,C-1}==4'b1011)? 8'b1111 0111 + always @(clk) begin : COUNTER [ —
({en,A,B,C} == 4'b1100)? 8'b1110 1111 : diff original vs. bug
({en,A,B,C} == 4'b1101)? 8'b1101 1111 :| RTL-Repair (0.9s): Cannot find a repair. Removing the posedge
({en,A,B,C} == 4'Db1110)? 8'b1011 1111 fundamentally changes the synthesized circuit, turning a process

- ({en,A,B,C} == 4'b1111)? 8'b0111 1111

describing registers (state elements) into a process describing a purely
combinatorial circuit. Since the repair synthesizer works directly on the
diff bug vs. CirFix repair synthesized circuit, it cannot reason about this bug.

diff bug vs. CirFix repair

= 8'b0111 1111 ;
+ (CEEEY)

CirFix (7h): repair passes testbench, but changes

. - always @(clk) begin : COUNTER
code that is never tested. 7 g

+ always @ (posedge clk) begin : COUNTER
CirFix (35s): has a matching template that adds a posedge to a random
process. This benchmark features only a single process.

sdram_w1: Incorrect assignments to
registers during synchronous reset

always @ (posedge clk) diffbugvs.
if (~rst_n) begin always @ (posedge clk) always @ (posedge clk) .
(... if (~rst n) begin [”%/] posedg our repair
- wr data r <= 1'b0; L-..] + if(!rst n) rd data r <= 16'b0;
rd data r <= 1'b0; ia rd data r <= IDLE; o o o

i state_cnt_next — 4'd0; RTL-Repair (1.5min, Basic Synth, Conditional

+ “= 1 - . .. B
- rc%f'iatagf Sarai . — . Overwrite): the conditional overwrite template

diff original vs. bug diff bug vs. CirFix repair correctly generates a minimal repair. However, the
CirFix (7h): correctly adds back the reset for rd_data r (IDLEis0).In adaptive windowing algorithm gives up too soon and
the ground truth circuit, the reset value of wr_data_r is never read and the repair is only found by the more precise but much
thus unnecessary. The assignment to state cnt next creates a race slower basic synthesizer if we increase the timeout
condition. from 60s to 90s.
sha3_s1: Skipped buffer overflow check diff original vs. bug
- assign update = (accept | (state | & (~buffer full) )) & (~done);
+ assign update = (accept | (state)) & (~done);

diff bug vs. our repair

- always @ (posedge clk) diffbug VS. - assign update = (accept | (state)) & (~done);
+ always @(*) CirFix repair + assign update = (accept | (state)) & (~done) & (~f ack) ;

if (reset) done <= 0;
else if (state & out_ready) done <= 1; RTL-Repair (4s, Add Guard): proposes a simple change to the correct
expression while maintaining a circuit that synthesizes correctly. A better
testbench would be needed in order to distinguish between this repair and
the ground truth.

CirFix (1.6min): changes done from a register to a
latch. While this works to fix the bug in simulation, it
creates unwanted synthesis-simulation mismatch.

Figure 7.8: Qualitative comparison of RTL-REPAIR and CIRFIX repairs on four different
benchmarks. The decoder_ w1 result shows how the Max-SMT-based approach can help
RTL-REPAIR generate repairs that leave untested features untouched, while CIRFIX some-
times introduces new bugs. counter w1l is a good example for a bug that RTL-REPAIR
cannot tackle because it leads to synthesis problems. sdram_ w1 shows how RTL-REPAIR
avoids introducing new bugs by minimizing repairs.
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Table 7.5: Repair Speed Evaluation. A direct comparison of RTL-Repair and CirFix is
on the right, and the performance breakdown of the RTL-Repair components is on the left.
A bold number indicates the number of changes performed. The Basic Synthesizer column
shows the performance of RTL-Repair when benchmarks are naively unrolled without our
adaptive windowing technique. Symbols: ¢ generated correct repair, 8 generated incorrect
repair, O no repair generated

xe
. or® oV a1t
6590% XJ‘W@) & o TS S .

Benchmark ?‘e‘ﬁoc Y&Q\ace P»dd o 000&‘\0 s o ?{YX),?&? G'\& > 5?666\“)
decoder_wl| 0 0.16s 2¢ 0.18 O 0.09s O 0.09s v 0.41s|v 0.39s % 7.21h  66,904x
decoder_w2| 0 0.18s 5% 0.26s O 0.10s O 0.09s ® 0.59s| % 0.68s Timeout 85,149x
counter_wl| 6 044s O 0.11ls O 0.13s O 0.13s O 0.83s|O 0.83s ¢ 35.09s 42x
counter_kl| 0 0.18 O 0.12s O 0.08s 1 ¢ 0.09s ¥ 0.65s|¢ 0.60s v 13.31h 79,945x
counter w2| 0 0.17s O 0.20s O 0.19s 2¢ 0.10s vV 0.67s|¢v 0.75s ¢ 14.19h 67,978x
flop_wl| 0 0.18 O 0.11ls1¢ 0.11s O 0.10s v 0.45s|v 0.45s ¢V 15.28s 34x
flop_w2| 0 0.17s O 0.11ls 2¢ 0.11s O 0.10s ¥ 0.44s|v 0.43s ¢ 28.57Tmin 3,961x
fsm_wl| 0 0.17s O 0.96s O 1.44s O 2.65s O 1.26s|O 5.76s Timeout 10,007x
fsm_s2|15 0.46s Repaired by preprocessing v 0.66s|¢v 0.65s % 2.03h 11,191x
fsm_w2| 3 0.70s Repaired by preprocessing v 0.90s|¢v 0.90s ¥ 44.83min  2,990x
fsm_sl| 2 0.67s Repaired by preprocessing v 090s|v 0.90s 8 1.11min 73x
shift_ wl| 4 0.43s Repaired by preprocessing v 0.58s|v 0.57s % 28.58s 50x
shift_ w2| 0 0.16s O 0.13s 1 ¢ 0.10s O 0.11s ¢ 0.52s|¢v/ 0.46s ¢  35.11s 75x
shift_k1| 0 0.17s O 0.12s X 0.34s| % 0.34s v 15.51s 45x
mux_kl1| 4 0.79s O 0.12s O 0.08 O 0.14s 8 1.15s|O 1.28s Timeout  44,840x
mux_w2| 0 0.17s 2¢ 0.13s O 0.08 O 0.09s v 047s|v 0.36s % 5.42h 54,731x
mux_wl| 6 058 3¢ 0.10s O 0.06s O 0.15s ¢ 0.86s|v/ 0.81s % 7.56h 33,542x
i2c. wl| 1 085 O 0.18 O 046s O 0.31s O 1.82s|O 1.90s ¢ 3.86min 122x
i2c w2| 1 084 O 019s O 041s O 0.29s O 1.70s|O 1.81s ¥ 1.23min 40x
i2c_kl1| 0 020s O 8528 O 1.17s 1 v 3.57s Timeout |/ 13.17s ¢ 41.10min 187x
sha3_wl| 0 0.24s O 13.73s O 13.89s O 14.32s O 31.38s|O 41.34s ¢ 1.19min 1x
sha3 rl1| 0 0.22s Timeout O 0.36s O 0.34s Timeout | Timeout Timeout 964x
sha3_w2| 0 0.24s O 0.36s O 0.64s O 22.49s O 34.80s|O 21.78s Timeout 2,644x
sha3 _s1| 0 0.20s O 327s1¢ 0.33s O 10.15s ¥V 5.98s|v 3.77s ¥ 1.60min 25x
pairing_wl| 0 18.49s Timeout O 41.20s O 45.44s Timeout | Timeout Timeout 963x
pairing k1| 0 18.46s Timeout O 41.79s O 42.03s Timeout | Timeout  Timeout 963x
pairing w2| 0 18.42s Timeout O 41.11s O 41.24s Timeout | Timeout  Timeout 963x
reed bl| 0 033s O 1.79s O 1.09s O 1.81s O 5.44s|O 5.52s Timeout 10,428x
reed_ol| 0 0.36s O 135s O 08s O 0.89s O 3.595|O 3.63s % 9.50h  9,426x
sdram_w2| 0 0.18 2¢ 2.27s O 0.37s O 25.56s Timeout |¢/ 2.59s Timeout 22,231x
sdram_k2| 2 0.83s Repaired by preprocessing v 1.17s|v 1.20s Timeout 48,157
sdram_wl| 0 0.18 O 0.32s O 0.38 O 0.62s Timeout |O 1.65s % 6.91h 15,055x




CHAPTER 7. FAST SYMBOLIC REPAIR OF HARDWARE DESIGN CODE 101

Quality of Repairs

The most important metric for a repair tool is the number of bugs it can successfully repair.
This requires us to classify any repair the tool comes up with as correct or incorrect. The
authors of CIRFIX followed a two-step approach: (1) By design, all repairs that CIRFIX
returns pass the provided testbench. These repairs were described to be “plausible”. (2) In a
second step, the first author of the paper would manually inspect each “plausible” repair and
determine whether the repair is “correct”. ! We also inspected the repairs CIRFIX performed
and found that many seemed incorrect to us.

Many of these disagreements relate to what each research team focuses on repairing.
It appears that the CIRFIX authors are focused on repairing the Verilog simulation of a
circuit, which CIRFI1X accomplishes in many cases. However, the goal of RTL-REPAIR is
to repair the circuit that is described by the Verilog simulation and not just the simulation
itself. Under this framing, repairs that fix the simulation but lead to synthesis-simulation
mismatch (see Section 2.2) are incorrect. Since these mismatches are notoriously difficult to
debug, CIRFIX might cause more work than it saves.

A common way to detect synthesis-simulation mismatch is so-called gate-level simulation.
For this purpose, we take the output of our synthesis tool in the form of a low-level Verilog
description and plug it into the original testbench. Sometimes gate-level simulation fails,
not because of an actual mismatch but because of various X-propagation issues. Therefore
we only perform the gate-level simulation check if it works with the ground truth version
of the circuit. We add another automated check for simulator compatibility: If the original
circuit works with the open-source iverilog simulator [151], the repaired version should also
work with iverilog. This helps us filter out repairs that rely on race conditions or otherwise
ill-defined Verilog features.

The importance of avoiding synthesis-simulation mismatch is illustrated by the mux_ w1l
benchmark, which CIRFIX repairs through a “clever” combination of blocking and non-
blocking assignments. A value is overwritten by a non-blocking statement, which appears in
the program order before the blocking statement, which assigns the original default value.
This repair fixes the simulation but is not correctly understood by the synthesis tool, leading
to a much harder-to-detect and debug problem for the developer to deal with.

Finally, we noticed a problem with the testbench accompanying the decoder benchmarks.
It does not adequately test all functionality of the design. We thus added an extended
testbench that tests all relevant input combinations. This test shows one of the advan-
tages of minimizing the number of repairs in the RTL-REPAIR algorithm: It ensures that
RTL-REPAIR only changes code exercised by the testbench. CIRF1X, on the other hand, ends
up destroying functional parts of the circuit that were not exercised by the testbench. The
second decoder benchmark contains errors in parts of the design that were never tested by
the original testbench and thus cannot be repaired by any tool. If we provide RTL-REPAIR
with the extended testbench, it successfully finds the complete repair.

'Source: personal communication with the authors.
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Table 7.6: RTL-REPAIR results for bugs from open-source projects collected by the authors
of “Debugging in the Brave New World of Reconfigurable Hardware” (Table 2 in [90]). All
results were obtained using the incremental synthesizer and with a timeout of 2min. “Bug
Diff” indicates how many lines need to be added or removed in order to go from the repaired to
the buggy version of the circuit. “TB” shows the number of steps in the provided testbench.

Bug Diff TB Result and Quality Template
D4 427 /-26 185 Timeout

D8 +2 /-2 14 1v 1.06s B Replace Literals
D9 +2 /-2 523k Timeout

D11 +0 /-2 17 1v 5412s C Cond. Overwrite
D12 +1 /-1 16 1¢v 6.06s D Replace Literals
D13 +1/-3 6 3¢v 154s C Cond. Overwrite
C1 +1/-1 523k 1¢ 33.17s A Add Guard

C3 +1 /-7 523k O 21.56s

C4 +1/-1 10 1v 183 A Add Guard
SILR  +1/-1 10 1v 1023s C Add Guard

S1.B +2 /-2 10 2¢v  9.09s D Add Guard

S2 +1 /-2 45 1v  0.73s C Replace Literals
S3 +12 / -35 13 2¢v 689 D Replace Literals

Overall, RTL-REPAIR finds 16 repairs that pass all our tests, while CIRFIX finds 10.
Figure 7.8 features a qualitative comparison of four benchmarks, highlighting the strengths
and weaknesses of both tools. RTL-REPAIR also provides only two incorrect repairs. The
first one is due to the shortcomings in the decoder testbench. For the shift_k1 benchmark,
RTL-REPAIR incorrectly determines that no repair is necessary since the synthesized circuit
looks correct. This could easily be filtered out by running the original testbench once after
a successful repair. With our more extensive testing in place, we notice that only two multi-
edit repairs generated by CIRFIX are considered correct (counter k1 and flop w2). This
calls into question CIRF1X’s ability to generate multi-edit repairs that take full advantage
of the genetic algorithm.

Repair Speed

Table 7.5 shows how long RTL-REPAIR and CIRFIX take for each repair. We used a timeout
of 60 seconds for RTL-REPAIR and 16 hours for CIRF1X. RTL-REPAIR generally provides
results in a small number of seconds, often several orders of magnitude faster than CIRFIX.
It gives almost instant feedback allowing a user to quickly decide whether they want to use
the repair suggestion.

We compare the adaptive windowing technique used by RTL-REPAIR to the basic syn-
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thesizer. For benchmarks with small testbench lengths, the basic synthesizer is faster. But
for longer testbenches like the mux benchmarks, the adaptive windowing approach leads to
faster results. It allows us to solve two more benchmarks compared to the basic synthesizer.

Under normal circumstances, RTL-REPAIR tries out repair templates in sequence and
immediately returns as soon as a repair is found. The left half of table 7.5 shows what
happens if we turn off this early exit. We can see that the repair templates do not overlap;
only a single repair template per benchmark generates a repair. Each repair template fixes
between three and four of the benchmarks, demonstrating that the templates are not specific
to a single bug. We can also see that the number of changes for each repair is small. Most
often, only one or two changes are enough; the maximum is three changes to generate a
correct repair. Five benchmarks are fixed directly by our static-analysis-based preprocessing
phase, demonstrating the importance of combining static analysis with more sophisticated
repair techniques.

Open-Source Bug Repair

In addition to the CIRFIX benchmarks, which were specifically created to test automated
repair tools, we also applied our RTL-REPAIR tool to a set of bugs mined from git commits
to open-source FPGA hardware projects [90]. Of the 20 reproducible bugs provided by
the prior work [90], we are able to use 12 with RTL-REPAIR. The other 8 contain non-
synthesizable Verilog, use SystemVerilog features that our parser is not able to deal with, or
lack a ground-truth repair.

Table 7.6 shows our results. Overall, RTL-REPAIR provides repairs that pass the pro-
vided testbench for 9 out of 12 bugs. However, since this set of bugs was never intended
to be used as a benchmark for automated repair, most testbenches are quite minimalistic
and only enough to demonstrate the bug. We thus manually inspect each repair and rate
it on the following scale: (A) repair matches the ground truth exactly, (B) repair performs
some of the changes from the ground truth, (C) repair changes the same expression as the
ground truth but in a different way, and (D) change is very different from the ground truth.
Figure 7.9 shows several example repairs.

To tackle his new challenging benchmark set, we needed to improve our repair templates
to make them more powerful. The Add Guard template, for example, was previously used
to allow only the inversion of boolean conditions. We added the ability to add another
boolean condition as a guard. While we had to improve our templates, we were still able
to implement them in under 150 lines of Python each and keep the number of templates at
three.

While we did improve our templates, the core synthesis algorithm remained largely un-
touched. This shows that while templates need to be carefully engineered to work across
a large set of repair scenarios, the basic synthesis technique proposed in this paper can be
applied to a wide range of designs. Note that none of these more realistic benchmarks strug-
gled with synthesis-simulation mismatch, and none were repaired by preprocessing alone.
However, while the bugs are all mined from open-source projects, most only come with ar-
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C1: SDSPI - Deadlock diff original vs. bug RTL-Repair (33s, Add Guard, A-Quality):

|| byte accepted) | && r z counter)) with the bitwuzla SMT solver the correct repair
|| byte accepted)) o is generated. In our testing, other SMT solvers
would identify the right expression to change,
but would pick a different guard expression,
leading to a new failure outside the maximum

- end else if ((startup hold
+ end else if ((startup hold

byte accepted))

- end else if ((startup hold |
|| byte_ accepted) & r_z counter)

+ end else if ((startup_hold

diff bug vs. our repair repair window size.
D8: AXI-Stream Switch - Misindexing -
- assign int s axis tready[m] = int axis tready[select reg* S COUNT+m] || drop reg; dlfforlgmal
+ assign int s axis_tready[m] = int_axis_tready[select_reg* M COUNT+m] || drop_reg; vs. bug
[...]
- wire s axis tvalid mux int axis tvalid[grant encoded * M COUNT + n] && grant valid;
+ wire s_axis_tvalid mux = int_axis_tvalid[grant_encoded * S COUNT + n] && grant valid;

- wire s axis tvalid mux = int axis tvalid[grant encoded * S COUNT + n] && grant valid diffbug VS.
+ wire s_axis_tvalid mux = int_axis_tvalid[grant_encoded * 32'bl + n] && grant_valid; our repair

RTL-Repair (1s, Replace Literals, B-Quality): one expression is correctly repaired (M _COUNT == 32’bl). However, the
testbench passes without repairing the assignment to int s axis tready[m] and thus no full repair can be provided.

. . . - . RTL-Repair (10s, Add

S1.R: AXI-Lite Demo - Protocol Violation | diff original vs. bug | Guard, C-Quality):
- if (~axi arready && S AXI ARVALID | && (!S_AXI RVALID || S_AXI RREADY) ) begin Correct location, but an
+ if (~axi_arready && S_AXI_ARVALID) begin incorrect expression that
- if (~axi arready && S AXI ARVALID) begin | diff bug vs. our repair | Ovetr)ﬁts ;O the provided
+ if (~axi arready && S AXI ARVALID && !axi bvalid) begin testbench.
D11: AXIS Frame FIFO - Failure-to-Update RTL-Repair (1min, Conditional Overwrite, C-Quality):

if (rst) begin + drop frame <= 1'b0; The new assignment to drop_fram.e is not ggarded by. rst which
- wr ptr cur <= 0; if (rst) begin could lead to drop frame unintentionally being reset in an
- drop frame <= 0; extended test. Guarding the assignment increases the cost by 1 and

- — - : thus will only be done by RTL-Repair if required by the testbench.

diff original vs. bug | | diff bug vs. our repair
D12: AXIS FIFO - Failure-to-Update RTL-Repair (6s, Replace Literals, D-Quality):
- drop frame next = drop frame reg; This repair changes how full wr is designed such that
+ drop frame next = 1'bO0; drop frame next will be correctly updated for the short
[...1] testbench (16 cycles) provided with the benchmark. However,

if (full cur || full wr || drop frame reg) begin  thjs repair won’t work in the general case and the expression

drop_frame next = 1'bl; diff original vs. bug changed is fairly removed from where the original bug is.

- wire full wr = ((wr ptr reg[ADDR WIDTH] != wr ptr cur reg[ ADDR WIDTH]) && | diffb . |
+ wire full wr = ((wr_ptr reg[ADDR WIDTH] != wr ptr cur_reg[ 32'b10010]) && f UgAvSIouRIepaIn

Figure 7.9: Repairs produced by RTL-REPAIR for the Open-Source bugs discussed in Sec-
tion 7.4.
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tificially short testbenches that are provided only to demonstrate each bug. This leads to
many possible repairs that can make the testbench pass. While RTL-REPAIR always pro-
vides a very small repair, some of them are not very good. Sampling multiple repairs and
presenting them to the user could be a future fix to this problem.

7.5 Discussion

RTL-REPAIR clearly illustrates the power of symbolic analysis-based repair techniques, pro-
viding more correct repairs — orders of magnitude faster than the generate-and-validate based
CIRFIX tool. We carefully designed RTL-REPAIR to work with the exact same assumptions
as the prior work to make it a drop-in replacement for CIRF1xX. This shows that symbolic
repair does not require formal specifications.

Our repair templates are directly applied to the Verilog AST, making it trivial to map
the repair suggested by the synthesizer back to the original design. Initially, we explored
templates that worked on the transition system representation, which led to repairs that
proved difficult to automatically incorporate into the high-level Verilog code. Because of our
standardized interface to the repair synthesizer, new templates are easy to add.

We introduce gate-level simulation as a new standard for evaluating automated repairs
of hardware designs. This ensures that the users of these tools are not in for a bad surprise
when the automated repair makes their Verilog simulation work but then leads to silent bugs
in the actual circuit when it is mapped to an FPGA or taped out in a VLSI process.

RTL-REPAIR provides repair suggestions in a matter of seconds. Through our adaptive
windowing technique, this remains true, even for larger benchmarks. With this level of
responsiveness, we imagine that RTL-REPAIR could be integrated into a Verilog IDE to
directly provide quick repair suggestions, similar to tools like GitHub Copilot [53]. This
would require more research into how exactly RTL-REPAIR could be integrated with various
forms of testbenches and formal tests.
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Chapter 8
Related Work

This chapter discusses related work for coverage-directed test generation and automated
hardware design repair.

8.1 Coverage-Directed Fuzz Testing of RTL

My work on coverage-directed fuzz testing of RTL and the RFUZZ tool was informed by much
prior art on generating new test inputs for circuit designs from coverage feedback. Since my
work was published in 2018, it has inspired numerous followup papers by research groups
worldwide. This section discusses both the prior art and followup work.

Prior Art on Coverage-Directed Test Generation for Hardware

The prior work most similar to RFUZZ is MicroGP [133], which focuses on maximizing state-
ment coverage in the HDL description of various processor implementations. It uses an
instruction template library to generate and recombine programs, which allows for more
powerful mutation techniques but increases the amount of setup work needed. It also re-
stricts this line of work to the domain of processor testing, whereas coverage-directed fuzz
testing also shows promising results when testing various communication IPs. Another dif-
ference is that MicroGP targets slow DUT execution in a software simulation. An industrial
evaluation reports that simulation takes 30 times more resources than the core genetic algo-
rithm [65]. RFUZZ, on the other hand, is geared towards fast FPGA-accelerated simulation,
using a simpler algorithm to keep up with the test execution speed provided by such a
platform.

Various other approaches to the CDG problem do not rely on a modified genetic algo-
rithm. Tarsiran et al.[138] analyze the circuit to improve the biases for an existing random
input generator. Our work, on the other hand, does not assume that a generator exists.
Nativ et al. [106] propose a system that directs a random input generator with coverage
feedback. However, this system also relies on rules unique to a single DUT that need to be
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specified by a verification expert. Fine et al. [49] present coverage-directed test generation
using Bayesian Networks to guide the input generation. While the system automatically
learns the network weights, the network topology is DUT-specific and needs to be designed
by a verification engineer. Wang et al. [148] use a manually designed abstract model of the
DUT to generate inputs that maximize coverage automatically.

bluecheck [107] is a synthesizable test bench framework that takes advantage of the
BlueSpec HDL. Similar to our work, it is designed for FPGA-based testing. However, the
authors report some issues reproducing failing test cases discovered with the FPGA emu-
lation. Our system employs the MetaReset and SparseMem techniques to ensure that the
FPGA-accelerated simulation results are deterministic. While bluecheck depends on the
BlueSpec HDL, rRFUZz is HDL-agnostic. Our work focuses only on maximizing RTL cover-
age whereas bluecheck can also generate checks to find design bugs while running on the

FPGA.

CPU Fuzzing

After my work on RFUZZ, | was disappointed that we could not find any bugs with it due to a
lack of a checker component that would detect if a fuzzer-generated input triggers an invalid
execution. In the software domain, numerous dynamic instrumentation techniques can catch
common bugs as they happen. A popular technique is to use address sanitizer [128], which
will crash the program if a memory safety violation is detected. While no such common
dynamic analysis techniques are available for hardware, the authors of “DIFUZZRTL: Dif-
ferential Fuzz Testing to Find CPU Bugs” [60] realized that by focusing their efforts on fuzz
testing CPUs instead of arbitrary RTL designs, they could simply compare the outcome of
executing a generated assembly program on the RTL implementation and executing the same
program on an existing functional reference simulator. This differential testing technique is
common in CPU verification, but I was unaware before the DiFuzz paper was published.
Besides developing a working checker component for hardware fuzz testing, the DiFuzz
authors also wholly redesigned the input generator. Instead of the byte-level, AFL-style
approach used by RFUZZ, they designed a random RISC-V program generator and a separate
RISC-V program mutator. They also defined a new coverage metric. Instead of checking
how many mux control signals toggle, they check whether control registers take on a never-
seen-before value. This new technique expands the number of generated inputs considered
interesting and thus will be saved for the fuzzer to mutate. However, as reported in a later
paper [25], this detailed metric leads to the fuzzer saving the vast majority of inputs it
generates. Thus the new coverage metric may actually be too sensitive, overwhelming the
fuzzer with too many inputs to be mutated. The authors also report that their new coverage
metric is much more efficient to implement than the one used by RFUZZ. However, whether
that is just an artifact of how I implemented the coverage collection for RFUZZ is unclear. The
overhead of collecting the mux toggle coverage on an FPGA could be significantly reduced
using the scan-chain implementation that I described in Chapter 3 of this thesis. The DiFuzz
authors’ idea to use a differential test oracle was brilliant, leading to many actual bugs found.
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However, it is unclear how much of the improvement over RFUZZ is due to the new coverage
metric and how much is due to the hand-crafted, RISC-V-specific input generator.

The following paper in this line of work [72] presents a tool called TheHuzz and argues that
we should employ even more coverage metrics beyond the mux toggle coverage used in RFUZZ
and the register coverage in DiFuzz. TheHuzz uses branch, condition, FSM, expression, and
toggle coverage as feedback. There are generally two downsides that need to be considered
when adding new coverage feedback: (1) the slowdown in fuzzing speed when adding more
detailed coverage and (2) whether the increase in inputs selected for mutation means that
there is not enough time for the fuzzer to spend to mutate each input. Unfortunately, the
evaluation uses the number of instructions executed in simulation instead of time and does
not account for simulation speed. The authors report that they faced increased overhead
for the coverage metrics they use. However, they never explore whether turning off some
metrics would increase overall fuzzer performance. TheHuzz also uses an entirely new RISC-
V instruction generator and mutator, making a detailed comparison to DiFuzz difficult.

A followup paper from the same group explores using a model checker to improve the
performance of the TheHuzz fuzzer [28]. Similar to what I report in Chapter 6, they find
that simply using a formal tool to generate inputs can beat a fuzzer. Their tool makes
use of a model-checker to find inputs that reach uncovered points and then provides these
inputs as seeds to a version of the TheHuzz fuzzer. This combined approach leads to better
performance than the individual techniques on their own. While prior papers use various
coverage metrics to compare fuzzer performance, this paper compares the time it takes
various tools to re-discover known bugs in the tested designs. This metric is interesting
since it is pretty independent of the automated input generation tool’s approach and avoids
questions about which coverage metric should be used.

While the authors of DiFuzz and TheHuzz focus on expanding the coverage feedback
metrics to include more details, the paper “ProcessorFuzz: Processor Fuzzing with Control
and Status Registers Guidance” [25] argues that using RTL design coverage as a feedback
metric is misguided. Their evaluation shows that DiFuzz without any feedback achieves bet-
ter coverage than DiFizz with coverage feedback (Figure 6a in the paper). This demonstrates
that the feedback metrics were not as important as claimed by previous papers. The overall
better performance might be due to the RISC-V instruction generator of TheHuzz outper-
forming the one used by DiFuzz. The paper also reports that DiFuzz considers more than
half of the inputs it generates as interesting (Figure 6b), a very high amount. In software
fuzzing, only a tiny number of inputs are considered interesting, and elaborate scheduling
methods have been proposed to spend more time mutating promising inputs [17, 84] and
essentially discarding less promising ones. Instead of relying on RTL coverage, the authors of
ProcessorFuzz propose a custom coverage metric based on values in the CSRs when running
the generated input in a functional simulator. If the input does not improve coverage, it can
thus immediately be discarded without running a costly RTL simulation, leading to improved
performance over DiFuzz. Unfortunately, the source code of TheHuzz is not available, and
thus, no direct comparison could be made.

We have seen a shift away from using RTL coverage in CPU fuzzing. “Cascade: CPU
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Fuzzing via Intricate Program Generation” [132] published this year argues that no coverage
feedback is needed and we should instead focus on better input generation. Their advanced
program generator uses a functional simulator to execute instructions as they are generated
and, this way, obtain much better test programs. They show a significant speedup of their
approach compared to numbers from the TheHuzz paper. I have gleaned from personal
conversations that big processor companies also maintain sophisticated program generators
to test their CPUs without a feedback-directed component. Their generators also incorporate
a functional simulator to improve the quality of the programs they generate. Thus, this work
seems to have brought us full circle, from feedback-directed mutational fuzz testing, which
had only been tried in academia, to re-discovering the constraint-random program generators
that have been standard in the industry for years. This is not a criticism of the authors since
they provide valuable data on the effectiveness of this approach.

The authors of “GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm
with Multiple Inputs” [86] explore using GPUs to execute many fuzzer-generated inputs in
parallel. They also implement a new mutation algorithm, much closer to a traditional ge-
netic algorithm that ranks generated inputs each generation and discards all besides the top
ones compared to an AFL-style algorithm, which never discards inputs deemed interesting.
Unfortunately, the evaluation mainly provides end-to-end results, making it hard to deter-
mine how much of the improved speed is due to the new mutation algorithm and how much
is due to using GPUs for execution.

While all other papers in this section use the fuzzer to generate RISC-V programs to test
their CPUs, the authors of “Effective Processor Verification with Logic Fuzzer Enhanced
Co-simulation” [71] instead use the fuzzer to change how the CPU executes an existing test
suite of RISC-V programs. The authors observe that certain parts of the CPU design should
be resilient to random changes. Handshake-based interfaces should allow for backpressure
to be asserted at arbitrary times. By allowing the fuzzer to control these interfaces within
their specification, the tool discovers bugs through stress testing the design.

Fuzzing with AFL

While RFUZZ re-implemented large parts of the AFL algorithm, various papers explored
using AFL directly to fuzz RTL designs. While this decreases the flexibility in designing
hardware-specific input generators and feedback metrics, it can be a powerful approach to
set up a basic fuzzer quickly.

The authors of “Hyperfuzzing for SoC security validation” [104] are the first to use
Verilator to convert the RTL of the design under test into a C++ simulation and then apply
AFL to fuzz the resulting program. They are also the first to explore using more sophisticated
input generators that translate the byte stream generated by AFL into high-level actions that
exercise the hardware. This work calls these components adverserial state tamperers. The
idea of using generators in this way was first introduced for software fuzzing by the Zest
paper [115]. The authors of Hyperfuzzing use a custom high-level coverage feedback metric,
which is communicated directly to AFL. The evaluation and comparison with RFUZZ suffers
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from a misunderstanding: Mux toggle coverage only measures whether a mux control signal
toggles; the toggle coverage built into Verilator, on the other hand, measures whether any
signal in the design toggles, leading to much higher overhead. The considerable slowdown
observed by the authors when enabling full toggle coverage tracks our results reported in
Chapter 3.

“Fuzzing Hardware Like Software” [141] popularized the use of AFL for hardware fuzzing.
Like the Hyperfuzzing paper, the authors use Verilator to generate C++ source code for
fuzzing. However, instead of devising their custom coverage metric, they show that AFL’s
default instrumentation, which tracks coverage of the edges in the program’s control flow
graph, correlates well with RTL line coverage. Thus, they can use AFL with no modifications.
Similar to the previous work, the authors also employ generators but view them through
the lens of grammar-based fussing. Their generators target TileLink bus components and
translate AFL-generated byte streams into valid TileLink transactions.

The authors of “Efficient Cross-Level Processor Verification using Coverage-guided Fuzzing”
also use AFL to fuzz C++ code generated by Veriator from an RTL design [22]. They are the
first to link a SytemC-based functional simulator into the generated binary, allowing AFL
to use coverage from both the RTL and the functional model as feedback. They also aug-
ment AFL by adding known RISC-V instructions as seed inputs to improve its effectiveness.
The paper does not compare to other CPU fuzzing tools. “SpinalFuzz: Coverage-Guided
Fuzzing for SpinalHDL Designs” [123] uses AFL in a fashion that is very similar to “Fuzzing
Hardware Like Software”. They integrate fuzz harness generation and fuzzer execution into
the SpinalHDL testing framework to offer a seamless user experience. They report results
similar to RFUZZ with the feedback-directed fuzz testing generating better coverage than a
random baseline.

Other Hardware Fuzzing Approaches

The authors of “DirectFuzz: Automated Test Generation for RTL Designs using Directed
Graybox Fuzzing” [24] adapt RFUZZ to target specific submodules. It is the only paper that
re-uses the RFUZZ benchmarks. The overall coverage achieved by this approach is not better
than what RFUZz achieves, but the new fuzzer obtains this slightly faster for the targeted
module. Considering how the benchmarks used by RFUZZ are not very good, as discussed in
Chapter 6, this small improvement is probably irrelevant.

The authors of “Symbolic Simulation Enhanced Coverage-Directed Fuzz Testing of RTL
Design” [85] combine symbolic execution and fuzzing, interleaving them in a fashion similar
to the software fuzzing tool Driller [134]. The benchmark set differs from any other fuzzing
tool, so it is hard to compare. An interesting further research question is whether using
bounded model checking to generate seeds as proposed in “HyPFuzz: Formal-Assisted Pro-
cessor Fuzzing” [28] would be more effective than the symbolic execution approach employed
in this work.

While it does not use feedback-directed fuzzing, the work on “PyH2: Using PyMTL3 to
Create Productive and Open-Source Hardware Testing Methodologies” [68] is noteworthy
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as it is the only one to allow for easy test case reduction. As we observed in Chapter 6,
randomly generated inputs are often unnecessarily complex. Using the established Python
property testing framework Hypothesis [91], PyH2 can use its in-built test case reduction
techniques.

8.2 Automated Repair of Hardware Design Code

The RTL-REPAIR tool, which I discussed in Chapter 7 and the CIRFIX that inspired my
work are currently the only end-to-end tools that generate complete repairs from a buggy
Verilog source code and testbench alone. Recent work using LLMs assumes the precise fault
location is known [1]. There are many hardware fault localization approaches, but none are
exact [70, 120, 154]. Some other repair tools rely on C reference models [4] or formal LTL
properties [36, 16] instead of testbenches.

There has been work on symbolic-analysis-based repair for hardware [16, 92, 27]. How-
ever, none of these approaches can deal with long-running testbenches; instead, they focus
on bugs that appear after one or two execution cycles. The work by Chang et.al. [27] is
noteworthy because it uses a two-step approach that first identifies faulty expressions and
then synthesizes a repair to replace them. A similar approach was independently discovered
years later for software repair with the Angelix tool [100, 108, 26].
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Chapter 9

Conclusion

This thesis presents four tools, each improving the modern RTL development experience.
Much recent effort has been spent on new hardware languages promising to improve developer
productivity. This thesis instead focuses on how we can design better testing and debugging
tools. Each of the four tools discussed exemplifies some of the challenges and opportunities
in this new age of open-source hardware languages and RTL design tools.

New hardware languages promise to improve RTL designer productivity. However, the
associated tools often lack important debugging features commonly available in more mature
language ecosystems. Since these new languages come with open-source compilers, we can
apply ideas from software compilers to implement debugging features more efficiently than
ever before. For example, Chapter 3 introduces a new approach for implementing coverage
feedback that decouples the hardware language-specific coverage instrumentation from the
simulator used to execute the low-level hardware description. A simple new cover statement
is easy to support across a range of very different hardware simulators — from interpreter to
FPGA-accelerated simulation — and makes it possible to implement new coverage metrics
that work across all simulators by design.

Implementing automated coverage in an open-source compiler has benefits beyond re-
duced implementation complexity and broad simulator support. Chapter 4 examines how
the coverage information can be used to generate novel and interesting inputs to a design un-
der test. To this end, we adopt feedback-directed mutational fuzz testing from the software
domain to work with arbitrary RTL designs. Besides defining a new mux-toggle coverage
metric, RFUZZ proposes a novel mapping of fuzzer-generated input bytes to circuit inputs
and a new approach to dealing with input constraints, which are much more common in
hardware than in software. To speed up fuzz testing, RFUZZ incorporates new isolation tech-
niques to enable FPGA acceleration. RFUZZ inspired numerous works on improved hardware
fuzz testing, the most important of which are summarized in Chapter 8.

In the previous chapter, we used coverage feedback from simulation to generate inputs
that reveal bugs in hardware designs through fuzz testing. Formal methods like bounded
model checking (BMC) instead model the design under test in first-order logic and then ask
an SMT solver if an input exists that would violate an assertion. Chapter 5 details how
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I implemented BMC for the novel Chisel hardware construction languages. It shows how
the hardware generator approach and the focus on unit testing with Chise can seamlessly
be applied to formal techniques. Once again, this chapter highlights how an open-source
compiler can be leveraged to quickly implement a new formal backend, which I carefully
designed to enable accurate simulation replay, allowing users to use printf-style debugging
for the formal tests.

Both fuzz testing and BMC show promising results. However, they are often only con-
sidered in isolation. Chapter 6 investigates the question of when each technique is the most
appropriate to apply. It shows that the answer is often hard to predict. Instead, I advocate
for always applying at least a simple baseline version of BMC and random testing when
proposing a more sophisticated technique. I also present how automated input generation
setups can be divided into three components: input generator, input constraints, and check-
ers. I also show that while it might incur some overhead, it is often feasible to design test
setups that can work with both formal and random testing techniques.

Beyond tools and techniques to automatically generate test inputs and simplify coverage
collection, Chapter 7 focuses on simplifying the developer’s task after discovering a bug-
revealing input. The RTL-REPAIR tool presents a new repair synthesis technique that takes
a buggy hardware design and a failing testbench as input and produces a repair suggestion
that changes the hardware description to pass the testbench while minimizing the size of the
change. This tool is orders of magnitude faster than prior work — providing repair suggestions
in seconds instead of minutes or hours. A new synthesis technique based on BMC allows us to
quickly identify repairs, while windowed sampling and concrete execution provide scalability
to longer tests and larger designs. Thus, by combining formal and concrete techniques, we
arrive at a superior solution.

The Future of Hardware Development Tool Research

I spent my PhD designing testing and debugging tools for hardware designs as part of a
software engineering research group. This has given me a unique perspective compared to
working in a traditional electronic design automation group like many others in my field.
Nowadays, software engineering researchers have easy access to high-quality open-source
compilers that they can extend to implement their ideas. There are large open-source code
bases used heavily in industry, which can serve as realistic benchmarks. In the hardware
domain, on the other hand, benchmarks and tools are hard to come by.

While large open-source RTL projects do exist, they are largely written by hobbyists or
academics. When the industry releases RTL code, it is often out-of-date, lacks development
history and backend scripts, and often contains generated code without the scripts to repro-
duce it. This poses two issues: (1) it is impossible to study industry practices for academic
researchers without working at a company and signing non-disclosure agreements (NDAs),
and (2) the industry can easily dismiss any insights and benchmark results obtained on
open-source RTL code as not applicable to their internal code bases. Fortunately, in recent
years, academic chip designs have become more sophisticated, and industrial research labs
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have started releasing their experimental designs as open-source RTL. However, there is still
a large gap to software engineering, where research papers demonstrate how their tool finds
bugs in software code that is used by millions of people. For now, in the hardware domain,
only black-box reverse engineering papers can have that same amount of impact.

The lack of open-source RTL that large chip companies would consider representative
of their codebases leads researchers at industry research labs to instead opt to use only
internal designs when evaluating their work. This makes it impossible to compare results
across papers from different companies and academic researchers. It also prevents new
investigations of old results. This problem could be tackled if EDA and hardware verification
conferences started to encourage and eventually require reproducible software artifacts that
include benchmarks and the source code of the proposed tool. This way, researchers from
the industry will either have to push their employers to release more RTL code, or they will
have to bless existing open-source RTL code by using it in their work.

Beyond a lack of common, agreed-upon benchmarks, hardware design tool research also
suffers from a lack of open-source tools that can easily be modified to prototype new research
ideas. The first problem is missing support for more sophisticated SystemVerilog language
features in open-source tools, restricting the set of benchmarks — particularly from the in-
dustry — on which the tool can be evaluated. But even if the language support was fixed,
we would still face the problem that often open-source tools like various model checker or
simulator implementations severely lack behind their commercial counterparts, making it
hard to evaluate whether an improvement to the open-source tools actually advances the
state of the art. While we could benchmark the commercial tools to get at least an end-to-
end performance comparison, publishing these results is generally prohibited by the EDA
software companies in their end-user license agreements.

Countless research prototypes use the open-source synthesis tool yosys to implement
new ideas, demonstrating how important solid open-source tools are to research progress.
However, yosys is still far from supporting the full SystemVeriog language. In software
engineering, on the other hand, researchers who want their tools to work with most C++
code bases can take advantage of Clang and LLVM. We can avoid this problem by building on
new, simpler hardware languages with open-source compilers like Chisel, as demonstrated in
this thesis. However, the obvious downside is that this restricts us to benchmarks expressed in
these new languages, making comparisons to existing work impossible. The new open-source
Slang SystemVeriog parser might alleviate some of these problems. While it is not a full-
blown compiler, it has shown promising results regarding SystemVerilog parsing capabilities.

While some open-source RTL simulators like Veriator [131] can keep up with commercial
tools when it comes to execution speed, open-source formal verification tools are generally
thought to be inferior compared to industry tools like Jasper Gold or IBM’s SixthSense.
While software engineering researchers can often build upon mature open-source tools used
in industry, research on formal and semi-formal methods for hardware verification is often
reduced to re-inventing the basics. This is a big opportunity for a systems research group
to build and maintain a baseline formal verification tool for hardware. While the basic
algorithms and ideas are all known and published, combining them in a tool that is scalable
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and easy to extend for other research groups poses new and interesting systems engineering
challenges.

The hardware development tools research community suffers because too much knowl-
edge is locked away as tools and benchmarks inside highly secretive chip companies. Some
researchers will have to step up and perform the often-underappreciated work of defining
new common benchmark sets that are accepted by both academia and industry and build-
ing the open-source tools necessary to quickly prototype new ideas without wasting time
re-inventing the wheel every time.

Fortunately, the work on new open-source hardware tools over the last decade has brought
us much closer to fulfilling this vision of high-quality common RTL benchmark sets and
verification tools. While there is still more work to be done, the tools developed for this
thesis demonstrate how far we have come. Without the groundwork of the community, none
of these research prototypes would have been feasible to develop. I deeply believe that open-
source is the only way forward for our research community, helping to ground our research
and ensure its relevance for years to come.
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Appendix A

Chapter 5 Example Source Code

1 class GcdInputBundle(val w: Int) extends Bundle {
2 val valuel = UInt(w.W)

3 val value2 = UInt(w.W)

4 3

5

6 class GcdOutputBundle(val w: Int) extends Bundle {
7 val valuel = UInt(w.W)

8 val value2 = UInt(w.W)

9 val gcd = UInt(w.W)

0}

11

12 class DecoupledGcd(width: Int) extends Module {
13 val input = IO(Flipped(Decoupled(new GcdInputBundle(width))))
14 val output = I0(Decoupled(new GcdOutputBundle(width)))
15

16 val xInitial = Reg(UInt())

17 val yInitial = Reg(UInt())

18 val x = Reg(UInt())

19 val y = Reg(UInt())

20 val busy = RegInit(false.B)

21 val resultValid = RegInit(false.B)

22

23 input.ready := ! busy

24 output.valid := resultValid

25 output.bits := DontCare

26

27 when(busy) {

28 when(x > y) {

29 X =X -y

30 }.otherwise {

31 y =y - X

32 }
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

when (x
when
ou
}.ot
ou

}

outp
outp
resu

=== 0.U || y ===
(x === 0.U) {

tput.bits.ged = y

herwise {

tput.bits.gcd := x

ut.bits.valuel :=
ut.bits.value2 :=
1tValid := true.B

0.) {

xInitial
yInitial

when (output.ready && resultValid) {

bu
re
}
}
}.otherw
when (i
val
X :=
y =
xIni
yIni
busy

sy := false.B

sultValid := false.B

ise {
nput.valid) {

bundle = input.deq()

bundle.valuel
bundle.value?2

tial := bundle.valuel
tial := bundle.value?2

:= true.B
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Listing 1: Greatest common denominator (GCD) circuit from the Chisel template repository.
Released to the public domain by its authors.

class GCDSpec extends AnyFreeSpec with ChiselScalatestTester {

"Gcd should calculate proper greatest common denominator" in {

test(new DecoupledGed(16)) { dut =>

dut.
dut.
dut.
dut.

val
val

input.initSource()

input.setSourceClock(dut.clock)

output.initSink()

output.setSinkClock(dut.clock)

testValues = for { x <- 0 to 10; y <= 0 to 10} yield (x, y)

inputSeq = testValues.map { case (x, y) =>




APPENDIX A. CHAPTER 5 EXAMPLE SOURCE CODE 131

12 (new GcdInputBundle(16)).Lit(_.valuel -> x.U, _.value2 -> y.U)
13 b

14 val resultSeq = testValues.map { case (x, y) =>

15 (new GcdOutputBundle(16)).Lit(

16 _.valuel -> x.U,

17 _.value2 -> y.U,

18 _.gcd —> BigInt(x).gcd(BigInt(y)).U

19 )

20 X

21

22 fork {

23 // push tinputs into the calculator, stall for 11 cycles
24 val (seql, seq2) = inputSeq.splitAt(resultSeq.length / 3)
25 dut . input.enqueueSeq(seql)

26 dut.clock.step(11)

27 dut.input.enqueueSeq(seq2)

28 }.fork {

29 // retrieve computations, stall for 10 cycles

30 val (seql, seq2) = resultSeq.splitAt(resultSeq.length / 2)
31 dut.output.expectDequeueSeq(seql)

32 dut.clock.step(10)

33 dut.output.expectDequeueSeq(seq2)

34 }.join(O

35

36 }

37 X

38 }

Listing 2: A ChiselTest-based test for the GCD circuit from Listing 1. Released to the public
domain by its authors.
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