
Environment Generation for Autonomous Agents for
Sequential Decision Making

Abdus Salam Azad

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-167
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-167.html

August 9, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Environment Generation for Autonomous Agents for Sequential Decision Making

by

Abdus Salam Azad

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Chair
Professor Pieter Abbeel
Professor Sanjit Seshia

Professor Joshua Bloom

Summer 2024

Environment Generation for Autonomous Agents for Sequential Decision Making

Copyright 2024
by

Abdus Salam Azad

1

Abstract

Environment Generation for Autonomous Agents for Sequential Decision Making

by

Abdus Salam Azad

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Autonomous agents have seen tremendous advancements in solving sequential decision-making
problems in recent years, primarily driven by Reinforcement Learning (RL), and more recently,
by Large Generative Models. The capability of these autonomous agents depends crucially on the
quality and diversity of the learning environments they are trained in. This thesis presents research
on designing frameworks and algorithms to formulate and systematically generate environments
that improve the generalization capabilities of autonomous agents in solving sequential decision-
making tasks. First, we explore the benefits of human-guided programmatic environment genera-
tion for training, testing, and debugging autonomous agents in complex real-time strategic (RTS)
environments. We present a novel framework that, for the first time, demonstrates the benefits of
using scenario specification languages (e.g., SCENIC) for systematic modeling and generation of
realistic and diverse RTS RL environments (e.g., Soccer). Next, we discuss a class of algorithms
called adaptive teacher Unsupervised Environment Design (UED), which automatically generates
training tasks with an RL teacher agent. UED shows promising zero-shot generalization by simul-
taneously learning a task distribution (i.e., curriculum) and agent policies on the generated tasks.
This is a non-stationary process where the task distribution evolves along with agent policies, cre-
ating instability over time. While prior works demonstrated the potential of such approaches, train-
ing the teacher remained a practical challenge. To this end, we introduce Curriculum Learning via
Unsupervised Task Representation Learning (CLUTR): a novel unsupervised curriculum learning
algorithm that decouples task representation and curriculum learning into a two-stage optimization
to solve the training instability by pretraining a latent task manifold. Following that, we present
MultiModal Reasoning and Critique for web navigation (MMRC), which introduces augmented
environments with multimodal critic agents to enhance the performance of Large Foundational
Multimodal Language agents on autonomous web navigation tasks. Together, these approaches
portray the importance and usefulness of environment formulation and generation encompassing
traditional RL-based and contemporary LLM-based agents.

i

To My Parents

ii

Contents

Contents ii

List of Figures iv

List of Tables ix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Overview of Methods . 2

2 Scenic4RL: Programmatic modeling and generation of real-time strategic soccer
environments 4
2.1 Introduction . 4
2.2 Related Work . 6
2.3 Background . 7
2.4 Scenario Specification Language for RL . 8
2.5 Evaluation . 12
2.6 Description of Proposed Scenarios and Policies 16
2.7 On Our SCENIC Libraries . 23
2.8 Details on Experimental Setup and Training . 23
2.9 Interface details and Reproducibility . 24
2.10 Performance . 25
2.11 Conclusion & Future Work . 25

3 CLUTR: Curriculum Learning via Unsupervised Task Representation Learning 26
3.1 Introduction . 26
3.2 Related Work . 28
3.3 Background . 29
3.4 Curriculum Learning via Unsupervised Task Representation Learning 30
3.5 Experiments . 34
3.6 Additional Details of CLUTR . 41
3.7 Conclusion: Limitations and Future Work . 69

iii

4 MMRC: Multimodal Reasoning and Critique for Web Navigation 73
4.1 Introduction . 74
4.2 Related Work . 75
4.3 Background . 76
4.4 Method: MMRC . 77
4.5 Experiments . 82
4.6 Conclusion: Limitations and Future Work . 90

5 Conclusion and Future Work 92
5.1 Advancements in Reasoning and Planning Techniques 92
5.2 Environment/Data Generation for Multi-Task Self-Refining Agents 93

Bibliography 94

iv

List of Figures

2.1 Programs encoding the Google Research Football’s (GRF) pass-and-shoot scenario . . 6
2.2 Examples of a new defense scenarios with specific assigned behaviors (a), a test sce-

nario to assess generalization (b), and two full game scenarios (c,d) we used for train-
ing and testing. The RL team is yellow and the opponent, blue. The assigned opponent
behaviors are highlighted with light blue arrows. Uniformly random distribution is as-
signed over a specific region for each player. These regions are highlighted boxes. . . . 9

2.3 A snippet of a SCENIC program specifying behaviors for players Fig. 2.2b 10
2.4 Interface Architecture between SCENIC and GRF . 11
2.5 Average Goal Difference of PPO agents on the proposed mini-game scenario bench-

mark. The error bars represent 95% bootstrapped confidence intervals 12
2.6 Evaluation of PPO agents’ generalization against varying initial conditions. For most

of the academy and offense scenarios we observe a significant drop in performance.
However, for several defense scenarios the difference in train and test scenarios is not
that significant. 14

2.7 Performance of PPO agents trained with and without any demonstration data, along
with the performance of corresponding behavior-cloned and SCENIC policies. We see
significantly better performance on three of the scenarios, while the rest two achieves
comparable performance, highlighting the usefulness of the proposed SCENIC policies. 15

2.8 New offense benchmark scenarios (left images) and corresponding generalized test
scenarios (right images) in our dataset. The highlighted boxes represent the regions
over which players’ initial positions are uniformly randomly distributed. The opponent
is in blue and the RL team in yellow. 17

2.9 New offense benchmark scenarios (left images) and corresponding generalized test
scenarios (right images) in our dataset. The highlighted boxes represent the regions
over which players’ initial positions are uniformly randomly distributed. The opponent
is in blue and the RL team in yellow. 18

2.10 New defense benchmark scenarios (left images) and corresponding generalized test
scenarios (right images) in our dataset. The highlighted boxes represent the regions
over which players’ initial positions are uniformly randomly distributed. The opponent
is in blue and the RL team in yellow. 20

v

2.11 New defense benchmark scenarios (left images) and corresponding generalized test
scenarios (right images) in our dataset. The highlighted boxes represent the regions
over which players’ initial positions are uniformly randomly distributed. The opponent
is in blue and the RL team in yellow. 21

2.12 New defense benchmark scenario (left images) and corresponding generalized test sce-
narios (right images) in our dataset. The highlighted boxes represent the regions over
which players’ initial positions are uniformly randomly distributed. The opponent is
in blue and the RL team in yellow. 22

2.13 Google Research Football environment’s scenarios for which we wrote semi-expert
RL policies . 22

3.1 Hierarchical Graphical Model for CLUTR . 31
3.2 Comparison on the F1 Benchmark comprising 20 tracks modeled on real-life F1 racing

tracks collected from 10 independent runs. CLUTR achieves 10.6X and 82% higher re-
turns than PAIRED with standard and flexible regret objectives, respectively. CLUTR
also performs comparably to the attention-based non-UED CarRacing SOTA, while
requiring 500X fewer environment interactions. 35

3.3 Zero-shot generalization over the course of training by periodic evaluation on a subset
of three F1 tracks: Singapore, Germany, and Italy. CLUTR indicate significantly better
sample efficiency than PAIRED. 36

3.4 Mean solve rate on the test dataset comprising 16 novel nagivation tasks from 5 inde-
pendent runs. CLUTR achieves 45% and 35% higher solve rate than PAIRED, with
standard and flexible regret objectives, respectively. 37

3.5 Agent solved rate on the 16 unseen grids from [18] during training. CLUTR shows
better sample efficiency and generalization than PAIRED. The results show an average
of 5 independent runs. 37

3.6 Example tracks(left) and grids(right) generated by CLUTR(top) and PAIRED(bottom)
uniformly sampled at different stages of training. The training progresses from left to
right. PAIRED seems to generate over simplified tasks for substantial amount of time
hampering agent learning. CLUTR generates interesting tasks throughout. 38

3.7 Impact of i) joint vs two-staged optimization of the task manifold and ii) using a ‘Shuf-
fled’ VAE, trained on a larger shuffled dataset. The leftmost column shows the default
CLUTR performance—i.e., using a pretrained decoder (VAE) trained on sorted train-
ing data, kept fixed during the curriculum learning phase—with standard regret ob-
jective for CarRacing. Allowing the decoder to finetune with the regret loss results in
a 29% performance drop and the use of Shuffled VAE shows a drop of 31%. These
performance drops empricially justify our hypotheses H1 and H2. Also, CLUTR with
decoder finetuning and Shuffled VAE still outperform PAIRED, with 7.6X and 7.3X
better returns, respectively. 39

3.8 Mean standard regret during training. CLUTR shows a smaller regret value indicat-
ing a smaller performance gap between the agent and the antagonist, compared to
PAIRED. 40

vi

3.9 Hierarchical Graphical Model for CLUTR . 41
3.10 Snapshots of the test tracks in F1 benchmark . 44
3.11 Snapshots of the test grids for MiniGrid . 44
3.12 Comparison on the F1 Benchmark comprising 20 tracks modeled on real-life F1 rac-

ing tracks. CLUTR (with flexible regret) emerges as the best adaptive-teacher UED
for CarRacing and being the only adaptive-teacher UED to outperform some of the
random-generator UEDs. Each of the other adaptive-teacher UEDs (REPAIRED, PAIRED
with flexible regret, CLUTR with standard regret) are outperformed by all of the
random-generator UEDs (DR, PLR, Robust PLR). CLUTR outperforms the adaptive-
teacher PAIRED and REPAIRED by 82% and 58%, respectively, while outperforming
Domain Randomization and PLR, by 38% and 16%, repectively. It only falls short to
Robust PLR by 14%. The results show mean and standard error of 10 independent runs. 48

3.13 Comparison of mean agent returns on three tracks: Singapore, Germany, and Italy.
Based on this subset of tracks, CLUTR (with flexible regret) shows better generaliza-
tion than all the other UEDs, except Robust PLR. CLUTR was ahead of Robust PLR
till around 3M timesteps, followed by both curves following each other closely, and
near the very end Robust PLR surpassed CLUTR. 50

3.14 Mean return on the training tasks for both the student agents. CLUTR student agents
show close performance, while PAIRED students show a bigger gap of performance
between them. Closely competing agents can indicate the training tasks being slightly
harder than the agents can currently solve, resulting in a smoother curriculum 51

3.15 Impact of joint vs two-staged optimization of the task manifold. The leftmost column
shows the default CLUTR performance—i.e., using a pretrained decoder kept fixed
during the curriculum learning phase—with flexible regret objective in the CarRacing
domain. Decoder finetuning, i.e., when the decoder is allowed to finetune with the
regret loss, results in a 10% performance drop. This performance drop empricially
justify our choice of using a pretrained and fixed VAE to solve learning instability. . . 52

3.16 Mean Regret and agent returns during training CLUTR (with flexible regret) vs CLUTR
with standard PAIRED regret approximation. 53

3.17 Mean Regret and agent returns during training CLUTR with standard PAIRED regret
loss (i.e., without the flexible regret). CLUTR shows a smaller regret value(i.e., closely
competing agent and antagonist), indicating a better UED curriculum. 54

3.18 Zero-shot generalization of both PAIRED and CLUTR (with the standard regret loss)
agents after 5M timesteps on the full F1 benchmark. CLUTR with the standard regret
loss outperforms PAIRED on every track. For each track, we test the agents on 10
different episodes and the error bar denotes the standard error. 54

3.19 Test Returns on Selected Tracks (Vanilla, Singapore, Germany, and Italy) of CLUTR
with standard PAIRED regret loss alongside PAIRED performance. 55

3.20 Analysis of sorting training data for VAE. Trained on shuffled data, CLUTR-Shuffled
performs inferior compared to CLUTR and shows signs of unlearning. 55

vii

3.21 Impact of pretrained decoder weights on performance. The red curve plots the devia-
tion of the decoder from its pretrained weights as it is finetuned. The green curve shows
the performance drop from CLUTR with the standard loss. These curves suggest that
pretrained weights are crucial for performance. 56

3.22 Zero-shot generalization of CLUTR and PAIRED, in terms of percent of the environ-
ments solved. CLUTR achieves a higher solved rate than PAIRED in 13 out of the 16
tasks. We evaluate the agents with 10 independent episodes on each task. Error bars
denote the standard error. 57

3.23 Mean solve rate on Minigrid testset. REPAIRED outperforms both CLUTR and PAIRED. 58
3.24 Mean return on the training tasks for both the student agents. CLUTR student agents

show close performance, while PAIRED students show a bigger gap of performance
between them. Closely competing agents can indicate the training tasks being slightly
harder than the agents can currently solve, resulting in a smoother curriculum 59

3.25 Mean return on the training tasks for both the student agents. CLUTR student agents
show close performance, while PAIRED students show a bigger gap of performance
between them initiallly at the beginning. 60

3.26 Agent solved rate on selected grids during training. CLUTR shows better sample effi-
ciency and generalization than PAIRED. The results show an average of 5 independent
runs. 60

3.27 Zero-shot generalization of CLUTR and PAIRED, in terms of percent of the 14 solved.
CLUTR achieves a higher solved rate than PAIRED in 14 out of the 16 unseen tasks.
We evaluate the agents with 100 independent episodes on each task. Error bars denote
the standard error. 61

3.28 Comparison of CLUTR (and PAIRED) with Domain Randomization(DR) baseline.
CLUTR outperforms DR with a 29% higher solve rate. 61

3.29 Comparison of CLUTR (and PAIRED) with ACCEL. ACCEL outperforms both CLUTR
and PAIRED. However, we note that ACCEL is a fundamentally different approaches
with distinctly different training settings and techniques. 62

3.30 Example grids (right) generated by CLUTR (top) and PAIRED (bottom) uniformly
sampled at different stages of training. The training progresses from left to right. . . . 62

3.31 3D Histograms showing the frequency of the generated grids against the total number
of blocks they contain. Both PAIRED and CLUTR converge to a similar band of grids.
However, CLUTR converges much faster. 63

3.32 Comparison of CLUTR and PAIRED curriculum based on properties of the generated
grids. 64

3.33 3D Histograms showing the frequency of the CLUTR generated grids against the total
number of blocks they contain vs. Domain Randomization on the latent space vs. A
random teacher curriculum on the pretrained latent space. The figures clearly show
that CLUTR generates a curriculum significantly different from random curriculums. . 65

viii

3.34 PCA embedding of the combined set of grids generated by CLUTR and Domain Ran-
domization. CLUTR-generated grids form a distinct pattern in the embedded space,
while DR-generated grids are all clustered together indicating that these methods gen-
erate distiinctively different set of grids. 66

3.35 t-SNE embedding of the generated tasks during different phase of training. During
the initial phase of training the teacher moves from the central region to far right and
then moves to far left. We hypothesize, as the protagonist agent is not well-trained
during the intial phase, the teacher easily finds regions in the latent space to maximize
the REGRET, however as the traing progresses and the agent learns better, the teacher
converges its search into a wider region. 67

3.36 PCA Embedding of VAE training dataset. The color intensity represents the number
of obstacles in a grid, as indicated by the color bar on the right. 68

3.37 An example grid constructed by adding one obstacle at a time (from top left to bottom
right). The correcponding 2D PCA embedding can be found in Figure 3.38. 69

3.38 PCA emneddings of the grids—constructed by adding one obstacle at a time— shown
in Figure 3.37. The color intensity increases with the number of obstacles. We observe
a clear and smooth trajectory in the embedding space formed by the latent vectors,
indicating the smooth and incremental properties of the latent space. 70

3.39 A linear interpolation between an empty grid and 15x15 version of the Four-Room grid
(Figure 3.40) in the latent space. The grids are organized from top-left to bottom-right
in row-major order. 71

3.40 15x15 FourRooms . 72

4.1 Sample task from Mind2Web [17]: ‘Book the cheapest hotel in le maraise neighbor-
hood in paris with 2 room for 3 adult on march 27th to april 2nd.’ on an Airlines
website . 74

4.2 The typical agentic workflow used in web navigation. 78
4.3 Agentic Workflow used in MMRC involving critic with modified envirnment formula-

tion. 79
4.4 Impact of the number of rounds of actor-critic interactions on MMRC with Gemini 1.0

Pro Vision. On the Y-axis, we plot Step Success Rate/Accuracy, and on the X-axis, we
plot the number of rounds starting from 0. The performance initially increases with
more actor-critic interactions, but after a certain number of interactions, the perfor-
mance plateaus or declines. 91

ix

List of Tables

2.1 Training Parameters for PPO. 24
2.2 Training Parameters for Imitation Learning. 24

3.1 A comparative characterization of contemporary UED methods 33
3.2 Hyperparameters for training the Task VAE . 46
3.3 Hyperparameters for PAIRED and CLUTR PPO training. 46
3.4 Comparison between CLUTR and other UED algorithms on the individual tracks of

the F1 benchmark. We report CLUTR and PAIRED for both standard and flexible re-
gret objectives. We note that, CLUTR and PAIRED with flexible regret was trained for
2M timesteps. All the other UEDs were run for 5M timesteps. Boldface denotes SOTA
among UED algorithms, while italic in the Attention Agent column means, CLUTR
with Flexible Regret, our best performing model, is comparable/outperforms the at-
tention agent on that track. CLUTR outperforms PAIRED, Domain Randomization,
PLR, and REPAIRED and only falls short to Robust PLR. Nonetheless, CLUTR shows
comparable results cwith respect to Robust PLR in seven out of the 20 test tracks and
outperforming it in the Netherlands track. CLUTR also outperforms the non-UED
SOTA on 9 out of the 20 tracks and shows comparableperformance in one. 49

4.1 Relative improvement of MMRC over baseline actor. For the experiments with Gemini
1.5 Pro and Phi-3 Vision, we allowed atmost three iteration of actor-critic interation,
while with Gemini 1.0 Pro Vision we allowed upto five iterations. We observe by
using a critic agent MMRC achieved upto 7.56%, 11.33%, and 4.85% improvement
over baselines that only uses actor. 85

4.2 Detailed evaluation metrics for all our experiments. MMRC outperforms the baseline
in every evaluation metric, except for Element Accuracy in Cross Website split with
Phi-3 critic. Phi-3 critic, which was finetuned on the training dataset, while keeping
its cisual core intact, obtains better Operation F1 than Gemini 1.0 Pro, suggesting
that a finetuned smaller model as critic can improve performance over a baseline and
general-purpose foundational critic. 87

x

4.3 Comparison between MMRC and contemporary multimodal approaches on Mind2Web.
MMRC improve the previous best step-success-rate obtained by Gemini 1.0 Pro Vi-
sion by 4.54%, 11.6%, and 24.17% respectively on the Cross Task, Cross Website, and
Cross Domain splits. Also, MMRC with Gemini 1.5 Pro actor and Phi-3 Vision critic,
outperforms GPT-4V on Operation F1 for Cross Website and Cross Domain splits. . . . 89

xi

Acknowledgments

I feel incredibly fortunate to have had Prof. Ion Stoica as my advisor. He has been an exceptional
mentor and supporter, providing invaluable guidance while granting me an unparalleled level of
autonomy to explore my research interests. I am deeply grateful for his kindness, support, and
patience, especially during the significant challenges I faced throughout my Ph.D. When I decided
to completely change my research direction two and a half years into the program, Ion’s under-
standing and encouragement were instrumental in my progress.

I extend my sincerest appreciation to Prof. Pieter Abbeel, whose guidance, support, and bound-
less patience have been invaluable. I am also deeply thankful to Prof. Sanjit Seshia for his unwa-
vering support, particularly during my transition to a new research field. Switching topics so late in
the program was a difficult decision, but I was able to navigate these challenges and complete my
Ph.D. thanks to the kindness and encouragement of these amazing mentors. I also wish to thank
Prof. Bloom for his ongoing guidance and support since my qualifying exam. Working with such
esteemed scholars and legends has been beyond anything I could have ever imagined.

I would like to express my heartfelt gratitude to Izzeddin Gur from Google DeepMind for his
constant support and mentorship. I have learned so much from him and am incredibly grateful for
the opportunity to collaborate with him throughout much of my Ph.D. I am also deeply thankful
to Aleksandra Faust from Google DeepMind for her guidance. Additionally, I want to express
my gratitude to my close collaborators Edward Kim and Kimin Lee. Special thanks go to Jasper
Emhoff and Qiancheng Wu, the most dedicated undergraduate and Master’s students I have had the
pleasure of working with. I am also grateful to my other collaborators, Nathaniel Alexis, Hiroki
Furuta, Jai Sharma, Kevin Zakka, Xingyu Lin, Abhik Bhattacharjee, and Tahmid Hasan, each of
whom has significantly impacted my research.

During my Ph.D. at Berkeley, I had the privilege of forming friendships with exceptional indi-
viduals, without whom this journey would have been incomplete, difficult, and far less enjoyable.
Tanveer Ahmed Siddique, thank you for all the late-night discussions about physics, the universe,
and so much more. Vinamra Benara, your support during the toughest times was invaluable. Zu-
naid Omair, I feel privileged to have spent so much time with you: one of the smartest people I
have ever met and an incredibly honest friend. Ahmad Us Saleheen, I’m deeply grateful for your
incredible support during my dissertation talk—I will never forget your help. To the incredibly fun
Berkeley and Bay Area folks: Abrar Amin Khan, Anika Sohaana, Kashfia Nehrin, Mahfuza Islam
(special thanks for all the delicious meals), Md Ishfak Tahmid Mahin, Md Nazibul Islam, Monir
Uz Zaman, Munif Ishad Mujib, Nazmul Ahasan (special thanks for the deep conversations that
broadened my horizons), Tarannum Sarwat Sahar, Mohd. Elius, Urmita Sikder (for her intellectual
speeches), Maruf Ahmed & Sifat Tanzim (for being a home away from home), Sheikh Waheed
Baksh, Arefa Hossain (for the yummiest Bangladeshi patties), Suman Hossain (for his insight-
ful conversations that expanded my perspective), Imran Khan, Rumi Karim, Yasser Khan, Sifat
Sharmeen Muin, Arunoday Saha (for the late-night discussions about almost anything), Swarna
Saha, Kamrul Hasan, Tania Ahmed, Konok Chapa Jui, Saikat Chakraborty, Anurag Roy (the only
Bengali ‘Dada’ of the 2018 cohort), and Jemma Malia, thank you all. Lastly, I want to extend my

xii

gratitude to Rohan Bavishi, Rohan Padhye, Edward Kim, and Caroline Lemieux for their incredi-
ble guidance during my early years at Berkeley.

Special thanks go to Siddhartha Shankar Das and Probal Chandra Dhar, for being the most
supportive friends—without your help, I might not have made it through. I am also deeply grateful
to my undergraduate supervisor, Prof. Md. Monirul Islam, for laying the foundation of my research
skills, convincing me to persevere with my Ph.D., and encouraging me to change research topics
when I was on the verge of quitting. My gratitude also extends to Prof. Syed Ishtiaque Ahmed,
Prof. Rifat Shahriyar, Rifat Ahsan, and Swarna Saha for their support and encouragement during
that challenging time. I am thankful to my childhood friends Olive Hasan, Ariful Islam, and Rahat
Islam, who have always been there for me. I would also like to express my appreciation to Shirley
Salanio, Jean Nguyen, and Roxana Infante for their unwavering support throughout my Ph.D.,
especially in responding to every single email regarding official matters.

This Ph.D. thesis represents the culmination of my academic journey, which began in my un-
dergraduate years at BUET. I owe a debt of gratitude to my family, particularly my mother, who
has dedicated her life to our family, and my elder brother and sister, especially my nephews Kabbo
and Ayaan. I wish my father were here to share in this moment. Finally, I want to thank my loved
ones for their continuous support and encouragement throughout this journey. I apologize to those
whose names I may have missed unintentionally.

1

Chapter 1

Introduction

1.1 Background and Motivation
Autonomous agents have made significant strides in addressing sequential decision-making prob-
lems in recent years, driven by advancements in Reinforcement Learning (RL) and, more recently,
Large Generative Models, enabling them to solve increasingly complex and realistic challenges.
The effectiveness of these agents relies crucially on the quality and diversity of the learning envi-
ronments in which they are trained. This thesis focuses on designing frameworks and algorithms to
formulate and generate environments that improve the generalization capabilities of autonomous
agents in solving a wide variety of realistic and complex sequential decision-making tasks.

MDP and Environment
First, we discuss Markov Decision Process (MDP), a mathematical framework, which is typi-
cally used to formulate sequential decision-making tasks. MDPs are foundational in reinforcement
learning (RL), where an agent learns to make decisions by interacting with an environment to
maximize cumulative rewards. Similarly, MDPs also offer the mathematical framework for agents
based on Large Generative Models. Formally an MDP is as the tuple (S,A, T,R, S0), where each
component has the following meaning:

• State Space (S): The set of all possible states in the environment.

• Action Space (A): The set of all possible actions an agent can execute on the environment.

• Transition Dynamics (T): The probability T (s0|s, a) of transitioning from state s to state s0
given action a. Here, a is an action executed in the environment.

• Reward Function (R): The reward function R(s, a) that gives the reward received after
taking action a in state s.

• Initial State Distribution (S0): The distribution over the initial states in the environment.

CHAPTER 1. INTRODUCTION 2

Often, the agents do not have direct access to the true state but instead receive observations that
provide partial information about the state. Such environments are formulated as Partially Observ-
able Markov Decision Processes (POMDP). A POMDP is represented as (S,A, T,R, S0, O, Z)
with the following additional components:

• Observation Space (O): The set of all possible observations that the agent can receive.

• Observation Function (Z): The probability Z(o|s, a) of receiving observation o given state
s and action a.

In this thesis, we define environment as a specific instance of an MDP. By generation of envi-
ronment, we mean generating the distributions of each component of an MDP/POMDP (S,A, T,R, S0, O, Z).
We show how formulating and generating distributions of environments can improve the perfor-
mance of autonomous agents.

1.2 Overview of Methods
The following subsections provide a brief overview of the subsequent chapters.

Scenic4RL: Programmatic modeling and generation of real-time strategic
soccer environments for reinforcement learning
In Chapter 2, we introduce Scenic4RL, a novel approach that utilizes the formal scenario specifica-
tion language, SCENIC, to programmatically generate diverse and realistic learning environments
for reinforcement learning (RL) agents in real-time strategy (RTS) settings. Unlike traditional
simulators that rely on randomly generated environments with limited flexibility, Scenic4RL al-
lows researchers to systematically model and create complex environments. To demonstrate its
effectiveness, we integrated Scenic4RL with the Google Research Football (GRF) simulator, re-
leasing a benchmark of 32 realistic scenarios to train RL agents and evaluate their generalization
capabilities. Additionally, we demonstrate how Scenic4RL enables researchers and practitioners
to incorporate domain knowledge to expedite the training process or debug agents by modeling
stochastic programmatic policies.

CLUTR: Curriculum Learning via Unsupervised Task Representation
Learning
While Chapter 2 explores how Scenic4RL enables human-guided systematic environment gener-
ation, in Chapter 3, we introduce CLUTR: a novel unsupervised environment design/curriculum
learning (UED) algorithm that automatically generates environments to address the challenges of
sample inefficiency and difficult generalization in Reinforcement Learning (RL). CLUTR operates
in two stages: first, it trains a recurrent variational autoencoder on randomly generated tasks to

CHAPTER 1. INTRODUCTION 3

learn a latent task manifold, and then a teacher agent creates a curriculum based on a minimax
REGRET-based objective. This approach overcomes the instability commonly observed in train-
ing teachers in adaptive UED methods and enhances the stability of the training process. Our
experiments show that CLUTR significantly outperforms the popular UED method, PAIRED, in
both CarRacing and navigation environments, achieving substantial improvements in zero-shot
generalization and sample efficiency.

MMRC: Multimodal Reasoning and Critique for Web Navigation
Chapters 2 and 3 explore systematically modeling and generating environments for traditional
deep neural network-based agents trained with reinforcement learning (RL). In Chapter 4, we in-
troduce MMRC, which investigates how environment generation can enhance the performance of
recent foundational Large Language Models (LLMs) by leveraging a novel multimodal actor-critic
framework. MMRC addresses the challenges faced by LLMs in web navigation tasks, particularly
the difficulties in processing long HTML observations and grounding model predictions from vi-
sual inputs into actionable events. By presenting webpage elements as multiple-choice questions,
MMRC facilitates grounding and tackles hallucinations. Experiments on the Mind2Web dataset
demonstrate that the proposed actor-critic formulation of MMRC outperforms actor-only baselines
and surpasses the previous best results obtained by Gemini 1.0 Pro Vision. Additionally, MMRC’s
use of a large foundational model as the actor, paired with a smaller fine-tuned critic, highlights a
promising approach for enhancing the performance of general-purpose models in specific tasks.

Together, Scenic4RL, CLUTR, and MMRC introduce innovative approaches that demonstrate
how environment formulation and generation can significantly enhance the design and performance
of autonomous agents across a diverse range of realistic and challenging sequential decision-
making problems. Scenic4RL enables systematic, human-guided environment generation for tra-
ditional deep neural network-based RL agents, allowing for the creation of complex and varied
training environments. CLUTR addresses sample inefficiency and generalization challenges by au-
tomatically generating environments through an unsupervised curriculum learning algorithm, im-
proving the stability and effectiveness of RL training. MMRC extends these concepts to the realm
of Large Language Models (LLMs), offering a multimodal actor-critic framework that improves
web navigation by effectively grounding model predictions in actionable events. These methods
collectively provide robust solutions for enhancing both traditional RL agents and cutting-edge
LLMs, showcasing the critical role of environment generation in advancing autonomous decision-
making systems. We will discuss some of our learning and conclude in Chapter 5.

4

Chapter 2

Scenic4RL: Programmatic modeling and
generation of real-time strategic soccer
environments

The capability of a reinforcement learning (RL) agent heavily depends on the diversity of the
learning scenarios generated by the environment. Generation of diverse realistic scenarios is chal-
lenging for real-time strategy (RTS) environments. The RTS environments are characterized by
intelligent entities/non-RL agents cooperating and competing with the RL agents with large state
and action spaces over a long period of time, resulting in an infinite space of feasible, but not nec-
essarily realistic, scenarios involving complex interaction among different RL and non-RL agents.
Yet, most of the existing simulators rely on randomly generating the environments based on pre-
defined settings/layouts and offer limited flexibility and control over the environment dynamics
for researchers to generate diverse, realistic scenarios as per their demand. To address this issue,
for the first time, we formally introduce the benefits of adopting an existing formal scenario spec-
ification language, SCENIC, to assist researchers to model and generate diverse scenarios in an
RTS environment in a flexible, systematic, and programmatic manner. To showcase the benefits,
we interfaced SCENIC to an existing RTS environment Google Research Football (GRF) simulator
and introduced a benchmark consisting of 32 realistic scenarios, encoded in SCENIC, to train RL
agents and testing their generalization capabilities. We also show how researchers/RL practitioners
can incorporate their domain knowledge to expedite the training process by intuitively modeling
stochastic programmatic policies with SCENIC.

2.1 Introduction
Deep reinforcement learning (RL) has emerged as a powerful method to solve a variety of sequen-
tial decision-making problems, including board games [81, 79], video games [58, 89], and robotic
manipulation [44]. These successes rely heavily on widely-used simulation environments [3, 7]
and benchmarks [12, 20, 86]. However, regardless of a long history of RL benchmarks, the existing

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 5

RL environments/simulators are insufficient to properly train, test, and benchmark RL algorithms
for real-time strategy (RTS) environments such as Starcraft [90], Dota2 [4], and soccer [51], due to
their lack of support for modeling diverse scenarios involving sophisticated interactive behaviors.

These RTS environments are characterized by unique characteristics that require special sup-
port for modeling. The environments involve intelligent entities/non-RL agents co-operating and
competing with the RL agents with large state and action spaces over a long horizon. This opens up
extremely diverse strategies consisting of numerous interactive behaviors. Yet, most of the existing
simulators rely on randomly generating the environments based on predefined settings/layouts and
offer limited flexibility and control to the researchers over the environment dynamics to generate
diverse realistic scenarios. As a result, RL research faces at least two fundamental challenges: (i)
the lack of diverse and realistic training data often leads to lack of generalization [13, 12, 53, 52],
and (ii) the lack of flexibility and control over the environment dynamics makes it hard to gen-
erate realistic evaluation scenarios to comprehensively test generalization in these complex RTS
environments.

To address this issue, for the first time to the best of our knowledge, we introduce the bene-
fits of adopting an existing formal scenario specification language, SCENIC, to assist researchers
to model and generate diverse realistic scenarios in an RTS environment in a flexible, system-
atic, and programmatic manner. Each SCENIC program represents a Markov Decision Process
(MDP) and provides high-level syntax and semantics, backed by its own compiler, to intuitively
and quickly model diverse and complex interactive scenarios to train RL agents and test their gen-
eralization capabilities. Furthermore, it allows researchers/RL practitioners to incorporate their
domain knowledge into the training process by generating offline data with stochastic program-
matic policies written in high-level intuitive syntax of SCENIC. To demonstrate the benefits, we
interfaced SCENIC to an existing RTS environment, Google Research Football (GRF) [51].

Our contributions are as follows:

• For the first time, we introduce the benefits of adopting a scenario specification language to

(1) flexibly model interactive scenarios to train RL agents,
(2) test their generalization capability, and
(3) program stochastic RL policies to generate demonstration data.

• We open-sourced our SCENIC’s interface to GRF environment along with our 32 scenarios,
5 stochastic policies, and libraries encoded in SCENIC to assist researchers to build upon
them to easily model diverse and sophisticated scenarios.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 6

(a) a bird-eye view of
the scenario

(b) a snapshot of
GRF environment

(c) GRF’s scenario program

(d) SCENIC program of generalized pass-and-shoot scenario with distribution over
players’ initial condition and behaviors

Figure 2.1: Programs encoding the Google Research Football’s (GRF) pass-and-shoot scenario

2.2 Related Work

Environment Generation in RL
In literature, several techniques have been adopted to generate a rich variation of learning scenar-
ios, primarily to promote, or ensure generalization. Techniques such as changing background with
natural videos [98] and introducing sticky actions [54] have been attempted, but are not robust
enough. To ensure generalization, [52] and [74] generated training and testing scenarios by ran-
domly sampling from different regions of parameter space. Similar to supervised learning, the use
of separate train and test sets have also been adopted [64, 12, 13, 43], typically using techniques
such as Procedural Content Generation [34], which has traditionally been used to automatically
generate levels in video games. However, most of these focus on discrete domain, typically the

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 7

dataset generation process is opaque, and it can be difficult to quantify, or reason about how dif-
ferent (or similar) these train and test sets are, since the generation process often uses random
numbers to generate different configurations.

On the contrary, a few manually scripted scenario benchmarks are proposed with respect to a
few RTS RL environments with limitations. For StarCraft [90], only two benchmark scenarios [88,
71] have been proposed. Both of these scenarios model different initial states but leave the behavior
generation to either a learned RL agent or AI bots that are provided by the StarCraft environment,
which are considered as blackbox agents. As a result, a sophisticated modeling and control over the
behaviors of non-RL agents to create specific types of scenarios is not possible, severely restricting
the diversity of the scenarios. For soccer domain, [83] presented one benchmark scenario on
keepaway tactical scenario and later extended to more general half-field offense scenario [32].
They provided a library of APIs relating to behaviors (e.g. mark player, defend goal) of players,
which helps users to model scenarios. However, SCENIC provides further benefits that are not
covered in this work. SCENIC provides high-level syntax and semantics to (i) easily write spatial
relations for intutively modeling initial states, (ii) assign distributions over both initial states and
behaviors to generate variations of environments for robust training and testing generalization, and
(iii) specify priorities over interaction conditions over behaviors to model more sophisticated types
of higher level behavior (for more detail, refer to Section Modeling Scenarios with SCENIC).

Formal Scenario Specification Languages for Environment Modeling and
Generation
A few scenario specification languages have been proposed in the autonomous driving domain
including SCENIC. Paracosm language [55] models dynamic scenarios with reactive and syn-
chronous model of computation. The Measurable Scenario Description Language (M-SDL) [23]
shares common features as SCENIC to model interactive scenarios. In contrast, however, SCENIC
provides a much higher-level, probabilistic, declarative way of modeling. Furthermore, unlike
other scenario specification languages, SCENIC has demonstrated its generality over different
domains such as autonomous driving, robotics, and aviation [25]. For these reasons, we chose
SCENIC in this paper for demonstration of benefits that a scenario specification language can pro-
vide to RL.

2.3 Background

Google Research Football Simulator
The Google Research Football (GRF) simulator [51] provides a realistic soccer environment to
train and test RL agents. The setting, the rules, and the objective of the environment are the same
as defined by Fédération Internationale de Football Association [21]. The environment setup is as
the following. All the players on the field are controlled by (1) GRF’s built-in, rule-based AI bots
and (2) RL agents. The simulator dynamically determines which of the RL team players are to be

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 8

controlled by RL agents based on their vicinity to the ball. GRF provides 11 offense scenarios to
train and test RL agent performance and it provides trained RL agent checkpoints for a subset of
its scenarios.

Scenario Specification Language: SCENIC

SCENIC [24, 25] is an object-oriented, probabilistic programming language whose syntax and se-
mantics are designed to intuitively model and generate scenarios. A SCENIC program represents
an abstract scenario, which models a distribution over initial states and behaviors of players in the
scenario. For each scenario generation, an initial state is sampled from the program at the begin-
ning of a simulation and interactive behaviors are sampled during simulation runtime. Therefore,
with a single SCENIC program, users can generate a distribution of concrete scenarios.

SCENIC requires action and model libraries, which are imported and compiled with a user’s
SCENIC program for execution. The action library defines the action space which is determined
by the simulator. The model library defines objects and their attributes (e.g. position, heading).
We can assign prior distributions over these attributes. For example, a goalkeeper’s position can
be uniformly randomly distributed over the penalty box region. If a user simply instantiates a
goalkeeper in a SCENIC program but does not specify any condition over its attributes, then they
are sampled from the prior distributions by default. These prior distributions can be overwritten in
the user’s SCENIC program.

2.4 Scenario Specification Language for RL

Benefits of Scenario Specification Language for RL
The objective of this paper is to introduce the benefits of the use of scenario specification language
for modeling and generating scenarios, specifically for RTS environments for RL. Using a scenario
specification language whose syntax and semantics are carefully designed to intuitively model
scenarios have the following benefits:

1. Easily Model Interactive Environments on User-demand to Train and Test RL Agents:
The intuitive syntax and semantics, which abstracts away the implementation details and
allows users to reason solely at high-level semantics, makes it easy to model complex spa-
tial relations among multiple agents, their behaviors and conditions on how these behaviors
should interact. It should be noted that, it requires a considerable amount of research and
engineering effort to design and implement a formal scenario modeling language and its
compiler from scratch.

2. Program Stochastic Policies: These programmed agents can serve two purposes: (i) allow
developers to incorporate domain knowledge, e.g., generate demonstration data for offline
training and (ii) provide performance baseline for trained RL agents.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 9

(a) generalization test
scenario for the scenario
in Fig. 2.1a

(b) 3 vs 3 left mid-fielder
crosses to either player
in penalty box

(c) 11 vs 11 open player
scenario

(d) mirrored Fig. 2.2c
scenario

Figure 2.2: Examples of a new defense scenarios with specific assigned behaviors (a), a test sce-
nario to assess generalization (b), and two full game scenarios (c,d) we used for training and testing.
The RL team is yellow and the opponent, blue. The assigned opponent behaviors are highlighted
with light blue arrows. Uniformly random distribution is assigned over a specific region for each
player. These regions are highlighted boxes.

3. Interpretability and Transparency: The intuitive syntax and semantics make scenario pro-
grams interpretable and transparent. Therefore, users can reason about the difference/simi-
larity of train and test environments by comparing their scenario programs.

4. Reusability of Existing Scenarios: The interpretability of scenario programs facilitates easy
modification or re-use of existing SCENIC programs, models, and behaviors to quickly model
new scenarios. This facilitates building a community around designing and sharing scenario
programs, by building upon each other’s scenarios.

Modeling Scenarios with SCENIC

Formally, a scenario is a Markov Decision Process (MDPs) [84] defined as a tuple (S,A, p, r, ⇢0),
with S denoting the state space, A the action space, p (s0|s, a) the transition dynamic, r (s, a) the
reward function, and ⇢0 the initial state distribution. Given the state and action spaces as defined by
the GRF environment, a SCENIC program defines (i) the initial state distribution, (ii) the transition
dynamics (specifically players’ behaviors), and (iii) the reward function. Hence, users can exercise
extensive control over the environment with SCENIC.

Modeling Initial State Distribution Users can intuitively specify initial state distributions
with SCENIC’s high-level syntax that resembles natural English. For example, refer to the full
SCENIC program in Fig. 2.1(d) which describes a more generalized version of GRF’s Pass and
Shoot scenario as visualized in Fig. 2.1(a,b). In line 12-22, the initial state distribution is speci-
fied. The SCENIC syntax for modeling spatial relations among players are highlighted in yellow.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 10

Figure 2.3: A snippet of a SCENIC program specifying behaviors for players Fig. 2.2b

In addition, SCENIC supports about 20 different syntax to support modeling complex spatial re-
lations [25]. Rather than having to hand-code positions for a concrete scenario as in the GRF’s
scenario 2.1(c), users can much more intuitively and concisely model a distribution of initial states.
Here, Left represents the yellow team, Right the blue, and the two following abbreviated capital
letters indicate the player role.

Modeling Transition Dynamics One can flexibly modify transition dynamics of the envi-
ronment by specifying the behaviors of non-RL players using SCENIC. Take the same example
SCENIC program in Fig. 2.1(d) as above. Line 1-10 models two new behaviors. A behavior can in-
voke another behavior(s) with syntax do, succinctly modeling a behavior in a hierarchical manner.
Users can assign distribution over behaviors as in line 2. The interactive conditions are specified
using try/interrupt block as in line 5-10. Semantically, the behavior specified in the try block is
executed by default. However, if any interrupt condition is satisfied, then the default behavior is
paused and the behavior in the interrupt block is executed until completion and then the default
behavior resumes. These interrupts can be nested with interrupt below has higher priority. In such
case, the same semantics is consistently applied.

Rewards SCENIC has a construct called monitor, which can be used to specify reward func-
tions. The reward conditions in the monitor is checked at every simulation step and updates the
reward accordingly.

Termination Conditions Users can also specify termination conditions which are monitored
at every simulation time step.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 11

Figure 2.4: Interface Architecture between SCENIC and GRF

On Interfacing SCENIC to a Simulator
Interfacing SCENIC to other simulators is straight-forward. In fact, SCENIC is already interfaced
with five other simulators [16] in domains such as autonomous driving, aviation, and robotics.
To interface SCENIC with a simulator, one needs define the model, action, and behavior libraries.
These libraries expedites modeling complex scenarios by helping users re-use the set of models,
actions, and behaviors in the libraries, rather than having to write a scenario from scratch.

The model library defines the state space. It defines players with distribution over their initial
state according to their roles and GRF’s AI bot is assigned by default to all player behavior. These
prior distribution over the initial state and behavior can be overwritten in the SCENIC program. The
model library also defines region objects such as goal and penalty box regions as well as directional
objects in compass directions. The action library defines the action space as determined by the
GRF simulator. These action space consists of movement actions in eight compass directions,
long/short/high pass, shoot, slide, dribble, and sprint.

The behavior library consists of behaviors and helper functions that represent widely used
basic skills in soccer. These behaviors include give-and-go, evasive zigzag dribble to avoid an
opponent’s ball interception, dribbling to a designated point and shooting, shooting towards the
left or right corner of the goal, etc. Additionally, the behavior library also include useful helper
functions such as identifying nearest opponent or teammate, whether there is an opponent near the
running direction of a dribbler, etc. Please refer to our open-sourced repository for more details.

Interface Architecture

Figure 2.4 shows an overview of our overall architecture. The architecture can be divided into
two parts: i) RL interface, through which the RL algorithms interact with SCENIC and ii) the
SCENIC Server, which executes a SCENIC program and governs the simulation by interacting with
the underlying simulator. We follow the widely used OpenAI Gym API [7] as our interface, which
allows our interface to be used seamlessly with all the existing standard RL frameworks.

For each simulation/episode, the SCENIC server first samples an initial state from the SCENIC
program to start a new scenario in the GRF simulator and updates its internal model of the world
(e.g., player and ball positions). From then on, a round of communication occur between the
RL algorithm and SCENIC server, with the RL interface at the middle. At each timestep, the gym

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 12

Figure 2.5: Average Goal Difference of PPO agents on the proposed mini-game scenario bench-
mark. The error bars represent 95% bootstrapped confidence intervals

interface takes in the action(s) for the RL agent and passes them to the SCENIC server. The SCENIC
server in turn computes actions for all the remaining non-RL players—the players not controlled
by the RL agent—and then executes all these actions (of both the RL and non-RL players) in the
simulator. The SCENIC server then receives the observation and reward from the simulator, updates
the internal world state, and then passes them back to the RL algorithm. This interaction goes on
till any terminating conditions as specified in the scenario script is satisfied.

2.5 Evaluation
In this section, we demonstrate four use cases of SCENIC in RL. First, we present and benchmark
a set of 13 realistic mini-game scenarios encoded in SCENIC with a varying level of difficulty.
Second, we test the generalization capabilities of the trained RL agents on unseen, yet intuitively
similar scenarios. Next, we show how developers can “debug" their agents for failure scenarios of
interest. At last, we show how probabilistic SCENIC policies can be used to generate offline data
and endow domain knowledge into the learning process for faster training, which we believe to be
very important for applying RL in practice.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 13

Experimental Setup
We run PPO [73] on a single GPU machine (NVIDIA T4) with 16 parallel workers on Amazon
AWS. Unless otherwise specified, all the PPO training are run for 5M timesteps and repeated for
10 different seeds. All the evaluation has been done for 10000 timesteps. For all the experiments,
we use the stacked Super Mini Map representation for observations —a 4x72x96 binary matrix
representing positions of players from both team, the ball, and the active player—and the scores as
rewards, i.e., +1 when scoring a goal and �1 upon conceding, from [51]. Similar to the academy
scenarios from [51], we also terminate a game when one of the following happens: either of the
team scores, ball goes out of the field, or, the ball possession changes. For further details, includ-
ing hyperparameters and network architecture, we refer readers to the Supplementary Materials
(Section Details on Experimental Setup and Training).

Mini-game Scenario Benchmark
Training an RL agent to solve a full soccer game involving 22 players is very challenging and
may take days even with distributed algorithms. For example, [51] showed even the easy version
of GRF’s 11 vs 11 game cannot be solved with 50M samples. To allow researchers to iterate
their ideas with a reasonable amount of time and compute, we present a set of 13 mini-game
scenarios. All these scenarios are inspired from common situations occurring in real soccer games
but involves fewer number of players to make them amenable to be faster training.

Nine of our proposed mini-game scenarios are defense scenarios, which are nice complement
to GRF’s offense-only scenarios (refer to Sec. 2.3), along with four new offense scenarios. Most
of these scenarios are initialized from a distribution, rather than fixed locations. By default all
the opponent players are controlled by GRF’s built-in AI bot (refer to Sec. 2.3). However, for the
scenarios where the AI bot does not exhibit our desired behavior, we model the opponent behaviors
using SCENIC. For example, in the 3vs3 cross scenario as shown in Fig. 2.2b, the opponent AI bots
tried to pass the ball around instead of crossing. Therefore, we modelled and assigned behaviors
such that the blue player on the leftmost side of the field would run up the field and cross the ball.
Meanwhile, the two blue players in the center run into the penalty box area to receive the cross and
shoot. These modelled behaviors are shown in Fig. 2.3.

We benchmark our mini-game scenarios by training agents with PPO. Figure 2.5 shows the
average goal differences for all the scenarios. For these mini-game scenarios, we end the game if
one of the teams score. Hence, the goal difference can range between -1 to +1. For the offense
scenarios, a well trained agent is supposed to score consistently achieving an average goal differ-
ence close to +1. On the other hand, a well-trained agent should achieve a goal difference close
to 0 for successfully defending the opponents in the defense scenarios. From the graph it can be
seen that the proposed scenarios offer a varied levels of difficulties. For example, PPO consistently
achieves goal difference of around 0.5 for the EASY CROSSING scenario, but barely learns any-
thing for HARD CROSSING. In case of the defense scenarios, the results also show a varied range
of difficulty, GK VS OPPONENT scenario being be easiest.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 14

Testing for Generalization

(a) Offense and select GRF academy scenarios

(b) Defense scenarios

Figure 2.6: Evaluation of PPO agents’ generalization against varying initial conditions. For most
of the academy and offense scenarios we observe a significant drop in performance. However, for
several defense scenarios the difference in train and test scenarios is not that significant.

We provide scripts to test generalization of all of our 13 new benchmark scenarios along with
5 scenarios provided by GRF. We changed the distribution over the initial state while keeping
the formation of players and their behaviors in each scenario intact. For example, for testing
generalization of an RL agent trained in the Pass and Shoot scenario (Fig. 2.1a), we instantiated
the yellow and the blue players on the symmetric right side of the field instead of the left and kept
the other initial state distribution the same (Figure 2.2a).

Fig. 2.6 compares the trained agents’ performance in training and test scenarios. As expected,
we observe a noticeable drop of performance in most of the GRF’s academy and offense scenarios
(Fig. 2.6a). For example, the Pass and Shoot scenario (Figure 2.1a), which achieved around 0.6 in
training, failed to generalize for the test scenario. However, for the defense scenarios, the drop in
performance was not as noticeable. We conjecture that this distinction comes from the differences
in the offense and defense training scenarios, where the defense scenarios tend to contain larger
distribution over the initial state than those of the offense scenarios (refer to Supplement). Con-
sequently, larger variations of scenarios introduced during training may have contributed to better
generalization for defense scenarios.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 15

Figure 2.7: Performance of PPO agents trained with and without any demonstration data, along
with the performance of corresponding behavior-cloned and SCENIC policies. We see significantly
better performance on three of the scenarios, while the rest two achieves comparable performance,
highlighting the usefulness of the proposed SCENIC policies.

Debugging Agents on 11v11 Failure Scenario
For this experiment, we evaluate and debug an RL checkpoint provided by GRF, which was trained
on their 11 vs 11 easy stochastic scenario, i.e., easy version of their full-game scenario. This agent
achieves an impressive average goal difference of 6.99 per full-game1, scoring up to 14 goals in
the training scenario during our experiments. We modelled a scenario, as visualized in Figure 2.2c,
to test the agent’s ability to quickly perceive open teammates near the opponent goal to advance
the ball forward and score—a crucial skill for soccer. When we assigned GRF’s built-in AI bots
to control the open players on the left side of the field, the players ran straight toward the ball,
instead of taking advantage of the closeness to the opponent goal without being marked. Hence,
we modelled a behavior for open players in SCENIC so that they would stay close to the goal while
abiding by the offside rule.

Although obvious to humans, the trained checkpoint performs poorly in this scenario with an
average goal difference of 0.1. To ‘debug’ the agent, we then fine-tune the agent on a ‘mirrored’
scenario, as shown in Figure 2.2d, with PPO for 5M timesteps. The fine-tuned agent improved
noticeably on the original scenario, achieving an average goal difference of 0.67. This showcases
the usefulness of SCENIC to easily model and generate scenarios of interest using one’s domain
knowledge, which may have been difficult with blackbox agents (e.g. built-in AI bots, or trained
RL agents), to test and debug certain capabilities of an RL agent.

Facilitating Training with Probabilistic SCENIC Policies
In the section, we show how RL practitioners can incorporate their domain knowledge by writing
probabilistic SCENIC policies for faster training. We wrote simple semi-expert RL policies for five
different scenarios, where the agent suffers to learn, and generated 8K samples of demonstration
data for per scenario. To facilitate training on those scenarios, we first pre-train an agent via

1Evaluated on 100K timesteps

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 16

behavior cloning with the generated offline data and then fine-tune the agent using PPO for 5M
timesteps. All the experiments were repeated for three different seeds. Figure 2.7 compares
the training performance of these agents against the agents that were trained with PPO only. We
notice that, even with such a low volume of demonstration data, we can train much better agents
and can solve scenarios which were otherwise unsolved. The experimental results thus suggests,
with stochastic SCENIC policies we can generate rich quality demonstration data to substantially
enhance training performance, which can be particularly useful in practice for environments like
GRF which requires a heavy compute resource.

2.6 Description of Proposed Scenarios and Policies
In this section we provide brief descriptions of all of the scenarios in our dataset. To see our
SCENIC programs, please refer to our attached README pdf file for the pathways to our scenarios.

On Mini and Full Game Scenarios
In general, all our scenarios have the following three termination conditions: (i) ball goes off the
field, (ii) change in ball possession across teams, (iii) one of the team scores. If any of these
conditions are satisfied, then the scenario will terminate in simulation.

Offense Scenarios

In all of our six offense scenarios as shown in Fig. 2.8 and 2.9, we explicitly modelled the initial
state distribution in using SCENIC and implicitly specified the behaviors to environment players
by assigning the rule-based AI bots provided by Google Research Football (GRF) to control all
non-RL players.

Hard Crossing: A very common scenario in real soccer games: 2 of our players along are
guarded by 3 of the opponent players, in an interleaved manner, along the line of the penalty box.
Another of our player at the edge of the field is attempting a cross.

11 vs GK: Our team, with a full lineup of eleven players in a traditional 4-4-2 formation, needs
to score against the opponent goalkeeper.

Avoid, Pass, and Shoot: Two of our players, one starting on the middle of the right half and
the other inside the penalty box, tries to score. One opponent defender starts between our players
to intercept direct pass.

Easy Crossing: An easy crossing scenario involving two of our players against opponent de-
fender and goalkeeper in the penalty box.

11 vs 11 with Open Players: A full game scenario where there are two unmarked players near
the opponent goal. This is to test how wide "vision" an RL agent has in identifying unmarked
players near the oppnent goal.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 17

(a) EASY CROSSING (b) GENERALIZED EASY CROSSING

(c) HARD CROSSING (d) GENERALIZED HARD CROSSING

(e) 11 VS GK (f) GENERALIZED 11 VS GK

(g) AVOID, PASS, AND SHOOT (h) GENERALIZED AVOID, PASS, AND SHOOT

Figure 2.8: New offense benchmark scenarios (left images) and corresponding generalized test
scenarios (right images) in our dataset. The highlighted boxes represent the regions over which
players’ initial positions are uniformly randomly distributed. The opponent is in blue and the RL
team in yellow.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 18

(a) 11 VS 11 WITH OPEN PLAYERS

2
(b) GENERALIZED 11 VS 11 WITH OPEN
PLAYERS

Figure 2.9: New offense benchmark scenarios (left images) and corresponding generalized test
scenarios (right images) in our dataset. The highlighted boxes represent the regions over which
players’ initial positions are uniformly randomly distributed. The opponent is in blue and the RL
team in yellow.

Defense Scenarios

Like the offense scenarios, we assigned rule-based AI bots provided by GRF by default to control
non-RL players in many of our defense scenarios as shown in Fig. 2.10, 2.11, 2.12. However, if the
AI bots do not exhibit expected behavior for our modelled scenarios, we specified non-RL players’
behaviors in SCENIC. For these scenarios with specified behaviors in SCENIC, their behaviors are
highlighted with light blue arrows.

Goalkeeper vs Opponent: This scenario is designed to train an RL agent to be a defensive
goalkeeper when it has to face an opponent one-on-one.

Defender vs Opponent with Hesitant Dribble: The opponent dribbles, stop, then dribbles
again in a repeated manner.

Defender vs Opponent with Zigzag Dribble: This opponent aggressively evades the defender
with zigzag dribble towards the goal and shoots.

2 vs 2: Typical, 2 vs 2 setting where two defenders are already in place to fend off the two
opponents near the penalty area with the ball.

2 vs 2 Counterattack: An opponent attacking midfielder is already advanced deep into the left
side of the field. The opponent right midfielder behind either short passes the ball to the attacking
midfielder or dribbles up the field.

2 vs 2 High Pass Forward: An opponent attacking midfielder is already advanced deep into
the left side of the field. The opponent right midfielder quickly advances the ball to the attacking
midfielder via high pass.

3 vs 2 Counterattack: The defender near the penalty box is temporarily outnumbered by the
opponent players due to a sudden counterattack.

3 vs 3 Cross from Side: The opponent player on the side crosses the ball to either of the

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 19

teammates in the middle who are running towards the penalty box to receive the ball. 2

3 vs 3 Side Build Up Play: Instead of crossing, the opponent player on the side builds up a
play by short passing to its teammates.

Testing Generalization
For all the new benchmark scenarios in our dataset as well as for the selected five GRF’s scenar-
ios, we generalized those scenarios to test the generalizability of the trained RL agent. Our test
scenarios are juxtaposed to corresponding scenarios in Fig. 2.8, 2.10, 2.11, 2.12. We modelled
these test scenarios by either (i) adding distribution over the initial state or (ii) creating a symmetric
opposite formation.

Semi-Expert Stochastic Policies
We selected five scenarios from GRF’s and our benchmark scenarios. The selected GRF’s scenarios
are shown in Fig. 2.13. The following are the brief descriptions of policies encoded in SCENIC for
each scenario.

Pass and Shoot with a Goal Keeper: We randomly choose one of the two policies for the RL
agent. In the first policy, the player dribbles to the penalty area and shoots once inside it. In the
second policy, the player passes the ball to the teammate, who will then dribble towards the goal
and shoot.

Easy Counterattack: The first player will pass the ball to the right midfielder. Then, the player
with the ball will run into the penalty area, and if there is an opponent player on the way, the player
will pass the ball to the nearest teammate. The player will shoot at a corner of the goal once inside
the penalty area.

Run to Score with a Goal Keeper: The player with the ball will first sprint towards the goal
and turn slightly to either left or right randomly to evade the opponent goalkeeper’s interception.
Once the player bypasses the goalkeeper, or is inside the penalty area, the player will shoot.

Avoid Pass and Shoot: The player decides to go towards 3 suitable regions of scoring: left
edge/ middle/ right edge of the right goal post, by keeping as much distance possible to the oppo-
nent defender. At each time step it decides one of the three destination location. It first predicts its
next position for all the three suitable destinations and pick the direction which keeps it farthest of
the opponent. If the player comes near the defender it passes the ball to its teammate and if it can
successfully go near the goal post, it attempts shooting.

11 vs Goal Keeper: The player with the ball runs towards the right goalpost, if it reaches near
the goal post it attempts to shoot. If the opponent goal keeper comes near (i.e. within seven meters)
our player before it can reach near the right goal post, it stops running and shoots immediately.

2The DEFENSE 3VS3 WITH CROSS scenario doesn’t conclude a game upon a change in ball possession, unlike
other scenarios

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 20

(a) GOALKEEPER VS OPPONENT
(b) GENERALIZED GOALKEEPER VS
OPPONENT

(c) DEFENDER VS OPPONENT WITH
HESITANT DRIBBLE

(d) GENERALIZED DEFENDER VS OP-
PONENT WITH HESITANT DRIBBLE

(e) DEFENDER VS OPPONENT WITH
ZIGZAG DRIBBLE

(f) GENERALIZED DEFENDER VS OP-
PONENT WITH ZIGZAG DRIBBLE

(g) 2 VS 2 (h) GENERALIZED 2 VS 2

Figure 2.10: New defense benchmark scenarios (left images) and corresponding generalized test
scenarios (right images) in our dataset. The highlighted boxes represent the regions over which
players’ initial positions are uniformly randomly distributed. The opponent is in blue and the RL
team in yellow.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 21

(a) 2 VS 2 COUNTERATTACK
(b) GENERALIZED 2 VS 2 COUN-
TERATTACK

(c) 2 VS 2 WITH HIGH PASS FOR-
WARD

(d) GENERALIZED 2 VS 2 WITH
HIGH PASS FORWARD

(e) 3 VS 2 COUNTERATTACK
(f) GENERALIZED 3 VS 2 COUN-
TERATTACK

(g) 3 VS 3 CROSS FROM SIDE
(h) GENERALIZED 3 VS 3 CROSS
FROM SIDE

Figure 2.11: New defense benchmark scenarios (left images) and corresponding generalized test
scenarios (right images) in our dataset. The highlighted boxes represent the regions over which
players’ initial positions are uniformly randomly distributed. The opponent is in blue and the RL
team in yellow.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 22

(a) 3 VS 3 SIDE BUILD UP PLAY (b) GENERALIZED 3 VS 3 SIDE BUILD UP PLAY

Figure 2.12: New defense benchmark scenario (left images) and corresponding generalized test
scenarios (right images) in our dataset. The highlighted boxes represent the regions over which
players’ initial positions are uniformly randomly distributed. The opponent is in blue and the RL
team in yellow.

(a) RUN TO SCORE WITH A GOAL KEEPER (b) PASS AND SHOOT WITH A GOAL KEEPER

(c) EASY COUNTERATTACK

Figure 2.13: Google Research Football environment’s scenarios for which we wrote semi-expert
RL policies

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 23

2.7 On Our SCENIC Libraries
Users can quickly model scenarios by referencing models, actions, and behaviors from the libraries
that we open-sourced along with our interface. To see our library codes, please refer to our attached
README pdf file for the pathways to these libraries.

Model Library
The model library defines three categories of objects. First, it defines different regions of the field
such as penalty box area. Second, it defines the Ball. Lastly, it defines the Player. There
are two types of player objects which inherit this class Player: Left and Right players. The
left players represent the RL team, and the right, the opponent. Within each team, the players are
further classified into different roles. The naming convention is “the team + role abbreviated in
two letters." For example, the left team’s goalkeeper is defined as textttLeftGK. Likewise, for the
right team players.

Action Library
This library defines the action space of any players. It consists of twelve different actions such as
Pass, Shoot, Dribble, Sprint, Slide, etc. These actions can be referenced in the SCENIC
script using the syntax, take. For example, to take sliding action, users can write take Slide()
in their programs.

Behavior Library
The behavior library consists of basic soccer skills that we modelled in SCENIC. This library
consists of helper functions defined using the syntax, def, and behaviors, which reference those
helper functions, are defined with the syntax, behavior. For brevity, we refer the reviewers to
our annotated library code.

2.8 Details on Experimental Setup and Training
We use the OpenAI Baselines’ [19] implementation of PPO. The training was run for 5M timesteps
with 16 parallel workers. All of our experiments are run on g4dn.4xlarge instances on Amazon
AWS: a machine with a single NVIDIA T4 gpu, 16 virtual cores and 64GB RAM.

Network architecture & Hyperparameters For the PPO training, we first experimented with
the network architecture and hyperparameters from [51] and was able to reproduce their result.
[51] did an extensive search to select their hyperparameters and hence we decided to use the same
for our experiments. The architecture we used from [51] is similar to the architecture introduced
in [impala], with the exception of using four big blocks instead of three.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 24

Table 2.1 provides specific values of the hyperparameters used in the PPO experiments.

Parameter Value
Action Repetitions 1
Clipping Range .115
Discount Factor (�) 0.997
Entropy Coefficient 0.00155
GAE (�) 0.95
Gradient Norm Clipping 0.76
Learning Rate 0.00011879
Number of Actors 16
Optimizer Adam
Training Epochs per Update 2
Training Min-batches per Update 4
Unroll Length/n-step 512
Value Function Coefficient 0.5

Table 2.1: Training Parameters for PPO.

The parameters for behavior cloning is shown in Table 2.2. For the GRF academy scenarios
the behavior cloning algorithm is run for 16 epochs while for the offense scenarios it was run for 5
epochs.

Parameter Value
Learning Rate 3e-4
Batch Size 256
Optimizer Adam
Epsilon(Adam) 1e-5

Table 2.2: Training Parameters for Imitation Learning.

2.9 Interface details and Reproducibility
Our interface follows the widely used OpenAI Gym API [7]. For sample usage, we refer readers
to our code that is submitted along with this supplement. The code contains necessary scripts, and
the attached README pdf file contains detailed description of all our API with examples and a
link to a google drive which contains all our trained checkpoints and training logs.

CHAPTER 2. SCENIC4RL: PROGRAMMATIC MODELING AND GENERATION OF
REAL-TIME STRATEGIC SOCCER ENVIRONMENTS 25

2.10 Performance
As we are adding an additional layer over the GRF simulator, we wanted to measure how much
overhead we are adding over the base GRF simulator. We selected five GRF academy scenarios
and ran a simulation of 20K timesteps with a random policy both in the GRF simulator and in our
interface. The simulation was ran sequentially, i.e., no parallelism was used. Across the scenarios,
the GRF simulator took an average of 74.28 seconds for executing a simulation of 20K timesteps,
while our interface took 222.07 seconds, showing a 2.99x drop in speed. Some of this overhead
is inevitable however, we believe there are ways to speed up . First, as we change the initial state
every episode/simulation: we update the Python scenario file used by the GRF simulator for each
episode/simulation. We plan to modify GRF interface to avoid such disk-access each simulation
to speed up among other performance improvements. The scenarios we used for the experiments
are namely: i) Empty Goal, ii) Empty Goal Close, iii) Pass and Shoot with Keeper, iv) Run, Pass,
and Shoot with Keeper, and v) Run to Score with Keeper.

2.11 Conclusion & Future Work
We introduced and demonstrated the benefits of adopting a scenario specification language to
train RL agents and test their generalization capabilities in various realistic scenarios generated by
SCENIC programs, which succinctly capture distributions of initial states and behaviors. We also
showcased modeling domain knowledge via stochastic SCENIC policies by generating demonstra-
tion data to facilitate training in GRF, a complex real-time strategy environment. We hope our
work could gather an interest to support systematic modeling of RTS environments.

26

Chapter 3

CLUTR: Curriculum Learning via
Unsupervised Task Representation
Learning

Reinforcement Learning (RL) algorithms are often known for sample inefficiency and difficult
generalization. Recently, Unsupervised Environment Design (UED) emerged as a new paradigm
for zero-shot generalization by simultaneously learning a task distribution and agent policies on
the generated tasks. This is a non-stationary process where the task distribution evolves along with
agent policies; creating an instability over time. While past works demonstrated the potential of
such approaches, sampling effectively from the task space remains an open challenge, bottleneck-
ing these approaches. To this end, we introduce CLUTR: a novel unsupervised curriculum learning
algorithm that decouples task representation and curriculum learning into a two-stage optimization.
It first trains a recurrent variational autoencoder on randomly generated tasks to learn a latent task
manifold. Next, a teacher agent creates a curriculum by maximizing a minimax REGRET-based
objective on a set of latent tasks sampled from this manifold. Using the fixed-pretrained task man-
ifold, we show that CLUTR successfully overcomes the non-stationarity problem and improves
stability. Our experimental results show CLUTR outperforms PAIRED, a principled and popular
UED method, in the challenging CarRacing and navigation environments: achieving 10.6X and
45% improvement in zero-shot generalization, respectively. CLUTR also performs comparably to
the non-UED state-of-the-art for CarRacing, while requiring 500X fewer environment interactions.
We open source our code at https://github.com/clutr/clutr.

3.1 Introduction
Deep Reinforcement Learning (RL) has shown exciting progress in the past decade in many chal-
lenging domains including Atari [59], Dota [5], Go [80]. However, deep RL is also known for
its sample inefficiency and difficult generalization—performing poorly on unseen tasks or failing
altogether with the slightest change [14, 2, 97]. While, Curriculum Learning (CL) algorithms have

https://github.com/clutr/clutr

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 27

shown to improve RL sample efficiency by adapting the training task distribution, i.e., the curricu-
lum [67, 63], recently a class of Unsupervised CL algorithms, called Unsupervised Environment
Design (UED) [18, 42] has shown promising zero-shot generalization by automatically generating
the training tasks and adapting the curriculum simultaneously.

UED algorithms employ a teacher that generates training tasks by sampling the free parameters
of the environment (e.g., the start, goal, and obstacle locations for a navigation task) and can
either be adaptive or random. Contemporary adaptive UED teachers, i.e., PAIRED [18] and
REPAIRED [42], are implemented as RL agents with the free task parameters as their action space.
The teacher agent aims at generating tasks that maximize the student agent’s regret, defined as the
performance gap between the student agent and an optimal policy. Inspite of promising zero-shot
generalization, adaptive teacher UEDs are still sample inefficient.

This sample inefficiency is attributed primarily to the difficulty of training a regret based RL
teacher [65]. First, the teacher receives a sparse reward only after specifying the full parameteriza-
tion of a task; leading to a long-horizon credit assignment problem. Additionally, the teacher agent
faces a combinatorial explosion problem if the parameter space is permutation invariant—e.g., for
a navigation task, a set of obstacles corresponds to factorially different permutations of the parame-
ters1. Most importantly, the teacher needs to simultaneously learn a task manifold–from scratch–to
generate training tasks and navigate this manifold to induce an efficient curriculum. However, the
teacher learns this task manifold implicitly based on the student regret and as the student is con-
tinuously co-learning with the teacher, the task manifold also keeps evolving over time. Hence,
the simultaneous learning of task manifold and curriculum results in an instability over time and
makes it a difficult learning problem.

To address the above-mentioned challenges, we present Curriculum Learning via Unsuper-
vised Task Representation Learning (CLUTR). At the core of CLUTR, lies a hierarchical graphical
model that decouples task representation learning from curriculum learning. We develop a varia-
tional approximation to the UED problem and employ a Recurrent Variational AutoEncoder (VAE)
to learn a latent task manifold, which is pretrained unsupervised. Unlike contemporary adaptive-
teachers, which builds the tasks from scratch one parameter at a time, the CLUTR teacher generates
tasks in a single timestep by sampling points from the latent task manifold and uses the generative
model to translate them into complete tasks. The CLUTR teacher learns the curriculum by navigat-
ing the pretrained and fixed task manifold via maximizing regret. By utilizing a pretrained latent
task-manifold, the CLUTR teacher can train as a contextual bandit – overcoming the long-horizon
credit assignment problem – and create a curriculum much more efficiently – improving stability
at no cost to its effectiveness. Finally, by carefully introducing bias to the training corpus (such as
sorting each parameter vector), CLUTR solves the combinatorial explosion problem of parameter
space without using any costly environment interactions.

While CLUTR can be integrated with any adaptive teacher UEDs, we implement CLUTR on
top of PAIRED—one of the most principled and popular UEDs. Our experimental results show

1Consider a 13x13 grid for a navigation task, where the locations are numbered from 1 to 169. Also consider a wall
made of four obstacles spanning the locations: {21, 22, 23, 24}. This wall can be represented using any permutation
of this set, e.g., {22, 24, 23, 21}, {23, 21, 24, 22}, resulting in a combinatorial explosion.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 28

that CLUTR outperforms PAIRED, both in terms of generalization and sample efficiency, in the
challenging pixel-based continuous CarRacing and partially observable discrete navigation tasks.
For CarRacing, CLUTR achieves 10.6X higher zero-shot generalization on the F1 benchmark [42]
modeled on 20 real-life F1 racing tracks. Furthermore, CLUTR performs comparably to the non-
UED attention-based CarRacing SOTA [85], outperforming it in nine of the 20 test tracks while
requiring 500X fewer environment interactions. In navigation tasks, CLUTR outperforms PAIRED
in 14 out of the 16 unseen tasks, achieving a 45% higher solve rate.

In summary, we make the following contributions:

1. We introduce CLUTR, a novel adaptive-teacher UED algorithm derived from a hierarchical
graphical model for UEDs, that augments the teacher with unsupervised task-representation
learning

2. CLUTR, by decoupling task representation learning from curriculum learning, solves the
long-horizon credit assignment and the combinatorial explosion problems faced by regret-
based adaptive-teacher UEDs such as PAIRED.

3. Our experimental results show CLUTR significantly outperforms PAIRED, both in terms of
generalization and sample efficiency, in two challenging domains: CarRacing and naviga-
tion.

3.2 Related Work

Unsupervised Curriculum Design
[18] was the first to formalize UED and introduced the minimax regret-based UED teacher algo-
rithm, PAIRED, with a strong theoretical robustness guarantee. However, gradient-based multi-
agent RL has no convergence guarantees and often fails to converge in practice [56]. Pre-existing
techniques like Domain Randomization (DR) [39, 70, 87] and minimax adversarial curriculum
learning [60, 66] also fall under the category of UEDs. DR teacher follows a uniform random
strategy, while the minimax adversarial teachers follow the maximin criteria, i.e., generate tasks
that minimize the returns of the agent. POET [92] and Enhanced POET [91] also approached UED,
before PAIRED, using an evolutionary approach of a co-evolving population of tasks and agents.

Recently, [42] proposed Dual Curriculum Design (DCD): a novel class of UEDs that augments
UED generation methods (e.g., DR and PAIRED) with replay capabilities. DCD involves two
teachers: one that actively generates tasks with PAIRED or DR, while the other curates the cur-
riculum to replay previously generated tasks with Prioritized Level Replay (PLR) [41]. [42] shows
that, even with random generation (i.e., DR), updating the students only on the replayed level (but
not while they are first generated, i.e., no exploratory student gradient updates as PLR) and with
a regret-based scoring function, PLR can also learn minimax-regret agents at Nash Equilibrium
and call this variation Robust PLR. It also introduces REPAIRED, combining PAIRED with Ro-
bust PLR. [65] introduces ACCEL, which improves on Robust PLR by allowing edit/mutation of

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 29

the tasks with an evolutionary algorithm. Currently, random-teacher UEDs outperform adaptive-
teacher UED methods.

While CLUTR and other PAIRED-variants actively adapt task generation to the performance
of agents, other algorithms such as PLR generate tasks from a fixed-random task distribution,
resulting in two categories of UED methods, i) adaptive teacher/generator based UEDs and ii)
random-generator based UEDs. The existing adaptive-teacher UEDs are variants of PAIRED,
which try to improve PAIRED from different aspects, but are still susceptible to the instability due
to an evolving task-manifold. Unlike other PAIRED variants, CLUTR introduces a novel varia-
tional formulation with a VAE-style pretraining for task-manifold learning to solve this instability
issue and can be applied, also potentially improve, any adaptive-teacher UEDs. On the other hand,
random-generator UEDs focus on identifying or, prioritizing which tasks to present to the student
from the randomly generated tasks, and is orthogonal to our proposed approach.

For recent advancements on supervised curriculum learning and alternate curriculum objec-
tives, we refer the readers to [37, 50, 10].

Representation Learning
Variational Auto Encoders [49, 69, 35] have widely been used for their ability to capture high-level
semantic information from low-level data and generative properties in a wide variety of complex
domains such as computer vision [68, 28, 100, 101], natural language [6, 38], speech [11], and
music [40]. VAE has been used in RL as well for representing image observations [46, 96] and
generating goals [62]. While CLUTR also utilizes similar VAEs, different from prior work, it
combines them in a new curriculum learning algorithm to learn a latent task manifold. [22]
also proposed a curriculum learning algorithm, however, for latent-space goal generation using a
Generative Adversarial Network.

3.3 Background

Unsupervised Environment Design (UED)
As formalized by [18] UED is the problem of inducing a curriculum by designing a distribution of
concrete, fully-specified environments, from an underspecified environment with free parameters.
The fully specified environments are represented using a Partially Observable Markov Decision
Process (POMDP) represented by (A,O, S, T , I,R, �), where A, O, and S denote the action, ob-
servation, and state spaces, respectively. I ! O is the observation function, R : S ! R is the
reward function, T : S⇥A! �(S) is the transition function and � is the discount factor. The un-
derspecified environments are defined in terms of an Underspecified Partially Observable Markov
Decision Process (UPOMDP) represented by the tuple M = (A,O,⇥, SM, T M, IM,RM, �). ⇥
is a set representing the free parameters of the environment and is incorporated in the transition
function as T M : S ⇥ A ⇥ ⇥ ! �(S). Assigning a value to ~✓ results in a regular POMDP, i.e.,
UPOMDP + ~✓ = POMDP. Traditionally (e.g., in [18] and [42]) ⇥ is considered as a trajectory

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 30

of environment parameters ~✓ or just ✓—which we call task in this paper. For example, ✓ can be
a concrete navigation task represented by a sequence of obstacle locations. We denote a concrete
environment generated with the parameter ~✓ 2 ⇥ as M~✓ or simply M✓. The value of a policy ⇡ in
M✓ is defined as V ✓(⇡) = E[

PT
t=0 rt�

t], where rt is the discounted reward obtained by ⇡ in M✓.

PAIRED
PAIRED [18] solves UED with an adversarial game involving three players 2: the agent ⇡P and
an antagonist ⇡A, which are trained on tasks generated by the teacher ✓̃. PAIRED objective
is: max✓̃,⇡P

min⇡AU(⇡P , ⇡A, ✓̃) = E✓⇠✓̃[REGRET✓(⇡P , ⇡A)]. Regret is defined by the difference
of the discounted rewards obtained by the antagonist and the agent in the generated tasks, i.e.,
REGRET✓(⇡P , ⇡A) = V ✓(⇡A)�V ✓(⇡P). The PAIRED teacher agent is defined as ⇤ : ⇧! �(⇥T),
where ⇧ is a set of possible agent policies and ⇥T is the set of possible tasks. The teacher is trained
with an RL algorithm with U as the reward while, the protagonist and antagonist agents are trained
using the usual discounted rewards from the environments. [18] also introduced the flexible regret
objective, an alternate regret approximation that is less susceptible to local optima. It is defined by
the difference between the average score of the agent and antagonist returns and the score of the
policy that achieved the highest average return.

3.4 Curriculum Learning via Unsupervised Task
Representation Learning

In this section, we formally present CLUTR as a latent UED and discuss it in details.

Formulation of CLUTR
At the core of CLUTR is the latent generative model representing the latent task manifold. Let’s
assume that R is a random variable that denotes a measure of success over the agent and antagonist
agent and z be a latent random variable that generates environments/tasks, denoted by the random
variable E. We use the graphical model shown in Figure 3.1 to formulate CLUTR. Both E and
R are observed variables while z is an unobserved latent variable. R can cover a broad range of
measures used in different UED methods including PAIRED and DR (Domain Randomization). In
PAIRED, R represents the REGRET.

We use a variational formulation of UED by using the above graphical model to derive the
following ELBO for CLUTR, where VAE(z, E) denotes the VAE objective:

ELBO ⇡ REGRET(R,E)� VAE(z, E) (3.1)

2In the original PAIRED paper, the primary student agent was named protagonist. However, in this paper, we
generally refer to it simply as the agent, except in a few instances where using the term protagonist agent provides
greater clarity.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 31

Figure 3.1: Hierarchical Graphical Model for CLUTR

We share the details of this derivation in Section 3.6 of the Appendix. The above ELBO
(Eq.3.1) defines the optimization objective for CLUTR, which can be seen as optimizing the VAE
objective with a regret-based regularization term and vice versa. As previously discussed, it is
difficult to train a UED teacher while jointly optimizing for both the curriculum and task repre-
sentations. Hence, we propose a two-level optimization for CLUTR. First, we pretrain a VAE to
learn unsupervised task representations, and then in the curriculum learning phase, we optimize
for regret to generate the curriculum while keeping the VAE fixed. In Section 3.5, we empirically
show that this two-level optimization performs better than the joint optimization of Eq.3.1, i.e.,
finetuning the VAE decoder with the regret loss during the curriculum learning phase.

Unsupervised Latent Task Representation Learning
As discussed above, we use a Variational AutoEncoder (VAE) to model our generative latent task-
manifold. Aligning with [18] and [42], we represent task ✓, as a sequence of integers. For
example, in a navigation task, these integers denote obstacle, agent, and goal locations. We use an
LSTM-based Recurrent VAE [6] to learn task representations from integer sequences. We learn an
embedding for each integer and use cross-entropy over the sequences to measure the reconstruc-
tion error. This design choice makes CLUTR applicable to task parameterization beyond integer
sequences, e.g., to sentences or images. To train our VAEs, we generate random tasks by uniformly
sampling from ⇥T , the set of possible tasks. Thus, we do not require any interaction with the envi-
ronment to learn the task manifold. Such unsupervised training of the task manifold is practically
very useful as interactions with the environment/simulator are much more costly than sampling.
Furthermore, we sort the input sequences, fully or partially, when they are permutation invariant,
i.e., essentially represent a set. By sorting the training sequences, we avoid the combinatorial
explosion faced by other adaptive UED teachers.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 32

Algorithm 1 CLUTR
1: Pretrain VAE with randomly sampled tasks from ⇥
2: Randomly initialize Agent ⇡P , Antagonist ⇡A, and Teacher ⇤̃;
3: repeat
4: Generate latent task vector: z ⇠ Z from the teacher
5: Create POMDP M✓ where ✓ = G(z) and G is the VAE decoder function
6: Collect Agent trajectory ⌧P in M✓. Compute: U ✓(⇡P) =

PT
i=0 rt�

t

7: Collect Antagonist trajectory ⌧A in M✓. Compute: U ✓(⇡A) =
PT

i=0 rt�
t

8: Compute: REGRET✓(⇡P , ⇡A) = U ✓(⇡A)� U ✓(⇡P)
9: Train Agent policy ⇡P with RL update and reward R(⌧P) = U ✓(⇡P)

10: Train Antagonist policy ⇡A with RL update and reward R(⌧A) = U ✓(⇡A)
11: Train Teacher policy ⇤̃ with RL update and reward R(⌧ ⇤̃) = REGRET
12: until not converged

CLUTR
Now we describe CLUTR, which is outlined in Algorithm 1. As discussed in Section 3.4, CLUTR
follows a two-stage optimization of Eq. 3.1. First, the VAE is pretrained to learn the latent task-
manifold Z (Line 1) and kept fixed during the curriculum learning phase—the loop spanning Line
3 to 12. Similar to existing adaptive-teacher UED methods, CLUTR learns a curriculum employing
an adversarial game where the agent ⇡P and the antagonist ⇡A solve environments generated by
the teacher ⇤̃. However, unlike the exisiting adaptive-teachers which directly generate the task
parameters ✓, CLUTR teacher is a latent task designer/generator. Defined as ⇤ : ⇧ ! �(Z),
CLUTR teacher samples latent task vectors z from the latent task-manifold Z , where ⇧ is a set of
possible agent policies (Line 4). We then create an environment with the concrete task parameters
✓ = G(z) using the VAE decoder G : Z ! ⇥ (Line 5). The agent and the antagonist then
navigate these environments. These trajectories are collected (Line 6 and 7) and the agent and
the antagonist are updated using the usual discounted rewards from the environments (Line 9-
10). To learn the curriculum, CLUTR teacher is trained using the same regret-based objective as
PAIRED: REGRET(R,E) = REGRET✓(⇡P , ⇡A) (Line 8 and 11). In our implementation, we used
the Proximal Policy Optimization [72] algorithm for updating the teacher and the student agents.
As we notice, CLUTR is outlined similar to PAIRED, but with two critical updates to incorporate
the latent space in Line 4 and 5.

Now we discuss a couple of additional properties of CLUTR compared to other adaptive-
teacher UEDs, i.e., PAIRED and REPAIRED. First, CLUTR teacher samples from the latent space
Z and thus generates a task in a single timestep. Note that this is not possible for other adaptive
UED teachers, as they operate on parameter space and generate one task parameter at a time,
conditioned on the state of the partially-generated task so far. Furthermore, Adaptive-teacher UEDs
typically observe the state of their partially generated task to generate the next parameters. Hence,
they require designing different teacher architectures for environments with different state space.
CLUTR teacher architecture, however, is agnostic of the problem domain and does not depend on

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 33

Algorithm Task
Representation Learning

Teacher
Model

UED
Method

Replay
Method

DR

- Random DR
-

PLR PLR
Robust PLR Robust PLRACCEL DR + Evolution
PAIRED Implicit via RL Learned Regret

-
REPAIRED Robust PLR

CLUTR Explicit via
Unsupervised Generative Model -

Table 3.1: A comparative characterization of contemporary UED methods

their state space. Hence, the same architecture can be used across different environments.

CLUTR in the Context of Contemporary UED Method Landscape
As discussed in Section 4.2, contemporary UED methods can be characterized by their i) teacher
type (random/fixed or, learned/adaptive) and, ii) the use of replay. To clearly place CLUTR in
the context of contemporary UEDs, we discuss another important aspect of curriculum learning
algorithms: how the task manifold is learned. The random-generator UEDs (e.g., DR, PLR) do
not learn a task manifold. Regret-based adaptive-teachers, i.e., PAIRED and REPAIRED, learn an
implicit (e.g., the hidden state of the teacher LSTM) task-manifold—from scratch—but it is not
utilized explicitly. It is trained via RL, based on the regret estimates of the tasks they generate.
Hence, these task-manifolds depend on the quality of the estimates, which in turn depends on
the overall health of the multi-agent RL training. Furthermore, they do not take into account
the actual task structures. In contrast, CLUTR introduces an explicit task-manifold modeled with
VAE, that can represent a local neighborhood structure capturing the similarity of the tasks, subject
to the parameter space being used. Hence, similar tasks (in terms of parameterization) would be
placed nearby in the latent space. Intuitively this local neighborhood structure should facilitate the
teacher to navigate the manifold effectively. The above discussion illustrates that CLUTR along
with PAIRED and REPAIRED form a category of UEDs that generates tasks based on a learned
task-manifold, orthogonal to the random generation-based methods, while CLUTR being the only
one utilizing an unsupervised generative task manifold. Table 3.1 summarizes the similarity and
differences.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 34

3.5 Experiments
In this section, we evaluate CLUTR in two challenging domains: i) Pixel-Based Car Racing with
continuous control and dense rewards, and ii) partially observable navigation tasks with discrete
control and sparse rewards. We compare CLUTR primarily with PAIRED to analyze its impact
on improving adaptive-teacher UED algorithms, experimenting with two commonly used regret
objectives: standard and flexible. As discussed in Section 4.2 and 3.4, there are other random-
generator and adaptive-teacher UEDs employing techniques complimentary or orthogonal to our
approach. For completeness, we compare CLUTR with such existing UED methods in Section 3.6.

We then empirically investigate the following hypotheses:

H1: Simultaneous learning of latent task manifold and curriculum degrades performance (Sec-
tion 3.5)

H2: Training VAE on sorted data solves the combinatorial explosion problem. (Section 3.5)

At last, we analyze CLUTR curriculum in multiple aspects while comparing it with PAIRED
to have a closer understanding. Full details of the environments, network architectures, training
hyperparameters, VAE training and further details are discussed in the Appendix.

CLUTR Performance on Pixel-Based Continuous Control CarRacing
Environment
The CarRacing environment [42, 8] requires the agent to drive a full lap around a closed-loop rac-
ing track modeled with Bézier Curves [61] of up to 12 control points. Both CLUTR and PAIRED
were trained for 2M timesteps for flexible regret objective and for 5M timesteps for the standard
regret objective experiments. We train the VAE on 1 million randomly generated tracks for 1 mil-
lion gradient updates. Note that only one VAE was trained and used for all the experiments (10
independent runs, both objectives). We evaluate the agents on the F1 benchmark [42] containing
20 test tracks modeled on real-life F1 racing tracks. These tracks are significantly out of distribu-
tion than any tracks that the UED teachers can generate with just 12 control points. Further details
on the environment, network architectures, VAE training, and detailed experimental results with
analysis can be found in Section 3.6, 3.6, 3.6, 3.6 of the Appendix, respectively.

Figure 3.2 shows the mean return obtained by CLUTR and PAIRED on the full F1 benchmark,
on. We independently experimented with both the standard and flexible regret objectives. We
notice that PAIRED performs miserably with standard regret in these tasks. However, implement-
ing CLUTR or changing to the flexible regret objective, improves the performance considerably.
Furthermore, CLUTR with flexible regret results in much better performance, comparable to the
non-UED attention-based SOTA for CarRacing [85], despite not using a self-attention policy and
training on 500X fewer environment interactions, while outperforming it on nine of the 20 F1
tracks (See Table 3.4 in Appendix). We also note, CLUTR improves PAIRED irrespective of the
choice of the regret objectives: achieving 10.6X and 82% higher returns with standard and flex-

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 35

Figure 3.2: Comparison on the F1 Benchmark comprising 20 tracks modeled on real-life F1 racing
tracks collected from 10 independent runs. CLUTR achieves 10.6X and 82% higher returns than
PAIRED with standard and flexible regret objectives, respectively. CLUTR also performs compa-
rably to the attention-based non-UED CarRacing SOTA, while requiring 500X fewer environment
interactions.

ible regret objectives, respectively and outperforming PAIRED on each of the 20 F1 tracks (See
Table 3.4). Figure 3.3 illustrate the agents’ generalization capabilities during training, by periodi-
cally evaluating them on a subset of three unseen F1 tracks: Singapore, Germany, and Italy, which
are selected aligning with [42]. Based on these environments, CLUTR shows significantly better
trends of sample efficiency, achieving better generalization with significantly fewer environment
interactions compared to PAIRED. Furthermore, CLUTR (with flexible regret) emerges as the best
adaptive-teacher UED for CarRacing outperforming the other adaptive-teacher UED: REPAIRED
and random-generator UEDs: DR, and PLR by 58%, 38% and 16%, repectively. CLUTR is also
the only adaptive-teacher UED that outperforms the random-teacher UED methods. CLUTR falls
short (by 14%) only to Robust PLR—a random generator dual-curriculum UED with replay and
stop-gradient capabilities—a method fundamentally different than ours or, PAIRED. Further dis-
cussion with detailed performance and comparison can be found in Section 3.6.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 36

(a) with Standard Objective (b) with Flexible Objective

Figure 3.3: Zero-shot generalization over the course of training by periodic evaluation on a subset
of three F1 tracks: Singapore, Germany, and Italy. CLUTR indicate significantly better sample
efficiency than PAIRED.

CLUTR Performance on Partially Observable Navigation Tasks on
MiniGrid
We now compare CLUTR with PAIRED on the popular MiniGrid environment, originally intro-
duced by [9] and adopted by [18] for UEDs, for both standard and flexible regret objectives. In
these navigation tasks, an agent explores a grid world to find the goal while avoiding obstacles
and receives a sparse reward upon reaching the goal. For flexible regret experiment, we gener-
ated 10 million random grids to train the VAE, with the obstacle locations sorted, and the number
of obstacles uniformly varying from zero to 50, aligning with [18]. The standard regret experi-
ment uses a similar but smaller dataset of 1 million grids. Note that the results reported in the
original PAIRED paper are obtained after 3 billion timesteps of training, while we train PAIRED
and CLUTR for 250M and 500M timesteps (5 independent runs), for flexible and standard regret
objectives, respectively. We evaluate on a testset of 16 novel navigation tasks from [18].

Figure 3.4 shows the mean solve rate obtained by CLUTR and PAIRED on the test dataset.
CLUTR improves PAIRED irrespective of the choice of the regret objectives: 45% and 35%
higher solve rate than PAIRED outperforming on 14 and 13 individual test grids out of 16 (See
Figure 3.27 and Figure 3.22 in Section 3.6 for details), with standard and flexible regret objec-
tives, respectively. Figure 3.5 plot solve rate on all the 16 test grids during training for flexible
objective and a subset of four grids, namely, Sixteen Rooms, Sixteen Rooms with Fewer Doors,
Labyrinth, and Large Corridor, for standard objective. We see CLUTR, though showing an initial
dip for flexible objective, shows better sample efficiency by achieving a higher solve rate earlier
than PAIRED.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 37

Figure 3.4: Mean solve rate on the test dataset comprising 16 novel nagivation tasks from 5 inde-
pendent runs. CLUTR achieves 45% and 35% higher solve rate than PAIRED, with standard and
flexible regret objectives, respectively.

(a) with Standard Objective (b) with Flexible Objective

Figure 3.5: Agent solved rate on the 16 unseen grids from [18] during training. CLUTR shows
better sample efficiency and generalization than PAIRED. The results show an average of 5 inde-
pendent runs.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 38

Environment Interactions (2M) Environment Interactions (500M)

Figure 3.6: Example tracks(left) and grids(right) generated by CLUTR(top) and PAIRED(bottom)
uniformly sampled at different stages of training. The training progresses from left to right.
PAIRED seems to generate over simplified tasks for substantial amount of time hampering agent
learning. CLUTR generates interesting tasks throughout.

Learning Task Manifold and Curriculum: Joint vs Two-staged Optimization
We hypothesized that learning the task representation and the curriculum simultaneously results
in a difficult learning problem due to the non-stationarity of the process. To test this, we conduct
an experiment in which we allow finetuning our pretained decoder with the regret loss during the
curriculum learning phase. This experiment, namely ‘CLUTR with Decoder Finetuning’, shows a
29% performance drop in the CarRacing domain with the standard regret objective (Figure 3.7).
Similarly, we see a drop of 10% in case of flexible regret further justifying our hypothesis (See Sec-
tion 3.6 for details). As a side note, the smaller drop in the later case indicates that flexible objec-
tive mitigates some of the instability problem too. Finally, even with decoder finetuning, CLUTR
achieves 7.6X and 65% improvement over PAIRED, for standard and flexible regret respectively—
indicating the benefits of pretrained decoupled latent task space. The above experimental results
thus empirically validates our hypothesis that keeping the pretrained task manifold fixed during
curriculum learning helps solving the instability problem.

Impact of Sorting VAE Training Data on Solving Combinatorial Explosion
We hypothesized that training a VAE on sorted sequences can solve the combinatorial explosion
problem. To test this, we conduct an experiment, ‘CLUTR with Shuffled VAE’, in which we train
CLUTR with an alternate VAE—trained 5X longer on a non-sorted and 10X bigger version of the
original dataset. This experiment shows a 31% performance drop in the CarRacing domain as seen
in Figure 3.7, empirically validating our hypothesis. On another note, CLUTR with Shuffled VAE
still shows a 7.3X improvement over PAIRED. This indicates that, even when the task manifold is
‘suboptimal’, a fixed and pretrained task-manifold, i.e., the decoupling of task representation and
curriculum learning, helps solving the learning instability and combinatorial explosion problem
faced by PAIRED. Further details of this experiment are discussed in Section 3.6 of the Appendix.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 39

Figure 3.7: Impact of i) joint vs two-staged optimization of the task manifold and ii) using a ‘Shuf-
fled’ VAE, trained on a larger shuffled dataset. The leftmost column shows the default CLUTR
performance—i.e., using a pretrained decoder (VAE) trained on sorted training data, kept fixed
during the curriculum learning phase—with standard regret objective for CarRacing. Allowing the
decoder to finetune with the regret loss results in a 29% performance drop and the use of Shuffled
VAE shows a drop of 31%. These performance drops empricially justify our hypotheses H1 and
H2. Also, CLUTR with decoder finetuning and Shuffled VAE still outperform PAIRED, with 7.6X
and 7.3X better returns, respectively.

Analysis of the Curriculum: CLUTR vs PAIRED
In Section 3.5 and 3.5 we discussed how CLUTR outperforms PAIRED, both in terms of sample
efficiency and generalization, suggesting CLUTR induces a significantly more effective curricu-
lum than PAIRED. For better understanding of CLUTR curriculum, in Figure 3.8 we analyze the
mean regret—the performance gap between the agent and the adversary—on the teacher-generated
curricula for both CarRacing and navigation tasks.

CLUTR and PAIRED show similar regret patterns, which is not surprising as both optimize
regret using the same criteria. However, CLUTR converges to a smaller regret value; faster than
PAIRED. From a curriculum learning perspective, smoother training is expected with tasks that are
‘slightly’ harder than the agent can already solve or, can obtain ‘slightly’ better returns. In practice,
both the agent and the antagonist are trained in the same training data and context e.g., the same

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 40

(a) Mean Regret - CarRacing (b) Mean Regret - Navigation

Figure 3.8: Mean standard regret during training. CLUTR shows a smaller regret value indicating
a smaller performance gap between the agent and the antagonist, compared to PAIRED.

hyper-parameters, architecture, differing only by their random initial weights. Hence, a lower re-
gret implies that the teacher is generating tasks at the frontier of the agents’ capabilities, which are
either slightly harder than the agent should be able to solve (because antagonist is solving them) or,
the tasks in which antagonist is performing slightly better. On the other hand, higher regret values
can result from generating tasks which are biased towards the strength or, idiosyncracy of only one
of the agents, which might not be useful for generalization. In fact, PAIRED has shown to over
exploit the relative strength of the antagonist for CarRacing ([42]), inducing curriculum showing
high regret but poor generalization. Furthermore, a high regret can also imply the antagonist be-
coming significantly better than agent, which may lead to the teacher not having enough incentive
to generate novel and diverse tasks, harming agent learning. Hence the lower regret value, might
indicate that CLUTR is identifying the frontier of agents’ capabilities better than PAIRED and thus
inducing a more effective curriculum for training the student agents, as supported by the empirical
performance.

Figure 3.6 shows snapshots of CLUTR and PAIRED generated curriculums as training progress.
We notice, PAIRED generates over-simplified tasks for substantial amount of time, which might
hamper its generalization and sample efficiency. On the other hand, CLUTR doesnt seem to start
with overly-simplistic tasks, rather generates tasks with a wide range of difficulty throughout. Sec-
tion 3.6 shares detailed analysis supporting the above observation and further insights.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 41

Figure 3.9: Hierarchical Graphical Model for CLUTR

3.6 Additional Details of CLUTR

CLUTR Objective Derivation
We use a hierarchical graphical model to formulate the latent environment design problem. Let’s
assume that R is a random variable that denotes a measure of success defined using the protagonist
and antagonist agents and z be a latent random variable. We use the graphical model in Figure 3.9
where z generates an environment E and R is the success defined over E. Both E and R are
observed variables while z is an unobserved variable. R covers a broad range of measures used
in different UED methods including PAIRED and DR (Domain Randomization). In PAIRED, R
represents the REGRET as the difference of returns between the antagonist and protagonist agents
and it depends on the environments that the agents are evaluated on.

We use a variational formulation of UED by using the above graphical model. We first define
the variational objective as the KL-divergence between an approximate posterior distribution and
true posterior distribution over latent variable z,

DKL(q(z)||p(z|R,E)) = Ez⇠q(z)[log q(z)]� Ez⇠q(z)[log p(z|R,E)]

= Ez⇠q(z)[log q(z)]� Ez⇠q(z)[log p(R,E, z)] + log p(R,E)

where both R and E are given.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 42

Next, we write the ELBO,

ELBO = Ez⇠q(z)[log p(R,E, z)]� Ez⇠q(z)[log q(z)]

= Ez⇠q(z)[log p(R|E)p(E|z)p(z)]� Ez⇠q(z)[log q(z)]

= Ez⇠q(z)[log p(R|E)] + Ez⇠q(z)[log p(E|z)] + Ez⇠q(z)[log p(z)]� Ez⇠q(z)[log q(z)]

= log p(R|E) + Ez⇠q(z)[log p(E|z)]� Ez⇠q(z)[log
q(z)

p(z)
]

= log p(R|E) + Ez⇠q(z)[log p(E|z)]�DKL(q(z)||p(z))

= log p(R|E)� VAE(z, E)

We can also induce an objective that includes minimax REGRET. Let R be distributed accord-
ing to an exponential distribution, p(R|E) / exp(REGRET(⇡P , ⇡A|E)),

we derive,

ELBO ⇡ REGRET(R,E)� VAE(z, E)

where the normalizing factor is ignored.

Robustness Guarantees
CLUTR essentially proposes including a pretrained latent space within the teacher/generator. From
the teacher’s perspective, the difference is while the PAIRED teacher starts from randomly initial-
ized weights, CLUTR starts from the pretrained weights. Thus, CLUTR does not impose new as-
sumptions on possible teacher policies. Furthermore, CLUTR does not change any other specifics
of the underlying PAIRED algorithm. Hence, CLUTR holds the same theoretical robustness guar-
antees provided by PAIRED.

In practice, both CLUTR and PAIRED deviate from these theoretical guarantees. For example,
both algorithms approximate the regret value, which is the case for other regret-based UEDs such
as Robust PLR and REPAIRED ([42]). Also, the robustness guarantee depends on reaching the
Nash equilibrium of the multiagent adversarial game. However, gradient-based multi-agent RL
has no convergence guarantees and often fails to converge in practice([56]). We also note that,
by introducing the latent space, CLUTR VAE might not have access to the full task space due to
practical limitations on training, e.g., the training dataset not having all possible tasks. However,
when the decoder is allowed to be finetuned, CLUTR will have access to the full task space, similar
to PAIRED. Our empirical results (discussed in Section 3.5) suggest that keeping the pretrained
decoder fixed performs better than finetuning it, so we kept it fixed for our main experiments. We
also want to mention, when the flexible objective is used, CLUTR (and PAIRED) does not hold
the robustness guarantee as it changes the dynamics of the underlying game between the teacher
and the agents, even though flexible regret works better in practice.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 43

Training Details
Environment Details

Car Racing: The CarRacing environment was originally proposed by OpenAI Gym [8], and later
has been reparameterized by [42] with Bézier Curves([61]) for UED algorithms. This environment
requires the agents to drive a full lap around a closed-loop track. The track is defined by a Bézier
Curve modeled with a sequence of upto 12 arbitrary control points, each spaced within a fixed
radius B/2 of the center of the B ⇥B field. This sequence of control points can uniquely identify
a track, subject to a set of predefined curvature constraints [42]. The control points are encoded in
a 10⇥10 grid—a discrete downsampled version of the racing track field. Each control point hence
is a integer denoting a cell of the grid and the cell coordinates are upscaled to match the original
scale of the field afterwards. This ensures no two control points are too close together, preventing
areas of excessive track overlapping. The track consists of a sequence of L polygons and the agent
receives a reward of 1000/L upon visiting each unvisited polygon and a penalty of �0.1 at each
time step to incentivize completing the tracks faster. Episodes terminate if the agent drives too far
off-track but is not given any additional penalty. The agent controls a 3 dimensional continuous
action space corresponding to the car’s steer: torque 2 [�1.0, 1.0], gas: acceleration 2 [0, 0, 1.0],
and brake: deceleration 2 [0.0, 1.0]. Each action is repeated 8 times. The agent receive a 96⇥96⇥3
RGB pixel observation. The top 84⇥ 96 portion of the frame contains a clipped, egocentric, bird’s
eye view of the horizontally centered car. The bottom 12 ⇥ 96 segment simulates a dashboard
visualizing the agent’s latest action and return. Snapshots of the test track in the F1 benchmark are
shown in Figure 3.10.

Minigrid: The environment is partially observable and based on [9] and adopted for UED by
[18]. Each navigation task is represented with a sequence of integers denoting the locations of the
obstacles, the goal, and the starting position of the agent: on a 15 ⇥ 15 grid similar to [18]. The
grids are surrounded by walls on the sides, making it essentially a 13⇥ 13 grid. [18] parameterizes
the locations using integers. Each task is a sequence of 52 integers, while the first 50 numbers
denote the location of obstacles followed by the goal and the agent’s initial location. The sequences
may contain duplicates to allow the generation of navigation tasks with fewer than 50 obstacles.
Snapshots of the test grids used in our paper are shown in Figure 3.11.

Network Architectures

All the student and teacher agents are trained with PPO [72].
Student Architecture: For CarRacing, we use the same student architecture as [42]. The ar-

chitecture consists an image embedding module composed of 2D Convolutions with square kernels
of sizes 2,2,2,2,3,3, stride lengths 2,2,2,2,1,1 and channel outputs of 8, 16, 64, 128, 256 stacked
together. The image embedding is of size 256 and is passed through a Fully Connected (FC) layer
of 100 hidden units and then passed through ReLU activations. This embedding is then passed
through two FC with 100 hidden neurons, and then a softplus layer, and finally added to 1 for the
beta distribution used for the continuous action space. Further details can be found in [42].

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 44

Figure 3.10: Snapshots of the test tracks in F1 benchmark

Figure 3.11: Snapshots of the test grids for MiniGrid

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 45

For navigation tasks, we use the same student architecture as [18]. The observation is a tuple
with a 5 ⇥ 5 ⇥ 3 grid observation and a direction integer in [0 � 3]. The grid view is fed to a
convolutional layer with kernels of size 3 with 16 filters and the direction integer is passed through
a FC with 5 units. This is followed by an LSTM of size 256, and then to two FC layers with 32
units, which connect to the policy outputs. The value network uses the same architecture.

Teacher Architecture: For CarRacing, CLUTR teacher takes a random noise and generates
a continuous vector, i.e., the latent task vector. We pass the random noise through a feed-forward
network with one hidden layer of 8 neurons as the teacher. The output of this layer is fed through
two separate fully-connected layers, each with a hidden size of 8 and an output dimension equal
to the latent space dimension, followed by soft plus activations. We then add 1 to each component
of these two output vectors, which serve as the ↵ and � parameters respectively for the Beta
distributions used to sample each latent dimension. In all of our experiments, we used a 64-
dimensional latent task space.

For Minigrid experiments with flexible regret objective, we use a similar architecture as Car-
Racing described above, except the hidden layer consists of 10 neurons, instead of eight. For
Minigrid experiments with standard regret objective (which is discussed later in Section 3.6), we
use the network architecture used in [18] but only take a noise input. As this adversary network
generates discrete actions, we scale them to real numbers before feeding into the VAE decoder.

VAE architecture: We use the architecture proposed in [6]. We use a word-embedding layer
of size 300 with random initialization. The encoder comprises a conditional ‘Highway’ network
followed by an LSTM. The Highway network is a two-staged network stacked on top of each other.
Each stage computes �(x) � f(G(x)) + (1 � �(x)) � Q(x), where x is the inputs to each of the
highway network stages, G and Q is affine transformation, �(x) is a sigmoid non-linearization, and
� is element-wise multiplication. G and Q are feed-forward networks with a single hidden layer
with equal input and output dimensions of 300, equal to the word-embedding output dimension.
We use ReLU activation as f . The highway network is followed by a bidirectional LSTM with a
single layer of 600 units. The LSTM outputs are passed through linear layer of dimension 64 to
get the VAE mean and log variance. The mean vectors are passed through a hyperbolic tangent
activation. For CarRacing (both Flexible and Standard Objective experiments) and navigation
(only Standard Objective) tasks the output of the hyperbolic tangent activation is linearly scaled in
[�4, 4]. No such scaling is done for the MiniGrid experiments with Flexible Regret Objective. The
decoder takes in latent vectors of dimension 64 and passes through a bidirectional LSTM with two
hidden layers of size 800 and follows it by a linear layer with size equaling the parameter vector
dimension.

Hyperparameters

All our agents are trained with PPO [72]. We did not perform any hyperparameter search for our
experiments. The CarRacing experiments used the same parameters used in [42] and the Minigrid
experiments used the parameters from [18]. The VAE used for CarRacing and Minigrid standard
objective experiments (Section 3.6) were trained using the default parameters from [6]. For the
VAE used in the Minigrid flexible objective experiments, which we presented in the main text of

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 46

the paper, we used a reconstruction weight of 1000 and ran the training for 10M steps to incorporate
the larger dataset. The detailed parameters are listed in Table 3.2 and Table 3.3.

The flexible objective blurs the distinction between the agent and the antagonist. Hence, we
designate the agent achieving the higher average training return during the last 10 steps as the
primary student agent and the other one as antagonist.

Parameter Value
Batch Size 32
Number of Training Steps 1000000
Reconstruction Weight 79
Latent Variable Size 64
Word Embedding size 300
Maximum Sequence Length 52
Encoder Activation Hyperbolic Tangent
Learning Rate 0.00005
Dropout 0.3

Table 3.2: Hyperparameters for training the Task VAE

Parameter CarRacing MiniGrid
� 0.99 0.995
�GAE 0.9 0.95
PPO rollout length 125 256
PPO epochs 8 5
PPO minibatches per epoch 4 1
PPO clip range 0.2 0.2
PPO number of workers 16 32
Adam learning rate 3e-4 1e-4
Adam ✏ 1e-5 1e-5
PPO max gradient norm 0.5 0.5
PPO value clipping no yes
Return normalization yes no
Value loss coefficient 0.5 0.5
Student entropy coefficient 0 0
Action Repeat 8 -

Table 3.3: Hyperparameters for PAIRED and CLUTR PPO training.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 47

VAE Training Data

For CarRacing, we follow the same parameterization as [42]: each track is defined with a se-
quence of up to 12 integers denoting control points of a Bézier Curve. . Each control point is
represented with an integer. We generate 1M random sorted integer sequences of fixed length 12
with duplicates—which enables generating tracks defined with less than 12 control points.

For navigation tasks we use the parameterization of [18], generating upto 50 obstacles for
each task for a 15 ⇥ 15 grid, surrounded by walls, effectively an active area of 13 ⇥ 13. Hence,
each location is numbered in 1 to 169. Every number except the last two of the sequence rep-
resent obstacle locations, and the last two represent the goal and agent location, respectively. To
generate training data, we uniformly generate 1M and 10M sequences of variable length between
2 and 52 (inclusive), for the standard and flexible regret objective, respectively. We note that, the
obstacle locations, though represented as a sequence, essentially is a set. The parameter vector is
thus partially permutation invariant. As we discussed in 3.4, due to this permutation invariance,
conteporary adaptive-teacher UEDs, e.g., PAIRED and REPAIRED, face combinatorial explosion.
CLUTR addresses this by sorting the obstacle locations of this parameter-vector dataset.

Details on Compute Resources

We have conducted our experiments in cloud machines from Amazon EC2 - Secure Cloud
Services (https://aws.amazon.com/) and Google Cloud Platform (GCP) - Google Cloud (https:
//cloud.google.com/). We used a single NVIDIA T4 GPUs for our experiments with machines
having 8(16) and 16(32) physical(virtual) cores, 64GB and 128 GB Memory for CarRacing and
Minigrid experiments. A typical 500M Minigrid training of CLUTR ran with a speed of around
800-900 environment interactions per second, taking around 6-8 days, with 32 parallel workers.
CarRacing experiments ran on around 90-110 environment interactions per second with 16 parallel
processes.

Detailed Experimental results on CarRacing
Detailed Comparison on Full F1 dataset

Figure 3.12 and Table 3.4, compares CLUTR with contemporary random-generator UED methods,
REPAIRED, and the attention based SOTA. It is to be noted that, CLUTR and PAIRED with
flexible regret objective was trained for 2M timesteps. All the other UED methods, along with
CLUTR and PAIRED with standard regret was trained for 5M timesteps.

We notice that, each of the random-teacher UEDs outperform all the other adaptive-teacher
UEDs, with the exception of CLUTR with flexible regret objective. PAIRED performs miserably
in its basic form, however performs significantly better when coupled with extended capabilties
e.g., by using flexible regret objective, or by introducing replay and stop-gradient capabilities (i.e.,
REPAIRED). However, they they still fall short to the random-teacher UEDs. This indicates that
adaptive-teacher UEDs face significant difficulty in this domain.

https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 48

Figure 3.12: Comparison on the F1 Benchmark comprising 20 tracks modeled on real-life F1 rac-
ing tracks. CLUTR (with flexible regret) emerges as the best adaptive-teacher UED for CarRacing
and being the only adaptive-teacher UED to outperform some of the random-generator UEDs.
Each of the other adaptive-teacher UEDs (REPAIRED, PAIRED with flexible regret, CLUTR with
standard regret) are outperformed by all of the random-generator UEDs (DR, PLR, Robust PLR).
CLUTR outperforms the adaptive-teacher PAIRED and REPAIRED by 82% and 58%, respec-
tively, while outperforming Domain Randomization and PLR, by 38% and 16%, repectively. It
only falls short to Robust PLR by 14%. The results show mean and standard error of 10 indepen-
dent runs.

CLUTR with flexible regret emerges as the best adaptive-teacher UED despite being trained
only for 2M timesteps. It achieves an impressive 18X higher zero-shot generalization than PAIRED
with standard regret and outperforms REPAIRED by 58%.

CLUTR with flexible regret is the only adaptive-teacher UED to outperform other random-
teacher UEDs. CLUTR outperforms Domain Randomization and PLR, by 38% and 16%, repec-
tively. It only falls short to Robust PLR by 14%. Nonetheless, CLUTR shows competitive results
compared to Robust PLR, showing comparable results in seven out of the 20 test tracks and out-
performing in the Netherlands track. CLUTR also outperforms the non-UED SOTA on the full F1
dataset. It outperforms the Attention Agent on nine out of the 20 tracks and shows comparable
performance in another one.

Figure 3.13 compares how different UEDs perform during training by periodically evaluating
them on three tracks from the F1 benchmark: Singapore, Germany, and Italy. CLUTR (with
flexible regret) shows better generalization and sample efficiency than all the other UEDs, except

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 49

Tr
ac

k
D

R
PL

R
R

ob
us

tP
LR

R
EP

A
IR

ED
PA

IR
ED

C
LU

TR
PA

IR
ED

C
LU

TR
A

tte
nt

io
n

St
an

da
rd

R
eg

re
t

Fl
ex

ib
le

R
eg

re
t(

2M
)

A
ge

nt
A

us
tra

lia
48

4
±

29
54

5
±

23
69

2
±

15
41

4
±

27
10

0
±

22
42

9
±

28
34

2
±

29
68

3
±

20
82

6
A

us
tri

a
40

9
±

21
44

2
±

18
61

5
±

13
34

5
±

19
92

±
24

30
9

±
19

31
6

±
23

50
7

±
19

51
1

B
ah

ra
in

29
8

±
27

41
1

±
22

59
0

±
15

29
5

±
23

-3
5

±
19

22
5

±
24

18
3

±
28

41
4

±
20

37
2

B
el

gi
um

32
8

±
16

32
7

±
15

47
4

±
12

29
3

±
19

72
±

20
31

5
±

14
30

9
±

17
42

9
±

15
66

8
B

ra
zi

l
30

9
±

23
38

7
±

17
45

5
±

13
25

6
±

19
76

±
18

24
4

±
16

23
7

±
16

36
3

±
18

14
5

C
hi

na
11

5
±

24
84

±
20

22
8

±
24

7
±

18
-1

01
±

9
33

±
19

23
±

21
25

4
±

28
34

4
Fr

an
ce

27
9

±
32

29
0

±
35

47
8

±
22

24
0

±
29

-8
1

±
13

26
6

±
30

15
8

±
24

49
8

±
31

15
3

G
er

m
an

y
27

4
±

23
38

8
±

20
49

9
±

18
27

2
±

22
-3

3
±

16
19

5
±

26
28

6
±

26
40

4
±

20
21

4
H

un
ga

ry
46

5
±

32
53

3
±

26
70

8
±

17
41

4
±

29
98

±
29

32
5

±
32

32
7

±
31

63
0

±
24

76
9

Ita
ly

46
1

±
27

58
8

±
20

62
5

±
12

37
1

±
25

13
2

±
24

43
9

±
31

45
1

±
27

63
9

±
16

79
8

M
al

ay
si

a
23

6
±

25
28

3
±

20
40

0
±

18
20

0
±

17
-2

6
±

17
17

4
±

23
19

2
±

21
42

6
±

22
30

0
M

ex
ic

o
45

8
±

33
56

1
±

21
71

2
±

12
41

5
±

30
67

±
31

38
7

±
31

39
1

±
30

62
7

±
19

58
0

M
on

ac
o

26
8

±
28

36
0

±
32

48
6

±
19

25
6

±
26

-2
8

±
18

23
4

±
30

12
5

±
28

46
0

±
29

83
5

N
et

he
rla

nd
s

32
8

±
26

41
8

±
21

41
9

±
25

30
7

±
21

70
±

20
30

2
±

27
30

6
±

24
48

8
±

21
13

1
Po

rtu
ga

l
32

4
±

27
40

7
±

15
48

3
±

13
26

5
±

21
-4

9
±

13
29

9
±

24
14

9
±

19
46

2
±

20
60

6
R

us
si

a
38

2
±

30
47

9
±

24
64

9
±

14
41

9
±

25
51

±
21

31
9

±
25

33
7

±
24

49
7

±
23

73
2

Si
ng

ap
or

e
33

6
±

29
38

6
±

22
56

6
±

15
27

4
±

21
-3

5
±

14
22

9
±

18
19

2
±

21
38

2
±

19
27

6
Sp

ai
n

43
3

±
24

48
2

±
17

62
2

±
14

35
8

±
24

13
4

±
24

37
3

±
15

41
4

±
19

49
6

±
15

75
9

U
K

39
3

±
28

45
6

±
16

53
8

±
17

38
0

±
22

13
8

±
25

39
6

±
18

33
9

±
18

47
1

±
19

72
9

U
SA

26
3

±
31

24
3

±
28

38
1

±
33

12
0

±
25

-1
19

±
11

27
±

29
67

±
29

23
8

±
31

-1
92

M
ea

n
34

2
±

27
40

4
±

22
53

1
±

17
29

5
±

23
26

±
19

27
6

±
24

25
7

±
16

46
8

±
21

47
8

Ta
bl

e
3.

4:
C

om
pa

ris
on

be
tw

ee
n

C
LU

TR
an

d
ot

he
rU

ED
al

go
rit

hm
s

on
th

e
in

di
vi

du
al

tra
ck

s
of

th
e

F1
be

nc
hm

ar
k.

W
e

re
po

rt
C

LU
TR

an
d

PA
IR

ED
fo

r
bo

th
st

an
da

rd
an

d
fle

xi
bl

e
re

gr
et

ob
je

ct
iv

es
.

W
e

no
te

th
at

,
C

LU
TR

an
d

PA
IR

ED
w

ith
fle

xi
bl

e
re

gr
et

w
as

tra
in

ed
fo

r
2M

tim
es

te
ps

.
A

ll
th

e
ot

he
r

U
ED

s
w

er
e

ru
n

fo
r

5M
tim

es
te

ps
.

B
ol

df
ac

e
de

no
te

s
SO

TA
am

on
g

U
ED

al
go

rit
hm

s,
w

hi
le

ita
lic

in
th

e
A

tte
nt

io
n

A
ge

nt
co

lu
m

n
m

ea
ns

,C
LU

TR
w

ith
Fl

ex
ib

le
R

eg
re

t,
ou

r
be

st
pe

rf
or

m
in

g
m

od
el

,i
s

co
m

pa
ra

bl
e/

ou
tp

er
fo

rm
s

th
e

at
te

nt
io

n
ag

en
to

n
th

at
tra

ck
.

C
LU

TR
ou

tp
er

fo
rm

s
PA

IR
ED

,D
om

ai
n

R
an

do
m

iz
at

io
n,

PL
R

,a
nd

R
EP

A
IR

ED
an

d
on

ly
fa

lls
sh

or
tt

o
R

ob
us

tP
LR

.N
on

et
he

le
ss

,C
LU

TR
sh

ow
s

co
m

pa
ra

bl
e

re
su

lts
cw

ith
re

sp
ec

tt
o

R
ob

us
tP

LR
in

se
ve

n
ou

to
ft

he
20

te
st

tra
ck

s
an

d
ou

tp
er

fo
rm

in
g

it
in

th
e

N
et

he
rla

nd
s

tra
ck

.C
LU

TR
al

so
ou

tp
er

fo
rm

s
th

e
no

n-
U

ED
SO

TA
on

9
ou

to
ft

he
20

tra
ck

s
an

d
sh

ow
s

co
m

pa
ra

bl
ep

er
fo

rm
an

ce
in

on
e.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 50

Figure 3.13: Comparison of mean agent returns on three tracks: Singapore, Germany, and Italy.
Based on this subset of tracks, CLUTR (with flexible regret) shows better generalization than all
the other UEDs, except Robust PLR. CLUTR was ahead of Robust PLR till around 3M timesteps,
followed by both curves following each other closely, and near the very end Robust PLR surpassed
CLUTR.

Robust PLR. CLUTR showed better performance than Robust PLR till alomost 3M timesteps, after
that CLUTR and Robust PLR curves followed each other closely, and near the very end Robust
PLR surpasses CLUTR.

CLUTR with flexible regret loss

Training Returns: Figure 3.14 plot mean return on the training tasks for both the student agents.
CLUTR student agents show close performance, while PAIRED students show a bigger gap of
performance between them. Closely competing agents can indicate the training tasks being slightly
harder than the agents can currently solve.

Learning task manifold and curriculum: Joint vs Two-staged Optimization: In Sec-
tion 3.5, we empirically justified our hypothesis that learning the task representation and the cur-
riculum simultaneously results in a difficult learning problem due to the non-stationarity of the
process—using the standard regret objective. In this section we repeat the experiment with the
flexible regret objective. In Figure 3.15, we see a 10% drop in the performance when the decoder
was allowed to finetune with regret loss, further justifying our hypothesis. As a side note, the

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 51

Figure 3.14: Mean return on the training tasks for both the student agents. CLUTR student agents
show close performance, while PAIRED students show a bigger gap of performance between them.
Closely competing agents can indicate the training tasks being slightly harder than the agents can
currently solve, resulting in a smoother curriculum

smaller drop compared to standard regret objective indicates that flexible objective mitigates some
of the instability problem too. Finally, even with decoder finetuning, CLUTR achieves a 65%
improvement over PAIRED indicating the benefits of pretrained decoupled latent task space.

CLUTR with standard regret loss

We train CLUTR with the standard regret loss for 5M timesteps. Figure 3.16 compares the impact
of standard/flexible regret loss on the regret and agent returns during training. With standard regret
loss, CLUTR shows a lower regret value, but shows similar pattern. The CLUTR agent achieves
better returns with flexible loss throughout the training.

Figure 3.17 compares the mean regret and agent training returns with PAIRED. CLUTR with
standard loss shows much lower regret than PAIRED (Figure 3.17a). Figure 3.17b shows that the
CLUTR agents compete closely, while PAIRED antagonist achieves much higher returns than the
PAIRED agent which leads to higher regret returns for the teacher agent but results in a weak
student agent. To test the Zero-shot generalization, we evaluate CLUTR with the standard loss on
the full F1 benchmark. Figure 3.18 shows CLUTR with standard regret loss outperforms PAIRED
in all the 20 test tracks. This implies that CLUTR outperforms PAIRED irrespective of the choice

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 52

Figure 3.15: Impact of joint vs two-staged optimization of the task manifold. The leftmost col-
umn shows the default CLUTR performance—i.e., using a pretrained decoder kept fixed during
the curriculum learning phase—with flexible regret objective in the CarRacing domain. Decoder
finetuning, i.e., when the decoder is allowed to finetune with the regret loss, results in a 10% per-
formance drop. This performance drop empricially justify our choice of using a pretrained and
fixed VAE to solve learning instability.

of the loss function (standard/flexible). Figure 3.19 compares the sample efficiency of CLUTR
with the standard regret loss with PAIRED by evaluating the agents on four selected tracks (Vanilla,
Singapore, Germany, Italy) during training. It can be seen that CLUTR, even without the regret
loss, outperforms PAIRED significantly. We note that these test environments were not used in any
way, neither during training CLUTR (and PAIRED) nor while designing it.

As mentioned in [42] PAIRED overexploits the relative strengths of the antagonist over the
protagonist agent and generates a curriculum that gradually reduces the task complexity. However,
CLUTR overcomes this and generates a curriculum where the agent and the antagonist closely
compete (Figure 3.17b) and shows a robust generalization on the unseen F1 benchmark.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 53

(a) Mean Regret - Car Racing - with vs without flex-
ible regret loss

(b) Returns on UED generated Car Racing tracks -
with vs without flexible regret loss

Figure 3.16: Mean Regret and agent returns during training CLUTR (with flexible regret) vs
CLUTR with standard PAIRED regret approximation.

Extended Analysis on Impact of sorting training data for VAE training

The non-sorted dataset was generated by shuffling each track of the original VAE training
dataset 10 different times, resulting in a 10X bigger dataset (10M tracks). It was trained for 5X
longer for 5M training steps. We planned on training for 10M gradient steps (10X than the original
VAE) but stopped at 5M as it converged much sooner. We ran both CLUTR and CLUTR-shuffled,
i.e., CLUTR with a VAE trained on non-sorted data up to 5M timesteps. CLUTR-shuffled shows
inferior performance and also signs of unlearning compared to CLUTR. Figure 3.20 shows detailed
experiment results.

Impact of Task Representation Learning

In this section, we discuss the impact of the learned task representation on performance. In Sec-
tion 3.5, we showed that if we finetune the VAE decoder during curriculum learning, the overall
performance drops significantly (Figure 3.7). To get a better understanding, in Figure 3.21, we
plot how much the performance deviates as the VAE decoder changes during the training process.
The curve in red shows the deviation of the decoder from its pretrained weights as it is fine-tuned
during the training. We estimate the deviation as the L2 distance between the finetuned and the
pretrained decoder weights. The green curve shows the performance drop from CLUTR (with stan-
dard loss). To estimate the performance drop, we periodically evaluate both CLUTR and CLUTR
with Finetuned VAE, on the selected test tracks during training. From the figure, we observe that,
as the decoder weights are finetuned, they become increasingly different from the initial pretrained

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 54

(a) Mean Regret - Car Racing (b) Returns on UED generated Car Racing tracks

Figure 3.17: Mean Regret and agent returns during training CLUTR with standard PAIRED regret
loss (i.e., without the flexible regret). CLUTR shows a smaller regret value(i.e., closely competing
agent and antagonist), indicating a better UED curriculum.

Figure 3.18: Zero-shot generalization of both PAIRED and CLUTR (with the standard regret loss)
agents after 5M timesteps on the full F1 benchmark. CLUTR with the standard regret loss outper-
forms PAIRED on every track. For each track, we test the agents on 10 different episodes and the
error bar denotes the standard error.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 55

Figure 3.19: Test Returns on Selected Tracks (Vanilla, Singapore, Germany, and Italy) of CLUTR
with standard PAIRED regret loss alongside PAIRED performance.

(a) During training CLUTR agent achieves higher re-
turns while, CLUTR-shuffled agent shows lower re-
turns. CLUTR-Shuffled agent’s return is also less
stable showing a decrease and increase.

(b) CLUTR achieves higher and more stable mean
returns on the selected tracks. CLUTR-Shuffle
shows signs of unlearning.

Figure 3.20: Analysis of sorting training data for VAE. Trained on shuffled data, CLUTR-Shuffled
performs inferior compared to CLUTR and shows signs of unlearning.

weights. At the same time, the overall performance gap from CLUTR also increases. This suggests
that the pretrained VAE weights are crucial for better performance.

Furthermore, the quality of the learned representation depends on the quality of the data they
are trained on. In section 3.5, we showed that a VAE trained on a non-sorted dataset significantly
deteriorates the performance (Figure 3.7). This further suggests that the learned representation has
a significant impact on performance. We also want to note that both of these variations (CLUTR
with Finetuned VAE and the CLUTR with Shuffled VAE) perform much better than PAIRED,

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 56

Figure 3.21: Impact of pretrained decoder weights on performance. The red curve plots the devi-
ation of the decoder from its pretrained weights as it is finetuned. The green curve shows the per-
formance drop from CLUTR with the standard loss. These curves suggest that pretrained weights
are crucial for performance.

which suggests that, though CLUTR’s performance depends on the representation, with a reason-
able representation, it can still perform better than PAIRED.

Detailed Experimental results on MiniGrid
CLUTR with flexible regret objective

To train the CLUTR VAE, we generated 10 million random grids, with the obstacle locations
sorted, and the number of obstacles uniformly varying from zero to 50, aligning with [18]. We
train both CLUTR and PAIRED using the flexible regret objectives.

Figure 3.22 shows zero-shot generalization performance of CLUTR and PAIRED on the 16
unseen navigation tasks from [18], in terms of the percent of environments the agent solved, i.e.,
solved rate. CLUTR achieves a 1.35X better generalization solving 58% of the unseen grids, than
PAIRED which solves 43% of the unseen grids. It can also be seen that CLUTR outperforms
PAIRED on 13 out of the 16 test navigation tasks.

Figure 3.23 compared the mean perforamnce of CLUTR, PAIRED, and REPAIRED. RE-
PAIRED outperforms both PAIRED and CLUTR. We note that, REPAIRED and CLUTR are both

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 57

Figure 3.22: Zero-shot generalization of CLUTR and PAIRED, in terms of percent of the envi-
ronments solved. CLUTR achieves a higher solved rate than PAIRED in 13 out of the 16 tasks.
We evaluate the agents with 10 independent episodes on each task. Error bars denote the standard
error.

improvement towards PAIRED. However, REPAIRED involves a dual-curriculum methods, with
two different teachers adopting replay capabilities with disabling exploratory gradients. On the
other hand CLUTR is a much simpler method, and can also be augmented with REPAIRED too.

Training Returns: Figure 3.24 plot mean return on the training tasks for both the student
agents. CLUTR student agents show close performance, while PAIRED students show a bigger
gap of performance between them.

CLUTR with standard regret objective

Training Returns: Figure 3.25 plot mean return on the training tasks for both the student agents.
CLUTR student agents show close performance, while PAIRED students show a bigger gap of
performance between them initiallly at the beginning.

Performance: Figure 3.27 shows zero-shot generalization performance of CLUTR and PAIRED
on 16 unseen navigation tasks from [18] based on the percent of environments the agent solved,
i.e., solved rate. CLUTR achieves superior generalization solving 64% of the unseen grids, a
45.45% improvement over PAIRED, which achieves a 44% solve rate. From figure 3.27 it can be
seen CLUTR outperforms PAIRED achieving a higher mean solve rate on 14 out of the 16 unseen
navigation tasks. Figure 3.26 shows solved rates on four selected grids (Sixteen Rooms, Sixteen
Rooms with Fewer Doors, Labyrinth, and Large Corridor) during training. CLUTR shows better
sample efficiency, as well as generalization than PAIRED.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 58

Figure 3.23: Mean solve rate on Minigrid testset. REPAIRED outperforms both CLUTR and
PAIRED.

Comparison with Other UED Methods

Comparison with Domain Randomization: Since, CLUTR VAE is trained on uniformly random
samples, for completeness we compare CLUTR’s result with Domain Randomization (DR) base-
line in Figure 3.28. Similar to our flexible regret objective experiments, we trained DR for 250M
timesteps with up to 50 obstacles. Our results show that CLUTR significantly outperforms DR
with a 29% higher solve rate, while DR exhibits only marginal improvement over PAIRED.

Comparison with ACCEL: ACCEL [65] outperforms CLUTR in the MiniGrid domain, as
shown in Figure 3.29. We would like to mention that ACCEL was trained using 60-block set-
tings, whereas CLUTR and PAIRED were trained using 50-block settings. We would further note
that ACCEL and CLUTR are fundamentally different approaches with distinctly different training
settings and techniques. While ACCEL uses a dual-curriculum with a random generator/teacher,
level-replay with stop-gradient [42], and an evolutionary algorithm for task editing; CLUTR fo-
cuses on improving adaptive-teacher UED algorithms. Therefore, a direct comparison between the
two methods would require a more careful consideration of their respective training methodologies,
strengths, and limitations.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 59

Figure 3.24: Mean return on the training tasks for both the student agents. CLUTR student agents
show close performance, while PAIRED students show a bigger gap of performance between them.
Closely competing agents can indicate the training tasks being slightly harder than the agents can
currently solve, resulting in a smoother curriculum

Curriculum Analysis
Curriculum Snapshot

In this section, we visually inspect the curriculum generated by CLUTR and PAIRED, with snap-
shots of tasks generated by these methods during different stages of the training (Figure 3.30). We
illustrate one common mode of failure/ineffectiveness shown by PAIRED: The curriculum starts
with arbitrarily complex tasks, which none of the agents can solve at the initial stage of train-
ing. After a while, PAIRED starts generating rudimentary degenerate tasks. While kept training,
PAIRED eventually gets out of the degenerative local minima, and the curriculum complexity starts
to emerge. On the other hand, CLUTR does not show such degeneration and generates seemingly
interesting tasks throughout.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 60

Figure 3.25: Mean return on the training tasks for both the student agents. CLUTR student agents
show close performance, while PAIRED students show a bigger gap of performance between them
initiallly at the beginning.

Figure 3.26: Agent solved rate on selected grids during training. CLUTR shows better sample
efficiency and generalization than PAIRED. The results show an average of 5 independent runs.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 61

Figure 3.27: Zero-shot generalization of CLUTR and PAIRED, in terms of percent of the 14 solved.
CLUTR achieves a higher solved rate than PAIRED in 14 out of the 16 unseen tasks. We evaluate
the agents with 100 independent episodes on each task. Error bars denote the standard error.

Figure 3.28: Comparison of CLUTR (and PAIRED) with Domain Randomization(DR) baseline.
CLUTR outperforms DR with a 29% higher solve rate.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 62

Figure 3.29: Comparison of CLUTR (and PAIRED) with ACCEL. ACCEL outperforms both
CLUTR and PAIRED. However, we note that ACCEL is a fundamentally different approaches
with distinctly different training settings and techniques.

Environment Interactions (500M)

Figure 3.30: Example grids (right) generated by CLUTR (top) and PAIRED (bottom) uniformly
sampled at different stages of training. The training progresses from left to right.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 63

CLUTR vs PAIRED

Figure 3.31 shows 3D Histograms showing the frequency of the generated grids against the total
number of obstacles they contain. PAIRED starts with a high number of obstacles and then de-
generates quickly into grids with very few numbers of obstacles and stays similar for a significant
number of steps. Eventually, the number of obstacles increases sharply, converging into a band
of around 20 to 40 obstacles on average. On the other hand, in CLUTR, the number of obstacles
starts flat, centers around a peak around the middle but still with a wide interval for some number
of steps, and the peak drops slightly while the interval stays almost the same. After the ‘conver-
gence’, PAIRED rarely generates grids with fewer or more obstacles than the band it converges
to. On the contrary, CLUTR still generates grids with few or many blocks, which might help to
address unlearning or improve the agents on grids with more obstacles, respectively. The above
observations illustrate that we can achieve a more efficient curriculum learning without making
the problem too easy early or without focusing on a narrow interval with a flat distribution later.
Instead, we can start with a wide interval and gradually focus on a peak around the middle without
making the interval very narrow.

(a) CLUTR (b) PAIRED

Figure 3.31: 3D Histograms showing the frequency of the generated grids against the total number
of blocks they contain. Both PAIRED and CLUTR converge to a similar band of grids. However,
CLUTR converges much faster.

Figure 3.32a shows the average episode lengths of both CLUTR and PAIRED. The curves
show both methods start with long episodes—indicating at the beginning, the agents do not solve
the training grids consistently, and many of the episodes end due to timeout. As the agents learn,
the episodes become shorter for both methods until they converge to a small value. However,
CLUTR converges sooner than PAIRED.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 64

(a) Average length of the training episodes.
CLUTR converges sooner than PAIRED to a
shorter episode length.

(b) Average solution length of the solved training
tasks.

Figure 3.32: Comparison of CLUTR and PAIRED curriculum based on properties of the generated
grids.

We also compare the average solution length of the solved training grids. Both PAIRED and
CLUTR show a similar pattern. However, PAIRED converges to a larger value than CLUTR. This
might indicate that CLUTR is solving the environments more efficiently. This might also mean
that CLUTR is solving some easier tasks (e.g., fewer obstacles, as we noticed from Figure 3.31)
even after convergence lowering its average solved path length slightly.

CLUTR curriculum vs. Random Latent Curricula

We further compare CLUTR curriculum with two different domain randomized curriculums. First
we compare CLUTR curriculum with a uniform random (i.e., Domain Randomization) curriculum
on the latent space by repeatedly sampling the trained VAE (the same VAE used by CLUTR) with
a uniform random distribution. Second, we generate a curriculum generated by a random teacher
acting on the pretrained latent space. The random teacher uses the same architecture and intial-
ization procedure as the original CLUTR teacher it is being compared to. Figure 3.33 shows the
comparison characterizing the grids by the number of obstacles they contain similarly as the previ-
ous section. As expected, we can see that the DR and random teacher curriculum generates grids
with obstacles ranging from 0 to 50 without showing any pattern, showing significant difference in
the curricula generated by CLUTR and the domain randomized baselines.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 65

(a) CLUTR
(b) Domain Randomization on
the pretrained Latent Space

(c) Random Teacher on pre-
trained Latent Space

Figure 3.33: 3D Histograms showing the frequency of the CLUTR generated grids against the
total number of blocks they contain vs. Domain Randomization on the latent space vs. A random
teacher curriculum on the pretrained latent space. The figures clearly show that CLUTR generates
a curriculum significantly different from random curriculums.

CLUTR vs Domain Randomized Environments

To further compare how CLUTR generated grids, differ from Domain Randomized grids: we
trained a PCA on a combined set of grids generated from both the methods and projected them
into a 2D space. The resulting plot (Figure 3.34) shows that the projections of CLUTR-generated
grids form a distinct pattern in the embedded space, while DR-generated grids are all clustered
together. The projections are almost entirely disjoint, indicating that the two sets of grids exhibit
distinctively different distributions or patterns of variations. This observation suggests that CLUTR
and DR generate fundamentally different types of grids. We also not that, he color of the grids
intensifies linearly as the training progresses, e.g., grids generated at the early stage of training are
of lighter intensity.

Analysis of the Latent Task Manifold

Visualization of Training Progress using the Latent Space: We trained a 2D t-SNE model on
a set of latent vectors, which are sampled during training in the MiniGrid domain. We divided
the training into 10 equally sized phases and sampled approximately 20K latent vectors from the
CLUTR teacher at each phase, resulting in a total of 200K (approximately) latent vectors. We
trained the t-SNE model over this entire latent-vector dataset but plotted the embeddings separately
in Figure 3.35 for each phase to visualize the evolution of latent vectors during training.

We observe that, early in the training (< 30%), as the protagonist agent is not trained well
yet, the teacher easily finds a region towards the far right where the REGRET is maximum. As
the protagonist agent improves, the teacher begins exploring new regions (at around 30 � 40%)
to maximize the REGRET again, leading to a shift in the embeddings towards the far left (up to
around 60%). After around 60% training steps, both the antagonist and protagonist agents learn

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 66

Figure 3.34: PCA embedding of the combined set of grids generated by CLUTR and Domain
Randomization. CLUTR-generated grids form a distinct pattern in the embedded space, while
DR-generated grids are all clustered together indicating that these methods generate distiinctively
different set of grids.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 67

Figure 3.35: t-SNE embedding of the generated tasks during different phase of training. During
the initial phase of training the teacher moves from the central region to far right and then moves
to far left. We hypothesize, as the protagonist agent is not well-trained during the intial phase, the
teacher easily finds regions in the latent space to maximize the REGRET, however as the traing
progresses and the agent learns better, the teacher converges its search into a wider region.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 68

Figure 3.36: PCA Embedding of VAE training dataset. The color intensity represents the number
of obstacles in a grid, as indicated by the color bar on the right.

well and the REGRET gets close to zero; embeddings also become relatively wider, and training
starts converging.

Structure of the Latent Space: To further investigate the structure of the latent space, we
trained a 2D PCA model on a set of latent vectors generated with the VAE from 100K grids
sampled uniformly from the VAE training dataset. The resulting 2D embeddings are displayed
in Figure 3.36, with their colors transitioning from light to dark blue as the number of obstacles
increases from 0 to 50. We observe that the latent vectors show a smooth and gradual pattern in
the PCA embedded space as the number of obstacles increases.

Additionally, we constructed a sample maze one obstacle at a time, obtained their latent rep-
resentation from the VAE, and plotted their 2D PCA embedding using the same PCA model. The
incremental construction of the maze is shown in Figure 3.37 and the corresponding embeddings,
transitioning from light to dark green as more obstacles are added, are shown in Figure 3.38. The
latent vectors form a clear and smooth trajectory in the embedding space as the maze grows.

The above analysis indicate that CLUTR VAE learns a smooth manifold in terms of different
grid properties, e.g., number of obstacles and structure.

Linear Interpolation in the Latent Space: To grow a sense of the latent task manifold, we
linearly interpolate in the latent space between an empty grid and a 15x15 version of the FourRoom
grid (shown in Figure 3.40). Figure 3.39 visualizes the interpolation results. We first get the

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 69

Figure 3.37: An example grid constructed by adding one obstacle at a time (from top left to bottom
right). The correcponding 2D PCA embedding can be found in Figure 3.38.

latent vectors of the empty grid and the target FourRoom task using the VAE encoder. We then
linearly interpolate 23 equidistant points between them. At last, we reconstruct the grids from
these vectors using our decoder. From Figure 3.39 we see that, as we interpolate in the latent
space, the reconstructed grid incrementally adds more obstacles and the grids start to look more
like the FourRoom target grid. We note that the reconstruction is not perfect. We also note that
the increase in the number of obstacles is not uniform, e.g., the first 5 reconstructed grids are all
empty grids, and more obstacles are added near the target point. Overall, this experiment provides
an insight that the latent space holds a useful structure, which CLUTR teacher utilizes to generate
the curriculum.

3.7 Conclusion: Limitations and Future Work
In this work, we introduce CLUTR, an unsupervised latent space adaptive-teacher UED method
that augments adaptive UED teachers with a pretrained latent task manifold to decouple task rep-
resentation learning from curriculum learning. CLUTR first trains a recurrent VAE from random
tasks to learn the latent task manifold and then employs a regret-based adaptive-teacher to induce
the curriculum. Through this decoupling, CLUTR solves the long-horizon credit assignment and
the combinatorial explosion problems faced by regret-based adaptive-teacher UED methods. Our
experimental results show strong empirical evidence supporting the effectiveness of our proposed
approach.

Even though CLUTR and other regret-based UEDs empirically show good generalization on

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 70

Figure 3.38: PCA emneddings of the grids—constructed by adding one obstacle at a time— shown
in Figure 3.37. The color intensity increases with the number of obstacles. We observe a clear and
smooth trajectory in the embedding space formed by the latent vectors, indicating the smooth and
incremental properties of the latent space.

human-curated complex transfer tasks, they rarely can generate human-level task structures during
training. An interesting direction would be to enable UED algorithms to generate realistic tasks.
Furthermore, as these methods rely significantly on the design of parameter-space, it would be
interesting to investigate how these methods scale on the higher dimensional environments. An-
other important direction would be to reduce the gap between the theoretical and practical aspects
of regret-based multi-agent UED algorithms, which are subject to the quality of regret estimates
and multi-agent RL training. At last, random generator algorithms like Robust PLR or even, DR
have been shown to perform better than adaptive-teacher approaches like CLUTR or PAIRED. An
interesting direction would be to investigate the conditions/environments under which a random
generator performs better than an adaptive generator and vice versa. At last, we are excited about
latent-space curriculum design and hope our work will encourage further research in this domain.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 71

Figure 3.39: A linear interpolation between an empty grid and 15x15 version of the Four-Room
grid (Figure 3.40) in the latent space. The grids are organized from top-left to bottom-right in
row-major order.

CHAPTER 3. CLUTR: CURRICULUM LEARNING VIA UNSUPERVISED TASK
REPRESENTATION LEARNING 72

Figure 3.40: 15x15 FourRooms

73

Chapter 4

MMRC: Multimodal Reasoning and
Critique for Web Navigation

With the rapid advancements in Multimodal Large Language Models, these models are increas-
ingly being used to solve sequential decision tasks out-of-the-box, showcasing promising reasoning
and generalization capabilities. Several techniques such as few-shot prompting, chain-of-thought,
and actor-critic framework have been developed to enhance their reasoning and planning abilities.
However, these techniques often fall short for web navigation in practice. For web navigation, the
input prompts or observations typically include HTML content and, occasionally, screenshots of
the webpage. The HTML documents can be arbitrarily long, even for current long-context foun-
dational models, impacting both performance and cost. Contemporary methods often focus on
summarizing the HTML to a more manageable size, while methods that use visual input struggle
to ground model predictions in actionable events on the webpage. To address these challenges,
we introduce MMRC: Multimodal Reasoning and Critique for Web Navigation, which employs
a novel environment formulation with a multimodal actor-critic framework. The actor and critic
interact in a loop where the actor suggests an action, the critic analyzes it, and the actor’s observa-
tion (i.e., prompt) is revised if the critic rejects the actor’s prediction. We address the grounding
problem by presenting short descriptions of webpage elements as a multiple-choice question for
the actor to select from. Our experiments on the Mind2Web dataset—a benchmark consisting of
137 real-world websites spanning 31 domains—demonstrate that MMRC outperforms actor-only
baselines by up to 11.33% and surpasses the previous best results obtained by Gemini 1.0 Pro Vi-
sion by up to 24.17%. Additionally, we show that employing a large foundational model (Gemini
1.5 Pro) as the actor with a smaller, fine-tuned Phi-3 critic model can partially outperform GPT-4V,
highlighting a promising direction for improving the performance of general-purpose foundational
models in target tasks with smaller fine-tuned critics.

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 74

Figure 4.1: Sample task from Mind2Web [17]: ‘Book the cheapest hotel in le maraise neighbor-
hood in paris with 2 room for 3 adult on march 27th to april 2nd.’ on an Airlines website

4.1 Introduction
Large Language Models (LLM) and Multimodal Large Language Models have seen tremendous
advancements in recent years and they have been used to solve a wide variety of sequential
decision-making problems such as interactive embodied environments [78], mathematical and
verbal reasoning tasks [15, 94], gaming [27], web navigation [102, 17, 29], and computer con-
trol [103]. Several techniques such as few-shot prompting, chain-of-thought prompting [93], actor-
critic methods [45, 99, 47], and Reflexion [77], have been proposed to enhance the reasoning and
planning capabilities of these models. However, such techniques can often fall short for real-world
web navigation.

Web navigation is a sequential decision-making task where agents navigate websites based on
user-specified tasks. Figure 4.1 shows a sample navigation task from the Mind2Web [17] bench-
mark. Contemporary methods typically work with textual input, i.e., the HTML of the web pages.
However, HTML documents can be arbitrarily long, necessitating summarization techniques to
keep the input prompts to a manageable length [17, 29]. On the other hand, while a few meth-

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 75

ods work with visual inputs, grounding the LLM outputs to actionable events on the webpage
remains a challenge. Moreover, the actor-critic framework, a promising approach for sequential
decision-making problems, has only been applied to textual inputs [99, 45], and in the domain of
web navigation, it has only been used on simple benchmarks [47].

To address these challenges, we introduce MMRC: Multimodal Reasoning and Critique for
Web Navigation, a novel multi-modal actor-critic algorithm. MMRC employs one actor and one
critic, both multimodal in nature. The actor and critic interact in a loop where the actor suggests an
action, the critic analyzes it, and the actor’s observation (i.e., prompt) is revised if the critic rejects
the actor’s prediction. We tackle the grounding and hallucination problems by presenting short
textual descriptions of the webpage elements as multiple-choice options for the actor to select,
alongside a screenshot of the current webpage. By introducing a multimodal critic, MMRC ad-
dresses the grounding problem without requiring complex image manipulation or HTML process-
ing components. We evaluate our method on the Mind2Web dataset [17], a popular and realistic
web navigation benchmark consisting of 137 real-world websites spanning 31 domains, divided
into three distinct test datasets: Cross Task, Cross Website, and Cross Domain, each evaluating
generalization from different perspectives.

In summary, our contributions are as follows:

• We introduce MMRC, the first multimodal actor-critic algorithm for web navigation.

• We present an augmented environment formulation for the actor-critic framework.

• MMRC achieves improvements of up to 7.56%, 11.33%, and 4.85% over actor-only base-
lines in Cross Task, Cross Website, and Cross Domain splits, respectively, in step success
rate.

• We demonstrate that the performance of a general-purpose foundational model can be im-
proved by using a small critic fine-tuned on the target task.

• MMRC surpasses the previous best results obtained by Gemini 1.0 Pro Vision by 4.54%,
11.6%, and 24.17% on the Cross Task, Cross Website, and Cross Domain splits, respectively.

4.2 Related Work

Web Navigation
Most contemporary works in web navigation use the HTML document as the primary input [82,
48, 30]. However, raw HTML can often be arbitrarily long, resulting in a high number of input
tokens, even for current long-context models. To address this issue, contemporary methods em-
ploy some form of summarization of the raw HTML. For example, MindAct [17] uses a small
language model to filter out a subset of elements (50 in their experiments) and generates a series
of multiple-choice questions (MCQs), each corresponding to 5 out of those 50 elements. In each
MCQ, MindAct generates an HTML snippet related to the 5 elements, leading to a series of at

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 76

least 10 MCQ queries to the actor. [29] introduces HTML-T5, a pretrained LLM for long HTML
documents, and proposes a planning strategy that decomposes and summarizes long HTML docu-
ments into task-relevant snippets. On the other hand, several methods use visual information, i.e.,
the webpage screenshots [75, 36, 26, 76]. SeeAct [102] adopts a similar strategy to MindAct but
incorporates visual information as well. To address the grounding problem, it experiments with
several techniques, including image annotations, multi-round textual MCQs similar to MindAct,
and manual grounding by humans using the GPT-4V foundational model. In contrast, MMRC
poses only one actor query with short textual representations of all the filtered elements, eliminat-
ing the need for multiple rounds of MCQ actor queries or HTML snippet processing like MindAct
and SeeAct.

Actor-Critic Methods
The actor-critic framework has been extensively employed across various domains to address com-
plex decision-making and control problems. Notably, SAC [31] is one of the most popular RL
algorithms following an actor-critic framework. Several recent methods have explored the use
of actor-critic formulations using Large Language Models (LLMs), where one model acts as the
actor to make predictions, and another model serves as the critic to evaluate these predictions.
LLaMAC [99] uses a centralized critic to coordinate multiple actors, facilitating collaboration and
iterative reasoning in multi-agent systems, solving system resource allocation and robot grid trans-
portation problems. LLM-ARC [45] generates logic programs with the actor, which the critic
evaluates and provides feedback on to enhance logical reasoning in complex natural language
reasoning tasks. Prospector [47] generates a set of trajectories with its actor, while the critic evalu-
ates the entire trajectories to rank them, achieving impressive performance on ALFWorld [78], an
interactive decision-making benchmark for embodied reasoning in solving household tasks, and
WebShop [95], an online shopping environment. All of these contemporary methods work only in
the text domain. On the other hand, MMRC works with both visual and text inputs in the arguably
more complex domain of web navigation on real-world web pages.

4.3 Background

Environment Formulation for Web Navigation
Given a website W and an intent or task T (e.g., “Book the cheapest flight from NYC to SFO on
25th July”) a web navigation problem can be defined as an POMDP (S,A, T,R, S0, O, Z), where:

• State Space (S): Each state is a webpage w and is defined by the tuple (H, I,M) where, H
and I corresponds to the HTML and screenshot of the webpage, respectively. M corresponds
to previous actions taken by the actor agent.

• Observation Space (O) and Observation Function (Z): Similar to contemporary LLM
agents, the observation is a prompt P with multiple components. Commonly used obser-

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 77

vations in contemporary methods include the entire HTML, the screenshot, the modified
screenshot (e.g., bounding boxes), summary information (e.g., MCQs with HTML snippets),
or a combination.

• Action Space (A): The actions typically refer to a browser event provided by the website
environment. For the Mind2Web dataset, each action is defined as a triplet of three necessary
variables for a browser event (e,�, v). e 2 E denotes the target webpage element to act upon,
such as a button or textbox. E is the set of elements within the webpage W . The operation
� 2 � is the operation to be performed on the target element, with O corresponding to op-
erations such as, Click, Type, Select. The variable v specifies additional value needed
for certain operations (e.g., ‘NYC’ for a Type operation).

• Transition Dynamics T (s0|s, a): The transition function is defined by the website W deter-
mining the landing webpage s0 = w0 when an action a is executed on the webpage s = w.

• Reward Function (R): The reward function R(s, a) is a sparse reward denoting success
(i.e., 1) when the task T is successfully completed and 0 otherwise.

• Initial State Distribution (S0): The distribution over all websites and tasks.

4.4 Method: MMRC
Typical web navigation agents follow a single agent workflow, as shown in Figure 4.2. MMRC
employs a simple two-agent workflow with a modified environment formulation, where an actor
model predicts an action and a critic model analyzes the predicted action and determines if that
would be executed on the webpage or, should the actor revise its prediction. This actor-critic
interaction is repeated up to a predefined maximum limit. Figure 4.3 shows the modified agentic
workflow used in MMRC. In the next sections, we discuss MMRC in detail.

MDP Formulation for Web Navigation
MMRC formulates web navigation as a POMDP with modified transition function T 0((s0, c)|s, a))
and observation function Z 0(s, c) employing two different agent/policies ⇡Actor and ⇡Critic. The
primary aspect of this formulation is as follows: the actions a generated by the actor policy
⇡Actor(a|o = Z 0(s, c = ;) is not executed readily in the environment. On the contrary, it is first
passed to the critic policy ⇡Critic(c|s, a), which given the current state, decides whether the action
should be executed or not. In case the critic decides against executing the suggested action a,
the actor policy is queried again with a modified observation Z 0(s, c) incorporating the critic’s re-
sponse. This is repeated until the critic accepts the suggested action or a stopping criterion (e.g., a
maximum number of actor queries) is met.

Formally, MMRC formulates web navigation as a POMDP (S,A, T 0, R, S0, O, Z 0, N) where
N is the max number of critic steps, with the following transition dynamics and state functions:

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 78

Figure 4.2: The typical agentic workflow used in web navigation.

Transition Dynamics T 0((s0, c)|s, a):

T 0((s0, c)|s, a) =

8
><

>:

(T (s, a), ;) if critic ⇡Critic(c|s, a) accepts action a or
N critic steps have been executed

(s, c) otherwise

Observation Function Z 0(s, c):

Z 0(s, c) =

(
observation Z(s) incorporating critic response c if the critic ⇡Critic(c|s, a) rejects action a

Z(s) otherwise

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 79

Figure 4.3: Agentic Workflow used in MMRC involving critic with modified envirnment formula-
tion.

MMRC Actor and Critic Details
MMRC employs Multimodal Large Language models as actors and critics. The rationale behind
using multimodal input for web navigation is that webpage HTML can be arbitrarily long, which
can cause significant inference costs. On the other hand, webpage screenshots can significantly
reduce the number of input tokens needed. However, the main challenge working with visual
inputs is grounding the actions to the underlying HTML to automate the navigation [102].

The main essence of the actor and critic agents is how the observation space, i.e., the prompts,
is designed. Listing 4.1 shows the template used for the MMRC actor.

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 80

Listing 4.1: MMRC Actor Prompt
1 {The webpage screenshot}
2 You are an automated web navigation assistant: Given a task,

a webpage screenshot, previous steps, and a list of
elements from the webpage, you need to suggest which
element from the provided list to act upon in the current
step.

3 Task: {The Task Description}
4 Previous Steps: {History of the previous actions taken}
5 Current Step Options:
6 You must act upon exactly one of the following webpage

elements, where each element is formatted as:
7 ID. [element type] label <Additional properties separated by

semicolon>(optional).
8 {Enumerated List of Interactive Elements, represented with

short textual description}
9 Based on the screenshot, previous steps, and the provided

options, summarize how much progress has already been made
and suggest which element from the list to act upon in the
current step. An action can be one of [CLICK, TYPE, SELECT
], where SELECT means selecting an option from dropdown/
radio buttons.

10 Structure your suggestion strictly in the following format:
11 progress_made: Brief sentence explaining the current progress

towards completing {task_description}.
12 next_step: Suggest the next step based on the provided list

of elements with brief explanation/rationale
13 element_id: Exact ID of the selected element from the

provided list.
14 action: CLICK/TYPE/SELECT
15 value: In case of TYPE, value is the text we should type. For

SELECT, value corresponds to the option we are selecting.
For CLICK value is "None".

The MMRC actor prompt consists of four components:

1. The Task Description T

2. History of the previous actions taken M

3. The webpage screenshot I

4. A list of textual descriptions of the interactive elements from the webpage, which are pre-
sented as a MCQ in the prompt. The actor selects one of the choices.

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 81

The textual representation for each element is generated from the underlying HTML using their
type, text label, and attribute values, truncated to a maximum length, e.g., 100. For example, a <a>
hyperlink element (with tag a) to trip.com would be described as Hyperlink [Trip.com]. By using
short textual descriptions we restrict the actor model to pick elements only present on the webpage
and help solve the grounding problem and hallucinations.

Once the actor model generates a prediction, the critic is asked to analyze it, using the following
prompt shown in Listing 4.2. If the critic suggests taking a different action, the actor is provided
with a revised prompt with the previous precited MCQ option removed.

Listing 4.2: MMRC Critic Prompt
1 {The webpage screenshot}
2 You are an automated web navigation evaluator. Given a task,

a webpage screenshot, previous navigation steps, and a
suggested next step: decide whether we should execute the
suggested next step or, consider a different step to
complete the task.

3 Task: {The Task Description}
4 Previous Steps:
5 {History of the previous actions taken}
6 Next Step Suggestion:
7 {Precited Action}
8 Based on the previous steps taken and the current state of

the website, suggest whether we should execute the
suggested next step to complete the task ({The Task
Description}).

9 Structure your suggestion strictly in the following format:
10 decision: yes/no
11 explanation: Brief sentence explaining why we should execute/

not execute the suggested next step.

MMRC Algorithm
Algorithm 2 shows the MMRC algorithm. For a website W and a task T , MMRC interacts

with the webpage until a TERMINATION_CONDITION is met. For each step, MMRC
generates the set of all elements, represented as their textual representation as described before.
Then, MMRC works with only a subset of those elements using the FILTER method, which is
discussed in detail in the experiments section. The actor-critic loop runs for at most N iterations.
First, the actor agent ⇡Actor predicts an action based on O, the webpage screenshot I . The set
P stores the predicted action. After that, the critic agent ⇡Critic analyzes the action and decides
whether to resample the actor. In case the critic rejects the predicted action, it is removed from the
set of options O. Once the loop terminates, an action is selected from the set P using the method
SELECT_ACTION and executed in the environment. Usually, the selected action is the action

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 82

Algorithm 2 MMRC
1: Input: Website W , task T , and maximum critic steps N
2: t 0
3: M ;
4: while TERMINATION_CONDITION is not met do
5: O Set of textual representations of the elements of the current webpage HTML H
6: O FILTER(O)
7: P ;

8: for i 1 to N do
9: a Predict next action with ⇡Actor using prompt template listed in Listing 4.1

10: P P [{a}
11: d Critique the predicted action a using ⇡Critic

12: if d is True then
13: break
14: end if
15: O O � {a}
16: end for
17: asel SELECT_ACTION(P)
18: Execute asel on the webpage w
19: M M [{asel}
20: t t+ 1
21: end while

the critic accepts. In the case, the critic rejects all the predicted actions, multiple strategies can
be adopted. In our experiments, we select the first action actor predicted in case none of the
predictions are accepted by the critic.

4.5 Experiments
In this section, we describe our experiments and discuss the following questions and/or hypotheses:

1. H1: The enhanced environment formulation with critic improves the generalization of web
agents.

2. H2: A finetuned critic can result in better generalization compared to a general-purpose
foundational model.

3. H3: How does MMRC perform compared to other multimodal methods?

4. H4: What is the impact of the number of iterations of the actor-critic interaction loop?

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 83

Dataset
All our experiments are conducted on the Mind2Web dataset [17]. Mind2Web is a real-world
offline dataset with over 2K complex tasks with human-annotated actions from 137 websites. The
test dataset is divided into three categories, to evaluate the agent’s generalization across different
domains, websites, and tasks. Cross-Task, Cross-Website, and Cross-Domain contain 252 tasks
from 69 websites, 177 tasks from 10 websites, and 912 tasks from 72 websites, respectively. The
websites cover a wide variety of domains such as Airlines, Car rental, Hotel, Housing, Shopping,
Health, Government, and Music. Mind2Web is an offline dataset with human-annotated ground
truth. Each action in Mind2Web is comprised of a (Target Element, Operation, Value) tuple. The
target element is an interactable element of the webpage associated with an id. The operations can
be Click, Type, and Select. For the Type and Select options, the Value field contains the text to
type or the value of the option from the dropdown. For Click, value is set to NULL.

Evaluation: The performance of web agents on the Mind2Web dataset is measured using
three metrics: i) Element Accuracy, ii) Operation F1, and iii) Step Success Rate (Step SR) follow-
ing [17]. Element accuracy measures if the predicted element matches one of the human-labeled
ground truth elements. One of the major limitations of this metric is, there might be more than
one way, or one order of sequence that can solve the task. However, this evaluation only considers
those trajectories that were followed by the human annotators. Operation F1 measures the F1-score
based on the text representation of the (Operation, Value) tuple. Step Success Rate measures the
percentage of steps that exactly matches the ground truth, and combines the previous two metrics.

MMRC Agent and Critic Models
For our experiments, we use two different foundation models as actors and critics: i) Gemini 1.5
Pro and ii) Gemini 1.0 Pro Vision. We also experiment with the Phi-3 Multimodal model [1] as a
critic—finetuned on the target task. However, the Phi-3 model was finetuned only on the textual
predictions of the Mind2Web train dataset, the vision module was kept intact. More specifically,
the Phi-3 model was finetuned on the textual representation of the (Target Element, Operation,
Value) tuple, only focusing on the planning part without any finetuning to better understand the
visual inputs. We finetuned it for one epoch with a batch size of 64 using LoRA with fp16, LoRA
Rank 128, LoRA alpha 256, and learning rate 2e-4. Further details of the phi-3 training can be
found in the Hateful Memes section of the official Phi-3 CookBook [57].

MMRC Baseline
To examine the impact of our environment formulation with critic, we define MMRC-Baseline.

The baseline algorithm follows the algorithm delineated at Algorithm 3, which is very similar to
the main MMRC algorithm (Algorithm 2), except the actor-critic interaction loop is not present.

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 84

Algorithm 3 MMRC-Baseline
1: Input: Website W , task T , and maximum critic steps N
2: t 0
3: M ;
4: while TERMINATION_CONDITION is not met do
5: O Set of textual representations of the elements of the current webpage HTML H
6: O FILTER(O)
7: a Predict next action with ⇡Actor using prompt template listed in Listing 4.1
8: Execute a on the webpage w
9: t t+ 1

10: end while

Details on the FILTER and SELECT_ACTION Methods and other
Algorithm Parameters
For the FILTER method used in Algorithm 2 nad Algorithm 3, we follow the candidate selection
method used in [17]. They use a small LM that filters out elements that are unlikely to be the
target element. [17] finetuned the base version of DeBERTa [33] with 86M parameters for can-
didate selection on the training split of Mind2Web dataset. It achieves 88.9%, 85.3%, and 85.7%
Recall@50 on Cross Task, Cross Website, and Cross Domain test splits.

In all our experiments, we keep 50 elements using the FILTER method to generate the MCQ
presented to the actor. However, unlike [17] we present all the 50 options in a single prompt, while
[17] perform a multi-round MCQ, where they generate multiple MCQ pormpts for its actor with
5 options in each prompt, resulting in a minimum of 10 actor rounds. [17] also uses a different
format of MCQ where they generate an HTML snippet with the elements corresponding to the
5 MCQ options. In our case, we generate short text representations, without requiring any short
HTML snippet.

In all our experiments, SELECT_ACTION selects the action accepted by the critic or, in
case all of the actor predictions are rejected by the critic, it selects the first prediction made by the
actor.

H1: Can MMRC improve web navigation?
In this section, we examine the impact of MMRC’s enhanced environment formulation with mul-
timodal critic, by comparing its performance with MMRC-baseline. Table 4.1 compares the Step
Success Rate of MMRC-baseline and MMRC. In all our experiments we see an improvement in
performance with MMRC, validating the positive impact of using a critic agent. Specifically, we
observe an improvement of up to 7.56%, 11.33%, and 4.85% over baselines in Cross Task, Cross
Website, and Cross Domain splits.

For experiments with Gemini 1.5 Pro, we have used two different models as critics i) Gemini
1.5 Pro itself and ii) The Phi-3 Multimodal model [1]. Note that, the Phi-3 model was finetuned

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 85

only on the textual predictions of the Mind2Web train dataset, the vision module was kept intact.
Table 4.1 shows that Gemini 1.5 Pro achieves better improvement over performance, compared
to the Phi-3 critic. This can be explained by the finetuning nature of our critic model, which
only focused on the textual planning part without any finetuning to better understand the visual
inputs. Gemini 1.5 Pro is a much larger model, so it is understandable that it will perform better
reasoning compared to Phi-3. In Table 4.2, we observe that MMRC beats the baseline consistently
across different metrics. For experiments with Gemini 1.0 Pro Vision, we see relatively a higher
improvement compared to the Gemini 1.5 Pro actor. This suggests MMRC approach might be
more effective for weaker foundation models and needs further investigation.

Base Actor Method Name
Cross Task Cross Website Cross Domain

Step SR Relative
Im-

prove-
ment
(%)

Step SR Relative
Im-

prove-
ment
(%)

Step SR Relative
Im-

prove-
ment
(%)

Gemini 1.5
Pro

Baseline - No Critic 28.83 26.89 28.87
MMRC with Phi-3
Vision Critic 29.72 3.09 27.38 1.82 30 3.91

MMRC with Gemini
1.5 Pro Critic 30.69 6.45 28.56 6.21 30.27 4.85

Gemini 1.0
Pro Vision

Baseline - No Critic 19.05 15.44 21.37
MMRC with Gemini
1.0 Pro Vision Critic 20.49 7.56 17.19 11.33 22.35 4.59

Table 4.1: Relative improvement of MMRC over baseline actor. For the experiments with Gemini
1.5 Pro and Phi-3 Vision, we allowed atmost three iteration of actor-critic interation, while with
Gemini 1.0 Pro Vision we allowed upto five iterations. We observe by using a critic agent MMRC
achieved upto 7.56%, 11.33%, and 4.85% improvement over baselines that only uses actor.

H2: Can a critic, finetuned on the target task, yield better performance than
a foundational model critic?
Table 4.2 shows all three metrics for all our experiments. For the experiments with Gemini 1.5
Pro, we observe that Phi-3 Vision critic achieves better Operation F1 in the Cross Website and
Cross Domain splits. This shows that smaller critics finetuned on target tasks can achieve better
results than much larger foundational models, while we hypothesize the lower improvement over
the baseline for Element Accuracy might be attributed to not finetuning the visual module of Phi-3

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 86

Vision. This suggests using foundational models as actors and a custom smaller fine-tuned model
on the target task might improve performance and a direction worth exploring in further detail.

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 87

B
as

e
A

ct
or

M
et

ho
d

N
am

e

C
ro

ss
Ta

sk
C

ro
ss

W
eb

si
te

C
ro

ss
D

om
ai

n
El

em
en

t
A

cc
ur

ac
y

O
pe

ra
tio

n
F1

St
ep SR

El
em

en
t

A
cc

ur
ac

y
O

pe
ra

tio
n

F1
St

ep SR
El

em
en

t
A

cc
ur

ac
y

O
pe

ra
tio

n
F1

St
ep SR

G
em

in
i

1.
5

Pr
o

B
as

el
in

e
-

N
o

C
rit

ic
38

.5
4

71
.6

5
28

.8
3

37
.1

71
.7

8
26

.8
9

36
.6

3
74

.5
28

.8
7

M
M

R
C

w
ith

Ph
i-3

C
rit

ic
39

.3
6

71
.7

29
.7

2
33

.1
75

.9
27

.3
8

38
.2

74
.3

30

M
M

R
C

w
ith

G
em

in
i1

.5
Pr

o
C

rit
ic

39
.8

8
72

.1
5

30
.6

9
39

.5
5

72
.7

5
28

.5
6

38
.5

7
73

.7
30

.2
7

G
em

in
i

1.
0

Pr
o

V
is

io
n

B
as

el
in

e
-

N
o

C
rit

ic
22

.3
72

.0
4

19
.0

5
18

.7
9

70
.2

6
15

.4
4

24
.7

73
.8

3
21

.3
7

M
M

R
C

w
ith

G
em

in
i1

.0
Pr

o
V

is
io

n
C

rit
ic

23
.5

9
72

.7
7

20
.4

9
20

.3
9

71
.2

1
17

.1
9

25
.5

8
74

.0
8

22
.3

5

Ta
bl

e
4.

2:
D

et
ai

le
d

ev
al

ua
tio

n
m

et
ric

s
fo

r
al

lo
ur

ex
pe

rim
en

ts
.

M
M

R
C

ou
tp

er
fo

rm
s

th
e

ba
se

lin
e

in
ev

er
y

ev
al

ua
tio

n
m

et
ric

,
ex

ce
pt

fo
rE

le
m

en
tA

cc
ur

ac
y

in
C

ro
ss

W
eb

si
te

sp
lit

w
ith

Ph
i-3

cr
iti

c.
Ph

i-3
cr

iti
c,

w
hi

ch
w

as
fin

et
un

ed
on

th
e

tra
in

in
g

da
ta

se
t,

w
hi

le
ke

ep
in

g
its

ci
su

al
co

re
in

ta
ct

,o
bt

ai
ns

be
tte

rO
pe

ra
tio

n
F1

th
an

G
em

in
i1

.0
Pr

o,
su

gg
es

tin
g

th
at

a
fin

et
un

ed
sm

al
le

rm
od

el
as

cr
iti

c
ca

n
im

pr
ov

e
pe

rf
or

m
an

ce
ov

er
a

ba
se

lin
e

an
d

ge
ne

ra
l-p

ur
po

se
fo

un
da

tio
na

lc
rit

ic
.

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 88

H3: How does MMRC perform compared to other multimodal methods?
In Table 4.3, we show the results of some of the contemporary methods working on the Mind2Web
dataset with visual inputs. SeeAct [102] with GPT-4V and a Human Oracle achieves the best
performance. However, as the name suggests, the GPT-4V prediction was grounded manually by
human supervision—which is the most challenging aspect of working with the visual inputs [102].
Excluding that, we observe that MMRC improves the previous best step-success-rate obtained
by Gemini 1.0 Pro Vision by 4.54%, 11.6%, and 24.17% respectively on the Cross Task, Cross
Website, and Cross Domain splits. We also notice MMRC with Gemini 1.5 Pro actor and Phi-3
Vision critic, outperforms GPT-4V on Operation F1 for Cross Website and Cross Domain splits.
This also strengthens our case for using a finetuned smaller model as critic.

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 89

M
et

ho
d

N
am

e
C

ro
ss

Ta
sk

C
ro

ss
W

eb
si

te
C

ro
ss

D
om

ai
n

El
em

en
t

A
cc

ur
ac

y
O

pe
ra

tio
n

F1
St

ep
SR

El
em

en
t

A
cc

ur
ac

y
O

pe
ra

tio
n

F1
St

ep
SR

El
em

en
t

A
cc

ur
ac

y
O

pe
ra

tio
n

F1
St

ep
SR

Se
eA

ct
-w

ith
G

em
in

i1
.0

Pr
o

V
is

io
n

-M
C

Q
21

.5
67

.7
19

.6
17

.1
61

.3
15

.4
20

.7
64

.3
18

Se
eA

ct
-w

ith
G

PT
4

+
M

C
Q

46
.4

73
.8

40
.2

38
67

.8
32

.4
42

.4
69

.3
36

.8

Se
eA

ct
-w

ith
G

PT
4

+
H

um
an

O
ra

cl
e

66
.4

79
.2

61
.9

69
.5

78
.9

65
72

.8
73

.6
62

.1

M
M

R
C

w
ith

G
em

in
i1

.0
Pr

o
V

is
io

n
23

.5
9

72
.7

7
20

.4
9

20
.3

9
71

.2
1

17
.1

9
25

.5
8

74
.0

8
22

.3
5

M
M

R
C

w
ith

G
em

in
iP

ro
1.

5
A

ct
or

an
d

Ph
i-3

V
is

io
n

C
rit

ic
39

.3
6

71
.7

29
.7

2
33

.1
75

.9
27

.3
8

38
.2

74
.3

30

M
M

R
C

w
ith

G
em

in
iP

ro
1.

5
39

.8
8

72
.1

5
30

.6
9

39
.5

5
72

.7
5

28
.5

6
38

.5
7

73
.7

30
.2

7

Ta
bl

e
4.

3:
C

om
pa

ris
on

be
tw

ee
n

M
M

R
C

an
d

co
nt

em
po

ra
ry

m
ul

tim
od

al
ap

pr
oa

ch
es

on
M

in
d2

W
eb

.
M

M
R

C
im

pr
ov

e
th

e
pr

e-
vi

ou
s

be
st

st
ep

-s
uc

ce
ss

-r
at

e
ob

ta
in

ed
by

G
em

in
i1

.0
Pr

o
V

is
io

n
by

4.
54

%
,1

1.
6%

,a
nd

24
.1

7%
re

sp
ec

tiv
el

y
on

th
e

C
ro

ss
Ta

sk
,

C
ro

ss
W

eb
si

te
,a

nd
C

ro
ss

D
om

ai
n

sp
lit

s.
A

ls
o,

M
M

R
C

w
ith

G
em

in
i1

.5
Pr

o
ac

to
ra

nd
Ph

i-3
V

is
io

n
cr

iti
c,

ou
tp

er
fo

rm
sG

PT
-4

V
on

O
pe

ra
tio

n
F1

fo
rC

ro
ss

W
eb

si
te

an
d

C
ro

ss
D

om
ai

n
sp

lit
s.

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 90

H4: What is the impact of the number of iterations of the actor-critic
interaction loop?
In Figure 4.4, we evaluate the impact of the number of rounds of actor-critic interactions on MMRC
with Gemini 1.0 Pro Vision. On the Y-axis, we plot Step Success Rate/Accuracy, and on the X-
axis, we plot the number of rounds starting from 0. The performance initially increases with more
actor-critic interactions, but after a certain number of interactions, the performance plateaus or
declines.

4.6 Conclusion: Limitations and Future Work
In summary, we have presented a novel multimodal actor-critic framework for web navigation.
Unlike previous methods that require complex HTML summarization and grounding techniques
for visual input, we employ a simple MCQ-based grounding technique and critic-based reasoning
to enhance web navigation on a complex, real-world website benchmark Mind2Web [17]. We also
demonstrate promising improvements in the performance of general-purpose foundational models
when used in conjunction with smaller critic models through task-specific fine-tuning.

In the future, we aim to fine-tune the critic model on both visual and textual ground truths across
multiple benchmarks to investigate the impact of task-specific smaller critics on large general-
purpose foundational models. In our current implementation, some HTML elements have textual
descriptions that are not meaningful; for example, image elements without alternative texts are
reduced to just ‘’. When multiple elements share the same text and type, the actor cannot
distinguish between them. Therefore, improving the textual descriptions could further enhance
MMRC’s performance.

CHAPTER 4. MMRC: MULTIMODAL REASONING AND CRITIQUE FOR WEB
NAVIGATION 91

(a) Cross Task

(b) Cross Website

(c) Cross Domain

Figure 4.4: Impact of the number of rounds of actor-critic interactions on MMRC with Gemini
1.0 Pro Vision. On the Y-axis, we plot Step Success Rate/Accuracy, and on the X-axis, we plot
the number of rounds starting from 0. The performance initially increases with more actor-critic
interactions, but after a certain number of interactions, the performance plateaus or declines.

92

Chapter 5

Conclusion and Future Work

In this dissertation, our objective is to develop techniques that enhance the generalization capa-
bilities of autonomous agents by formulating and generating environments for a range of complex
and realistic sequential decision-making problems. Chapter 2 delves into human-guided systematic
environment generation using Scenic4RL. In Chapter 3, we introduce CLUTR, a novel unsuper-
vised curriculum learning algorithm designed to automatically generate environments that address
sample inefficiency and improve generalization for traditional deep neural network-based agents
trained with Reinforcement Learning (RL). Chapter 4 presents MMRC, which explores how envi-
ronment generation can enhance the performance of recent foundational Large Language Models
(LLMs) in web navigation tasks through a novel multimodal actor-critic framework. Together,
Scenic4RL, CLUTR, and MMRC introduce innovative approaches that demonstrate how environ-
ment formulation and generation can significantly enhance performance of autonomous agents.

Looking ahead, I plan to focus on advancing more effective reasoning and planning techniques
for multimodal, multi-task autonomous assistants.

5.1 Advancements in Reasoning and Planning Techniques
Despite the recent remarkable progress of LLMs, there is still much to achieve in terms of reason-
ing and understanding. LLMs are primarily designed to predict the next token based on previously
generated tokens. However, due to their training on vast amounts of data and strong language
modeling capabilities, they exhibit strong surface-level reasoning. Nevertheless, new techniques
are needed to achieve more powerful and generalizable reasoning. I aim to explore novel methods
to further improve reasoning and planning, specifically focusing on multimodal reasoning tech-
niques that effectively combine reasoning across multiple modalities. In the near future, I will
concentrate on designing attachable, task-specific small head-agents that can be integrated with
general-purpose foundational agents to enhance task-specific generation based on user needs—an
approach similar to what we explored at a surface level in Chapter 4 with the fine-tuned critic. I be-
lieve that approaches utilizing a general-purpose multimodal foundational model or API, combined

CHAPTER 5. CONCLUSION AND FUTURE WORK 93

with multiple customized attachable heads to serve different tasks, will soon provide cost-effective
generalization for multi-task autonomous assistants.

5.2 Environment/Data Generation for Multi-Task
Self-Refining Agents

Current AI systems depend significantly on large, high-quality datasets, which are expensive, and
data is often scarce for many practical applications. To address these limitations, there is a grow-
ing emphasis on developing autonomous learning frameworks. These frameworks enable AI to
generate its own data or produce data for another agent through simulations or interactions with
the environment. The capability of AI to autonomously generate data is particularly crucial for
the development of task-specific agents. As we design AI systems for diverse and evolving tasks,
the need for adaptable and self-sufficient data generation becomes more pronounced, allowing us
to meet the ever-increasing and dynamic demands of novel tasks. Building upon my previous
research, which focused on task-specific environment generation techniques, my objective is to
enhance the generalization capabilities of AI agents. By improving these techniques, AI systems
can better adapt to a wider range of tasks and scenarios, ultimately leading to more robust and
versatile agents.

94

Bibliography

[1] Marah Abdin et al. Phi-3 Technical Report: A Highly Capable Language Model Locally on
Your Phone. 2024. arXiv: 2404.14219 [cs.CL]. URL: https://arxiv.org/abs/2404.14219.

[2] Abdus Salam Azad et al. “Programmatic Modeling and Generation of Real-Time Strategic
Soccer Environments for Reinforcement Learning”. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence. Vol. 36. 6. 2022, pp. 6028–6036.

[3] Marc G Bellemare et al. “The arcade learning environment: An evaluation platform for
general agents”. In: Journal of Artificial Intelligence Research 47 (2013), pp. 253–279.

[4] Christopher Berner et al. Dota 2 with Large Scale Deep Reinforcement Learning. 2019.

[5] Christopher Berner et al. “Dota 2 with large scale deep reinforcement learning”. In: arXiv
preprint arXiv:1912.06680 (2019).

[6] Samuel R Bowman et al. “Generating sentences from a continuous space”. In: arXiv preprint
arXiv:1511.06349 (2015).

[7] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[8] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[9] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic Gridworld En-
vironment for Gymnasium. https://github.com/Farama-Foundation/MiniGrid. 2018.

[10] Daesol Cho, Seungjae Lee, and H Jin Kim. “Outcome-directed Reinforcement Learning by
Uncertainty & Temporal Distance-Aware Curriculum Goal Generation”. In: arXiv preprint
arXiv:2301.11741 (2023).

[11] Jan Chorowski et al. “Unsupervised Speech Representation Learning Using WaveNet Au-
toencoders”. In: IEEE/ACM Transactions on Audio, Speech, and Language Processing
27.12 (2019), pp. 2041–2053. DOI: 10.1109/TASLP.2019.2938863.

[12] Karl Cobbe et al. “Leveraging procedural generation to benchmark reinforcement learn-
ing”. In: International conference on machine learning. 2020.

[13] Karl Cobbe et al. “Quantifying generalization in reinforcement learning”. In: International
Conference on Machine Learning. 2019.

[14] Karl Cobbe et al. “Quantifying generalization in reinforcement learning”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 1282–1289.

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://github.com/Farama-Foundation/MiniGrid
https://doi.org/10.1109/TASLP.2019.2938863

BIBLIOGRAPHY 95

[15] Karl Cobbe et al. Training Verifiers to Solve Math Word Problems. 2021. arXiv: 2110 .
14168 [cs.LG]. URL: https://arxiv.org/abs/2110.14168.

[16] Edward Kim Daniel Fremont. SCENIC interfaced simulators. https://scenic-lang.readthedocs.
io/en/latest/simulators.html. Accessed: 2021-10-01. 2021.

[17] Xiang Deng et al. “Mind2web: Towards a generalist agent for the web”. In: Advances in
Neural Information Processing Systems 36 (2024).

[18] Michael Dennis et al. “Emergent complexity and zero-shot transfer via unsupervised en-
vironment design”. In: Advances in neural information processing systems 33 (2020),
pp. 13049–13061.

[19] Prafulla Dhariwal et al. OpenAI Baselines. https://github.com/openai/baselines. 2017.

[20] Yan Duan et al. “Benchmarking deep reinforcement learning for continuous control”. In:
International conference on machine learning. 2016.

[21] FIFA. Laws of the Game. https://ussoccer.app.box.com/s/xx3byxqgodqtl1h15865/file/
850765570638. Accessed: 2021-10-01. 2021.

[22] Carlos Florensa et al. “Automatic goal generation for reinforcement learning agents”. In:
International conference on machine learning. PMLR. 2018, pp. 1515–1528.

[23] Foretellix. Measurable Scenario Description Language. https://www.foretellix.com/wp-
content/uploads/2020/07/M-SDL_LRM_OS.pdf. Accessed: 2021-10-01. 2020.

[24] Daniel Fremont, Tommaso Dreossi, and et al. “Scenic: a language for scenario specification
and scene generation”. In: PLDI. ACM, 2019, pp. 63–78.

[25] Daniel Fremont, Edward Kim, and et al. “Scenic: A Language for Scenario Specification
and Data Generation”. In: CoRR abs/2010.06580 (2020). arXiv: 2010.06580. URL: https:
//arxiv.org/abs/2010.06580.

[26] Hiroki Furuta et al. Multimodal Web Navigation with Instruction-Finetuned Foundation
Models. 2024. arXiv: 2305.11854 [cs.LG]. URL: https://arxiv.org/abs/2305.11854.

[27] Ran Gong et al. MindAgent: Emergent Gaming Interaction. 2023. arXiv: 2309 . 09971
[cs.AI]. URL: https://arxiv.org/abs/2309.09971.

[28] Ishaan Gulrajani et al. “Pixelvae: A latent variable model for natural images”. In: arXiv
preprint arXiv:1611.05013 (2016).

[29] Izzeddin Gur et al. A Real-World WebAgent with Planning, Long Context Understanding,
and Program Synthesis. 2024. arXiv: 2307.12856 [cs.LG]. URL: https://arxiv.org/abs/
2307.12856.

[30] Izzeddin Gur et al. Understanding HTML with Large Language Models. 2023. arXiv: 2210.
03945 [cs.LG]. URL: https://arxiv.org/abs/2210.03945.

[31] Tuomas Haarnoja et al. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforce-
ment Learning with a Stochastic Actor. 2018. arXiv: 1801.01290 [cs.LG]. URL: https:
//arxiv.org/abs/1801.01290.

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://scenic-lang.readthedocs.io/en/latest/simulators.html
https://scenic-lang.readthedocs.io/en/latest/simulators.html
https://github.com/openai/baselines
https://ussoccer.app.box.com/s/xx3byxqgodqtl1h15865/file/850765570638
https://ussoccer.app.box.com/s/xx3byxqgodqtl1h15865/file/850765570638
https://www.foretellix.com/wp-content/uploads/2020/07/M-SDL_LRM_OS.pdf
https://www.foretellix.com/wp-content/uploads/2020/07/M-SDL_LRM_OS.pdf
https://arxiv.org/abs/2010.06580
https://arxiv.org/abs/2010.06580
https://arxiv.org/abs/2010.06580
https://arxiv.org/abs/2305.11854
https://arxiv.org/abs/2305.11854
https://arxiv.org/abs/2309.09971
https://arxiv.org/abs/2309.09971
https://arxiv.org/abs/2309.09971
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2210.03945
https://arxiv.org/abs/2210.03945
https://arxiv.org/abs/2210.03945
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290

BIBLIOGRAPHY 96

[32] Matthew Hausknecht and et al. “Half Field Offense: An Environment for Multiagent Learn-
ing and Ad Hoc Teamwork”. In: AAMAS Adaptive Learning Agents (ALA) Workshop. Sin-
gapore, May 2016.

[33] Pengcheng He et al. DeBERTa: Decoding-enhanced BERT with Disentangled Attention.
2021. arXiv: 2006.03654 [cs.CL]. URL: https://arxiv.org/abs/2006.03654.

[34] Mark Hendrikx and et al. “Procedural content generation for games: A survey”. In: ACM
Transactions on Multimedia Computing, Communications, and Applications. Vol. 9. 2013.

[35] Irina Higgins et al. “beta-vae: Learning basic visual concepts with a constrained variational
framework”. In: (2016).

[36] Wenyi Hong et al. CogAgent: A Visual Language Model for GUI Agents. 2023. arXiv:
2312.08914 [cs.CV]. URL: https://arxiv.org/abs/2312.08914.

[37] Peide Huang et al. “Curriculum Reinforcement Learning using Optimal Transport via
Gradual Domain Adaptation”. In: arXiv preprint arXiv:2210.10195 (2022).

[38] Unnat Jain, Ziyu Zhang, and Alexander G Schwing. “Creativity: Generating diverse ques-
tions using variational autoencoders”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, pp. 6485–6494.

[39] Nick Jakobi. “Evolutionary robotics and the radical envelope-of-noise hypothesis”. In:
Adaptive behavior 6.2 (1997), pp. 325–368.

[40] Junyan Jiang et al. “Transformer VAE: A Hierarchical Model for Structure-Aware and
Interpretable Music Representation Learning”. In: ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 516–520.
DOI: 10.1109/ICASSP40776.2020.9054554.

[41] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. “Prioritized level replay”. In:
International Conference on Machine Learning. PMLR. 2021, pp. 4940–4950.

[42] Minqi Jiang et al. “Replay-guided adversarial environment design”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 1884–1897.

[43] Niels Justesen et al. “Illuminating generalization in deep reinforcement learning through
procedural level generation”. In: arXiv preprint arXiv:1806.10729 (2018).

[44] Dmitry Kalashnikov et al. “Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation”. In: Conference on Robot Learning. 2018.

[45] Aditya Kalyanpur et al. LLM-ARC: Enhancing LLMs with an Automated Reasoning Critic.
2024. arXiv: 2406.17663 [cs.CL]. URL: https://arxiv.org/abs/2406.17663.

[46] Alex Kendall et al. “Learning to drive in a day”. In: 2019 International Conference on
Robotics and Automation (ICRA). IEEE. 2019, pp. 8248–8254.

[47] Byoungjip Kim et al. Prospector: Improving LLM Agents with Self-Asking and Trajectory
Ranking. 2024. URL: https://openreview.net/forum?id=YKK1jXEWja.

https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://doi.org/10.1109/ICASSP40776.2020.9054554
https://arxiv.org/abs/2406.17663
https://arxiv.org/abs/2406.17663
https://openreview.net/forum?id=YKK1jXEWja

BIBLIOGRAPHY 97

[48] Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language Models can Solve Computer
Tasks. 2023. arXiv: 2303.17491 [cs.CL]. URL: https://arxiv.org/abs/2303.17491.

[49] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[50] Pascal Klink et al. “Curriculum reinforcement learning via constrained optimal transport”.
In: International Conference on Machine Learning. PMLR. 2022, pp. 11341–11358.

[51] Karol Kurach et al. “Google research football: A novel reinforcement learning environ-
ment”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020,
pp. 4501–4510.

[52] Kimin Lee et al. “Context-aware dynamics model for generalization in model-based rein-
forcement learning”. In: International Conference on Machine Learning. 2020.

[53] Kimin Lee et al. “Network randomization: A simple technique for generalization in deep
reinforcement learning”. In: International Conference on Learning Representations. 2020.

[54] Marlos C Machado et al. “Revisiting the arcade learning environment: Evaluation protocols
and open problems for general agents”. In: Journal of Artificial Intelligence Research 61
(2018), pp. 523–562.

[55] Rupak Majumdar et al. Paracosm: A Language and Tool for Testing Autonomous Driving
Systems. 2019. arXiv: 1902.01084.

[56] Eric Mazumdar et al. Policy-Gradient Algorithms Have No Guarantees of Convergence in
Linear Quadratic Games. 2019. DOI: 10.48550/ARXIV.1907.03712. URL: https://arxiv.
org/abs/1907.03712.

[57] Microsoft. Fine-Tuning Vision Models with Phi-3. https : / / github. com / microsoft / Phi -
3CookBook/blob/main/md/04.Fine-tuning/FineTuning_Vision.md. Accessed: 2024-08-
08. 2024.

[58] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
Nature 518.7540 (2015), p. 529.

[59] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
nature 518.7540 (2015), pp. 529–533.

[60] Jun Morimoto and Kenji Doya. “Robust reinforcement learning”. In: Neural computation
17.2 (2005), pp. 335–359.

[61] Michael E Mortenson. Mathematics for computer graphics applications. Industrial Press
Inc., 1999.

[62] Ashvin V Nair et al. “Visual Reinforcement Learning with Imagined Goals”. In: Advances
in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Asso-
ciates, Inc., 2018. URL: https://proceedings.neurips.cc/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-
Paper.pdf.

https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/1902.01084
https://doi.org/10.48550/ARXIV.1907.03712
https://arxiv.org/abs/1907.03712
https://arxiv.org/abs/1907.03712
https://github.com/microsoft/Phi-3CookBook/blob/main/md/04.Fine-tuning/FineTuning_Vision.md
https://github.com/microsoft/Phi-3CookBook/blob/main/md/04.Fine-tuning/FineTuning_Vision.md
https://proceedings.neurips.cc/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf

BIBLIOGRAPHY 98

[63] Sanmit Narvekar et al. “Curriculum learning for reinforcement learning domains: A frame-
work and survey”. In: arXiv preprint arXiv:2003.04960 (2020).

[64] Alex Nichol et al. “Gotta learn fast: A new benchmark for generalization in rl”. In: arXiv
preprint arXiv:1804.03720 (2018).

[65] Jack Parker-Holder et al. “Evolving Curricula with Regret-Based Environment Design”.
In: arXiv preprint arXiv:2203.01302 (2022).

[66] Lerrel Pinto, James Davidson, and Abhinav Gupta. “Supervision via competition: Robot
adversaries for learning tasks”. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2017, pp. 1601–1608.

[67] Rémy Portelas et al. “Automatic curriculum learning for deep rl: A short survey”. In: arXiv
preprint arXiv:2003.04664 (2020).

[68] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. “Generating diverse high-fidelity
images with vq-vae-2”. In: Advances in neural information processing systems 32 (2019).

[69] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic backpropaga-
tion and approximate inference in deep generative models”. In: International conference
on machine learning. PMLR. 2014, pp. 1278–1286.

[70] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real Single-Image Flight without a Single
Real Image. 2016. DOI: 10.48550/ARXIV.1611.04201. URL: https://arxiv.org/abs/1611.
04201.

[71] Mikayel Samvelyan and et al. “The StarCraft Multi-Agent Challenge”. In: Workshop on
Deep Reinforcement Learning at the 33rd Conference on Neural Information Processing
Systems. 2019.

[72] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. DOI: 10 . 48550 /
ARXIV.1707.06347. URL: https://arxiv.org/abs/1707.06347.

[73] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

[74] Younggyo Seo et al. “Trajectory-wise Multiple Choice Learning for Dynamics Generaliza-
tion in Reinforcement Learning”. In: arXiv preprint arXiv:2010.13303 (2020).

[75] Peter Shaw et al. From Pixels to UI Actions: Learning to Follow Instructions via Graphical
User Interfaces. 2023. arXiv: 2306.00245 [cs.LG]. URL: https://arxiv.org/abs/2306.
00245.

[76] Peter Shaw et al. From Pixels to UI Actions: Learning to Follow Instructions via Graphical
User Interfaces. 2023. arXiv: 2306.00245 [cs.LG]. URL: https://arxiv.org/abs/2306.
00245.

[77] Noah Shinn et al. Reflexion: Language Agents with Verbal Reinforcement Learning. 2023.
arXiv: 2303.11366 [cs.AI]. URL: https://arxiv.org/abs/2303.11366.

https://doi.org/10.48550/ARXIV.1611.04201
https://arxiv.org/abs/1611.04201
https://arxiv.org/abs/1611.04201
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2306.00245
https://arxiv.org/abs/2306.00245
https://arxiv.org/abs/2306.00245
https://arxiv.org/abs/2306.00245
https://arxiv.org/abs/2306.00245
https://arxiv.org/abs/2306.00245
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366

BIBLIOGRAPHY 99

[78] Mohit Shridhar et al. ALFWorld: Aligning Text and Embodied Environments for Interactive
Learning. 2021. arXiv: 2010.03768 [cs.CL]. URL: https://arxiv.org/abs/2010.03768.

[79] David Silver et al. “A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play”. In: Science 362.6419 (2018), pp. 1140–1144.

[80] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”.
In: nature 529.7587 (2016), pp. 484–489.

[81] David Silver et al. “Mastering the game of go without human knowledge”. In: Nature
550.7676 (2017), p. 354.

[82] Abishek Sridhar et al. Hierarchical Prompting Assists Large Language Model on Web Nav-
igation. 2023. arXiv: 2305.14257 [cs.CL]. URL: https://arxiv.org/abs/2305.14257.

[83] Peter Stone and et al. “Keepaway Soccer: From Machine Learning Testbed to Benchmark”.
In: RoboCup 2005: Robot Soccer World Cup IX. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2006, pp. 93–105.

[84] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
Press, 2018.

[85] Yujin Tang, Duong Nguyen, and David Ha. “Neuroevolution of self-interpretable agents”.
In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference. 2020,
pp. 414–424.

[86] Yuval Tassa et al. “Deepmind control suite”. In: arXiv preprint arXiv:1801.00690 (2018).

[87] Josh Tobin et al. “Domain randomization for transferring deep neural networks from simu-
lation to the real world”. In: 2017 IEEE/RSJ international conference on intelligent robots
and systems (IROS). IEEE. 2017, pp. 23–30.

[88] Alberto Uriarte and Santiago Ontañón. “A Benchmark for StarCraft Intelligent Agents”.
In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment. Vol. 11. 2. June 2021, pp. 22–28. URL: https : / /ojs .aaai .org/ index.php/
AIIDE/article/view/12810.

[89] Oriol Vinyals et al. “Grandmaster level in StarCraft II using multi-agent reinforcement
learning”. In: Nature 575.7782 (2019), pp. 350–354.

[90] Oriol Vinyals et al. StarCraft II: A New Challenge for Reinforcement Learning. 2017.
arXiv: 1708.04782 [cs.LG].

[91] Rui Wang et al. “Enhanced POET: Open-ended reinforcement learning through unbounded
invention of learning challenges and their solutions”. In: International Conference on Ma-
chine Learning. PMLR. 2020, pp. 9940–9951.

[92] Rui Wang et al. “Paired open-ended trailblazer (poet): Endlessly generating increasingly
complex and diverse learning environments and their solutions”. In: arXiv preprint arXiv:1901.01753
(2019).

https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2305.14257
https://arxiv.org/abs/2305.14257
https://ojs.aaai.org/index.php/AIIDE/article/view/12810
https://ojs.aaai.org/index.php/AIIDE/article/view/12810
https://arxiv.org/abs/1708.04782

BIBLIOGRAPHY 100

[93] Jason Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Mod-
els. 2023. arXiv: 2201.11903 [cs.CL]. URL: https://arxiv.org/abs/2201.11903.

[94] Zhilin Yang et al. HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question An-
swering. 2018. arXiv: 1809.09600 [cs.CL]. URL: https://arxiv.org/abs/1809.09600.

[95] Shunyu Yao et al. WebShop: Towards Scalable Real-World Web Interaction with Grounded
Language Agents. 2023. arXiv: 2207.01206 [cs.CL]. URL: https://arxiv.org/abs/2207.
01206.

[96] Denis Yarats et al. “Improving sample efficiency in model-free reinforcement learning
from images”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35.
12. 2021, pp. 10674–10681.

[97] Amy Zhang, Nicolas Ballas, and Joelle Pineau. “A dissection of overfitting and generaliza-
tion in continuous reinforcement learning”. In: arXiv preprint arXiv:1806.07937 (2018).

[98] Amy Zhang, Yuxin Wu, and Joelle Pineau. “Natural environment benchmarks for rein-
forcement learning”. In: arXiv preprint arXiv:1811.06032 (2018).

[99] Bin Zhang et al. Controlling Large Language Model-based Agents for Large-Scale Decision-
Making: An Actor-Critic Approach. 2024. arXiv: 2311 . 13884 [cs.AI]. URL: https :
//arxiv.org/abs/2311.13884.

[100] Mingtian Zhang, Andi Zhang, and Steven McDonagh. “On the out-of-distribution general-
ization of probabilistic image modelling”. In: Advances in Neural Information Processing
Systems 34 (2021), pp. 3811–3823.

[101] Mingtian Zhang et al. “Improving VAE-based Representation Learning”. In: arXiv preprint
arXiv:2205.14539 (2022).

[102] Boyuan Zheng et al. “Gpt-4v (ision) is a generalist web agent, if grounded”. In: arXiv
preprint arXiv:2401.01614 (2024).

[103] Longtao Zheng et al. Synapse: Trajectory-as-Exemplar Prompting with Memory for Com-
puter Control. 2024. arXiv: 2306.07863 [cs.AI]. URL: https://arxiv.org/abs/2306.07863.

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2311.13884
https://arxiv.org/abs/2311.13884
https://arxiv.org/abs/2311.13884
https://arxiv.org/abs/2306.07863
https://arxiv.org/abs/2306.07863

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Overview of Methods

	Scenic4RL: Programmatic modeling and generation of real-time strategic soccer environments
	Introduction
	Related Work
	Background
	Scenario Specification Language for RL
	Evaluation
	Description of Proposed Scenarios and Policies
	On Our Scenic Libraries
	Details on Experimental Setup and Training
	Interface details and Reproducibility
	Performance
	Conclusion & Future Work

	CLUTR: Curriculum Learning via Unsupervised Task Representation Learning
	Introduction
	Related Work
	Background
	Curriculum Learning via Unsupervised Task Representation Learning
	Experiments
	Additional Details of CLUTR
	Conclusion: Limitations and Future Work

	MMRC: Multimodal Reasoning and Critique for Web Navigation
	Introduction
	Related Work
	Background
	Method: MMRC
	Experiments
	Conclusion: Limitations and Future Work

	Conclusion and Future Work
	Advancements in Reasoning and Planning Techniques
	Environment/Data Generation for Multi-Task Self-Refining Agents

	Bibliography

