
Co-Designing Cryptographic Systems with Resource-
Constrained Hardware

Jean-Luc Watson

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-172
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-172.html

August 9, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Co-Designing Cryptographic Systems with Resource-Constrained Hardware

By

Jean-Luc Watson

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Prabal Dutta, Co-chair
Associate Professor Raluca Ada Popa, Co-chair

Assistant Professor Natacha Crooks
Assistant Professor Amit Levy

Summer 2024

Co-Designing Cryptographic Systems with Resource-Constrained Hardware

Copyright 2024
by

Jean-Luc Watson

1

Abstract

Co-Designing Cryptographic Systems with Resource-Constrained Hardware

by

Jean-Luc Watson

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Prabal Dutta, Co-chair

Associate Professor Raluca Ada Popa, Co-chair

Sensitive private information is increasingly processed on relatively public networks and sys-
tems. Location data is constantly gathered from users’ mobile phones and correlated with
their activity, measuring both who they interact with in the real world, and their online
behavior. Analytics workloads operate over the private data associated with millions of cus-
tomers, which could include Amazon purchase histories, location trace data, or web browsing
information derived from third-party cookies. Machine learning workloads are consuming
every source of public (and non-public) data available through the Internet, as companies like
OpenAI and Google compete to create the best and most accurate large language models.
While cryptographic techniques can protect sensitive information, performant deployments
are still out of reach because they assume better system capabilities than currently exist.
As a result, in many cases where user privacy is at risk, the cost of protecting it directly
trades off with commercial viability. For example, consumers likely would not tolerate a mo-
bile app that privately interacted with nearby Internet of Things (IoT) devices but drained
their battery, or a private ChatGPT version that required over a minute to respond to every
question.

As a result, reducing the divide between the theoretical capabilities of advanced crypto-
graphic primitives and what we can hope to reasonably compute in today’s cryptographic
systems is critical to supporting user data privacy moving forward. Thankfully, not all is
lost. A new generation of heterogeneous hardware is becoming commonplace, from millions
of embedded sensors and consumer mobile platforms that are more energy-efficient and com-
putationally powerful than ever before, to server-class graphics processing units (GPUs) with
hundreds of cores for general-purpose computing. Critically, however, mobile platforms and
GPUs exhibit significantly limited energy and memory availability, respectively, so crypto-
graphic systems we develop must take these into consideration to achieve practicality.

2

In this dissertation, I present my work on adapting cryptography for hardware resource
constraints in order to achieve both performance and privacy. I will cover several systems
we developed: Nebula, a protocol for embedded sensors and mobile phones to retrieve data
from anywhere without leaking user participation; Piranha, a platform to accelerate mul-
tiparty computation-based ML training to privately incorporate sensitive datasets into a
collaboratively-computed model; and finally, a systems approach to increase both the scale
and throughput of zero-knowledge proving to improve the performance of private identity
systems, blockchains, and verifiable computation. In each of these cases, considering the
compute, energy, and memory constraints of specialized hardware allows us to recast expen-
sive cryptographic problems into practically-efficient systems.

i

To my family, who always believed they would read this some day.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Computing in Public With Private Data . 1
1.2 Opportunities to Design for Resource-Constrained Hardware 2
1.3 Thesis Statement . 4
1.4 Roadmap for This Dissertation . 4

2 Hiding Metadata in Mobile Data Backhaul Networks 6
2.1 Introduction . 6
2.2 Background and Related Work . 10
2.3 System Overview . 13
2.4 Threat Model and Security Guarantees . 15
2.5 Privacy-First Backhaul Protocol . 18
2.6 Formal Soundness Guarantees . 23
2.7 Formal Privacy Guarantee . 26
2.8 Analytical Model for Energy and Memory Consumption 31
2.9 Implementation . 35
2.10 Evaluation . 36
2.11 Opportunities for Future Work . 42
2.12 Summary . 44

3 Accelerating Multi-party Computation for ML Training using GPUs 45
3.1 Introduction . 45
3.2 Background and Related Work . 49
3.3 System Architecture . 50
3.4 Device Layer for Accelerating Local Operations 51
3.5 Protocol Layer for Linear Secret-Sharing Schemes 55

iii

3.6 Application Layer for Secure Training and Inference 60
3.7 Evaluation . 63
3.8 Future and Subsequent Work . 75
3.9 Summary . 76

4 Towards High-Throughput Zero-Knowledge Proving on GPUs 78
4.1 Introduction . 78
4.2 Background and Related Work . 80
4.3 Unbounded-Size MSM Evaluation with Memory Pipelining 83
4.4 Accelerated Batch MSM Evaluation with Addition Chains 85
4.5 Evaluation . 87
4.6 Opportunities for Future Work . 93
4.7 Summary . 94

5 Conclusion 95
5.1 Designing Cryptography for New Hardware 96
5.2 Designing Hardware for New Cryptography 97

Bibliography 99

iv

List of Figures

1.1 This dissertation’s contributions (middle, blue). In each of the technical chapters,
we discuss the design of a platform that restructures an advanced cryptographic
primitive (above) to execute efficiently on a constrained hardware platform (below). 4

2.1 Data backhaul participants in an urban infrastructure application. Data mules
(e.g. people with phones) pass sensors and collect data (1) using a local low-
power wireless protocol (e.g. Bluetooth). When in cellular or WiFi range, they
upload the data to an end application server (2). A platform provider administers
the network by charging application servers (3), and paying mules (4). 7

2.2 Nebula, in comparison to centralized designs such as Sidewalk [9], takes a decen-
tralized approach. Mules route data directly to application servers, improving
location privacy. 8

2.3 Nebula’s privacy-preserving data backhaul architecture. Application servers (1)
pre-purchase unlinkable tokens. When mules pass by a sensor, they (2) pick up
application payloads and (3) deliver them to the relevant application server in
exchange for a token. At fixed intervals (e.g. each month), mules (4) redeem
tokens with the platform provider in exchange for micro-payments. 14

2.4 The Nebula delivery (top) and complaint (bottom) protocols. Using a complaint
token tc, a mule can submit a complaint to the platform provider alleging misbe-
havior if the exchange is not completed (orange), or if the token is invalid (blue).
If valid, the platform provider grants the mule a new token and forwards the
missing payload to the application. The mule reveals nothing in the complaint
other than that it interacted with the application in that epoch. 21

2.5 Overview of the real and ideal worlds. 26
2.6 The amount of data that can be transferred based on how long a mule is in

connection range with different BLE MTU sizes. Handshake time is amortized
as mules spend longer in proximity to sensors. 37

2.7 The energy used by the nRF52840 for different payload sizes. There is a set
amount of energy spent on setup, so the larger the payload the more the energy
is amortized. 39

v

2.8 Interaction frequency and interaction duration varies depending on the location.
We collect BLE advertisements in four representative locations and construct in-
teractions from repeated MAC addresses. For this data collection, we anonymized
all MACs with an irreversible hash and received an IRB exemption from our in-
stitution review board. 40

2.9 Number of tokens redeemed per second. With 128 cores, we can verify 445, 900
tokens, including filtering for duplicates, per second, or over 250 million tokens
per dollar. 41

3.1 Piranha’s three-layer architecture in blue, with components implemented on top
in white. On the device layer, we contribute low-level GPU kernels accelerating
local, integer-based data shares. At the protocol layer, we implement functionality
for three different linear secret-sharing (LSSS) MPC protocols at the protocol
layer: SecureML [161] (2-party), Falcon [223] (3-party), and FantasticFour [57]
(4-party). At Piranha’s application layer, we provide a protocol-agnostic neural
network library that can be executed by any of the protocols. Piranha is modular
in that it can support additional components beyond what we provide. 46

3.2 Comparison of a memory-inefficient naive carryout implementation Figure 3.2a
and our iterator-based in-place computation Figure 3.2b. In the former approach,
new memory allocations and data copy – highlighted in red – are done to split
pairwise elements into contiguous vectors for parallel GPU processing. The ability
to define iterators and execute kernels over non-contiguous memory allows Piranha
to avoid any additional memory allocation. 57

3.3 Our new approximate computation of last layer gradients that stabilize the learn-
ing process. 62

3.4 The figures benchmark secure protocols for matrix multiplication, convolutions,
and ReLU across 2-, 3-, and 4-party protocols for various sizes of these compu-
tations. Piranha consistently improves the run-time of these computations, with
improvements as large as 2-4 orders of magnitude for larger computation sizes. . 65

3.5 Test accuracy as the fixed-point precision increase for each network architecture,
after 10 training epochs using P-Falcon. The dashed line indicates the baseline
accuracy when randomly guessing. Sharp increases in training accuracy indicate
that the model now has enough precision to fully backpropagate gradients. . . . 69

3.6 Computation and communication overhead for private training iterations in LAN
and WAN settings. Piranha significantly accelerates local computation on a GPU,
resulting in communication costs dominating overall runtime as latency between
parties and network size increases. 70

3.7 Memory footprint over a VGG16 forward pass. Each point is a snapshot of the
total GPU memory allocation (in MB) at each memory operation (allocation
or de-allocation). Figure 3.7a corresponds to a naive GPU implementation, Fig-
ure 3.7b measures the footprint after iterator-based optimizations, and Figure 3.7c
after efficiently sizing bit-containing data structures. 71

vi

4.1 MSM execution time as problem size increases, based on a sequential chunking
strategy. For a given MSM size N , we can choose to split the MSM evaluation
into a number of independent evaluations (chunks). Using only GPU memory,
we quickly run out of memory. Alternatively, unified memory allows MSMs to
scale to much higher size, but at a small overhead compared to using solely device
memory. 84

4.2 High-level Pippenger operation with chunking strategy. We stream chunks of in-
put point/scalar pairs into the GPU for bucket aggregation, then multiply buckets
once after all chunks have been processed. 85

4.3 CPU-GPU hybrid system to generate and evaluate addition sequences. Scalars
from a batch of MSM inputs form targets for sequence generation (CPU), which
are converted to program instructions that are interpreted by a an execution
kernel to multiply the associated base point (GPU). 86

4.4 MSM execution time as input size increases, for a baseline Pippenger implemen-
tation, a slightly-modified implementation loading MSM inputs on both CPU
and GPU using Unified Memory, and our chunked implementation overlapping
memory loads and MSM computation. At large MSM sizes, chunking avoids
an overhead over the baseline entirely, showing 25% improvement in runtime
performance. 88

4.5 N = 225 MSM execution timeline, comparing baseline and chunked versions.
Green boxes indicate memory copies to/from the GPU using CPU pinned mem-
ory, while blue boxes indicate kernel execution. When chunking, the MSM kernels
can execute while data loads, reducing end-to-end computation latency. 89

4.6 MSM evaluation times (shown here for N = 226 → 231) remain linear as problem
size increases past GPU memory capacity. 90

4.7 Addition sequence length and program length as the number of target scalars
increases. The number of program instructions generated closely matches the
number of scalars in the addition sequence. On the right, we compare the sequence
length to the number of operations in a naive double-and-add strategy on a log
axis for each of the bases in the batch. 91

4.8 MSM evaluation times using addition sequences are consistently lower over a
range of input batch sizes of small N = 100 proofs. We show the two compo-
nents of overall sequence evaluation time – program generation on the CPU and
program execution on the GPU – separately as well. These components can be
pipelined. Note that for batch sizes larger than 64, ICICLE cannot execute due
to lack of available memory. 92

vii

List of Tables

3.1 Functionalities required by the NN training application, implemented by each
class in Piranha’s protocol layer. 61

3.2 Time and communication costs for completing 10 training iterations over four neu-
ral network architectures, for each of Piranha’s MPC protocol implementations.
We are the first work to demonstrate end-to-end secure training of VGG16, a
network with over 100 million parameters. 67

3.3 Runtime for matrix multiplication kernels used in Piranha vs. the cuBLAS im-
plementation for different sizes. 67

3.4 The maximum memory usage of a secure training pass (forward and backward
pass) for various MPC protocols and network architectures. Piranha’s memory
efficient design enables running large networks such as VGG16 with a batch size
of 128 where prior works have been limited to 32 [203]. 72

3.5 We compare the run-times for private training and inference of various network
architectures with prior state-of-the-art works over CPU and GPU. Falcon and
CryptGPU values are sourced from [203] Table I. Private inference uses batch size
of 1, training uses 128 for LeNet, AlexNet and 32 for VGG16. For smaller com-
putations (private inference), Piranha provides comparable performance to CPU-
based protocols. However, for larger computations (private training), Piranha
shows consistent improvement between 16−48×, a factor that improves with scale. 74

viii

Co-Authored Material

Parts of this dissertation are based on previously published material co-authored with others,
as follows.

• Chapter 2 is based on the following publication [226]:
Jean-Luc Watson, Tess Despres, Alvin Tan, Shishir Patil, Prabal Dutta, and Raluca
Ada Popa. “Nebula: A Privacy-First Platform for Data Backhaul”. In: IEEE Sympo-
sium on Security and Privacy. IEEE, 2024.

• Chapter 3 is based on the following publication [225]:
Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. “Piranha: A GPU Platform
for Secure Computation”. In: USENIX Security. USENIX, 2022.

ix

Acknowledgments

I could not have even considered going to grad school without a huge amount of support
from my friends and family. Maman and Papa, you helped me understand that grad school
was a great option to shoot for, and as a result, it was something I had in my mind from the
beginning. Thank you for not bugging me too much about when my thesis would be done
(it’s done!) and for accompanying me over the phone on many drives to the grocery store
over the years. Guy, Pascal, and Andre, I know I can always count on you for advice (pets
and relationships, plants, and mythology, respectively) and I remember fondly coming back
from each semester to a home full of energy.

When I started at Berkeley, I had no idea that would also find a new family as well.
Samyu, thank you from the bottom of my heart for always believing in me, listening to me,
and supporting me. I have never been happier. To Anu, Lakshman, and Jamun, I’ve never
felt more welcome – thank you for making the Bay Area feel like a second home.

I might not have made it here without the mentorship and support of many people
throughout the years. Tommy, I remember well when you asked me if I was interested in
a science project that led to my very first research experience, driving up from high school
to campus every other day to run our experiments. I can’t thank Dr. Anderson enough for
taking us under her wing, helping us develop our experimental protocols, and letting us take
our first steps with the scientific method. My undergraduate days wouldn’t have been the
same without my draw group – Justin, roommate extraordinare, Thomas, Ashwin, Andrew,
Varun, Carol, Krysten, Joseph – I still have the tshirt we made for move-in day. Finally, I
would not have made the jump from undergraduate to graduate school without Phil, who
let me into the wonderful world of embedded systems and wireless communication.

Prabal and Raluca, thank you for supporting me, even when I wanted to explore prob-
lems that none of us had much experience in. Thanks to you, my research process, from
formulating problems to evaluating and writing, has improved so much in my time at Berke-
ley. You enabled me to succeed, even when I didn’t think I could make it, and I feel that
I have achieved the goal when I set started grad school – to learn how to lead and develop
a research team. Thank you to my other committee members, Natacha and Amit, for your
wonderful feedback and interest in supporting my research.

I want to thank my wonderful collaborators who made research more fun and interesting,
who consistently challenged me to defend my ideas and ultimately made this research better.
Saharsh, Ryan, and Sherry, you made incredible contributions to our live update work, even
after I threw you into the embedded systems deep-end to learn a wholly new field. Sameer,
your constant mentorship and availability to walk through problems made Piranha into the
successful project that it became. And Zoë, thank you for bridging the gap between the
theoreticians and the systems-builders, at least in a small way. My approach to problems
wouldn’t be the same without intensive discussions with my unofficial collaborators: Sam,
Yuncong, Branden, Josh, Will, Meghan, and Neal.

Lab11 is the singular reason I came to Berkeley in the first place. You have all been
incredibly welcoming and supportive, and formed the most insightful, caring group of re-

x

searchers I have ever seen over the past six years. Pat, Noah, Branden, Josh, Thomas, Matt,
Rohit, Andreas, and Bernard, thank you for creating a lab environment that I was eager
to stay even longer than needed each night. I’ll never forget the long discussions about
my nascent research questions, your excitement and desire to build cool systems, and your
advice over an ill-fated Sake tasting or beer down at Jupiter. Neal and Will, I couldn’t have
asked for better friends. Thank you both for the shadow advising, helping me fix my bike
derailleur, which works flawlessly to this day, and waiting in line with me outside of Berkeley
Bowl. We will play more games soon. Oh and Aspen’s Slack account, whoever they are,
has pretty good taste in television. To the squad – Shishir, Tess, and Alvin – you’ve been
amazing collaborators and friends, and I’m super proud of the breadth of our work together
and the good times we had in 545W. Our trip to France was a highlight of grad school
(apologies to Tess for our last-minute dash to the airport) and someday we have to actually
make it to Amsterdam. Finally, to the new Lab11 members: Guangyu, Paul, and those who
follow: welcome! I hope you’ll have as good a time here as I did.

The PhD wouldn’t have been complete without my friends from RISE (for the new kids,
that’s Sky). Emma, Vivian, Micah, Conor, Laura, Shadaj, Justin, Mayank, Deevesh, Darya,
and Sam, our plan to revitalize a group culture at the inaugural ski retreat paid massive
dividends – I enjoyed the many Friday afternoons hanging out on the terrace and hope the
chairs will still be there when I visit. Thank you for your insightful feedback and support,
even when I was going on about embedded systems, and of course, the project logos from
Vivian and Samyu. Daniel, we took the lab by storm in the most successful unionization
campaign ever seen in Berkeley EECS. It wouldn’t have been possible without you leading
the way. Thanks to Meghan for getting me involved in the first place, and Garrett, Tanzil,
Tarini, Greg, and Kavitha for landing the plane.

No two people deserve more credit for dealing with my antics than Ed and Daniel (dif-
ferent Daniel this time), my erstwhile roommates during my time at Berkeley. Ed, I can’t
express how nice it was to move to grad school already knowing someone who was going
through the same process. I’m a bit nostalgic of dodging raccoons on the way into our
apartment and collaborating on some of the first real cooking I ever did. Daniel, I appreci-
ated your support even as I was starting up the Cafe Bustelo at 10pm another late night. It
was an honor surviving the pandemic together.

I am so grateful to everyone else for their friendship, camaraderie, and help throughout
the PhD... so many in fact that they are hard to list without my committee complaining
that I’m inflating the page count. So for you, I have mangled something Snoop Dogg once
said:

I want to thank you for believing in me, I want to thank you for helping me do
all this hard work. I wanna thank you for having no days off. I wanna thank
you for never quitting on me. I wanna thank you all for always being givers and
trying to give more than you all receive. I wanna thank you for trying to do
more right than wrong. I wanna thank you for being you at all times, y’all are
bad ************s.

xi

∗ ∗ ∗

Funding and support for this dissertation came primarily from you (probably), the Ameri-
can taxpayer, including a National Defense Science & Engineering Graduate Fellowship, NSF
CISE Expeditions Award CCF-1730628, NSF CAREER 1943347, the U.S. Department of
Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the award number
DE-EE0008220, an Okawa Foundation Research Grant, the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by
DARPA. Support was also provided by gifts from the Sloan Foundation, Alibaba, Amazon
Web Services, AMD, Ant Group, Anyscale Ericsson, Facebook, Futurewei, Google, IBM,
Intel, Microsoft, Mohamed Bin Zayed University of Artificial Intelligence, Nvidia, Samsung
SDS, Scotiabank, Splunk, Uber, and VMware.

1

Chapter 1

Introduction

The location and scale of data processing has shifted dramatically in the past two decades,
with local applications on a personal computer giving way to massive cloud computing
applications serving tens of millions of users. With respect to user data, these systems are
often a double-edged sword. Machine learning (ML) models can increasingly recommend,
rank, answer, or chat like a trusted confidant, yet user responses are recorded and refed into
the model to improve its performance. Internet-based messaging applications have exploded
in popularity, but even if message contents are encrypted, a user’s social network is analyzed
for interests and connections to better target advertising. Collecting sensor data on a massive
scale might tie one’s home WiFi network to the location of various embedded devices. And
as computation is increasingly delegated to a wide array of cloud vendors or third-party
platforms, leaks of personal data are now commonplace.

1.1 Computing in Public With Private Data

In all of the above cases, aggregating a user’s private data with that of others and computing
over it in a “public” network, such as a particular product’s cloud deployment, or sharing
it between different organizations, is critical to a company’s success. As a result, significant
research effort has led to the development of a new class of cryptographic primitives, aimed
at facilitating these operations while limiting direct access to private information.

Multiparty computation (MPC) allows mutually-distrusting parties to collaborate on a
computation while leaking nothing about their individual inputs other than what is exposed
by the final, joint answer. MPC has been used to enable private auctions without revealing
individual bids [59], allow banks to combine financial records for fraud tracking without
violating financial privacy laws [193], aggregate medical data across different hospitals [208],
and perform ML inference and training with input data fragmented between many different
stakeholders [223, 221, 173].

Similarly, various techniques have been developed for metadata-hiding communication, to
hide information leakage from contact patterns. These approaches can prevent, for example,

1.2. OPPORTUNITIES TO DESIGN FOR RESOURCE-CONSTRAINED HARDWARE2

a messaging service from learning that I only text my brother every 6 months, or that a
particular government employee is a whistleblower in contact with the New York Times [78].
Metadata-hiding systems might have participants send messages to seemingly random digital
mailbox addresses [51], shuffle messages through a hidden pipeline or crowd-sourced cluster
of intermediaries [132], or inject cover traffic to obscure real communication patterns [213].

Finally, one can convince another party of the truth of a statement (e.g. “I am old
enough to vote (18+)”) without revealing the information underlying the statement (“I am
23 years old”) using zero-knowledge proofs (ZKPs). This cryptographic capability is critical
in supporting user privacy even in cases that require personal data, such as in an anonymous
online voting system that must also prevent someone from casting a ballot twice, or in
verifying that a particular computation was performed correctly without redoing the entire
computation from scratch. Some ZKPs can be verified quickly, requiring just a few hundred
milliseconds, and with minimal information, ranging from a few hundred to thousand bytes,
without learning any of the dependent private information, and regardless of the complexity
of the proven statement. These proofs underlie private cryptocurrency [194], delegated
computation [30], and even allow users to use anonymous credentials [190].

However, each of these approaches makes a significant tradeoff between privacy and per-
formance. Simply put, they are currently much too expensive compared to their non-private
alternatives. To put this in context, plaintext inference using VGG-16, a common convolu-
tional neural network for image processing, requires only 0.8 ms [209], whereas Falcon [223],
an MPC-based 3-party protocol for ML inference, requires 0.79 and 1.27 seconds to perform
the same inference when parties communicate over a LAN or a WAN, respectively – a 987
to 1588× overhead. Similarly, while modern RISC processors operate at GHz frequencies,
generating a zero-knowledge proof that the computation has been correctly executed is or-
ders of magnitude slower (although growing faster), verifying on the order of hundreds of
cycles per second [152]. And while platforms like WhatsApp support upwards of 2 billion
monthly active users [40], leading systems to provide metadata-hiding communication can
only process approximately 50 messages per second [78].

1.2 Opportunities to Design for

Resource-Constrained Hardware

A new generation of heterogeneous hardware platforms is emerging in parallel to new cryp-
tographic primitives, offering an opportunity to close the gap between plaintext and secure
performance. These platforms are at the same time more powerful, in terms of sheer num-
bers of devices or accelerator cores, and more limited, in that they are more specialized and
trade efficiency in certain operations (e.g. more cores and parallelism for computation) for
restricted flexibility (e.g. less memory on-device, or a limited programming model that is
inefficient for branching logic). In this dissertation, we will focus on two platform classes
with particularly widespread availability: mobile devices and graphics processing unit (GPU)

1.2. OPPORTUNITIES TO DESIGN FOR RESOURCE-CONSTRAINED HARDWARE3

accelerators.
Mobile and embedded devices have benefited from vastly increased processing capabil-

ities and decreasing power utilization. For example, a Nordic nRF52832 Bluetooth Low
Energy (BLE) radio and 64 MHz microprocessor in 2016 had a peak current draw of
152 µA/MHz [167], whereas a 2024 Nordic nRF5340 operates a 128 MHz core at only
61 µA/MHz [168], yielding overall more efficient and powerful sensing platforms. Processors
from companies targeting wearable devices, such as Ambiq, offer even better power efficiency
at just 4 µA/MHz on an Apollo4 Lite SoC [12]. Memory availability has a also increased
over the same time period, from the nRF52832’s 64 kB to the nRF5340’s 1.5 MB of RAM. In
consumer mobile electronics, the resources are even greater: a 2024 iPhone 15 has 6 GB of
RAM [85] and two 3.5 GHz high-performance cores in addition to four 2 GHz power-efficient
cores [13]. To compound these advances, the number of smartphones in the US has increased
dramatically. In 2011, only 35% of Americans owned a smartphone; now, over 97% of the
population use one [159].

GPUs have also seen vastly improved performance, shifting from graphics processing
workloads to general purpose GPU (GP-GPU) workloads with increased interest from blockchain
users (who in Bitcoin, for example, have leveraged GPUs to parallelize hashing to mine new
blocks [204]) and from the ML industry, who use vast arrays of GPUs to train Large Language
Models (LLMs) [199]. A Tesla K10 GPU in 2012 could support approximately 20 GFLOPs
per watt, whereas an RTX 3090 GPU, released in 2020, yields upwards of 80 GFLOPS per
watt [96].

The new hardware landscape opens up a new design space in which we can seek to
develop performant cryptographic systems. If expensive computation for metadata-hiding
can be distributed over many mobile platforms, each much more capable than before, we
could hope to increase the scalability of private communication. Likewise, the repetitive but
highly-parallelizable core operations within MPC and ZK proving protocols might benefit
from the high core counts in modern GPU architectures.

However, there is no free lunch when utilizing new hardware, as each platform comes with
limitations to balance their advantages. Mobile platforms may have more power-efficient and
capable microprocessors, but they still operate on limited energy reserves that must be care-
fully managed. In particular, while CPU cycles may be energy-efficient on an embedded
sensor, radio communication is generally much more intensive, so balancing local process-
ing with data transmission is a persistent problem. In GPUs, while computation speed is
increasing, overall application performance is often bottlenecked by limited communication
bandwidth with the host CPU and on-device memory availability. Where machine learning
models might have models consuming hundreds of GBs (GPT-4 requires almost 7 TB to
store its parameters [38]), even a server-class Nvidia A100 GPU only has 80 GB of on-device
memory [170]. Using GPU programming models such as CUDA yield a more restrictive set of
applications, which must be properly parameterized to take full advantage of the hardware.

These restrictions, however limiting, are also the source of new system design opportu-
nities. In particular, we stand to significantly improve the performance of cryptographic
applications if we can understand which parts of the computation can be fit onto mobile or

1.3. THESIS STATEMENT 4

Figure 1.1: This dissertation’s contributions (middle, blue). In each of the technical chapters,
we discuss the design of a platform that restructures an advanced cryptographic primitive
(above) to execute efficiently on a constrained hardware platform (below).

accelerator hardware while working within their limits. In secure applications, the specific
input data (messages, training examples, proof witnesses) may change, but the computa-
tional pattern remains the same, as input-dependent processing might leak the contents of
the messages or training examples. Thus, in many cases we know the exact sequences of
operations a-priori, and can work to better support them on the hardware we have. Where
cryptographic primitives currently have no obvious division between existing CPUs and new
hardware platforms, we can reformulate them to better suit the environment in which they
will be running. Finally, given new heterogeneous hardware systems, we have the ability to
reshape overall system architectures to distribute computation to mobile platforms, or focus
heavyweight problems towards the cloud where accelerators are available. Therefore, we
present our thesis statement, which we will support throughout the rest of the dissertation.

1.3 Thesis Statement

Real-world applications can feasibly leverage advanced cryptographic primitives without com-
pletely sacrificing performance by restructuring the primitives to move protocol execution to
resource-constrained devices.

1.4 Roadmap for This Dissertation

This dissertation explores in depth how we can build performant systems for complex cryp-
tography by leveraging the computational benefits of specialized hardware, while working

1.4. ROADMAP FOR THIS DISSERTATION 5

within their constraints. We validate our thesis by building three general-purpose platforms,
each supporting a different cryptographic primitive, which are detailed in Figure 1.1. Each
platform enables a wide array of different applications that all use this core primitive.

Chapter 2 details our work in creating a new metadata-hiding architecture for data
backhaul that can run on mobile and embedded devices. In turn, allowing third-party devices
to privately expand network connectivity can support countless sensing applications, from
distributed scientific data collection (e.g. temperature, air pollution) to package tracking or
infrastructure use monitoring, anywhere on Earth, without requiring bespoke infrastructure.
Prototype implementations for our sensor, gateway, and cloud-based components can be
found at https://github.com/lab11/nebula.

Chapter 3 presents our platform for secure MPC that leverages GPU acceleration. We use
it to support three linear secret-sharing protocols and privately train convolutional neural
networks that would have been infeasible to securely train otherwise, requiring weeks of
computation. Piranha is also designed to allow future protocol improvements to benefit from
GPU acceleration, and each protocol can be extended to execute desired MPC application.
We open-sourced our platform at https://github.com/ucbrise/piranha.

We discuss our work on enabling large single- and batch-instance zero-knowledge proofs
on the GPU in Chapter 4. We target a core bottleneck in zero-knowledge proofs, multiscalar
multiplication (MSM), improve latency for large single proof execution on the GPU, and
allow larger MSM input sizes that leverage both CPU and GPU memory. Our platform
can thus accelerate zero-knowledge attestation of more complex circuits. We also discuss
an approach for improving the runtime of batch MSM evaluation by leveraging addition
sequences, targeting high-throughput scenarios where the same proof is continually evaluated
with different inputs (e.g. validating blockchain transactions).

Finally, this dissertation concludes in Chapter 5 by summarizing the lessons we learned in
developing each platform, as they can be applied to adapting new cryptographic primitives to
evolving device capabilities or designing new hardware support for efficient, private, systems.
In particular, we find that cryptography can most effectively utilize hardware accelerators if
it primarily relies on supported data types (e.g. “small” 32- and 64-bit integer fields) and
computation (common symmetric and asymmetric cryptography), supplemented by more
expensive operations as needed. Counter-intuitively, we show that cryptographers should
prioritize low memory overheads even when it results in more computation, all the better to
fit larger problem sizes onto larger device. On the other hand, we note that hardware devel-
opers could better support cryptography by adding hardware support for common building
blocks like elliptic curve cryptography and increasing memory availability to support larger
problem sizes.

https://github.com/lab11/nebula
https://github.com/ucbrise/piranha

6

Chapter 2

Hiding Metadata in Mobile Data
Backhaul Networks

2.1 Introduction

Imagine being able to deploy a small, battery-powered device nearly anywhere on earth that
humans frequent and having it send data to the cloud, running large-scale networks for wild-
fire monitoring, smart farming [215], search and rescue [105], censorship circumvention [182,
176], or asset tracking [81, 104] – all without setting up a physical gateway, looking up
WiFi credentials, or acquiring a cellular SIM card. Backhauling (i.e. retrieving) data from
widely-dispersed sensors is one of the greatest bottlenecks to deploying the long tail of small,
embedded, and power-constrained IoT devices in nearly any setting.

Unfortunately, decoupling device deployment from the network configuration needed to
transmit, or backhaul, sensor data to the cloud remains a tricky challenge, but the success
of Tile and AirTag offers hope. They have shown that mobile phones can crowd-source
worldwide local network coverage to, for example, find lost items. We argue that the same
network design can be leveraged in an embedded sensing context.

As an example, consider deploying sensors on urban bike paths to gather usage data.
Such data is crucial to inform investments in future infrastructure [145]. Rather than setting
up a dedicated infrastructure to retrieve sensor results, Figure 2.1 shows the parties involved
in a proxy-based approach to data backhaul, inspired by Tile’s architecture. The sensor,
with a low-power BLE radio, gathers usage data. When a mule (e.g. a mobile device) is
within range, it connects to the sensor and collects a data payload. When the mule returns
to network coverage (e.g. cellular or WiFi), the payload is uploaded to an application server.
Throughout, a platform provider manages the backhaul network. While other technologies
exist that could transmit data from the sensors deployed in the wide area to the cloud, they
suffer from some combination of deployment hassle, high cost, and energy limits.

An ad-hoc data backhaul platform would remove the need for manual data retrieval,
application-specific networking infrastructure, or costly and power-hungry wide-area con-

2.1. INTRODUCTION 7

Figure 2.1: Data backhaul participants in an urban infrastructure application. Data mules
(e.g. people with phones) pass sensors and collect data (1) using a local low-power wireless
protocol (e.g. Bluetooth). When in cellular or WiFi range, they upload the data to an end
application server (2). A platform provider administers the network by charging application
servers (3), and paying mules (4).

nectivity. Recognizing the benefits of backhaul systems, several bespoke solutions exist, but
with limitations. Apple’s FindMy network [81] privately reports device location information
to device owners, but this system is extremely application-specific. Sidewalk [9] is a static
backhaul system operating on Amazon-manufactured hardware. Sidewalk, as a large-scale
system, enables new sensor capabilities and extends the range of many existing devices. For
example, Tile is a participant in the Sidewalk network and can retrieve tag locations through
Sidewalk-enabled gateways. Third-parties can also certify and add devices [227]. However,
because it is highly-centralized, Sidewalk collects device identifiers at scale which must be
deleted to avoid potentially tracking passers-by [68]. Over time, a centralized provider (in
this case, Amazon) is able to collect vast amounts of time-location data, tied to device identi-
fiers, about the people who participate on the network. Privacy leakage in such a ubiquitous
network is a major concern: location data about users has been shown to leak harmful infor-
mation including medical conditions, religious affiliations, social relationships and location
traces [73, 20, 65, 68]. Moreover, none of these systems offer a financial incentive mechanism.

As the scope of backhaul networks grows to encompass more mule devices, thus expanding
network reach and capability, we urgently require a ground-up solution to privacy leakage
that is practically deployable. We therefore explore the question:
How do we architect a backhaul system that minimizes the purview of the central platform
provider, thereby preserving mule privacy from the provider, while enabling an incentivized,
scalable data backhaul network?

2.1. INTRODUCTION 8

Figure 2.2: Nebula, in comparison to centralized designs such as Sidewalk [9], takes a de-
centralized approach. Mules route data directly to application servers, improving location
privacy.

2.1.1 Nebula

In response to this question, we introduce Nebula, a privacy-first platform for general-purpose
data backhaul. In contrast to prior backhaul efforts, we prevent mules from revealing their
location to the provider, allow the provider to charge applications, compensate mules for
system usage, and handle authentication and spam prevention in the absence of end-to-end
connectivity. Nebula avoids giving the platform provider wide and deep visibility by em-
ploying a decentralized architecture, as shown in Figure 2.2. At the same time, applications
in Nebula can still benefit from the ease of deployment and management that the platform
provider offers: the platform provider recruits and manages a network of mules, and handles
the associated payments.

Participants in Nebula upload sensor data directly to individual application servers, and
interact with the provider entirely asynchronously from any data upload, which prevents
the provider from observing backhauled data. A decentralized approach allows the platform
provider to retain useful properties while eliminating a global view of identity, payment, and
location. Removing the platform provider from the data path addresses our primary concern
of passive observation of all mule upload behavior, but it also complicates several critical
network management functions, which we discuss below. We show that Nebula (a) provides
a significantly stronger notion of participant privacy while (b) placing minimal additional
burdens on energy- and compute-constrained mobile devices.

2.1.2 Enabling Payment with Pre-purchased Tokens

When a provider routes data payloads from mules to application servers, like in Sidewalk [9],
billing is simple: charge applications based on forwarded payloads and, if desired, reward
mules. The challenge is to maintain this payment functionality while preserving mule privacy.
A key insight underlying Nebula is that this process need not require payload-by-payload
accounting: applications can pre-purchase tokens and distribute them to mules in exchange

2.1. INTRODUCTION 9

for data. Importantly, when redeemed, these tokens should not be linked to the party
who purchased them, as this would give the provider information about the applications a
particular mule was interacting with. Instead, mules in Nebula redeem these tokens on a
fixed schedule, while the tokens themselves are indistinguishable from each other, avoiding
additional information leakage.

We instantiate our design with PrivacyPass [64], as their token scheme is practically effi-
cient and currently deployed at Internet-scale to automate Internet challenges like CAPTCHAs.
PrivacyPass is a building block and by itself not sufficient to provide privacy-preserving back-
haul. The original construction assumes that participants will directly exchange tokens with
a central server in exchange for resources [64], while Nebula’s decentralized setting is sig-
nificantly different, in that the application servers initially receiving tokens will pass them
off out-of-band to various mules who will then attempt to redeem them. Preventing misuse
becomes more challenging, requiring a novel protocol that wraps PrivacyPass (Section 2.5).

2.1.3 Preventing Spam with Mule-Based Authentication

Since mules may backhaul payloads for sensors in areas that lack direct network connectivity,
such as in elevators [80], on farmland [215], in parking garages [171], or on hiking trails [154],
our system cannot rely on contemporaneous sensor-to-cloud connections for authentication.
Instead, we assign persistent identities to sensors, which enable mules to verify sensor validity
before accepting data payloads. This conserves mule resources by ignoring unauthenticated
or misbehaving sensors. We establish DTLS sessions over BLE connections when mules
encounter sensors, and demonstrate low session establishment costs in Section 2.10.

2.1.4 Using a Complaint Process to Handle Misbehavior

In Nebula, mules owned by third-parties directly interact with application servers. This sets
up a conflict of interest, in that mules might attempt to abuse the system to gain more
compensation without uploading valid payloads, while application servers might try to use
mules’ uploads without fairly compensating the mules. To address these issues, we present
a payload delivery protocol in Section 2.5.4 that, in the case of incomplete delivery, allows
mules to submit anonymous complaints of misbehavior to the platform provider.

Prototype Implementation

We implement our protocol design with BLE-enabled sensors (Nordic nRF52840-based) and
BLE/WiFi-enabled mules (Espressif ESP32), and evaluate performance in deployment sce-
narios using real-world BLE data to estimate mule-sensor interactions (Section 2.10.3). Given
the wide range of expected deployment environments, we develop an analytical model of en-
ergy and memory consumption Section 2.8. On average, our results show that sensors are
able to upload data at 2.8 kB/s while drawing 40.3 mW (Section 2.10.1). Based on our
measurements, we estimate that a smartphone mule can backhaul 1,000 data payloads every

2.2. BACKGROUND AND RELATED WORK 10

day while only consuming 5% battery each day and 3 MB of storage total (Section 2.10.3).
We deployed application servers and a provider capable of producing and redeeming over
445,000 tokens per second (Section 2.10.4).

2.2 Background and Related Work

Low-Power, Wide-Area Networks (LPWANs) are designed to retrieve data for distributed
sensor networks, and can be categorized into licensed spectrum cellular LPWANs and un-
licensed band LPWANs. The most well-known and widely-used licensed band standards
are NB-IoT and LTE-M. Among LPWANs operating in the unlicensed bands, the most
commonly-used protocol is LoRaWAN, an open standard managed by the LoRa Alliance [143]
that utilizes the 915 MHz ISM band for communication. LPWANs, while low in power, sacri-
fice throughput for range. WiFi, on the other hand, has high throughput but is also relatively
high power. BLE does not have the range of LPWANs or the throughput of WiFi, but offers
the lowest-power and lowest-cost solution [144, 141, 166, 79, 1]. Furthermore, the cost of
consumer-focused cellular data plans in the United States has been falling (from $4.64/GB in
2018 to $2.75/GB in 2023) while the cost of cellular IoT remains high [205]. As a result, we
argue that the ubiquity of relatively powerful mobile devices (with BLE, cellular and WiFi)
have created an environment ripe for low-power, limited-range backhaul from distributed
sensors.

2.2.1 Limitations of Current Backhaul Deployments

Helium

Helium is currently the worlds largest LoRaWAN network, with gateways blanketing most
European and US urban areas [102]. It crowdsources participants to deploy stationary
gateways, mine Helium cryptocurrency (HNT) based on the data they backhaul, and send
payloads to Helium routers which forward the data to application servers [95]. Helium uses
a Proof-of-Coverage (PoC) algorithm which requires miners to prove that they are providing
wireless coverage to a specific region [95]. While Helium lowers the barrier to entry for sensor
deployments, it is still limited: many rural areas lack coverage [112], malicious location
spoofing is possible [162], and the unlicensed nature of LoRaWAN means that the upload
capacity is limited [87]. From a privacy perspective, traffic is logged on a public blockchain
where it can be attributed to a particular application [112]. Nebula takes an alternative
approach to Helium, performing backhaul opportunistically.

FindMy

In contrast to Helium, Apple’s FindMy [81] network represents a vertically-integrated, pro-
prietary backhaul network focused on a single application: location tracking. At frequent

2.2. BACKGROUND AND RELATED WORK 11

intervals, FindMy devices advertize a rotating key to nearby FindMy-enabled Apple de-
vices. The receiving devices use this key to encrypt and upload their own GPS location to a
database. The owner of a device can then query for a position report [91] without directly
allowing Apple or the other FindMy devices to learn the transmitted position report. Re-
cent work has shown how to build third-party devices that can generate FindMy-compatible
keys [101] to piggy-back on the network, and how to transmit a small stream (i.e. tens
of bytes per second) of arbitrary information encoded into advertised keys [22]. However,
FindMy fundamentally asks sensors to only provide key material, relying on the mules to
construct the location report. When transitioning to a general-purpose backhaul network,
third-party mules will upload sensor payloads with metadata (i.e. timestamp, destination
application) that could leak personal information. In Nebula, a central privacy goal is to
limit the information a backhaul platform provider can gain.

Sidewalk

Amazon’s Sidewalk network is currently the closest deployed example of a general-purpose
backhaul network, enabling Amazon-owned hardware (e.g. Ring doorbells and Alexa smart
speakers) to act as Sidewalk Gateways for devices with low-power BLE and LoRA (i.e.
900 MHz) wireless radios [9, 42]. The network has a centralized architecture where endpoint
devices connect to a central Sidewalk Network Server (SNS) through Gateways. The SNS
then routes data to the appropriate end-destination application server. While this architec-
ture simplifies tasks such as charging for network use and managing access control, it also
means that sensors and mules must authenticate directly with the SNS as every connection
is made [9]. The routing metadata provided to the SNS includes information on persistent
endpoint and gateway identifiers, transmission times, and desired destination application
servers. Importantly, this metadata reveals which gateways an endpoint sensor visits, which
provides the SNS a centralized view of every device’s last-reported location. Nebula, in
contrast, ensures routing metadata is not exposed to the central platform provider.

2.2.2 Related Work

In addition to Helium, Find My and Sidewalk, many smaller-scale wireless networks inform
this work. ZebraNet [117], an early wireless network, placed devices on Zebras to track their
location. Large scale habitat monitoring offers interesting challenges, such an intermittent
connectivity, not seen in end-to-end connected systems [148]. These early attempts, along
with others [94, 183, 52], inspired many other deployments [162, 134, 228, 216, 4]. Public
WiFi hotspots, including those deployed on trash cans, have been shown to leak information
about the people who connect to them [211, 6]. Finally, Google deployed interaction based
services with the Physical Web and Eddystone [224, 115], but ran into challenges with spam
prevention.

Space or balloon-based sensor networks can also extend connectivity to sensor systems
and search and rescue [202, 155, 212], but require expensive infrastructure to scale. Recent

2.2. BACKGROUND AND RELATED WORK 12

public health events have inspired BLE exposure notifications from Apple and Google [14],
which maintain participant privacy through the use of exposure keys designed to restrict
encounter records to individual user devices. In smart homes, energy data can reveal private
information, making data processing-based privacy schemes desirable for smart meters [114].
VPriv [180] and PrivStats [181] provide location privacy when computing functions or statis-
tics on user paths. There are many anonymous messaging protocols (e.g. for whistle blowers
or activists) [44, 140, 151, 78, 47, 213, 210, 133, 51], as an alternative to Tor. Some prior
work has investigated using such centralized cryptographic mechanisms for use in data re-
porting in opportunistic networks – Cornelius et al. use a mixnet to scramble incoming
payloads together at a centralized location [50] and a follow-on by Kapadia et al. propose a
statistical privacy mechanism to blur reports from users in the same geographical area [121].
In contrast, Nebula first focuses on using existing infrastructure to decentralize the backhaul
mechanism, while providing stronger privacy from a centralized party, as the provider is not
on the data path. Second, we investigate the implications of incentivization in this setting
and propose methods to prevent misbehavior.

2.2.3 Unlinkable Tokens

Nebula requires an unlinkable token construction that satisfies two security guarantees: un-
linkability and one-more-token security, as defined in Davidson et al. [64]. A scheme’s tokens
are unlinkable if, when redeemed to a malicious server, the server cannot link the tokens to
the client(s) that generated them. Second, a scheme satisfies the one-more-token guarantee
if, even with knowledge of many valid tokens, a malicious client cannot forge more valid
tokens.

We use PrivacyPass, a protocol originally deployed to privately replace CAPTCHAs in
CDNs, in a black-box manner to provide these unlinkable tokens, although Nebula is not
tied to this construction. We provide an overview of the protocol below and refer readers to
the PrivacyPass papers for a full treatment of the scheme [64, 129].

At its core, the PrivacyPass protocol uses a verifiable oblivious pseudorandom function
(VOPRF) [64]. A VOPRF involves a client with some input value x and a server with a
PRF secret key k, and calculates the result t =PRFk(x) for the client without revealing
anything to the server. Later, this result t can be verified as a valid PRF output using a
publicly-revealed commitment Y to the secret key k.

A client acquires new unlinkable tokens by picking random inputs and evaluating a VO-
PRF over them with a central server. Crucially, the server also provides a batched discrete
log equivalence proof (DLEQ) to the client, which proves in zero-knowledge that all tokens
were signed by the same secret key (the k committed to by Y). For Nebula, this means that
we do not even need to trust the provider to generate tokens correctly, as application servers
can efficiently check their correctness. Thus, the provider cannot cause privacy leakage by,
for example, using many separate PRF keys. Finally, when a mule presents an unblinded
token later to the server, the server can efficiently verify the token using the public commit-

2.3. SYSTEM OVERVIEW 13

ment to the secret key it used during token generation, without being able to identify the
mule.

2.3 System Overview

In this section, we present the Nebula system overview. We begin by highlighting the
stakeholders involved, and then discuss the Nebula architecture.

2.3.1 Stakeholders

In Nebula, three distinct parties work together to perform sensor data backhaul: the platform
provider, application servers along with their deployed sensors, and mules.

Platform Provider

The platform provider is the coordinating entity, hosting cloud infrastructure and managing
payment processes at scale. As a system administrator, the provider registers application
servers and mule devices and deploys backhaul software to them. As a payment processor,
the platform provider charges application providers and compensates mules based on data
upload.

Application Servers

Application servers are entities that wish to deploy sensors and receive data without pro-
visioning their own mule infrastructure. They register with the platform provider and pay
based on the volume of data they upload through the mules. Before backhaul begins, they
provision their sensors with Nebula-specific credentials (Section 2.5.1). Any one sensor is
managed by only a single application server.

Mules

Mules are mobile entities, primarily cell phone users, that have (potentially intermittent)
Internet access. They run a Nebula service that detects nearby sensors, collects the sensors’
payloads, and delivers them to application servers. They are compensated for their uploads
by the platform provider, which incentivizes them to upload data quickly and often. If the
compensation is sufficiently large, some mules may choose to act as stationary “routers”
around particularly active sensors. In general, smartphones are excellent candidates for
mules, as they are mobile, have low-power wireless radios, and frequently connect to the
Internet.

2.3. SYSTEM OVERVIEW 14

Figure 2.3: Nebula’s privacy-preserving data backhaul architecture. Application servers (1)
pre-purchase unlinkable tokens. When mules pass by a sensor, they (2) pick up application
payloads and (3) deliver them to the relevant application server in exchange for a token. At
fixed intervals (e.g. each month), mules (4) redeem tokens with the platform provider in
exchange for micro-payments.

2.3.2 System Architecture

Nebula operates over a series of long-running epochs (on the scale of a month). Epochs
correspond to points at which the platform provider performs key rotation. The epoch
length forms a tradeoff between privacy and quick compensation. To backhaul sensor data
to the cloud, Nebula has four main phases shown in Figure 2.3 and described in detail in

2.4. THREAT MODEL AND SECURITY GUARANTEES 15

Section 2.5:

1. Application servers pre-purchase tokens from the provider, which can be exchanged for
sensor payloads.

2. Mules opportunistically encounter deployed sensors, verify their identity, and securely
perform payload pickup to gather data to backhaul.

3. Mules deliver payloads to the desired application server, in exchange for a token pur-
chased earlier.

4. Once an epoch, mules redeem tokens with the platform provider and, if they detect
misbehavior, can choose to expose it to the provider.

To protect mules’ privacy, Nebula’s architecture removes the platform provider from the
data path, with payloads backhauled by mules directly to the intended application servers
without a centralized routing step. Sensor data payloads are end-to-end encrypted between
sensors and the application server ensuring that mules and platform providers do not have
visibility into data. When picking up packets, mules authenticate sensor certificates by
tracing trust up the certificate chain to the root CA (i.e. Nebula Certificate Authority).
Similarly, application servers check for packet validity before accepting data and giving to-
kens to mules, filtering out potential spam. At the end of the epoch, the mules authenticate
with the platform provider and trade tokens for payment. This scheme allows us to achieve
our privacy goal (Section 2.4), since the platform provider only sees the number of Privacy-
Pass tokens it signs for each application server, and the number of valid unlinkable tokens
redeemed by each mule, every epoch.

2.4 Threat Model and Security Guarantees

2.4.1 System Abuse

Nebula’s design includes a large system of third-party devices as backhaul mules, and rewards
mule participation through micro-payments. Nebula assumes that mules and applications
servers may behave maliciously for financial gain or to deplete precious network bandwidth,
while the platform provider is honest for the purposes of providing soundness: namely, it will
not try to render a mule unpaid, or deny service, as it is financially incentivized to continue
running Nebula correctly.

Application servers are financially incentivized to minimize the cost of backhaul, so we
consider scenarios in which they attempt to cheat mules, either by refusing to exchange tokens
or by giving invalid tokens in return for sensor payloads. Similarly, mules might attempt
to extract tokens from the application servers without uploading a payload to maximize
profit. In Section 2.5.4 and Section 2.5.6, we detail Nebula’s protocol for payload delivery
that allows mules to submit anonymous complaints against misbehavior, but prevents mules

2.4. THREAT MODEL AND SECURITY GUARANTEES 16

from gaining unearned tokens. The mules themselves are third-party devices that might
attempt to attack system integrity. We assume that a malicious mule can try to spam other
mules with information, or impersonate a sensor for the same purpose. Mules can attempt
to collude with each other to replay duplicate payloads or manufacture new ones in the
hope of getting paid by the system for participating in an upload. At a high level, Nebula’s
soundness guarantees are that only valid payloads will result in payment and that payment
is provided only once per payload. Through a (rate-limited) complaint process, if the mule
correctly followed Nebula’s protocol, delivered the payload to an application server, and did
not receive payment, the mule will either be able to redeem payment from the platform
provider or convince the platform provider that an application server is misbehaving. We
state these guarantees along with their proof sketches in Section 2.6.

2.4.2 Privacy

Since backhaul deployments could span millions of personal devices, Nebula’s goal is to
preserve mule privacy at the provider in that it reveals only the following information to the
provider each epoch (e.g. each month):

1. How many payloads each mule uploaded system-wide,

2. How many prepaid payload deliveries each application server purchased from the
provider, and

3. A set of anonymous complaints against application servers for misbehaving.

At the protocol level, Nebula does not reveal mule identifiers to the provider and ap-
plication servers during their communications; as for non-Nebula-specific network informa-
tion that can leak identity (e.g. IP addresses), we rely on complementary mechanisms for
anonymizing Internet communication, such as Tor [69, 232] or secure messaging/mixnets [187,
44, 140, 78, 47, 213, 51] that allow clients to anonymize their network metadata when con-
necting to untrusted servers. For the rest of this chapter, we assume that mules can connect
to the platform provider and application servers without revealing their identity.

Nebula prevents wide-scale privacy leakage to a service provider by removing the provider’s
visibility of data payloads containing mule identifiers, destination applications, and encounter
timestamps, aggregated over all participants and applications. It is important to note that
Nebula’s decentralized design does not place additional trust in any application server (AS).
Each AS, whether they use a centralized upload service like Sidewalk, or a decentralized
service like Nebula, inherently has access to information encoded in their own sensor data
payloads, which could include time of upload and sensor location. Thus, ASes may still
observe time and location of uploads of their own payloads from the mules as a natural
consequence of receiving timely device-specific data from sensors that have been deployed in
known locations. In some cases, this can indirectly leak information about mule paths [68]

2.4. THREAT MODEL AND SECURITY GUARANTEES 17

– so in Nebula, the mules are compensated by the application servers for their work as well
as for their exposure, and mules choose which application servers they wish to serve.

Collusion

We provide malicious privacy against a platform provider that can collude with other appli-
cation servers and mules. We consider this strong threat model in particular because nothing
stops the platform provider from deploying their own application servers or mules to interact
with the remainder of the Nebula deployment.

A platform provider colluding with a subset of application servers will be able to observe
all information seen by any of the colluding parties, but not the state of honest applica-
tion servers or mules. In particular, the malicious parties will be able to identify the tokens
exchanged for any payload (containing time, location, and other application-specific informa-
tion) uploaded to the colluding application, which they can later link directly to a mule when
they redeem the associated token. However, the colluding parties cannot observe actions a
mule takes that that do not interact with a corrupted application server, and payloads a mule
uploads to an honest server are still unlinkable to the tokens that are eventually redeemed.
In the case of a complaint, mules may leak a small additional amount of information as
detailed in Section 2.5.6. This threat model is mirrored in the security definition presented
below.

2.4.3 Formal Definition

To formally define Nebula’s privacy guarantee, we use the simulation paradigm of Secure
Multi-Party Computation [39]. We provide context for our definition here, and reserve a
more detailed treatment, including an explanation of how our simulation-based definition
matches the informal guarantee above, for Section 2.7.

We refer to an experiment called the real world, which contains parties running the
actual Nebula protocol, and an ideal world, which encodes what the adversary A learns in
a privacy-preserving backhaul system. In both worlds, we consider what information leaks
when executing all possible sequences X of Nebula operations (i.e. token purchase, payload
delivery, token redemption, complaints, and epoch changes). Below, we define what it means
for Nebula to be privacy-preserving, where λ is the security parameter.

Definition 1 (Privacy-Preserving Backhaul System). Let π be the protocol for a backhaul
system, providing parties with the API defined in Section 2.5.

We say that π is privacy-preserving if there exists a non-uniform probabilistic polynomial-
time machine S such that, for every non-uniform probabilistic polynomial-time machine A,
and for every valid sequence X:

{realπ,A(z),X(1
λ)}λ

c≡ {idealS,A(z),X(1
λ)}λ

where
c≡ denotes computational indistinguishability.

2.5. PRIVACY-FIRST BACKHAUL PROTOCOL 18

Theorem 1 (Privacy in Nebula). Assume a semantically secure encryption scheme, a ex-
istentially unforgeable signature scheme, a collision-resistant hash function, and a simulator
for Unlinkable Tokens SUT in Definition 2. Then πNebula is privacy-preserving as defined in
Definition 1.

We further describe our simulation-based formalism and proof sketches in detail in Sec-
tion 2.7 following a description of Nebula’s core protocol.

2.4.4 Limitations

Nebula does not consider the existence of a number of orthogonal sources of leakage and
misbehavior that can be mitigated through existing means. For example, the deployed appli-
cation sensors may attempt to glean identifying information from any data a mule wirelessly
broadcasts (e.g. physical chipset irregularities [88] or unique advertised information[21]).
These problems are not unique to Nebula – local wireless device tracking and identification
has seen significant recent interest [137, 100, 35], and progress in that area can complement
a Nebula deployment.

Given that they are mostly deployed in uncontrolled areas, sensors are likely to face
physical compromise. Malicious sensors might attempt to impersonate other sensors or
mules, tying up computational and communication resources by constantly advertising new
or malformed payloads. Misbehaving sensors can be blocked by their current MAC address,
and in extreme cases, a mule can simply turn off their radio until they move to a different
physical location. However, since backhaul systems are by nature best-effort, this work does
not consider denial of service attacks with limited local impact. Similarly, just like any
other deployed internet-connected service, Nebula cloud parties (provider and application
servers) could experience DDoS attacks, which can be remedied with complimentary solutions
proposed in [120, 26, 142]. In line with best-effort backhaul, if mules choose to drop data
or never connect to WiFi, application servers could lose some data, but in this case mules
will not be paid. To add more reliability, application servers can choose to pay for duplicate
data packets.

2.5 Privacy-First Backhaul Protocol

In this section, we outline the Nebula protocol. This includes device provisioning and deploy-
ment, token pre-purchase, payload pickup and payload delivery along with epoch updates
and complaint management.

2.5.1 Provisioning and Deployment

Application servers are provisioned with a public-private keypair pkas, skas, a matching cer-
tificate for pkas, cpkas , signed by the platform provider, and an AES symmetric key kcomm

preshared with the platform provider. The asymmetric keypair is used to attribute messages

2.5. PRIVACY-FIRST BACKHAUL PROTOCOL 19

Algorithm 1 Token Purchase

Input: Vector of nt randomly sampled blinded tokens
Output: Vector of signed tokens T s.t. |T | = nt or ⊥
Participant(s): Between App Server (AS) and Provider (P)

1: AS pays P to purchase nt tokens and P updates its count of tokens purchased by AS in
the current epoch.

2: AS randomly samples a vector of nt values T
′ and performs t = PrivacyPass.Sign(t′) with

P using the delivery keypair on each value t′ in T ′.
3: If the signing protocol succeeds, AS obtains a vector of signed tokens T s.t. |T | = nt,

else ⊥.

to the application server when delivering a payload, and kcomm protects the confidentiality
and integrity of token commitments made by the application server for the platform provider.
The application servers check cpkas , and additionally use Certificate Transparency [41] to pre-
vent impersonation. Mules also check these certificates against Certificate Transparency.

Each application server provisions and deploys each of their sensors s with a unique
sensor ID ids, an AES symmetric key ks, a public-private keypair pks, sks, and a matching
certificate for pks, cpks , that is signed by the application server.

The sensor ID ids is used by the application server to identify the source of incoming
payloads, and ks secures end-to-end payload confidentiality and integrity between the sensor
and the application server using AES-based authenticated encryption with additional data
(AEAD). ks can be securely derived from ids and a secret key known only to the application
server, such that the application can easily and quickly derive ks from the sensor ID. In the
event that a sensor needs a new key, the application server can assign a new id′s to the sensor,
but must physically redeploy it with the new secret key. pks and cpks are used by nearby
mules to locally authenticate the sensor, establish a secure wireless connection, and verify
membership in a specific deployment.

Finally, each epoch, mules are granted a small, fixed number of tc complaint tokens,
which can be verified by the platform provider using a different PrivacyPass keypair than
normal data upload tokens (they are not interchangeable). These tokens limit the number of
complaints an individual mule can lodge against application servers each epoch; above this
limit, mules should stop interacting with particularly malicious application servers.

2.5.2 Token Pre-Purchase

Before the mule can upload the sensor data to the application server, the application server
must pre-purchase tokens that can be exchanged with mules for delivering sensor payloads
as in Algorithm 1. To prevent the platform provider from identifying which application
servers each mule sent data to (which may be associated with mule activity or location
information), the application server generates a large set of signed tokens by executing the

2.5. PRIVACY-FIRST BACKHAUL PROTOCOL 20

Algorithm 2 Payload Delivery

Input: Application identifier (idAS), data (d), payload hash (Phash), and signature (σhash)
Output: Tokens and complaint record (t, ct) or ⊥
Participant(s): Between Mule (M) and App Server (AS)

1: M creates an anonymous encrypted channel with AS identified by idAS.
2: M sends Phash = (H(d), ids) and σhash = Sign(Phash, sks) to AS.
3: AS checks the sensor’s id and Verify(Phash, σhash, pks), as well as that there are no dupli-

cate payloads matching H(d), aborting if both checks do not succeed.
4: AS samples a random nonce r and unused token t.
5: AS encrypts the token t̂ = Enc(t, skcomm) using a token commit secret key skcomm shared

by AS and P, then sends pre-delivery payload Ppre = (r, t̂, H(d)) and signature σpre =
Sign(Ppre, skas) to M.

6: M checks Verify(Ppre, σpre, pkas) succeeds, or aborts.
7: M sends d to AS.
8: AS verifies H(d) matches the payload hash in Phash, or aborts. AS sends the unencrypted

token in Ptoken = (r, t,H(d)) and σtoken = Sign(Ptoken, skas) to M.
9: M checks Verify(Ptoken, σtoken, pkas) succeeds, or aborts.
10: On success, M retains token t and a complaint record ct = (Ppre, σpre, Ptoken, σtoken). If

the protocol did not complete, M obtains an empty token and complaint record ct =
(Ppre, σpre, d), and adds ct to its complaint list C. If the protocol aborts, the M obtains
⊥.

PrivacyPass signing protocol (PrivacyPass.Sign, Section 2.2.3) with the platform provider, for
some monetary cost over an encrypted TLS sessions.

2.5.3 Payload Pickup

When a sensor s desires to upload sensor data, it broadcasts wireless advertisements with a
Nebula-specific identifier to nearby devices. Any mule that passes by can then identify and
choose to connect to the advertising sensor. To confirm that the sensor is authorized to send
data using Nebula, the sensor authenticates to the mule while establishing a TLS session,
from which following communication over the wireless connection derives confidentiality and
integrity. For example, malicious nodes in the same location cannot inject traffic into the
wireless link. Most importantly, the sensor identifies itself to the mule using its certificate
cpks , which the mule can use to confirm that the sensor belongs to an application server for
which it has chosen to backhaul data. The mule does not mutually authenticate with the
sensor to prevent directly leaking its identity to the application. If session setup fails, the
mule ignores the sensor and closes the wireless connection.

If authentication is successful, the sensor generates data payload and end-to-end encrypts
it using authenticated symmetric encryption with a fresh nonce under key ks to create d. This
encryption ensures that only the correct application server can verify and decrypt the sensor

2.5. PRIVACY-FIRST BACKHAUL PROTOCOL 21

Figure 2.4: The Nebula delivery (top) and complaint (bottom) protocols. Using a complaint
token tc, a mule can submit a complaint to the platform provider alleging misbehavior if the
exchange is not completed (orange), or if the token is invalid (blue). If valid, the platform
provider grants the mule a new token and forwards the missing payload to the application.
The mule reveals nothing in the complaint other than that it interacted with the application
in that epoch.

data payload, and provides confidentiality and integrity against tampering by other parties
that obtain the payload. The sensor also generates a header payload Phash, containing ids
and a hash of the payload H(d), and signs the header with its secret key, yielding signature
σhash. This hash can allow the application server to identify when duplicate payloads are
being submitted (Section 2.5.5). The sensor then sends the mule Phash, σhash, and d. Once a
mule has received a complete backhaul payload – Phash, σhash, and d – it is ready to deliver
the payload to the application server.

2.5.4 Payload Delivery

To deliver a payload, the mule forms a TLS connection through an anonymous commu-
nication service with the destination application server. Before accepting a payload, the
application server verifies the hash of both the payload Phash and signature σhash. If the
payload is valid, the application server picks a token t it will exchange for a valid data d
upload. The payload delivery scheme is shown in detail in Figure 2.4 and Algorithm 2.

During the exchange, payloads may be malformed, so the mule and app servers must
carefully verify every payload and signature. We also identify three non-trivial cases where
misbehavior during the delivery phase could result in an application server not receiving a
payload or a mule not receiving a valid token in exchange (Figure 2.4), which require an
out-of-band complaint process. In particular, (1) a mule may simply decide not to deliver

2.5. PRIVACY-FIRST BACKHAUL PROTOCOL 22

Algorithm 3 Token Redemption

Input: Tokens accumulated T
Output: Tinvalid or ⊥
Participant(s): Between Mule (M) and Provider (P)

1: M authenticates with P and sends token list T
2: For each t in T , P checks that (1) PrivacyPass.Verify(t) succeeds and (2) t is not yet in P’s

redeemed token list. On success, P adds t to its list of M’s redeemed tokens. On failure,
P adds t to invalid token list Tinvalid. If a duplicate, P adds t to the original redeemer’s
Tdup list.

3: P sends Tinvalid to M, or ⊥ if the verification aborts.
4: For each invalid token, M adds the corresponding complaint record retained from payload

delivery (Algorithm 2) to its complaint list C.

payload d after receiving Ppre, (2) an application server might not respond with any token
t, or (3) it might respond with an invalid token. We show in Section 2.5.6 that a separate
complaint process can force a mule to upload missing payloads in the case of (1) and confirm
application server misbehavior to the platform provider in the case of (2) or (3).

2.5.5 Token Redemption

Once per epoch, each mule forms a secure TLS session with the platform provider, authenti-
cates itself, and redeems its accumulated tokens. The platform provider verifies each token
has been correctly signed using PrivacyPass.Verify and indicates any invalid tokens to the mule.
The server must then verify that the valid tokens are not duplicates of redeemed tokens, in
order to prevent replaying tokens for economic gain. As immediate remuneration is not
critical, Nebula allows the platform provider to check for replays in the background, and
notifies mules at the end of the epoch if any of their tokens have seen duplicate submissions.
Finally, the provider compensates mules out-of-band for the number of valid, unredeemed
tokens they submit.

In order to prevent the database of already-submitted tokens from getting too large, we
flush old token reuse databases from previous epochs when the platform provider rotates
keys each epoch. The Nebula platform provider retains the token database and key material
from the most recent previous epoch so that old tokens can still be redeemed by mules across
one epoch boundary, but rejects any older tokens. Application servers are responsible for
only distributing tokens corresponding to the current epoch, otherwise, mules may submit
complaints to the platform provider after having receiving invalid tokens.

2.5.6 Complaining About Misbehavior

We address the significant latitude for issues during payload delivery by allowing mules to
register complaints with the platform provider, once per epoch, with the hope of recovering a

2.6. FORMAL SOUNDNESS GUARANTEES 23

Algorithm 4 Complaint

Input: A single complaint token (tc) and record (c)
Output: A valid token for redemption t∗ or ⊥
Participant(s): Mules execute on the start of a new epoch

1: M creates an anonymous encrypted channel with P and sends complaint token tc and
complaint record ct generated by payload delivery (Algorithm 2).

2: P checks that PrivacyPass.Verify(tc) succeeds with the current epoch complaint keypair, tc
is not yet in P’s used complaint token list, Verify(Ppre, σpre, pkas) succeeds using the σpre

in c, and PrivacyPass.Verify(t) succeeds with the current epoch delivery keypair, for the
decrypted token t = Dec(t̂, skcomm)

3: On failure, P sends ⊥ to M. On success, P adds tc to its used complaint token list and
adds t to its redeemed token list to prevent duplicate redemptions.

4: If c contains a Ptoken payload, M sends Ptoken and σtoken to P, who checks that
Verify(Ptoken, σtoken, pkas) succeeds and the token in Ptoken is actually invalid or a du-
plicate, and aborts if not. Sends ⊥ if a mule has already complained about this token as
a duplicate.

5: Otherwise, M sends d to P, who verifies that H(d) matches the hash in Ppre and forwards
d to the AS that signed σpre if successful and aborts if not.

6: M samples a random value t∗
′
and performs t∗ = PrivacyPass.Sign(t∗

′
) with P using the

next epoch delivery keypair.
7: If the signing protocol succeeds, M obtains a token t∗ redeemable in the new epoch, else
⊥.

token lost to misbehavior. Note that to do so, mules must leak a small amount of information
– they interacted with the application server they are accusing at some point in this epoch and
the size of the payload – privacy-conscious mules retain the ability to never avail themselves
of the complaint process. For the platform provider, complaints against specific applications
can be fed into a rating system that can identify misbehavior over time and allow the
provider to take action. To complain, the mule uploads one of its limited complaint tokens
and information about the delivery interaction for the platform provider to evaluate at the
start of an epoch as described in Algorithm 5. Tokens provided by honest ASes will not
collide, but dishonest ASes that collude to reuse tokens will be identified as malicious during
complaint process. The bottom section of Figure 2.4 and Algorithm 4 detail the complaint
process.

2.6 Formal Soundness Guarantees

Given the specifications of each phase, we prove below a group of closely-related properties
related to the soundness of the core Nebula protocol: payload delivery and complaints.

2.6. FORMAL SOUNDNESS GUARANTEES 24

Algorithm 5 New Epoch

Input: Complaint count nc, prior epoch Tdup token list
Output: Complaint tokens and valid tokens (Tc, T

∗) or ⊥
Participant(s): Mules execute on the start of a new epoch

1: Each M marks the next epoch active, randomly samples a vector of nc values T ′
c and

performs tc = PrivacyPass.Sign(t′c) with P using the next epoch complaint keypair on each
value t′c in T ′

c.
2: If the signing protocol succeeds, each M obtains a complaint token list Tc s.t. |Tc| = nc,

else ⊥.
3: M adds complaints matching tokens in Tdup to C.
4: Each M anonymously runs the complaint protocol (Algorithm 4) with each of the com-

plaint payloads in its C, obtaining a set of new tokens T ∗ valid in the new epoch, else
⊥.

Claim 1 (Nebula valid token exchange). Assuming an existentially unforgeable signature
scheme, in the Nebula system, any mule M that delivers a payload to an honest AS using
Algorithm 2 will receive token t only if Verify(Phash, σhash, pks) succeeds in Algorithm 2 step
3.

Proof Sketch. If the check at step 3 fails, the AS aborts and returns ⊥ instead of a valid
token. Soundness follows from the existential unforgeability of the signature scheme, because
the signature σhash on Phash could only have been generated by the sensor who knows pks.
□

Claim 2 (Nebula duplicate payload upload). Assuming an existentially unforgeable signature
scheme, a semantically secure encryption scheme, and a collision-resistant hash function, in
the Nebula system, any mule M that delivers a valid payload twice to an honest AS using
Algorithm 2 (i.e. Verify(Phash, σhash, pks) succeeds in Algorithm 2 step 3) will receive at most
one token t.

Proof Sketch. On the first and second deliveries, if the payload d does not match Phash, M
will not receive any tokens per Claim 1. If M can present a valid Phash, σhash, and d to the
AS, on the first delivery, AS can either abort the protocol, yielding no token, or send one
valid token t in Ptoken. AS stores the payload hashH(d), such that on the second delivery, the
payload hash will match and abort the protocol. This follows from the deterministic property
of the hash function, and results in at most one token. Note that while an encrypted token
is present in Ppre, the semantic security of the encryption scheme ensures that only AS or
P could decrypt the ciphertext to reveal a valid token. M could attempt to file a complaint
with the provider using Algorithm 4 in a bid to retrieve another token using the (Ppre, σpre)
it received in Algorithm 2 step 5 and either d or (Ptoken, σtoken) from Algorithm 2 step
10. In the former case, the provider would simply invalidate the token returned by AS in

2.7. FORMAL PRIVACY GUARANTEE 25

Algorithm 4 step 3 before generating the new token, and in the latter case, the provider
would abort in step 4 as the original token is still the one valid token. □

Claim 3 (Nebula token guarantee). Assuming an Unlinkable Token scheme with unlinka-
bility and one-more-token security guarantees, an existentially unforgeable signature scheme,
a collision-resistant hash function, and a semantically secure symmetric encryption scheme,
in the Nebula system, for any honest mule M, for any application server AS, if M validates
Ppre in Algorithm 2 step 6, M will either receive a token t that can be successfully redeemed
in Algorithm 3 or convince the provider of AS misbehavior.

Proof Sketch. After receiving a Ppre message from the AS with a valid signature σpre, there
are four cases:

Case 1. Upon M sending d to AS, AS does not respond with Ptoken and σtoken; the AS
is attempting to steal the data without rewarding M with a token. M saves a complaint
record as described in Algorithm 2 and, at the end of the epoch, lodges a complaint using
Algorithm 4. P verifies that Ppre is correct, which relies on the existential unforgeability
of the signature scheme, and M sends the payload d to P which matches the hash in Ppre.
Given the collision-resistant property of the hash function, this is the payload that the AS
originally committed to receiving, so P forwards the payload to AS and signs a new token
for M. M can verify that this token was signed with the correct key, following from the
Unlinkable Token scheme’s unlinkability guarantee, resulting in a valid redeemable token t∗.

Case 2. AS responds with Ptoken and σtoken, but the token t contained in Ptoken is flagged
as invalid by P in Algorithm 3; the AS gave M an invalid token. M saves a complaint record
and lodges a complaint at the end of the epoch using Algorithm 4. P verifies σtoken, which
relies on the existential unforgeability of the signature scheme, and that Ptoken’s token cannot
be verified using the Unlinkable Token scheme. This implicates AS in providing an invalid
token, because AS checks that tokens are correctly signed by P at purchase time, which
follows from the unlinkability guarantee. P signs a new token for M, which M can likewise
verify, resulting in a valid redeemable token t∗.

Case 3. AS responds with a Ptoken and σtoken but the token t in Ptoken is a duplicate of
a token already redeemed. M and the mule that redeemed t earlier can lodge a complaint
at the end of the epoch, with P verifying σtoken as above in Case 2. As the AS gave M an
already-used token, the different Ptoken payloads in each complaint will contain the same t,
convincing P that the signing AS(es) are misbehaving.

Case 4. AS responds with a Ptoken and σtoken containing a valid redeemable token t. □

2.7. FORMAL PRIVACY GUARANTEE 26

Figure 2.5: Overview of the real and ideal worlds.

2.7 Formal Privacy Guarantee

In this section, we define Nebula’s privacy guarantee in the simulation paradigm [39] (note
that Nebula’s privacy could also be defined and proved in a computational indistinguisha-
bility framework depending on the guarantees of the underlying building blocks). We give
an overview of the proof and connect it to the informal privacy guarantees in Section 2.4,
then present the structure of the simulation and a proof sketch for indistinguishability.

The real and ideal world are depicted in Figure 2.5. In the real world, honest application
servers and mules (ASH andMH , respectively) interact with a malicious provider, application
servers, and mules (P , ASC , and MC) controlled by A. In the ideal world, the honest parties
are represented by an uncorruptible trusted party F called an ideal functionality; on every
operation, F provides a simulator party S with a well-defined subset of information about
the operation. This subset defines what information Nebula leaks to A and provides a clear
definition of privacy in our setting. S then interacts with A to complete the operation. S,
however, cannot perform the operation exactly as an honest party because it does not know
all operation inputs, only the subset it was given by F . S must simulate the operation such
that what A sees is computationally indistinguishable from what it would see in the real
world. The existence of S that can properly simulate the Nebula protocol would show that
Nebula reveals no more to A than what F gives S on each operation.

2.7. FORMAL PRIVACY GUARANTEE 27

2.7.1 Limitations

For simplicity and to enable us to focus on the core behavior of Nebula, we do not model
all aspects of the complex real system, as follows. First, in practice, epochs overlap to avoid
losing data from payload pickups near the end of the epoch: we model one epoch at a
time in sequence. Second, we don’t directly model network connections, including network
information that might be leaked when honest parties connect to corrupted participants,
because parties can hide this information using complementary systems like Tor Section 2.4.4.
We also do not model messages dropping/becoming corrupted during transport. Third, we
don’t model timing or concurrent operations (although our implementation of Nebula in
Section 2.9 handles concurrent redemption), and assume that we process one operation
at a time. Fourth, we assume the sensors and payment mechanism are external, as they
have little bearing on performing the protocol: sensors simply generate the inputs to the
mules, which we model as appearing directly in X, and we assume the provider can charge
for executing purchase tokens operations. Fifth, application servers and mules may be
malicious, but we restrict A to static compromise – honest parties do not later become
malicious. Finally, our definition here captures the privacy that mules have in Nebula, and
not the confidentiality of the payload from the sensors (which is taken care off independently
via end-to-end encryption).

2.7.2 Real World

In the real world (Figure 2.5), honest mules MH and application servers ASH (the honest
parties) interact directly with the mules, application servers, and provider (MC , ASC , and P ,
respectively) corrupted by A according to the Nebula protocol described in Section 2.5. The
honest parties are given a sequence of operations X = {x1, ..., xn} to execute, where each
operation xi is one of the following operations: purchase tokens(idAS, nt), deliver(idM ,
idAS, (d, Phash, σhash)), redeem(idM , T), and new epoch(nc, Tdup).

Valid sequences X have a specific structure, which models the flow of the Nebula protocol
over the course of each epoch. Specifically, for any X of length n, X begins and ends with a
new epoch – x1 and xn are always new epoch – and normal operations and new epochs are
interleaved in the rest of the sequence – every xi for 1 < i < n is one of purchase tokens,
deliver, redeem, or new epoch.

In each X, the mules and application servers that should execute the operation are
identified by idM and idAS, respectively. nt is the number of payloads an application server
should prepay for delivery (e.g. number of tokens an application server should purchase),
nc the number of complaints a mule can make in that epoch, T is a list of delivery tokens a
particular mule attempts to redeem with the provider, d is the sensor data to deliver, and
Tdup is a list of the mule’s submitted tokens that saw duplicate submissions.

Operations that do not include an honest party are not included in X because A already
has perfect visibility on the operation, and need not follow the Nebula protocol at all.
However, operations that are only visible to honest parties are included in X, as this ensures

2.7. FORMAL PRIVACY GUARANTEE 28

that our proof demonstrates that interactions been honest parties do not affect participant
privacy.

2.7.3 Ideal World

In the ideal world (Figure 2.5), we define an ideal functionality F that captures Nebula’s
privacy guarantees. F receives sequence X as input and executes the operations one at
a time in the order provided. To perform each individual operation, F interacts with the
simulator S as specified below, with communication from F to S underlined. S, in turn,
simulates the Nebula protocol toward A based on the subset of each call with which it was
provided.

For new epoch(nc, Tdup), F marks the next epoch as active, initializes each honest mule’s
complaint counter to nc, and sends new epoch(nc, Tdup) to S.

For complain(c) from S, F finds the mule corresponding to c, and if its complaint counter
is greater than 0, sends ⊤ to S and decrements the counter. Else, F sends ⊥.

For purchase tokens(idAS, nt), F adds nt to idAS’s purchased token counter for this epoch,
and sends purchase tokens(idAS, nt) to S.

For deliver(idM , idAS, (d, Phash, σhash)), there are 4 cases:

1. If both idM corresponds to an honest mule (idM in MH) and idAS corresponds to an
honest application server (idAS in ASH), check for a duplicate payload hash H(d) and:
decrement idAS’s purchased token counter if is greater than 0 and increment idM ’s
delivered payload counter by 1 and add H(d) to idAS’s received payload list, else do
nothing. F does not send anything to S.

2. If idM corresponds to an honest mule but idAS corresponds to a malicious appli-
cation server (idAS in ASC): increment idM ’s delivered payload counter by 1 and
send S the operation deliver(, idAS, (d, Phash, σhash)), where the “ ” notation indi-
cates that the first argument (in this case, idM) is not sent to the simulator.

3. If idM corresponds to a malicious mule (idM in MC) but idAS corresponds to an honest
application server, check for a duplicate payload hash H(d) and: decrement idAS’s
purchased token counter if greater than 0, add H(d) to idAS’s received payload list,
and send S ⊤ to denote success, else send S ⊥ to denote failure.

4. If idM corresponds to a malicious mule and idAS is honest but d is missing (only Phash

is provided by S), check for a duplicate payload hash H(d) and idAS’s purchased token
counter is greater than 0 and send S ⊤ to denote no duplicate or ⊥ otherwise.

2.7. FORMAL PRIVACY GUARANTEE 29

For redeem(idM , T), F calculates the redemption size n as min(|T |, idM delivered pay-
load counter), decrements idM ’s delivered payload counter by n, and sends S the operation
redeem(idM , n).

Relation to informal properties in Section 2.4.2

F sends a set of information to S above that correspond to the informal privacy properties
listed in the main text. Specifically, S sees:

1. Each purchase tokens operation, allowing A to see how many payload deliveries each
AS prepurchases in an epoch,

2. The count of tokens in each redeem operation, which leaks to A how many tokens
overall a mule redeems in each epoch, and

3. Each complain operation without mule identifiers, leaking to A each complaint reg-
istered against each AS. In addition, A sees when new epochs begin, duplicate token
uploads, the payloads delivered to malicious ASes, and if uploads succeed from mali-
cious mules.

2.7.4 Proof

We prove Theorem 1 by constructing a simulator S for Nebula that, given the information
provided by F on each operation, interacts withA so that it cannot distinguish the real world
from the ideal world. For readability, we say “A cannot distinguish the real world from the
ideal world” in this section to mean the cryptographic equivalence stated in Definition 1
applied to πNebula:

∃S∀A∀X{realπNebula,A(z),X(1
λ)}λ

c≡ {idealS,A(z),X(1
λ)}λ

.
S interacts withA on an operation-by-operation basis, just as honest mules or application

servers would in the real world. F is designed to avoid giving S mule identifiers when
delivering payloads (or complaining about payload delivery), so S’s main role is to act
as (1) a mule performing all honest backhaul operations in the system and (2) an honest
application server managing malicious mules. Nebula is designed such that the malicious
provider, application servers, and mules cannot distinguish this case from individual mules
each providing a subset of the backhaul service.

We use a unlinkable token (UT) protocol as a building block in Nebula. Let SUT be a
simulator for a UT protocol with the unlinkability and one-more-token security guarantees
as described in Section 2.2.3. We instantiate SUT with the PrivacyPass protocol [64, 129];
given that Davidson et al. [64] do not formally provide an existing simulator for PrivacyPass,
and it is out-of-scope here to create it, we assume a simulator with an interface as defined
below.

2.7. FORMAL PRIVACY GUARANTEE 30

Definition 2 ((Informal) Simulator for Unlinkable Tokens). SUT has the following interface:

• SUT.KeyGen() simulates generating a new keypair and publishing its public parameters
to A

• SUT.Signk(t
′) simulates signing a given token value t′ under some key pair k

• SUT.Redeemk(t) simulates redeeming a signed token t under some key pair k

Description of S

In the setup phase, A simulates SUT.KeyGen() twice to generate epoch delivery and complaint
keys kc and kd, and reveals the public params to S. A generates a separate symmetric key
ki for each idAS in ASH and sends to S, and S generates public-private keypairs for each
AS in ASH and a keypair for every sensor s controlled by an honest AS; A gives the public
keypairs for each AS in ASC to S.

For start epoch, S simulates SUT.Signkc(t) for every t in a random vector of nc blinded
tokens and appends each token list to the epoch master Mule complaint token list. S adds
the complaint records the tokens in Tdup to its complain list. Then, for every record c in the
complaint list, S sends complain(c) to F . If F returns ⊤, S pops a token off of last epoch’s
master Mule complaint token list and sends it along with c to A. If c contains Ptoken, S
sends (Ptoken, σtoken), else d to A. If A does not reply with ⊥, S simulates SUT.Signkd(t) on
a new token t with A and appends it to the new epoch Mule delivery token list.

For purchase tokens, S simulates SUT.Signkd(t) for every t in a random vector of nt blinded
tokens. S appends the tokens to the epoch master AS token list.

For deliver, there are two cases. First, if S receives the operation from F to deliver a pay-
load to a malicious idAS: S sends the AS (Phash, σhash), verifies the resulting σpre using the
right skas, sends d to A, verifies the resulting σtoken and saves the output token in the epoch
master Mule delivery token list and a complaint record. Second, if S receives the operation
from A to deliver a payload to an honest idAS: S checks σhash using the correct sensor secret
key and sends Phash to F to check for duplicate. On success, S picks a random r, pops a token
t from the master AS token list, and uses its keys to generate Ppre and sign σpre for A. When
A sends d, S checks that the payload hash matches and generates and sends Ptoken and σtoken.

For redeem, S pops n tokens from the epoch’s master Mule delivery token list and sends
the list to A. On response with the invalid token list, S adds the matching complaint records
to its complaint list.

2.8. ANALYTICAL MODEL FOR ENERGY AND MEMORY CONSUMPTION 31

Proof Sketch for Indistinguishability

In this subsection, we sketch a proof for why A cannot distinguish the real world from the
ideal world for each operation executed by the simulator S.

Proof Sketch. For start epoch, S uses SUT to simulate the complaint token generation.
Since this simulation is, by definition, indistinguishable, and S knows to sign |MH | vectors
of nc elements at each epoch, A sees indistinguishable signing requests from the real world.
This follows from the computational indistinguishability of the random blinded tokens S
submits to A. When handling complaints, S interacts with F to ensure it submits at most
n′
c complaints per mule. Since S only submits complaints from its honest mules about mali-

cious ASes, it can retain the necessary complaint record c from a previous deliver operation
and perfectly replay the messages to A to submit the complaint as in the real world. Finally,
SUT indistinguishably simulates the signing of a new token.

For purchase tokens, S again uses SUT to simulate the delivery token generation. Since
this simulation is indistinguishable, and S knows how many tokens to sign (nt), it can gen-
erate its own random token values, and A will see an indistinguishable signing request from
the real world, following from the computationally indistinguishable random blinded tokens
S submits to A.

For deliver, in the first case, S is given the payload to deliver (d, Phash, σhash) and so
can exactly replicate the payloads to A for the delivery protocol as if in the real world. In
the second case, S uses F to check for duplicates, matching exactly the real-world abort
behavior in case of duplicate uploads. S picks a random token indistinguishable from what
the honest AS would choose in the real world and takes the first available delivery token to
return to A. These signed tokens, following from the unlinkable token scheme’s unlinkabil-
ity guarantee [64], are computationally indistinguishable to A, so it doesn’t matter which
particular token S chooses from the epoch’s master AS token list; thus, Ptoken and σtoken are
indistinguishable to A.

Finally, for redeem, S knows exactly how many tokens to submit, and, similarly to the case
above, the choice of tokens does not matter (any set of n tokens in the epoch’s master Mule
delivery token list is valid), as each signed token is computationally indistinguishable in A’s
view. Thus, A sees an indistinguishable token list from S. □

2.8 Analytical Model for Energy and Memory

Consumption

By nature of intermittent interactions between sensors and mules, the memory and energy
consumption of sensors and mules in such a system may vary dramatically across applications

2.8. ANALYTICAL MODEL FOR ENERGY AND MEMORY CONSUMPTION 32

and locations. In an effort to characterize the main factors that affect the performance of this
system and to make informed sensor design choices, we develop two numerical models – one
for a deployed sensor and one for a mule – and explore how memory and energy consumption
may vary depending on the deployment. In Section 2.10.3, we use these models to estimate
the lifetime of a sensor and consider how many payloads a smartphone mule can upload
given energy and memory constraints.

2.8.1 Sensor Model

Low-power sensors provisioned with BLE are often designed to run for years while periodi-
cally advertising [111]. In this section, we explore sensor performance in Nebula.

Sensor Configuration

We assume that the sensor runs off of a battery of size sizebattery and employs some sensing
workload wkld (i.e. periodic sensing, event-driven sensing, or long-running sensing). The
sensor accumulates data and desires to upload the data at a frequency of fupload (e.g. once
a day). When the sensor desires to upload data, it starts broadcasting BLE advertisements
at a rate of fadv until it successfully forms a connection with a nearby mule. Once the
connection is made, the sensor stops broadcasting BLE advertisements.

External Conditions

The largest source of uncertainty for the sensor is in how long it must broadcast BLE
advertisements before forming a connection. The duration of this time can be parameterized
by mule arrival frequency farrival, how long each mule stays in the vicinity of the sensor
τmule, how frequently each mule listens for advertisements flisten, and the probability that
any given attempt at connecting with a mule transfers all the data psuccess. These values vary
greatly depending on the physical location, time of day, or time of year. While we explore
some of the range that these values can take on in Figure 2.8 and Section 2.10.3, for the sake
of this model, we make the simplifying assumption that these values are constant and the
interactions are uniformly distributed.

Sensor Energy Consumption and Lifetime

The average power consumption of the sensor can be broken into two parts: workload power
from sensing, and network power from BLE advertisements and the wireless communication
Nebula requires. We denote the workload power Pwkld and calculate the network power. At
any moment in time, we assume there are farrival ∗ τmule number of mules near the sensor.
Since each mule listens at a frequency of flisten, the period of time between is

1/(farrival ∗ τmule ∗ flisten)

2.8. ANALYTICAL MODEL FOR ENERGY AND MEMORY CONSUMPTION 33

If it only takes one listening event to successfully connect to an advertising sensor, a sensor
has to advertise for

1/(2 ∗ farrival ∗ τmule ∗ flisten)

amount of time on expectation before connecting to a mule. A sensor must connect to an
average of 1/psuccess mules before successfully handing off a data payload. Thus, the average
networking power is

Pntwk =

(
fadv ∗ Eadv

2 ∗ farrival ∗ τmule ∗ flisten
+ Econn

)
∗ fupload
psuccess

where Eadv is the energy consumed per BLE advertisement and Econn is the energy consumed
while uploading data to the mule. This gives us a sensor lifetime of

Tsensor =
sizebattery

Pwkld + Pntwk

2.8.2 Mule Model

We estimate the energy and memory consumption on a mule for participating in Nebula.

Mule Configuration

We assume that each mule listens for BLE advertisements at a rate of flisten (e.g. 0.1 Hz),
uploads the collected data payloads at a rate of fupload, and redeems the tokens at a rate of
fredeem. We assume that the mule does this perpetually and uniformly across time.

External Conditions

The largest uncertainty for the mule is how many sensors it will encounter and how much
data each sensor will try to backhaul. We parameterize these by expected sensor interaction
frequency finteract and expected sensor payload size sizepayload, and assume that these values
are constant and the interactions are uniformly distributed. In reality, interactions with
sensors may be bursty and payload size variable, however assuming constant values allows
us to compute a reasonable estimate.

Mule Energy and Memory Consumption over Time

A mule is expected to periodically do three distinct tasks: collect data from sensors, upload
data to servers, and redeem tokens with the platform provider. We consider the energy
consumption of each of these tasks separately.

Pcollect = flisten ∗ Elisten + finteract ∗ Einteract

2.8. ANALYTICAL MODEL FOR ENERGY AND MEMORY CONSUMPTION 34

where Elisten is the energy consumed each time the mule listens for BLE advertisements, and
Einteract is the energy consumed while receiving data from a sensor. This happens perpetually
throughout the day, and so consumes battery at a rate of Pcollect

sizebattery
.

Pupload = finteract ∗ Eupload

where Eupload is the energy consumed each time the mule uploads a single payload. If data is

continually uploaded throughout the day, this would consume battery at a rate of
Pupload

sizebattery
.

If the upload is batched instead, each time the mule uploads consumes

Ebatched
upload =

Pupload

fupload
=

finteract
fupload

∗ Eupload

consuming
sizebattery
Ebatched

upload
of the battery. As the upload schedule is flexible, the uploads could be

delayed and batched to correspond with mule recharging patterns.

Predeem = finteract ∗ Eredeem

where Eredeem is the energy consumed each time the mule redeems a single token with
the platform provider. If tokens are redeemed perpetually throughout the day, this would
consume battery at a rate of Predeem

sizebattery
. If the redemption is batched instead, each time the

mule redeems consumes

Ebatched
redeem =

Predeem

fredeem
=

finteract
fredeem

∗ Eredeem

amount of energy, amounting to
sizebattery
Ebatched

redeem
amount of the battery. Since the redemption

frequency should be very low in order to obfuscate mule timing information from the plat-
form provider, this would preferably be delayed and also scheduled to correspond to mule
recharging patterns.

Mule memory consumption consists of data payloads picked up from sensors that haven’t
yet been uploaded and tokens received from the servers that haven’t yet been redeemed.
We assume that the mule deletes sensor payloads after uploading them to the servers, and
tokens after redeeming them with the platform provider. Suppose that a mule starts with
zero memory consumption at time t = 0. The expected memory consumption of a mule over
time is

Mmule(t) = finteract ∗
[
sizepayload ∗

(
t mod

1

fupload

)
+sizetoken ∗

(
t mod

1

fredeem

)]
where sizetoken is the size of each token. Then the maximum memory consumption is

finteract ∗
(
sizepayload
fupload

+
sizetoken
fredeem

)

2.9. IMPLEMENTATION 35

2.9 Implementation

We describe our Nebula prototype that we implemented to test the overall performance of
the backhaul system.

Hardware and Setup

We implement each sensor on an nRF52840 development board, which is provisioned with a
256-bit AES key shared with the sensor’s application server, public-private secp256r1 key
pair, and a matching ECDSA certificate signed by the application server. Our prototype mule
is a ESP32-WROOM development board. Both the platform provider and the application
server are implemented as GCP instances.

Token Pre-Purchase

In order to allow application servers and the platform provider to generate signed unlinkable
tokens, we wrap a Rust-based implementation of the PrivacyPass protocol [11, 64] (Sec-
tion 2.2.3) with Python bindings and instruct application servers to pre-purchase tokens in
100-token chunks when they have exhausted all of their previously-purchased tokens.

Payload Pickup

Our prototype sensors upload data packets over a BLE connection to mules they encounter
over a DTLS secure session. We implemented DTLS sessions over BLE because session
establishment requires the mule to verify the correctness of the sensor’s certificate without
internet connectivity, and results in a secure channel. In addition DTLS sessions can be
established without requiring the user to input a code or push a button, as is the case in
BLE Secure Connections [27].

The sensor advertises that it has data for pickup while the mule board scans for sensors
advertising a Nebula BLE service. Once connected, the Nordic-based sensor acts as a BLE
peripheral and the ESP32 mule acts as a BLE central. We structure the Nebula BLE service
with two characteristics (e.g. writable and readable attributes). We take advantage of the
two characteristics to create read and write “sockets” for MbedTLS. As BLE uses notifications
to indicate characteristic changes, we carefully manage state indicating whether each party
is listening, receiving, or writing in order to synchronize the parties. During the DTLS
handshake, the mule verifies that the sensor owns a certificate that has been signed by the
Nebula Certificate Authority (CA) hierarchy. Specifically, a successful DTLS session setup
ensures that the sensor certificate is signed by its application server, acting as an intermediary
CA for the platform provider, who is the root CA. Once verified, the sensor is able to send
its payload to the mule. The payload itself is end-to-end encrypted with AES-GCM, using
12-byte nonces and 16-byte authentication tags.

2.10. EVALUATION 36

Payload Delivery

Sensor payloads are stored in the ESP32-based mule’s memory until the mule comes within
WiFi range of a known network. At that point, a TLS session is initialized with the correct
application server and the received payloads are uploaded. The application server attempts
to perform AES-GCM decryption on the payload using the key derived from the payload’s
sensor ID and its own secret key (Section 2.3.2) and returns a signed PrivacyPass token if
successful.

Token Redemption

Our platform provider is conveniently packaged as a container, making deployment easy. We
run the provider on a 128-core, general-purpose GCP virtual machine (n2-standard-128).
The system utilizes two persistent databases: token db, which checks for duplicate entries
in the current epoch’s submitted tokens, and mule payment db, which records mule upload
totals. Our front end HTTPS server is hosted using uvicorn, a popular open-source solution,
ensuring connections for mules and application servers. We configure mules to upload in
batches of 700 tokens per request. Upon mule token redemption, we first verify the signature
and submit the tokens to token db, an in-memory hash-table. To optimize performance, we
divide token db into 16 shards. Backend workers then update mule db, a SQLite database
that tracks each mule’s owed amount for out-of-band payments. To keep costs low, in our
prototype, we hosted token db and mule payment db on the same node as our HTTPS
provider, but can be easily replaced with a hosted in-memory and on-disk databases, to
facilitate horizontal scaling.

2.10 Evaluation

We built and evaluated Nebula to demonstrate the feasibility of developing a privacy-
preserving, large-scale data backhaul system and answer four key questions:

1. What are the energy costs between a mule and a sensor? What is the overhead of
implementing security?

2. What energy costs does a mule incur in delivering sensor data and redeeming tokens?

3. What is the expected energy and memory consumption of running the Nebula service?

4. How well can Nebula’s cloud-based provider perform?

2.10.1 Payload Pickup

Sensor to mule data uploads are by nature transient. Therefore, we measured the amount
of data that can be transferred based on how long a mule is near (within BLE range) of

2.10. EVALUATION 37

Figure 2.6: The amount of data that can be transferred based on how long a mule is in
connection range with different BLE MTU sizes. Handshake time is amortized as mules
spend longer in proximity to sensors.

a sensor Figure 2.6. Since transfer rate is highly dependant on BLE implementations, we
picked three different BLE maximum transmit units (MTUs) to measure with. BLE has to
connect the devices before data can be transferred, this overhead is shown in the black dotted
line in Figure 2.6. We conservatively measured the BLE connection time by including the
task start and subscription to BLE characteristics. Encrypted DTLS has both the connection
startup time (approximately 1.5 seconds) and TLS handshake time (approximately 2.5 to
5 seconds depending on MTU size) as overhead. However, as more data is transferred the
handshake overhead of a few seconds is amortized. We expect that the BLE link could be
further optimized, which would improve both the handshake time and data upload time.

Additionally, energy usage on the sensor device is important for prolonged battery use.
We measured current draw on the nRF52840 while advertising to be 5.7 mA and current while
transmitting to be 12.2 mA. The board supply power was 3.3 V, therefore the advertising
and transmitting power is 18.81 mW and 40.26 mW, respectively. Figure 2.7 shows the
breakdown of energy spent in different phases (connection, handshake, and transmit). All
current measurements were taken with a Keithley SMU 2401 source meter.

2.10.2 Payload Delivery

In our architecture, the mule has a larger battery capacity compared with the sensor. How-
ever, the overall cost to upload data is still important. We measured the time taken for
our ESP32 mule to set up an HTTPS connection with and send HTTPS requests to our

2.10. EVALUATION 38

application server and our platform provider. We found that the transmission time is largely
dominated by the time it takes to set up a connection and the round-trip time of an HTTPS
request, more so than the size of each request. In particular, the handshake time is around
2.4± 0.3 seconds and each subsequent round trip request took 0.8± 0.1 seconds. However,
once the size of a request exceeded around 10 kB, we started seeing latency increasing with
packet size, which we believe is due to queuing delays from filling up the ESP32’s WiFi
transmission buffer. We also measure the current draw on the ESP32. We found on the
ESP32 development board, as expected, that the WiFi radio draws more power (454 mW)
on average compared with the BLE radio (225 mW). Thus, uploading a single packet requires
3.2 seconds and 1.45 J.

Smartphone energy usage

In our evaluation, we implement the mule on a development board in order to isolate the
execution of Nebula’s protocol from other confounding factors in phone operating systems.
In particular, the difficulty of evaluating long-running behavior when backgrounded and
issues with OS Bluetooth networking stacks, without OS-level support, require significant
engineering “hacks” as described in [126] that are beyond the scope of this work. However,
the WiFi and BLE chipsets in modern phones are significantly more power-optimized than
that on the ESP32 that we evaluate. To give a comparison point between our implementation
and expected energy usage in a smartphone deployment, we profiled WiFi/BLE power usage
on a Pixel 7 Pro running Android 13 using the integrated On Device Power Monitor [10].
While uploading data over WiFi to our application server, the smartphone draws 116 mW on
average, 25% of the ESP draw. Sensor data transfer over BLE required 50 mW on average,
22% of the ESP required power. As a result, the energy usage analysis in our evaluation
represents a conservative overestimate of what would likely occur in a widespread smartphone
deployment.

2.10.3 Energy & Memory Usage Estimates

We now apply our energy consumption data from Section 2.10.1 and Section 2.10.2 to an
estimate of sensor and mule behavior, using our analytical model from Section 2.8.

Sensors

We consider sensors deployed for the bike counting example presented in Section 2.1. Suppose
each sensor counts the number of bicyclists that pass by it every hour and draws around
Pwkld = 50 µW doing so [111]. Each sensor desires to upload its data once a week, so
fupload = 1

604800
Hz. Each payload consists of 24 ∗ 7 = 168 samples, each containing a

timestamp and a bicyclist count, yielding payloads on the order of 1 kB.
Next we check if, given the deployed location, nearby mules are likely to stay in the

sensor’s vicinity long enough to pick up the data packets. We reference Figure 2.6, which

2.10. EVALUATION 39

Figure 2.7: The energy used by the nRF52840 for different payload sizes. There is a set
amount of energy spent on setup, so the larger the payload the more the energy is amortized.

shows that it would take about 5 seconds to connect to a mule and transfer 1 kB of data.
Figure 2.8 suggests that areas with foot traffic (e.g. on campus and in a park) will contain
many mules that are in BLE range of a sensor for at least 5 seconds, so we should be able to
successfully upload data to a mule. However, to provide a conservative estimate and account
for interactions which are shorter than 5 seconds let’s suppose that psuccess = 0.5. From
these clusters of mule interactions, the expected duration is around τmule = 10 seconds with
a mule arrival rate of farrival = 0.01 Hz for sparser areas, again estimated from Figure 2.8.

Using our BLE advertising power fadv ∗Eadv = 18.81 mW and supposing mules listen at
a rate of flisten = 0.1 Hz, we get

Pntwk =

(
18.81× 10−3

2 ∗ 0.01 ∗ 10 ∗ 0.1
+ 0.0169

)
∗ 1/604800

0.5
= 3.2µW

which is an order of magnitude lower than the workload power. Given a coin cell battery
of sizebattery = 2200 J [201], the sensor would last Tsensor = 2200

53.2×10−6 seconds ≈ 1.3 years.
Given two alkaline AA batteries with a total capacity of sizebattery = 27000 J [156], the
sensor would last Tsensor =

27000
53.2×10−6 seconds ≈ 16 years.

This is only one simplified example, and meant to demonstrate that there’s nothing
fundamentally infeasible about deploying an application on Nebula. Different applications
would have their own challenges and opportunities. For instance, some sensors may want
to advertise perpetually (e.g. for global asset tracking), while others would be able to
coordinate backhaul times with collaborating mules (e.g. in smart farming). This section

2.10. EVALUATION 40

Figure 2.8: Interaction frequency and interaction duration varies depending on the location.
We collect BLE advertisements in four representative locations and construct interactions
from repeated MAC addresses. For this data collection, we anonymized all MACs with an
irreversible hash and received an IRB exemption from our institution review board.

is only a starting point from which a developer can consider how their own sensors would
interact with the Nebula system.

Mules

Consider a smartphone user who is interested in participating in Nebula. Suppose they are
willing to give up 5% of their battery throughout the course of a day and can spare 5 GB
of storage on their phone, as they charge their phone overnight and have a 128 GB device.
They usually keep their Bluetooth enabled, so when they join Nebula they do not incur the
marginal cost of BLE listening. What is the maximum number of sensors they can interact
with per day? In other words, what is the largest finteract possible without violating either
their power or memory constraints?

Suppose the smartphone has a battery capacity of 4000 mAh ≈ 54720 J [17, 66]. Then
the maximum power draw across a day would be Pmax = 0.05∗54720

86400
= 31.67 mW. Thus,

31.67 mW ≥ Pcollect + Pupload = finteract ∗ (Einteract + Eupload)

so

finteract ≤
31.67× 10−3

Einteract + Eupload

=
31.67× 10−3

0.0945 + 1.45 ∗ 2
= 10.6mHz

so power constrains each mule to 915 sensor payloads per day.

2.10. EVALUATION 41

48 16 32 64 128
CPU cores

0

100,000

200,000

300,000

400,000

500,000

600,000
To

ke
ns

 P
er

 S
ec

on
d

(S
us

ta
in

ed
)

Receiving Tokens
Verifying Signatures
Verifying Signatures & Duplicates

1 2

Figure 2.9: Number of tokens redeemed per second. With 128 cores, we can verify 445, 900
tokens, including filtering for duplicates, per second, or over 250 million tokens per dollar.

Now let’s consider the memory constraint. Suppose that each payload is around 1 kB of
data. Then the spare 5 GB can fit 5 million payloads. If the mule stores all these payloads
and uploads them once a month, they can pick up 5, 000, 000/30 = 1666, 666 1 kB payloads
every day without running out of storage. On the other hand, if they upload each packet
immediately after receiving it, they do not incur any memory costs for storing sensor data
and can hold up to 50 million tokens, which are each 100 bytes long, before redeeming them
at the end of the month. This would loosen their memory constraint to upper bound at
1, 666, 666 arbitrarily-sized payloads every day.

It is clear that the energy constraint is far more restrictive than the memory constraint.
Over the course of a month, this mule would upload at most 915 ∗ 30 = 27450 data payloads
due to energy constraints, resulting in about 3 MB of storage used on the phone itself
(assuming relatively frequent payload uploads). During the token redemption process, if
the mule redeemed the tokens using a single HTTPS connection and uploading requests
containing 100 tokens, it would take 2.4 + 275 ∗ 0.8 = 223 seconds = 3.7 minutes to redeem
all the tokens. This redemption would consume 223 ∗ 0.454 = 101 J ≈ 0.18% of the phone’s
battery.

2.11. OPPORTUNITIES FOR FUTURE WORK 42

2.10.4 Redemption

We discuss the performance of the Nebula platform provider when processing incoming
tokens. When a mule redeems a set of tokens, the platform provider is responsible for
verifying that the tokens are correctly signed and ensuring there no duplicate tokens were
submitted, in order to determine how much to pay each mule. Our implementation showcases
an efficient and cost-effective system, processing more than 445,000 tokens per second using
a single node.

In Figure 2.9, we plot how the system scales with an increasing number of cores. We
measure token processing rates under three different scenarios: (1) simply receiving tokens as
fast at the HTTPS server can accept connections, (2) verifying the signature for each token,
and (3) both verifying token signatures and ensuring that duplicate tokens are not redeemed
twice. As CPU cores increase, we see substantial improvements in all three rates. Starting
at around 16 cores, the rate at which our uvicorn HTTPS server can accept new connections
becomes the the limiting factor. On a single core, the platform can receive 24, 080 tokens/sec,
verify the blind signatures at 10, 150 tokens/sec, and check 8, 190 tokens/sec for duplicates.
This scales up to 16 cores, to 626, 360, 196, 140, 165, 830 tokens/sec, respectively. With a full
128 cores, Nebula can fully process 445, 900 tokens per second. The GCP n2-standard-128

instance on which we implemented our provider costs $6.2 an hour ($1.5 with Spot pricing).
At 445, 900 tokens per second, Nebula can process 258.90 million tokens per dollar (1.06
billion tokens per dollar with Spot). Finally, mules are able to efficiently lodge complaints
with the platform provider in response to misbehavior; our implementation requires 178 ms to
validate a complaint based on an invalid token and 247 ms to validate a complaint involving
an incomplete delivery.

Our implementation of the Nebula platform provider demonstrates high performance at
low cost, while verifying token signatures and checking for duplicates. This allows for a
system design that enables privacy-focused data backhaul that can accommodate a large
number of participants and sensors with minimal constraints.

2.11 Opportunities for Future Work

In re-envisioning how an opportunistic network can operate to preserve user privacy, Nebula
focuses on defining and evaluating the core architecture and protocols. However, a significant
amount of future work is needed to bring a Nebula-type system into broad circulation, where
mobile phones owned by random passers-by can interact with sensor data needing a “lift”
to their destination.

Deployment At Scale

Section 2.10 evaluates the individual pieces of a backhaul system (e.g. data pickup and
delivery, token redemption) in a series of microbenchmarks. However, to truly determine
the effectiveness of Nebula’s design, a larger, wide-scale deployment is necessary. Future

2.11. OPPORTUNITIES FOR FUTURE WORK 43

studies can incentivize study participants to carry a Nebula app on their phone, interacting
with pre-placed sensors and measuring energy consumption and connectivity. In the end, a
larger existing backhaul network like Tile, FindMy, or Sidewalk should integrate Nebula’s
ideas into their protocols to evaluate their effectiveness on a larger geographic scale across
different urban areas.

Bidirectional Data Transfer

Currently, our design only uploads data from sensor to the cloud, without the opportunity
for application servers to send new data to their sensors. These could include parameter
changes, new ML model versions, or whole updated binary packages for a Device Firmware
Update (DFU). Future work could study how to download important data to sensors through
passing mobile platforms, in a way that would alleviate user privacy concerns. This is an
important avenue for future work, as it must address a seemingly unavoidable contradiction:
we would like the network to know when a mule is close enough to a sensor to proxy an
update payload, yet we also seek to hide the mule’s location from that same network.

Policies for Misbehavior Prevention

In Section 2.5, we describe a way for the Platform Provider to collect complaints of misbe-
havior – additional research can certainly be done on how to process those complaints to
reduce overall misuse of system resources. What are the best indicators that an application
server is deliberately misbehaving, as opposed to innocently executing the protocol but nev-
ertheless being accused of misbehavior by a large group of malicious mules? In our complaint
protocol, we remove any financial incentive for complaining – mules will get no extra tokens
in addition to the token they are owed, and data transmission to the application server must
occur to get a new token – but mules incentivized by other reasons may still seek to abuse
the system. Future work in policy-setting for balancing the concerns of applications and
mule participants is a must as this protocol goes into wider use.

Power and Wireless Protocols

Finally, there are many open opportunities to improve the speed, power efficiency, and
functionality of Nebula’s wireless component. We are able to backhaul several kilobytes of
data in approximately 5-10 seconds, but future work in speeding DTLS connection time
(or a faster, more data-efficient secure connection protocol) could enable faster vehicles like
buses, bikes, and cars to pick up data in shorter time windows. Similarly, the increasing
availability of ultra-wideband (UWB) radios in mobile phones could help both sensors and
mules localize each other with high fidelity – knowledge which could allow them to focus on
making connections with higher success rate and ignoring devices on the periphery of their
range.

2.12. SUMMARY 44

2.12 Summary

How can we massively extend network connectivity to the edge while protecting the privacy
of the participants from a centralized platform? In this chapter, we described and evaluated
Nebula, a decentralized architecture for privacy-preserving, general-purpose data backhaul.
We experimentally showed that our system incurs low energy and computational overheads,
and developed an analytical model to estimate real-world performance. Using Nebula, a
smartphone anywhere in the world could backhaul almost a thousand data payloads a day
consuming only 5% of its battery and 3MB of storage, without revealing its location to a
central network server. For embedded sensing applications, our architecture vastly expands
the scope of potential deployments while reducing the deployment cost.

Nebula demonstrates the power of protocol decentralization across many independent
mules, restricting the relatively more costly token generation process to cloud-based parties
with easy access to large pools of computational resources. At the same time, we leverage
each individual mule’s ability to verify payload pickup, delivery, and managing complaint
submission to provide metadata-hiding privacy from a centralized provider.

Up to this point, we have not addressed the privacy implications of processing the data
being transmitted and aggregated by the backhaul network. In the next chapter, we tackle
the design of a cryptographic system for private ML training that could securely combine
sensitive sensor data from many different sources without leaking them to the other partici-
pants. For this, we move from energy-constrained mobile platforms to memory-constrained
GPU accelerators.

45

Chapter 3

Accelerating Multi-party
Computation for ML Training using
GPUs

3.1 Introduction

Applications like machine learning (ML) have enjoyed tremendous success in automating
tasks such as biometric authentication, personalized ad recommendation, or detecting fraud-
ulent financial transactions [31, 174, 175]. However, these models come at a significant
privacy cost, as the data underlying them can be highly sensitive, ranging from medical
data to online behavior and financial records. This has incentivized the development of
privacy-preserving approaches to ML [233, 86, 75].

Secure Multi-Party Computation (SMC/MPC) has emerged as a promising tool for
privacy-preserving computation [233, 90, 23]. MPC enables a group of entities to perform
a joint computation without revealing their inputs to the computation. Thus, when data is
sensitive, MPC can enable a the group of entities to generate insights from this data (such
as training ML models or performing inference) without ever disclosing the data in plaintext
to the other parties involved. MPC has shown tremendous progress in the past few years,
making significant algorithmic improvements [33, 32, 160, 157] as well as robust, efficient,
and versatile implementations [122, 189, 7, 53]. However, despite these advances, the over-
head of MPC remains prohibitive when considering large computations. For instance, secure
training of large machine learning models is over 4 orders of magnitude slower than plaintext
training [223].

In the plaintext setting, large ML inference and training tasks are made practical by
the use of GPUs – many-core hardware accelerators that support highly-parallelizable work-
loads. Individual operations, or kernels, are tiled across the many GPU processor threads to
minimize execution time over large input data. For example, the use of GPUs can improve
the training times of commonly used ML models by 10− 30× [198], making them an essen-

3.1. INTRODUCTION 46

Figure 3.1: Piranha’s three-layer architecture in blue, with components implemented on top in
white. On the device layer, we contribute low-level GPU kernels accelerating local, integer-
based data shares. At the protocol layer, we implement functionality for three different
linear secret-sharing (LSSS) MPC protocols at the protocol layer: SecureML [161] (2-party),
Falcon [223] (3-party), and FantasticFour [57] (4-party). At Piranha’s application layer,
we provide a protocol-agnostic neural network library that can be executed by any of the
protocols. Piranha is modular in that it can support additional components beyond what we
provide.

tial tool in today’s ML infrastructure. A few recent works [157, 203, 107, 82] have utilized
GPUs to accelerate MPC computation. However, their GPU usage is limited to accelerating
individual operations or a specific MPC protocol. Delphi [157], for example, only accelerates
convolution operations before continuing computation on the CPU, while CryptGPU [203]
designs a specific 3-party protocol for its application. As a result, any new protocol must
re-implement the same basic GPU support, a difficult task in general. Requiring MPC devel-
opers to develop domain-specific knowledge of GPU task scheduling and memory hierarchy
to implement efficient kernels raises the barrier to entry and impedes the development of
practical MPC-based systems. This raises a natural question: can secure MPC generally
leverage GPU acceleration?

3.1. INTRODUCTION 47

3.1.1 Challenges and Insights

Supporting efficient secure computation on the GPU faces a few core problems. Plain-text
ML computation is straightforward and can be done directly in floating point with reasonable
memory constraints, while the equivalent multi-party computation can be accomplished
using any number of different protocols, operating over integer types, with significantly
higher available memory requirements. We design Piranha to address these challenges while
providing a general-purpose platform for MPC development, with support for linear secret-
sharing schemes (LSSS), encompassing a large (and growing) number of state-of-the-art
protocols for secure computation [43, 172, 184, 57, 221, 223, 149].

Challenge: Protocol-independent acceleration.

As even simple multi-party operations such as multiplications may be computed using a wide
variety of approaches based on the protocol used, how can a platform efficiently provide ac-
celeration support to each of them? While entire MPC computations are quite different,
they are almost always decomposed into individual operations over local data shares mixed
with communication between the parties to obtain the final result. Thus, accelerating lo-
cal operations over local shares can yield significant performance benefits while remaining
entirely protocol-independent. Piranha uses vector shares as the basic unit of computation
over individual values, as it ensures that any protocol or application implemented using them
will inherently take advantage of the GPU’s parallelism. With a shared abstraction for local
data, Piranha can transparently manage data transmission and memory allocation, keeping
data on the GPU for the entirety of the computation while minimizing data transfer from
the CPU.

Challenge: Enabling integer-based GPU computation.

Data representation is an important consideration for secure computation libraries. There
is a tension between supporting high-precision real values required by applications such as
NN training (e.g. float datatypes) and structured algebraic properties required by the secret
sharing schemes (e.g. int datatypes). State-of-the-art secure computation libraries and
frameworks resolve this tension by using fixed-point datatypes, encoding real values with
a fixed precision into a large integral datatype (typically 64-bits). Unfortunately, GPUs
primarily focus on accelerating floating-point computation with extremely efficient kernel
implementations, targeting plaintext graphics and ML workloads. This has resulted in a
dearth of GPU kernels for large bitsize (32- and 64-bit) integer computations [54]. We
argue that the lack of integer kernels in existing GPU libraries significantly hampers simple
acceleration for MPC protocols; Piranha explicitly provides for integer-based shares and
matching GPU integer kernels to accelerate common operations.

3.1. INTRODUCTION 48

Challenge: Supporting large MPC problems in limited GPU memory.

While modern CPUs boast terabytes of RAM for computation, present-day GPUs are con-
strained to a severely limited pool of available memory – 12 or 16 GB for commodity models.
This is a salient issue for MPC, where protocols often maintain duplicated copies of data in
separate secret shares, leading to a multiplicative increase in memory requirements. When
paired with ML model parameters whose footprint can range in the gigabytes, even in plain-
text, Piranha must make as efficient use of its limited device memory as possible. This can
directly impact overall performance: in ML training, memory availability limits the total
batch size – i.e. the number of data points processed in parallel – that can be supported on
a single GPU. To address this problem, we primarily support in-place operations for local
shares, performing additional memory allocation only when a protocol explicitly requests it.
While applications like privacy-preserving ML training will always require a baseline allo-
cation, encouraging protocols to reuse existing buffers minimizes temporary peaks in total
memory usage. Second, MPC protocols may exhibit non-standard memory access patterns
incompatible with the integer kernels available. Naively copying data into the desired layout
before performing the computation unnecessarily limits the problem sizes we can support, so
to efficiently parallelize some operations, Piranha’s insight is that memory-efficient compu-
tation can be achieved with views over GPU memory, allowing for in-place computation. In
particular, this approach precludes the need to manually modify GPU data layouts, avoid-
ing any temporary memory allocation or data transfer overhead that the computation would
normally require.

3.1.2 A Platform for MPC Acceleration

Piranha addresses these issues with a modular, three-layer GPU-based framework for se-
cure computation (Figure 3.1). Piranha contributes a three-layer architecture: (1) a device
layer that can independently accelerate secret-sharing protocols by providing integer-based
kernels absent in current general-purpose GPU libraries, (2) a modular protocol layer that
allows developers to maximize utility of limited GPU memory with in-place computation
and iterator-based support for non-standard memory access patterns, and (3) an application
layer that allows applications to remain completely agnostic to the underlying protocols they
use (Section 3.3).

Piranha allows the MPC community to easily leverage the benefits of a GPU without
requiring GPU expertise. We demonstrate the practical use of Piranha in implementing three
different LSSS protocols for secure neural network training – the 2-party SecureML [161], 3-
party Falcon [223], and 4-party Fantastic Four [57] protocols. Piranha does not propose a new
secure multi-party protocol, rather, we focus on demonstrating how the platform accelerates
existing protocols. We plug these protocols into a high-level neural network library to provide
GPU-assisted private training and inference of ML models.

Compared to state-of-the-art CPU implementation [63] of computational building blocks
such as matrix-multiplication, convolutions, and comparisons, Piranha improves runtime by

3.2. BACKGROUND AND RELATED WORK 49

2 to 3 orders of magnitude. Thus, Piranha makes a big step forward towards practical MPC
training. For example, prior work such as Falcon estimates that training a realistic neural
network like VGG16 using its 3-party protocol would require 14 days [223]. In comparison,
Piranha can perform the same training process in 33 hours, a 10× improvement.

One would expect that since Piranha accelerates general LSSS-based MPC, Piranha would
thus be slower than a system like CryptGPU [203] that is tailored for a specificMPC protocol.
We show that in fact, we achieve generality while demonstrating a 2-12× improvement
in runtime and supporting up to a 4× greater problem size on the same GPU hardware.
CryptGPU [203] only demonstrates full end-to-end training on simple networks such as
AlexNet [131], while only micro-benchmarking single-layer training passes for larger networks
like VGG16 [200] which has twice as many parameters. In contrast, for the first time, Piranha
demonstrates the feasibility of training a realistic neural network like VGG [200], end-to-end,
using MPC in a little over one day.

3.2 Background and Related Work

In recent years, a number of new frameworks have been proposed for privacy-preserving
approaches to machine learning. While most frameworks demonstrate a CPU-only imple-
mentation, there are a few works that explore GPU assisted computation. The two earliest
works by Husted et. al. [107] and Frederiksen and Nielsen [82] explore the use of GPUs
for improving secure computation using garbled circuits and OT extensions. Delphi [157]
uses GPUs to improve the performance of linear components of the computation. In a more
recent work, CryptGPU [203] building on top of the CrypTen framework [53] uses GPUs for
the entire computation. Recently, GForce [163] shows the benefits of GPU acceleration for
secure inference. In a somewhat related effort, cuHE [56] and PixelVault [214] use GPUs for
homomorphic encryption, securing keys, and encryption operations. Visor [179] has looked
at using GPUs for secure computation over enclaves, while Slalom [207] investigates NN
inference on trusted hardware.

A number of general purpose frameworks have improved the practical performance of
MPC. In the dishonest majority setting, a number of works [124, 45, 77, 8, 191, 123] im-
prove the performance of the original SPDZ protocols [60, 62]. Helen [243] proposes a system
to train a linear model in a dishonest majority setting. Poseidon [195] explores the use of
MPC techniques for federated learning in a similar corruption model. A lot more frame-
works propose new specialized protocols and implementations in the semi-honest and honest
majority adversarial settings. Recent 2-party computation frameworks include [161, 185,
139, 157, 118, 188, 173, 119] that typically look at protocols in the semi-honest setting. A
number of frameworks explore a 3-party setup with an honest majority corruption. This
includes [43, 172, 160, 218, 203, 128, 57]. Similarly, 4-party computation frameworks in-
clude [128, 57, 184, 37]. Other proposed frameworks include [242, 178]. An entire line of
work improves the performance of garbled circuit based approaches to secure computation.
Recent advances include as well as silent OT extension protocols such as [33, 34, 196, 231].

3.3. SYSTEM ARCHITECTURE 50

Finally, our platform can be used to implement efficient protocols for other applications such
as sorting networks [48], ORAMs [89, 220], and differential privacy [75, 222].

A number of libraries with varying infrastructures are open sourced. MP-SPDZ and
SCALE-MAMBA [122, 7] implement a number of protocols, including most of the dishonest
majority protocols. CrypTen [53] implements a few protocols over PyTorch. Other popular
libraries providing a number of useful secure computation tools include [67, 189]. There
also exist open-source libraries for privacy-preserving machine learning such as Rosetta and
PySyft [2, 3], but no open source library that enables general secure computation applications
to benefit from the use of GPUs or the development of new accelerated protocols. Piranha
can not only fill this gap, but reduce the performance gap between plaintext and privacy-
preserving computation.

3.3 System Architecture

Piranha contributes three distinct, modular layers that provide a separation of concerns for
GPU-accelerated secure computation (Figure 3.1): a device layer that abstracts GPU-specific
code from MPC developers; a protocol layer that implements different MPC protocols, their
secret-sharing schemes, and adversarial models; and an application layer that uses these
protocols in an agnostic manner for high-level computation.

The device layer consists of two components. First, it provides an abstraction of a GPU-
based integer vector, which represents a locally-held share of a vector whose values are secret-
shared among multiple parties. These shares live on the GPU throughout the computation,
minimizing data transfer overhead. Communication is handled in a protocol-independent
manner: when necessary, the device layer copies a share to the CPU before transmitting it
over the network. Second, the device layer maintains a set integer kernels that implement
commonly-needed functionality (e.g. elementwise addition or matrix multiplication) over
local share vectors. We discuss how MPC operations are accelerated in Section 3.4.

The protocol layer allows MPC developers to compose operations on local shares into a
full protocol, benefiting from GPU acceleration without developing expert knowledge or re-
implementing GPU support from scratch. Applications rely on each protocol to provide an
interface in the form of a secret-shared vector and a set of functionalities that can operate on
them. Alongside individual protocol definitions, we implement protocol functionality under
the Arithmetic Black Box Model that can be used to supplement any of the specific protocols,
demonstrating the benefit of Piranha’s modular structure. In addition, MPC protocols can
require intricate computation that cannot be foreseen at the device layer; Section 3.5 details
how iterator-based views over local shares on the GPU can be used to enable these operations
while remaining within the GPU’s limited memory constraints.

Finally, at the application layer, computation can focus on solving domain-specific chal-
lenges such as secure neural network training, without a dependency on any specific protocol.
The functionality set provided by each protocol determines which applications can use a given
protocol without requiring modification.

3.4. DEVICE LAYER FOR ACCELERATING LOCAL OPERATIONS 51

To put Piranha in context, imagine implementing a simple privacy-preserving neural net-
work layer. Its core logic (e.g. updating layer parameters during forward and backward
passes) remains untouched at the application layer. Instead of using plaintext vectors, how-
ever, the layer makes use of a vector secret-shared by an implementation at the protocol
layer, and operates on these secret shares using the corresponding protocol functionality,
for example, a privacy-preserving matrix multiplication. In turn, the protocol decomposes
its multiplication into a series of local matrix multiplications, which are accelerated by a
protocol-independent integer kernel in Piranha’s device layer.

Threat model

Piranha assumes that parties participating in a protocol execution operate in separate trust
domains, using their dedicated GPUs (e.g. in a cloud provider of choice). A GPU in Piranha
communicates with another parties’ GPU through their associated CPUs and across a normal
Internet connection. As such, Piranha can be used in both LAN andWAN environments. Due
to Piranha acting as a platform for existing MPC protocols, parties executing an application
with Piranha inherit the security guarantees of the underlying MPC protocol. For example, a
protocol with semi-honest security retains those guarantees while being executed by Piranha.
We implement and evaluate three such semi-honest protocols on top of Piranha in Section 3.7.

3.4 Device Layer for Accelerating Local Operations

Effectively and easily interfacing with the GPU is a major barrier to MPC developers who
wish to accelerate their protocols, but lack experience in programming optimized GPU ker-
nels. Thus, a flexible abstraction is needed to support a wide array of MPC protocols while
minimizing any domain-specific knowledge required. In this section, we discuss how Piranha
addresses two primary challenges in providing extensible GPU support for MPC protocols:
managing vectorized GPU data and supporting acceleration for integer-based computation.

3.4.1 Data management on the GPU

Piranha provides access to GPUmemory through a single data abstraction we call a DeviceData
buffer. A key property that DeviceDatas maintain is that their data resides only on the GPU;
no buffers are maintained in CPU memory to avoid data transfer overhead when computing
with GPU-based kernels. In the context of MPC protocols, these buffers often logically cor-
respond to local copies of a secret share. A DeviceData can be templated by integral C++
data types such as uint32 t or uint64 t. Share vectors, not individual share values, are the
basic unit of computation in Piranha, and so the abstraction is functionally equivalent to a
std :: vector class, except that the data remains on-device. Listing 1, lines 2-4 show a few
examples of how DeviceData vectors can be initialized.

3.4. DEVICE LAYER FOR ACCELERATING LOCAL OPERATIONS 52

Listing 1 Sample DeviceData usage demonstrating its key capabilities: transparently ac-
celerating element-wise operations (lines 7-8), using Piranha-implemented integer kernels for
computation such as matrix multiplication (line 11), communicating share contents with
other parties (lines 14-15), and using iterators to define views of existing data without per-
forming a data copy (lines 18-20).
1 // Device share initialization
2 DeviceData<uint32_t> a = {1, 2, 3, 4, 5, 6};
3 DeviceData<uint32_t> b = {1, 0, 1};
4 DeviceData<uint32_t> c(2);
5
6 // Vectorized element-wise operations
7 a += 10;
8 a *= 2;
9

10 // GEMM call: a (2x3) * b (3x1) -> c (2x1)
11 c = gpu::gemm(a, b, 2, 1, 3);
12
13 // Communication with party id 1
14 a.send(1);
15 a.join();
16
17 // Even (offset=0) or odd (offset=1) values
18 DeviceData<uint32_t> d(
19 stride(c,2).begin()+offset,
20 stride(c,2).end()
21);

Element-wise operations over collections of secret-shared values are common in secure
computation. As a result, they are prime targets to accelerate in parallel, enabling the
GPU to naturally improve protocol performance. As an added benefit, by using vectorized
DeviceData shares, developers at the protocol layer inherently parallelize their protocol im-
plementation. Piranha’s device interface supports a variety of local operations on individual
share vectors; as a simple example, lines 7 and 8 of Listing 1 perform an accelerated element-
wise scalar addition and multiplication, with each value modified in parallel by a different
GPU kernel thread.

A primary insight Piranha makes is that, independent of the specific protocol, MPC
functionalities over secret-shared data decompose into a common set of local arithmetic op-
erations. It is this narrow waist that the device layer targets for acceleration in a way that
can benefit every MPC protocol. Consider a widely used primitive, secure matrix multipli-
cation, that decomposes into simple matrix multiplications and additions over local data in
a protocol-agnostic way. To this end, Piranha provides integer kernels for performing general

3.4. DEVICE LAYER FOR ACCELERATING LOCAL OPERATIONS 53

matrix multiplication (GEMM) over the DeviceData class, which we use to build secure ma-
trix multiplication protocols (cf. Section 3.5 for an example). An individual GEMM call is
shown in Listing 1, line 11. In Section 3.7, we evaluate how these kernels improve the per-
formance of secure matrix multiplication by up to 200× over a CPU-based implementation.

A Note on Communication

Currently, support for direct GPU-GPU communication over the network is nascent and not
widely available. Thus, in Piranha, communication between GPUs is bridged via the CPU,
incurring a data copy overhead for each round of communication. Given that GPU-CPU data
transfer speeds are significantly faster than communication over the network, this overhead
is not significant in the applications we consider. We manage communication by abstracting
this complexity away from MPC developers by providing simple data transmission functions.
A sample communication round to a different machine is shown at Listing 1, lines 14 and 15.
In the background, Piranha copies the values in DeviceData a to a temporary CPU buffer,
and transmits it over the network. The protocol execution can then wait until the buffer has
been successfully sent by calling join() to synchronize protocol execution.

3.4.2 Iterator-based operations

Another key design criteria for Piranha’s device share abstraction is memory efficiency.
While CPU-based protocols have enjoyed “effectively” unlimited memory availability, re-
alistic GPU-based MPC computation is restricted to commercially-available GPUs that gen-
erally have around 16 GBs of memory. Given the increase in memory consumption required
by secret-shared protocols, the result of inefficient memory usage is to unnecessarily limit
application problem sizes. Furthermore, the overhead of data allocation, particularly for
vectors of large sizes, forms a significant portion of the total overhead of using GPUs. To
address this issue, we seek to avoid any redundant temporary data allocation used to trans-
form data into a specific layout for kernel execution. We achieve this using an iterator-based
abstraction in our DeviceData class, as follows.

Piranha’s iterators allow the developer to traverse data vectors in a program-defined order,
applying operations over a “view” of GPU memory decoupled from the actual physical data
layout. For instance, a common operation requires pairwise operation over elements of a
vector (cf Section 3.5 for details), i.e., operations over vec[2i], vec[2i+ 1] for a given vector
vec and over all indices i. A näıve approach would either require copying the odd and even
components of the vector or to allocate new memory for storing the result. Our iterator-
based approach allows us to define odd and even views over the same vector that effectively
allow the GPU to interpret the memory with a stride of 2. This abstraction enables memory
efficient code design by allowing us to view a given memory allocation in different ways.
Hence, this approach encourages limited additional memory allocation – performing in-place
element-wise operations as well as storing the computation result in existing memory.

3.4. DEVICE LAYER FOR ACCELERATING LOCAL OPERATIONS 54

Lines 17-21 of Listing 1 demonstrate this concept. The two DeviceData vectors even and
odd hold a view of all the values in c at a stride of 2, or put otherwise, skipping every other
value (odd starts at index 1). Note that this is simply a “view”, i.e., even, odd operate on the
same physical memory held by the original DeviceData c. Creating this view for every other
indexed value allows a pairwise computation to be performed with no additional memory
allocation required.

3.4.3 Integer kernels

The MPC protocols we implement in Section 3.5.4 operate on additive secret sharing over
32- or 64-bit ranges. As discussed in Section 3.1, there is a lack of kernel implementations
for these data types [54], because prior work has focused on improving the performance for
floating point data types. Some integer kernels are implemented for 8-bit matrix multiplica-
tions into 32-bit accumulators, for example, but the lack of support for larger integer types
can be attributed to concerns of overflow in the product. Thus, there are two ways to benefit
from GPUs for large bit-width integer types.

The first is to decompose large integers into multiple values of smaller width, such as
16 bits, representing the original value x = x32

48 + x22
32 + x12

16 + x0. Computation can
then be performed over each 16-bit sub-value x3, x2, x1, x0 by embedding them into 64-bit
floating point types. Note that a large slack is required, as the result of multiplying matrices
of 16-bit values will often exceed 32 bits in size and floating point computation does not
have the same modular overflow as for integers. The problem with this approach is that it
requires multiple individual floating point kernel calls over 16-bit values to compute one 32-
or 64-bit integer result.

The second approach, which we take, is to directly implement kernels over integer data
types. Piranha directly adds support for full-size integer matrix multiplication and convolu-
tion kernels at the device layer. We use the general-purpose templated matrix multiplication
and convolution kernels in CUTLASS [55] to support 32- and 64-bit integer types.

While we cannot use existing, highly optimized floating-point GPU kernels such as those
provided by cuBLAS [54], there are two benefits to our approach:

• Piranha’s modular structure allows independent improvement of kernels, and thus fu-
ture hardware support for large integer operations on GPUs can be easily integrated
and benefit all pre-existing protocols, and

• the ability to directly compute integer results in a single call to a GPU kernel yields a
better performance overall than multiple calls to a more efficient floating point kernel.

We demonstrate these gains in Section 3.7.

3.5. PROTOCOL LAYER FOR LINEAR SECRET-SHARING SCHEMES 55

3.5 Protocol Layer for Linear Secret-Sharing Schemes

Piranha provides a framework for implementing various MPC protocols leveraging the ben-
efits of GPU acceleration. We first describe how we use Piranha’s DeviceData class to im-
plement MPC protocols, then highlight how complex protocols can be parallelized in a
memory-efficient manner, and finally, how Piranha allows for functionality reuse between
protocols.

3.5.1 MPC protocol implementation

Any protocol implemented in Piranha specifies two things: the secret sharing base, including
the adversarial model, and operations over this secret sharing base. For example, suppose a
MPC developer seeks to implement a 3-party protocol using replicated secret sharing for an
honest majority of semi-honest corruptions (for instance [15, 223]). In this setting, a secret
value x is composed of 3 shares x ≡ x0 + x1 + x2, where each party holds only 2 of the
3 shares. Thus, the class for such a protocol will contain two DeviceData objects, one per
share. Simple operations such as additions can be specified component-wise, leveraging the
underlying GPU layer as shown in Listing 1.

To multiply two secret matrices x, y, if the first party holds shares (x0, x1), and (y0, y1),
the output can be computed by regrouping the terms of the product as [15]:

x · y = (x0 + x1 + x2) · (y0 + y1 + y2)

= (x0 · y0 + x0 · y1 + x1 · y0) + (...) + (...)
(3.1)

Thus the computation can be split such that the first term can be computed locally by
the first party (and similarly for the other parties). Leveraging the device layer for each
individual local GEMM computation (cf. Listing 1 line 11), the overall secure matrix mul-
tiplication protocol can be easily implemented as shown in Listing 2. This example shows
the ease of implementing various MPC functionalities in Piranha’s protocol layer by build-
ing over the local functionality at the device level. In Section 3.7, we directly evaluate the
performance benefit of this implementation against a similar CPU-based protocol for secure
matrix multiplication.

Randomness generation

We assume that the parties maintain secure point-to-point communication channels and
share pairwise AES keys to generate common randomness. Recent works have looked at
efficiently generating randomness on the GPUs [16, 138, 230]. While CPU cores outperform
GPU cores for smaller amount of randomness, it becomes desirable to generate random-
ness using GPUs for large scale random number requirements [16]. Such random number
generation can be easily added to the protocol layer in Piranha.

3.5. PROTOCOL LAYER FOR LINEAR SECRET-SHARING SCHEMES 56

Listing 2 A replicated secret-sharing protocol class (3-party setting) implemented at the
Piranha protocol layer. The protocol specifies the secret-sharing base: each party has two
local DeviceData shares templated by type T. The matmul functionality is performed for this
class by implementing a secure matrix multiplication based on Eq. 3.1.
1 // Replicated secret sharing class
2 class RSS<T> {
3 DeviceData<T> shareA, shareB;
4 }
5
6 void RSS<T>::matmul(RSS<T> a, RSS<T> b,
7 RSS<T> c, ...) {
8 DeviceData<T> localC;
9

10 localC += gpu::gemm(a.shareA, b.shareA, ...);
11 localC += gpu::gemm(a.shareA, b.shareB, ...);
12 localC += gpu::gemm(a.shareB, b.shareA, ...);
13 // Reshare and truncate localC to c
14 }

3.5.2 Memory-efficient protocols

Section 3.4 demonstrates an iterator-based implementation for DeviceData buffers. In this
section, we showcase how this abstraction can be used to perform efficient in-place memory
computations. As an example, we consider a CarryOut protocol, that securely computes the
carry bit for binary addition i.e., given the bitwise sharing (ak−1, · · · , a0) and (bk−1, ..., b0) of
two k-bit vales a, b, the goal is to compute the carry bit at the MSB ck. This primitive forms
the backbone of nearly every state-of-the-art comparison protocol [149, 160, 77, 61]. In the
case of the neural network library we discuss in Section 3.6, comparisons enable standard
activation functions and pooling operations including ReLU and Maxpool.

The computation proceeds in log2 k rounds by emulating a simple carry-lookahead adder [197].
As part of the computation, at round i ∈ {1, 2, · · · , log2 k}, the CarryOut computes the AND
between adjacent propagating bits, i.e., p′j = p2j ∧ p2j+1 where pj are propagation bits at
round i and p′j are the propagation bits for the next round. At the end of log2 k rounds, the
final bit is the result of CarryOut.

A näıve implementation of the above will suffer from two major inefficiencies. First,
bitwise expansion requires that each secret-shared bit be stored separately, increasing the
memory footprint on the GPU. Second, using contiguous allocations to separate pairwise
bits results in non-trivial overhead from additional memory use and data copies. Figure 3.2a
shows 3 rounds of this CarryOut operation implementation where the propagating p bits are
combined. Unfortunately, due to the vectorized nature of data computation on the GPU, half
of p must be copied at each step to a different memory allocation before the next round can

3.5. PROTOCOL LAYER FOR LINEAR SECRET-SHARING SCHEMES 57

Figure 3.2: Comparison of a memory-inefficient naive carryout implementation Figure 3.2a
and our iterator-based in-place computation Figure 3.2b. In the former approach, new
memory allocations and data copy – highlighted in red – are done to split pairwise elements
into contiguous vectors for parallel GPU processing. The ability to define iterators and
execute kernels over non-contiguous memory allows Piranha to avoid any additional memory
allocation.

be evaluated (red-outlined in Figure 3.2a). During one execution of this particular CarryOut
implementation, log(n) additional data copies are performed.

In contrast, Piranha uses iterator-based views to allow access to non-contiguous data
elements in strides. Figure 3.2b demonstrates an memory-optimized version of CarryOut
leveraging this ability. For each round, the protocol defines two iterators, one for every even
element (yellow values), and one for every odd element (blue values), and uses those as the
basis for executing a kernel computing the next values of the propagation bit. The iterators
are input to a pairwise comparison kernel that would otherwise expect data marshalled
into a specific contiguous layout, allowing for efficient computation entirely without data
movement.

Furthermore, we can reuse the first iterator to store the results in the original allocated
buffer, resulting in no additional data copies or memory allocation. Since the entire bitwise
vector is allocated until the end of the protocol, we continue to use (increasingly less of) it
to store intermediate results until the final carry bit is calculated. Finally, templating allows

3.5. PROTOCOL LAYER FOR LINEAR SECRET-SHARING SCHEMES 58

the bit-vectors to use smaller datatypes (say uint8 t) compared to the datatypes used in the
secure computation (say uint64 t), thus minimizing the memory footprint they require on
the GPU.

3.5.3 Reusable protocol components

The structure of Piranha supports reusing protocol implementations, so that protocols can
build on other implementations in a number of ways. For instance, a new protocol for secure
comparison that operates in the same setting as another implemented protocol in Piranha
can focus solely on implementing the secure comparison functionality and inherit the rest
from the existing share type in Piranha. This also helps in maintaining the compatibility at
the application layer.

Another reusable component of Piranha is the implementation of share agnostic function-
alities. For example, this includes protocols that have been proven secure in the arithmetic
black box model FABB [58]. Such protocols are specified agnostic to the specific adversarial
model and remain the same as long as the basic operations are performed securely in the
specific adversarial model. A number of cryptographic primitives and functionalities are
proven secure in this model [135, 77, 149]. Piranha allows such methods to be generically im-
plemented once at the protocol level, alongside protocol-specific functionality, and can then
be inherited by any other implementation. As two examples, we implement a state-of-the-art
comparison protocol by Makri et. al. [149] and a protocol for approximate square-root and
inverse computation based on [223].

Secure comparison

We use secure comparison as an example of implementing a method in the arithmetic black
box model. The comparison protocol uses edaBits [77] as preprocessing material to efficiently
compute a comparison of secret values. An edaBit is a secret sharing of a random value and
the bit decomposition of the same value as boolean shares i.e.,

edaBit : [r]M , [r0]2 , [r1]2 , · · · , [rm]2 where r
$←− ZM (3.2)

where m+ 1 = log2M . The protocol for generating this can be found in [77]. The problem
of secure comparison over arithmetic secret-sharing can then be converted to a secure com-
parison over boolean secret-sharing using the edaBit. The latter can then be implemented
efficiently using bitwise operations such as CarryOut [197]. Details of this operation are
presented in Section 3.5.2.

Approximate computations

The privacy-preserving neural network application we implement requires a pair of specific
protocols for the normalization layers: secure integer division and secure computation of a

3.5. PROTOCOL LAYER FOR LINEAR SECRET-SHARING SCHEMES 59

square root. MPC protocols for these primitives typically require approximate computation
using Newton’s methods. We write a generic functionality based on the protocols from [223,
192] where we find the nearest power of two for each input value and then evaluate a fixed-
point Taylor series polynomial approximation. We use a simple Python script to compute
polynomials of a given degree that approximate each target function, in this case, sqrt and
inverse. These functionalities are then implemented and used across different protocols.
Specifically, Piranha uses the following approximations:

sqrt(x) = 0.424 + 0.584(x)

1/x = 4.245− 5.857(x) + 2.630(x2)
(3.3)

These approximations achieve an L1 error of 0.00676 and 0.02029, respectively, for x between
0.5 and 1.

3.5.4 MPC protocols

We implement three different MPC protocols to demonstrate Piranha’s generality at the
protocol layer: a 2-party implementation based on SecureML [161], a 3-party implementation
built upon Falcon [223], and a 4-party protocol [57]. We briefly describe each of these
protocols below, and prefix them with “P-” to indicate they are implementations accelerated
by Piranha.

Two-party protocol (P-SecureML)

In 2017, Mohassel and Zhang [161] proposed a 2-party (and a trusted third party variant)
protocol for privacy-preserving machine learning, using a 2-out-of-2 arithmetic secret sharing
as the basis for its functionality. The linear layers are computed using Beaver triples and
the non-linear layers are evaluated with garbled circuits. In our implementation, we replace
the expensive GC-based evaluation of ReLUs with a more recent and efficient comparison
protocol using edaBits [149, 77].

Three-party protocol (P-Falcon)

We build a 3-party protocol using the work of Wagh et. al. [223]. It uses a 2-out-of-3 repli-
cated secret-sharing as the basis for its functionality. The linear layers are performed using
local multiplications and resharing, a technique used in many other 3PC frameworks [15, 83,
160]. The non-linear layers are computed using a specialized comparison protocol building
upon [221]. Once again, we replace the comparison protocol using the more efficient work
by Makri et. al. [149].

3.6. APPLICATION LAYER FOR SECURE TRAINING AND INFERENCE 60

Four-party protocol (P-FantasticFour)

Our 4-party implementation follows the work of Dalskov et. al. [57]. It uses 3-out-of-4
replicated secret sharing: linear layers are performed using a generalization of the replicated
secret sharing approach, thus using a combination of local multiplications and resharing
(known as joint message passing and INP in the work and similar to [128]). For comparison
(probabilistic truncation), the protocol uses a combination of [76] and [128].

3.6 Application Layer for Secure Training and

Inference

Our final layer of abstraction is the neural network layer. This interface is guided by the
types of the deep learning architectures we wish to support. Currently, Piranha implements
protocol-agnostic versions of the following layers in full generality [5, 18]:

1. Linear layers: Convolution and fully-connected layers

2. Pooling operations: Maxpool and averagepool

3. Activation functions: ReLU

4. Normalization: Layer normalization

Layers use the popular Kaiming weight initialization [98]. Any neural network architecture
that is composed of these layers can be run using Piranha. This covers a large class of popular
networks used in computer vision - from simple multi-layer perceptrons like SecureML [161]
to more complex convolutional neural networks such as AlexNet [131] and VGG16 [200]. In
our evaluation in Section 3.7, we compare Piranha to the networks used in prior works [203,
223].

3.6.1 Interfacing the neural network library

As discussed in Section 3.6, we focus on the secure evaluation of neural network models as
our target application. To support the neural network library over multiple MPC protocols,
we require each MPC protocol to implement a common set of functionalities. Once this set
is implemented, the protocol can support training and inference over any neural network
architecture constructed with the supported layers. This required set of MPC functionalities
is given in Table 3.1.

Listing 3 shows a simplified look at the forward pass of a fully connected layer. The
functionality simply takes a batch of inputs, multiplies them with the layer weights and adds
the layer’s bias to compute the activations. The forward pass implementation is protocol-
agnostic in that it can be templated with any given Share type (e.g. from Listing 2’s RSS
share) and requires only that the required functionality matmul be implemented by that
protocol.

3.6. APPLICATION LAYER FOR SECURE TRAINING AND INFERENCE 61

matmul(...) Matrix multiplication of two matrices.

convolution(...) Convolution of two tensors.

maxpool(...) Compute the maximum of set of values.

truncate(...) Truncate i.e., divide shares by power of 2.

reconstruct(...) Opening of secret shares.

selectShare(...)
Select one out of two shares given a

boolean secret shared value.

comparison(...) Compare two shares.

sqrt(...) Compute an approximate square root.

inverse(...) Compute an approximate fixed-point inverse.

Table 3.1: Functionalities required by the NN training application, implemented by each
class in Piranha’s protocol layer.

3.6.2 Secure training of neural networks

Training neural networks, especially larger and deeper networks presents a number of chal-
lenges. In order to demonstrate learning, we face three major challenges:

1. Back propagation gradients are frequently much smaller than the remaining activations
and must be preserved by the finite precision available in fixed-point integers.

2. The quality of the gradients can also significantly affect the training process. Ensur-
ing that the final layer gradient computation is accurate has a significant impact on
how well the network trains. Inaccuracies are compounded by linear layers, which
yield approximate values due to each multiplication performed with finite precision
arithmetic.

3. Closely related to the previous issue is the stability of the final layer gradients. As the
network trains, the magnitudes of the final layer activations grow in size. Softmax [74]
computations to generate the needed gradients (which involve an exponentiation) can
quickly exceed the size of the data type, yielding an overflow and destabilizing the
learning process.

We showcase in Section 3.7 that privately training neural networks is indeed possible for
large networks with over 100 million parameters. We use fixed-point arithmetic to encode
real numbers for neural network experiments. For private inference, we observe that the
neural network can be run over 32-bit data-types with a fixed-point precision of 13 bits.
However, for private training, to retain the gradients with sufficient precision, we use 64-
bit data types with 20 or more bits of fixed-point precision, with deeper network depths

3.6. APPLICATION LAYER FOR SECURE TRAINING AND INFERENCE 62

Listing 3 Protocol-agnostic implementation of a fully-connected neural network layer. Any
protocol class, such as the RSS class in Listing 2, that implements the desired matmul
functionality can be used to compute the forward pass.
1 // Fully connected layer forward pass
2 template<typename Share>
3 void FCLayer<Share>forward(Share input) {
4 matmul(input, this->weights,
5 this->activations, ...);
6 this->activations += this->bias;
7 }

Figure 3.3: Our new approximate computation of last layer gradients that stabilize the
learning process.

requiring higher precision (Section 3.7.5). Finally, to address latter challenges, we propose
a new gradient computation function. Our gradient computation has two main advantages:
it is more stable to large activations, and it is MPC-friendly. The first is achieved because
we approximate the exponential with a function that does not increase the magnitude of the
secret-shared values. The second is achieved by using only comparisons, which significantly
reduces the round complexity of the computation.

Gradient Computations

In order to compute the gradients for the backward propagation [99], we apply a softmax
coupled with the cross-entropy loss function. Suppose the output of the last layer is x =
(x0, · · · , x9), and y = (y0, · · · , y9) is a one hot encoding of the true label, then the loss

3.7. EVALUATION 63

function (per image) is given by:

ℓ = −
∑
i

yi log pi where pi =
exi∑
j e

xj
(3.4)

The gradient is then given by:

∇i =
∂ℓ

∂xi

= pi − yi (3.5)

While there are a few different ways to compute this gradient [125], they do not solve the
challenges mentioned above, which are critical when training is performed on larger networks
and datasets. Note that the softmax function remains the same if the logits pi are computed
using the activations xi − xmax where xmax = max(x1, · · · , xk) if k is the number of classes.
In other words,

pi =
exi−xmax∑k
j=1 e

xj−xmax
(3.6)

We propose a new function computation to approximate the above computation (Eq. 3.6):

pi ≈ appExp(xi − xmax)/
k∑

j=1

appExp(xj − xmax) (3.7)

where appExp(·) is the approximate exponential function as shown in Fig. 3.3. We compute
the inverse in plaintext using a functionality similar to Falcon. To preserve the long tail
of the exponential, we add a small bias of 10−3 to each component of appExp(·). Note that
this function is (1) relatively easy to compute within MPC, and (2) preserves (i.e., does not
increase) the magnitude of the activations. These factors make the gradient computations
using this function stable from the machine learning perspective.

3.7 Evaluation

In our evaluation, we answer the following questions:

1. In comparison to state-of-the-art, CPU-based prior work, how well does Piranha accel-
erate the same computation tasks? (Section 3.7.2)

2. Can Piranha be used to successfully and securely train large neural networks (e.g. over
100 million parameters) in a reasonable amount of time? (Section 3.7.4 and Sec-
tion 3.7.5)

3. What are Piranha’s computation and communication costs in LAN and WAN environ-
ments? (Section 3.7.6)

4. How well does Piranha manage constrained GPU memory and how well does its memory-
conscious design improve scalability at the application layer? (Section 3.7.7)

3.7. EVALUATION 64

5. How does the runtime performance of privacy-preserving inference and training, sup-
ported by Piranha’s protocol-agnostic acceleration, compare with prior work on targeted
protocols? (Section 3.7.8)

3.7.1 Evaluation set-up

We run our experiments over similar hardware and networking environments as prior works [161,
223, 57]. For CPU-based implementations, we use Azure F32s v2 instances with Intel Xeon
Platinum 8272CL @ 3.4GHz processors and 64 GB of RAM. Networked experiments are ex-
ecuted in a LAN setting with a bandwidth of 10 Gbps and ping time of 0.2 ms. GPU-based
experiments are run on Azure NC6s v3 instances with 6-core Intel Xeon E5-2690 v4 CPUs
with 112 GB RAM and Nvidia Tesla V100 GPUs with 16 GB RAM.

We add matrix multiplication and convolution kernels for large integer types by building
on CUTLASS [55], at commit 0f10563, to which we add support for 32- and 64-bit integer
matrix multiplication and convolution. We use the default tiling parameters, while element-
wise kernels are parallelized using Thrust [169].

Baseline

As a baseline, we compare against protocol implementations from MP-SPDZ [122, 63] at
commit e6dbb4. MP-SPDZ is a state-of-the-art open-source secure computation platform
with over 34 protocols and represents a CPU-based analog to Piranha. For each MPC
protocol that we implement, we choose a state-of-the-art protocol implemented by MP-
SPDZ in the same setting: individual operations are benchmarked in Section 3.7.2 with
the 2-party semi2k, 3-party replicated-ring, and 4-party rep4-ring protocols. Each of these
implementations operate on a single CPU core. We focus evaluating Piranha’s performance
in the data-dependent “online” phase, as offline generation of data-independent components
such as Beaver triples [161] or edaBits [77] can be easily parallelized independently from a
particular computation.

Models and Datasets

We evaluate our high-level neural network library with four neural network architectures:
SecureML [161], a simple 3-layer network, and LeNet [136], a 5-layer convolutional network,
over MNIST [158], and AlexNet [131], an 8-layer convolutional network, and VGG16 [200], a
16-layer convolutional network, over the CIFAR10 dataset [130]. While Piranha fully supports
the use of maxpool layers in these architectures, as in CryptGPU [203], we substitute them
with averagepool layers to maintain comparative accuracy. Notably, averaging operations
are significantly less expensive than max operations in each Piranha-accelerated protocol, as
summation requires only a locally-computed linear combination of secret shares while obliv-
ious comparison incurs a logarithmic number of communication rounds among the parties.

3.7. EVALUATION 65

Matrix Multiplication

Convolution

ReLU

Figure 3.4: The figures benchmark secure protocols for matrix multiplication, convolutions,
and ReLU across 2-, 3-, and 4-party protocols for various sizes of these computations. Piranha
consistently improves the run-time of these computations, with improvements as large as 2-4
orders of magnitude for larger computation sizes.

3.7. EVALUATION 66

3.7.2 Comparison vs. CPU Implementations

In this section, we compare the performance of Piranha with state-of-the-art CPU-based
protocols over a set of MPC workloads. For each protocol discussed in Section 3.5.4, we
execute individual operations commonly used by a secure neural network application – ma-
trix multiplications, convolutions, and ReLU comparisons – and compare against the same
operations computed using MP-SPDZ [63] with protocols in the same setting, as described
in Section 3.7.1. In general, our results find that Piranha’s acceleration can improve per-
formance by 2-3 orders of magnitude for these important MPC functionalities. Figure 3.4
summarizes the results for each these operations as a function of various problem sizes.

We evaluate matrix multiplication performance by multiplying two N × N matrices for
logarithmically-increasing values of N . Considering small matrices of dimension N = 10,
where platform overhead such as data transfer to the GPU is most likely to have an out-
sized impact on overall performance, we find that using Piranha results in a performance
benefit of 6 to 60× in the four- or two-party settings, respectively. Likewise, as the problem
size increases, so does the impact of GPU acceleration on runtime. For the largest matrix
multiplication benchmarks with N = 300, Piranha’s 3- and 4-party protocols improve on the
CPU-based MP-SPDZ implementations by 2 orders of magnitude, while P-SecureML shows
a 4 order of magnitude improvement over MP-SPDZ’s semi2k implementation.

For the convolutions, we benchmark problems in order of increasing complexity. Each
convolution layer is parameterized by a [iw, cin, cout, f] tuple, where iw is the input image
dimension, cin and cout are the number of input and output channels, respectively, and f is
the filter size. We use the total number of multiplications as a proxy for layer complexity
(the complexity of the resulting unrolled matrix multiplication). The specific convolutions
we compute are listed in Figure 3.4, ranging in complexity from 1.47 × 107 to 1.86 × 109

multiplications. Similar to the matrix multiplication benchmarks, Piranha shows a significant
improvement in performance, performing on average 175 and 73× better in the 3- and
4-party setting, respectively. Piranha is much faster than the MP-SPDZ 2-party semi2k
implementation, achieving a speed up of 3 orders of magnitude, on average.

Finally, ReLU operations are benchmarked over N -element vectors of logarithmically
increasing size. For small vectors of N = 10 vectors, Piranha improves on each CPU-based
protocol by between 1.3 and 5.5×, again seeing modest gains due to overhead dominating the
relatively simple computation. For large vector sizes, we show extensive gains by applying
GPU acceleration. Figure 3.4 shows between a 300 and 1380× speedup across MPC protocols
over large ReLU inputs, completing 90 second CPU-based operations in less than a second.

3.7.3 Comparison with Floating Point Kernels

We mention in Section 3.4 the tradeoff in performance when computing directly over integer
buffers on the GPU, as opposed to decomposing large bit-width values into smaller chunks
for use in floating point-based kernels. In Table 3.3, we compare the 32- and 64-bit kernels
that Piranha uses, implemented with CUTLASS [55], against state-of-the-art 32- and 64-bit

3.7. EVALUATION 67

Network
(Dataset)

Protocol Time
(min)

Comm.
(GB)

Accuracy

Train (%) Test (%)

SecureML
(MNIST)

P-SecureML 12.99 49.55 97.37 96.56
P-Falcon 7.51 22.84 97.37 96.56
P-FantasticFour 23.39 33.01 97.37 96.56

LeNet
(MNIST)

P-SecureML 87.55 683.18 96.78 96.80
P-Falcon 71.56 485.90 96.88 97.10
P-FantasticFour 219.20 676.13 96.88 97.11

AlexNet
(CIFAR10)

P-SecureML 156.01 740.50 40.74 40.47
P-Falcon 110.66 382.18 40.59 40.71
P-FantasticFour 296.57 533.74 40.97 40.14

VGG16
(CIFAR10)

P-SecureML 3822.84 35454.91 55.02 54.35
P-Falcon 1979.92 17235.35 55.13 54.26
P-FantasticFour 7697.54 29106.24 55.02 54.35

Table 3.2: Time and communication costs for completing 10 training iterations over four
neural network architectures, for each of Piranha’s MPC protocol implementations. We are
the first work to demonstrate end-to-end secure training of VGG16, a network with over 100
million parameters.

Kernel Time (ms)

Library Datatype 784x9x20 1024x27x64 784x147x64 10000x1000x10000

cuBLAS float-32 0.014 4.16 4.45 54.19
Piranha float-32 0.981 4.51 4.56 65.16
Piranha int-32 3.61 4.38 4.52 78.35

cuBLAS float-64 4.58 6.37 4.70 126.5
Piranha float-64 4.60 5.92 4.69 114.95
Piranha int-64 4.76 4.66 4.90 2482.17

Table 3.3: Runtime for matrix multiplication kernels used in Piranha vs. the cuBLAS im-
plementation for different sizes.

3.7. EVALUATION 68

floating point kernels from cuBLAS [54]. While we can directly compare floating point per-
formance between the systems, cuBLAS does not support large integer matrix multiplication,
so we only present Piranha-based results for comparison.

We benchmark the runtimes for the matrix multiplication kernels used in Piranha vs.
the cuBLAS implementation on various sizes of matrices in Table 3.3. We observer that
Piranha kernels, when executed with floating point datatypes result in comparable overhead
to cuBLAS implementations. However, executing 32-bit integer multiplications is much more
expensive in Piranha compared to the floating point case. 64-bit integer multiplications are
relatively comparable to cuBLAS 64-bit floating point, but at very large matrix sizes, there
is a significant difference between the two. This is likely due to the fact that 64-bit integer
operations are emulated using 32-bit integer instructions that target the GPU integer cores
used.

3.7.4 Secure Training of Neural Networks

No prior work has successfully trained, within secure computation, a network such as VGG16,
which over CIFAR10 has over 100 million learnable parameters. While existing work has
estimated the time to train such a network, the training times are prohibitively large – over
14 days [223] to complete 10 training epochs. This work is the first to securely train such a
neural network, in less than a day and a half: our results are detailed in Table 3.2.

We train each network with each protocol Piranha currently supports for 10 epochs with
128-image batches. For each training run, we report the total training time and per-party
communication. Every training pass used the MPC-friendly softmax replacement we propose
in Section 3.6; over every network architecture we evaluate, our approximation remains
stable and allows the networks to train successfully. To ensure that even small gradients
can backpropogate through each networks and train a useful model, we vary the level of
fixed-point precision: we train the shallow SecureML with 20 bits of fixed-point precision,
LeNet and AlexNet with 23 bits, and VGG16 with 26 bits of precision. We further discuss
how fixed-point precision impacts model accuracy in Section 3.7.5.

On a small dataset like MNIST, Table 3.2 shows that Piranha’s neural network training
library can quickly train SecureML and LeNet, achieving greater than 96% test accuracy
in no more than 2 hours with P-Falcon and P-SecureML, compared to approximately 97%
and 98% accuracy, respectively, when trained in plaintext. For larger networks, the cost of
privacy-preserving matrix multiplication dominates the overall runtime [223]. This explains
why P-FantasticFour generally takes 2 to 3× longer for the same training pass, because the 4-
party protocol requires 7 local matrix multiplication operations for every privacy-preserving
matrix multiplication, compared to only 3 local multiplications for the 3-party P-Falcon
implementation.

On the larger CIFAR10 dataset, training times increase significantly but remain feasible.
Over AlexNet, all protocols can successfully complete their training runs in under 5 hours,
achieving 40% test accuracy over that time. We observed a 59% accuracy when training the
same model in plaintext (note that an untrained network/random guessing achieves a 10%

3.7. EVALUATION 69

Figure 3.5: Test accuracy as the fixed-point precision increase for each network architecture,
after 10 training epochs using P-Falcon. The dashed line indicates the baseline accuracy
when randomly guessing. Sharp increases in training accuracy indicate that the model now
has enough precision to fully backpropagate gradients.

accuracy given that there are 10 classes). When considering VGG16, the largest network
Piranha trains over, training times are considerable: P-SecureML and P-FantasticFour require
2 and 5 days, respectively, to complete. Importantly, however, we can complete 3-party
VGG16 training in only 33 hours with 54% test accuracy (compare to 67% test accuracy
in plaintext on the same model), which prior work estimated to take 14 days but did not
actually execute the training [223].

These training times are only possible due to two main factors. First, improved compu-
tation times (through the use of GPU-accelerated kernels) reduces the overhead of matrix
multiplication and convolution, whose costs grow super-quadratically with their dimensions,
and are a significant part of the total runtime. The second is the ability to train over large
batch sizes. Large batch sizes improve the efficiency of the stochastic gradient descent al-
gorithm, and runtime scales better with batch sizes. Thus, a batch size of 128 has a lower
run-time than computing over two 64-image batches.

3.7.5 Impact of Fixed-point Precision

For deeper networks, we observe that gradients reaching the initial layers routinely approach
2−20, and are further reduced by the current learning rate. If the fixed-point precision

3.7. EVALUATION 70

Figure 3.6: Computation and communication overhead for private training iterations in LAN
and WAN settings. Piranha significantly accelerates local computation on a GPU, resulting
in communication costs dominating overall runtime as latency between parties and network
size increases.

used by the network is not selected carefully, parameter update gradients will approach the
minimum value Piranha can represent, yielding imprecise results and barring the model from
training correctly. Figure 3.5 quantifies what precision is necessary to train each network,
showing the final test accuracy after 10-epoch P-Falcon training runs at increasing amounts
of precision from 10 to 26 bits. There is a clear distinction between precisions at which each
network fails to train and those that allow the networks to do better than random guessing.
While 13 bits of precision are sufficient for private inference, even SecureML cannot begin
to train until more than 14 bits of precision are used. For the deeper networks, AlexNet and
VGG16, which see very small gradients by the end of backpropagation, a higher precision (at
least 22 and 24 bits, respectively) is needed. More importantly, these results indicate that
computation over 64-bit integers is not just desirable for secure training of large networks
but in fact, necessary. In addition, as the size and depth of MPC-trained models increases,
the amount of fixed-point precision necessary will likely grow as well, or the use of adaptive
fixed-point computation may be necessary.

3.7.6 Computation and Communication Cost

We measure Piranha’s ratio of computation time (time spent performing GPU-accelerated
local computation) to network overhead (time spent waiting for other parties) in Figure 3.6
for both LAN and WAN settings. In the LAN setting, all parties executed on GPUs in the
same datacenter, with approximately 1.5 ms of observed latency, while in the WAN setting,
we run the parties in datacenters in different geographic locations with 60ms of latency in
between. When the network is fast, so is the end-to-end runtime: Piranha completes training
iterations over each network architecture in ∼3 seconds or less over LAN but takes up to
40 seconds over WAN to perform a 4-party training iteration for VGG. We note that the
raw time spent on local computation is the same in both settings, but the computation-
communication ratio is very different. We observed that parties in the LAN setting spent

3.7. EVALUATION 71

(a) (b) (c)

Figure 3.7: Memory footprint over a VGG16 forward pass. Each point is a snapshot of
the total GPU memory allocation (in MB) at each memory operation (allocation or de-
allocation). Figure 3.7a corresponds to a naive GPU implementation, Figure 3.7b measures
the footprint after iterator-based optimizations, and Figure 3.7c after efficiently sizing bit-
containing data structures.

between 15% and 60% of the time on compute (on Secure ML and VGG16, respectively),
while in comparison, parties in the WAN setting never spent more than 6% of their time
on computation. Piranha inherits its communication behavior from the protocol that it is
accelerating, and so it does not fundamentally alter the network overhead that would be
observed. It is likely that future protocols performing increased computation in favor of
minimizing communication [219, 217] would see a large benefit from executing on Piranha in
a WAN setting.

3.7.7 Memory Efficiency

Commodity GPUs, including those we use to evaluate Piranha, are commonly constrained to
16GB of memory. We evaluate how effectively Piranha manages this memory constraint by
tracking peak memory usage over training passes. When all other parameters are the same
(protocol, computational task, and GPU hardware), prior work can only execute over batch
sizes of 32 [203]. This section shows how careful memory management directly translates to
executing neural network training over significantly larger batch sizes on a single GPU than
has been previously possible.

We illustrate the benefits of two main memory-based modifications we discussed in Sec-
tion 3.5.2 in reducing our memory footprint. We consider three Piranha versions: (1) a naive
computation approach with large uniform data types and minimal in-place computation, (2)
an iterator-based implementation that seeks to avoid memory allocation when at all possible,
and (3) a version that correctly sizes data types to minimize wasted memory (e.g. in the
case of secret-shared bits). For each version, Figure 3.7 tracks on-GPU memory usage for
P-Falcon, updated after every (de)allocation, during a VGG16 forward pass with an input
batch size of 4. We also measure the maximum VGG16 batch size that Piranha can support
with on-GPU memory, and total runtime and peak memory footprint with a batch size of

3.7. EVALUATION 72

Network
(Dataset)

k
Memory usage for Private Training (MB)

P-SecureML P-Falcon P-FantasticFour

SecureML
(MNIST)

1 319 325 331
64 321 327 335
128 325 331 339

LeNet
(MNIST)

1 437 461 481
64 535 577 651
128 661 749 897

AlexNet
(CIFAR10)

1 507 603 675
64 531 649 743
128 585 689 805

VGG16
(CIFAR10)

1 629 847 1027
64 3017 3927 5481
128 5505 7207 10197

Table 3.4: The maximum memory usage of a secure training pass (forward and backward
pass) for various MPC protocols and network architectures. Piranha’s memory efficient design
enables running large networks such as VGG16 with a batch size of 128 where prior works
have been limited to 32 [203].

32 to compare between versions. Peak memory footprint indicates the amount of temporary
allocations necessary at runtime, which can significantly strain the GPU’s available memory
and preclude larger batch sizes.

Figure 3.7a shows the memory allocation trace for the naive P-Falcon implementation
described in Figure 3.2(a), which requires a significant amount of data allocation while
executing ReLU comparisons, where secret-shared values are expanded into bitwise format.
Driven by the initial network layers with larger inputs, the peak GPU memory load is 2.28
GB, a 7× increase over the allocation required for the network itself (345 MB). The total
number of memory operations is high: almost 16,000 such allocations and frees are performed
over the course of the computation. During a 32 batch size run, this approach can complete a
training iteration in 27 seconds with a peak memory footprint of 14.9 GB, or 93% of available
GPU memory.

Figure 3.7b shows the results of an improved iterator-based implementation that operates
over views of already-allocated shares, without incurring additional memory load. In-place
computation yields significant memory savings: for batches of 4 images, the iterator-based
Piranha version requires only 1.38 GB at its peak compared to the base implementation of
Figure 3.7a. The number of GPU memory operations also drops, resulting in almost 4× less
allocations and frees during the network’s inference pass. However, even with these opti-
mizations, the measured peak memory usage of over 1 GB in Figure 3.7b would not support
training runs over 128-image batches. Similar to the naive implementation, the maximum

3.7. EVALUATION 73

batch size the iterator-based version can train with is 32, but only incurs a maximum memory
footprint of 8.9 GB, an approximately 60% improvement. Execution time increases slightly
to 35 seconds per pass, which we suspect is due to the inherent cost of non-contiguous and
indirect memory access.

In Figure 3.7c, we evaluate the impact of sizing memory appropriately for data at the
protocol layer. In the previous versions analyzed above, the bitwise expansion used in our
ReLU comparison protocol remained a major source of memory blowup, as bit values were
each stored into a full 64-bit values. Modifying Piranha protocols to closely match the
size of allocated values with their logical sizes significantly cuts the peak memory usage in
Figure 3.7c by a factor of 2, to 581 MB, or only 250 MB above the baseline model memory
requirements. This has an outsized effect on training execution time, as smaller data types
require less communication overall: with this change, Piranha can support P-Falcon-based
training iterations with a batch size of 256 in just 7.6 seconds, with a maximum memory
footprint of 1.8 GB.

Finally, Table 3.4 shows peak GPU memory usage for Piranha over all networks as it
performs training passes using the protocols we implemented on Piranha. For SecureML in
particular, the baseline memory used by the network parameters dominates any temporary
memory requirements, as the peak memory use only grows by 6 MB between runs over
batches of 1 image and 128 images. As expected, P-FantasticFour exhibits larger increases
in peak memory use as batch size increases, due to the increased number of local shares it
must maintain for each secret-shared value, proportionally increasing memory load.

3.7.8 Comparison with Prior Work

Finally, we compare the runtime and communication overhead of Piranha relative to state-
of-the-art protocols for neural network training: a CPU-based implementation, Falcon [223],
and a GPU-based implementation, CryptGPU [203]. Both protocols are fixed to a 3-party
setting, while Piranha is designed to support a general class of LSSS protocols. In this
section, we compare the performance of existing protocols with Piranha’s equivalent 3-party
P-Falcon implementation, to evaluate whether the generality of Piranha’s design comes at a
performance cost.

We benchmark the run-time for a single training and inference pass over 3 different
networks – LeNet, AlexNet, and VGG16. While we can support batch sizes of up to 128
on each of these networks, we scale down our computation to provide an apples to apples
comparison with prior work. The results are presented in Table 3.5.

For private inference, where the forward passes use a single input image (batch size of
1), the computation is not large enough to fully benefit from GPU acceleration. Table 3.5
shows that Piranha achieves comparable performance to the CPU-based Falcon for private
inference over small networks, but over the much larger VGG16 architecture, Piranha already
yields a 3× performance improvement.

GPU acceleration has a much stronger impact on private training iterations, where the
computation sizes are much larger due to the increased batch size and the addition of a

3.7. EVALUATION 74

Model
(Dataset)

Private Inference Private Training

Falcon CryptGPU P-Falcon Falcon CryptGPU P-Falcon
T
im

e
(s
)

LeNet
(MNIST) 0.038 0.380 0.031 14.9 2.21 0.888

AlexNet
(CIFAR10) 0.110 0.910 0.131 62.37 2.910 1.419

VGG16
(CIFAR10) 1.440 2.140 0.469 360.83 12.140 7.473

C
om

m
.
(G

B
) LeNet

(MNIST) 2.29 3 2.492 0.346 1.14 0.417

AlexNet
(CIFAR10) 4.02 2.43 1.960 0.621 1.37 0.581

VGG16
(CIFAR10) 40.05 56.2 88.39 1.78 7.55 4.261

Table 3.5: We compare the run-times for private training and inference of various network
architectures with prior state-of-the-art works over CPU and GPU. Falcon and CryptGPU
values are sourced from [203] Table I. Private inference uses batch size of 1, training uses 128
for LeNet, AlexNet and 32 for VGG16. For smaller computations (private inference), Piranha
provides comparable performance to CPU-based protocols. However, for larger computations
(private training), Piranha shows consistent improvement between 16 − 48×, a factor that
improves with scale.

backward pass over the network. Even on the smallest architecture, LeNet, Piranha performs
training iterations 16× faster by leveraging a GPU, while on the larger architectures we
benchmark, we show between a 44-48× speedup.

In addition to evaluating the benefits of GPU acceleration, Table 3.5 also quantifies
whether Piranha incurs additional overhead from supporting multiple protocol implemen-
tations, compared to tools that integrate a specific MPC protocol end-to-end like Crypt-
GPU [53]’s 3-party implementation. Considering private inference, Piranha is significantly
faster, showing approximately 12, 7, and 4× speedup on each of LeNet, AlexNet, and VGG16,
respectively. We also show a performance advantage in computing training iterations, with
performance gains ranging from approximately 2.5× on LeNet to 1.6× on VGG16. We
attribute these constant improvements to a few factors. First, Piranha’s direct use of 64-
bit integer kernels avoids the repeated 16-bit floating point multiplications that CryptGPU
incurs. We do this at the cost of using less powerful GPU integer cores and kernel implemen-
tations that must be emulated with 32-bit integer instructions. Second, even though Piranha
supports many different protocol implementations, Table 3.5 shows that the negligible over-
head of our approach can yield the same or better performance than single-protocol designs.
Third, some portion of these performance difference may be attributable to different pro-
gramming environments – Piranha is implemented in C++ while CryptGPU is implemented
over PyTorch.

3.8. FUTURE AND SUBSEQUENT WORK 75

3.8 Future and Subsequent Work

3.8.1 Opportunities for Future Work

We show in Section 3.7 that GPUs provide much-needed performance acceleration for secure
computation. Piranha’s modular platform structure means that functional enhancements
made at any layer of the platform – from future performance improvements in the GPU ker-
nels to additional MPC protocols or new privacy-preserving applications – can immediately
benefit other system components.

Device Layer

The device layer separates protocols from the GPU interface. Thus, acceleration of lo-
cal operations, optimizations, or entirely different methods of performing integer- and fixed
point-based calculations can be independently developed. Even in its current state, Piranha’s
integer kernels are slower than their floating-point equivalents implemented by popular li-
braries like cuBLAS [54], as they can take advantage of features like tensor cores that focus
exclusively on floating-point. Future efforts can focus on supporting better kernels, enabling
multi-GPU usage, and supporting custom accelerators on platforms such as FPGAs [72].

Protocol Layer

Piranha can be used for development of newer multi-party protocols, expanding support
for different number of parties, innovative protocols, and adversarial models. As noted in
Section 3.1, we focus on LSSS protocols in a semi-honest security model, and the protocols
we implement operate over 32- and 64-bit integer rings, such that the existing hardware
support for modular arithmetic simplifies computational overhead. However, support for
other protocol types can be expanded, in supporting field operations, accelerating garbled
circuit evaluation [233], or adding homomorphic encryption support [56] to enable dishonest-
majority protocols.

Application Layer

We showcase the use of Piranha for making meaningful progress on private neural networks
training. Piranha’s modular approach provides a rich environment for innovation in MPC-
friendly neural network design, such as private training of newer architectures like residual
networks, transformers, or LSTMs. While we only evaluate Piranha over a neural network
training application, the platform allows development of arbitrary, protocol-agnostic secure
computation. Future work can focus on demonstrating the ability of the platform to support
applications in other areas, such as oblivious sorting or oblivious RAMs.

3.9. SUMMARY 76

3.8.2 Subsequent Work after Piranha

Research in secure ML training and inference has exploded in recent years [238, 150, 164],
as more and more personal data is being used to train larger and larger models. Since
Piranha’s publication, critical advances in several key areas have been made to move secure
MPC-based machine learning even closer to practical deployment.

Improvements in Communication

Looking forward, one of the key takeaways from 3.7.6 was that in terms of training on a
local- or wide-area network, Piranha is computing as fast as it can, yet it cannot change the
communication overhead inherent in the protocols it supports. Meteor [70] proposed better
3-party protocols for the primitives we use – addition, multiplication, sign-bit extraction for
ReLU – with lower communication costs, increasing performance. Going beyond the LSSS
regime, Orca [113] and Pika [219] leverage Function Secret-Sharing to significantly decrease
the communication cost between parties, as shares of the extremely large matrices of weights
and activations need not be sent back-and-forth between parties. Instead, much smaller
shares of a function to be evaluated can be distributed among participants. Compared to
Piranha, Orca evaluates NN training between 8 and 100 times faster, which pushes secure
learning significantly closer to plaintext.

Specialization for Large Language Models

Since Piranha, machine learning has discovered the benefits and scale of Large Language
Models (LLMs) and significant effort has been put towards enabling secure evaluation of
LLMs using personal data. CipherGPT [103] proposed new optimizations based on the
specific transformer architecture used in LLMs, including a secure protocol for evaluating
the GELU activation function required. PUMA [71] implemented secure protocols for, among
others, embeddings, LayerNorm, and GELU, showing inference of 1 token using Llama-7b
in 5 minutes, while Sigma [93] goes even further, using an FSS-based approach to evaluate
Llama2 in less than a minute.

3.9 Summary

In this chapter, we described Piranha, our platform for GPU-accelerated MPC protocol
development. Piranha contributes three modular components: a device layer that manages
protocol memory on the GPU and accelerates MPC-specific integer operations, a protocol
layer where memory-efficient in-place operations can be leveraged to fit the constrained GPU
environment, and an application layer for privacy-preserving computation on any underlying
protocol. Piranha’s modular structure provides wide applicability for other projects to use
GPU acceleration without requiring expert knowledge. To demonstrate that Piranha as

3.9. SUMMARY 77

a general-purpose platform provides significant improvements in run-time through GPU-
based acceleration, we implement 3 different MPC protocols for secure training of neural
networks on top of Piranha, resulting in a 16-48× performance improvement over CPU-
based implementations. Finally, using Piranha, we are able to securely train a realistic
neural network end-to-end, with over 100 million parameters, in a little over a day.

This chapter has demonstrated that many heavyweight cryptographic primitives like
MPC require a significant amount of computation, which many less capable clients (e.g.
mobile devices or personal laptops) might find infeasible. In such cases, one would ideally
outsource the actual computation to a third party with more computational resources, but
there is often no guarantee that the computation was performed correctly. In the next
chapter, we describe and evaluate system improvements for zero-knowledge proving on the
GPU, which would allow a compute provider to prove it had correctly generated the desired
output without forcing a client to check the computation step-by-step.

78

Chapter 4

Towards High-Throughput
Zero-Knowledge Proving on GPUs

4.1 Introduction

Zero-knowledge (ZK) proofs are incredibly useful for verifying that private computation was
done correctly, impacting areas from blockchains (verifying that a transaction is valid [194]
to anonymous ID systems (verifying that someone has the right to vote [241] or access a
particular resource [190]), maliciously-secure cryptographic protocols [110], or even nuclear
disarmament [177].

Unfortunately, while verifying proofs tends to be very simple and fast for clients, gen-
erating a proof is much more time-consuming, both in absolute terms and relative to the
amount of plaintext computation that is being proven. As an example, we implemented a
proof using the popular Gnark [29] library for ZKPs, attesting to 128 correct EcDSA sig-
natures in the Plonk proof system. The proof required about 21 seconds of online time to
generate, whereas simply verifying each signature if accessible directly would conservatively
require less than a millisecond [36].

Proving in ZK-SNARKs (Succinct Non-Interactive Arguments of Knowledge) [194], the
most well-known flavor of zero-knowledge proving in which a verifier can check a proof it re-
ceives without interaction with the prover, is bottlenecked by several high-impact, expensive
operations. Chief among them is the Multi Scalar Multiplication (MSM), used to commit to
large polynomials during the proving process. In addition, the Number Theoretic Transform
(NTT) is used to convert elliptic curve polynomials from their coefficient to point-based
forms, and back again. By far the most execution time is spent in the MSM, contributing
up to 70-85% of the total runtime [146].

This clear and critical bottleneck in the proving process makes MSM acceleration a
key target for acceleration on specialized hardware, including FPGAs [229, 239, 186] and
GPUs [244, 106, 147, 165]. Given that zero-knowledge proofs enable private cryptocurrency
systems [194] that do not leak the participants or amount associated with each transaction,

4.1. INTRODUCTION 79

allow powerful computers to efficiently process blockchain transactions offline while checking
correctness, enable embedded devices to access firmware updates without revealing their
identity, or support anonymous voting systems [236], there are significant industry-based
efforts to improve the practical efficiency of MSM and end-to-end proving performance,
yielding competitions like as the Zprize contest [245] where prizes worth thousands of dollars
are awarded to teams that can achieve performance benefits over the currently-known state-
of-the-art.

Critically, in SNARKs, the prover does not have to communicate with the verifier to
generate the proof, so it can put whatever computational resources it has available to the
task (this is markedly different from the acceleration environment for Piranha in Chapter 3, in
which the GPUs from different parties had to communicate during the protocol). In addition,
MSMs are large in size (proofs typically consist of millions of constraints or more). They
are also high in number, with many different proofs of the same structure being computed
at the same time. For example, a single ZK proof might seek to attest to the state of an
entire microarchitecture during an execution cycle, or hundreds of individual proofs might
be generated to attest that various blockchain transactions were generated correctly.

In this chapter, we tackle two related problems. For single, very large MSMs, how can
we leverage GPUs in a more effective way to decrease proof generation latency? This is
critical for large proofs, such as those involved in “rollups” of zero-knowledge proofs, whose
constraints (and thus proving effort) increases with the number of inputs. And, for many
proofs, how can we increase throughput by batching MSM computations together? In this
setting, systems such as blockchains that must verify a stream of smaller proofs for e.g.
private transactions as they are submitted by clients.

4.1.1 Challenge: Decreasing Latency for Large MSM Problems

Handling large MSM problems is a question of immense vertical scale. As the computations
we need to prove get more complex, so do MSMs. In ZPrize [245], a ZKP acceleration
challenge in 2023, contestants were challenged with accelerating MSM computation for input
sizes of up to N = 226, or 67 million inputs, equivalent to over 8 GB of data. Given limited
GPU memory, increasing the size of MSMs we can support by 4, 8, or 16 times will not be
as easy as allocating a larger buffer, as the data will simply not fit on a single device at one
time.

Thus, the systems challenge we tackle is determining how to efficiently expand MSM
memory use into CPU memory without incurring overhead or increasing the proof latency. In
Section 4.3, we discuss our chunking-based approach to large MSM computation, in which we
note that the amount of memory required for temporary state remains constant independent
of the input size. Once this state is allocated at the beginning of the computation, we
divide the input into a set of independent chunks that are streamed to the GPU in sequence
while computation over the previous chunk is ongoing. We show in Section 4.5 that we
can successfully chunk large MSMs (N > 226) and schedule their data transfer such that
computation on the GPU is not interrupted, maximizing utilization.

4.2. BACKGROUND AND RELATED WORK 80

4.1.2 Challenge: Increasing Throughput for MSM Computation

Likewise, supporting large batches of MSMs is a problem with large horizontal scale. Given
a workload of tens or hundreds of proofs at a time, we must find a way to increase overall
throughput by efficiently processing batches of MSM problems. Unfortunately, the common
approach to MSM evaluation, Pippenger’s algorithm (see Section 4.2), requires a significant
amount of additional memory allocation per-proof, consuming much of what is available
on-device. At the same time, each individual proof shares a common structure, in that
they all reference the same elliptic curve points as inputs to the MSM, with only the scalar
multipliers depending on the specific proof input.

The primary challenge in this setting is determining a strategy to reuse work amongst the
batch execution, given known properties of each MSM. Since we need to effectively multiply
the same base point by a large set of different psuedo-random scalars, we can leverage an
efficient addition sequence [49, 234] to calculate each intermediary target multiplication as
a step in the process towards computing the final target multiplication. Our insight is
that, unlike prior work in which addition chains are generated at compile-time for known
exponents, we generate addition chains at runtime for scalar sequences that are not known
a-priori. In this setting, we prioritize achieving relatively short chains over perfectly optimal
ones, generated with minimal processing overhead. Finally, we demonstrate a split CPU-
GPU design where instructions are generated for each addition sequences on the host before
being executed on the accelerator; we demonstrate in Section 4.5 that leveraging addition
sequences can make a significant impact to batch MSM processing compared to the baseline.

4.2 Background and Related Work

4.2.1 Zero-knowledge Proofs

Zero-knowledge proof systems generally share the same objective: a prover seeks to convince
a verifier of the truth of a particular statement, without revealing the information that makes
it true. More specifically, the prover seeks to generate a valid proof π using a secret witness
w and public input x, such that the verifier can check π using x but without needing w.

Zero-knowledge protocols must be complete, in that an honest verifier will always be
able to verify a π from an honest prover; sound, in that an honest verifier will never be
fooled by an incorrect π from a dishonest prover; and eponymously, zero-knowledge, in
that nothing other than the correctness of π is leaked to a malicious verifier. Interactive
proof systems require some rounds of communication back-and-forth between the prover and
verifier, while non-interactive proofs allow a verifier to check π immediately once it’s been
received. zk-SNARKs (Zero-Knowledge Succinct Non-interactive Arguments of Knowledge)
are non-interactive proofs that are also very short and quick to verify: several hundred bytes
no matter the complexity of the operation being proved. zk-SNARKs have a setup phase
where a Common Reference String (CRS) is generated from some source of randomness with
publicly-known parameters used by the prover and the verifier. Importantly, if the setup

4.2. BACKGROUND AND RELATED WORK 81

is insecure and the randomness underlying the CRS is known, a malicious party can forge
proofs under the CRS that will fool even honest verifiers.

There are two commonly-used zk-SNARK proof systems: Groth16 [92] and Plonk [84].
Both proof systems decompose arbitrary proof statements into arithmetic circuits consisting
of addition and multiplication gates, then encoding circuit values for a particular input into
polynomial equations over elliptic curve points that can be quickly verified. Groth16 requires
a circuit-specific trusted setup, so each proof application must generate their own CRS and
ensure that the randomness used in that process remains secure from malicious parties. On
the other hand, Plonk provides a universal setup, with any number of different proofs sharing
the same CRS (this setup is usually performed under strict scrutiny and using other tools
like multi-party computation [127]). The convenience of Plonk comes at the cost of slightly
increased proof sizes and additional proving time required to generate valid proofs.

4.2.2 Multi-scalar Multiplication

An extremely common operation in the generation of a ZK proof is multiplying elliptic curve
points in the CRS by various input-dependent scalar values and obtaining their sum. Given
n points Pi in the CRS and a set of n scalars si, the multi-scalar multiplication (MSM) result
P is

P =
N∑
i=1

siPi

This seemingly simple operation consumes almost 80% of the total proving time using
Groth16 [146]. Elliptic curve scalar multiplication is very expensive, requiring repeated point
addition and doubling. In addition, the size of each MSM may be very large – for example,
PipeZK [237] evaluates over MSMs ranging from N = 214 to 220, over a million elements.

4.2.3 Pippenger’s Algorithm

Given the bottleneck that MSMs represent to efficient ZK proving, numerous efforts have
been made to reduce its computational cost. Most current efficient MSM implementations
today use Pippenger’s algorithm [25], which aims to reduce the overall number of scalar
multiplications required, at the cost of additional additions.

In Pippenger’s algorithm, each B-bit scalar is split into c-bit windows. For each window,
the associated elliptic curve points are accumulated into one of 2c buckets based on window
value. Accumulated bucket points, rather than individual input points, are multiplied by
their bucket value, then summed and adjusted for window position to achieve the final result.
For example, using the BLS12-381 curve, with B = 256 bit scalars, one might split each scalar
into 16 16-bit windows but could pick some other c. As the window size c increases, so does
the number of buckets needed and and required multiplications, but small c will increase
the count of bucket sets and number of times each point must be added into a bucket. It

4.2. BACKGROUND AND RELATED WORK 82

can also decrease parallelism, as a limited number of buckets can be aggregated in parallel,
compared to wider c.

4.2.4 Addition Sequences

For a target set of integers T = (t1, t2, · · · tn), an addition sequence S = (s1, s2, · · · sm) such
that every t in T is also in S, and for every 1 < i ≤ m, si = sj + sk, j, k < i [49]. For
example, if T = (5, 8, 10), a valid addition sequence S for T would be (1, 2, 3, 5, 8, 10).

An addition chain is very similar to an addition sequence, but in this case, there is only one
target value. In fact, generating addition sequences is commonly used as a subroutine towards
achieving an addition chain, where the desired target is decomposed into an intermediary
sequence for which an addition sequence is found [24]. Addition chains and sequences are
well-known in other cryptographic areas: significant manual effort has been expended on
finding the minimal-length addition chain for elliptic curve field inversion [206], where the
same exponent is constantly evaluated at runtime and so offline optimization of the addition
program yields large benefit.

4.2.5 Related Work on GPU Acceleration for Zero-knowledge

Given the excitement surrounding zero-knowledge proofs in both industry and academia
and the massive bottleneck that MSMs represent for proof processing, it’s no surprise that
a significant work has recently been done to support acceleration of the core ZK proving
primitives.

Zhu et al. [244] this year proposed a dynamic method to perform pre-processing for Pip-
penger’s algorithm, based on the hardware configuration being used, leveraging the tradeoff
between storage space and runtime reduction. Similarly, Huang, Zheng, and Zhu [106] inves-
tigate using zero-copy memory using pinned CPU memory to improve memory throughput
in ZK proving (likewise, our implementations in this paper also leverage pinned memory to
speed memory transfer time significantly). Other research groups have delved into better
supporting core operations deep in the GPU hardware, verifying proper cache access patterns
and grouping tasks of a similar size [147], or parallelizing the basic elliptic curve modular
multiplication that lies at the core of MSM computation [165].

From a systems angle, Ji et al. have developed ways to leverage multiple GPUs for
Pippenger acceleration, including implementing register-efficient elliptic curve kernels more
suited to GPU architectures and leveraging tensor cores [116]. With parallel device execu-
tion comes the need to study synchronizing and load-balancing proving workloads [46]. In
addition, better abstraction layers for ZK application developers are being developed, hiding
implementation details over multiple hardware platforms, like GPUs and FPGAs [109].

Finally, many systems are being built for FPGAs (Field Programmable Gate Arrays),
rather than GPUs. While less flexible and more resistant to easy application development,
FPGAs offer performance closer to that of an application-specific integrated circuit (ASIC).
Xavier et al. [229] developed PipeMSM, an FPGA-based efficient modular multiplication

4.3. UNBOUNDED-SIZE MSM EVALUATION WITH MEMORY PIPELINING 83

technique designed to quickly move data through the device, upon which BSTMSM improves
in terms of latency using a different circuit approach [239]. Similarly, Zhao et al. [240]
propose a pipelined FPGA acceleration implementation for NTT computation. Hardcaml
MSM [186] performs precomputation while accelerating MSM computation and leverages
CPU resources as well. Finally, PipeZK proposes an actual ASIC implementation for end-
to-end ZK proving [237].

4.3 Unbounded-Size MSM Evaluation with Memory

Pipelining

In this section, we describe our system design to ameliorate the impact of limited GPU
memory on our ability to compute over large MSM problem sizes. While GPU memory
availability is always a concern, it is much more acute when computing large MSMs. Each
BLS12-381 base element requires 128 bytes of memory, while scalars occupy another 32
bytes. Allocating temporary memory (e.g. Pippenger buckets), also reduces the supportable
problem sizes. Thus, the question is, how can we expand MSM execution to problem sizes
that may not fit into memory at all?

4.3.1 Large MSMs using Unified Memory

A natural approach is to somehow integrate a (relatively) larger amount of CPU-based
host memory with GPU device memory to store larger amounts of the MSM. We can very
easily and cleanly use NVIDIA Unified Memory [97] with our GPU MSM-based application
by changing cudaMalloc calls in the code setup to cudaMallocManaged invocations. This
allows us to store our MSM inputs split across all the GPU and CPU memory we can access,
increasing our input size appropriately.

Figure 4.1 shows evaluation times for MSMs using an unmodified Yrrid MSM GPU
implementation [235] and one modified to use managed memory allocation and the GPU’s
unified memory features. As an MSM is additive, we can also imagine a scenario in which
we would take a large MSM and compute entirely separate MSM results for smaller chunks,
aggregating at the end. To measure the overhead in processing time that this would incur,
we test the unmodified and unified memory implementations on MSMs split into 1 to 4
chunks.

Overall, we can see that unified memory significantly increases our ability to process large
MSMs – the unmodified library runs out of memory at N = 226, while unified memory can
support 8 times larger MSM sizes at N = 229. However, this comes at a small overhead
cost compared to the device memory-only version of the library. Overhead is introduced by
the CUDA driver when it has to page memory from the CPU to the GPU or vice versa,
stalling MSM computation and increasing end-to-end latency. Finally, we observe that sim-
ply chunking an MSM into several smaller MSM instances is not an effective memory strategy
in that it increases the runtime significantly. For N = 228, an MSM chunked into 4 segments

4.3. UNBOUNDED-SIZE MSM EVALUATION WITH MEMORY PIPELINING 84

Figure 4.1: MSM execution time as problem size increases, based on a sequential chunking
strategy. For a given MSM size N , we can choose to split the MSM evaluation into a
number of independent evaluations (chunks). Using only GPU memory, we quickly run out
of memory. Alternatively, unified memory allows MSMs to scale to much higher size, but at
a small overhead compared to using solely device memory.

requires 200 seconds to complete evaluation, while a 1-chunk MSM completes in only 101
seconds.

4.3.2 Chunking MSM Execution to Hide Memory Loads

Rather than rely on the CUDA runtime to detect page faults and perform memory transfers
when a particular portion of MSM data is needed on the GPU, we argue that the structure
of Pippenger’s algorithm allows us to schedule memory loads in a way that completely
overlaps with computation. On Nvidia GPUs, one memory copy in either direction (host
CPU→ device or device→ host CPU) can occur concurrently over the PCIe bus with kernel
execution.

Figure 4.2 shows a high-level overview of the window-based Pippenger algorithm opera-
tion, with two primary phases, as described in Section 4.2. In the first, we accumulate points
into a fixed number of buckets based on scalar bit windows, and in the second, these buckets
are multiplied to get the final result.

Importantly, we note that no matter the size N of the input MSM, the number of buckets
will always remain the same. As long as the buckets can fit in GPU memory, we hypothesize
that we can split the input into a smaller series of chunks, not unlike what we did when
testing unified memory above. However, this time, we will stream the chunks to the GPU

4.4. ACCELERATED BATCH MSM EVALUATION WITH ADDITION CHAINS 85

Figure 4.2: High-level Pippenger operation with chunking strategy. We stream chunks of
input point/scalar pairs into the GPU for bucket aggregation, then multiply buckets once
after all chunks have been processed.

for insertion in the same set of buckets, thus avoiding much of the overhead of entirely
separate MSM evaluations. In addition, we expect that streaming chunks will improve
overall execution time because the accumulation kernel can continue processing as more
chunks are loaded into GPU memory.

We implement this chunking strategy by modifying the ICICLE GPU ZK acceleration
library [108]. The core bucket accumulation kernel and data transfer logic operate on two,
separate streams with some synchronization between rounds. Input data loading and com-
putation operates on a two-segment memory buffer, where even-numbered blocks load data
into input segment 0 and odd-numbered block into segment 1. If all data for the next chunk
is loaded before computation on the previous chunk completes, the data stream waits for
the current block to complete before replacing its input data with the next expected chunk
from the CPU. In practice, the bottleneck operation is bucket accumulation, so data loads
have plenty of time to complete; an example of a load-and-compute timeline for our MSM
can be found in Figure 4.5.

We evaluate the effect of chunking MSMs on overall latency and our ability to evaluate
MSMs that cannot fit into the GPU memory limit in Section 4.5.

4.4 Accelerated Batch MSM Evaluation with

Addition Chains

Batch MSM computation typically takes as input a single set of N base points, based on
the proof system’s CRS, and b sets of N exponent scalar values, the proceeds to evaluate
b parallel Pippenger instances, one for each set of scalars. This has the notable benefit of
minimizing the memory footprint of the base points across all MSMs in the batch. However,

4.4. ACCELERATED BATCH MSM EVALUATION WITH ADDITION CHAINS 86

Figure 4.3: CPU-GPU hybrid system to generate and evaluate addition sequences. Scalars
from a batch of MSM inputs form targets for sequence generation (CPU), which are con-
verted to program instructions that are interpreted by a an execution kernel to multiply the
associated base point (GPU).

for large batches, this appears wasteful, as the Pippenger instances will eventually multiply
the same base b times in some bucket accumulation step.

We propose that there is a more efficient way to generate the scalar multiplication re-
sults for many instances of the same base than Pippenger, using addition sequences (see
Section 4.2). Naive double-and-add, in comparison to Pippenger, of the bases is not effi-
cient for single MSMs. But in a batch setting, addition sequences could yield much shorter
paths to achieve the correct result, amortized by the number of additional multiplications
we happen to compute on the way to the end of the sequence. We show in Section 4.5.4 and
Section 4.5.5 that this approach yields better performance over large batch sizes than our
baseline.

We implemented a C++-based addition sequence generator and program generator for
CPU based on the addchain library [153], and a program evaluation kernel in CUDA for the
GPU. First, we take horizontal slices through our MSM inputs (e.g. si,0 for i in [0, b), then
si,1, etc.) as individual target values for sequence generation. Figure 4.3 shows each stage of
the system, from sequence generation on the CPU to GPU-accelerated program execution.

We search for a sequence using the Delta Largest heuristic proposed by Bos and Coster [28].
Over a sorted sequence of target scalars, the heuristic continually adds the largest scalar to
the output sequence, working backwards. At each step, the heuristic sorts the difference (or
delta) to the next-largest target back into the target list. We use the std::set typically
backed by a red-black tree to ensure logarithmic insertions in sorted order.

Once the sequence is generated, we convert it into a “program” of primitive operations,
mirroring [153]: Add, Double, Shift (repeated doubling), and Copy, which saves an interme-
diate addition value in a specified output array index. We then iterate through the sequence

4.5. EVALUATION 87

looking for two prior computed values that sum to the desired result for that element in the
sequence. Repeated scans can be quite slow, scaling poorly with the size of the list. However,
given that our sequence is in sorted order and generated using the Delta Largest heuristic,
we know that every element in the sequence is the sum of the previous element and some
prior element, likely quite close to the current element. As a result, scanning backward from
the desired element is quite quick for our use case – we evaluate how fast sequence generation
is in Section 4.5.5.

Next, we perform register allocation for temporary values by scanning through the oper-
ation list and keeping a map of occupied memory state, then convert the program into 32-bit
op codes: an 8-bit operation type, 8-bit destination register, 8-bit source register, and an
optional 8-bit second source register. The opcodes, as well as the total number of temporary
registers required, are passed to the GPU for execution.

Finally, each GPU thread allocates a local memory buffer on its stack to store temporary
results, decodes the instructions, and executes them step by step over the input elliptic curve
point. Each time it encounters a Copy instruction, the current point value in the specified
register is copied to an output buffer that aggregates each thread’s result. Finally, a second
kernel aggregates every resulting point for a particular MSM and returns the output to the
user. As program generation occurs on the CPU and execution is parallelized on the GPU,
a new set of programs to execute might be ready once the kernels exit, and the process can
continue as new batches arrive.

4.5 Evaluation

In this section, we evaluate the main concepts from the previous sections – chunked execution
for large MSMs and batch evaluation for high-throughput scenarios – in order to answer 4
key evaluation questions:

1. What is the overhead of chunked MSM evaluation, compared to a baseline implemen-
tation? (Section 4.5.2)

2. Can chunked evaluation effectively remove the GPU’s limit on MSM problem size?
(Section 4.5.3)

3. How do addition sequence length and execution times scale as MSM batch size in-
creases? (Section 4.5.4)

4. How does overall MSM evaluation time scale as batch size increases, in comparison to
using a Pippenger algorithm? (Section 4.5.5)

4.5.1 Implementation

To answer these questions, we implemented two methods for MSM computation in CUDA/C++:
a modified version of the open-source GPU-based library for zero-knowledge acceleration,

4.5. EVALUATION 88

Figure 4.4: MSM execution time as input size increases, for a baseline Pippenger imple-
mentation, a slightly-modified implementation loading MSM inputs on both CPU and GPU
using Unified Memory, and our chunked implementation overlapping memory loads and MSM
computation. At large MSM sizes, chunking avoids an overhead over the baseline entirely,
showing 25% improvement in runtime performance.

ICICLE [108], forked at commit 36e288c, and a custom addition sequence generation and
GPU execution kernel, based on the addchain [153] Golang library. We benchmark both
our ICICLE-based implementation with chunking and our addition chain implementation
against an unmodified baseline ICICLE version.

We evaluate both systems using a Nvidia V100 GPU with 32GB RAM. On the host side,
we use a 80 2.20 GHz Intel(R) Xeon(R) CPU E5-2698 v4 core machine. We evaluate MSMs
using randomly-generated elliptic curve points in the BLS12-381 curve and 256-bit exponent
scalars. In our experiments, we load random MSM inputs from disk before evaluation,
reporting online computation time. Addition sequence generation is parallelized across CPU
cores, with each thread generating a sequence for one set of target scalar, while evaluation
of those sequences is performed on the GPU. As a result, both stages can be pipelined to
improve proof throughput.

4.5.2 Chunked MSM Overhead

As we saw in Section 4.3.1, naively attempting to increase available GPU memory for larger
MSM problem sizes incurs a small but non-trivial amount of overhead compared to MSM
problems entirely present in GPU memory. In Figure 4.4, we evaluate the overhead of MSM
chunking on overall MSM execution time as MSM sizes increase from 219 to 226 elements, with
chunking in green. We compare our chunked runtimes to an unmodified ICICLE baseline

4.5. EVALUATION 89

(a) ICICLE baseline, loading memory from host before computation.

(b) Chunked MSM evaluation, with memory loads in 4 chunks while computation is occuring.

Figure 4.5: N = 225 MSM execution timeline, comparing baseline and chunked versions.
Green boxes indicate memory copies to/from the GPU using CPU pinned memory, while
blue boxes indicate kernel execution. When chunking, the MSM kernels can execute while
data loads, reducing end-to-end computation latency.

in blue and that same baseline modified to use unified memory for input MSM points and
scalars in orange, which we discussed in Figure 4.4. We chunk input MSMs into 4 chunks
for smaller sizes, 8 chunks for 225, and 16 chunks for 226-element MSMs.

As opposed to the use of unified memory for larger MSMs, in which we saw a 5-23%
overhead associated with paging individual memory accesses back-and-forth between host
CPU and device GPU, chunked evaluation does not yield an overhead on MSM computation
at large MSM sizes. This is due to the fact that we are overlapping data transfer with
computation, thus hiding data access latency. To see this in more detail, we profiled the
baseline and chunked MSM executions, which can be seen in Figure 4.5. In the baseline, no
MSM kernel is running for more than 0.4s while the desired bases and scalars are copied to
the device; this is greater than 25% of the total runtime.

Alternatively, in our chunked implementation, we take only about 0.15s to load the first
quarter of the MSM problem and begin computing the Pippenger kernel (each blue void

msm:: block). Meanwhile, the GPU can perform another pair of memory transfers (each
green Memcpy block) in parallel to kernel execution, and thus immediately begin processing
the next chunk when the first kernel has finished. Note that since bucket accumulation
(i.e. elliptic curve addition) is our compute bottleneck, we have plenty of time to load each

4.5. EVALUATION 90

Figure 4.6: MSM evaluation times (shown here for N = 226 → 231) remain linear as problem
size increases past GPU memory capacity.

subsequent memory chunk as it is needed.
As a result, our chunked approach performs better than the ICICLE baseline at large

MSM sizes, with a 25% improvement in runtime – from 2.6s to 1.9s – when using chunking
to hide memory access latency at N = 226. On the other hand, at small MSM sizes, the
overhead of initiating repeated memory transfers is less efficient than a single copy of all the
bases and scalars. When N = 219, or approximately 500,000 elements, chunking exhibits
a 4% increase in execution time over the baseline. Thus, for small inputs, chunking is not
necessary, while for large inputs, chunking can have a noticeable effect on runtime. Below,
we evaluate the limits on problem sizes that we can compute using this chunking technique.

4.5.3 Chunking Huge MSM Problems

The Pippenger algorithm can already combine many base points in an MSM into a single
bucket, thus requiring a static amount of bucket memory regardless of problem size. Given
that we also segment the MSM and load data to the GPU in fixed-size chunks, it is possible to
now compute over MSM problems of unbounded size. In Figure 4.6, we show the evaluation
time for problem sizes far surpassing the amount of memory on our 32 GB GPU. We fix our
chunk size at C = 224 elements, or approximately 1.26 GB of base points and scalars, and
queue enough chunks through the GPU such that we achieve the desired MSM size.

Even without counting the buckets and other memory allocations required by the Pip-
penger algorithm, our 32 GB of on-device memory could only store approximately 228 (96-
byte base point, 32-byte scalar) pairs. With chunking, we can leverage the GPU to calculate,

4.5. EVALUATION 91

Figure 4.7: Addition sequence length and program length as the number of target scalars
increases. The number of program instructions generated closely matches the number of
scalars in the addition sequence. On the right, we compare the sequence length to the
number of operations in a naive double-and-add strategy on a log axis for each of the bases
in the batch.

for example, a 231 size MSM, 8 times larger than that limit, in 60.4 seconds. Note that, as
MSM sizes grow larger, we might expect the overall runtime to see sublinear growth, as the
number of expensive elliptic curve multiplications stays fixed with the number of buckets.
However, we see linear growth in MSM execution time, as the sheer number of base points
that need to be added into the Pippenger buckets outweighs the savings in exponentiation
cost. This linear operation dominates the overall runtime.

4.5.4 Addition Sequence Generation

Figure 4.7 shows the growth of the addition sequence programs we generate, in instructions,
as a function of the number of scalar targets we are attempting to compute (equivalent to
the batch size). From [234, 49], we expect the addition sequence lengths to grow linearly
with the number of targets r, proportional to logN + cr logN/ log logN , where c is some
constant and N is the maximum exponent value.

For MSMs with pseudorandom scalars, the maximum exponent value will generally land
between 2255 and 2256 − 1. In the left part of Figure 4.7, we see the length of the addition
sequences increases to approximately 17,000 operations as the batch size reaches 512. Since
we generally convert addition operations directly to addition instructions in program gener-
ation, only adding a instructions to save certain intermediary results, the addition program
length closely matches sequence length, with some increasing overhead as the number of
targets increases.

The length of this addition sequence is much lower than the number of additions required
to double-and-add each base separately to the desired exponent value, shown to the right:
the same scalar multiplications implemented using double-and-add would require almost

4.5. EVALUATION 92

Figure 4.8: MSM evaluation times using addition sequences are consistently lower over a
range of input batch sizes of small N = 100 proofs. We show the two components of overall
sequence evaluation time – program generation on the CPU and program execution on the
GPU – separately as well. These components can be pipelined. Note that for batch sizes
larger than 64, ICICLE cannot execute due to lack of available memory.

195,000 addition operations. Thus, there is a significant benefit to batching multiplications
over the same base with an addition sequence. In the next section, we compare our evaluation
technique against the Pippenger algorithm, a better solution than naively multiplying each
point by its respective scalar.

4.5.5 Batch MSM Evaluation with Addition Sequences

In Figure 4.8, we compare the runtime of our ICICLE baseline to execution of addition
sequences over batches of N = 100 small MSM problems, ranging from 8 to 128. In each
case, using addition sequences results in better performance compared to the Pippenger
algorithm, with improvements ranging from 56% when batch size is 8 to 40% at a larger
batch size of 64. Note that our addition sequence-based implementation can support batches
of 128 MSMs, while ICICLE fails due to lack of available memory; our implementation does
not require a large allocation for a bucket set associated with each individual problem.

A core reason for this performance difference is the amount of computation required by
Pippenger for many small MSMs. Each MSM base point is accumulated into a large, per-
MSM set of buckets. For BLS12-381, scalars are commonly chunked into 16-bit windows,
yielding 16 sets of 216-entry buckets. At small N , most buckets are empty, with the remaining
points evenly distributed throughout. As a result, when the buckets are aggregated on a

4.6. OPPORTUNITIES FOR FUTURE WORK 93

per-MSM basis, they are effectively performing many 16-bit double-and-add multiplications,
which do not see any benefit from batch execution. In contrast, using addition sequences
allows us to directly re-use intermediate state from a single multiplication to generate many
individual results. It is also important to note that, regardless of MSM size, ICICLE allocates
all necessary buckets on the GPU even if they will not be used in the computation, leading
to constraints on batch size. Addition sequences allow us to bypass any needed bucket
allocation, supporting larger batch sizes: we show that we can compute a batch of 128
MSMs, where ICICLE would otherwise run out of memory and fail to compute.

Finally, Figure 4.8 shows the relative costs of generating the addition sequences and
executing the additions based on the resulting program. Importantly, we are able to leverage
our CPU cores to generate sequences – a branch-heavy operation that requires significant
amount of dynamic memory allocation – while the GPU can focus on sequence execution,
given the instructions on which additions to perform and where to copy the intermediate
results. Thus, we can leverage pipeline parallelism to improve end-to-end throughput by pre-
processing addition sequences while GPU execution is ongoing. We discuss some interesting
directions to leverage and improve this ability below.

4.6 Opportunities for Future Work

CPU Parallelism

As batch size increases, so does sequence generation time. Since searching for previous addi-
tion results to compose the current value dominates this runtime, additional parallelization
could benefit pre-GPU work. We implement addition sequence generation using a C++
thread pool, but overhead from spawning processing threads affects overall runtime. Mi-
grating the addition sequence generation to a process-based parallelism strategy like MPI
would increase generation-phase performance. A bright area for additional effort could be in
leveraging a second GPU to perform sequence generation, or a relatively cheap distributed
cluster to enhance processing power. In addition, parallelizing sequence generation using
different heuristics could yield better-quality programs that are widen the gap between our
approach and Pippenger-based implementations.

Improving Addition Programs

Currently, our prototype simply emits Add instructions when generating the sequence pro-
grams, eschewing any additional passes. Future work could easily add additional passes to
detect and emit Double and Shift (repeated doubling) instructions, which would make overall
computation more efficient in those cases. Optimization passes could also help minimize the
number of temporaries required by detecting redundant operations. Finally, more analysis
of the addition programs could expose opportunities for in-program parallelism. Currently,
programs are expected to be executed serially, but if desired multiplication targets generate
addition instructions that branch off from the others, opportunities exist to leverage instruc-

4.7. SUMMARY 94

tion level parallelism in computing between multiple threads sharing the same program on
the GPU.

GPU Parallelism

As mentioned above, future work should investigate moving addition sequence generation to
another GPU in order to speed up processing. Several challenges, however, remain. GPU ker-
nels generating sequences must track and modify dynamically-growing data structures, like
a binary search tree or similar datastructure underlying the ordered set structure necessary
for the Delta Largest heuristic. Threads will also need to manage a map to track temporary
variable use in register allocation. These kernels will likely be branch-heavy, reducing overall
computational throughput. However, the core operation is extremely parallelizable across
every slice of the MSM batch, so leveraging the higher core count on the GPU could help
overall throughput regardless.

Integrating Precomputation

Many addition programs may benefit from precomputing multiplications at certain offsets
for each base – this precomputation strategy is one that many Pippenger algorithm imple-
mentations use to reduce total bucket allocations for each MSM instance. For example, if it
is known that the addition sequence will have access to 21Pi, 2

2Pi, 2
4Pi, · · · , it may allow for

faster addition programs overall, composing existing precomputed values instead of generat-
ing them from scratch each time. Since addition sequences lengths are scaled by the size of
the maximum element in the sequence, “short-circuiting” the sequence by starting within a
power of the final result may lead to more efficient programs overall.

4.7 Summary

In this chapter, we presented two complementary approaches to restructuring MSM compu-
tation for zero-knowledge proving for execution on GPUs, in a way that does not sacrifice
performance. In particular, we first describe a chunking method for reducing end-to-end
latency of large MSM calculations that streams input data to the GPU such that it over-
laps with computation, supporting overall MSM sizes larger than could feasibly sit in device
memory. We do so without incurring the cost of unified memory, and show a modest 25%
improvement in processing speed compared to the baseline. Second, we describe a way
to leverage addition sequences at runtime to make batch MSM aggregation more efficient,
bypassing Pippenger’s algorithm completely. We show 40-56% improvement on batches of
MSMs, and our prototype leverages both the CPU cores available and the GPU, which
enables better pipelining in a high-throughput environment.

95

Chapter 5

Conclusion

Each of the three systems presented in this dissertation (Nebula, Piranha, and scalable ZK
proving) seeks to leverage an advanced cryptographic primitive – metadata-hiding commu-
nication, multi-party computation, and zero-knowledge proofs – by restructuring its compu-
tation to leverage the capabilities of resource-constrained mobile devices or GPUs.

Nebula (Chapter 2) shows that it is possible for data backhaul networks to return useful
data payloads to application servers through third-parties while vastly reducing mule meta-
data leakage to the central platform provider. We did so by restructuring our data backhaul
architecture to place core functionality for payment and system abuse prevention on a mobile
platform, instead of centralizing that operation in the provider. Blindly-signed tokens allow
mules to prove their participation later without revealing their individual upload patterns,
and our cryptographic complaint protocol can leverage transcripts of individual deliveries
to prove misbehavior, revealing the minimum information necessary only in the case that
something goes awry.

While implementing Piranha (Chapter 3), we made the prospect of large-scale private
ML training significantly more likely, improving the performance of LSSS-based MPC proto-
cols by restructuring operations over local secret shares so that they could easily be executed
on the GPU. In particular, we enable protocol developers to use integer-based matrix mul-
tiplication and convolution kernels, rather than incurring the overhead of using existing
floating point implementations. Piranha also ensures that the high memory cost of perform-
ing bitwise operations (e.g. during secure comparisons) is moderated, allowing larger models
to be trained using limited GPU memory. These systems-level changes to adapt to GPU
limitations were critical in enabling end-to-end training.

Finally, when considering zero-knowledge proving in a batched scenario (Chapter 4), we
argue for restructuring MSM computation into parallel evaluation of many addition chains,
one per MSM element across each of a batch’s inputs. The resulting, easily parallelized
process is a natural fit for a GPU’s core computing capability and can minimize allocations
otherwise required for many independent MSM calculations.

While the work presented in this dissertation significantly improves our ability to build
cryptographic systems, it has certainly not eliminated the wide gulf that remains between

5.1. DESIGNING CRYPTOGRAPHY FOR NEW HARDWARE 96

plaintext and privacy-first systems. When compared to plaintext computation, primitives
such as MPC incur runtimes that are slower by orders of magnitude. To conclude, we
highlight some key approaches that future cryptographers and hardware designers alike can
take to further lower the cost of privacy.

5.1 Designing Cryptography for New Hardware

A critical modification we made in both Nebula and Piranha was to map desired cryp-
tographic operations to hardware-supported data types and computation. In
Nebula’s case, we consciously placed the most complex operation, applying blind signatures
to generate PrivacyPass tokens, to the central provider. During normal operation, appli-
cation servers (also cloud-based, relatively unconstrained systems) support the other half
of the PrivacyPass signing process, generating random elliptic curve points and verifying
the DLEQs returned by the provider. Only infrequently, during a complaint, is a mobile
phone asked to participate in token generation, and Nebula’s embedded sensors never inter-
face with the token accounting system. As a result, we only require the most constrained
low-power devices to have access to symmetric and asymmetric cryptographic accelerators,
which embedded platforms commonly possess. In Piranha, we note that LSSS protocols us-
ing arithmetic secret sharing can naturally operate over local 32- and 64-bit integer shares,
for which GPUs already have significant processing power – what is critical is to expose that
capability to protocol developers. On the other hand, applications like zero-knowledge prov-
ing rely on elliptic curve operations that do not naturally align to what GPUs “normally”
compute, and so are rather limited in the speedups that can easily be achieved (e.g. limited
register file size reduces the number of threads that can run concurrently when accessing
many EC points).

Notwithstanding any future improvements to hardware accelerators, cryptographers should
prioritize simplifying their constructions to use small fields and existing symmetric and
asymmetric primitives, perhaps at the cost of increasing the number of computational steps
required to achieve a desired result.

A second design approach that seems highly beneficial, based on our experiences with
accelerating MPC and ZK proving, is to prioritize low memory overheads over compu-
tation. In Piranha, the primary limiting factor for model training was temporary memory
allocation during forward and backward passes, caused by memory blowup from binary
shares during comparisons. In a WAN setting, the size of the shares being transmitted be-
tween parties meant that overall training progress was bottlenecked by communication, not
computation. Similarly, the GPU memory reserved for MSM inputs in our baseline limited
the problem size we could tackle. In a batch setting, repeated allocation of separate Pip-
penger bucket sets for each MSM exhausted GPU device memory and limited the batch size
we could process. Focusing on memory use, by switching to memory chains to avoid bucket
allocation or supporting use of in-place memory iterators to avoid temporary allocation,
significantly improved the scale of the problems we were able to tackle.

5.2. DESIGNING HARDWARE FOR NEW CRYPTOGRAPHY 97

Given the speed of existing hardware, applied cryptographers should consider whether
recomputing locally to reduce memory usage, such as rematerializing activations when needed
during ML training, for example, can improve overall performance.

5.2 Designing Hardware for New Cryptography

Expanding the scope and flexibility of current cryptographic accelerators, and in particular,
hardware support for elliptic curve (EC) operations would be hugely beneficial in
supporting new privacy-preserving protocols. Some elliptic curve capability already exists, in
that many chips can perform the ECDSA operations that underlie TLS session establishment.
However, support only exists for signing and verifying particular messages given a specific
public or private key, and does not expose any ability to add or multiply raw elliptic curve
points. All MSM implementations that use GPUs today implement expensive EC addition
and multiplication routines in software, reducing the computations to bare operations over
very large 256- or 381-bit integers that were never intended as first-class citizens.

Similar capabilities are missing from commercial CPUs. Adding efficient support for
larger fields and elliptic curves could easily widen the scope of the work in this disserta-
tion and beyond – Piranha could target MPC protocols beyond those that use LSSS, while
ZK proving could maximize device usage on the GPU and increase parallelization that is
currently limited by the clunky mechanics of moving large EC points around in memory.

Finally, since each of the projects in this dissertation found the overriding constraint to
be memory utilization, new hardware generations can support much larger cryptographic
systems by simply increasing memory availability. In particular, while GPUs currently
boast a significant amount of global memory, up to 80 GB on NVIDIA A100 GPUs, the
register file size per streaming multiprocessor that threads can leverage during computation
is at most 256 kB [170], which has not increased over the previous Volta generation of
NVIDIA GPUs. While there is certainly a legitimate cost and other constraints to adding
more register file space, expanded memory availability would make expensive operations
over large fields easier to parallelize. The increasing availability of fast global memory when
multiple GPUs are connected together is also a great target for supporting much larger ML
model or ZK proof sizes.

Computation is shifting away from “a computer on every desk and in every home” [19]
and towards centralized systems on the cloud. Privacy-enabling cryptographic solutions have
lagged behind, but by leveraging increasingly-powerful specialized hardware, we can hope to
close that gap. Given recent interest in security technologies from enclaves to MPC and ZKP,
it seems likely that this trend will continue. In this dissertation, we showed that building
performant cryptographic systems can be accomplished with two techniques. First, con-
centrating computation on hardware accelerators along with careful memory management,
such as in Piranha and ZK proof acceleration, can accelerate heavy-weight operations like
private neural network training passes or multi-scalar multiplication. Second, optimistically
decentralizing control of a cryptographic protocol among a vast number of low-compute de-

5.2. DESIGNING HARDWARE FOR NEW CRYPTOGRAPHY 98

vices, with a mechanism to rectify misbehavior can support a large-scale private distributed
system like data backhaul in Nebula, all without forming a bottleneck at a single centralized
operation. Together, they show that cryptographic systems at scale are possible, both in the
number of participants and amount of required computation.

99

Bibliography

[1] 3GPP. https://www.3gpp.org/. 2023.

[2] A Privacy-Preserving Framework Based on TensorFlow. https://github.com/Latt
iceX-Foundation/Rosetta/.

[3] A Python library for secure and private Deep Learning. https://github.com/Open
Mined/PySyft.

[4] Joshua Adkins et al. “Applications on the signpost platform for city-scale sensing:
demo abstract”. In: International Symposium on Information Processing in Sensor
Networks. 2018.

[5] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of a con-
volutional neural network”. In: 2017 International Conference on Engineering and
Technology (ICET). 2017.

[6] Suzan Ali et al. “On privacy risks of public WiFi captive portals”. In: Data Privacy
Management, Cryptocurrencies and Blockchain Technology. 2019.

[7] Abdelrahaman Aly et al. SCALE-MAMBA v1.2: Documentation. https://homes.e
sat.kuleuven.be/~nsmart/SCALE/Documentation.pdf. 2018.

[8] Abdelrahaman Aly et al. “Zaphod: Efficiently Combining LSSS and Garbled Circuits
in SCALE”. In: ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography. 2019.

[9] Amazon Sidewalk Privacy and Security Whitepaper. https://m.media-amazon.com
/images/G/01/sidewalk/final_privacy_security_whitepaper.pdf. 2023.

[10] Android Studio — Power Profiler. https://developer.android.com/studio/prof
ile/power-profiler. 2023.

[11] Anonymous Tokens: Efficient Anonymous Tokens with Private Metadata Bit. https
://github.com/mmaker/anonymous-tokens. 2023.

[12] Apollo4 Lite SoC Datasheet. https://ambiq.com/wp-content/uploads/2023/03
/Apollo4-Lite-Datasheet.pdf. 2023.

[13] Apple A16 Bionic. https://nanoreview.net/en/soc/apple-a16-bionic. 2024.

https://www.3gpp.org/
https://github.com/LatticeX-Foundation/Rosetta/
https://github.com/LatticeX-Foundation/Rosetta/
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://m.media-amazon.com/images/G/01/sidewalk/final_privacy_security_whitepaper.pdf
https://m.media-amazon.com/images/G/01/sidewalk/final_privacy_security_whitepaper.pdf
https://developer.android.com/studio/profile/power-profiler
https://developer.android.com/studio/profile/power-profiler
https://github.com/mmaker/anonymous-tokens
https://github.com/mmaker/anonymous-tokens
https://ambiq.com/wp-content/uploads/2023/03/Apollo4-Lite-Datasheet.pdf
https://ambiq.com/wp-content/uploads/2023/03/Apollo4-Lite-Datasheet.pdf
https://nanoreview.net/en/soc/apple-a16-bionic

BIBLIOGRAPHY 100

[14] Apple/Google. Exposure Notification - Bluetooth Specification. https://covid19-st
atic.cdn-apple.com/applications/covid19/current/static/contact-tracing

/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf. 2020.

[15] Toshinori Araki et al. “High-throughput semi-honest secure three-party computation
with an honest majority”. In: ACM Conference on Computer and Communications
Security (CCS). 2016.

[16] Tair Askar et al. “Evaluation of Pseudo-Random Number Generation on GPU Cards”.
In: Computation (2021).

[17] Android Authority. You told us: This is the battery capacity of most of your smart-
phones right now. https://www.androidauthority.com/smartphone-battery-si
ze-poll-results-1221015/. 2021.

[18] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normalization”. In:
arXiv preprint arXiv:1607.06450 (2016).

[19] Hannah Bae. “Bill Gates’ 40th anniversary email: goal was a computer on every desk”.
In: CNN Money (2015).

[20] Benjamin Baron and Mirco Musolesi. “Where you go matters: a study on the pri-
vacy implications of continuous location tracking”. In: ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (2020).

[21] Johannes K. Becker, David Li, and David Starobinski. “Tracking Anonymized Blue-
tooth Devices”. In: PET (2019).

[22] Alex Bellon, Alex Yen, and Pat Pannuto. “TagAlong: Free, Wide-Area Data-Muling
and Services”. In: Proceedings of the 24th International Workshop on Mobile Com-
puting Systems and Applications. 2023.

[23] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract)”. In:
ACM Symposium on Theory of Computing (STOC). 1988.

[24] François Bergeron et al. “Addition chains using continued fractions”. In: Journal of
Algorithms (1989).

[25] Daniel J Bernstein. “Pippenger’s exponentiation algorithm”. In: Preprint. Available
from http://cr. yp.to/papers.html (2002).

[26] Ketan Bhardwaj, Joaquin Chung Miranda, and Ada Gavrilovska. “Towards IoT-DDoS
prevention using edge computing”. In: {USENIX} Workshop on Hot Topics in Edge
Computing. 2018.

[27] BLE Security. https://www.bluetooth.com/bluetooth-resources/le-security
-study-guide/. 2023.

[28] Jurjen Bos and Matthijs Coster. “Addition chain heuristics”. In: Conference on the
Theory and Application of Cryptology. 1989.

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
https://www.androidauthority.com/smartphone-battery-size-poll-results-1221015/
https://www.androidauthority.com/smartphone-battery-size-poll-results-1221015/
https://www.bluetooth.com/bluetooth-resources/le-security-study-guide/
https://www.bluetooth.com/bluetooth-resources/le-security-study-guide/

BIBLIOGRAPHY 101

[29] Gautam Botrel et al. ConsenSys/gnark: v0.9.0. 2023. url: https://doi.org/10.52
81/zenodo.5819104.

[30] Sean Bowe et al. “Zexe: Enabling decentralized private computation”. In: 2020 IEEE
Symposium on Security and Privacy (SP). IEEE. 2020.

[31] Kevin W Bowyer, Karen Hollingsworth, and Patrick J Flynn. “Image understanding
for iris biometrics: A survey”. In: Computer vision and image understanding (2008).

[32] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function secret sharing”. In: Advances in
Cryptology—EUROCRYPT. 2015.

[33] Elette Boyle et al. “Efficient pseudorandom correlation generators: Silent OT exten-
sion and more”. In: Advances in Cryptology—CRYPTO. 2019.

[34] Elette Boyle et al. “Efficient two-round OT extension and silent non-interactive se-
cure computation”. In: ACM Conference on Computer and Communications Security
(CCS). 2019.

[35] Jimmy Briggs and Christine Geeng. “BLE-Doubt: Smartphone-Based Detection of
Malicious Bluetooth Trackers”. In: 2022 IEEE Security and Privacy Workshops (SPW)
(2022).

[36] William J Buchanan. Digital Signature Benchmark. https://asecuritysite.com/o
penssl/openssl3_b2. 2024.

[37] Megha Byali et al. “FLASH: Fast and Robust Framework for Privacy-preserving
Machine Learning”. In: Privacy Enhancing Technologies Symposium (PETS). 2020.

[38] Calculating the Size of GPT Models in Gigabytes: A Simple Guide. https://raiday
.ai/blog/generative-ai/calculate-gpt-model-size-in-gb/. 2024.

[39] Ran Canetti. “Universally composable security: A new paradigm for cryptographic
protocols”. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Sci-
ence. 2001.

[40] Laura Ceci. WhatsApp - Statistics & Facts. https://www.statista.com/topics/2
018/whatsapp/. 2024.

[41] Certificate Transparency. https://certificate.transparency.dev/. Last visited
on December, 2023.

[42] Jon Chase. Amazon sidewalk will share your internet with strangers. it’s not as scary
as it sounds. https://www.nytimes.com/wirecutter/blog/amazon-sidewalk-rev
iew/. 2021.

[43] Harsh Chaudhari et al. “Astra: High throughput 3pc over rings with application
to secure prediction”. In: ACM SIGSAC Conference on Cloud Computing Security
Workshop. 2019.

[44] David Chaum. “The Dining Cryptographers problem: Unconditional sender and re-
cipient untraceability”. In: Journal of Cryptology (1988).

https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104
https://asecuritysite.com/openssl/openssl3_b2
https://asecuritysite.com/openssl/openssl3_b2
https://raiday.ai/blog/generative-ai/calculate-gpt-model-size-in-gb/
https://raiday.ai/blog/generative-ai/calculate-gpt-model-size-in-gb/
https://www.statista.com/topics/2018/whatsapp/
https://www.statista.com/topics/2018/whatsapp/
https://certificate.transparency.dev/
https://www.nytimes.com/wirecutter/blog/amazon-sidewalk-review/
https://www.nytimes.com/wirecutter/blog/amazon-sidewalk-review/

BIBLIOGRAPHY 102

[45] Hao Chen et al. “Maliciously Secure Matrix Multiplication with Applications to Pri-
vate Deep Learning”. In: Advances in Cryptology—ASIACRYPT. 2020.

[46] Yutian Chen et al. “Load-Balanced Parallel Implementation on GPUs for Multi-Scalar
Multiplication Algorithm”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems (2024).

[47] Raymond Cheng et al. “Talek: Private group messaging with hidden access patterns”.
In: Annual Computer Security Applications Conference. 2020.

[48] Rezaul Alam Chowdhury et al. “Oblivious algorithms for multicores and networks of
processors”. In: Journal of Parallel and Distributed Computing (2013).

[49] Henri Cohen et al. Handbook of elliptic and hyperelliptic curve cryptography. 2005.

[50] Cory Cornelius et al. “Anonysense: privacy-aware people-centric sensing”. In: Proceed-
ings of the 6th international conference on Mobile systems, applications, and services.
2008.

[51] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. “Riposte: An anonymous
messaging system handling millions of users”. In: 2015 IEEE Symposium on Security
and Privacy. 2015.

[52] M. Scott Corson and Joseph P. Macker. “Mobile Ad hoc Networking (MANET): Rout-
ing Protocol Performance Issues and Evaluation Considerations”. In: RFC (1999).

[53] CrypTen: Privacy-Preserving Machine Learning built on PyTorch. https://github
.com/facebookresearch/CrypTen. 2019.

[54] cuBLAS. https://developer.nvidia.com/cublas.

[55] CUTLASS: CUDA Templates for Linear Algebra Subroutines.

[56] Wei Dai and Berk Sunar. “cuHE: A homomorphic encryption accelerator library”. In:
International Conference on Cryptography and Information Security in the Balkans.
2015.

[57] Anders Dalskov, Daniel Escudero, and Marcel Keller. “Fantastic Four: Honest-Majority
Four-Party Secure Computation With Malicious Security”. In: USENIX Security
Symposium (USENIX). 2021.

[58] Ivan Damg̊ard and Jesper Buus Nielsen. “Universally composable efficient multiparty
computation from threshold homomorphic encryption”. In: Advances in Cryptology—
CRYPTO. 2003.

[59] Ivan Damg̊ard et al. “Asynchronous multiparty computation: Theory and implemen-
tation”. In: International workshop on public key cryptography. 2009.

[60] Ivan Damg̊ard et al. “Multiparty Computation from Somewhat Homomorphic En-
cryption”. In: Annual Cryptology Conference. 2012.

https://github.com/facebookresearch/CrypTen
https://github.com/facebookresearch/CrypTen
https://developer.nvidia.com/cublas

BIBLIOGRAPHY 103

[61] Ivan Damg̊ard et al. “New primitives for actively-secure MPC over rings with appli-
cations to private machine learning”. In: IEEE Symposium on Security and Privacy
(S&P). 2019.

[62] Ivan Damg̊ard et al. “Practical Covertly Secure MPC for Dishonest Majority–or:
Breaking the SPDZ Limits”. In: European Symposium on Research in Computer Se-
curity. 2013.

[63] Data61. MP-SPDZ: Versatile Framework for Multi-party Computation. https://gi
thub.com/data61/MP-SPDZ. 2019.

[64] Alex Davidson et al. “Privacy Pass: Bypassing Internet Challenges Anonymously.”
In: Proc. Priv. Enhancing Technol. (2018).

[65] Yves-Alexandre De Montjoye et al. “Unique in the crowd: The privacy bounds of
human mobility”. In: Scientific reports (2013).

[66] Deloitte. Smartphone batteries: better but no breakthrough. https://www2.deloitte
.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommun

ications/gx-tmt-pred15-smartphone-batteries.pdf. 2015.

[67] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY - A Framework for
Efficient Mixed-Protocol Secure Two-Party Computation”. In: Symposium on Net-
work and Distributed System Security (NDSS). 2015.

[68] Tess Despres et al. “Where the sidewalk ends: privacy of opportunistic backhaul”. In:
Proceedings of the 15th European Workshop on Systems Security. 2022.

[69] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. Tech. rep. Naval Research Lab Washington DC, 2004.

[70] Ye Dong et al. “Meteor: improved secure 3-party neural network inference with reduc-
ing online communication costs”. In: Proceedings of the ACM Web Conference 2023.
2023.

[71] Ye Dong et al. “Puma: Secure inference of llama-7b in five minutes”. In: arXiv preprint
arXiv:2307.12533 (2023).

[72] Yong Dou et al. “64-bit floating-point FPGA matrix multiplication”. In: Proceedings
of the 2005 ACM/SIGDA 13th international symposium on Field-programmable gate
arrays. 2005.

[73] Matt Duckham and Lars Kulik. “Location privacy and location-aware computing”.
In: Dynamic and mobile GIS. 2006.

[74] Rob A Dunne and Norm A Campbell. “On the pairing of the softmax activation and
cross-entropy penalty functions and the derivation of the softmax activation function”.
In: Proc. 8th Aust. Conf. on the Neural Networks, Melbourne. 1997.

[75] Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differential pri-
vacy”. In: Foundations and Trends in Theoretical Computer Science. 2014.

https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-tmt-pred15-smartphone-batteries.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-tmt-pred15-smartphone-batteries.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-tmt-pred15-smartphone-batteries.pdf

BIBLIOGRAPHY 104

[76] Daniel Escudero, Anders Dalskov, and Marcel Keller. “Secure evaluation of quantized
neural networks”. In: Privacy Enhancing Technologies Symposium (PETS). 2020.

[77] Daniel Escudero et al. “Improved Primitives for MPC over Mixed Arithmetic-Binary
Circuits”. In: Advances in Cryptology—CRYPTO. 2020.

[78] Saba Eskandarian et al. “Express: Lowering the cost of metadata-hiding communica-
tion with cryptographic privacy”. In: USENIX Security. 2021.

[79] ESP-IDK programming guide. https://docs.espressif.com/. 2023.

[80] Honghui Fan, Hongjin Zhu, and Dongming Yuan. “People counting in elevator car
based on computer vision”. In: IOP Conference Series: Earth and Environmental
Science. 2019.

[81] Find My Network. https://developer.apple.com/find-my/. 2023.

[82] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, and Jesper Buus Nielsen. “Faster
Maliciously Secure Two-Party Computation Using the GPU”. In: Conference on Se-
curity and Cryptography for Networks. 2014.

[83] Jun Furukawa et al. “High-throughput secure three-party computation for malicious
adversaries and an honest majority”. In: Advances in Cryptology—EUROCRYPT.
2017.

[84] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge”. In:
Cryptology ePrint Archive (2019).

[85] Kimberly Gedeon. iPhone 15 vs. iPhone 15 Pro: What are the differences? https:

//mashable.com/article/iphone-15-vs-iphone-15-pro. 2024.

[86] Craig Gentry. “A fully homomorphic encryption scheme”. crypto.stanford.edu/c
raig. PhD thesis. 2009.

[87] Branden Ghena et al. “Challenge: Unlicensed LPWANs Are Not Yet the Path to
Ubiquitous Connectivity”. In: The 25th Annual International Conference on Mobile
Computing and Networking (2019).

[88] Hadi Givehchian et al. “Evaluating Physical-Layer BLE Location Tracking Attacks
on Mobile Devices”. In: 2022 IEEE Symposium on Security and Privacy (SP) (2022).

[89] Oded Goldreich. “Towards a theory of software protection and simulation by oblivious
RAMs”. In: ACM Symposium on Theory of Computing (STOC). 1987.

[90] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to play any mental game
or a completeness theorem for protocols with honest majority”. In: ACM Symposium
on Theory of Computing (STOC). 1987.

[91] Andy Greenberg. The Clever Cryptography Behind Apple’s ‘Find My’ Feature. http
s://www.wired.com/story/apple-find-my-cryptography-bluetooth/. 2019.

https://docs.espressif.com/
https://developer.apple.com/find-my/
https://mashable.com/article/iphone-15-vs-iphone-15-pro
https://mashable.com/article/iphone-15-vs-iphone-15-pro
crypto.stanford.edu/craig
crypto.stanford.edu/craig
https://www.wired.com/story/apple-find-my-cryptography-bluetooth/
https://www.wired.com/story/apple-find-my-cryptography-bluetooth/

BIBLIOGRAPHY 105

[92] Jens Groth. “On the size of pairing-based non-interactive arguments”. In: Advances in
Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II 35. 2016.

[93] Kanav Gupta et al. “Sigma: Secure gpt inference with function secret sharing”. In:
Cryptology ePrint Archive (2023).

[94] Jaap C. Haartsen. “Bluetooth-ad-hoc networking in an uncoordinated environment”.
In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2001).

[95] Amir Haleem et al. “Helium: A Decentralized Wireless Network”. In: (2018).

[96] Hardware for Deep Learning — Part 3. https://blog.inten.to/hardware-for-d
eep-learning-part-3-gpu-8906c1644664. 2024. (Visited on 05/07/2024).

[97] Tim Harris. Unified Memory for CUDA Beginners. https://developer.nvidia.co
m/blog/unified-memory-cuda-beginners/. 2017.

[98] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification”. In: IEEE international conference on computer vision.
2015.

[99] Robert Hecht-Nielsen. “Theory of the backpropagation neural network”. In: Neural
networks for perception. 1992.

[100] A. Heinrich, Niklas Bittner, and Matthias Hollick. “AirGuard - Protecting Android
Users from Stalking Attacks by Apple Find My Devices”. In: Proceedings of the 15th
ACM Conference on Security and Privacy in Wireless and Mobile Networks (2022).

[101] Alexander Heinrich, Milan Stute, and Matthias Hollick. “OpenHaystack: a framework
for tracking personal bluetooth devices via Apple’s massive find my network”. In:
Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. 2021.

[102] Helium Explorer. https://explorer.helium.com/. 2023.

[103] Xiaoyang Hou et al. “Ciphergpt: Secure two-party gpt inference”. In: Cryptology
ePrint Archive (2023).

[104] How Tile Works. www.thetileapp.com/en-us/how-it-works. 2023.

[105] Jyh-How Huang, Saqib Amjad, and Shivakant Mishra. “CenWits: a sensor-based
loosely coupled search and rescue system using witnesses”. In: ACM Intl. Conf. on
Embedded Networked Sensor Systems. 2005.

[106] Ying Huang, Xiaoying Zheng, and Yongxin Zhu. “Optimized CPU–GPU collaborative
acceleration of zero-knowledge proof for confidential transactions”. In: Journal of
Systems Architecture (2023).

[107] Nathaniel Husted et al. “GPU and CPU Parallelization of Honest-but-Curious Secure
Two-Party Computation”. In: Annual Computer Security Applications Conference
(ACSAC). 2013.

https://blog.inten.to/hardware-for-deep-learning-part-3-gpu-8906c1644664
https://blog.inten.to/hardware-for-deep-learning-part-3-gpu-8906c1644664
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://explorer.helium.com/
www.thetileapp.com/en-us/how-it-works

BIBLIOGRAPHY 106

[108] ICICLE: a GPU Library for Zero-Knowledge Acceleration. https://github.com/in
gonyama-zk/icicle. 2024.

[109] Karthik Inbasekar, Yuval Shekel, and Michael Asa. “ICICLE v2: Polynomial API for
Coding ZK Provers to Run on Specialized Hardware”. In: Cryptology ePrint Archive
(2024).

[110] Yuval Ishai et al. “Cryptography from anonymity”. In: IEEE Symposium on Founda-
tions of Computer Science (FOCS). 2006.

[111] Neal Jackson, Joshua Adkins, and Prabal Dutta. “Capacity over Capacitance for
Reliable Energy Harvesting Sensors”. In: The 18th International Conference on In-
formation Processing in Sensor Networks. 2019.

[112] Dhananjay Jagtap et al. “Federated infrastructure: usage, patterns, and insights from
”the people’s network””. In: ACM Internet Measurement Conference (2021).

[113] Neha Jawalkar et al. “Orca: FSS-based Secure Training and Inference with GPUs”.
In: Cryptology ePrint Archive (2023).

[114] Marek Jawurek, Florian Kerschbaum, and George Danezis. “Privacy Technologies for
Smart Grids - A Survey of Options”. In: 2012. url: https://api.semanticschola
r.org/CorpusID:15815464.

[115] Scott Jenson et al. “Building an On-ramp for the Internet of Things”. In: Proceedings
of the 2015 Workshop on IoT challenges in Mobile and Industrial Systems (2015).

[116] Zhuoran Ji et al. “Accelerating Multi-Scalar Multiplication for Efficient Zero Knowl-
edge Proofs with Multi-GPU Systems”. In: Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 3. 2024.

[117] Philo Juang et al. “Energy-efficient computing for wildlife tracking: design tradeoffs
and early experiences with ZebraNet”. In: ASPLOS X. 2002.

[118] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. “GAZELLE:
A Low Latency Framework for Secure Neural Network Inference”. In: USENIX Secu-
rity Symposium (USENIX). 2018.

[119] Renuga Kanagavelu et al. “Two-Phase Multi-Party Computation Enabled Privacy-
Preserving Federated Learning”. In: IEEE/ACM International Symposium on Clus-
ter, Cloud and Internet Computing (CCGrid). 2020.

[120] Srikanth Kandula et al. “Botz-4-sale: Surviving organized DDoS attacks that mimic
flash crowds”. In: PNSDI. 2005.

[121] Apu Kapadia et al. “AnonySense: Opportunistic and privacy-preserving context col-
lection”. In: Pervasive Computing: 6th International Conference. 2008.

[122] Marcel Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”.
In: ACM Conference on Computer and Communications Security (CCS). 2020.

https://github.com/ingonyama-zk/icicle
https://github.com/ingonyama-zk/icicle
https://api.semanticscholar.org/CorpusID:15815464
https://api.semanticscholar.org/CorpusID:15815464

BIBLIOGRAPHY 107

[123] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. 2016.

[124] Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Overdrive: making SPDZ great
again”. In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. 2018.

[125] Marcel Keller and Ke Sun. Effectiveness of MPC-friendly Softmax Replacement. htt
ps://arxiv.org/pdf/2011.11202.pdf. 2020.

[126] Noah Klugman et al. “Experience: Android resists liberation from its primary use
case”. In: Proceedings of the 24th Annual International Conference on Mobile Com-
puting and Networking. 2018.

[127] Markulf Kohlweiss et al. “Snarky ceremonies”. In: Advances in Cryptology–ASIACRYPT
2021: 27th International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 6–10, 2021, Proceedings, Part III 27. 2021.

[128] Nishat Koti et al. “SWIFT: Super-fast and Robust Privacy-Preserving Machine Learn-
ing”. In: USENIX Security Symposium (USENIX). 2021.

[129] Ben Kreuter et al. “Anonymous tokens with private metadata bit”. In: CRYPTO.
2020.

[130] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 Dataset. https:
//www.cs.toronto.edu/~kriz/cifar.html. 2014.

[131] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2012.

[132] Albert Kwon et al. “Atom: Horizontally scaling strong anonymity”. In: Proceedings
of the 26th Symposium on Operating Systems Principles. 2017.

[133] Albert Hyukjae Kwon et al. “Riffle: An efficient communication system with strong
anonymity”. In: (2016).

[134] Shuyue Lan et al. “AdaSens: Adaptive Environment Monitoring by Coordinating
Intermittently-Powered Sensors”. In: Asia and South Pacific Design Automation Con-
ference (2022).

[135] Peeter Laud et al. “Specifying Sharemind’s arithmetic black box”. In: ACM workshop
on Language support for privacy-enhancing technologies. 2013.

[136] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE (1998).

[137] Brent Ledvina et al. Detecting Unwanted Location Trackers. Tech. rep. 2023. url:
https://datatracker.ietf.org/doc/draft-detecting-unwanted-location-tr

ackers/00/.

https://arxiv.org/pdf/2011.11202.pdf
https://arxiv.org/pdf/2011.11202.pdf
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://datatracker.ietf.org/doc/draft-detecting-unwanted-location-trackers/00/
https://datatracker.ietf.org/doc/draft-detecting-unwanted-location-trackers/00/

BIBLIOGRAPHY 108

[138] David Thomas Lee Howes. Chapter 37. Efficient Random Number Generation and
Application Using CUDA. https://developer.nvidia.com/gpugems/gpugems3/pa
rt-vi-gpu-computing/chapter-37-efficient-random-number-generation-and

-application.

[139] Ryan Lehmkuhl et al. “Muse: Secure Inference Resilient to Malicious Clients”. In:
USENIX Security Symposium (USENIX). 2021.

[140] Matthew Lentz et al. “SDDR: Light-Weight, Secure Mobile Encounters”. In: USENIX
Security Symposium. 2014.

[141] Martin Lesund. LTE-M vs NB-IoT Field Test. https://devzone.nordicsemi.com
/nordic/nordic-blog/b/blog/posts/ltem-vs-nbiot-field-test-how-distanc

e-affects

-power-consumption. 2022.

[142] Xin Liu, Xiaowei Yang, and Yanbin Lu. “To filter or to authorize: Network-layer DoS
defense against multimillion-node botnets”. In: ACM SIGCOMM. 2008.

[143] LoRa Alliance Site. www.lora-alliance.org. 2023.

[144] LoRa README. https://lora.readthedocs.io/en/latest/. 2023.

[145] Hugh Louch et al. Innovation in bicycle and pedestrian counts. altago.com/wp-con
tent/uploads/Innovative-Ped-and-Bike-Counts-White-Paper-Alta.pdf. 2016.

[146] Tao Lu et al. “Cuzk: Accelerating zero-knowledge proof with a faster parallel multi-
scalar multiplication algorithm on gpus”. In: Cryptology ePrint Archive (2022).

[147] Weiliang Ma et al. “Gzkp: A gpu accelerated zero-knowledge proof system”. In: Pro-
ceedings of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2. 2023.

[148] Alan M. Mainwaring et al. “Wireless sensor networks for habitat monitoring”. In:
ACM International Conference on Wireless Sensor Networks and Applications. 2002.

[149] Eleftheria Makri et al. “Rabbit: Efficient Comparison for Secure Multi-Party Com-
putation”. In: Financial Cryptography and Data Security (FC). 2021.

[150] Zoltán Ádám Mann et al. “Towards practical secure neural network inference: the
journey so far and the road ahead”. In: ACM Computing Surveys (2023).

[151] Justin Manweiler, Ryan Scudellari, and Landon P. Cox. “SMILE: encounter-based
trust for mobile social services”. In: ACM Conference on Computer and Communi-
cations Security. 2009.

[152] Daniel Marin et al. “Nexus 1.0: Enabling Verifiable Computation”. In: (2024).

[153] Michael B. McLoughlin. addchain: Cryptographic Addition Chain Generation in Go.
Repository https://github.com/mmcloughlin/addchain. 2021.

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-37-efficient-random-number-generation-and-application
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-37-efficient-random-number-generation-and-application
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-37-efficient-random-number-generation-and-application
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/ltem-vs-nbiot-field-test-how-distance-affects
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/ltem-vs-nbiot-field-test-how-distance-affects
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/ltem-vs-nbiot-field-test-how-distance-affects
-power-consumption
www.lora-alliance.org
https://lora.readthedocs.io/en/latest/
altago.com/wp-content/uploads/Innovative-Ped-and-Bike-Counts-White-Paper-Alta.pdf
altago.com/wp-content/uploads/Innovative-Ped-and-Bike-Counts-White-Paper-Alta.pdf
https://github.com/mmcloughlin/addchain

BIBLIOGRAPHY 109

[154] Matthias Meyer et al. “Event-triggered natural hazard monitoring with convolutional
neural networks on the edge”. In: Proceedings of the 18th International Conference
on Information Processing in Sensor Networks. 2019.

[155] François Michel et al. “A first look at starlink performance”. In: Proceedings of the
22nd ACM Internet Measurement Conference (2022).

[156] Microbattery. Battery Bios: Everything You Need to Know About the AA Battery.
https://www.microbattery.com/blog/post/battery-bios:-everything-you-n

eed-to-know-about-the-aa-battery/.

[157] Pratyush Mishra et al. “Delphi: A Cryptographic Inference Service for Neural Net-
works”. In: USENIX Security Symposium (USENIX). 2020.

[158] MNIST database. http://yann.lecun.com/exdb/mnist/. Accessed: 2017-09-24.

[159] Mobile Fact Sheet. https://www.pewresearch.org/internet/fact-sheet/mobile
/. 2024.

[160] Payman Mohassel and Peter Rindal. “ABY3: A mixed protocol framework for machine
learning”. In: ACM Conference on Computer and Communications Security (CCS).
2018.

[161] Payman Mohassel and Yupeng Zhang. “SecureML: A System for Scalable Privacy-
Preserving Machine Learning”. In: IEEE Symposium on Security and Privacy (S&P).
2017.

[162] Arslan Musaddiq et al. “Internet of Things for Wetland Conservation using Helium
Network: Experience and Analysis”. In: International Conference on the Internet of
Things (2022).

[163] Lucien KL Ng and Sherman SM Chow. “GForce: GPU-Friendly Oblivious and Rapid
Neural Network Inference”. In: USENIX Security Symposium (USENIX). 2021.

[164] Lucien KL Ng and Sherman SM Chow. “SoK: cryptographic neural-network compu-
tation”. In: 2023 IEEE Symposium on Security and Privacy (SP). 2023.

[165] Ning Ni and Yongxin Zhu. “Enabling zero knowledge proof by accelerating zk-SNARK
kernels on GPU”. In: Journal of Parallel and Distributed Computing (2023).

[166] Nordic Infocenter. https://infocenter.nordicsemi.com/. 2023.

[167] nRF52832 Product Specification v1.0. https://docs.nordicsemi.com/bundle/n
RF52832-PS/resource/nRF52832_PS_v1.0.pdf. 2016.

[168] nRF5340 Product Specification v1.5. https://docs-be.nordicsemi.com/bundle/p
s_nrf5340/attach/nRF5340_PS_v1.5.pdf. 2024.

[169] Nvidia. Thrust, the CUDA C++ template library. https://docs.nvidia.com/cuda
/thrust/index.html.

[170] NVIDIA A100 Tensor Core GPU. https://www.nvidia.com/en-us/data-center
/a100/. 2024.

https://www.microbattery.com/blog/post/battery-bios:-everything-you-need-to-know-about-the-aa-battery/
https://www.microbattery.com/blog/post/battery-bios:-everything-you-need-to-know-about-the-aa-battery/
 http://yann.lecun.com/exdb/mnist/
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://infocenter.nordicsemi.com/
https://docs.nordicsemi.com/bundle/nRF52832-PS/resource/nRF52832_PS_v1.0.pdf
https://docs.nordicsemi.com/bundle/nRF52832-PS/resource/nRF52832_PS_v1.0.pdf
https://docs-be.nordicsemi.com/bundle/ps_nrf5340/attach/nRF5340_PS_v1.5.pdf
https://docs-be.nordicsemi.com/bundle/ps_nrf5340/attach/nRF5340_PS_v1.5.pdf
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/

BIBLIOGRAPHY 110

[171] Manjusha Patil and Vasant N Bhonge. “Wireless sensor network and RFID for smart
parking system”. In: International Journal of Emerging Technology and Advanced
Engineering (2013).

[172] Arpita Patra and Ajith Suresh. “BLAZE: Blazing Fast Privacy-Preserving Machine
Learning”. In: Symposium on Network and Distributed System Security (NDSS). 2020.

[173] Arpita Patra et al. “ABY2.0: Improved Mixed-Protocol Secure Two-Party Computa-
tion”. In: USENIX Security Symposium (USENIX). 2021.

[174] Claudia Perlich et al. “Machine learning for targeted display advertising: Transfer
learning in action”. In: Machine learning (2014).

[175] Johan Perols. “Financial statement fraud detection: An analysis of statistical and
machine learning algorithms”. In: Auditing: A Journal of Practice & Theory (2011).

[176] Neil Perry et al. “Strong Anonymity for Mesh Messaging”. In: ArXiv abs/2207.04145
(2022).

[177] Sébastien Philippe, Boaz Barak, and Alexander Glaser. “Designing protocols for nu-
clear warhead verification”. In: Proc. 56th Annual INMM Meeting. 2015.

[178] Rishabh Poddar et al. “Senate: A Maliciously-Secure MPC Platform for Collaborative
Analytics”. In: USENIX Security Symposium (USENIX). 2021.

[179] Rishabh Poddar et al. “Visor: Privacy-preserving video analytics as a cloud service”.
In: USENIX Security Symposium (USENIX). 2020.

[180] Raluca Ada Popa, Hari Balakrishnan, and Andrew J. Blumberg. “VPriv: protecting
privacy in location-based vehicular services”. In: USENIX Security Symposium. 2009.

[181] Raluca Ada Popa et al. “Privacy and accountability for location-based aggregate
statistics”. In: ACM Conference on Computer and Communications Security. 2011.

[182] Amogh Pradeep et al. “Moby: A Blackout-Resistant Anonymity Network for Mobile
Devices”. In: Proc. Priv. Enhancing Technol. (2022).

[183] Jan M. Rabaey et al. “PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Net-
working”. In: Computer (2000).

[184] Rahul Rachuri and Ajith Suresh. “Trident: Efficient 4PC Framework for Privacy Pre-
serving Machine Learning”. In: Symposium on Network and Distributed System Se-
curity (NDSS). 2019.

[185] Deevashwer Rathee et al. “CrypTFlow2: Practical 2-Party Secure Inference”. In: ACM
Conference on Computer and Communications Security (CCS). 2020.

[186] Andy Ray et al. “Hardcaml MSM: A High-Performance Split CPU-FPGA Multi-
Scalar Multiplication Engine”. In: Proceedings of the 2024 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays. 2024.

BIBLIOGRAPHY 111

[187] Marc Rennhard and Bernhard Plattner. “Introducing morphmix: Peer-to-peer based
anonymous internet usage with collusion detection”. In: Proceedings of the 2002 ACM
Workshop on Privacy in the Electronic Society. 2002.

[188] M. Sadegh Riazi et al. “Chameleon: A hybrid secure computation framework for
machine learning applications”. In: ACM Symposium on Information, Computer and
Communications Security (ASIACCS). 2018.

[189] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer Li-
brary. https://github.com/osu-crypto/libOTe.

[190] Michael Rosenberg et al. “zk-creds: Flexible anonymous credentials from zksnarks and
existing identity infrastructure”. In: 2023 IEEE Symposium on Security and Privacy
(SP). 2023.

[191] Dragos Rotaru and Tim Wood. “Marbled Circuits: Mixing Arithmetic and Boolean
Circuits with Active Security”. In: International Conference on Cryptology in India.
2019.

[192] Théo Ryffel et al. “ARIANN: Low-Interaction Privacy-Preserving Deep Learning via
Function Secret Sharing”. In: Privacy Enhancing Technologies Symposium (PETS).
2022.

[193] Alex Sangers et al. “Secure multiparty PageRank algorithm for collaborative fraud
detection”. In: Financial Cryptography and Data Security: 23rd International Con-
ference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers 23. 2019.

[194] Eli Ben Sasson et al. “Zerocash: Decentralized anonymous payments from bitcoin”.
In: 2014 IEEE symposium on security and privacy. 2014.

[195] Sinem Sav et al. “POSEIDON: Privacy-Preserving Federated Neural Network Learn-
ing”. In: Symposium on Network and Distributed System Security (NDSS). 2021.

[196] Phillipp Schoppmann et al. “Distributed vector-OLE: improved constructions and
implementation”. In: ACM Conference on Computer and Communications Security
(CCS). 2019.

[197] Secure Supply Chain Management. https://faui1-files.cs.fau.de/filepool/p
ublications/octavian_securescm/SecureSCM-D.9.2.pdf. 2009.

[198] Shaohuai Shi et al. “Benchmarking state-of-the-art deep learning software tools”. In:
2016 7th International Conference on Cloud Computing and Big Data (CCBD). 2016.

[199] Mohammad Shoeybi et al. “Megatron-lm: Training multi-billion parameter language
models using model parallelism”. In: arXiv preprint arXiv:1909.08053 (2019).

[200] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. https://arxiv.org/abs/1409.1556. 2014.

[201] Sparkfun. Coin Cell Battery - 20mm (CR2032). https://www.sparkfun.com/prod
ucts/338. 2023.

https://github.com/osu-crypto/libOTe
https://faui1-files.cs.fau.de/filepool/publications/octavian_securescm/SecureSCM-D.9.2.pdf
https://faui1-files.cs.fau.de/filepool/publications/octavian_securescm/SecureSCM-D.9.2.pdf
https://arxiv.org/abs/1409.1556
https://www.sparkfun.com/products/338
https://www.sparkfun.com/products/338

BIBLIOGRAPHY 112

[202] Swarm Starlink. https://swarm.space/. 2023.

[203] Sijun Tan et al. “CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU”.
In: IEEE Symposium on Security and Privacy (S&P). 2021.

[204] Michael Bedford Taylor. “The evolution of bitcoin hardware”. In: Computer (2017).

[205] Petroc Taylor. Average cellular data price per gigabyte. https://www.statista.com
/statistics/994913/average-cellular-data-price-per-gigabyte-in-the-us

/. 2023.

[206] The Most Efficient Known Addition Chains for Field Element and Scalar Inversion
for the Most Popular and Most Unpopular Elliptic Curves. https://briansmith.or
g/ecc-inversion-addition-chains-01. 2017.

[207] Florian Tramer and Dan Boneh. “Slalom: Fast, verifiable and private execution of
neural networks in trusted hardware”. In: arXiv preprint arXiv:1806.03287 (2018).

[208] Raylin Tso et al. “Privacy-preserving data communication through secure multi-party
computation in healthcare sensor cloud”. In: Journal of Signal Processing Systems
(2017).

[209] Jack Turner et al. “Characterising across-stack optimisations for deep convolutional
neural networks”. In: 2018 IEEE International Symposium on Workload Characteri-
zation (IISWC). 2018.

[210] Nirvan Tyagi et al. “Stadium: A distributed metadata-private messaging system”. In:
Proceedings of the 26th Symposium on Operating Systems Principles. 2017.

[211] “U.K. bars trash cans from tracking people with Wi-Fi”. In: CBS News (2013).

[212] Frank C. Uyeda et al. “SDN in the stratosphere: loon’s aerospace mesh network”. In:
ACM SIGCOMM (2022).

[213] Jelle Van Den Hooff et al. “Vuvuzela: Scalable private messaging resistant to traffic
analysis”. In: SOSP. 2015.

[214] Giorgos Vasiliadis et al. “PixelVault: Using GPUs for Securing Cryptographic Op-
erations”. In: ACM Conference on Computer and Communications Security (CCS).
2014.

[215] Deepak Vasisht et al. “FarmBeats: An IoT Platform for Data-Driven Agriculture”.
In: Symposium on Networked Systems Design and Implementation. 2017.

[216] V. Venkataramanan et al. “Forest Fire Detection and Temperature Monitoring Alert
using IoT and Machine Learning Algorithm”. In: International Conference on Smart
Systems and Inventive Technology (2023).

[217] Sameer Wagh. “BarnOwl: Secure Comparisons using Silent Pseudorandom Correla-
tion Generators”. In: Tech Report. 2022.

[218] Sameer Wagh. “New Directions in Efficient Privacy Preserving Machine Learning”.
PhD thesis. Princeton University, 2020.

https://swarm.space/
https://www.statista.com/statistics/994913/average-cellular-data-price-per-gigabyte-in-the-us/
https://www.statista.com/statistics/994913/average-cellular-data-price-per-gigabyte-in-the-us/
https://www.statista.com/statistics/994913/average-cellular-data-price-per-gigabyte-in-the-us/
https://briansmith.org/ecc-inversion-addition-chains-01
https://briansmith.org/ecc-inversion-addition-chains-01

BIBLIOGRAPHY 113

[219] Sameer Wagh. “Pika: Secure Computation using Function Secret Sharing over Rings”.
In: Privacy Enhancing Technologies Symposium (PETS). 2022.

[220] Sameer Wagh, Paul Cuff, and Prateek Mittal. “Differentially private oblivious RAM”.
In: Privacy Enhancing Technologies Symposium (PETS). 2018.

[221] Sameer Wagh, Divya Gupta, and Nishanth Chandran. “SecureNN: 3-Party Secure
Computation for Neural Network Training”. In: Privacy Enhancing Technologies Sym-
posium (PETS). 2019.

[222] Sameer Wagh et al. “DP-Cryptography: marrying differential privacy and cryptogra-
phy in emerging applications”. In: Communications of the ACM. 2020.

[223] Sameer Wagh et al. “FALCON: Honest-Majority Maliciously Secure Framework for
Private Deep Learning”. In: Privacy Enhancing Technologies Symposium (PETS).
2021.

[224] Roy Want, Bill N. Schilit, and Scott Jenson. “Enabling the Internet of Things”. In:
Computer (2015).

[225] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. “Piranha: A {GPU} platform
for secure computation”. In: 31st USENIX Security Symposium (USENIX Security
22). 2022.

[226] Jean-Luc Watson et al. “Nebula: A Privacy-First Platform for Data Backhaul”. In:
2024 IEEE Symposium on Security and Privacy (SP). 2024.

[227] Welcome to nRF Connect SDK - Amazon Sidewalk. https://github.com/nrfconn
ect/sdk-sidewalk. 2023.

[228] Timm A. Wild et al. “A multi-species evaluation of digital wildlife monitoring using
the Sigfox IoT network”. In: Animal Biotelemetry (2023).

[229] Charles F Xavier. “Pipemsm: Hardware acceleration for multi-scalar multiplication”.
In: Cryptology ePrint Archive (2022).

[230] Takeshi Yamanouchi. Chapter 36. AES Encryption and Decryption on the GPU. ht
tps://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chap

ter-36-aes-encryption-and-decryption-gpu.

[231] Kang Yang et al. “Ferret: Fast Extension for coRRElated oT with small commu-
nication”. In: ACM Conference on Computer and Communications Security (CCS).
2020.

[232] Lei Yang and Fengjun Li. “mTor: A multipath Tor routing beyond bandwidth throt-
tling”. In: 2015 IEEE Conference on Communications and Network Security (CNS).
2015.

[233] Andrew Yao. “Protocols for Secure Computations”. In: Foundations of Computer
Science (FOCS). 1982.

https://github.com/nrfconnect/sdk-sidewalk
https://github.com/nrfconnect/sdk-sidewalk
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu

BIBLIOGRAPHY 114

[234] Andrew Chi-Chih Yao. “On the evaluation of powers”. In: SIAM Journal on comput-
ing (1976).

[235] Z-Prize MSM on the GPU. https://github.com/yrrid/combined-msm-gpu. 2023.

[236] Zero-Knowledge Proof: Applications and Use Cases. https://chain.link/educati
on-hub/zero-knowledge-proof-use-cases. 2023.

[237] Ye Zhang et al. “Pipezk: Accelerating zero-knowledge proof with a pipelined archi-
tecture”. In: 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). 2021.

[238] Yifei Zhang et al. “A survey of trustworthy federated learning with perspectives on
security, robustness and privacy”. In: Companion Proceedings of the ACM Web Con-
ference 2023, pp. 1167–1176.

[239] Baoze Zhao et al. “BSTMSM: A High-Performance FPGA-based Multi-Scalar Mul-
tiplication Hardware Accelerator”. In: 2023 International Conference on Field Pro-
grammable Technology (ICFPT). 2023.

[240] Haixu Zhao et al. “Hardware acceleration of number theoretic transform for zk-
SNARK”. In: Engineering Reports (2022).

[241] Zhichao Zhao and T-H Hubert Chan. “How to vote privately using bitcoin”. In:
Information and Communications Security: 17th International Conference, ICICS
2015, Beijing, China, December 9–11, 2015, Revised Selected Papers 17. 2016.

[242] Wenting Zheng et al. “Cerebro: A Platform for Multi-Party Cryptographic Collabo-
rative Learning”. In: USENIX Security Symposium (USENIX). 2021.

[243] Wenting Zheng et al. “Helen: Maliciously secure coopetitive learning for linear mod-
els”. In: IEEE Symposium on Security and Privacy (S&P). 2019.

[244] Xudong Zhu et al. “Elastic MSM: A Fast, Elastic and Modular Preprocessing Tech-
nique for Multi-Scalar Multiplication Algorithm on GPUs”. In: Cryptology ePrint
Archive (2024).

[245] Zprize 2023. https://www.zprize.io/. 2023.

https://github.com/yrrid/combined-msm-gpu
https://chain.link/education-hub/zero-knowledge-proof-use-cases
https://chain.link/education-hub/zero-knowledge-proof-use-cases
https://www.zprize.io/

	Contents
	List of Figures
	List of Tables
	Introduction
	Computing in Public With Private Data
	Opportunities to Design for Resource-Constrained Hardware
	Thesis Statement
	Roadmap for This Dissertation

	Hiding Metadata in Mobile Data Backhaul Networks
	Introduction
	Background and Related Work
	System Overview
	Threat Model and Security Guarantees
	Privacy-First Backhaul Protocol
	Formal Soundness Guarantees
	Formal Privacy Guarantee
	Analytical Model for Energy and Memory Consumption
	Implementation
	Evaluation
	Opportunities for Future Work
	Summary

	Accelerating Multi-party Computation for ML Training using GPUs
	Introduction
	Background and Related Work
	System Architecture
	Device Layer for Accelerating Local Operations
	Protocol Layer for Linear Secret-Sharing Schemes
	Application Layer for Secure Training and Inference
	Evaluation
	Future and Subsequent Work
	Summary

	Towards High-Throughput Zero-Knowledge Proving on GPUs
	Introduction
	Background and Related Work
	Unbounded-Size MSM Evaluation with Memory Pipelining
	Accelerated Batch MSM Evaluation with Addition Chains
	Evaluation
	Opportunities for Future Work
	Summary

	Conclusion
	Designing Cryptography for New Hardware
	Designing Hardware for New Cryptography

	Bibliography

