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Abstract

Adapting Segment Anything Model to Invasive Melanoma Segmentation in Microscopy
Slide Images

by

Qingyuan Liu

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Avideh Zakhor, Chair

Melanoma segmentation in Whole Slide Images (WSIs) is useful for prognosis and the mea-
surement of crucial prognostic factors such as Breslow depth and primary invasive tumor
size. In this paper, we present a novel approach that uses the Segment Anything Model
(SAM) for automatic melanoma segmentation in microscopy slide images. Our method em-
ploys an initial semantic segmentation model to generate preliminary segmentation masks
that are then used to prompt SAM. We design a dynamic prompting strategy that uses a
combination of centroid and grid prompts to achieve optimal coverage of the super high-
resolution slide images while maintaining the quality of generated prompts. To optimize
for invasive melanoma segmentation, we further refine the prompt generation process by
implementing in-situ melanoma detection and low-confidence region filtering. We select Seg-
former as the initial segmentation model and E�cientSAM as the segment anything model
for parameter-e�cient fine-tuning. Our experimental results demonstrate that this approach
not only surpasses other state-of-the-art melanoma segmentation methods but also signifi-
cantly outperforms the baseline Segformer by 20.2% in terms of IoU.
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Chapter 1

Introduction

Melanoma, one of the most serious forms of skin cancer, originates in melanocytes, the
pigment-producing cells responsible for melanin production [27]. Based on its progression and
location within the skin, melanoma can be categorized into two main types: in-situ melanoma
and invasive melanoma. While in-situ melanoma represents cancerous melanocytes that are
confined to the epidermis, invasive melanoma penetrates beyond the epidermis into the
dermis, posing a significant risk of spreading to other vital organs. As invasive melanoma
grows, it may invade blood vessels and lymphatic vessels, allowing cancer cells to detach
from the primary tumor and cause metastatic cancer [1].

Early detection and accurate diagnosis of melanoma are crucial for improving the survival
rate. While the the five-year survival rate for patients whose melanoma is detected early
exceeds 99 percent, the survival rate drops to 74 percent when the melanoma spreads to the
lymph nodes and plummets to as low as 35 percent when it metastasizes to distant organs [3].
Apart from early detection, timely treatment is also essential in raising the survival rate. For
those with early stages of melanoma where the tumor is localized and not spread yet, patients
treated more than 119 days after biopsy have a 41 percent higher risk of dying than those
treated within 30 days of being biopsied [6]. The standard diagnosis practice begins with
an initial examination of dermatoscopic features to determine the types of melanocyptic
lesions. For suspicious and malignant lesions, a histopathologic analysis of skin biopsies
stained with hematoxylin and eosin (H&E) is required [11]. While traditional approach
requires examination of tissue specimens under a microscope, the advent of Whole Slide
Images (WSIs) has revolutionized this process by digitizing tissue samples into high resolution
images. These digital slide images enable pathologists to examine various characteristics such
as the celluar architecture, breslow depth and complex histologic features that are crucial
for determining the stage and aggressiveness of melanoma.

Recent studies [30, 23] have focused on utilizing deep learning technology for melanoma
segmentation in whole slide images. Melanoma segmentation results with su�cient accu-
racy in slide images have proven highly beneficial for aiding diagnosis and assisting manual
measurement of breslow depth and primary invasive tumor size, which are crucial prognostic
factors. This shows the potential for a fully automatic diagnosis procedure. Phillips et al.
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[23] demonstrated the e↵ectiveness of multi-scale FCN in segmentation the dermis, epidermis
and tumor in whole slide images. Wang et al. [30] utilized more advanced transformer mod-
els including Hiearachical Pyramid Transformers (HIPT) and Segformers to achieve accurate
segmentation of invasive melanoma and the epidermis in microscopy slide images.

In this thesis, we propose a novel method to apply the Segment Anything Model (SAM)
[18] to automatic melanoma segmentation in microscopy slide images. SAM has demon-
strated great success in various computer vision tasks and has achieved state-of-the-art
performance in a diverse range of image segmentation tasks, such as zero-shot instance
segmentation [18, 28] and zero-shot edge detection [18, 4]. One of the key features of SAM is
a prompt encoder that allows the model to adapt to diverse downstream segmentation tasks
with prompt engineering. Trained on a vast visual dataset comprised of over 11 million
images and 1 billion masks, SAM has demonstrated strong generalization as a foundation
model to perform segmentation for a wide variety of objects.

Although SAM has demonstrated strong zero-shot generalization abilities, several studies
[15, 38, 25, 8] have shown that its accuracy is limited in segmentation tasks that require
specific domain knowledge. Recent studies [20, 31, 36] have proposed methods to adapt
SAM for medical image segmentation, such as augmenting data with SAM’s predictions
or fine-tuning SAM for better performance. Despite showing impressive performance in
segmenting medical images such as CT and MRI scans, these methods do not generalize well
to microscopy images, especially for melanoma segmentation in microscopy slide images.

Our proposed method addresses these challenges by introducing an innovative framework
that automatically generates prompts from an initial segmentation map to guide SAM. We
use Segformer, an e↵ective semantic segmentation model for melanoma segmentation, to
generate an initial segmentation map. We design a dynamic prompt strategy that uses a
combination of centroid and grid prompts. Additionally, we incorporate in-situ melanoma
detection and low-confidence region filtering to ensure precise prompt generation. Our ex-
perimental results demonstrate that this approach not only surpasses other state-of-the-art
melanoma segmentation methods but also significantly improves upon the baseline perfor-
mance of Segformer by over 20%.

The structure of the thesis is as follows: Chapter 2 reviews existing work related to our
problem. Chapter 3 provides a detailed description of our proposed method. Chapter 4
presents the experimental results and a comprehensive ablation study of each module in our
method. Finally, Chapter 5 concludes our work and suggests potential research directions
for future work. More qualitative results on our dataset are shown in Appendix A.
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Chapter 2

Related Work

In this chapter, we review existing work relevant to our method. Section 2.1 delves into
the advancements in foundation models within the field of computer vision. Section 2.2
analyzes the architecture of SAM along with its lightweight and e�cient variants, and its
adaptions for medical imaging. In Section 2.3, we explore related methods for parameter-
e�cient fine-tuning. Finally, in Section 2.4, we examine current deep learning techniques
applied to melanoma segmentation in slide images.

2.1 Foundation Models in Computer Vision

Foundation Models, typically large-scale neural networks with billions of parameters pre-
trained on vast datasets, have become the cornerstone for numerous tasks in the field of
natural language processing (NLP) and computer vision. The concept of foundation models
traces back to the success of large-scale models in NLP, where they demonstrate unprece-
dented abitlity to understand and generate human languages. With strong zero-shot and
few-shot generalization abilities, these foundation models perform tasks and process data
they have not explicitly encountered during training, often achieving performance levels
comparable to models designed specifically for those tasks. This ability to genearalize from
limited examples have made foundation models highly versatile and valuable in scenarios
where labeled data is expensive to obtain. Even in cases where foundation models per-
form worse than expected, they provide a robust and high-performance baseline that can be
adapted to specific applications with relatively minimal additional training.

In computer vision, foundation models have been explored and applied to a broad range
of applications, including image classification, image generation, image segmentation, object
detection and many more vision tasks. A significant advancement in this domain was the
vision transformers (ViTs) designed by Dosovitskiy et al [9]. By leveraging the transformer
model initially designed for NLP, ViTs process and analyze images by embedding fixed-size
image patches as a sequence of tokens. This approach allows ViTs to e↵ectively capture long-
range dependencies and complex patterns in images, demonstrating impressive scalability
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with increasing data and adaptability across various vision tasks.
Vision Transformers have thus served as a backbone for many advanced foundation mod-

els. One notable example is CLIP (Contrastive Language-Image Pre-training) [24], which
leverages a vision transformer as the core architecture for its image encoder. CLIP employs
a self-supervised contrastive training approach by aligning text and visual representations
within a shared latent space. By training on a vast number of image and text pairs sourced
from the web, CLIP has exhibited impressive generalization capabilities across diverse vision
tasks, including image classification, object detection, and zero-shot learning, all without
requiring task-specific training. Despite CLIP’s impressive performance, its data collection
process is costly and resource-intensive, limiting its dataset size. To address this, ALIGN
[16] adopts a di↵erent strategy by leveraging a noisy dataset comprising over one billion
image-text pairs. ALIGN trains its foundation model by aligning visual and language repre-
sentations, achieving strong zero-shot transferability to visual classification and image-text
retrieval tasks. The visual representations produced by these foundation models have proven
highly valuable for computer vision tasks, particularly scenarios with limited data availabil-
ity.

2.2 Segment Anything Model

While the success of foundation models relies on the availability of vast amount of training
data, many computer vision tasks such as image segmentation su↵er from limited training
data due to the high cost involved of annotation. The Segment Anything Model (SAM)
[18], a promptable foundation model specifically designed for image segmentation, addresses
this issue by overcoming data scarcity and has demosntrated strong generalization in zero-
shot segmentation. SAM’s e↵ectiveness stems from its training on SA-1B, a huge extensive
segmentation dataset co-developed with the model that contains 1.1 billion segmentation
masks and 11 million images.

The development of SA-1B [18] fully leverages the two primary approaches of using SAM,
one is to use SAM as an interactive model with manual prompts, the other one is to use
SAM for automatic mask generation without human intervention. As illustrated in Figure
2.1, SAM’s architecture includes three components: an image encoder, a prompt encoder, and
a mask decoder. To ensure high scalability and adaptability, the image encoder incorporates
a powerful vision transformer. The prompt encoder supports a variety of prompts including
single and multiple point prompts, bounding boxes, masks, and texts. The versatility of SAM
to adapt to new data distributions relies on prompt engineering through the prompt encoder.
As an interactive model, SAM allows professional annotators to provide precise prompts
without ambiguities, enabling accurate object segmentation. This interactive feature was
crucial in the initial stage of building the SA-1B dataset where professional annotators
used the initial version of SAM that was trained on common public datasets to assist with
annotations.
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Figure 2.1: An overview of Segment Anything Model (SAM) architecture [18]. The heavy-
weight ViT image encoder generates an image embedding and the mask decoder can produce
various masks based on di↵erent prompts for a single image embedding.

In contrast, the automatic mask generation method [18] does not rely on manually pro-
vided precise prompts. Instead, it uses a dense regular grid of points to prompt the model.
For each point, SAM predicts multiple masks with varying predicted IoU scores that indi-
cates the model’s confidence levels in predicted masks. After obtaining all masks, it filters
by retaining only the confident and stable masks and de-duplicating using non-maximal sup-
pression (NMS). This automatic segmentation approach was employed in the later stages of
building SA-1B, once SAM had become more ambiguity-aware and had been refined through
training on the initial stage of SA-1B dataset previously built with assistance from anno-
tators. Although this allows for automatic segmentation using SAM, it is not designed to
segment a specific category of objects, in our case the invasive melanoma. Our method ad-
dresses this limitation by allowing SAM to target invasive melanoma segmentation through
automatically sampled prompts from a preliminary mask.

Lightweight and E�cient Variants of SAM

Despite SAM’s impressive versatility and zero-shot generalization capabilities, its depen-
dence on a large Transformer model incurs substantial costs for fine-tuning and inference,
limiting its practical applications. To address these challenges, recent studies [37, 35, 33]
have focused on reducing SAM’s computational costs to enhance its usability for fine-tuning
and deployment. FastSAM [37] replaces SAM’s transformer backbone by YOLOv8-seg [17],
a CNN-based architecture, and trains on a small portion of the SA-1B dataset for instance
segmentation. MobileSAM [35] employs knowledge distillation to develop a lightweight im-
age encoder from SAM’s heavy image encoder. This method achieves faster inference speed
while preserving performance levels comparable to FastSAM, making it more feasible for de-
ployment in resource-constrained environments. E�cientSAM [33] adopts a masked autoen-
coders(MAE) framework for leveraging masked image pretraining. This technique enables
the training of a light-weight encoder that e↵ectively reconstructs visual representations
from SAM’s heavy image encoder. Unlike FastSAM and MobileSAM, which trade o↵ a sig-
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nificant amount of SAM’s performance for smaller model sizes and faster inference speed,
E�cientSAM maintains reasonable performance comparable to the original SAM while sig-
nificantly reducing complexity and computational requirements.

Adaptations of SAM in Medical Imaging

Given SAM’s impressive results on various natural image segmentation tasks, recent works
have explored its application to medical image segmentation, a field that stands to benefit
significantly from foundation models due to the scarcity of data and the labor-intensive
annotation for medical images. However, several studies [15, 38, 25, 8] have shown that
SAM underperforms in medical image segmentation. This is attributed to the model’s lack
of domain-specific medical knowledge, the uncertain and complex object boundaries, intricate
structures, and the wide-range of scales unique to medical objects [15]. Recent e↵orts have
focused on adapting SAM for medical images, primarily through fine-tuning or adapting
SAM to labeled medical dataset. Ma et al. [20] proposed to fine-tune SAM fully on labeled
medical data, which is cost-ine↵ective due to the vast number of parameters in SAM. Wu et
al. [31] proposed to integrate adapter modules into SAM, allowing e�cient fine-tuning by
freezing all modules except for the adapters during training.

It is important to note that these studies have primarily utilized SAM as an interactive
model and evaluate its performance by providing accurate prompts based on the ground-
truth annotations. This overlooks SAM’s potential for automatic segmentation. Particularly
in the context for microscopy whole slide image segmentation, SAM’s interactive feature can
assist annotators but cannot fully automate the labor-intensive process of segmenting high-
resolution whole slide images. Although SAM o↵ers automatic mask generation, this feature
is designed for segmenting everything on an entire image rather than targeting specific small
objects, such as scattered melanoma cells in our scenario. Zhang et al. [36] proposed
to enhance medical images by adding semantic structures using SAM’s automatic mask
generation. This approach combines generated masks, features and stability scores to help
train other image segmentation models with enhanced data. The success of this method
depends on SAM’s ability to generate useful structural information during the automatic
mask generation process.

2.3 Parameter-E�cient Fine-Tuning

Parameter-E�cient Fine-tuning (PEFT) has emerged as an e�cient strategy for adapting
large foundational models to specific tasks in both NLP and computer vision. This approach
involves freezing the majority of the model’s weights and fine-tuning only a small subset of
parameters, reducing the number of trainable parameters to as little as 0.01% of the original
model in highly optimized scenarios [34, 14]. Numerous parameter- and compute-e�cient
methods have been developed for transformer-based models. Among the various PEFT
methods, adapters have proven particularly e↵ective for fine-tuning large vision models for
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downstream tasks. One of the most notable adaption techniques is Low-Rank Adaptation of
Large Language Models (LoRA) [14], which reduces the number of trainable parameters by
only training rank decomposition matrices injected into each layer of Transformers. While
LoRA was initially popularized in NLP, recent studies have successfully applied adapter tech-
niques to computer vision tasks, demonstrating their versatility and e↵ectiveness. To adapt
vision transformers for scalable visual recognition, Chen et al. [5] introduced lightweight
modules into vision transformers. This approach enhances ViT’s generalization capability
to downstream tasks. Similarly, He et al. [13] proposed a method to project and decom-
pose selected modules with specific local intrinsic dimensions in a subspace via Kronecker
Adaption, enabling parameter e�cient fine-tuning for vision transformers.

2.4 Melanoma Semantic Segmentation in Slide

Images

Melanoma semantic segmentation can be classified into two categories: 1) skin lesion seg-
mentation based on images captured at a macroscopic scale, providing a magnified view of
the skin surface and sub-surface structures; 2) microscopy slide image segmentation that
involves whole slide images (WSIs) captured at a microscopic scale, proving high-resolution,
detailed views of tissue samples at the cellular level. Skin lesion segmentation involves seg-
menting the foreground melanoma at a macroscopic level, typically represented as a large
connected component. In contrast, microscopy slide image segmentation requires segment-
ing melanoma at a microscopic scale, where it appears to scatter across WSIs with irregular
shapes, making the task significantly more challenging. Given that these two segmenta-
tion tasks have distinct objectives and datasets, we focus exclusively on methods related to
microscopic slide image segmentation. In the following sections, we categorize these meth-
ods based on their model architecture into two categorizes: Convolutional Neural Network
(CNN)-based methods and Transformer-based methods.

CNN-based Methods

Many CNN-based methods have been developed for the segmenation of melanoma from
microscopic WSIs. Due to the labor-intensive nature of comprehensively annotating WSIs
with super large resolutions, these studies evaluate models on di↵erent datasets with varying
annotation quality and standards. While some datasets have accurate annotations across
entire WSIs, others have only coarse and sparse annotations for small portions of images,
leading to di↵erences in methodology. Nofallah et al. [21] proposed a two-stage segmentation
pipeline using multiple U-Nets to generate separate segmentation masks for the epidermis
and melanoma, which are then merged to create the final segmentation mask. Their dataset
includes sparse and coarse annotations within regions of interests (ROIs) determined by a
consensus panel of dermatopathologists. Phillips et al. [23] created a dataset with annota-
tions covering full WSIs including tumor, epidermis and dermis. To deal with the gigapixel
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resolution of WSIs, they divided each slide into patches of 512 ⇥ 512 pixel resolution and
deallt with class imbalance by undersampling patches containing mostly backgrounds and
upsampling those containing tumors. Di↵erent from other works, Alheejawi [2] utilized a
unique dataset that labeled nuclei only and employed CNN-based architectures including
SegNet and U-Net for cell nuclei segmentation. Van Zon et al. [29] worked on a dataset
including melanoma, nevus and negative WSIs, and proposed to first classify slides into
melanoma and nevus, and then segment both melanoma and nevus using a 3-layer U-Net
architecture. Oskal et al. [22] concentrated solely on segmenting epidermis and trained a
U-net based architecture on sampled patches at 512 ⇥ 512 pixels. To handle class imbal-
ance between epidermis regions and the rest of the slides, they upsampled epidermis and
downsampled background patches based on the number of pixels belonging to each class.

The work most related to ours is the approach proposed by Shah et al [26], who used
the same dataset as ours. They developed a two-stage method to identify the epidermis
and melanoma separately by leveraging the fact that in-situ melanoma is confined to the
epidermis while invasive melanoma penetrates beyond the epidermis. Their dataset includes
detailed and accurate annotations for background cells, epidermis, invasive tumor, inflated
tumor, fibrotic tumor and uncertain tumor across entire WSIs. Specifically, they used CNN-
based models including HRNet-OCR and HookNet as backbones and trained two models,
one for epidermis segmentation and one for tumor segmentation, to predict two separate
segmentation masks for epidermis and melanoma. By removing all predicted melanoma
masks inside the predicted epidermis masks, they obtained segmentation masks for invasive
melanoma. Although it is feasible to train a model to segment both in-situ melanoma and
invasive melanoma, this method utilizes the annotation in a problematic way by combining
epidermis and invasive melanoma together as one class for tumor segmentation. As a result,
this leads the model to inadvertently identify healthy epidermis tissues as tumor.

Transformer-based Methods

All the previously discussed works share a common approach: utilizing CNNs for microscopy
slide image segmentation. While CNN-based architectures have demonstrated significant
e↵ectiveness in segmentation tasks, transformers have outperformed CNNs in various com-
puter vision tasks due to their high scalability with increasing data and their ability to
capture long-range dependencies and global context. Wang et al. [30] proposed to fine-tune
transformer based models including the Hierarchical Pyramid Transformer (HIPT) and the
Segformer [32] for segmentation of invasive melanoma in whole slide images. Specifically for
HIPT, a multi-scale hierarchical decoder is used to fine-tune the HIPT pretrained on WSIs
of breast tissues using student-teacher distillation, leveraging the fact that breast tissues and
skin tissues share many common biological features. However, fine-tuning Segformer that is
pretrained on ImageNet dataset leads to better performance than HIPT pretrained on WSIs
of breast tissues. The multi-scale hierarchical feature maps of Segformer has demonstrated
superior segmentation accuracy compared to the single-scale low resolution representation
of HIPT.



CHAPTER 2. RELATED WORK 9

Despite Segformer’s impressive capabilities in segmenting invasive melanoma, there is still
some room for improvement. The task is currently treated as a multi-class semantic segmen-
tation problem involving three classes: melanoma, epidermis, and everything else including
background cells, inflated tumor, fibrotic tumor and uncertain tumor. During inference, Seg-
former predicts three masks for each class and selects the class with the highest pixel-wise
probability for the final segmentation mask. However, Segformer sometimes struggles in
hard-to-distinguish regions where it can not distinguish between epidermis and melanoma,
likely due to limited global context available in each sampled patch. As a result, Segformer
predicts similar probabilities for both classes and the final segmentation masks contain areas
where epidermis and melanoma are intertwined with each other. Furthermore, Segformer
tends to perform better on scattered round melanoma cells while being less accurate in seg-
menting large, irregular melanoma clusters. From a medical perspective, melanoma cells
tend to migrate and invade surrounding tissues di↵erently, leading to di↵erent growth pat-
terns. In Chapter 3, we will show how we leverage these observations to generate better
segmentation masks for invasive melanoma.
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Chapter 3

Proposed Method

In this chapter, we describe our proposed method for segmenting invasive melanoma in
microscopy slide images. To begin with, we briefly introduce the architecture of Segformer
and E�cientSAM, the two models used in our approach in Section 3.1. Next, in Section
3.1, we show the overall pipeline of how to use SAM together with a semantic segmentation
model for automatic segmentation of invasive melanoma. In Section 3.2, we delve into the
integration of adapters into SAM for parameter e�cient fine-tuning. In Sections 3.3 and 3.4,
we show the process of in-situ melanoma detection and low-confidence region filtering in
preparation for prompt generation. In Section 3.5, we describe the details of our prompt
generation method including the preparation stage and the strategy for determining prompt
types. Section 3.6 describes the process of deriving the final segmentation mask. Lastly,
in Section 3.7, we show how to train a SAM that best suits the purpose of our proposed
method.

3.1 Preliminary

Segformer

Segformer [32] is a lightweight, fast transformer-based model designed specifically for seman-
tic segmentation tasks. Its architecture leverages multi-resolution hierarchical structures,
enhancing its capability to capture fine details at various scales. Rather than use positional
encoding to embed location information, Segformer employs zero paddings in its convolution
kernels to leak positional information, which avoids the reduction in accuracy when there is
a discrepancy between the scaling ratios of training and testing data. In the domain of med-
ical imaging, Segformer [30] has demonstrated exceptional accuracy in segmenting invasive
melanoma in microscopy slide images. Specifically, it approaches this task as a multi-class
segmentation problem by producing detailed segmentation masks for both the epidermis
and the melanoma. We choose to use Segformer as our image segmentation model due to
its superior performance in this specific task compared to other transformer-based models
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Figure 3.1: An overview of the proposed method. The initial maskX generated by Segformer
is post-processed to generate the mask X̂m. We run SAM on the prompts generated from
X̂m to generate the mask Ŷ m. The two masks are combined to create the final mask Y.

and CNN-based models. Its capability to generate segmentation masks for epidermis also
significantly enhances our method’s e↵ectiveness.

E�cientSAM

E�cientSAM [33] is a light-weight SAM model with state-of-the-art quality-e�ciency trade-
o↵s. E�cientSAM shares the same architecture as SAM, which includes an image encoder, a
prompt encoder, and a mask decoder. The only di↵erence is that E�cientSAM uses a well-
pretrained lightweight ViT image encoder, i.e. ViT-Tiny/-Small [9], to replace the heavier
ViT-H encoder used in the original SAM model. To develop this high-quality lightweight
ViT image encoder, the Masked Autoencoders (MAE) [12] pretraining method is employed.
This approach involves training a masked image model with a lightweight ViT encoder
to reconstruct feature embeddings generated by the heavy ViT-H encoder of SAM. The
resulting lightweight image encoder combined with SAM’s default mask decoder forms the
E�cientSAM model. After self-supervised pretraining of its image encoder, E�cientSAM is
fine-tuned on the SA-1B dataset, optimizing its performance on the segment anything task.
Due to its cost-e�cient fine-tuning and comparable performance to the best SAM model, we
choose to use E�cientSAM as the segment anything model in our method.

Overview of the Proposed Method

Our proposed method comprises an initial semantic segmentation model and a segment
anything model as illustrated in Figure 3.1. Our objective is to fine-tune SAM on our
medical dataset and use it to segment invasive melanoma automatically. To achieve this, we



CHAPTER 3. PROPOSED METHOD 12

prompt SAM with prompts generated from the mask produced by the initial segmentation
model. To optimize for our task of segmenting invasive melanoma, we select Segformer as
the initial segmentation model due to its superior performance compared to other models
[30]. We choose E�cientSAM [33] as the segment anything model for parameter-e�cient
fine-tuning. The entire framework is described as follows.

Step 1. Initial Mask Generation. We run Segformer[32] to generate the initial
segmentation maskX. Next, we develop an in-situ melanoma detection algorithm to separate
X into the estimated in-situ melanoma regions Xs and the remaining invasive melanoma
regions Xv. We filter out low-confidence regions from Xs to obtain the filtered mask Xs

c and
combine it with Xv to obtain the post-processed mask X̂m. The details are described in
Sections 3.3 and 3.4.

Step 2. Prompt Generation. We generate single point prompts from the post-
processed mask X̂m. We determine the best prompt type for each connected component
based on its shape distribution and geometric characteristics. The details of the prompt
generation strategy are described in Section 3.5.

Step 3. Final Mask Generation. We run SAM on the generated prompts to produce
its own invasive melanoma mask Ŷ m. We use SAM’s mask to refine the post-processed mask
X̂m by combining the two masks together. This aims to enhance the overall accuracy and
robustness of melanoma segmentation. The details are described in Section 3.6.

3.2 Adapter Modules

Rather than perform full fine-tuning over all parameters of SAM, we adopt an adaption
method as described by Wu et al. [31] to e↵ectively fine-tune our dataset. Specifically, we
integrate adapters into the ViT blocks of SAM’s image encoder following Wu et al.’s approach
[31]. We freeze all parameters except for the adapters in the image encoder and fully fine-
tune everything else including the prompt encoder and the mask decoder. Unlike the original
method proposed by Wu et al.[31], which integrates adapters into the SAM decoder with
Hyper-Prompting Adapter, we choose to only integrate adapters into the image encoder.
This decision is based on the fact that both the prompt encoder and the mask decoder
are lightweight neural networks with significantly fewer parameters compared to the image
encoder, which allows for e�cient fine-tuning without the need for adapters.

We describe the adaption method from [31] as follows. Two adapters with di↵erent
architectures are integrated into the ViT blocks of the SAM image encoder. As illustrated in
Figure 3.2, the original ViT block consists of multiple components with residual connections
including multi-head self-attention, layer normalization and a feed-forward network. Our
adapters are placed into two specific positions: the first adapter is inserted after multi-head
attention, while the second adapter is positioned on the residual path of the MLP, after
residual connection of multi-head attention.

Both adapters include a fully connected feed-forward network consisting of two projection
layers and a GeLU activation in between. The main di↵erence between the two adapters
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(a) ViT Block (b) ViT Block with Adapters

Figure 3.2: Adatpers are integrated into two specific locations within the ViT block: one is
placed after the multi-head attention, the other one is positioned on the last residual path.

is whether they comprise residual connection. While the first adapter includes a residual
connection, the second adapter is positioned on a residual path and thus does not contain a
residual connection. This architectural di↵erence of the two adapters is highlighted in Figure
3.3.

Denote the dimensionality of input and output as da and the dimensionality of the hidden
layers as dh. The first projection layer FC1 projects input x to a low-dimensional space from
feature dimension da to dh. The second projection layer FC2 expands the embedding back
to a high-dimensional representation by increasing the dimensionality from dh to da. The
first adapter AdapterA includes a residual connection for its feed-forward network.

AdapterA(x) = x+ FC2(GeLU(FC1(x))) (3.1)

Rather than contain a residual connection, the second adapter scales the output of the
up-projection layer with a coe�cient ↵.

AdapterB(x) = ↵FC2(GeLU(FC1(x))) (3.2)
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(a) Adapter A (b) Adapter B

Figure 3.3: A comparison between adapter A and adapter B: adapter A includes a residual
connection, whereas adapter B replaces the residual connection with a scaling component.

In our implementation, we use adapters with an input and output dimensionality of da = 768
and set the dimensionality of hidden layers to dh = 1024. For the second adapter, the scaling
factor ↵ is set to 0.5.

3.3 In-situ Melanoma Detection

In this section, we describe our method for in-situ melanoma detection, which as seen in
Figure 3.1, takes the output of initial segmentation by Segformer as input, and produces
estimates of invasive melanoma mask Xv and in-situ melanoma mask Xs. The motivation
is to exclude low-confidence invasive melanoma predictions that touch the epidermis pre-
dictions. From a medical perspective, melanoma confined to the epidermis are considered
to be in-situ melanoma. When an in-situ melanoma component and its surrounding pixels
are predicted as invasive melanoma, it appears to be an invasive melanoma component that
touches the epidermis prediction. Therefore, we want to identify and exclude low-confidence
invasive melanoma predictions that touch the epidermis predictions. This process is shown
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(a) In-situ Melanoma Detection (b) Low-Confidence Region Filtering

Figure 3.4: In-situ melanoma detection algorithm finds the estimated in-situ melanoma
regions Xs from the initial mask X. Low-confidence region filtering discards low-confidence
connected components from Xs.

(a) Ground Truth (b) Segformer-B0 Output

Figure 3.5: Motivation for in-situ melanoma detection. The highlighted areas show that
the misclassified invasive melanoma components that touch the epidermis predictions have
relatively small sizes compared to the epidermis.

in Figure 3.4a. The initial mask X produced by Segformer contains both the epidermis mask
Xe, and the invasive melanoma mask Xm. The invasive melanoma mask can be represented
as a union of invasive melanoma connected components (CCs) Xm =

S
Xm

i , where i denotes
the ith invasive melanoma connected component. Similarly, the mask for epidermis can be
represented as a union of epidermis connected components Xe =

S
Xe

j , where j denotes the
jth epidermis connected component. Since SAM heavily relies on prompts to specify the
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Algorithm 1 Post-processing Algorithm

Require:

The initial segmentation mask: X
The epidermis mask: Xe

The invasive melanoma mask: Xm

The threshold for determining in-situ melanoma: ↵m

The probability for thresholding high-confidence region: �
The threshold for excluding low-confidence regions: ↵c

Ensure:

The post-processed mask for invasive melanoma: X̂m

X  {Xe, Xm}
X̂m  Xm

for each Xm
i ✓ Xm

do

for each Xe
j ✓ Xe

do

if Touch(Xm
i , Xe

j ) & Area(Xm
i )

Area(Xe
j )

< ↵m then

Xm
i,� = {x | P (x) > �, x 2 Xm

i }
if

Area(Xm
i,�)

Area(Xm
i ) < ↵c then

X̂m  X̂m \Xm
i

end if

end if

end for

end for

return X̂m

exact objects to segment, inaccurate and ambiguous prompts can significantly degrade its
performance. This can lead SAM to produce more false positives compared to the initial seg-
mentation mask from which prompts are generated. Therefore, we filter out low-confidence
invasive melanoma components to improve the accuracy of prompts so that when clicked it
results in true positives as much as possible.

As shown in Figure 3.4a, we begin by iterating over all connected components Xm
i in the

invasive melanoma mask Xm. For each connected component Xm
i , we determine whether it

touches any epidermis component Xe
j . If such a touch exists, we compute the ratio between

the area of the melanoma component Xm
i and the area of the touched epidermis region

Xe
j . If this ratio falls below a specified threshold ↵m, we classify it as an estimated in-situ

melanoma region, This is because careful inspection of Segformer’s predictions shows that
in-situ melanoma that are misclassified as invasive melanoma tend to have a relatively small
size compared to the epidermis, as shown in Figure 3.5. This process results in the estimated
in-situ melanoma mask Xs and the remaining invasive melanoma regions Xv.
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(a) Ground Truth (b) Segformer-B0 Output (c) Probability Distribution

Figure 3.6: Motivation for low-confidence region filtering. The green mask denotes the
epidermis and the red mask indicates the invasive melanoma. For misclassified invasive
melanoma components that touch the epidermis predictions, Segformer predicts a larger
proportion of low-probability areas compared to true postivies.

3.4 Low-Confidence Region Filtering

As shown in Figure 3.1, we further filter out low-confidence estimated in-situ melanoma
regions from Xs. The details of the full post-processing process including in-situ melanoma
detection and low-confidence region filtering are shown in Algorithm 1. We keep high-
confidence regions even if they touch the epidermis predictions, since this could result from
false predictions in the epidermis and invasive melanoma that make them touch each other.
We determine the confidence level based on the probability map generated by Segformer.
As shown in Figure 3.4b, for each connected component Xs

i of Xs, we first find its high-
confidence sub-component Xs

i,� that has a probability exceeding the defined probability
threshold �:

Xs
i,� = {x | P (x) > �, x 2 Xs

i }. (3.3)

We then determine the confidence level by computing the ratio between the area of Xs
i,� and

Xs
i . If the ratio is lower than the confidence threshold ↵c, we discard this component and do

not generate prompts from it. This is motivated by the empirical observation that Segformer
generally predicts a larger proportion of low-probability areas for in-situ melanoma compared
to invasive melanoma, as shown in the probability distribution in Figure 3.6. Therefore, if
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Figure 3.7: Prompt Generation Strategy. We apply the centroid prompt and the grid prompt
to di↵erent invasive melanoma components based on their shape distributions and geometric
characteristics.

we only keep regions with a high proportion of high probability areas, we can significantly
reduce the number of false positives in Xm.

Next, as shown in Figure 3.1, we combine the filtered melanoma regions Xs
c and the

invasive melanoma regions Xv obtained from in-situ melanoma detection block to obtain the
post-processed invasive melanoma mask X̂m.

3.5 Prompt Generation

Melanoma can be in various forms in microscopy slide images, ranging from rounded clusters
to jagged streaks or any combination of irregular shapes. To facilitate accurate segmentation
of diverse morphologies, we design two types of point prompts: centroid and grid. Centroid
prompts consist of a single point placed at the centroid of a connected component. On the
other hand, grid prompts comprise a grid of points distributed within a connected component.
As shown in Figure 3.7, we choose a prompt type for each connected component X̂m

i and
serve each point as a single point prompt for the SAM prompt encoder and feed a patch
centered at the point as the input to the SAM image encoder.

A patch represents a 512⇥512 or 1024⇥1024 image segment cropped from the microscopy
slide image, which is relatively small compared to the entire slide image. We choose patches
centered at each point since this ideally provides maximum context, as illustrated in Figure
3.7. A patch may cover multiple melanoma components, but we only use the connected
component corresponding to each point prompt as the target.

We choose prompts dynamically based on the characteristics of the connected compo-
nents. While centroid prompts excel in providing optimal context for small, regularly shaped
melanoma, they often fail to provide su�cient context for those covering large regions and



CHAPTER 3. PROPOSED METHOD 19

(a) Too Large to

fit inside a patch

(b) Centroid

lies outside CC

Figure 3.8: Cases where a patch centered at centroid cannot provide enough context for
segmentation. In case (a), the melanoma component is too large to fit inside a patch centered
at centroid. In case (b), the centroid lies outside the connected component.

those with irregular shapes, as shown in Figure 3.8a. In cases where a connected component
is too large to fit inside a patch, numerous melanoma predictions are lost in a centered patch
and not enough context is provided for its surroundings, as shown in Figure 3.8b. Further-
more, there are cases where the centroid lies outside the connected component and it turns
out to be a point prompt not clicked on invasive melanoma, resulting in false positives.

For each connected component X̂m
i , we determine the type of prompts to generate based

on its shape distribution and geometric attributes. The details of the prompt type determi-
nation strategy are shown in Algorithm 2. As shown in Figure 3.7, we find the width ws and
height hs of an axis aligned bounding box (AABB) for the connected component. If either
ws or hs exceeds the length of a patch, we opt for grid prompts. Then we find the width
wm and height hm of an arbitrarily oriented minimum bounding box that has minimum area
for the connected component and check whether the ratio between hm and wm exceeds a
threshold ↵b assuming hm is the longer side. A high ratio implies that the shape of the
component resembles a narrow rectangle or any other irregular shape where one dimension
is larger than the other, in which case centroid prompt is ambiguous for segmenting the
whole component. In such cases, we also choose to use grid prompts. Additionally, for each
connected component chosen for grid prompts, we also include its centroid as part of the
prompt if it is inside the component as a supplementary to the grid prompts. For all other
cases, we use centroid prompt only.

Furthermore, if any connected component meeting the criteria for grid prompts has an
area larger than 1

4 of the patch, we apply grid prompts to all connected components in the
slide image rather than determine prompt types individually for each component. This ap-
proach is based on the observation that neighbouring melanomas often share similar shapes,
even if they don’t conform to a single morphology. When a very large melanoma component
with an irregular or narrow shape is found, neighboring melanomas tend to exhibit similar



CHAPTER 3. PROPOSED METHOD 20

Algorithm 2 Determine prompt type for a connected component

Require:

A connected component of invasive melanoma: x
The length of the side of a patch: s
The threshold for the ratio between sides of a minimum bounding box: ↵b

Ensure:

The generated prompts (a set of single point prompts): P
1: function GeneratePrompts(x)
2: P = ;
3: ws, hs = FindAABB(x)
4: wm, hm = FindMinAreaBB(x)
5: if ws > s or hs > s or

hm
wm

> ↵b then

6: Pgrid = GenerateGridPrompts(x)
7: P = P [ Pgrid

8: center = FindCentroid(x)
9: if center 2 x then

10: P = P [ {center}
11: end if

12: else

13: center = FindCentroid(x)
14: P = P [ {center}
15: end if

16: return P
17: end function

shapes. In such cases, grid prompts provide the best coverage for all melanoma components.

3.6 Final Mask Generation

After deriving the prompts, we run SAM to generate its own mask Ŷ m as shown in Figure
3.1. To obtain the final mask, we combine the post-processed Segformer’s mask X̂m and
SAM’s mask Ŷ m by performing a union between the two:

Y = Ŷ m [ X̂m (3.4)

We choose to combine these two masks because single point prompts are sparse and may
not comprehensively cover all regions. This sparsity can lead to ambiguity and result in
missing some high-confidence predictions from Segformer. Therefore, we choose to include
the post-processed mask X̂m to ensure that high-confidence regions are kept in the final
mask Y .
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3.7 Training Strategy

We devise a training strategy involving two stages that optimizes SAM for the way we use
prompts. Since we only use single point prompts, we first train our model on single point
prompts for melanoma. For each patch sampled from a microscopy slide image, we first
find all connected components and for each connected component we generate a single point
prompt clicked at a random position inside it. This enables the model to learn to segment
melanoma anywhere in a patch. After the initial training on random point prompts, we
fine-tune our model on patches centered at each individual single point prompt. Each patch
might contain multiple components, but we only set the component containing the point
prompt as the target to reduce ambiguity. This allows the model to optimize for inference
using our SAM-based method.
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Chapter 4

Experiments

In this chapter, we present the experimental results from the methods described in Chapter
3. The chapter is structured as follows. Section 4.1 covers the data and preprocessing
steps in our experiments. Section 4.2 discuss the implementation details for Segformer and
E�cientSAM. In Sections 4.3, we showcase the main results of our method and compare it
with other state-of-the-art methods. In Section 4.4, we analyze and discuss the e↵ects of
di↵erent design choices in our method. We include the full results of the microscopy slide
segmentation in Appendix A.

4.1 Dataset

Our dataset comprises 101 microscopy slide images, with sizes ranging from 23,700⇥ 21,199
pixels to 1996⇥ 1679 pixels. These images are derived from skin biopsies stained with H&E
[10] and captured under a microscope at 40x magnification. Detailed Annotations at this
magnification level are provided by an expert dermatopathologist. Each image in the dataset
is carefully selected and cropped from the original WSIs by the dermatopathologist. This is
because whole slide images often contain multiple focal planes of the same tissue, leading to
redundancy in the data. By selecting the most informative regions at a single focal plane,
we reduce the redundancy and ensure that the dataset focuses on the most relevant tissue
structures. The annotations for our microscopy images include seven classes: air, background
cells, epidermis, invasive melanoma, inflamed tumor, fibrotic tumor, and uncertain tumor.
It is important to note that invasive melanoma is the only type of melanoma precisely
annotated. In-situ melanoma is labeled as epidermis in our dataset due to its confinement
to the epidermis and due to our focus on segmenting invasive melanoma.

Segformer Dataset Generation

For preprocessing the dataset for Segformer, We follow the approach described by Wang et al
[30]. Given the extremely high resolution of microscopy slide images, we divide each slide into
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non-overlapping patches of 512⇥ 512 and 1024⇥ 1024 pixels. We re-categorize the original
annotations into three distinct classes: invasive melanoma, epidermis, and others. This re-
classification is essential since the ambiguous boundaries of fibrotic and inflamed tumor make
them less suitable for e↵ective segmentation model training. By grouping these into a single
category, the model can concentrate more on accurately segmenting invasive melanoma and
epidermis. To address class imbalance issues, we perform selective undersampling. Patches
with over 97% of air content are excluded, while those with more than 97% background
cells are retained with a probability of 8%. The resulting dataset comprises 14,885 patches
of around 3.9 billion pixels for 512 ⇥ 512 resolution and 4326 patches of around 4.5 billion
pixels for 1024 ⇥ 1024 resolution. This preprocessing approach ensures a balanced and
representative dataset for training the Segformer model.

SAM Dataset Generation

We generate the SAM dataset corresponding to the two-stage training process described
in Section 3.7. For the first stage, we divide each microscopy image into non-overlapping
patches and generate a single point prompt within each connected component randomly. The
ground truth for each prompt is the mask corresponding solely to that particular connected
component, rather than all components in the patch. This aims to minimize the ambiguity of
single point prompts as much as possible and facilitates model convergence. For the second
stage, we use both the centroid and randomly sampled points as the training prompts. We
use patches centered at each prompt to optimize SAM specifically for our method. This
stage’s dataset comprises 8357 patches of 512 ⇥ 512 pixel resolution and 6170 patches of
1024⇥ 1024 pixel resolution.

4.2 Implementation Details

Model Settings

We use Segformer B0 and B1 [32] as the initial segmentation model and E�cientSAM-S [33]
as the segment anything model in our approach. We choose E�cientSAM-S since it is the
most e�cient variant of SAM that reconstructs the image embeddings of ViT-H [9] in the
original SAM. To further improve training e�ciency, we integrate adapters into the ViT [9]
image encoder following the approach described in Med-SA [31]. We use adapters with an
input and output dimensionality of da = 768 and set the dimensionality of hidden layers to
dh = 1024. With adapters, we fine-tune 6.7M parameters for E�cientSAM-S to a mere of
29.3M parameters.
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Training

For Segformer, we use AdamW [19] optimizer with �1 = 0.9 and �2 = 0.999, and a weight
decay of 0.01. We use an initial learning rate of 5e�4 and a polynomial decay scheduler. We
use the weights of Segformer pretrained on ImageNet [7] as our starting point and train the
model for 150 epochs. For E�cientSAM, we use the Adam optimizer with an initial learning
rate of 1e� 4, an exponential decay rate of �1 = 0.9 and �2 = 0.999, and a weight decay of
0.05. We use the initial learning rate for the first 10 epochs and apply a learning rate decay
factor of 0.5 every 10 epochs. We use a batch size of 8 for patch resolution 512 ⇥ 512, and
a batch size of 6 for patch resolution 1024⇥ 1024. The model is first trained for 100 epochs
on the first-stage dataset and then trained for 150 epochs on the second-stage dataset. The
model is trained with a binary cross entropy loss function with equal weights for the invasive
melanoma and the backgrounds. All experiments are implemented in PyTorch and executed
on 4 NVIDIA Quadro RTX 8000 GPUs.

Inference

To generate the segmentation mask with Segformer, we process each microscopy slide image
into patches. Specifically, we use a sliding window to create patches by shifting the window
both horizontally and vertically with a step size of 128 pixels. We apply a 2D Gaussian
kernel as a weighting mechanism for each pixel within a patch. The kernel has the same
size as the patch and a standard deviation of 1

4 of the patch’s side length. To generate the
segmentation mask for E�cientSAM, we run our method with a fixed set of hyperparameters.
We set the threshold for determining in-situ melanoma ↵m = 0.1, the probability threshold
for high-confidence regions � = 0.8, and the threshold for excluding low-confidence regions
↵c = 0.4. Additionally, the threshold for the ratio between the sides of a minimum bounding
box ↵b, as described in Algorithm 2, is set to 3. The grid prompt employs a vertical and
horizontal gap of 64 pixels between neighboring points.

4.3 Results

To evaluate the e↵ectiveness of our proposed method, we compare it with state-of-the-art
melanoma segmentation methods on our dataset. As shown in Table 4.1, we compare our
method with melanoma segmentation methods including Multi-Scale FCN [23], HRNet &
OCR [26], HIPT [30], and Segformer [32]. The results for Segformer B0 and B1 are repro-
duced following the methods described in Wang et al [30]. All E�cientSAM methods shown
in the table use a 1024⇥ 1024 patch size. For our method, the second column in Table 4.1
refers to the patch size used for the initial segmentation from Segformer.

As shown in Table 4.1, our model outperforms all other baselines in terms of IoU and F1
score. Compared to using solely the Segformer, which is also used as the initial segmentation
model in our method, our method achieves a gain of 20.2% IoU and 13.2% F1 over the state-
of-the-art segmentation methods. Table 4.2 shows the number of parameters and tunable
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Table 4.1: The results of invasive melanoma segmentation on our dataset. We compare
our proposed methods with state-of-the-art segmentation methods on patches with di↵erent
resolution

Model Resolution IoU F1 �IoU �F1

Multi-Scale FCN [23] 512 13.0 14.0 41.1 56.2
HRNet & OCR [26] 788 29.1 44.0 25.0 26.2

HIPT [30] 512 40.1 57.3 14.0 12.9
Seg. B0 [32] 512 44.6 61.6 9.5 8.6
Seg. B1 [32] 512 42.0 59.2 12.1 11.0

Seg. B0 & E�cientSAM-S (ours) 512 54.1 70.2 - -
Seg. B1 & E�cientSAM-S (ours) 512 47.5 64.4 6.6 5.8

HIPT [30] 1024 33.0 46.0 21.1 24.2
Seg. B0 [32] 1024 44.0 61.1 10.1 9.1
Seg. B1 [32] 1024 45.0 62.0 9.1 8.2

Seg. B0 & E�cientSAM-S (ours) 1024 49.5 66.2 4.6 4.0
Seg. B1 & E�cientSAM-S (ours) 1024 49.4 66.1 4.7 4.1

Table 4.2: The number of parameters for models used in our method.

Model Params (M) Tunable Params (M)

Seg. B0 3.7 3.7
Seg. B1 13.7 13.7

E�cientSAM-S 29.3 6.7

parameters for models in our method. Even though E�cientSAM-S has more parameters
than the Segformers, we only fine tune approximately 23.1% of its total parameters, which is
less than half of the parameters of Segformer B1. Figure 4.1 presents representative qualita-
tive results on our dataset, where our method significantly reduces errors in in-situ melanoma
regions and enhances segmentation accuracy in areas where distinguishing between invasive
melanoma and the epidermis is particularly challenging. Additinoally, the best result is
achieved with using E�cientSAM and Segformer B0 with 512 ⇥ 512 patches, even though
this is not the best performing Segformer in terms of IoU and F1 score. A higher IoU for
the initial segmentation mask does not necessarily indicate more improvement in IoU in the
final mask of our method. The amount of improvement depends on the quality of sampled
prompts and the room left for improvement for each prompt.
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(a) Ground Truth (b) Segformer-B0 (c) Ours

Figure 4.1: Qualitative results on our dataset. Red denotes invasive melanoma and green
denotes the epidermis. Compared to Segformer, our method significantly improves the ac-
curacy of predictions for invasive melanoma regions, especially in areas where distinguishing
from the epidermis is challenging.

4.4 Ablation Studies

We now evaluate the e↵ectiveness of our proposed method through a series of ablation
studies on di↵erent components of our method, including the patch size, in-situ melanoma
detection, low-confidence region filtering, the prompt determination strategy and the final
mask generation. All ablation studies use a patch size of 1024⇥1024 for E�cientSAM if not
specified.



CHAPTER 4. EXPERIMENTS 27

Patch Size

Table 4.3: Ablation study on the e↵ect of patch size for E�cientSAM.

E�cientSAM

Patch Size

Initial

Segmentaion Model

Initial Model

Patch Size
IoU �IoU

512 Seg. B0 512 49.4
4.7

1024 Seg. B0 512 54.1

512 Seg. B0 1024 46.2
3.3

1024 Seg. B0 1024 49.5

512 Seg. B1 512 44.9
2.6

1024 Seg. B1 512 47.5

512 Seg. B1 1024 46.8
2.6

1024 Seg. B1 1024 49.4

We study the impact of patch size on the performance of E�cientSAM by comparing
the model’s performance on 512⇥ 512 patches and 1024⇥ 1024 patches. It is important to
note that the patch size used by the initial segmentation model can di↵er from the patch
size used by SAM. While the initial segmentation model’s patch size influences the quality of
the prompts, E�cientSAM’s patch size a↵ects the amount of context available to the model,
impacting the quality of the image embeddings generated by the ViT encoder. As shown in
Table 4.3, using 1024 ⇥ 1024 patches for E�cientSAM consistently achieves better results
than using 512⇥512 patches. The gains in IoU range from 5.6% to 9.5%. This demonstrates
that E�cienetSAM significantly benefits from a larger patch size.

In-situ Melanoma Detection

We investigate the impact of in-situ melanoma detection described in Section 3.3 by filter-
ing out all detected estimated in-situ melanoma regions regardless of their confidence levels.
Table 4.4 shows that this consistently improves performance, with IoU gains ranging from
1.1% to 27.8%. The improvement varies based on the quality of the initial segmentation
mask and the room left for improvement. In contrast, disabling in-situ melanoma detection
results in a performance drop compared to the original mask produced by Segformer. This
drop occurs because prompts generated from incorrect predictions lead SAM to make addi-
tional errors. Therefore, enabling in-situ melanoma detection not only mitigates errors from
incorrect initial predictions but also leverages the strengths of the remaining high-confidence
predictions to improve the final segmentation results.
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Table 4.4: Ablation study on in-situ melanoma detection and low-confidence region filtering
in preparation for prompt generation, as described in Sections 3.3 and 3.4.

Initial

Model

Segformer

Patch Size

In-situ Melanoma

Detection

Low- Confidence

Region Filtering
IoU IoU Gain

Seg. B0 512 42.4 -
Seg. B0 512 X 54.2 11.8

Seg. B0 512 X X 54.1 11.7
Seg. B0 1024 41.4 -
Seg. B0 1024 X 45.6 4.2
Seg. B0 1024 X X 49.5 8.1

Seg. B1 512 44.1 -
Seg. B1 512 X 47.5 3.4
Seg. B1 512 X X 47.5 3.4

Seg. B1 1024 44.3 -
Seg. B1 1024 X 44.8 0.5
Seg. B1 1024 X X 49.4 5.1

Low-Confidence Region Filtering

We study the impact of low-confidence region filtering presented in Section 3.4. As shown in
Table 4.4, our method achieves a 8.5% IoU gain for Segformer B0 and a 10.3% IoU gain for
Segformer B1 when using a 1024⇥ 1024 patch size. However, there is a slight drop of 0.02%
in IoU for Segformer B0 with a 512⇥512 patch size. This suggests that some high-confidence
invasive melanoma regions that touch the epidermis predictions, which are not filtered by
the algorithm, are actually in-situ melanoma. Overall, this demonstrates that low-confidence
region filtering improves the robustness of our segmentation results.

Prompt Types

We study the e↵ectiveness of di↵erent prompt types. We test prompts with centroid alone,
grid alone and our proposed strategy that uses both as presented in Section 3.5. Table 4.5
shows that in most cases using both achieves the highest IoU in the final mask. Compared
to grid prompts alone, using both achieves a gain as high as 8.1% IoU. Compared to centroid
prompts alone, using both achieves gains up to 4.4% IoU with one case showing no improve-
ment. It is noticeable that centroid prompts alone outperforms grid prompts alone in the
final mask, but performs much worse in pre-merged mask. This shows that centroid prompts
allow more accurate segmentation and thus complement the initial mask well, achieving high
IoU in the final mask after merging. In contrast, grid prompts alone achieve full coverage
over the initial mask, but not all points serve as e↵ective prompts for accurate segmenta-
tion. This demonstrates that our method e↵ectively leverages the strengths of both prompts
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Table 4.5: Ablation study on the e↵ects of using di↵erent prompts. ”Both” denotes the
method that dynamically uses both centroids and grid prompts based on the shape distri-
butions of melanoma components, as shown in Section 3.5.

Initial

Model
Prompt

Segformer

Patch Size

E�cientSAM

IoU (%)
Final Mask

IoU (%)
Improvement

in IoU (%)
Seg. B0 Centroid 512 43.3 53.1 9.8

Seg. B0 Grid 512 50.6 51.7 1.1
Seg. B0 Both 512 52.2 54.1 1.9
Seg. B1 Centroid 512 44.3 47.5 3.2

Seg. B1 Grid 512 46.4 46.5 0.1
Seg. B1 Both 512 46.1 47.5 1.4
Seg. B0 Centroid 1024 40.8 48.5 7.7

Seg. B0 Grid 1024 45.5 45.8 0.3
Seg. B0 Both 1024 48.7 49.5 0.8
Seg. B1 Centroid 1024 37.7 47.3 9.6

Seg. B1 Grid 1024 46.0 47.2 1.2
Seg. B1 Both 1024 47.1 49.4 2.3

Table 4.6: Ablation study on final mask generation. The last row represents the result when
prompts are generated from the ground truth instead of the mask produced by Segformer.

Initial

Model

Segformer

Patch Size

Post-processed

X̂m IoU

E�cientSAM

ˆY m IoU

Final

IoU
�X̂m � ˆY m

Seg. B0 512 48.6 52.2 54.1 5.5 1.9
Seg. B1 512 43.4 46.1 47.5 4.1 1.4
Seg. B0 1024 46.7 48.7 49.5 2.8 0.8
Seg. B1 1024 47.2 47.1 49.4 2.2 2.3

GT - - 63.0 - - -

by using grid prompts for large, irregular melanoma components and centroid prompts for
small, regular melanoma components, maximizing the advantages of each prompt type.

Final Mask Generation

We study the impact of final mask generation. As shown in Table 4.6, the final mask
consistently achieves the highest IoU in all cases. E�cientSAM’s mask outperforms the
post-prococessed mask in most cases, with the most significant improvement being a 11.3%
increase for Segformer B0 using 512 ⇥ 512 patches. Merging two masks into a final mask
significantly enhances accuracy. The post-processed mask shows gains ranging from 4.7%
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to 11.3% IoU, while the E�cientSAM’s mask gains improvements between 1.6% and 4.9%
IoU. This demonstrates that E�cientSAM compliments well the post-processsed mask in
generating the final mask. In addition, we evaluate the E�cientSAM’s performance with
prompts generated from the ground truth. Its IoU performance is 20.7% higher than the
best result of using E�cientSAM alone and 16.5% higher than the best final mask. This
demonstrates the upper limit of the performance of our method when using fully accurate
prompts.
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Chapter 5

Conclusion

We proposed a novel approach to explore the potential of SAM for melanoma segmentation
in microscopy slide images. Our method utilizes Segformer to generate initial segmentation
masks and subsequently prompts E�cientSAM using a dynamic selection of centroid prompts
and grid prompts for automatic invasive melanoma segmentation. To ensure accurate prompt
generation, we implement in-situ melanoma detection and filter out low-confidence regions.
Additionally, we integrate adapters into E�cientSAM for parameter-e�cient fine-tuning.
Our experimental results demonstrate that this approach not only surpasses other state-of-
the-art melanoma segmentation methods but also significantly improves upon the baseline
performance of Segformer. Furthermore, we conduct comprehensive ablation studies to val-
idate the e↵ectiveness of each key component in our method.

Beyond melanoma segmentation, our framework presents a versatile approach for apply-
ing SAM to automatic semantic segmentation of various objects. Based on the proposed
method, both the initial segmentation model and the segment anything model can be cus-
tomized for di↵erent applications by fine-tuning on specific datasets and designing special-
ized prompt generation strategies. This flexibility allows for the integration of any semantic
segmentation and interactive segmentation models into our framework for customized us-
age. Furthermore, while our current implementation primarily focus on utilizing single point
prompts, we anticipate future work to explore additional prompt types supported by SAM,
such as multiple point prompts, box prompts and mask prompts. This expansion would
enhance the versatility and accuracy of our framework across di↵erent segmentation tasks.
Lastly, our method addresses the challenge of segmenting ultra-high-resolution microscopy
slide images by processing them in patches. We expect future work to handle slide images by
incorporating global context beyond individual patches and thus achieve more precise and
comprehensive medical image segmentation in high-resolution imaging scenarios.
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Appendix A

More Qualitative Results

We present more qualitative results on our datasest by including the input image, the ground
truth, the Segformer output, and the output of our method for comparison. The results
shown are produced by Segformer B0 with 512⇥ 512 patches and E�cientSAM with 1024⇥
1024 patches.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.1: Our method significantly refines the initial segmentation mask and reduce in-
correct predictions made by Segformer.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.2: Our method e↵ectively reduce errors of predictions in in-situ melanoma regions.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.3: Our method e↵ectively avoids incorrect predictions in the epidermis.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.4: Our method makes predictions similar to Segformer.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.5: Our method makes predictions similar to Segformer.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.6: Our method makes predictions similar to Segformer.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.7: Our method e↵ectively ignores low-confidence invasive melanoma regions pre-
dicted by Segformer.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.8: Our method makes predictions similar to Segformer.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.9: There is one invasive melanoma component missed in our prediction. It is
filtered out due to the low confidence level predicted by Segformer.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.10: Our method e↵ectively reduces incorrect predictions for invasive melanoma in
the epidermis.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.11: Our method predicts more accurate boundaries for small regular melanoma
than Segformer.

(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.12: Our method performs slightly better than Segformer for large melanoma clus-
ters.
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(a) Input (b) Ground Truth

(c) Segformer (d) Ours

Figure A.13: Our method significantly improves upon predictions made by Segformer.


