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Abstract
Programming Abstractions & Systems for Autonomous Vehicles
by
Sukrit Kalra
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Ion Stoica, Chair

Autonomous Vehicles (AVs) have the potential to revolutionize transportation through
their significant safety, environmental and mobility benefits. However, despite their benefits
and significant investment spanning over a decade, AVs remain restricted to locations with
favorable driving conditions, due to the complications arising from the long-tail of complex
driving scenarios. Most research has sought to address this critical challenge through the
design of robust algorithms and machine learning (ML) models that underpin the various
decision making components of a modern AV computational pipeline. In contrast, there
has been relatively little focus on the software systems that must orchestrate an efficient,
real-time execution of these components on the AV’s constrained, heterogeneous hardware.

This dissertation examines the often-overlooked design of such software systems and
presents a clean slate approach to developing AVs. We introduce D3, a novel programming
model for AVs that enables the computation to proactively adjust to dynamically-varying
deadlines and models missed deadlines as exceptions. We realize D3 in our open-source
system, ERDOS, whose novel extensions to concepts from streaming data systems enable
it to speculatively execute computation and enforce deadlines between an arbitrary set of
events. ERDOS’s efficient execution of AV pipelines is further enabled by two key schedul-
ing contributions of this dissertation: SuperServe and DAGSched. SuperServe unlocks a
resource-efficient serving of the entire range of ML models spanning the latency-accuracy
tradeoff space, enabling AV pipelines to quickly adjust to dynamically-varying deadlines.
In addition, DAGSched efficiently multiplexes the available compute resources in an AV
amongst the decision making components, with an aim to maximize the ability of the AV
pipeline to meet dynamically-varying deadlines. Finally, we address the crucial lack of AV
benchmarks by providing the first completely open-source AV pipeline, Pylot, and use it
to evaluate the positive effects of D3 and ERDOS on the driving safety of AVs. Together,
these systems span the entire workflow of developing and evaluating AVs, and we believe are
crucial to bridging the gap towards achieving “fully autonomous vehicles”.
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Chapter 1

Introduction

Autonomous Vehicles (AVs) are poised to revolutionize transportation through their sig-
nificant safety, environmental, economic and societal benefits [208, 211]. In the United States
alone, the National Highway Traffic Safety Administration (NHTSA) expects AVs to: ()
reduce human error from traffic accidents, which made up for 94% of the 42,514 vehicle
related deaths in 2022 [212, 209], (i) increase traffic flow, which could free upto 50 minutes
per person per day [202, 208|, and (4i) provide employment to around 2 million people with
disabilities [76]. Despite these potential benefits and significant investments [56, 164, 89|,
“fully autonomous vehicles” that are able to drive themselves without human intervention
remain restricted to locations with favorable driving conditions [299, 227, 325, 163], due to
the complications arising from the long-tail of complex driving scenarios [26, 171, 251].

The complexity of the wide-range of driving scenarios encountered in production presents
unique challenges across the three major layers of an AV’s computational stack (illustrated
in Fig. 1.1 and detailed in §1.1). Most research addresses these challenges at the top of
the stack, focusing on designing robust algorithms and machine-learning (ML) models that
underpin various components of a modern AV pipeline [289, 147, 320, 257, 276|. However,
there has been comparatively little focus on the software systems that orchestrate an efficient,
real-time execution of these components. This dissertation examines the often-overlooked
design of such software systems and argues that it both presents novel distributed systems
challenges and is crucial to bridging the gap towards achieving “fully autonomous vehicles”.

1.1 Computational Stack of an Autonomous Vehicle

We begin our discussion by providing a high-level overview of the computational stack
that enables the decision making in an AV, and consists of three layers (see Fig. 1.1):

1. Hardware: This layer forms the foundation of the AV stack, facilitating the sensing of
the driving environment. AVs are equipped with a large number of sensors (e.g., dozens
of cameras, several LIDARs and radars), all of which help improve algorithmic accuracy
and increase sensor redundancy in case of hardware failures [150, 145, 146]. These
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Figure 1.1: Computational Stack of an AV is made up of three layers: (i) a distributed
cluster of heterogeneous resources, (4i) the middleware that orchestrates execution of decision
components, and () the algorithms and ML models that drive the decision making.

sensors generate 1-2 GB/s of data [113, 312, 22| (see Table 1.1). This data must be
processed in real-time through multiple algorithms and ML models that drive decision-
making components at the top of the stack, leading to computation requirements that
are at least 100x higher than those of the vehicles in production before [217].

To support the execution of these algorithms and ML models, the hardware layer
provides a distributed cluster of heterogeneous computing resources [186, 200]. The
heterogeneity aids in the low-latency execution of decision-making components by uti-
lizing specialized hardware (e.g., GPUs, ASICs etc.). The distributed nature of the
hardware layer enables AVs to address hardware failures effectively (e.g., by deploying
critical components on independent power systems, and using redundant hardware to
perform emergency maneuvers in the event of a failure [103, 318, 113]).

2. Execution Systems: The hardware resources in an AV are inherently limited by
physical factors such as weight distribution, cooling, and power constraints [186]. As
a result, these resources must be efficiently multiplexed across the various decision-
making components at the top of the stack. The execution system layer provides the
“middleware” that is used to orchestrate the execution of the various components of an
AV’s computation across its distributed, heterogeneous computing resources.
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Hardware Quantity | Frequency (Hz) | Bandwidth (MB/s)
Backfly Camera 8 22 365
IMX390CQV Camera 8 60 960
VLS-128 LIDAR 5 10 75

Radar 21 40 8

Table 1.1: An AV’s sensor suite contains several types (e.g., Cameras, LIDARs etc.) of
sensors executing at varying frequencies that generate 1-2 GB of raw data per second.

The current state-of-the-art AV pipelines (e.g., Autoware [35|, Cruise [312], BMW |[§]
etc. [106, 311]) are built atop the Robot Operating System (ROS) [248]. ROS was
designed as an execution platform for enabling robotics research, and achieves its key
goal of supporting execution of complex computational stacks (such as the one visual-
ized in Fig. 1.1 and Fig. 1.2) through its modular publisher-subscriber communication
paradigm |7] and best-effort execution of components.

The goal of this dissertation will be to delve deeper into the requirements imposed
on these execution systems by the other layers of an AV’s computational stack and
propose and evaluate the design of an ideal execution system.

3. Decision Components: The critical driving decisions of an AV are determined by
a suite of five components: perception, localization, prediction, planning, and control.
These components process the camera, radar, and LIDAR data, and generate steering
and acceleration commands to physically operate the vehicle. Fig. 1.2 provides a
detailed architecture of a representative state-of-the-art AV pipeline, and illustrates
how these components are interconnected to transform sensor input into control output.

Below, we discuss the roles and utility of each of the the aforementioned components.
We also highlight the multitude of solutions available for these components that are
specialized towards deployment scenarios, available compute resources or runtime:

e Perception: To ensure safe navigation, the AV must accurately detect obstacles
and track their movement in real-time. To achieve this, the perception component
is split across: (1) detection, which applies ML models to detect lanes, obstacles,
and traffic lights etc. [289, 147], and (i) tracking, which uses algorithms and ML
models to assign identifiers to detected obstacles [346, 326, 48|.

e Localization: The localization module is tasked with triangulating a decimeter-
level accurate location of the AV on a high-definition map stored offline on the AV.
While individual sensors are prone to occlusion and drift, the module achieves its
goal by fusing data from multiple sensors (e.g., GNSS, IMU, LiDAR etc.) using
algorithms such as Extended Kalman Filtering [262, 345| and Particle Filters |33,
243]. The output from localization and perception is fused to create an abstract
representation of the real-world, which is then provided as input to prediction.
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e Prediction: Upon the abstract representation of the real-world, the AV deploys
ML models to predict the future trajectories of detected obstacles. The prediction
component uses the past trajectory of each obstacle to propose a set of predicted
future trajectories along with the probability of taking a trajectory. Various solu-
tions account for more complex interaction amongst the obstacles at the expense
of increased runtime [180, 256, 67, 291]. Moreover, distinct solutions cater to
the prediction of trajectories for specific agents (e.g., pedestrians [344, 14, 258,
vehicles [157, 81|) and scenarios (e.g., intersections [107, 24|, highways [320, 97]).

e Planning: The abstract representation of the real-world around the AV is an-
notated by the prediction component with the predicted future trajectories for
obstacles, and then used by planning algorithms in order to produce a safe and
comfortable motion plan consisting of decimeter-level waypoints [230]. Although
optimal yet tractable planning algorithms remain unavailable [252], the multi-
tude of available algorithms [329, 169, 268| enable developers to optimize the
accuracy of the plan with respect to the available runtime. Moreover, “anytime
algorithms” [170] that iteratively refine their results enable this choice to occur
at runtime by allowing their executions to be interrupted in order to retrieve the
most accurate motion plan available by that time.

e Control: Finally, specific control algorithms tailored to particular speeds and
conditions [230, 109, 78, 167, 265] stabilize the computed waypoints to generate
steering and acceleration commands for the underlying machinery in the AV.

The computational complexity of the decision components, coupled with the relative
scarcity of the underlying hardware, presents unique challenges on the execution systems
that lie in the middle layer. These challenges necessitate a synergistic development approach
between the decision components and the underlying execution systems. In §1.2, we provide
a taxonomy of the distinct types of requirements that AV computational pipelines impose
on these software systems. Additionally, §1.3 discusses the contributions of this dissertation
in meeting those requirements.

1.2 Requirements from AV Execution Systems

As discussed in §1.1, an AV pipeline is structured as a distributed graph of components,
where each component may have an arbitrary number of statically defined task dependencies
with sporadic input arrivals. The execution of this pipeline presents unique requirements on
the set of programming abstractions that are provided for the development of decision-making
components and their efficient execution to ensure the operational safety of the vehicle. We
now discuss these two set of requirements separately in §1.2.1 and §1.2.2.
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Figure 1.2: A detailed architecture of a modular, state-of-the-art AV computa-
tional pipeline. A modern AV uses multiple sensors to perceive the environment around
it. These sensor readings are used by the perception module to detect other agents, and by
the localization module to compute the location of the AV itself. The prediction module
uses their output to predict the future trajectories of other agents, and the planning mod-
ule computes a safe and feasible trajectory for the AV using these predictions. Finally, the
control module produces steering and acceleration commands for the underlying machinery.
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1.2.1 Programming Abstraction Requirements

AVs have reliability, safety, and real-time requirements similar to hard real-time systems
(e.g., fighter jets), and processing and throughput demands similar to those found in big-
data systems. Simultaneously satisfying these demands in the context of AVs presents two
unique programming requirements that are often at odds with each other:

e Deadline Support: The safety-critical nature of an AV requires the execution systems
to provide primitives to ensure the fulfillment of the end-to-end deadline by allowing
each component (or a set of components) to specify deadlines that: (i) trigger the start
of computation even in the presence of arbitrary delays or failures in upstream compo-
nents, and (#7) bound the response time of components with unpredictable runtimes.

e Rapid Innovation: The components that underpin AVs are undergoing innovation
at a breathtaking pace, with the top 10 entries in the KITTI detection challenge con-
stantly evolving [111], and Tesla constantly updating their AutoPilot software [295,
151].  While the hardware on an AV remains fixed due to the laborious processes
required to meet the automotive regulations [186], the resource requirements of the
components constantly evolve [147, 289]. We expect this trend to continue due to the
need to update algorithms to better handle the increasingly-diverse scenarios encoun-
tered in production, and thus require a constant reconfiguration of the computation to
achieve the highest accuracy within the limits of the AV’s available hardware.

This constant reconfiguration of the AV pipeline requires modularity of each compo-
nent as the addition of new algorithms might require reallocation of response times and
computational resources. In some cases, innovation in one component (e.g., path plan-
ning) might shift the optimal algorithm for another component (e.g., object detection)
towards a faster yet less-accurate one, thus requiring the pipeline to be restructured.

The rapid innovation in AV’s components is at odds with the rigorous engineering prac-
tices used to develop prior secure and reliable hard real-time systems (e.g., nuclear plants,
fighter jets etc.) that provide support for deadlines in several ways: (i) AVs depend on
external large codebases that are not hard real-time (e.g., TensorFlow [3]|, PyTorch [236]),
(7)) new algorithms are often validated on the public infrastructure since testing all possible
behaviors in simulation is impossible given the multitude of situations an AV can encounter,
and (74) unlike airplanes that rely on human pilots as fallback mechanisms, fully autonomous
vehicles must handle all edge cases safely without any support.

1.2.2 Execution System Requirements

The software systems must orchestrate the execution of the AV pipeline that is pro-
grammed within the context of the requirements in §1.2.1 while ensuring the operational
safety of the AV. This leads to the following three requirements:
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e Performance: The vast amount of data generated by the sensors coupled with the
need to quickly compute a control decision [186, 311, 330] requires distributed execution
across machines and accelerators to enable the high throughput data to be processed
with low latency. Crucially, this low-latency execution must adhere to an end-to-end
deadline decided by the components.

e Determinism: Vendors have underscored the need to enable a deterministic replay of
the execution of an AV pipeline [318, 312| in order to allow a reproduction of complex
scenarios. This property aids: (i) development and testing of algorithms by replaying
scenarios in simulation and preventing regressions [266, 255, 226], and (i) verification
of an AV to prevent bugs [168].

e Fault Tolerance: Regulations mandate that hardware and software are tolerant to
failures [278, 149]. While hardware components achieve fault-tolerance through redun-
dancy [156, 15|, the software systems must provide a range of fault-tolerance mecha-
nisms (e.g., active replication 271, 43, 127|, checkpoint-replay [101, 9]) that conform
to the state and runtime properties of each component.

1.3 Contributions

This dissertation focuses on the end-to-end lifecycle of developing an AV’s computational
pipeline (see Fig. 1.3). We redesign the often-overlooked layer of “ezecution systems” in
Fig. 1.1, and propose a synergistic approach of developing AVs to address the requirements
of §1.2. Specifically, the dissertation makes the following concrete contributions:

(1) We propose a new programming model, D3 (Dynamic Deadline-Driven) in Chapter 2
for developing AVs. D3 departs from the conventional publisher-subscriber based model of
development in modern AVs and envisions an AV pipeline as a static, directed graph of
decision components. Moreover, D3 centralizes the management of deadlines into a dead-
line policy, and enables decision making components to exploit the multitude of available
algorithms and ML models catering to different response times and driving environments
(described in §1.1) to meet their assigned deadlines. Finally, D3 models missed deadlines as
“exceptions” and proposes exception handlers to quickly react to these events.

(2) We present techniques to efficiently realise the D3 model in an open-source, high-
performance execution system called ERDOS (Chapter 3). ERDOS provides novel exten-
sions to the concepts of watermarks from streaming systems to expose fine-grained execution
events for the specification of dynamically-varying deadlines that restrict the wall-clock time
elapsed between such events. Moreover, ERDOS’ speculative execution mechanisms aid
the decision making components in fulfilling these deadlines by executing the appropriate
implementation automatically. Finally, if deadlines are missed, ERDOS’ automatic state
management significantly eases the execution of D3’s exception handlers that allow compo-
nents to convey intermediate results and unlock the execution of downstream components.
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Figure 1.3: This dissertation’s contributions span the entire workflow of developing
and evaluating AVs: (i) D3 provides a new programming model to significantly ease AV
pipeline development while providing support for dynamic deadlines, (i) ERDOS provides
an efficient, open-source realization of D3 using novel extensions to concepts from streaming
systems, (7i) SuperServe and DAGSched efficiently schedule the AV’s computational pipeline
developed using D3, and (iv) Pylot provides a modular, open-source platform for evaluating
the efficacy of components and execution systems on the end-to-end driving behavior of AVs.

(3) We address the crucial lack of AV benchmarks by providing the first completely open-
source AV pipeline, Pylot (Chapter 4). Pylot’s design goals of modularity, portability and
debuggability enable it to work across simulators and real-vehicles, and provide a state-of-
the-art platform for exploring latency-accuracy tradeoffs in decision making components and
execution systems. We evaluate the efficacy of the dynamic deadline-driven execution of D3
and ERDOS by driving Pylot across 50kms of challenging driving scenarios, and observe a
68% reduction in collisions as compared to prior state-of-the-art programming models.
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(4) The increasing proliferation of ML models in AV’s decision making components at the
top of the stack coupled with the relative scarcity of resources at the hardware layer on
the bottom (Fig. 1.1) requires an efficient utilization of the available resources. This ten-
sion is exacerbated by the speculative execution mechanisms enabled by D3 and ERDOS
that crucially rely on being able to efficiently serve ML models at low latency to enable
components to meet their deadlines. To address this challenge, we propose SuperServe
(Chapter 5) that dynamically inserts novel control-flow and slicing operators into SuperNet
neural architectures for ML models. This allows SuperServe to dynamically route requests
within one SuperNet deployment with negligible overhead, enabling near-instantaneous ac-
tuation of different ML models. We find that SuperServe achieves 4.67% higher accuracy for
the same deadline attainment, and 2.85x higher deadline attainment for the same accuracy
requirements, while requiring upto 2.6x lower memory to serve the ML models.

(5) An AV’s sensor suite generates data at a higher frequency (see Table 1.1) than the
processing rate of the computational pipeline shown in Fig. 1.2. As a result, an execution
system like ERDOS must efficiently multiplex the available compute resources at the hard-
ware layer amongst the various invocations of an AV’s computational pipeline executing
concurrently. The AV pipelines present three key scheduling requirements: (i) precedence
constraints, due to the DAG-based structure of D3, (i) placement preferences, to efficiently
exploit the heterogeneous resources available in the AV, and (i4) timing constraints, that
require the computational pipeline to finish within a deadline. To address these require-
ments, we propose DAGSched (Chapter 6), a framework for simplifying the development
of efficient, solver-based schedulers through a declarative specification of job requirements in
its novel language, STRL++. We evaluate DAGSched and achieve a 43.75% improvement in
the number of concurrently executing jobs that achieve a 99% deadline attainment, and upto
6.42x increase in deadline attainment under high load, all while reducing the p90 latency of
the scheduler by 60x over carefully hand-crafted mathematical models.

Finally, Chapter 7 concludes by discussing the key takeaways of our work and enumerates
the lessons learnt during the process. In addition, we discuss future directions that remain
unexplored and provide research avenues to enhancing the support for the next-generation
of cyber-physical systems. Overall, this dissertation highlights the efficacy of a clean-slate
approach to building the next-generation of cyber-physical systems by innovating through
the entire workflow of developing a key example of such systems, autonomous vehicles.
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Chapter 2

D3: Programming Abstractions for
Autonomous Vehicles

To safely drive in complex environments, AVs must ensure highly-accurate results by
executing complex pipelines with hundreds of computationally-intensive algorithms and ML
models [312] using multiple parallel processors and hardware accelerators [186]. As discussed
in §1.2.1, the software systems for AVs must support a deadline-driven execution of their
computational pipelines. Achieving this goal in the presence of rapidly evolving components
is complicated by the following two unique characteristics of AVs (discussed in §2.1):

C1: Environment-dependent deadlines. AVs need to automatically complete their
computation at varying timescales to safely drive across the wide array of scenarios in the
real-world. For example, navigating a crowded urban street requires different algorithms
and can tolerate longer computation times than swerving in response to an obstacle on the
freeway |75, 17]. While traditional hard real-time systems that interact with the environment
appear to have similar requirements, they crucially rely on humans to initiate mode changes
for different scenarios and ensure safety. For example, flight controllers [181, 1] rely on pilots
to infrequently transition between takeoff, cruising, landing etc. [31].

C2: Environment-dependent runtimes. The runtime of various stages of an AV pipeline
like pedestrian tracking vary with the input (e.g., the number of pedestrians). As a result,
these stages exhibit runtime-accuracy tradeoffs that must be addressed dynamically accord-
ing to the environment [74, 317]. Moreover, the reliance of various components on large
external codebases that are not real-time [30] (e.g., Tensorflow [3], CUDA [218] etc.), and
their execution on non real-time hardware such as GPUs, ASICs etc. [186, 85, 215, 238, 331,
100, 99|, further present runtime variations that must be addressed dynamically.

The current state-of-the-art systems for autonomous driving (e.g., Autoware [35|, Cruise
[312], BMW |[8] etc. [106, 311]) are built atop the Robot Operating System (ROS) [248].
ROS was designed as an execution platform for enabling robotics research, and achieves its
key goal of supporting the construction of complex pipelines through its modular design |7]
and best-effort execution of the stages. However, these systems lack mechanisms to specify
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and enforce deadlines on the computation thus precluding a deadline-driven execution of an
AV pipeline (C1), which is critical for vehicle safety.

Conversely, decades of work in cyber-physical systems has produced sophisticated tech-
niques for safety-critical applications that ensure the fulfillment of strict deadlines [46, 47, 54,
123, 196, 92|. However, these techniques require a comprehensive, time-consuming analysis of
the schedulability of the stages driven by estimates of their worst-case runtimes. Since various
stages of the pipeline exhibit environment-dependent runtimes (C2) and rapidly evolve, there
exists a wide variance between their average and worst-case runtimes. Thus, any schedula-
bility analysis driven by the latter is overly-conservative and leads to an under-utilization
of the compute resources, which could be used to execute higher-accuracy algorithms and
optimize the runtime-accuracy tradeoff [74, 317| (elaborated in §2.2.1).

We posit that a new class of systems is required to enable a deadline-driven execution
of applications that must interact with a continuously-evolving environment (e.g., robotics,
AVs), and exhibit C1-C2. Such systems must combine the ease-of-development of state-
of-the-art robotics platforms with the deadline specification and enforcement mechanisms
of cyber-physical systems. Specifically, such systems must enable applications to specify
deadlines that evolve with the environment (C1), and adapt their computation to such
deadlines to maximize the runtime-accuracy tradeoff (C2).

Our work seeks to provide a general execution model for such applications. Thus, we
propose D3 (Dynamic Deadline-Driven), an execution model for applications that interact
with a continuously-evolving environment, and exhibit C1-C2. D3 decomposes the applica-
tion as a graph of computation along with a deadline policy, which determines the deadline
according to the environment (C1). While applications proactively try to meet deadlines,
D3 models missed deadlines due to C2 as exceptions and allows the execution of reactive
measures. Further, D3 notifies downstream computation about missed deadlines, allowing it
to eagerly execute on incomplete input or adjust to fit in the reduced time upon arrival of
the input (see §2.2). This chapter elaborates on the two key contributions made by D3:

e We introduce and underscore the importance of the two characteristics of applications
that interact with a continuously-evolving environments (C1-C2) by analyzing data
collected from our own AV and the sensor data of a state-of-the-art AV vendor (§2.1).

e We elaborate on D3, a novel execution model that enables such applications to maxi-
mize their accuracy in the presence of the continuously-evolving environment (§2.2).

2.1 Motivation: Defining Characteristics of AVs

We have previously discussed the computational stack that drives an AV’s decision mak-
ing in §1.1. We begin here by noting that it is imperative that while the pipeline shown
in Fig. 1.2 produces accurate results, it also computes them within a specific environment-
dependent deadline (C1) in order to prevent collisions or unnecessary emergency maneuvers
that affect the comfort of the passengers [186]. However, these two requirements are often
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Figure 2.1: No silver bullet. We underscore the need for dynamically-varying deadlines
by showing that: the choice of the optimum object detector can vary widely within and
across driving scenarios proving that AVs benefit from being able to dynamically adapt to
the given environment. We divide a set of 12 real-world driving scenarios [32] into 2 second
intervals, and plot the model with the best accuracy [182] from the EDet family [289].

at odds since higher-accuracy components typically incur an increased response time, and
the optimization of this runtime-accuracy tradeoff is further complicated by C1-C2. In the
remainder of the section, we analyze these two unique characteristics using data collected
from both our own real AV and the sensor data released by state-of-the art vendors.

2.1.1 C1: Environment-Dependent Deadlines

Ensuring safety across the wide-range of complex scenarios encountered in general driv-
ing requires an AV to dynamically change its response time to meet the varying deadlines
demanded by the environment. To demonstrate this, we divide 12 driving scenarios from a
real-world dataset [32] into 2 second intervals, and plot the object detection model with the
highest accuracy (adjusted by its runtime [182]) from the EfficientDet family [289], which
provide multiple points in the runtime-accuracy tradeoff curve. Fig. 2.1 shows that models
with differing runtimes and accuracies perform better at different times, which renders the
selection of a static point on the tradeoff curve during development inadequate.

To further support this, we develop a scenario using our real vehicle where a replica of a
pedestrian walks out in front of the AV, and requires the AV to brake upon its detection®. In
order to check if the AV can safely stop in time, we measure the stopping sight distance |277|,
which is the sum of the distance traveled by the AV during the detector’s response time and
the distance required to come to a halt (i.e., braking distance). To explore the tradeoff, we
choose detectors EDet6 and EDet2 from the EfficientDet family where EDet6 is accurate at
the expense of a higher response time, and EDet2 is faster but less accurate. Hence, while
EDet6 can detect the pedestrian 72m away, EDet2 can only do so at a distance of 40m.

LA simulation of this scenario can be found at https://tinyurl.com/j4mhezze
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Driving Mean stopping sight distance (m)
Speed (m/s) Human | EDet2 | EDet4 | EDet6
7 24.65 7.66 8.71 11.14
12 51.02 21.89 23.69 27.87
17 84.69 43.43 45.98 51.89

Table 2.1: Stopping-sight distances with different EDet models and driving
speeds. Time-sensitive scenarios at higher driving speeds make the fast low-accuracy mod-
els safer than the slow high-accuracy models, which perform better at slower driving speeds.

As aresult, the AV must ensure safety by dynamically choosing between the two detectors
based on its speed and the distance to the pedestrian (see Table 2.1). Specifically, an AV
driving at 7m/s requires 7.66m to stop with EDet2 and 11.14m with EDet6, and hence must
use EDet2 if the pedestrian walks out 12m away from the AV to be able to stop in time.
Conversely, an AV driving at 17m/s requires 43.43m to stop with EDet2, while it can detect
the pedestrian at a distance of 40m, which requires the AV to use EDet6 to stop safely.

2.1.2 C2: Environment-Dependent Component Runtime

Meeting constantly-evolving deadlines imposed by C1 is complicated by the impact of
the environment on the runtimes of AV components. For example, the number of agents
(i.e. vehicles or pedestrians) in the scene affects the runtime of the perception module.
Quantifying this impact, Fig. 2.2a plots how increasing the number of agents changes the
runtimes of several object trackers, which are critical components of the perception module
that track the trajectories of detected objects. To obtain these results, we drive an AV in
the CARLA simulator [96] while increasing the number of agents, and observe an increase
in the median runtime for all object trackers. Note that while SORT [48| provides a lower
runtime, both DeepSORT [326] and DaSiamRPN [346] offer high accuracy.

In addition, the runtime of the prediction module depends on the AV’s driving speed. An
AV driving at a greater speed requires a higher prediction horizon i.e., it must forecast the
trajectories of agents for longer into the future in order to ensure safety of the vehicle. Many
prediction approaches (e.g., MFP [291], R2P2-MA [256]) use recurrent neural networks,
which have a linear runtime dependence on the prediction horizon as shown in Fig. 2.2b.

The compounding of the runtime variability of individual components leads to a large
skew between the mean and the maximum response time of the AV pipeline, which renders
worst-case execution time analysis inefficient [17, 288|. To demonstrate this, Fig. 2.3 analyzes
sensor data from Baidu’s Apollo AV [42] that drove over 108,000 miles [315, 281|. Specifically,
we focus on the traffic light detector [29], a key part of the perception module, that relies
on the map and the vehicle’s location to choose between multiple cameras in order to obtain
bounding box proposals, which are individually refined and classified by multiple neural
networks. We find that the response time of the traffic light detector depends on both the
choice of the camera and the number of lights in the environment. As a result, the p99
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Figure 2.3: Response time variability. Baidu’s Apollo production-grade components
suffer from response time variability leading to delays and dropped sensor messages.

response time latency of perception is 3.3x higher than the mean, which further increases
the response time of the downstream prediction component. Moreover, an increase in the
response time keeps resources busy, thus forcing the pipeline to drop sensor messages.

2.2 D3: Dynamic Deadline-Driven Execution

The execution of applications that interact with a continuously-evolving environment
(e.g. robots, AVs) requires a careful orchestration of their components. To enable such ap-
plications to optimize their accuracy under dynamically-varying deadlines (C1), we propose
D3, an execution model that centralizes the management of deadlines. D3 models deadlines
missed due to runtime variability (C2) as exceptions, and enables components to reactively
adjust their computation.

To ease development, D3 structures its application as a directed operator graph along
with a deadline policy mpp (see Fig. 2.4). mpp receives the environment’s state (e.g., distance
to obstacles) and computes an end-to-end deadline D that ensures safety and prevents unnec-
essary emergency maneuvers i.e., D bounds the wall-clock time that can elapse between an
input to the graph and its corresponding output (Step 1). Further, 7pp splits D across oper-
ators and assigns a per-operator deadline D; which aims to maximize the runtime-accuracy
tradeoff based on the accuracy and pre-computed runtimes (Step 2).

In order to ensure accurate results, each operator requires its inputs from its multiple
sources to be synchronized i.e., there must be a bounded skew between its earliest and its
last arriving input for each invocation of the computation. By handling the synchronization
of inputs automatically, D3 aids the development of AV pipelines in a decentralized manner.
Each operator (of a component) can be easily replaced by a new version (with a potentially
different runtime profile) without cascading changes throughout the pipeline that require
downstream operators to synchronize on its input correctly.
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Figure 2.4: D3 Model structures an application as an operator graph with a policy 7pp
that decides the deadline D as per the environment (1), and assigns a D; to each operator
(2). The operators proactively try to meet D; (3). However, if D; is missed, D3 executes
reactive measures (4), and adjusts downstream D;s using a feedback loop.

Once an operator receives both its synchronized input and its allocated deadline D;, D3
expects operators to meet their allocated deadline D; by using proactive strategies (e.g.,
running faster models under reduced deadline allocations; Step 3 of Operator 1 in Fig. 2.4).
D3 models D;s missed due to runtime variability (C2) as exceptions and notifies operators to
undertake reactive measures to quickly release output (e.g., quickly amending and releasing
previous results; Step 4). D3 also notifies the downstream operators of the missed upstream
deadline, allowing them to either: (i) eagerly execute with incomplete inputs due to a lack
of output from the upstream operator that missed its D;, or (iz) reason about the reduction
in their available time once the upstream operator’s reactive measures release output and
modify their computation accordingly to meet the updated deadline.

Crucially, D3 models missed deadlines as exceptions. D3 conveys the occurrence of the
missed deadline events to mpp using a feedback loop. Upon notification, mpp may adjust the
deadline for both downstream operators and future executions of the application. In extreme
cases where the application is unable to perform its intended function due to multiple missed
deadlines, mpp can choose to execute a safety backup mode that performs simple maneuvers
(e.g., braking or pulling over) to ensure a minimal risk condition [278].

2.2.1 Comparison with Related Execution Models

We now highlight D3’s ability to maximize accuracy under dynamic deadlines by com-
paring it to two key works: data-driven execution models and periodic execution models.

Data-driven execution models employed by Service Level Objective-based (SLO) robotics
platforms (e.g., ROS [248, 66|, Cyber RT [41]) trigger computation on the arrival of input
data and hence preclude the initiation of downstream computation in the absence of inputs
due to a missed upstream deadline (C1). Moreover, such platforms execute computation on
a best-effort basis and lack mechanisms to reason about changes in deadlines or variability
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Figure 2.5: Timeline of execution models when C executes upon receipt of input from
A and B. Data-driven models do not enforce deadlines and delay C’s execution until both
inputs are available. Periodic models use WCET to execute components at a fixed interval
that is unable to adjust to slacks or delays, and fails to maximize the runtime-accuracy
tradeoff. D3 achieves this by enabling components to either adjust to a constrained deadline
or wait for delayed inputs.

in runtime [312]. As a result, components are unable to adjust their execution to varying
deadlines leading them to miss their D; in the presence of runtime variability (C2). For
example, the lack of mechanisms to reason about a changed deadline coupled with the
runtime variability in the second execution of A in Fig. 2.5 leads to a missed deadline under
a data-driven execution model. Further, since downstream components can only trigger
computation upon receiving of the input from upstream components, the effects cascade and
the second execution of C misses its deadline. Conversely, D3’s mpp notifies A of the change
in deadline allowing it to proactively modify its computation to meet the new deadline,
or reactively release output quickly in case it is missed. D3 also enables C to execute its
computation without the input from A, or wait until the input is available and modify its
computation to fit within the reduced time.

Periodic execution models, which underpin hard real-time systems [191, 123], use con-
servative worst-case execution time (WCET) estimates to execute computation at a fixed,
periodic interval. While this approach precludes a lack of input from upstream components
or a reduction in computation time due to C2, it fails to maximize the runtime-accuracy
tradeoff due to the large skew between the mean and maximum runtime of computation in an
AV pipeline (see §2.1.2). For example, the WCET-driven periodic execution of C in Fig. 2.5
leaves plenty of slack in the average case, which could be used to execute a higher-accuracy
computation. Further, the inflexibility of these models has led to applications adjusting their
computation to meet environment-dependent deadlines (C1) by defining a fixed set of mode
changes. However, executing the various modes requires the components to either transition
to SLO-based execution [51, 176, 58|, or undergo a time-consuming schedulability analysis
for each possible deadline and mode transition [54, 46, 47, 250|. By contrast, D3’s proactive
strategies and reactive measures enable the computation to forego this expensive analysis,
and still adjust itself to meet dynamic deadlines (C1). We emphasize that D3’s execution
model subsumes such coarse-grained mode changes by allowing the deadline policy mpp to
perform mode changes on either deadline misses or specific environment conditions (e.g.,
change in the vehicle speed) (see Chapter 3).
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Chapter 3

ERDOS: Elastic Robot Dataflow
Operating System

We now elaborate on our design and implementation of ERDOS, a proof-of-concept
realization of D3 built specifically for AV pipelines. ERDOS exposes fine-grained execution
events to the application and provides abstractions for the specification of dynamically-
varying deadlines that restrict the wall-clock time elapsed between such events. ERDOS’
speculative execution mechanism then aims to fulfill a deadline by executing the appropriate
implementation automatically (see Chapter 3). However, if deadlines are missed due to C2,
ERDOS executes exception handlers that allow computation to convey intermediate results
to enable the execution of downstream computation. This chapter is organized as follows:

We introduce the key concepts from prior streaming systems [121, 62, 205, 337| that
are critical in understanding how ERDOS’ novel extensions enable D3 (§3.1).

We present the techniques that enable ERDOS to support D3 (§3.3-§3.4) and exemplify
ERDOS’ key concepts through the implementation of a Planner component (§3.3).

We elaborate on the open-source implementation of ERDOS, a deadline-driven system
for AVs (§3.6). The artifacts are available at https://github.com/erdos-project/.

We address the crucial lack of AV benchmarks by providing the first open-source state-
of-the-art AV, Pylot (§3.7.1) (see Chapter 4 for a detailed discussion). Pylot works
across simulators and real-vehicles, and achieved the top score in an AV challenge.

We evaluate the efficacy of the dynamic deadline-driven execution enabled by D3 and
ERDOS by driving Pylot across 50 km of challenging driving scenarios in simulation
(§3.7), and observe a 68% reduction in collisions as compared to the execution model
of state-of-the-art robotics platforms.


https://github.com/erdos-project/
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3.1 Primer on Streaming Systems

Streaming systems (e.g. Cloud Dataflow [121], Flink [62]) structure applications as a
directed graph of computational operators, which contains a set of source operators that
generate the input and a set of sink operators that consume the output. The sources an-
notate the inputs with a timestamp derived from an ordered time domain, and notify their
downstream operators when they have finished sending all the input for a given timestamp.
These messages and notifications cascade along the directed edges of the graph, with each
operator potentially transforming its input messages M; timestamped with ¢ and received
along an edge e before sending them along ¢’.

Further, the operators are notified of the receipt of all messages with time ¢’ < t using
a watermark message W;. A watermark [280, 308, 11] informs the operators of the avail-
ability of all the inputs required for a computation across all its edges, and thus ensures
accurate computation upon synchronized data [13]. While the computation registered with
a watermark notification is executed sequentially according to the the timestamp order,
the computation that acts on messages is allowed to execute out-of-order, which allows the
operators to prevent stragglers while ensuring correctness [13].

3.2 Computation Structure of an ERDOS Application

ERDOS instantiates D3 by modeling the application as a directed graph composed of
multiple subgraphs representing the modules (e.g., perception), with each module containing
operators representing the components (e.g., lane detection) connected by typed streams. A
source of the graph reads data from a sensor and uses an output WriteStream to inject it
into the graph, while a sink extracts data from the graph using an input ReadStream, and
sends commands to the vehicle.

Each operator must implement an interface that specifies both the number and types of
its input and output streams. This static registration of the input and output allows the
system to ensure that the computation graph is well-formed at compile-time, and reduces
the runtime errors. Moreover, the static registration enables the system to optimize the
allocation of operators to hardware (e.g., colocate operators).

The typed streams allow communication through timestamped messages i.e. a stream s
of type T can carry: (i) a DataMessage (M;), with a payload of type T and a timestamp ¢,
and (ii) a WatermarkMessage (W,), with a timestamp ¢ that represents the completion of all
incoming messages for ¢ < t. Corresponding to the type of message received and the input
stream it is received upon, the interface implemented by each operator defines the callbacks
that are invoked by ERDOS (see §3.3).

The timestamp t generated by the source operators consists of
t= (lEN,é: (€1, ) GNk)

where [ represents a logical time (see §3.4.1), and ¢ conveys application-specific information
(elaborated in §3.4.3). This abstraction enables applications to seamlessly work across both
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real-world and simulation, by using [ to represent the wall-clock time in real AVs, and
simulation time when using a simulator, the latter of which may advance at a different rate
than real-time. While a simulator provides a consistent notion of time, ERDOS exploits the
presence of a local high-speed network in real AVs to precisely synchronize clocks in order
to correctly reason about the wall-clock time across multiple machines [128, 114].

3.3 ERDOS’ API

We now provide an overview of the API with the help of a simplified Planner (see Lst. 3.1)
that receives the Obstacles and TrafficLights from perception through DataMessages. It
then computes a motion plan and returns a set of Waypoints i.e., fine-grained points on the
road that characterize the trajectory of the AV. To register its input and output, the Planner
implements the TwoInOneOut interface where the ReadStreams are typed by Obstacles and
TrafficLights, and the WriteStream by Waypoints.

Further, to invoke the computation, the Planner implements on_msg (lines 13-17) that
convert the coordinate system of each Obstacle and TrafficLight, a task that can be
executed out-of-order for each timestamp. However, in order to compute a safe plan, the
Planner requires a synchronized and complete set of all the obstacles and traffic lights from
perception, and hence, waits for a WatermarkMessage from both the upstream operators
signifying the receipt of all incoming messages for each timestamp. It then uses the converted
obstacles and lights to compute the Waypoints for the AV in on_watermark (line 18).

Moreover, the Planner must complete its computation within a deadline, and thus re-
stricts its runtime from the time of the receipt of the input to a dynamically-varying deadline
retrieved from the deadline_stream provided by the deadline policy mpp (line 11). §3.4.1
and §3.4.2 further elaborate on the specification and dynamic-variation of deadlines. ER-
DOS automatically exposes the deadline for the timestamp computed by mpp to each of the
callbacks via the Context, allowing the operators to employ proactive strategies to meet
deadlines and vary their computation accordingly (see §3.4.3).

However, to meet its deadline in the presence of a delay of more than 30ms in the
receipt of the TrafficLights, the Planner chooses to eagerly initiate the computation with
partial input, and computes the plan using just the obstacles (line 6). Finally, the deadline
specification also requires an exception handler that invokes reactive measures to quickly
releases output upon a missed deadline (on_deadline). The handler receives a Context
containing information useful to mitigate the deadline miss (e.g., timestamp, deadline) along
with the state of the operator, and can be used to output the previous computed plan offset
from the AV’s current location.

3.4 Achieving Dynamic End-to-End Deadlines

We now discuss ERDOS’ core contributions that enable it to address the following chal-
lenges posed by realizing D3 in an efficient system:
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1impl TwoInOneOut<Obstacles, TrafficLights, State<PlanningState>, Waypoints>:

N

5 fn setup(objects: ReadStream<Obstacles>,

| lights: ReadStream<TrafficLights>,

5 plan: WriteStream<Waypoints>,

6 deadlines: ReadStream<Deadline>) {

7 // Call ‘on_watermark® even in the absence of traffic lights.
8 FrequencyDeadline: :new(PlanningOp: :on_watermark)

9 .with_static_deadline(30).on_stream(lights);

11 // Constrains the completion of local computation.

12 TimestampDeadline: :new(PlanningQOp: :on_deadline)

13 .with_end_condition( // and a default start condition

14 | sent_msg_cnt: usize, watermark_status: bool| sent_msg_cnt > 0)
15 .with_dynamic_deadline(deadlines) .on_stream(plan);

1= fn on_left_msg(ctx: Context,

19 objects: Message<Obstacles>,

20 state: State<PlanningState>) {

21 // Change coordinate system of objects and add to state.
22 }

2+ fn on_right_msg(..., lights: Message<TrafficLights>, ...) {...}

26 fn on_watermark(ctx: Context,

27 state: State<PlanningState>,

28 plan: WriteStream<Waypoints>) {

29 // Computes a plan upon receiving obstacles and traffic lights.

30 }

32 fn on_deadline(ctx: Context,

33 state: State<PlanningState>,

34 plan: WriteStream<Waypoints) {
35 // Invoked when a deadline is missed.

36 }

Listing 3.1: A simplified Planner that computes a trajectory for the AV using the
Obstacles and TrafficLights, and specifies deadlines on its execution and response time.
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e ERDOS must initiate computation upon the availability of all required input, and allow
components to bound their response time from that event. In addition, components
must be allowed to initiate computation in the presence of partial input if upstream
components miss their deadline D; (§3.4.1).

e ERDOS must allow the deadline policy mpp, which dynamically varies D;, to meet
strict safety, adaptivity and modularity constraints, owing to its critical effects on the
latency-sensitive computation (§3.4.2).

e ERDOS must provide efficient mechanisms to enable components to utilize different
strategies to proactively output the highest-accuracy results possible within D; (§3.4.3).

e In case of a missed D;, ERDOS must enable execution of reactive measures that quickly
release output, and allow downstream computation to begin. (§3.4.4).

3.4.1 Deadline Specification

In an effort to meet both its individual deadline D;, and the end-to-end deadline D, each
component of a D3 application must be able to: (i) bound the execution time from the
receipt of the inputs and the generation of the corresponding output (C1), and (i) bound
the time between the invocation of the computation on inputs of successive timestamps in
the presence of runtime variability in upstream components (C2). While (7) ensures that a
component adheres to its allocated deadline D; for time ¢, (i) allows components to eagerly
initiate their computation on incomplete input for time ¢ > t to ensure that the end-to-end
deadline D is met for time t’ in case the upstream components miss their D; for t'.

To achieve these goals, ERDOS must track the initiation and completion of computation
for every time t. ERDOS accomplishes this by automatically capturing fine-grained execution
events from the components at the granularity of the logical time [. Specifically, for each
logical time [ of the timestamp ¢, ERDOS maintains counters of the number of incoming and
outgoing messages annotated with t (M;), and boolean variables indicating the receipt and
generation of the watermark for ¢ (1) across all the input streams for each component. This
allows ERDOS to automatically initiate computation once all required inputs are available
(denoted by the receipt of a W; across all the input streams), and register the computation’s
completion for the logical time [ once the watermark W, for ¢ is sent on the output streams.

In order to enable flexibility in the events that are constrained by a deadline, ERDOS
exposes these events to the components, and allows them to specify relative deadlines, which
limit the amount of wall-clock time that can elapse between any two events. Specifically,
components can register two boolean functions: deadline start condition (Dgc) and deadline
end condition (Dgc), which return True to signify the initiation and completion of the
computation for a logical time [ respectively. Dgc and Dge are evaluated at the receipt and
generation of every message, and receive a tuple (n € N, w € {True,False}), where n denotes
the number of messages received or sent for that logical time, and w depicts the receipt or
generation of the watermark. ERDOS maps the relative deadline D; to an absolute deadline
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Figure 3.1: Environment-dependent deadlines. ERDOS evaluates Dg¢ for every mes-
sage (1). If satisfied, it initiates an absolute deadline according to mpp (2). Similarly, ERDOS
evaluates Dgc upon generation of messages, and removes any satisfied deadlines (3). If a
deadline is missed, ERDOS invokes an exception handler (4).

by automatically capturing the wall-clock time at which Dgc is satisfied (@) in Fig. 3.1),
and offsetting it by D; (@ in Fig. 3.1). ERDOS then tracks the passage of wall-clock time
and ensures that Dgc is satisfied before the absolute deadline (@) in Fig. 3.1).

Further, to simplify the specification of the relative deadline D; for the enforcement of
the response time deadlines (7) and (1), ERDOS provides the following two general deadline
abstractions that constrain a default set of events:

Timestamp deadlines (lines 7-11 in Lst. 3.1) bound the execution time. Components
define a relative deadline D; that constrains the wall-clock time elapsed between a default
Dgc that specifies the receipt of the first message timestamped with ¢ (M,), and a default
Dgc that specifies the output of the first watermark timestamped with ¢’ > ¢ (Wy). If Dge
is not satisfied before D; expires, ERDOS invokes the exception handler (on_deadline on
line 22 in Lst. 3.1), which releases output to initiate downstream computation (see §3.4.4).

Frequency deadlines (lines 4-6 in Lst. 3.1) allow a precise invocation of the computation
in the presence of runtime variability. To achieve this, components define a relative deadline
D; that constrains the maximum wall-clock time that may elapse between a default Dg¢o
that specifies the receipt of the watermark timestamped with ¢ (W;), and a default Dgc
that specifies the receipt of the first watermark for ¢ >t (Wy). If D¢ is not satisfied for ¢/
before D; expires, ERDOS automatically inserts W on the given input stream to simulate
the arrival of all incoming data for ¢’, and invokes the computation with the partial input
(see §3.4.3). For example, if Wy does not arrive on the lights stream within 30ms of the
receipt of W, (as specified on line 6 in Lst. 3.1), ERDOS automatically inserts W, and
invokes on_watermark with partial input.
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We emphasize that the ability to tailor the above general abstractions using the fine-
grained execution events exposed by ERDOS, enables components to specify the full spec-
trum of deadline constraints discussed in prior work [84]. To exemplify this ability, the
Planner in Lst. 3.1 uses this control to tailor the TimestampDeadline constraint with a cus-
tom Dge (lines 9-10 in Lst. 3.1) that is satisfied as soon as the first message for a timestamp
t is output. Coupled with the default Dgc, this constraint allows the Planner to bound the
time between the receipt and generation of the first message timestamped with ¢ (1/;). This
deadline can be used by the Planner to quickly release a coarse-grained plan before refining
it, thus enabling downstream computation to begin.

3.4.2 Environment-Dependent Deadlines

Components may use the abstractions discussed in §3.4.1 to specify static deadlines that
do not evolve over time by using static values for D; (e.g., 30 ms for the FrequencyDeadline
on line 6 in Lst. 3.1). However, D3 requires that these abstractions support dynamic deadlines
determined by a deadline policy mpp, which evolve according to the environment (C1).

We emphasize that the centralization of mpp, which dynamically determines the end-to-
end deadline D and the individual deadline D; for each component, is a novel contribution of
the D3 execution model. While the development of such a policy raises interesting research
challenges orthogonal to this work (we explore such a policy in deeper detail in [270]), this
section concerns itself with the following key systems challenges that its placement on the
critical path of the computation presents to the design of ERDOS:

Safety. The presence of mpp on the critical path of affecting what computation runs in each
component requires it to meet strict deadline constraints. In addition to being able to initiate
a safety backup mode that performs simple maneuvers if multiple component deadlines are
missed (see §2.2), mpp must also ensure safety by executing the backup mode if it misses its
own deadline (due to delayed inputs or runtime variability).

Adaptivity. To reduce mpp’s effect on the latency of the critical path, ERDOS must allow
applications to adapt the frequency at which the deadline allocations are recomputed accord-
ing to the dynamicity of the environment. For example, a mpp may change the allocations
less frequently on highways than in cities, owing to the infrequent change in environment.

Modularity. Individual modules (e.g., perception) may exploit expert knowledge to specify
policies that split deadlines across their components (e.g., detection, tracking) more effi-
ciently than a centralized policy. Thus, ERDOS must enable the decomposition of monolithic
policies such that high-level policies provide coarser-grained deadlines to module-specific
policies, which further split them across their components.

To achieve these goals, ERDOS executes mpp as a subgraph of operators which receive
information about the environment from components on its input streams. 7pp processes this
information to compute an end-to-end deadline D and decomposes into individual deadlines
D;, which are sent to components via its output streams. Specifically, lines 8-11 in Lst. 3.1
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show how an operator can adjust its TimestampDeadline according to mpp by registering
on the deadlines stream provided by ERDOS. mpp utilizes the state of the environment
to dynamically compute the relative deadline D; for each logical time [, and communicates
it to the operator using the deadlines stream. ERDOS automatically synchronizes the
computation for [ with the corresponding D; provided by mpp, and utilizes it to compute
the absolute deadlines for the computation (see Fig. 3.1). To enable components to adjust
their computation to meet the changing deadlines (§3.4.3), ERDOS exposes the absolute
deadlines via the Context data structure (§3.3).

Executing mpp as a subgraph enables the policy to exploit ERDOS’ graph abstraction
to achieve modularity by splitting itself across operators, and benefit from co-location with
components that share the state of the environment with them (see §3.4.4). Moreover, mpp
can use ERDOS’ timestamping mechanism to achieve adaptivity. Specifically, a mpp can
send a D; in a message M, followed by a watermark Wy, where ' > ¢, and adaptively evolve
the delta between t' and ¢ according to the environment. W; signifies the completion of
all outputs from 7pp until timestamp ¢, and specifies the relative deadline D; for the next
timestamps from ¢ to t’. Further, 7pp can ensure safety by using ERDOS’ static deadlines
(§3.4.1) to enforce strict constraints on its execution, and invoke the safety backup mode
(available in various production AVs) in case it misses a deadline (see §3.4.4).

3.4.3 Meeting Deadlines

ERDOS exposes the deadline D; (allocated by mpp) to the operators via the Context
(lines 13, 18 in Lst. 3.1). We now discuss some general proactive strategies that operators
may use to meet D; (by satisfying Dgc before it expires) below:

Executing anytime algorithms [169, 324, 329| that maximize the accuracy for a given
D; through iterative refinement [347|, and provide a continuous runtime-accuracy tradeoff
curve by monotonically increasing accuracy with increasing deadlines. Such algorithms can
be interrupted when D; expires and ensure the highest-accuracy results possible within the
time. Moreover, components can choose to release lower-accuracy results (before D; expires)
to downstream operators, allowing them to begin computation early and iteratively refine
their results. For example, the Planner in Lst. 3.1 could execute an anytime planning
algorithm [169, 324, 329 in its on_watermark method. The algorithm would release coarse-
grained waypoints and iteratively refine them, to allow the downstream control operator to
begin generating commands for the underlying machinery and continuously updating them.

Changing the implementation based on the most accurate algorithm that typically com-
pletes within D; (e.g., mean or p99 runtime is less than D;). This is facilitated by the
existence of multiple algorithms for the components, that enable a tradeoff between run-
time and accuracy [147, 289] (see Chapter 1). We show a latency-sensitive, resource-efficient
technique to serve multiple ML models that enable this strategy in Chapter 5.

Executing multiple versions of components to ensure that at least one completes before
D; expires (similar to [284]). In addition to choosing the highest-accuracy algorithm that fits
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within D;, components can execute faster algorithms that are guaranteed to finish execution
before D; expires, thus maximizing the runtime-accuracy tradeoff, while still meeting dead-
lines in the presence of runtime variability (C1). For example, a detector can run in parallel:
(7) the most-accurate model that typically completes within D;, and (i7) a fast, low-accuracy
model, and return results from (i) if () does not meet D;. Similar to anytime algorithms,
components can release the lower-accuracy results to unblock downstream operators, or wait
until D; expires, and return the highest accuracy results available.

Skipping the execution of an algorithm in case of small D;. Unlike load shedding [65, 294,
293] that does not generate results, AV components can quickly release reduced-accuracy
results to unblock downstream computation by amending prior results. For example, the
Planner in Lst. 3.1 can release its last computed plan offset to the AV’s current location.

Eagerly executing with partial input if upstream operators cannot meet their D; due
to runtime variability (C2). While previous strategies require the input to be available and
must adjust the computation to a reduced deadline in case of upstream runtime variability
(C2), this strategy allows components to eschew input from certain upstream components
in order to maintain its initially allocated D;. For example, the Planner in Lst. 3.1 eagerly
executes without TrafficLights, and plans a trajectory using Obstacles if the upstream
component experiences a runtime variability of more than 30ms.

To ease the use of these strategies, ERDOS allows the specification of multiple imple-
mentations of components along with their runtimes. ERDOS then chooses to either change
the implementation, speculatively execute multiple versions or skip the execution based on
D;, and provides two novel mechanisms to enable the efficient realization of these strategies:

Intermediate Results. ERDOS’ extension of timestamps provides first-class support for
anytime algorithms, speculative execution of multiple versions, and enables eager execution
with partial input. Specifically, anytime algorithms and different versions can annotate out-
puts with ¢ = ([, ¢), and increase the value of ¢ to notify downstream computation of the
accuracy of the results as they become available (with an increased value of ¢ signifying
increased accuracy of the results). ERDOS orders the execution of computation using ¢ and
automatically prioritizes computation on higher-accuracy inputs, thus maximizing the accu-
racy of results. Similarly, upon expiration of a FrequencyDeadline, ERDOS automatically
inserts a W, (with a low value of ¢) on the stream that failed to generate the required input
within the deadline. The computation conveys the accuracy of these results downstream,
and refines its results as missing inputs from upstream components become available.

For example, in the absence of TrafficLights or when using anytime algorithms, the
Planner can output a coarse-grained plan and annotate its accuracy using ¢; = (I, ¢;). This
allows the downstream control operator to generate commands using the coarse-grained plan,
and refine them after a fine-grained plan is available. If multiple plans are available, ERDOS
automatically eschews the control operator’s execution with a coarse-grain plan tagged with
t1 in favor of a fine-grained plan tagged with ¢t = (I, é3), where é > ¢é;.

Speculative Execution. ERDOS automatically chooses to change the implementation,
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execute multiple versions or skip the execution based on D;. To achieve this, it requires
components to decouple their state from the implementation of the computation, and specify
multiple implementations along with their runtime profiles. Specifically, a component must
register its state (e.g., PlanningState on line 1 in Lst. 3.1) with ERDOS. By assuming
control of the state, ERDOS’ speculative execution mechanism achieves an efficient execution
of different implementations for successive timestamps by automatically providing access to
the state to different callbacks (lines 14, 18, 22 in Lst. 3.1). Further, the mechanism enables
the parallel execution of multiple versions by providing each implementation with a view of
the state without requiring operators to synchronize updates to the state (see §3.4.4).

3.4.4 Handling Deadline Misses

If the strategies discussed in §3.4.3 fail to meet the allocated D;, D3 requires components
to undertake reactive measures, whose execution presents the following challenges:

Fast Invocation of the measures upon expiration of D; so as to quickly unblock downstream
computation and minimize the reduction of available time for downstream operators.

Access to the state of the partially-executed proactive strategies to enable the measures
to quickly release results, and ensure its correctness for executions of future timestamps.

Parallel execution of the measures and the proactive strategies to enable components
to quickly unblock downstream computation with lower-accuracy results while using higher-
accuracy computation for state updates. For example, if the Planner misses D; while running
a higher-accuracy algorithm, it can release the last computed plan offset to the current
location of the AV as its reactive measure, while continuing to release the higher-accuracy
plan and updating the state with the high-accuracy computation for future executions.

To address these challenges, ERDOS enables components to accompany the specification
of timestamp deadlines (from §3.4.1) with deadline exception handlers (Dgg) (lines 22-25),
which execute the reactive measures if D; is not met. ERDOS orchestrates the execution of
the specified Dy alongside the proactive strategies through the following execution policies:

Abort. Terminates the execution of the proactive strategy for time ¢, and requires Dy to
notify the computation’s completion by sending a watermark W, and ensure the correctness
of state for t. To achieve this, Dgy receives a view of the state for ¢’ < t along with the dirty
state for ¢ (i.e., mutations made to the state by the partially-executed proactive strategy for
t). Dy uses these views to quickly release output and amend the dirty state to ensure its
correctness. For example, a Dy in a Planner could either use the dirty state at ¢ to output
and save the best plan found by the deadline if the operator is anytime, or amend the plan
computed for ¢’ otherwise.

Continue. Executes the proactive strategy for ¢ in parallel with the Dgy. The latter
unblocks downstream computation by releasing output for ¢ (M;), while the former notifies
the computation’s completion (W;) and ensures state consistency. To achieve this, Dgy
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Figure 3.2: Handling missed deadlines. When a deadline is missed, handlers are invoked
to mitigate the consequences. Callbacks which miss their deadline may Abort to let the
handler rapidly update operator state, or Continue to ensure more accurate state updates.

receives a view of the state for ¢ < ¢, and executes a fast algorithm to quickly release
output. In parallel, the proactive strategy continues releasing output for ¢, thus providing
the downstream computation a choice of more accurate results. Moreover, allowing the
proactive strategy to save the state for ¢ enables the computation for ¢” > t to use the high-
accuracy results, and prevents a cascade of low-accuracy results across time. For example, a
Dpgpy in a Planner can amend the plan computed for ¢/, while the proactive strategy releases
and saves a more-accurate plan.

A seamless execution of Dgry under the Abort and Continue policies requires a careful
management of the component’s state in order to ensure its consistency. To aid the com-
ponents in this endeavor, ERDOS provides system-managed state. Specifically, ERDOS
assumes control over the state of the components decoupled from their implementation (see
Speculative Execution in §3.4.3), and enables the state to meet the challenges of executing
Dgpy discussed earlier by ensuring the following two key properties over it:

Transactional Semantics. In order to ensure a fast invocation and parallel execution of
mpp, Dy and multiple versions of the computation, ERDOS must provide them with a
view of the state and ensure that it is saved from either the Dgy or the proactive strategy
according to the execution policy. ERDOS achieves this by enforcing transactional semantics
on the state at the granularity of a timestamp, and provides the proactive strategy with a
view of the last committed state, and automatically commits any mutations made by them
upon the successful release of the watermark for the currently executing timestamp. In case
of a missed D;, ERDOS invokes Dgpy and shares the dirty state along with a view of the last
committed state, and automatically commits the changes made to the dirty state by Dgy
upon its completion. These semantics cleanly enforce the consistency of the state when using
the Abort policy by discarding any mutations made to the state by the proactive strategy.

Time-Versioning. To further ensure the execution of 7pp, Dry and proactive strategies
across multiple timestamps, ERDOS maintains a version of the state for each timestamp t.
For example, multiple executions of the Planner for different timestamps (each corresponding
to a different set of Obstacles and TrafficLights) can be executed in parallel with their



3.5. ACHIEVING DETERMINISM 29

computed plans being saved in different versions. In case a deadline is missed for ¢, the Dgy
gets access to the committed state for all timestamps ¢’ < t and can send M; to unblock
downstream computation. Meanwhile, the proactive strategies can continue in parallel for
timestamps t” > ¢ and commit state mutations by releasing W;».

Moreover, while ERDOS provides a default State implementation with the properties
discussed above, it allows components to provide their own states. These states implement an
interface that customizes both transactional semantics (through commit) and time-versioning
(through get_committed to retrieve a view of the state at t), and may use techniques such as
CRDTs [274]. For example, the Planner could implement the interface for PlanningState,
instead of using State (as shown in line 1 of Lst. 3.1). In such a case, the PlanningState
could maintain a vector of waypoints for timestamp ¢ = 0, and log additions of future
waypoints in commit, instead of saving the entire set of waypoints for each timestamp ¢’ > t.

3.5 Achieving Determinism

To support rapid innovation, it is paramount to be able to deterministically reproduce
failures in order to debug and compare components in identical scenarios [266]. While a
dataflow system orders the messages arriving on a stream, the behavior of the system (e.g.,
increased network load and different application and system scheduling decisions) can intro-
duce variability in the arrival of messages across multiple streams. This becomes problematic
when a single operator shares State across those streams, since non-commutative updates to
the state may result in differences depending on message arrivals. ERDOS automatically en-
sures a deterministic execution by enforcing that all modification to the shared State occur
exclusively within a strict execution lattice that is enforced by the watermark callbacks.

Processing on watermarks. To avoid non-determinism due to reordering of messages,
ERDOS does not allow message callbacks to either read from or write to the state for
any timestamp. The message callbacks can only append results to an unordered set for
the current timestamp, which is utilized by the watermark callback to compute the final
results from any partial computations by the message callbacks. Upon completion of the
watermark callback, the final result is timestamped and committed to the time-versioned
state. Subsequent accesses to committed state are read-only. By deterministically processing
unordered sets of messages on watermark callbacks, we transform the dataflow into a Kahn
process network [116], which guarantees determinism.

Callback execution lattice. To ensure that updates to the state remain deterministic,
ERDOS defines a partial order over the different callbacks of an operator. Since the message
callbacks are only allowed commutative appends to an unordered set, ERDOS allows message
callbacks to be run in parallel. However, a watermark callback for timestamp ¢ on a stream
is only allowed to execute after all watermark callbacks for timestamp ¢’ < ¢ and all message
callbacks for the time ¢ on that stream have finished executing.

We note that while ERDOS’s default partial order provides deterministic execution of
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events, its design makes it easy to relax these constraints and allows advanced developers to
choose the required point in the tradeoff between determinism and performance. For exam-
ple, developers can choose to run watermark callbacks for multiple timestamps in parallel
by defining them to be equivalent in their partial order.

Reproducible deadlines. A deadline miss and the subsequent handler invocation intro-
duces non-determinism because the handler invocation depends on physical time, as opposed
to the logical time of the dataflow. To ensure deterministic replay, ERDOS logs the times-
tamp of the message for which the handler was invoked, the physical time at which the
handler was invoked and restricts access to only the committed state inside the handler.

3.6 ERDOS’ Implementation

ERDOS is an open-source distributed system implemented in ~ 13k lines of Rust, whose
type safety and memory semantics are essential for safety-critical applications. Further,
to interact with ML frameworks [3] and enable prototyping with simulators [96], ERDOS
provides a Python interface. We now elaborate on its design by discussing how operators
execute (§3.6.2), how they communicate (§3.6.1), and how they enforce deadlines (§3.6.3).

ERDOS’ distributed nature is enabled by a leader-worker architecture where the leader
manages a set of worker processes running across several machines. The leader partitions
the operator graph and schedules operators to workers, which are responsible for exchanging
data along streams (§3.6.1), executing callbacks (§3.6.2), managing deadlines and executing
their exception handlers (§3.6.3). We choose the leader-worker architecture due to its im-
plementation simplicity, and ensure its scalability by keeping the leader off the critical path.
We now elaborate on the implementation techniques that, along with the novel deadline
specification and enforcement semantics (§3.4), enable ERDOS to efficiently support D3.

3.6.1 Communication

ERDOS initializes itself by constructing a control plane between the leader and the
workers, which is used by the leader to schedule operators to workers and synchronize their
initialization, thus ensuring that all operators are ready to execute before transmitting any
messages. The workers construct a data plane amongst themselves atop TCP sessions, which
is used to communicate the messages sent between the operators. This allows ERDOS to
keep the leader off the critical path, while still enabling centralized scheduling decisions.

ERDOS provides a rapid communication of messages by choosing the underlying com-
munication channel based on whether it connects operators: (i) on the same worker, or (i)
on different workers. While the communication for (iz) is multiplexed atop the data plane
among the workers, operators on the same worker store data on the heap and communicate
a reference to it over Rust’s inter-thread channels, enabling rapid delivery of large messages
and safe zero-copy communication using Rust’s compile-time mutability checks.
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3.6.2 Operator Execution

Workers execute computation by maintaining an execution lattice, a dependency graph of
callbacks which guarantees the processing of message and watermark callbacks in timestamp
order, thus providing lock-free access to state. Upon receiving a message, a worker retrieves a
view of the state using get_committed (§3.4.4), and inserts into the lattice a bound callback,
consisting of the state, the Context, the callback, and the received message. Similarly, upon
the receipt of a watermark, the worker verifies if it acts as a low watermark across the
operator’s input streams, and inserts a callback that commits the state upon completion.

This execution lattice serves as a run queue for a worker’s multi-threaded runtime. A set
of threads retrieve and execute the callbacks, and notify the lattice upon their completion
to unlock further dependencies (e.g., callbacks with higher timestamps). ERDOS allows
operators to override the ordering semantics of the lattice to fine-tune the parallelism and
state-management. For example, an operator may manually synchronize updates to its state,
and ask ERDOS to execute all its callbacks in parallel by specifying that all timestamps are
equivalent, and thus ready to execute concurrently.

3.6.3 Deadline Management

The worker also ensures that the deadlines are initialized, and execute the exception
handlers in case they are missed. To initialize a deadline, workers maintain per-stream
statistics on the receipt of messages and the watermark status for each time ¢. Upon receipt
of a message (M) or watermark (W,), the worker updates the statistics, and invokes Dg¢. If
satisfied, the worker synchronizes the relative deadline D; for t sent by the deadline_stream
(line 3 in Lst. 3.1), and computes the absolute wall-clock time at which it expires. The
deadlines, along with their handlers (Dgy), are maintained by the worker in a priority
queue ordered by the expiration of the absolute deadline.

A deadline is removed from the queue when the operator satisfies Dgc or misses the
deadline. Workers maintain per-stream statistics of the transmission of messages and wa-
termarks, and remove the deadline and the Dgy from the queue upon satisfaction of Dge.
Further, workers poll the queue, and invoke the Dgpy according to either the Abort [55] or
Continue policy upon the expiration of a deadline. Similarly, at the transmission of each
message, ERDOS checks Dge, and stops the deadline upon satisfaction, by removing the
reference to the handler from the priority queue.

3.7 Evaluation

Open-source AV pipelines (e.g., Autoware [35], Apollo [40]) do not include models and
lack feature-complete integration with realistic open-source simulators, which are required
to measure the efficacy of D3. Thus, we developed Pylot, a state-of-the-art AV that achieves
a competitive score on the map track of a simulated AV challenge and drives real AVs. We
use Pylot to evaluate D3 and ERDOS, and seek to answer:
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Figure 3.3: Messaging Performance. We evaluate the response time of ERDOS for
(a) varying message sizes, (b) operator fanout, and (c) pipeline sizes for intra-worker and
inter-worker communication. In all cases, we find that ERDOS’ optimized implementation
and D3’s operator model helps achieve better performance.

1. How does ERDOS compare with other systems? (§3.7.2)
2. Does ERDOS enable the fulfillment of deadlines? (§3.7.3)
3. Do D3’s dynamic deadlines improve safety? (§3.7.4)

Experimental Setup. We perform all our experiments on a machine having 2x Xeon Gold
6226 CPUs, 128GB of RAM, and 2x Titan-RTX GPUs, running Linux Kernel 5.3.0. This
configuration closely reflects the hardware used in our AVs.

3.7.1 Pylot: An AV Development Platform

The construction of Pylot was a multi-year effort leading to approximately 28k lines of
code, with an additional 434 lines required to port it to a real AV!. Pylot contains dozens

LA demo of one of our test drives: https://tinyurl.com/yaumb4sn
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of components and is, to the best of our knowledge, the most comprehensive open-source
AV pipeline with trained models. We now briefly describe a few components relevant to our
evaluation (see Chapter 4 for an extended discussion).

Pylot’s perception module comprises of components that perceive objects, lanes, and
traffic lights using multiple cameras. While Pylot provides several implementations for each
component (suited for different driving environments), our experiments use EDet2 to EDet6
from the EfficientDet family [289] in the order of increasing accuracy and runtime. This
enables us to experimentally evaluate the runtime-accuracy tradeoff as accuracy varies from
39.6 mAP (EDet2) to 51.7 mAP (EDet6), and the runtime varies from 20ms to 262ms.

The Pylot planning component contains implementations of Hybrid A* [95], RRT* [169]
and FOT [324, 329] that perform best under different driving scenarios [178, 172, 230].
Since we execute our experiments in an urban environment, we utilize the FOT planner
that discretizes the configuration space, and is fast if coarse discretizations are chosen, with
poor discretizations producing infeasible plans. We create configurations of the planner by
varying the space discretization from 0.3m to 0.7m, and evaluate them in Fig. 2.2c, which
plots the lateral jerk while performing a swerving maneuver. We observe that configurations
with longer deadlines, and lower space and time discretization provide increased comfort.

Methodology. The tight coupling between the existing open-source AV pipelines and their
underlying systems (e.g., Autoware and ROS [248], Apollo and CyberRT [41]) makes porting
these pipelines to ERDOS a time-consuming engineering effort. Similarly, migrating Pylot
to the underlying systems used by these pipelines is a challenging undertaking. As a result,
our evaluation follows a two-pronged approach. First, we measure low-level system metrics
(e.g. callback invocation delay) to show a lack of regression in ERDOS’ realization of D3 as
compared to the other systems (§3.7.2). Second, we extend the CARLA challenge [298] to
construct a challenging benchmark for AV systems spanning 50km of simulated driving. We
port the execution models used by the underlying systems to ERDOS and use the benchmark
to highlight the efficacy of D3 when compared to these models (apart from any engineering
benefits that come from ERDOS) (§3.7.3, §3.7.4).

3.7.2 ERDOS’ Performance vs. Other Systems

We evaluate the latency of ERDOS with respect to message size, operator fanout, and
pipeline complexity. We compare against (i) ROS, a widely used platform for AVs [312, 35,
106, 8], (4) ROS2, which provides more real-time guarantees [94, 199], and (#iz) Flink [62] a
data-driven streaming system that is closest to ERDOS due to its operator-centric program-
ming model and usage of watermarks for unlocking computation.

Microbenchmarks. We measure the delay incurred by sending messages of increasing sizes
between two operators and invoking a callback upon receipt of the message. By measuring
the callback invocation delay, we compare how different systems contribute to AV pipeline’s
response time via the implementation of the communication stack and the scheduling of
callbacks. We send messages at 30Hz, the frequency at which AVs process data [28]. Fig. 3.3a
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Figure 3.4: Meeting Deadlines. We vary the deadline every second and show how the
modules respond to the new deadlines. Both detection and planning adapt to meet the
deadline and the more adaptive planning module is better at using its time allotment.

shows the results across both intra-worker and inter-worker placements of the operators.
ERDOS’ intra-worker callback invocation delay remains constant across message sizes due to
its zero-copy communication. Further, ERDOS’ inter-worker implementation performs 2.0x
better than ROS, and 3.2x better than ROS2, and 2.5x better than Flink when sending
1MB messages. We analyze the systems to attribute the overhead, and find that Flink and
ROS have additional data copies and a more inefficient networking path accounting for 80%
of the overhead, and slower serialization/deserialization responsible for 20% of the overhead.
Moreover, we attribute ROS2’s overhead to its use of the Data Distribution Service, which
incurs additional costs for data conversion [199].

Next, we compare ERDOS’ callback invocation delay to other systems’ when broadcast-
ing the output of an operator (e.g., camera image) to multiple operators (e.g., perception
components), which is a common pattern in AVs. Fig. 3.3b shows that ERDOS sends a
typical camera image message of 6MB to 5 operators in the same worker at a median latency
of 0.12ms, 150x faster than ROS2 and 30x faster than Flink. When communicating across
workers, ERDOS broadcasts to 5 operators at a median delay of 9.76ms, which is 1.7x, 4.2x,
and 4.4x faster than ROS, ROS2, and Flink.

Response Time Benchmarks on Synthetic Pipelines. In order to measure the scala-
bility to complex AV pipelines [312, 150, 145], we emulate Pylot with an increasing number
of sensors sending data at 30Hz. We first instrument Pylot, and retrieve the mean size of
each message type. Based on these measurements, we emulate a pipeline with an increasing
number of sensors and operators, which sends messages totalling 925MB /s when processing
10 cameras and 5 LiDARs across 75 operators. Moreover, for a worst-case estimate of system
overheads, we assume each operator has a Oms runtime.

Fig. 3.3c compares the end-to-end response time of the pipeline when executed within a
worker and across workers. We find that for 10 cameras and 5 LiDARs, ERDOS’ intra-worker
implementation exhibits a median response time of 2.5ms, which is 12x and 1.7x better than
ROS2 and Flink. When placing each operator in its own worker, ERDOS exhibits a median
response time of 3.4ms, which is 2.0x, 9.3x, and 5.0x faster than ROS, ROS2, and Flink.
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Note that a realistic deployment of Pylot would colocate operators in workers, and thus the
worst-case latency would be similar to that observed in the intra-worker graph.

Takeaway: FRDOS’ efficient implementation scales to large pipelines and enables AVs
to meet more deadlines by minimizing the amount of time lost to system overheads when
wmwvoking computation due to message arrivals.

3.7.3 Efficacy of ERDOS’ Deadline Mechanisms

We evaluate the latency overhead introduced by the mechanism for implementing 7pp
policies, the ability of components to proactively meet dynamic deadlines, and the effect of
reactive measures in meeting end-to-end deadlines.

Latency Added by the Policy Mechanism. To achieve dynamic deadlines, applications
define wpp, which computes deadlines using pipeline data and sends deadlines to components
(§3.4.2). We now investigate the latency overhead of mpp. In order to isolate the latency of
the mechanism from the latency of the mpp logic, we use a no-operation wpp that receives
data from Pylot’s components and sends static deadlines to the components. We measure
Pylot’s response time without and with the no-operation 7mpp during a 35km drive, and we
find that the policy mechanism increases the response time by less than 1%. The median
and 90" percentile response times increase by 0.9ms and 2.3ms respectively.

Meeting Deadlines. We evaluate ERDOS’ support for fine-grained changes in deadline al-
locations (§3.4.3) and if Pylot’s components adapt to meet these changes. In the experiment,
we use a policy that randomly changes deadline allocations every second. Fig. 3.4 shows the
response time of Pylot’s detection and planning during a short drive. We observe that while
detection meets its deadline, it fails to utilize its entire time allocation. This is because the
EfficientDet [289] family provides 8 models with different runtimes, and ERDOS chooses
the model with the highest runtime that fits within the allocated deadline, which may be
significantly higher. By contrast, the planning component fully utilizes its time allocation
because it executes an anytime algorithm [324, 329].

Handling Deadline Misses. Deadline exception handlers (Dggy) ensure that a missed
deadline does not delay downstream components (§3.4.4). In this experiment, we compare
against a Dgy implementation based on ROS’ actionlib, a preemptible task library. Fig. 3.5
(left) shows that ERDOS invokes Dy 0.1ms after a deadline is missed, and it is 5x faster
than ROS. This delay is acceptable for Pylot, as Fig. 3.5 (right) shows the per-component
and end-to-end response time without Dgy (i.e., the data-driven execution model described
in §2.2.1) and with Dy during a 50km drive in simulation. Pylot without Dgy has a 0.6%
end-to-end deadline miss ratio, whereas with Dgy it always meets the end-to-end deadline.

Takeaway: FRDOS implements D3 by swiftly executing mpp, enabling proactive strate-
gies to meet deadlines, and rapidly taking reactive measures when deadlines are missed.
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Figure 3.5: Impact of Exception Handlers. ERDOS supports fast invocation of han-
dlers (left), and enables quick reactions to missed deadline (right), ensuring timely responses.
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Figure 3.6: D3 Reduces Collisions. In a challenging 50km drive, ERDOS’ realization
of D3’s dynamic deadlines reduces collisions by 68% over the periodic execution model.

3.7.4 Efficacy of the D3 Execution Model

We evaluate the efficacy of D3 by exploring a deadline allocation policy that adjusts
the end-to-end deadline to avoid collisions in challenging scenarios. The focus of our work
is not the design of policies, but to provide the mechanisms to implement such policies.
Therefore, we present a baseline policy that adapts deadlines as a function of the AV speed
and the trajectories of other agents. Our policy computes reaction time, defined as the sum
of time to receive 8 sensor readings, which are sufficient to build a trajectory prediction for
the agents, and the end-to-end runtime of the current configuration. The policy uses the
reaction time and the AV’s driving speed to estimate the AV’s stopping distance. It then
adjusts the end-to-end deadline depending on how close to other agents the AV will be at
the end of its stopping distance. We compare Pylot’s performance under dynamic deadlines
to five static deadlines ranging from 125ms to 500ms.

Aggregate Study. We explore if our policy adjusts the deadlines to avoid collisions during
a challenging 50km CARLA Challenge drive [298]. In this experiment, we adapt the detector
in response to shorter deadlines, but keep all the other components fixed in order to limit
the experiment duration (exploring all tradeoffs required 100 days of simulation).

Fig. 3.6 highlights the efficacy of D3 apart from the engineering of ERDOS by run-
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Figure 3.7: Response Time Histogram. D3 (Static Deadlines) enforces the static
deadlines that perform the best during the drive and the variability is due to C2. By
contrast, D3 with dynamic deadlines offers faster responses when needed, and executes more
accurate computation during normal driving scenarios.

ning Pylot atop ERDOS using four execution models: () a periodic execution derived from
WCET estimates (similar to Apollo [28] and Autoware [35], which execute most components
periodically), (i7) the best data-driven configuration that executes each component upon
receipt of all input data (similar to some ROS deployments, see §2.2.1), (ii1) the best config-
uration with static deadlines enforced by D3’s Dgy, and (iv) a D3 execution with dynamic
deadlines enabled by our deadline allocation policy and ERDOS. The execution with our
policy (D3) reduces collisions by 68% over a periodic execution, and by 26% over the best
configuration with static deadlines because the policy reduces the deadlines in challenging
scenarios. Finally, we compare the end-to-end response times of Pylot’s D3 execution with
dynamic deadlines with Pylot’s best configuration with static deadlines. Fig. 3.7 shows that
in most situations D3’s Pylot execution runs a slow, high-accuracy configuration, but adapts
to fast configurations when the environment demands it.

Takeaway: FRDOS’ dynamic deadlines result in significantly fewer collisions compared
to the periodic execution and static deadlines used in state-of-the-art platforms.

In-depth Study of Scenarios. We study the benefits of ERDOS’ realization of D3 using
two challenging scenarios that require the AV to adapt in order to avoid collisions.

Person Behind Truck. This scenario simulates a person illegally entering the AV’s lane
(see video?). The scenario is complicated by a truck that occludes the person until they enter
the AV’s lane. Thus, the AV cannot stop in time and must perform an emergency swerving
maneuver. Since this maneuver requires a knee-jerk reaction, we expect the configurations
that minimize the response time to perform better.

Traffic Jam. This scenario simulates merging into a traffic jam. The AV is required to come
to a halt behind a vehicle and a motorcycle, while the other lane is lined up with vehicles.
The motorcycle complicates this scenario as it requires the AV to perceive the object from
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Figure 3.8: Versatility of D3’s Dynamic Deadlines. Configurations with short dead-
lines reduce collision speed in the person behind truck scenario (left), but increase it in the
traffic jam scenario (right). By contrast, D3 adapts Pylot’s deadlines depending on the
driving speed and scenario complexity resulting in fewer collisions.

afar in order to prevent a collision. Moreover, the vehicles on the other lane prevent the AV
from performing an emergency swerve. While the previous scenario requires a fast response,
this scenario needs consistent high-quality responses from the AV in order to prevent an
otherwise-safe scenario from turning into an emergency.

In the experiment, we drive the AV at a fixed speed using a fixed set of hardware resources
(see §3.7). We execute Pylot’s five configurations with static deadlines (§3.7.4) and Pylot’s
D3 execution with dynamic deadlines computed by our policy. We use the driving speed of
the AV at the time of the collision (i.e., collision speed) as a proxy for the impact of the
collision, where a speed of Om/s shows that Pylot avoided a collision.

In Fig. 3.8 we plot the collision speed across varying speeds. As expected, at a speed
of 12m/s, the probability of successfully handling the person behind truck scenario increases
with a decrease in response time. In this scenario all but the fastest configuration detect
the person, which is visible 20m away. Thus, the configuration with the lowest response
time (200ms) that detects the person 20m away prevents a collision, while configurations
with higher response times collide with the person at collision speeds that increase with
the response time. We note that the configuration with the lowest response time (125ms)
collides as it detects the person too late (12m away) due to its low perception accuracy. On
the contrary, in the traffic jam scenario, the slower, more accurate configurations allow the
AV to reliably stop at 10m/s. This is because the motorcycle is partially occluded, and thus
faster, less-accurate models perform poorly. Fig. 3.9 shows how Pylot adapts as our policy
reduces the deadline once the person is visible in the person behind truck scenario.

Takeaway: ERDOS’ deadlines adapt in both scenarios, and avoid more collisions than
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Figure 3.9: Adapting to Deadlines. D3 enables Pylot’s components to meet dynamic
deadlines and avoid a collision.

any static configuration?.

3.8 Related Work

Data-Driven Execution Model. Vendors [312, 35, 311, 106, 8| are developing AV
pipelines atop robotics platforms that provide a modular design and best-effort execution of
the components (e.g., ROS [248], ROS2 [140], CyberRT [41]). As a result, vendors execute
these pipelines as SLO-based best-effort applications that attempt to meet an environment-
agnostic end-to-end deadline [312, 35, 40]. The AV pipelines are deployed as ROS/CyberRT
processes, that either use the data-driven execution model to run each component to com-
pletion upon receiving all input (§2.2.1), which may delay downstream components due to
runtime variability, or run components periodically [244, 28|, which preclude adaptations
to meet dynamic deadlines. Moreover, these platforms do not offer a system-managed con-
sistent view of time, and thus lack mechanisms to specify and enforce deadlines, or reason
about the available execution time [312]. By contrast, ERDOS enables the development of
D3 applications by offering a consistent view of time via logical times, an automatic mapping
of logical time to wall-clock time, which components can use to reason about deadlines and
available execution time, and apply reactive measures to mitigate missed deadlines.

Stream processing systems such as Flink [62], Cloud Dataflow [121], MillWheel [9], and
Naiad [205] also utilize the data-driven execution model. Although, these systems inspired
elements of our design (e.g., logical time [205, 62, 121|, watermarks [13, 62, 308], intermediate

2Static vs dynamic deadlines in Pylot: https: // tinyurl. com/y24p4g8d
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results [2]), these systems are designed for massively parallel data processing, and embed ar-
chitectural and implementational decisions that make them unconducive to the development
of AVs. For example, Naiad paralellizes an application by partitioning data across work-
ers, which each execute an entire copy of the dataflow computation (AV sensor data is not
partitionable). Moreover, these systems are unable to realize the D3 model because, unlike
ERDOS, they lack APIs to specify environment-dependent deadlines, implement proactive
strategies to meet these deadlines, and apply reactive measures when deadlines are missed.

Periodic Execution Model. Hard real-time systems conduct schedulability analyses
driven by WCET estimates to guarantee that deadline constraints are met [189, 303, 54,
46, 123, 92, 196]. However, AV components preclude the accurate estimation of WCETs
due to environment-dependent runtimes and large input spaces [288, 16, 17|, or the non-
deterministic nature of the algorithms they use [169, 17, 72, 317]. Thus, developing AVs
as such systems requires use of conservative WCETs to derive the periodicity of execution
for each component [87]. However, periodic executions cannot meet dynamic deadlines, and
trade accuracy to ensure that components with a large gap between mean and worst-case
execution time meet deadlines [17, 74, 51]. To address the former, real-time applications
implement mode changes [250, 71, 20], which depend on WCETS to verify if transitions be-
tween modes lead to deadline misses [250, 303, 283, 189]. By contrast, adaptive real-time
systems [51, 176, 197, 263| support the execution of components without WCET. These
systems minimize deadline misses by using feedback-based policies to choose the best service
level from multiple application-defined levels (similar to §3.4.3’s changing implementations),
but lack mechanisms to enforce deadlines and mitigate deadline misses.

D3 subsumes prior systems by allowing the execution of both mode changes and adaptive
real-time applications. The developers of D3 applications can specify mode changes using
the deadline policy (mpp) and trigger them to perform graceful degradation (on deadline
misses or environment changes) using D3’s feedback loop (§2.2). Furthermore, ERDOS’s use
of timestamps and watermarks helps with tracking the causality of messages back to sensor
data, and along with system-managed state makes ERDOS more amenable to analysis and
verification than current AV platforms. Thus, applications can exploit prior certification and
predictability analysis by restricting themselves to a limited set of mode changes.

3.9 Conclusion

We highlight two key characteristics of AVs, and introduce D3, an execution model
for applications that must maximize accuracy in the presence of dynamic deadlines, and
demonstrate how existing solutions fall short. We realize D3 in ERDOS, atop which we
build an AV, Pylot, and find that D3 reduces collisions by 68%.
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Chapter 4

Pylot: A Modular Platform for
Exploring Latency-Accuracy Tradeofls

Chapter 3 briefly introduced the key components of Pylot that enabled the evaluation of
the efficacy of D3 under driving environments that required a dynamic tradeoff between the
runtime of the components and their accuracy. More broadly, Pylot is built as a platform for
AV research and development with the goal to allow researchers to study the effects of the
latency and accuracy of their models and algorithms on the end-to-end driving behavior of an
AV. This is achieved through a modular structure enabled by our high-performance dataflow
system, ERDOS, that represents AV software pipeline components (object detectors, motion
planners, etc.) as a dataflow graph of operators which communicate on data streams using
timestamped messages. Pylot readily interfaces with popular AV simulators like CARLA,
and is easily deployable to real-world vehicles with minimal code changes.

To reduce the burden of developing an entire pipeline for evaluating a single component,
Pylot provides several state-of-the-art reference implementations for the various components
of an AV pipeline. Using these reference implementations, a Pylot-based AV pipeline is
able to drive a real vehicle, and attains a high score on the CARLA Autonomous Driving
Challenge. In this chapter, we provide an overview of the design decisions that underlie the
development of Pylot and present several case studies enabled by Pylot, including evidence
of a need for context-dependent components, per-component time allocation, and the ability
to exploit cloud resources for safer driving. We open-source Pylot for community benefit
and make it available at https://github.com/erdos-project/pylot.

4.1 Introduction

Over the past decade, advances in application areas such as object detection and local-
ization 254, 192, 289|, vehicle motion planning and control [169, 95, 329, 269, 131], and
behavior and motion prediction [179, 256, 203| have enabled rapid advances in AV technol-
ogy. Reciprocally, the promise of AV technology has motivated many recent advances in
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emerging technologies like artificial intelligence, with, e.g. driving-based datasets becoming
fundamental baselines for modern computer vision [158, 112, 77, 285, 32].

Various vendors [113, 103, 216, 35, 40] realize the computation that underlies an AV as a
pipeline similar to the one shown in Fig. 4.1. This modular approach has been the standard
for AV pipelines since at least the DARPA Grand Challenge of the mid-2000s [301].
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Figure 4.1: Pylot’s AV pipeline consists of several interconnected modules (e.g. per-
ception, planning). For each component in these modules, Pylot provides reference imple-
mentations along with “perfect” implementations (for those with a green check mark) that
access ground truth data from the simulator.

While this decomposition of the driving task into multiple components has enabled re-
searchers to innovate independently on each component, it has also led to the development of
problem-specific evaluation metrics that fail to account for the end-to-end driving behavior of
the AV [242|. For example, even driving-based datasets like KITTI [112] and Cityscapes |77],
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which are used to develop ML models for the perception component, utilize static evaluation
metrics such as average precision [110] that fail to account for the runtime of the model. Ex-
ploring the tradeoff between the latency of a component and its accuracy on offline datasets
is paramount for safety-critical applications such as AVs where correctness is defined as a
function of both the accuracy of the algorithms and their end-to-end runtime [182].

In this chapter we introduce Pylot, a modular platform that enables the study of this
critical tradeoff between the accuracy of a module and the effects of its runtime on the safety
of the AV. Pylot is built on top of ERDOS, our high-performance, deterministic dataflow
system [102], and provides: (i) state-of-the-art reference implementations for components
allowing researchers to evaluate their algorithms or models in the context of a realistic AV
pipeline, (i) “ground truth” implementations that allow the development of components and
their debugging in the context of an idealized AV pipeline, and (7i) a portable interface that
enables seamless transition between a simulator and a real vehicle. Pylot is open source, and
is the top submission on the CARLA Autonomous Driving Challenge HD map track * [298],
thus granting the AV community a platform comparable to proprietary pipelines.

The remainder of this chapter is organized as follows: §4.2 gives an overview of existing
open AV platforms, §4.3 presents the critical design goals of Pylot, and §4.4 discusses how
our implementation achieves these goals. Further, §4.5 describes (i) the reference component
implementations, (i) a prototype AV pipeline built with these implementations, and (i)
our experience of porting this pipeline to a real-world AV. Finally, §4.6 presents several
case studies enabled by Pylot that evaluate in-context performance metrics of AV pipeline
components, and §4.7 concludes and discusses future work.

4.2 Related Work

Recent work in object detection has emphasized the need to achieve a balance between
the latency and accuracy of an ML model for a given application [147]. While there have
been efforts to both define evaluation metrics that integrate latency and accuracy of the
perception module in the context of AVs [182, 242|, and develop flexible backbones for
object detection models that enable developers to choose an optimum point in the latency-
accuracy curve [289, 52|, they fail to account for the effect of the runtime on the end-to-end
driving behavior. Moreover, to the best of our knowledge, such metrics do not exist for other
modules in the AV pipeline.

On the other hand, open-source implementations of AV pipelines lack significantly in
their ability to allow developers to explore the accuracy of individual components in the
context of an end-to-end pipeline. For example, both Autoware [35] and Baidu’s Apollo [40]
provide limited interfaces to freely-available simulation platforms. Specifically, neither of
these AV pipelines allow photo-realistic simulation of cameras, thus failing to account for the
accuracy and runtime of the perception module. Moreover, they omit pre-trained models

!A demo video of Pylot running on the CARLA Challenge is available at https://tinyurl.com/
y6ozzpwd.
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for other components specific to any simulation platform which raises the bar for testing
a component. Finally, the debugging ability of these platforms is also limited by their
choice of the underlying publisher-subscriber communication paradigm which complicates
the deterministic replay of driving scenarios [312].

4.3 Design Goals

The central design goal of Pylot is to support the study of the tradeoff between the
runtime of components and their accuracy in the context of the end-to-end driving behavior.
To achieve this goal, Pylot must fulfill three key requirements:

Modularity. To enable rich evaluation of new models and algorithms, Pylot must provide
modular components that can be swapped out for alternate implementations. This allows
developers to compare their components with state-of-the-art implementations on similar
driving scenarios in addition to evaluating their components using standard metrics on offline
datasets. Moreover, a “plug-and-play" architecture supports the future introduction of new
modules and components without requiring a tedious overhaul of the entire pipeline.

Portability. Developers must be able to transition between different simulators and real-
world vehicles in order to evaluate their components across various driving environments.
For example, a developer should be able to ensure that their planning algorithm provides
similar behavior on a traffic simulator such as SUMO [175], a dynamic world simulator such
as CARLA [96] or AirSim [272], and real-world vehicles. A key stipulation of portability
is that Pylot must be highly performant. This allows components developed in Pylot to
be tested in simulation, and effortlessly deployed to a real vehicle without any additional
changes that might affect the tradeoff between latency and accuracy. On the other hand,
the runtimes of components observed in a real vehicle can be faithfully reproduced in order
to ensure that the latency-accuracy tradeoff can be correctly explored in simulation.

Debuggability. Ensuring the safety of models and algorithms requires extensive testing
across various scenarios. Thus, Pylot must provide developers with tools that allow them
to understand and easily debug their components when they exhibit abnormal or unsafe
behavior. In order to reproduce unsafe behaviors, the software system must be output
deterministic (i.e. produce the same output given the same inputs) [21], and the pipeline
must enable seamless logging of the data necessary to reconstruct the AV’s behavior.

4.4 Achieving Design Goals

We realize the design requirements outlined in §4.3 in our implementation of Pylot, which
consists of approximately 28,000 lines of Python code. While Pylot executes atop our low-
overhead open-source streaming dataflow system implemented in Rust [102], we chose to
implement Pylot itself in Python in order to enable faster prototyping and easier interfacing
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to both simulators such as CARLA [96] and deep learning frameworks such as PyTorch [236]
and Tensorflow [3|. The remainder of this section discusses the design of Pylot by focusing
on how it achieves modularity (§4.4.1), portability (§4.4.2) and debuggability (§4.4.3).

4.4.1 Modularity

Pylot’s modular structure is achieved through a dataflow programming model, where the
AV pipeline is structured as a directed graph in which vertices, also known as operators,
perform computation (e.g. running object detection) and edges, also known as streams,
enable communication through timestamped messages (e.g. transmitting bounding boxes of
detected objects). This inter-component communication style is reminiscent of the familiar
“publisher-subscriber” model with the operators akin to ROS nodes, and streams akin to
the ROS publishers and subscribers. Similar to the publisher-subscriber model, the dataflow
programming model limits interactions between operators to streams thus allowing them to
be swapped as long as they conform to the same interface (e.g. an object detection component
based on Faster-RCNN [254| can be swapped for one based on EfficientDet [289)]).

However, unlike the publisher-subscriber model, the dataflow programming model allows
swapping of components that differ in their runtimes and resource requirements without
requiring cascading changes throughout the entire pipeline. Specifically, while a ROS node
synchronizes incoming data from multiple sources by fetching data from the required pub-
lishers at a fixed frequency, a dataflow system allows developers to register callbacks that get
invoked upon the arrival of synchronized data across the requested streams. The dataflow
system underneath Pylot seamlessly synchronizes data across multiple streams by requir-
ing the operators that publish on those streams to send a special watermark message upon
completion of the outgoing data for a specific timestamp [308, 62, 205, 121]. Hence, while
swapping a component with a different runtime in the publisher-subscriber model requires
fine-tuning the frequency at which the downstream operators invoke their computation, a
dataflow system is robust to runtime variabilities and enables highly modular applications.

4.4.2 Portability

In order to allow pipelines developed in simulation to be ported to real-world vehicles,
Pylot must support high-throughput processing of the data generated by a vehicle’s sen-
sors [113, 312, 22|. This is enabled through our custom high-throughput and low-latency
dataflow system that outperforms ROS, a commonly used robotics middleware, by 30% in
terms of communication latency [102| while providing a shim layer that allows operators to
interface with legacy ROS code. The underlying system transparently schedules the paral-
lel execution of these operators across machines according to their resource requirements,
and provides collocated modules with zero-copy communication via shared memory queues.
Moreover, this transparent scheduling and communication does not require any code changes,
and coupled with the shim layer for legacy ROS code allows seamless and piecemeal porting
of Pylot to different hardware platforms.
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Conversely, Pylot also enables the transition from real-world vehicles to simulation by
enabling the precise replication of the runtimes of components in a simulator. We achieve
this through Pylot’s integration with the CARLA simulator. CARLA provides two modes
of execution: (i) synchronous, where the simulator allows the instantaneous application of
control commands by pausing the simulator after sending sensor inputs to the client, and
(i) asynchronous, where the simulator moves forward and applies the control command
when Pylot finishes execution. While CARLA’s asynchronous mode should allow control
commands to be precisely applied when the computational pipeline finishes executing, it
lags behind due to the high rendering cost of the underlying graphics engine. This results in
the imprecise application of control commands from the pipeline to the simulated vehicle.

To enable a timely application of the commands, we developed a pseudo-asynchronous
execution mode that allows Pylot to maintain tight control over the simulation loop. In
this mode, we run CARLA synchronously with a high frequency (over 200Hz), and attach
a synchronizer between the control module and the simulator. This synchronizer tracks the
runtime of the pipeline for each sensor input, and buffers the control command until the
simulation time is at least the sum of the sensor input time and the runtime of the pipeline.

Both the synchronizer and Pylot can be ported to other simulators [272, 261| with min-
imal effort. Developers are only required to implement drivers to extract sensor data from
the simulator (e.g., camera frames, LiDAR point clouds), and an operator to send control
commands to the simulator (as evidenced by our port of Pylot to a real vehicle in §4.5.6).

4.4.3 Debuggability

Pylot integrates with CARLA’s ScenarioRunner [267], and provides a suite of test scenar-
ios based on the National Highway Traffic Safety Administration’s pre-crash scenarios [210].
In contrast to other AV pipelines implemented atop a publisher-subscriber model [35, 312,
40|, Pylot’s underlying dataflow programming model enables deterministic replay of such
scenarios, thus allowing easier debugging of components. This deterministic execution is
achieved by performing computation on the receipt of watermark messages [205, 62, 12].

To aid in debugging the latency and accuracy of components, Pylot provides extensive
logging of both output data and the runtime of each component. Specifically, Pylot can
be configured to log sensor data, and outputs of internal modules such that scenarios can
be reproduced and debugged offline. Moreover, Pylot provides fine-grained logs for the
execution time of each component that can be visualized using trace profiling tools [300] and
replayed in order to study the latency-accuracy tradeoffs in deterministic scenarios.

To aid in development, Pylot provides “perfect” modules that obtain ground-truth data
from CARLA, which can be used to test other modules in isolation (e.g., planning using
perfect perception), and to generate new training data sets. Moreover, Pylot can be deployed
with different sensor setups (e.g., cameras only, cameras and LiDARs), and can be used to
study the end-to-end performance of each setup, and as well the robustness of solutions when
only partial or noisy sensor data is available [241].

In addition, Pylot provides visualizations for important information, such as detected ob-
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Figure 4.2: Pylot’s visualizations for critical components. The object tracker view
(left) shows the bounding boxes and the identifiers of detected agents in the camera frame.
A bird’s eye view of the planning module (right) includes lanes, predictions for agents, and
waypoints computed by the planner.

jects, lanes, and traffic lights; sensors including cameras, LiDARs, and inertial measurement
units; and algorithmic outputs for depth perception, pose estimation, behavior prediction,
semantic segmentation, and planning. Fig. 4.2 exemplifies two such visualizations: (i) the
output of one of Pylot’s reference object trackers, and (i) a bird’s eye view of the informa-
tion used by Pylot’s planners to compute trajectories (detected obstacles, lanes, traffic signs,
predicted trajectories, and proposed waypoints).

4.5 The Internals of Pylot

The goal of Pylot is to accelerate research into new algorithms and models for autonomous
driving as well as the design of the underlying software systems. To support this goal, Pylot
provides: (i) state-of-the-art algorithms, pre-trained models, and evaluation metrics, (i)
the ability to selectively replace components and modules with ground-truth data from
simulators, (i) an easily extensible deterministic runtime environment, and (iv) a range
of challenging driving scenarios. In the rest of this section, we describe the key components
and modules in Pylot (c.f. Fig. 4.1), and our experience of porting Pylot from a simulator
to a real Lincoln MKZ test vehicle and driving it on a test track®.

4.5.1 Object Detection

The object detection component comprises of operators that process camera and LiDAR
data to detect, and localize objects, lanes, and traffic lights. These operators communicate
their results via an ObstacleMessage that contains the bounding box of the detected object

2A demo video of Pylot running on the MKZ is available at https://tinyurl.com/y5vsly3f.
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along with the confidence score returned by the ML model. Users may run multiple versions
of these models in parallel in order to benchmark against each other and against perfect
detection by using the standard accuracy metrics (e.g. mAP) provided by Pylot.

Pylot allows drop-in replacements of models conforming to the Tensorflow Object De-
tection API [147], and provides several configurations of Faster-RCNN [254] and SSD [192]
models trained on data collected from the CARLA simulator using Pylot. In addition, we
also utilize the EfficientDet [289] family of models which are built atop of a variable-sized
network backbone. This property of EfficientDet along with the different configurations of
Faster-RCNN and SSD allow the exploration of the runtime-accuracy tradeoff space.

4.5.2 Object Tracking

The tracking component estimates the bounding boxes of objects over time, and main-
tains consistent identifiers for the objects across detections. Pylot provides three object
trackers that cover the two main tracking approaches: (i) tracking-by-detection continu-
ously updates tracker state with bounding boxes received from object detection, and (i)
detection-free tracking follows a fixed number of objects over time. These trackers uti-
lize the bounding boxes from the ObstacleMessage and communicate their results via an
ObstacleTrajectoryMessage that contains the identifier for each obstacle.

We find that each tracker has context dependent performance and accuracy tradeoffs.
For example, the SORT [48] tracker is a lightweight multiple object tracker of the tracking-
by-detection variant that uses Kalman filters to estimate object positions between frames
assuming a constant linear velocity model, and the Hungarian algorithm to match bounding
boxes upon detection updates. While SORT is fast, it offers low accuracy in the presence of
object occlusions or camera motion. However, DeepSORT [326] improves on these limitations
by incorporating appearance information for each tracked object, at the cost of an increased
runtime from executing a convolutional feature extraction model.

On the other hand, DaSiamRPN [346] is a detection-free single object tracker that lever-
ages a siamese feature extraction network to learn distractor-aware features. The tracker
relies on neural network inference to track an object thus providing more accurate estima-
tions between detections at the cost of increased runtime. However, the “best” choice of
tracker depends on the situation. For example, SORT performs best under emergency when
low runtime is critical and DeepSORT is best in regular driving, while DaSiamRPN excels
in scenarios that demand high accuracy for a small number of objects (e.g. urban driving).

4.5.3 Prediction

The prediction modules uses the tracked history of nearby agents (vehicles, pedestrians,
etc.), along with scene context from LIDAR, to predict future agent behavior. Specifically, it
receives the bounding box and the identifier of each obstacle at every time instant through the
ObstacleTrajectoryMessage, and generates an ObstaclePredictionMessage containing
the past and the predicted trajectory for each obstacle.
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Pylot contains multiple implementations of the prediction module trained on CARLA
data that represent the major classes of ML based approaches for trajectory prediction. As
a baseline, Pylot also provides a linear predictor that utilizes a linear regression model that
assumes that each agent will travel at a constant velocity and predicts their forward position
based on their past trajectory. While this predictor is fast and hence ideal for emergency
collision-avoidance scenarios, it does not account for the behavior of multiple agents.

Additionally, Pylot provides R2P2 [256], a state-of-the-art single-agent trajectory fore-
casting model which learns a distribution over potential future trajectories that is parame-
terized by a one-step policy using a gated recurrent unit, and attempts to optimize for both
quality and diversity of samples. To extend R2P2 to the multi-agent setting, Pylot runs
R2P2 on every agent by rotating the scene context and past trajectories of other agents to
the ego vehicle coordinate frame. Finally, Multipath [67] uses a lightweight neural network
to obtain a useful representation of the scene and then applies a smaller network features
for each agent to output predictions. Because the per-agent computation can be batched,
Multipath is fast but less accurate owing to its inability to explicitly consider agent interac-
tions. In contrast, Multiple Futures Prediction (MFP) [291] jointly models agent behavior,
leading to increased runtime but more accurate predictions.

4.5.4 Planning

The goal of the planning module is to produce a safe, comfortable, and feasible trajectory
that accounts for the present and future possible states of the environment. To achieve
this, the planning module in Pylot synchronizes the output from all the other modules to
construct a World representation that contains the past and future trajectories of all agents
in the scene, along with the location and state of static objects such as traffic lights, traffic
signs etc. Crucially, this allows Pylot to selectively utilize ground truth information for any
of the previous components or modules and ascertain the effects of the accuracy and runtime
of a selected set of components on the end-to-end driving behavior of the AV.

The planning module is comprised of three components: route, behavioral, and motion
planners, with the latter having the greatest effect on the comfort and the end-to-end runtime
of the AV. Hence, Pylot provides implementations for each of the three main classes of motion
planners: graph search, incremental search, and trajectory generation [178, 172, 230].

Graph-based search planners (e.g. Hybrid A* [95]) discretize the configuration space as
a graph and provide fast results at lower discretizations. However, a poor choice of the
discretization value may produce infeasible paths. On the other hand, incremental search
planners (e.g. RRT* [169]) gradually build a path by sampling the configuration space
instead of precomputing a fixed set of configuration nodes. They are not limited by the initial
graph construction, and thus provide the ability to fine-tune the accuracy of the result for
any given computation time. Finally, trajectory generation planners (e.g. Frenet Optimal
Trajectory [324, 329]) construct a set of candidate paths, which they validate for collisions
and physical constraints. While the resulting paths are smoother than their counterparts,
trajectory generation may omit feasible paths if the discretization is too coarse.
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4.5.5 Control

The control module receives waypoints and target speeds from the planning module. It
aims to closely follow the provided waypoints while maintaining its target speed. Pylot
offers two control options: a Proportional-Integral-Derivative (PID) controller, and a Model
Predictive Control (MPC) controller. Both options compute commands that adjust brakes,
steering, throttle, and send these to the simulator or a real-world vehicle’s drive-by-wire kit.

While Pylot currently comprises of the modules described above, developers can integrate
multi-functionality modules (e.g. MPC for both motion planning and control |23, 188]) or
replace entire subgraphs of the pipeline with end-to-end solutions [184, 339, 319|.

4.5.6 Deploying Pylot on an Autonomous Vehicle

In order to port Pylot from the CARLA simulator to a real Lincoln MKZ AV test vehicle,
we made the following minimal changes:

1. Sensors: We utilized the shim layer that injects data from ROS topics exposed by the
drivers of the AV’s sensors.

2. Control: We modified Pylot to send control commands to the ROS node exposed by
a drive-by-wire kit [86].

3. Localization: We used the Normal Distributions Transform (NDT) algorithm [50]
implemented in Autoware [35].

4. Model replacement: We replaced our CARLA-trained detection and tracking models
with off-the-shelf models trained on real-world datasets.

As mentioned previously, porting from simulation to a real vehicle required only 434 lines
of Python code. This efficiency demonstrates the flexibility of our interfaces.

4.6 Case Studies

We now show how Pylot enables researchers to study: (7) the trade-off between accu-
racy and runtime for different components (§4.6.1), (ii) the effects that changes in a single
component have on an end-to-end driving metric (§4.6.2), and (éii) the ability of Pylot to
exploit remote resources in the cloud to increase driving safety (§4.6.3).

Experimental Setup. The experiments were performed atop CARLA on a machine having
2xXeon Gold 6226 CPUs, 128GB RAM and 2xTitan-RTX 2080 GPUs. This configuration
closely resembles the hardware used in the AV that Pylot was deployed to in §4.5.6.
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Figure 4.3: Timely mIoU and AP degrade when runtime and driving speed increase.
Thus, accuracy, runtime, and driving speed are all important when making model decisions

(Fig. 4.3c and Fig. 4.3f).
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4.6.1 Accuracy vs. Runtime Trade-off

We introduce a new family of metrics, timely accuracies, in order to capture the
impact of runtime on accuracy of modules. The timely accuracy is a metric of how accurate
a module’s results are with respect to the present world, and not the past world captured
by the input on which the result was based. The key idea is to evaluate a module’s output
performed on inputs at time ¢; with the ground truth labels at to = t; + [;, where [; is the
module’s runtime. Thus, timely accuracy captures how accuracy degrades as a function of
runtime in dynamic worlds.

In the experiment, we attached a camera to a simulated AV, and set up a scenario in which
the AV drove in a city at 20 m/s. For each frame we collected the ground-truth semantic
segmentation and computed the timely (i.e. time-delayed) mean Intersection over Union
(mlIoU) by emulating different prediction runtimes. Fig. 4.3a shows that a runtime of 10ms
is sufficient to reduce mean timely mloU of a perfect semantic segmentation component to
approximately 0.75, which is less than the mIoUs of the top three Cityscapes submissions [77].
Similarly, we measured the tradeoff between accuracy and runtime for pedestrian detectors
by computing timely Average Precision at IoU 50% (AP"?) for a perfect detection component
(i.e. with 1.0 AP®°). Fig. 4.3b shows that mean timely AP halves with a runtime of 35ms.
Thus, an object detector with long runtimes must be accompanied by a tracker or a prediction
component that can predict accurate trajectories for longer than the detector’s runtime.

The timely accuracy does not only depend on runtime, but also on the AV’s driving speed.
The faster an AV drives, the quicker the world changes. To show the effect of an AV’s speed
on timely accuracy, we emulated a 20ms runtime for the perfect semantic segmentation and
detection components, and varied the driving speed. In Fig. 4.3d, we illustrate that the
timely mloU for semantic segmentation decays as speed increases: median timely mloU is
28% smaller at 40m/s than at 10m/s. In the case of object detection, speed has a bigger
effect on timely AP?: median timely AP is 1.0 when driving at 10m/s, but it decreases
to 0 at 40m/s (Fig. 4.3e). In Fig. 4.3f we illustrate the trade-off between model accuracy
and runtime using models from the KITTI pedestrian detection challenge [111]. We observe
that fast, low-accuracy detectors obtain higher timely accuracy than slow, high-accuracy
detectors when driving at high speeds.

4.6.2 Effects of Component Changes on End-to-end Driving

We now leverage Pylot’s pseudo-asynchronous execution mode to study both the effect
of component changes and model hyperparameter tweaks on end-to-end driving. For this
experiment, we developed a scenario which simulates the illegal crossing of the AV’s lane
by a person, as shown in Fig. 4.2. The scenario is further complicated by the presence of
a truck on the opposite lane, which occludes the person until it reaches the AV’s lane (20
meters away). This presents an imminent threat to the AV, and requires the AV to perform
an emergency maneuver to avoid a collision.

In this experiment, we omit the perception models and use ground truth to compare
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Speed [m/s]

16 | 18 | 20 | 22

Planner [Pgy runtime|
FOT [Pgg = 30 ms|

FOT [Pgo — 550 ms]
RRT* [ng =15 ms]
RRT* [ng =76 HlS]
Hybrid A* [Pgg = 25 ms]
Hybrid A* [Pgg = 760 ms]

Table 4.1: Study of Runtime-Accuracy Tradeoff of Planner. Configurations that
avoid a collision are marked in green, while failing configurations are marked in red.
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Figure 4.4: Comparison of the ride comfort offered by the planners that avoid the collision
when driving at 16 m/s target speed.

each planner in isolation®. For the Frenet Optimal Trajectory (FOT) planner [324, 329] we
executed a fast and a slow configuration with 0.3 seconds time discretization and 0.5 meters
space discretization, respectively 0.1 space and time discretization. Similarly, for RRT* [169]
we experimented with 0.1 and 0.5 meters step sizes Lastly, we explore Hybrid A* [95] with
step sizes of 3.0 and 6.0, and radian step discretizations of 0.25 and 0.75.

In §4.6.2 we show which configurations avoided a collision with the person and the truck
for different target speeds the AV drove at before it detected the person. Since avoiding a

3Visualizations are available at https://tinyurl.com/y3coq57r.
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collision requires a fast, swerving maneuver from the AV, the planner configurations that
minimized runtime performed better. Furthermore, Fig. 4.4 compares the three configura-
tions that succeed at 16m/s target speed by plotting the lateral jerk (i.e. ride comfort) while
performing the swerving maneuver to avoid a collision. We see that the three planners have
markedly different jerk profiles. While FOT avoids a collision in fewer cases than RRT* it
provides a more comfortable ride. This experiments illustrates the realistic end-to-end “A /B
testing” of AV components enabled by Pylot.

4.6.3 Leveraging Cloud Computing for Safer Driving

To drive safely, AVs must produce accurate and timely results using state-of-the-art
algorithms and models that consume high-fidelity sensor data. The combination of these
characteristics requires AVs to exploit the compute capabilities of cutting-edge hardware.
However, the deployment of such hardware in an AV is constrained by its cooling, power,
and stability requirements [186]. For example, the DRIVE platform [221]|, NVIDIA’s flagship
hardware for AVs, is updated every 3 years. Its most recent iteration, the DRIVE Orin [224],
was put into production vehicles in 2023 and its successor, the DRIVE Atlan [305], is slated
for release in 2026 [222]. Moreover, upgrading the hardware of previously-deployed AVs is
often infeasible due to the cost and complexity involved with a recall [297]. As a result,
modern AVs are forced to trade-off accuracy, and hence, safety, for computational resources
and timely results, by either reducing the amount of data fused from multiple sensors, or
deploying algorithms and models that require a lower number of parameters and FLOPs [117].

In light of this fundamental mismatch between the pace of development of compute
technologies with the update cycles of vehicles [34], we study the augmentation of the com-
putational resources in an AV with the compute capabilities of the cloud. Cloud computing
platforms provide the illusion of infinite computing resources [104], and enable low-cost ac-
cess to state-of-the-art hardware [223, 122, 37]. In contrast to the 3-year update cycle in
AVs, the hardware and software in the cloud is frequently updated [36, 57]. For AVs, the
cloud enables the deployment of compute-intensive, rapidly-evolving algorithms and models
which can exploit state-of-the-art hardware without requiring complex recalls for hardware
and software updates [296, 307].

For example, the NVIDIA DRIVE Orin platform [224], the latest revision supported by
Baidu’s Apollo AV [136], uses NVIDIA’s Ampere microarchitecture to deliver a performance
of 5.2 FP32 TFLOPs [220]. The equivalent Ampere cloud GPU is the NVIDIA A100, which
was released in 2020 and delivers a performance of 19.5 FP32 TFLOPs [219], a 3.75% increase
over the DRIVE Orin. Table 4.2 measures the effects of this disparity by executing open-
source implementations of DETR [64, 93] and SWIN [194, 340], two state-of-the-art vision
transformers which have been adapted for object detection, atop both the NVIDIA Orin and
the A100. We observe a significant speedup of up to 8.4x by executing the same model on
the same input on a cloud GPU. Similar trends have been shown by prior work for other
safety-critical algorithms applicable to AVs, such as motion planning [68|.

Conventional wisdom suggests that the latency and availability of cellular network con-
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Model Runtime [ms] Speedup
Orin A100
DETR-ResNet-50 301.7 102.2 2.95x
DETR-ResNet-101 407.7 118.2 3.45%
DETR-ResNet-101-DC 859.2 146.6 5.86 %
DINO-SWIN-Tiny 722.1 90.1 8.01x
DINO-SWIN-Small 903.5 107.1 8.43 %
DINO-SWIN-Large 1529.9 180.8 8.46 %

Table 4.2: Runtime disparity between hardware on the AV and the cloud for various
state-of-the-art object detection models.

nections makes using the cloud on the critical-path of the computation infeasible [173].
However, Table 4.2 presents an arbitrage opportunity whereby an AV could potentially re-
turn more accurate results faster by exploiting the computational power of the hardware in
the cloud. We now seek to exploit the best-effort speculative execution approach enabled
by ERDOS (discussed in §3.4.3) to leverage the cloud when it is available and utilize reli-
able fallback mechanisms that use on-board computation when the cloud is not immediately
accessible. We discuss three mechanisms that enhance the AV’s safety below:

Higher-Accuracy Models. AVs can selectively offload data from their input sensors to
the cloud, allowing higher accuracy models to be executed in the cloud. For example, in
Table 4.2, an AV can choose to execute DETR-ResNet-101-DC in the cloud on its camera
data, which provides a ~3-point increase in average precision over DETR-ResNet-50 [64]
and executes faster. Thus, while an AV with an end-to-end deadline of 500 ms can only
execute DETR-ResNet-50 on its local hardware, it can optimistically exploit the accuracy
of all models in Table 4.2 when the latency to the cloud is low.

Accurate Environment Representation. While the earlier mechanism significantly en-
hances an AV’s ability to process sensor data and understand its surroundings, this mecha-
nism does not apply to obstacles obscured by the AV’s blind spots. To improve safety in these
scenarios, AVs can share their locations computed by the localization module to the cloud
and subsequently retrieve the locations of other nearby vehicles. Integrating the locations
of nearby vehicles via the cloud allows the planning module to generate safer trajectories
which avoid collisions with vehicles located in blind spots.

Contingency Planning. During the course of computation, AVs must make probabilistic
decisions which affect the outputs of the modules. For example, object detectors are config-
ured with a confidence threshold to filter out misdetections from the model’s outputs [93].
Similarly, the prediction module generates several possible trajectories for nearby obstacles,
and ranks them based on their probability of occurring [256, 257|. The planning module
then uses the most likely trajectory of the obstacles to plan a trajectory for an AV to follow.
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Latency [ms]

Figure 4.5: Cellular network latency of a 5G connection while driving through a route
in San Francisco frequented by Waymo and Cruise AVs.

However, AVs can offload the computation of plans that handle unlikely object trajectories
to the cloud. When an object takes an unlikely trajectory, AVs can access the corresponding
cloud-computed plan, enabling quick reactions to any sudden changes in the environment.

We now evaluate the efficacy of ERDOS in augmenting the safety of cloud-assisted AVs
under complex, real-world scenarios while maintaining the accuracy of an AV using only
on-board computation. Specifically, we seek to answer the following questions:

1. Do current technologies support a low-latency and reliable connection to the cloud?

2. Does ERDOS enable the three techniques to enhance AV safety?

Feasibility of Cloud Access. We investigate whether modern cellular networks are able
to provide the speed and bandwidth necessary to execute data-intensive AV operators. To
measure network performance in realistic setting, we conduct a field test by following a route
in San Francisco where Cruise and Waymo already provide fully autonomous rides [321, 322].
The route contains both urban and highway driving and is visualized in Fig. 4.5.

In our vehicle, we connect a Lenovo ThinkPad P1 Gen 2 laptop to an Inseego MiFi X
PRO 5G hotspot on the Verizon network via USB-C. The laptop executes a multithreaded
gRPC [129] client which sends 33.3 KB messages at 30 Hz to a server to match the bitrate
of 30 FPS HD camera footage [333|. We establish a connection to a Google Cloud Platform
nl-highmem-8 instance in the us-west2-a zone which executes a gRPC server that responds
to messages from the client with 1 KB acknowledgments. The client measures the round-trip
latency of sending a message to receiving an reply.
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Figure 4.6: Traffic Jam Scenario leverages the cloud’s ability to run higher-accuracy
models at a reduced latency to reduce the AV’s response time, thus minimizing its reaction
time and avoiding a collision with the motorcycle.

We find that the 5G network in San Francisco frequently provides latencies that enable
cloud execution. We measure a median round-trip-latency of 68 ms (Fig. 4.5) which demon-
strates an opportunity to take advantage of the hundreds of milliseconds in runtime disparity
between cloud and AV hardware (Table 4.2). In addition, the long tail of network latencies
from 336 ms at the 90th percentile to 3027 ms at the 99th percentile substantiates the need
to manage network delays.

Study of Complex Scenarios. We now study of the safety benefits of ERDOS and
how it enables the three mechanisms which use the cloud to improve AV safety. For each
mechanism, we demonstrate its efficacy under a complex, real-world scenario executed using
the CARLA simulator [96]. We use the pseudo-asynchronous mode of execution from the
Pylot AV platform [119] to simulate the delay of calculating a demand for different end-to-end
deadlines, retrieved from different end-to-end deadlines, retrieved from Fig. 4.5%.

Traffic Jam. This scenario from [117]| simulates merging into a traffic jam, visualized in
Fig. 4.6. The AV drives at a high speed on a two lane undivided road and must come
to a halt behind the motorcycle stopped in the distance. The motorcycle complicates this
scenario because the AV must perceive the stopped obstacle from afar to prevent a collision.
Moreover, the AV cannot swerve to avoid a collision due the vehicles in the opposite lane.
Since this scenario requires both far-away detections and rapid responses due to the high
driving speed, the technique of exploiting the cloud to run higher-accuracy models quickly
ensures maximum safety. To evaluate safety, we use a simple planner that brakes once the

4Videos of scenarios are available at https://tinyurl.com/26fzrabu
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Table 4.3: Efficacy of leveraging cloud resources for Traffic Jam scenario. Con-
figurations that avoid a collision are marked in green, while configurations that collide are
marked in red.

AV’s object detection operator identifies the obstacle on three consecutive camera frames.
We then investigate the following three operator configurations (Table 4.3):

1. Local which executes DETR-ResNet-50 on a local NVIDIA Orin GPU. We choose
DETR-ResNet-50 since it is the only model that provides response times required to
ensure human-level safety on the local GPU (Table 4.2).

2. Cloud which executes DETR-~ResNet-101 on an NVIDIA A100 GPU running on a
Google Cloud a2-highgpu-1g instance. We choose DETR-ResNet-101 to ensure that
the local and cloud models belong to the same architecture.

3. Ours which enables operators to specify deadlines on response time from the cloud
and fall back to local results when the cloud is unable to meet the deadline.

We sweep the entire range of driving speeds in California (i.e., 25 mph to 65 mph), and
simulate cloud response times up to the p99 latency collected from our drive through San
Francisco (Fig. 4.5). We note that the higher cloud response times do not apply to the
Local approach. We find that at higher speeds (e.g., 22 m/s), the lower-latency access to
higher-accuracy models afforded by the cloud is critical in ensuring the safety of the AV.
However, without appropriate mechanisms to fall back to local computation using ERDOS’
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Figure 4.7: Running a Red Light Scenario leverages the cloud’s ability to build accurate
environment representations to detect the occluded vehicle running the red light.

deadlines, the Cloud approach incurs more safety violations than the Local approach when
network latency is high (e.g., a 3 second cloud response time when the AV drives at 18 m/s).

Fig. 4.6 investigates how executing a higher-accuracy object detector locally affects
collision-avoidance in high-speed scenarios. We compare a Local execution of DETR-ResNet-
101 to a Cloud execution with median network latency. We find that the local execution
fails to break in time due to its 222 ms longer response time, resulting in a collision.

Running a Red Light. This scenario from the NHTSA pre-crash typology [214, 246]
(depicted in Fig. 4.7) simulates a vehicle running a red light which forces the AV to perform
a collision avoidance maneuver. The AVs can only perceive the other vehicle just before a
potential collision, challenging its ability to respond in time. We evaluate three variations
of this scenario with different intersections, and find that neither local nor cloud executions
of object detectors are able to avoid a collision. However, using the cloud’s ability to build
an accurate environment representation (e.g., by sharing location data with nearby AVs),
allows the AV to plan its trajectory with other vehicles in its blind spots. This enables the
AV to brake early and avoid a collision in this scenario.

Person Jaywalking. This scenario simulates a person unexpectedly entering the street,
requiring the AV to quickly respond in order to avoid a collision. Fig. 4.8 evaluates the
scenario in which an AV executes its planning module locally, which has a 500 ms end-to-
end response time. Because the pedestrian enters the street when the AV is only 10 m away,
the AV cannot generate an emergency swerving maneuver or stop in time, resulting in a
collision with the pedestrian.

However, we perform contingency planning using the cloud which generates a plan for
the low-likelihood case that the pedestrian enters the street, downloads the plan to the
AV, and caches the plan in the AV’s planner. When the cloud-assisted AV detects the
pedestrian entering the street, the AV enacts the cached contingency plan and bypasses the
local planner, lowering the response time to 400 ms. We observe that the cloud-computed
contingency plan enables the AV to swerve in time and successfully avoid a collision.
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Figure 4.8: Person Jaywalking Scenario leverages the cloud’s ability to do contingency
planning for the unlikely case that the pedestrian enters the street, allowing the AV to use
the cached plan quickly and avoid a collision.

4.7 Conclusion

We have presented an open-source platform for AV research. Pylot’s modular and
portable structure enables iterative development and evaluation of components in the con-
text of an entire AV pipeline. This approach to AV development supports the study of
interactions between modules, resulting in a better understanding of the effects of runtime
and accuracy on end-to-end driving behavior.

Pylot provides reference and ground-truth implementations for several components of an
AV pipeline. These state-of-the-art implementations have been used to both drive a real-
vehicle and attain a high score on the CARLA Challenge. In addition, we explore various
novel scenarios to enhance end-to-end driving safety of AVs using Pylot and ERDOS.
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Chapter 5

SuperServe: Fine-Grained Inference
Serving for ML Models

The increasing proliferation of ML models in AV’s decision making components at the
top of the stack coupled with the relative scarcity of resources at the hardware layer on the
bottom (Fig. 1.1) requires an efficient utilization of the available resources. This tension
is exacerbated by the speculative execution mechanisms enabled by D3 and ERDOS that
crucially rely on being able to efficiently serve multiple ML models at low latency to enable
components to meet their deadlines. However, modern inference serving systems either
choose a static point in the latency-accuracy tradeoff space to serve all requests, leading to
degraded accuracy under normal operating conditions, or load specific models on the critical
path of request serving, leading to missed deadlines.

In this chapter, we instead resolve this tension by simultaneously serving the entire range
of models spanning the latency-accuracy tradeoff space. Our novel mechanism, SubNetAct,
achieves this by carefully inserting specialized control-flow operators in pre-trained, weight-
shared super-networks. These operators enable SubNetAct to dynamically route a request
through the network to actuate a specific model that meets the request’s latency and accu-
racy target. Thus, SubNetAct can serve a vastly higher number of models than prior systems
while requiring upto 2.6x lower memory. More crucially, SubNetAct’s near-instantaneous
actuation of a wide-range of models unlocks the design space of fine-grained, reactive schedul-
ing policies. The remainder of this chapter explores the design of SuperServe, an inference
serving system that instantiates SubNetAct and explores the efficacy of various scheduling
policies to serve requests for ML models available in the AV.

5.1 Introduction

Recent advancements in machine learning (ML) techniques have unlocked vast improve-
ments in both accuracy and efficiency of a wide-variety of tasks [69, 229, 18, 108, 161, 286].
As a result, ML models have been quickly deployed across a wide-range of applications in
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both datacenters [343, 279, 233, 138, 228| and the edge [25, 231, 117, 187|, where they are
subjected to the stringent requirements of production applications.

Notably, ML models on the critical path of these applications must deal with unpredictable
request rates that rapidly change at a sub-second granularity. For example, web applications
in datacenters increasingly rely on ML models [343, 279], and have extremely bursty request
rates, with a 50x higher peak demand than average [183|. Similarly, as we discussed in
Chapter 2 and Chapter 3, D3 achieves major end-to-end driving safety benefits from rapidly
changing request rates for ML models (as well as the ML models themselves) as a function
of the terrain (city vs. freeway driving), time of the day etc. [117].

In the presence of these unpredictable request rates, ML inference serving systems that
cater to production applications must strike a careful balance between three requirements:

R1: Latency. Production applications have extremely stringent latency requirements,
quantified through a Service-Level Objective (SLO) [166]. For example, both web serv-
ing [279, 233, 132] in datacenters and AVs [117, 187] on the edge must maximize the number
of requests completed within a specified SLO ranging from 10 — 100 ms [117, 341].

R2: Accuracy. Production applications demand the highest-accuracy results possible
within the latency targets of their requests. For example, higher accuracy has been in-
tricately tied to a better user experience for web applications [327, 138]. Similarly, the
safety of an AV heavily relies on the accuracy of its different ML models [117, 119].

R3: Resource-Efficiency. Web applications at Facebook process 200 trillion ML model
requests daily [314] — a significant fraction of datacenter usage [233|. The proliferation of ML
models and their reliance on expensive resources such as GPUs, TPUs [5], AWS Inferentia [3§]
etc. has led to resource tensions in both datacenters and the edge [231|. Thus, inference
serving systems must make judicial use of these resources.

The first-generation of inference serving systems [79, 228, 80, 165, 225, 132, 341]| resolve
this tension by choosing a static point in the tradeoff space between R1-R3 and serving
all requests of an application using the chosen model. As a result, applications either miss
their SLO targets (R1) under bursty request rates or suffer degraded accuracy (R2) under
normal conditions. More recently, state-of-the-art inference serving systems [260, 342] enable
applications to register multiple ML models spanning the entire pareto frontier of latency
(R1) and accuracy (R2) targets, and automatically choose a model based on the incoming
request rates. To achieve this, these systems must either keep the entire set of models in
memory or rely on model switching to load the required models at runtime [342]. As GPU
memory remains the key bottleneck in both datacenter and edge [183, 231|, these systems
choose between R3 — effectively utilizing the resources (by incurring the prohibitive latency
penalties of switching models), or R1 — meeting SLO targets under bursty request rates.

Conventional wisdom in inference serving literature touts the “non-negligible provisioning
time [for ML models due to switching|, which can exceed the request processing times” as a
“key characteristic of ML workloads”, and “rules out reactive techniques” for responding to
bursty request rates [133]. This wisdom has been widely accepted [260, 79, 132] leading to
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the development of coarse-grained scheduling policies for inference serving that must account
for the enormous latency penalty of switching models when reacting to bursty request rates.
As a result, these coarse-grained policies typically avoid or minimize switching models by
design [260], and are hence, unable to optimally navigate the tradeoff space between R1-R3
under rapidly-changing, unpredictable request rates.

In this chapter, we challenge this conventional wisdom that forces a choice between R1
and R3. We describe a mechanism, SubNetAct, to simultaneously serve the entire range of
models spanning the latency-accuracy tradeoff space (R1-R2) in a resource-efficient manner
(R3). At the core of our mechanism are novel control flow operators that SubNetAct carefully
inserts into trained super-network [61, 264, 334] (SuperNet) neural architectures. SuperNets
enable a fine-grained latency-accuracy tradeoff (R1-R2) by training a set of shared model
weights for many neural networks, without duplication. Prior works [61, 264| propose efficient
mechanisms for training SuperNets for both vision and NLP tasks, but require each model
instance to be individually extracted for inference. This leads inference serving systems
to a similar choice as before — either load all individual models or switch between them
at runtime. However, SubNetAct’s novel operators obviate the need to extract individual
models and load them at runtime. Instead, SubNetAct dynamically routes requests within
one SuperNet deployment with negligible overhead, enabling near-instantaneous actuation
of different models. Thus, it unlocks orders of magnitude improvements in the navigation
of the latency-accuracy tradeoff space (R1-R2), while substantially reducing the memory
footprint (R3) (see §5.2).

In addition to being resource-efficient (R3), SubNetAct’s agility in navigating the latency-
accuracy tradeoff space (R1-R2) fundamentally changes the design space of scheduling poli-
cies. Instead of complex scheduling policies that must reason about future request rates in
a bid to avoid paying the latency of switching ML models dynamically under bursts, Sub-
NetAct enables the specification of simple policies that directly optimize for the key success
metrics: R1-R3. While conventional wisdom deems such reactive policies infeasible, we
explore one example point in this design space with a simple, yet effective policy that we
call SlackFit. SlackFit is a reactive scheduling policy that exploits the near-instantaneous
actuation property of SubNetAct to make fine-grained decisions about how many requests
to serve in a batch, and which latency /accuracy choice to select for serving in real-time.

We summarize the contributions of this chapter as follows:

e We introduce SubNetAct (§5.3), a novel mechanism that enables a resource-efficient,
fine-grained navigation of the latency-accuracy tradeoff space. SubNetAct achieves
this by carefully inserting novel control flow operators that dynamically route requests
through a single SuperNet.

e We unlock the design of fine-grained, reactive scheduling policies and provide a math-
ematical formulation of their objective (§5.4.1). We then propose SlackFit (§5.4.2),
a simple, yet effective greedy heuristic scheduling policy and show how it accurately
approximates the optimal objective.
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e We instantiate SubNetAct and SlackFit in a real-world system, SuperServe, a real-time
asynchronous model serving system with pluggable scheduling policies (§5.5).

o We extensively evalute SuperServe with both SlackFit and several state-of-the-art
scheduling policies (§5.6). We find that SuperServe achieves 4.67% higher accuracy
for the same SLO attainment and 2.85x higher SLO attainment for the same accuracy
on the real-world Microsoft Azure Functions trace.

5.2 Motivation

We first motivate the need for a reactive, fine-grained scheduling policy for handling
unpredictable, bursty request rates (§5.2.1). To meet the request SLO while maximizing
the response accuracy, we motivate the use of SuperNets (§5.2.2) that enable a fine-grained
exploration of the latency-accuracy tradeoff space (R1-R2) for multiple latency targets.

5.2.1 Reactive, Fine-Grained Scheduling

Prior works in inference serving systems [341, 183] have exhaustively analyzed both
production traces from Microsoft Azure Functions (MAF) [273] and synthetic application
traces with a goal of highlighting their bursty request arrival patterns. For example, Zhang
et al. [341] underscore the high coefficient of variance in request arrivals in production
traces [273]. Further, the authors claim that the bursty “sub-second request arrival pat-
terns |are| nearly impossible to predict”, thus frustrating the goal of meeting the stringent
SLO requirements (R1) of requests in an ML-based production applications.

A strawman solution to meeting SLOs under bursty request rates requires these systems
to load the entire set of models spanning the latency-accuracy tradeoff space into GPU
memory and switch between them as request rate fluctuates. While this reduces the latency
of switching models, allowing serving systems to rapidly degrade accuracy (R2) under bursts
to meet SLO targets (R1), it is resource-inefficient (R3).

As a result, state-of-the-art inference serving systems [342, 260| page models in and out
when required, to efficiently utilize GPU memory (R3). However, Fig. 5.1a shows that the
loading time of ML models into GPU memory is vastly more than the inference time, and
the gap widens as the model sizes increase. Thus, reactive approaches that either provision
resources or switch models upon arrival of bursty request rates must incur an actuation
delay (i.e., the latency penalty of loading ML models) on the critical path of request serving,
leading to an order-of-magnitude increase in missed SLOs (see Fig. 5.1b). In a bid to offset
this latency penalty, inference serving systems rely on predictive scheduling policies that
make coarse-grained estimations of future request arrival patterns [133]. Such policies are
bound to be suboptimal owing to the difficulty of predicting the short bursts in request
arrival rates coupled with their stringent SLO requirements [341].

We believe that the key to optimally serving bursty request rates instead lies in the ability
to rapidly switch between ML models thus obviating the need for coarse-grained predictive
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Figure 5.1: Fine-grained scheduling policies are beneficial. (a) The latency of loading
convolutional neural networks [139, 335, 195] and transformer-based neural networks [193]
is greater than their inference latency across multiple batch sizes, making model switching
expensive. This gap widens as model sizes increase, with a peak difference of up to 14.1x.
(b) The higher actuation delay (due to model loading) leads to up to 75x higher SLO misses
while serving the entire real-world, bursty MAF [273] trace. (c) A high actuation delay on
a snapshot of the MAF trace shows 2% of the requests missing their SLO (R1) as request
rates increase, and an inefficient utilization of resources (R3) as request rates decrease.

scheduling policies. To validate our hypothesis, we simulate a coarse-grained policy with an
actuation delay of 100ms and an ideal fine-grained policy with an actuation delay of Oms.
Fig. 5.1c plots the effects of these policies on a small bursty subtrace from the MAF trace.
We observe that the coarse-grained policy leads to higher SLO misses (R1) under increasing
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request rates and wasted resources (R3) under decreasing request rates. Conversely, the
fine-grained policy is able to instantaneously adjust to the request rates leading to no missed
SLOs and effective utilization of the GPU.

5.2.2 Weight-Shared SuperNets

The problem of navigating the pareto-optimal frontier of the latency-accuracy tradeoff
space (R1-R2) by finding highest accuracy ML models for a specific latency target is well
studied in ML literature. Conventional Neural Architecture Search (NAS) [349, 348, 290, 59,
190] couple the search and training of ML models to produce a single architecture with the
highest accuracy for a particular latency target. To satisfy multiple latency targets, these
approaches must repeat the prohibitively expensive train and search procedure.

To solve this issue, recent NAS works [334, 61, 264, 144] decouple the search and training
procedures by allowing multiple architectures to share their weights while training. These
approaches first train one SuperNet and then extract subsets of its layers to form multiple
SubNets, without requiring any further retraining. These SubNets are extracted to tar-
get vastly superior points in the latency-accuracy tradeoff space (R1-R2), as compared to
hand-tuned ML models. For example, Fig. 5.2 highlights the accuracy benefits of SubNets
extracted from a ResNet-based SuperNet when compared to the hand-tuned ResNets for an
equivalent number of FLOPs.

SuperNets enable a fine-grained exploration of the latency-accuracy tradeoff space (R1-
R2) by yielding specialized ML model architectures for a wide-variety of latency targets. This
is enabled by a search for multiple architectures, which relies on the following parameters:
(i) Depth (D), which describes the depth of a SubNet, (i) Expand Ratio (E), which describes
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layer-wise ratio of output to input channels of a convolution or number of heads of a multi-
head attention layer, and (4ii) Width Multiplier (W), which describes layer-wise fraction
of input and output channels/heads to be used. These parameters (D, E, W) create a
combinatorially large architecture space, ® (|®| ~ 10'?) [61], from which individual SubNets
are extracted statically for inference. However, this static extraction in prior work [334,
61, 264, 144] again yields individual models that must either be simultaneously deployed
(wasting resources; R3) or paged in as request rates fluctuate (missing SLOs; R1).

5.3 SubNetAct: Instantaneous ML Model Actuation

Motivated by §5.2, we seek to exploit SuperNets’ fine-grained exploration of the latency-
accuracy tradeoff to unlock the development of reactive scheduling mechanisms. To achieve
our goal, we introduce SubNetAct, which addresses the challenges posed by static extraction
of individual models in SuperNets, which force a choice between R1 and R3.

Key Idea. To resolve this fundamental tension, we make the key observation that by
virtue of performing architectural search post training, a SuperNet subsumes the entire
architectural space of SubNets. Specifically, we follow the training procedure of prior NAS
approaches [334, 61, 264, 144] to retrieve the architecture of the SuperNet, M, along with
its weights W!. The architecture of the SuperNet, M, captures the set of all layers and
weights that can be used in inference. Thus, instead of performing the search procedure
and extracting individual SubNets, SubNetAct automatically modifies M to introduce its
novel control flow operators. This allows SubNetAct to deploy the entire SuperNet M,
and dynamically route requests to the appropriate SubNet. §5.3.1 provides an overview
of SubNetAct’s novel control flow operators, and §5.3.2 describes the procedure by which
SubNetAct automatically inserts these operators into M.

SubNetAct exploits the weight-sharing among the SubNets of a SuperNet to enable a
memory-efficient model actuation mechanism (R3). Its fine-grained control flow opera-
tors near-instantaneously switch between SubNets in order to pick the optimal point in the
latency-accuracy tradeoff space (R1-R2).

5.3.1 SubNetAct’s Operators

SubNetAct’s key insight lies in the introduction of the three novel operators (Fig. 5.3) that
enable it to route requests to the required subnet dynamically and selectively use the trained
supernet’s weights. SubNetAct works on both convolution [61] and transformer-based [144]
supernets. The three operators introduced in SubNetAct are as follows:

LayerSelect operates at a block level in M, where each block is a collection of multiple
layers. The LayerSelect operator enforces control flow by either passing the input activation

"'We highlight that many NAS approaches make the trained M and W publicly available. Our evaluation
uses these trained models, and does not require any further re-training.
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Figure 5.4: SubNetAct’s memory savings. The memory used by the normalization
statistics is 500x smaller than the non-normalization layers. SubnetNorm decouples the
normalization statistics for each SubNet and provides accurate bookeeping thus enabling
high accuracy (R1), with minimal increase in memory consumption (R3).

to the wrapped layers in the block or skipping the block and directly forwarding the input
to the next block. In convolution-based SuperNets like OFAResNets [60], the LayerSelect
operator (de)-selects the bottleneck blocks [139]. In transformer-based SuperNets like Dyn-
aBert [144], the LayerSelect operator (de)-selects the transformer blocks (that consist of both
multi-head attention and feed-forward layers [313]).

SubNetAct takes as input the depth D, and dynamically executes blocks of M based on
D. Overall, this operator enables layer-sharing among subnets that differ in depth (®p C ®),
which reduces the GPU memory consumption (R3). For instance, for a SubNet with depth
D = 1, the blocks selected for execution by SubNetAct are shared with the SubNet with
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Figure 5.5: Efficacy of SubNetAct. (a) SubNetAct requires upto 2.6x lower memory
to serve a higher-range of models when compared to the ResNets from Fig. 5.1a and six
individual SubNets extracted from SuperNet |[61] (b) SubNetAct actuates different SubNets
near-instantaneously (< 1ms), which is orders of magnitude faster than the model switching
time. (c) SubNetAct’s instantaneous actuation of models enables it to sustain higher ingest
rates thus inducing a wide dynamic throughput range (= 2 — 8k queries per second) within
a Narrow accuracy range.

depth D = 2. Moreover, through skipping blocks based on D, LayerSelect enables near-
instantaneous (R1) switching of the SuperNet’s accuracy (R2) under bursty request rates.

WeightSlice operates at each layer in a block of M. For each layer, it dynamically selects the
slice of the SuperNet’s trained weights that participate in inference. SubNetAct determines
the number of channels in the Convolution or the number of heads in Multi-head Attention
layer based on the expand ratio (E) and width multiplier (W). The operator enables partial
layer-sharing among SubNets ({®g U ®w} C @), thus increasing the number of available
SubNet architectures. For example, for a SubNet with W = 0.5, WeightSlice selects the
first 50% channels or heads and shares its weights with the SubNet with W = 0.75. The
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combination of LayerSelect and WeightSlice enable SubNetAct to dynamically actuate the
entire set of latency-accuracy options (R1-R2).

SubnetNorm is specifically implemented for convolution-based SuperNets. We observe
that naively introducing the LayerSelect or WeightSlice operator leads to a significant drop
in SubNet accuracy (as low as 10%) in the convolution-based SuperNet. This is due to
the incorrect tracking of the mean (u) and variance (o) in normalization layers such as
BatchNorm [152]. The transformer-based SuperNet uses LayerNorm [39] which doesn’t re-
quire tracking of mean and variances, and hence doesn’t face this issue. To account for the
discrepancy in BatchNorm layers, SubNetAct introduces the SubnetNorm operator that pre-
computes and stores p and o for each possible SubNet by performing forward pass inference
on the training data. SubnetNorm takes as input a unique SubNet ID (7) and a layer ID ()
and outputs the pre-computed normalization statistics p;; and o; ;. The layer j then uses
the provided statistics to perform normalization of activations, effectively specializing j for
each SubNet 7. Although this bookkeeping increases the memory requirements of deploying
the SuperNet, Fig. 5.4 shows that the overhead of these non-shared normalization statistics
is 500x smaller than the memory requirement of the shared layers. SubNetAct can host
thousands of SubNets in memory by only keeping the statistics unique to each subnet and
sharing the non-normalization weights amongst all the SubNets.

Finally, we note that the input to these control flow operators (i.e., D, E, W) remains
similar to the inputs for architectural search in NAS [61]. Moreover, these inputs are inde-
pendent from the request served by the actuated SubNets, and are declaratively specified by
a scheduling policy (§5.4). Given the arrival rate, the scheduling policy chooses a specific
SubNet for a request (by specifying the control tuple D, E and W), which is then actuated
by SubNetAct near-instantaneously.

5.3.2 SubNetAct: Automatic Operator Insertion

We introduce SubNetAct’s control flow operators automatically. Specifically, the Lay-
erSelect operator is introduced at every stage of M, and each block within the stage (such
as Bottleneck in OFAResNets [61] or TransformerBlock in Dynabert [144]) is converted to
a boolean module whose boolean handle is tracked by the LayerSelect operator. Each con-
volution or attention layer of M is modified by wrapping it with the WeightSlice operator.
Finally, all the batchnorm layers in M are converted to the SubnetNorm operator with ad-
ditional information provided to it about each SubNet’s tracked statistics. The algorithm to
automatically enable control flow operations in M is provided in Algorithm 1.

5.3.3 Discussion: Efficacy of SubNetAct

We now highlight SubNetAct’s efficacy in achieving key application requirements (R1-
R3) under bursty request rates.

Reduced Memory Requirements. SubNetAct’s novel operators enable SubNets to share
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Input: Supernet Arch. M, Supernet Weights W, Tracked Mean and Variances
TrackedStats

newOperators = {}
for s € STAGES(M) do

1
2

3 // layerSelect operator selects layers within each stage

4 Is = LAYERSELECT()

5 newOperators|s| = {}

6 for m € GETMODULES(M, s) do

7 if m.type == Bottleneck || m.type == TransformerLayer then
8 bool select,, // boolean switch for layer

9 Mpew = TOBOOLMODULE(m, select,,)

10 // layerSelect controls boolean of stage’s layers

11 Is.REGISTERBOOL(select,y,)

12 end

13 else if m.type == Attention || m.type == Conv then
14 // WeightSlice applied to attn or conv layers

15 Mpew = WEIGHTSLICE(m.type, W [m.id)])

16 newOperators|s|[m.id] = Myew

17 end

18 else if m.type == BatchNorm then

19 // SubnetNorm only applied to BatchNorm

20 Mpew=SUBNETNORM (W [m.id], TrackedStats)

21 newOperators|s|[m.id] = Myew

22 end

23 MODIFYMODULE (M, m, Myey)

24 newOperators|s||"layerSelect"| = ls

25 end
26 end

27 REGISTERCONTROLFLOWOPS(M, newOperators)

Algorithm 1: Introducing SubNetAct Operators in Supernets. The algorithm
introduces control-flow operates to enable SubNetAct for latency/accuracy navigation.
The pre-requisites to enable SubNetAct are trained weights and architecture of the su-
pernet that are obtained from existing NAS approaches [334, 61, 264, 144].

layers in place and dynamically route requests to the appropriate SubNet based on the control
tuple (D, E, W). Thus, SubNetAct can simultaneously serve the entire range of models span-
ning the latency-accuracy tradeoff space while drastically reducing memory requirements.
Fig. 5.5a demonstrates the requirements of serving the same accuracy range by comparing:
(7) four different hand-tuned ResNets [139] (publicly available from prior literature), (i) six
uniformly sampled individual SubNets [61] from a ResNet-based SuperNet, and (i77) SubNe-
tAct that enables dynamic actuation of 500 SubNets. We highlight that SubNetAct reduces
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memory usage by up to 2.6x, while serving vastly more latency-accuracy tradeoff points.

Near-Instantaneous Model Actuation. While switching between individual models re-
quires loading their weights to the GPU, SubNetAct’s operators enable scheduling policies
to actuate any SubNet in place without incurring additional loading overhead. Fig. 5.5b
compares the time taken to perform on-demand loading of individual SubNets versus in-
place actuation of a SubNet in SubNetAct. We highlight that SubNetAct’s model actuation
is orders-of-magnitude faster than on-demand loading of ML models. This allows schedul-
ing policies that use SubNetAct to rapidly actuate lower-accuracy models under bursty
conditions (R1) and switch to higher-accuracy models under normal load (R2), without
coarse-grained predictions about future request rates.

Increased Throughput & Accuracy. Through its instant model actuation, SubNetAct
allows scheduling policies to rapidly scale the throughput of the system, thus inducing a
broad throughput range within a narrow range of accuracy to help meet SLOs (R1-R2).
Fig. 5.5¢ compares the maximum sustained ingest throughput for a point-based open-loop
arrival curve for serving the largest, smallest, and a median SubNet on 8 GPUs. We observe
that SubNetAct can serve a wide throughput range from 2000-8000 QPS, while being able
to increase accuracy between 74% to 80%.

5.4 Fine-Grained Scheduling Policies

SubNetAct’s resource-efficient (R3) near-instantaneous actuation of the entire latency-
accuracy tradeoff space unlocks the development of fine-grained, reactive scheduling policies.
These policies can quickly scale an inference serving system’s throughput upon arrival of
bursty request rates to ensure that the requests meet their SLO (R1) with the maximum
possible accuracy (R2). Specifically, upon a query’s® arrival to an inference serving system,
it invokes the scheduling policy, which must decide the following four decision variables:

e SubNet ¢ from the set of all possible SubNets ® available for actuation by SubNetAct.
As discussed in §5.3, a ¢ € ® is uniquely identified by the control tuple (D, E, W).

e Batch B of size | B| which groups the queries that are executed together on a GPU
using the SubNet ¢.

e GPU n upon which the batch B is executed.
e Time ¢ at which the batch B must be executed on GPU n.

In this section, we first start with the mathematical formulation of an optimal scheduling
policy that decides the above parameters (§5.4.1). We then describe our proposed policy
SlackF'it that approximates the optimal policy and aims to achieve both high accuracy and
SLO attainment (§5.4.2).

2We use the term query and request interchangeably.
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5.4.1 Optimal Scheduling Policy

We formulate an optimal scheduling policy with an oracular knowledge about all queries
as a Zero-One Integer Linear Program (ZILP). The policy’s decision is captured by the
variable I(¢, B,n,t) € {0,1}, which represents the decision to execute all queries ¢ € B
(from the set of all possible batches B) on GPU n at time ¢ with the SubNet ¢. The SubNet
¢ has an accuracy Acc(¢) and a latency profile (| B|), which is the latency of ¢ on the batch
size | B|. We use a(B) to refer to the earliest arrival time of all the queries ¢ € B, and d(B)
to refer to the earliest deadline. Intuitively, the policy’s goal is to maximize the accuracy of
the responses (to queries) within their SLO (R1-R2). This is represented in ZILP as follows:

maximize Z Z Z Z Acc(op -I(¢, B,n,t) (5.1)

n ¢ed BeB

s.t. ZZZ Z (¢, B,n,t) <1, Vg (5.1a)

n  ¢ed {B|qeB}

> > I(¢,Bn,t)<1,  Vn,t,¢ (5.1b)

BEB {1 <t<t'+1,(|B|)}

a(B)-1(¢,B,n,t) <t, Vn,t, B, ¢ (5.1c)
> I(¢,Bn,t) <1, Vn,t,B (5.1d)
ped
> (s(IBl) +1) - 1(¢,B,n,t) <d(B),  V¥n,t,B (5.1e)
ped
I(¢,B,n,t) € {0,1},  Vn,t,B,¢ (5.1f)

The ZILP maximizes the number of queries that satisfy their latency SLOs with the highest
possible accuracy across all the selected query batchesi.e., V(¢, B) : I(¢, B,n,t) =1, Acc(¢)-
| B| is maximized. The constraints of the ZILP denote:

(1a) A query ¢ can be assigned to at most one batch B.

(Ib) A GPU n can only execute a single SubNet ¢ on a single batch B at a time t.

(1c) Batch B can only execute after its arrival time a(B).

(1d) Batch B can be served with a maximum of one SubNet ¢ on a GPU n at a time t.
(le) The batch B should complete before its deadline d(B).

(1f) The choice variable I(¢, B,n,t) is a boolean indicator.

Given that solving the above ZILP is NP-Hard [232, 341] and it is impractical to expect
oracular query arrival knowledge, it cannot be used to serve models online. Instead, we
approximate its behavior with a heuristic, online scheduling policy.
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Figure 5.6: Latencies of SlackFit’s Control Parameter Space. Latencies for six dif-
ferent (uniformly sampled wrt. FLOPs) pareto-optimal SubNets in SubNetAct as a function
of accuracy (x-axis) and batch size (y-axis) shown for transformer and convolution-based
SuperNet. The latency increases monotonically with batch size (P1) and accuracy (P2).

5.4.2 SlackFit: Online Scheduling Policy

We introduce SlackFit—a simple yet effective scheduling policy that aims to maximize
the accuracy (R1) with which the requests meet their SLO (R2). SlackFit approximates
the ILP-based policy in Eq. (5.1) and enables tractable decision making through two phases:

Offline Phase triggered upon the registration of a SuperNet M modified by SubNetAct
(§5.3.2) that the inference serving system must serve. This phase consists of two stages:

1. Profile pareto-optimal SubNets ®,a.et0: To make SubNet choices in reasonable
time, SlackFit makes the design decision to operate on ®pureto instead of . Dpyreo is
the set of pareto-optimal SubNets with respect to latency and accuracy obtained by
using the search stage of prior NAS methods [61]*. The size of |®pareto| & 10% is orders
of magnitude smaller than |®| ~ 10!, contributing to rapid scheduling decisions.

2. Bucketize SubNet ¢ and batch size |B| choices: As discussed in §5.4, SlackFit
must decide the SubNet ¢ € ®paet0 and the batch size |B| for the incoming queries.
To reduce the search space for this decision, SlackFit relies on three key properties of
SubNets in ®pureto (visualized in Fig. 5.6): P1: the latency increases monotonically
with batch size as observed by prior works [79, 132, 80|, P2: the latency increases
monotonically with accuracy due to the choice of SubNets retrieved by NAS in ®paet0,
and P3: lower accuracy SubNets can serve higher batch sizes at similar latencies to
lower batch sizes in higher accuracy SubNets, due to the SubNet’s FLOPs distribution
shown in Fig. 5.7.

These properties enable SlackFit to reduce the search space of choices for ¢ and |B| to a
single dimension — batch latency. Thus, SlackFit constructs evenly-spaced buckets be-
tween the minimum and maximum latency of all SubNets in @ et (1€, lg,,.. (| B| = 1)

3Tt takes < 2 minutes to perform this NAS profiling on SuperNets.
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Figure 5.7: FLOPs for SlackFit’s Control Parameter Space. FLOPs for six different
pareto-optimal SubNets in SubNetAct as a function of accuracy (x-axis) and batch size (y-
axis) shown for both transformer and convolution-based supernet. The FLOPs are monotonic
with batch size and accuracy. This trend in FLOPs forms the analytical basis of the trend
in the inference latency of these models (as shown in Fig. 5.6).

and ly, .. (|B| = 16) respectively, where ¢y, and ¢y,q, are the lowest and highest accu-
racy SubNets; using properties P1-P2). Within each bucket, SlackFit chooses the (¢,
|B’|) with the highest |B’| such that [4(|B’|) is less than the bucket’s latency. By P3,
low latency buckets contain lower accuracy ¢, higher |B| (leading to higher through-
put), and higher latency buckets contain higher accuracy ¢ and lower |B| (leading to
lower throughput).

Online Phase of SlackFit is triggered upon the arrival of queries or the availability of a
GPU n to the serving system. The key insight of the online phase is that the remaining slack
of the query with the earliest deadline provides a proxy to changes in the traffic. Specifically,
bursts in traffic increase queuing delays which reduces the available slack, while slack remains
high under normal conditions.

Thus, SlackFit chooses a bucket (¢, |B|), where [,(]|B]) is closest to but less than the slack
of the query with the earliest deadline. It then packs |B| queries with the earliest deadline
into a batch B and executes it on an available GPU n at time ¢.

By making decisions based on the minimum remaining slack, SlackFit can automatically
adjust accuracy (R2) and throughput of the system by choosing appropriate latency bucket
on variable arrival traffic to maintain high SLO attainment (R1). Under normal conditions,
a higher slack leads to the choice of buckets with higher [4(|B|), which is strongly correlated
with the choice of higher accuracy models (P2). Conversely, bursty request arrivals lead to
buckets with lower /(| B|), as SlackFit operates under reduced latency slack. These buckets
maximize |B| (due to P3), thus opportunistically maximizing accuracy while satisfying SLO.
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SlackFit’s Approximation of Optimal Offline ZILP

We now provide insights on how SlackFit emulates behavior of the optimal offline ZILP.
To understand the behavior of ZILP, we formulate a proxy utility function that captures
the inner-term of the ZILP objective function in Eq 5.1, the utility function is defined for a
SubNet ¢, batch size |B| and the earliest deadline dp among all queries:

Acc(g) - |Bl, it ly(|B]) < dg

) (5.2)
0, otherwise

U(¢,[Bl, ds) :{

This utility is non-zero iff SubNet ¢ performs inference on batch size | B| within the deadline
dp, and is zero otherwise. This maximizes both the number of queries processed within their
SLO (R1) and the accuracy of their responses (R2).

A. ZILP and SlackFit prefer pareto-optimal SubNets. SlackFit’s key design choice
is to operate on pareto-optimal SubNets with respect to latency, accuracy (Ppareto) (§5.4.2).
We claim that the ZILP also tends towards pareto-optimal SubNets (with respect to latency,
accuracy), as these SubNets yield higher utility.

Lemma 5.4.1 The utility of pareto-optimal SubNets is higher than non pareto-optimal Sub-
Nets if they have similar inference latency for a batch of queries.

M(QSp?’B‘adB) >U<¢q7’B‘7dB)a VBadB
s.t. pr € (I)paretm gbq € {(I) \ q)pareto}y l¢p(|B|) ~ l¢q(|B|)

Proof By Contradiction. Assume a non-pareto optimal SubNet (¢,) such that it has
higher utility than pareto optimal SubNet (¢,) for a batch B and Iy, (B) ~ Iy, (B) i.e.,
U(¢p, B, dB) < U(¢q, B, dB)

Now, due to the pareto optimal property Acc(¢,) > Acc(¢,), this implies Acc(e,) - |B| >
Acc(¢q) - | B| which implies U(¢,, B, dg) > U(¢q, B, dg) for any delay dp as ly,(B) = s, (B).
This is contradiction. Hence Proved.

This validates SlackFit’s design choice to operate on pareto-optimal SubNets only.

B. ZILP and SlackF'it prioritize lower accuracy & higher batch sizes under bursts.
We make a key observation that the utility of a lower accuracy, higher batch size (o, | Bhign|)
configuration is higher than a higher accuracy, lower batch size (¢pign, |Biow|) configuration

in ®pareto- This is because the factor difference in accuracy of SubNets in ®pareto (< 1) is

less than the factor differences of batch sizes as seen in Fig. 5.6 i.e., fccc(é};"gh)) < ‘g}:”hﬂ =

Acc(d)high) ' |Blow| S ACC(¢low> ' ’Bhigh|- Therefore, U(¢low; |Bhigh|7dq) Z U(¢high7 |Blow|7dq)
may hold true under bursts, in cases where the query ¢ with the earliest deadline in a batch
of k queries (¢ € By) can be served either by: a) low accuracy model (¢y,:,) with batch
size |By| or b) higher accuracy model (¢;,4,) on a subset of queries (say m, ¢ € B,,) with
remaining queries (By \ By,) missing the deadline due to high load. In such cases, the optimal
offline ILP will tend to option (a), similar to SlackFit.
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C. ZILP and SlackFit prefer higher accuracy under normal conditions. We make
another observation from the latency profiles of SubNets from ®puet0 in Fig. 5.6. For a
batch size |B|, such that |B| = |By| + |Bz| where |B;| > |Bs|, the following holds true in
many cases - By - Acc(@pign) + Bz - Acc(Prow) > B - Acc(Pmiq). Therefore, U(dpign, Bi, dy) +
U(¢iow, B2, d(B2)) > U(¢mia, B, d,), may hold true under low load, where the query ¢ in
batch B can be served by either: a) mid accuracy model (¢,,;4) with batch size B, or b) high
accuracy model (¢p;,,) with larger partition By (¢ € B;) with rest of the queries in batch
By served with the low accuracy model (¢0,) and meeting deadline d(Bs). In such cases,
ILP will tend to option (b) i.e., an option with higher average accuracy, similar to SlackFit
(as described in §5.4.2).

5.5 SuperServe: System Implementation

SuperServe is a system that instantiates both the SubNetAct mechanism and the SlackFit
policy. SuperServe’s architecture is illustrated in Fig. 5.8. Clients first register the SuperNet
that they want SuperServe to serve, which invokes SubNetAct to automatically insert the
control flow operators for dynamic actuation of SubNets (§5.3.2). SuperServe then profiles
the SuperNet to enable SubNetAct to operate on the pareto-optimal SubNets.

SuperNet Profiler. The profiler employs neural architecture search (NAS) [61] to find
pareto-optimal SubNets from the SuperNet for each latency target. The latency of each
SubNet is a function of the batch size and the environment of execution (i.e., the GPUs on
the available workers). We emphasize that the NAS and the model profiling is efficient, taking
< 2 minutes to complete, and providing significant benefits for the online phase of SlackFit.
Moreover, state-of-the-art systems perform similar model profiling for non SuperNet models
(e.g., ResNets [139], Wide-ResNets [335], ConvNeXt [195] etc.).

Post SuperNet registration, the clients submit queries to the SuperServe router with a
deadline via RPC asynchronously. These queries are enqueued to a global earliest-deadline-
first (EDF) queue (@). As soon as any worker becomes available, SuperServe’s fine-grained
scheduler is invoked (@). It decides on the query-batch (B) and the subnet (¢) which
are then dispatched to the worker (®). Upon receiving this query-batch, the worker that
instantiates the supernet instantaneously actuates the chosen subnet in-place on the GPU
using SubNetAct (@), performs inference (@), and returns predictions for the query-batch
(®). The router redirects these predictions back to the client (@). We discuss the critical
components of SuperServe below:

Router. The router runs the fine-grained scheduling policy and interacts with workers
via RPCs. All queries are received, enqueued, and dequeued asynchronously in the router.
It maintains pending queries in a global EDF queue, ordered by query deadlines (SLOs).
The router invokes the scheduler whenever (a) a worker signals availability and (b) the EDF
queue is not empty. It sends query-batches decided by the scheduler to workers and returns
the predictions to the clients.
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Figure 5.8: SuperServe’s Architecture comprises of a SuperNet profiler, a router, a
fine-grained scheduler (SubNetAct), and GPU-enabled workers. Clients register SuperNets
for ERDOS to serve, whose profiling and insertion of control-flow operators is done before
queries arrive. Clients submit queries to the router with a specified SLO asynchronously.
The query follows the critical path @ - @.

Fine-Grained Scheduler. The scheduler’s control decision is a batch-size and subnet
(¢ = (D,E,W)). The scheduler provide pluggable APIs for different policy implementations.
SlackFit is one such policy implemented in the scheduler. All policies in scheduler leverage
two key properties to make control decisions: (a) predictability of DNN inference latency,
(b) fast actuation of SubNetAct on the query’s critical path.

Worker. The DNN worker employs the SubNetAct mechanism to host a SuperNet (R3).
SubNetAct’s operators are implemented in TorchScript’s intermediate representation (IR)
[306]. After receiving a query-batch and SubNet (D, E, W) from the router, the worker
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actuates the desired SubNet using SubNetAct. A forward pass on the actuated SubNet
produces predictions that are returned to the router. The router is notified about worker
availability on receiving the predictions.

5.6 Evaluation

We assess SuperServe’s end-to-end performance i.e., its ability to maximize SLO attain-
ment (R1) and accuracy (R2) under a variety of traffic conditions, including synthetic traces
(§5.6.2) and a real-world Microsoft Azure Functions trace (§5.6.3). SuperServe is resource-
efficient (R3) due to the use of SubNetAct mechanism, already established in §5.3.3. We
conclude with microbenchmarks (§5.6.4) that show SuperServe linearly scaling to 33,000 qps
and providing transparent fault tolerance.

5.6.1 Experimental Setup

Success Metrics. SLO attainment is defined as the fraction of the queries that complete
within the latency deadline (R1). The mean serving accuracy is calculated for the queries
that satisfy the SLO and is the average of models’ profiled accuracy that were used to serve
the queries (R2).

Traces. We evaluate SuperServe on three sets of traces: bursty, time-varying, and real-
world. Bursty and time-varying traces are synthetic, similar to those used in InferLine [80].
We construct the bursty traces by starting with a base arrival with mean ingest rate A, (with
CV? = 0) and add a variant arrival trace with mean ingest rate A\, drawing inter-arrival
times from a gamma distribution (Fig. 5.11a). We vary A, A\, and CV?2.  Time-varying
traces differ from bursty by varying the mean ingest throughput over time. We change the
mean from = 1/ to u = 1/)y at rate 7 q/s? with a fixed CV2. Higher ingest acceleration
7 q/s? corresponds to faster change from \; to Ay. All synthetic trace generation is seeded.
Lastly, we use a MAF trace [273] for evaluation on a real-world workload.

Baselines. We compare SuperServe with the single model serving systems that don’t per-
form accuracy trade-offs (and the models are manually selected by users, non-automated
serving systems in §5.7). These systems are represented as Clipper™ baseline and include
systems like Clipper [79], Clockwork [132], and TF-serving [228]. Clipper™ is manually con-
figured to serve six different accuracy points (SubNets) that uniformly span the SuperNet’s
accuracy range and result in its six different versions. We also compare SuperServe with IN-
FaaS and note that INFaaS is designed to “pick the most cost-efficient model that meets the
[specified| accuracy constraint” [105, 260, 259|. However, in the presence of unpredictable,
bursty request rates, the choice of the model accuracy to serve in order to meet the SLO
requirements is unknown. Since, unlike SuperServe, INFaaS does not automatically discover
the accuracy of the model to serve under unpredictable request rates and instead requires
queries to be hand-annotated with accuracy thresholds, we choose to run INFaaS with no
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Figure 5.9: SuperServe with variable burstiness. SuperServe outperforms Clipper™
and INFaaS baselines by finding better tradeoffs and consistently achieving > 0.999 SLO
attainment on bursty traces. Variable ingest rate A\, = {2950,4900,5550} q/s increases
vertically (down). CV?2 = {2,4,8} increases horizontally (across). SuperServe achieves a
better trade-off in SLO attainment (y-axis) and mean serving accuracy (x-axis) in all cases.
SuperServe consistently achieves high SLO attainment > 0.999.

accuracy thresholds provided (§5.6.2, §5.6.2). In such a scenario, INFaaS reduces to serv-
ing the most cost-efficient model (which is the model with the minimum accuracy). We
confirmed this behavior with the INFaaS authors, who agree that “lour| representation of
INFaaS as a baseline that always chooses the same model is correct in the absence of an
accuracy threshold, or a fixed (never changing) accuracy threshold.” [105].

SubNet-Profiling. We use a ResNet-based SuperNet trained on ImageNet [91] released by
[61] and enable SubNetAct in it. We extract pareto-optimal SubNets (®pareto) by running
NAS (publicly released by [61]) on the trained SuperNet. The pareto-optimal SubNets in the
SuperNet span 0.9 — 7.5 GFLOPs range and an accuracy range of 73 — 80%. The SubNets
are profiled with varied batch sizes on NVIDIA RTX2080Ti GPU.

Test-Bed. SuperServe is implemented in 17.5k lines of C++. gRPC [129] is used for com-
munication between the client, the router and workers. The experiments use 8 RTX20807Ti
GPUs and 24 CPU cores, with each worker assigned one GPU.

5.6.2 End-to-End: Synthetic

We aim to answer the following questions, whether SuperServe (a) automatically serves
queries using appropriate models (accuracy) for different traces (R2), (b) achieves a better
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Figure 5.10: SuperServe with arrival acceleration. SuperServe outperforms Clipper™
and INFaaS baselines by finding better tradeoffs on time varying traces. Mean ingest rate
accelerates from \; to Ay q/s with 7 ¢/s. 7 = {250, 500, 5000} increases horizontally (across),
while Ay = {4800, 6800, 7800} increases vertically (down) with A\; = 2500 q/s and C'V? = 8
staying constant. SuperServe finds a better trade-off in SLO attainment (y-axis) and mean
serving accuracy (x-axis).

trade-off with respect to the success metrics (R1-R2), (c) withstands sharp bursts while
maintaining high SLO attainment (R1) and (d) instantaneously changes system throughput
where mean ingest rate changes over time. To answer these questions, we evaluate SuperServe
on the bursty and time-varying traces (§5.6.1).

Baseline comparison with burstiness

Fig. 5.9 compares SuperServe with the baselines over a range of traces increasing mean
ingest rate )\, across and C'V? down. All traces are configured with 36ms SLO. Achieving
high SLO attainment (R1) and high mean serving accuracy (R2) is desirable, which implies
the best trade-off is in the top-right corner of the graph. We demonstrate that no single
choice of a model is sufficient for different mean arrival rates and C'V2. For instance, the
SLO attainment of Clipper™(76.69) decreases as the C'V.? increases for A\, = 5550 (row 3).
Similarly, the SLO attainment of Clipper™(78.25) decreases with increase in A, for CV? = 2
(column 1). We draw the following takeaways: (1) SuperServe achieves a significantly better
trade-off between SLO attainment and accuracy (R1-R2) than the baselines (Clipper™ and
InFaaS). It is 4.33% more accurate than the baselines at an SLO attainment level of 0.9999
and 2.06x higher SLO attainment at the same accuracy level. SuperServe is consistently
at the top-right corner in Fig. 5.9 across all the traces. (2) SlackFit automatically selects
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appropriate models for sustaining different traffic conditions. As A, increases, SuperServe
reduces serving accuracy while maintaining high SLO attainment (columns).

Note that, across all the traces, InFaaS achieves an optimal SLO attainment but with
a significantly smaller mean serving accuracy (by up to 4.33%) than SuperServe. InFaaS’s
policy serves the min-cost (and hence min accuracy) model for the trace without accuracy
constraints. Whereas, SuperServe achieves a better trade-off between the success metrics
because (a) SubNetAct allows in place activation of different SubNets without affecting SLO
attainment (R1); (b) SlackFit opportunistically selects higher accuracy models based on
query’s slack (R2). Also, the difference between SuperServe and Clipper™ narrows with
respect to accuracy as C'V2 increases, since SlackFit switches to lower accuracy models more
frequently with burstier traffic.

System Dynamics

We also derive key observations from the dynamics to understand how SuperServe achieves
high SLO attainment and better trade-offs (R1-R2) for synthetic traces.

Fig. 5.11 shows the system dynamics of SuperServe for both bursty and time-varying
traces. The mean ingest rate of the bursty traces is 7000 qps and they vary in CV? = {2,
8}. Similarly, in case of the time-varying traces, the ingest rate is increased from \; qps to
A2 qps at varying accelerations 7 = {250 ¢/s?, 5000 ¢/s*}. The control decisions made by
SlackFit (subnetwork (accuracy) and batch size) are shown over time.

Fig. 5.11a shows system dynamics for the bursty traces. The trace with CV? =
(blue line) has higher spikes than the trace with C'V? = 2 (orange line). First, note that
SuperServe operates at an accuracy range of 76 — 78% and never selects a higher accuracy
subnetwork such as the subnetwork of 80.16% accuracy. This is because the subnetwork of
80.16% accuracy diverges at the mean ingest rate of 7000 gps (also seen in Fig. 5.9 last row).
Hence, SuperServe automatically selects appropriate subnetworks for different mean ingest
rates. Moreover, SuperServe uses lower accuracy models more frequently with increasing
CV?2. This is because increased jitter reduces query slack, causing SlackFit to pick lower
latency buckets more often. This corroborates the trend seen in Fig. 5.9 where the mean
serving accuracy of SuperServe monotonically decreases as C'V? increases. Lastly, during
the load spikes, SlackF'it usually selects control parameters with high batch size and smaller
subnetwork (§5.4.2). This control decision allows SuperServe to drain the queue faster,
resulting in a high SLO attainment on the traces (R1).

Fig. 5.11b shows the system dynamics for the time-varying traces. 7 = 5000 ¢/s* (blue
line) increases the ingest rate from 2500 qps to 7400 qps faster than 7 = 250 ¢/s®. For
both the traces, SuperServe dynamically changes the accuracy from ~ 79.2 to ~ 77.5 as
mean ingest rate increases. SuperServe’s ability to dynamically adjust accuracy helps it
achieve a higher mean serving accuracy (R2) compared to serving a single model statistically.
Moreover, for 7 = 5000 ¢/s?, SuperServe jumps to lower accuracy and higher batch size
control parameters quickly. While, for for 7 = 250 ¢/s? SuperServe uses intermediate
models to serve the intermediate ingest rate during ~ 60 — 80 seconds. A higher 7 value
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Figure 5.11: System Dynamics on Synthetic Traces. Accuracy and batch size control
decisions shown over time in response to ingest throughput (q/s). (a) bursty traces A =
7000 = (A, = 1500) + (A, = 5500) with burstiness of CV,> = 2 (orange) and CV? = 8 (blue).
(b) time varying traces accelerate from A; = 2500 q/s to Ay = 7400 q/s with acceleration
7 = 250q/s* (orange) and T = 5000¢/s? (blue). Batch size and subnetwork activation control
choices over time show how SuperServe reacts to each of the four plotted traces in real time.
This illustrates dynamic latency/accuracy space navigation.

forces query’s slack to reduce drastically. Hence, SlackFit rapidly switches to selecting control
parameters of smaller subnetwork and higher batch size from the low latency buckets (§5.4.2)
to satisfy deadlines (R1). Therefore, increase in 7 decreases mean serving accuracy (a trend
observed in Fig. 5.10 across the rows).

Baseline comparison with arrival acceleration

Fig. 5.10 evaluates SuperServe’s performance at different levels of arrival rate change
(i.e., arrival acceleration). Traces start at A; and increase to Ay with acceleration 7. Traces
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fix \; = 2500gps and C'V;? = 8 but change A\, and acceleration 7 .

The 7 and Ay are chosen to demonstrate that single, pre-configured model choices are
inadequate to sustain different rates of arrival (mean \) and acceleration (7). Clipper™(79.44)
starts diverging as 7 increases ( Ag is 6800 gps (row 2)). Similarly, Clipper™(79.44) starts
diverging with increase in Ay (7 = 250 ¢/s?® (column 1)). The key takeaways from this
experiment are as follows:

e SuperServe rapidly scales system throughput and achieves a high SLO attainment
(0.991-1.0) even with high values of 7 (5000 ¢/s?). The experiment demonstrates
two key properties of SuperServe— (a) the actuation delay in SuperServe is indeed
negligible, (b) the lower actuation delay helps achieve higher SLO attainments for time-
varying traces (R1). SuperServe empirically demonstrates “agile elasticity” (§5.2), and
withstands high acceleration in arrival rate (7).

e SlackFit dynamically adjusts the serving accuracy over time (R2) and achieves a better
trade-off between success metrics (R1-R2). When the mean ingest throughput is low
(A1), SuperServe uses higher accuracy models. It quickly switches to lower accuracy
models when mean arrival rate is high (\g), as evident in system dynamics Fig. 5.11b.

Fig. 5.10 experiments exhibit interesting trends. As the 7 increases, the gap between
SuperServe and Clipper™ with respect to mean serving accuracy narrows. This is because
SlackFitselects smaller accuracy sooner with the increase in 7. Lower 7 values give enough
time to SuperServe to serve intermediate mean arrival rates with higher accuracy models
while gradually moving to lower accuracy models as mean ingest rate increases to Ay qps.
Whereas, InFaaS continues to serve min accuracy model for all traces as its policy doesn’t
maximize accuracy by design.

5.6.3 End-to-End: Real Workloads

We investigate if: (a) SlackFit is capable of achieving a better trade-off between SLO
attainment and mean serving accuracy on real workloads (R1-R2), and (b) SubNetAct
contributes to serve highly unpredictable workloads at high SLO attainment.

We use the MAF trace [273] to evaluate SuperServe (similar to Clockwork [132]). The
trace is collected on Microsoft’s serverless platform and serves as a reasonable workload
to evaluate SuperServe as serverless ML inference is an active research area [332, 155|. It
consists of number of invocations made for each function per minute and contains nearly
46,000 different function workloads that are bursty, periodic, and fluctuate over time. We
use 32,700 function workloads from the MAF trace, resulting in a mean arrival rate of 6400
gps. The 24 hour long trace is shrunk to 120 seconds using shape-preserving transformations
to match our testbed.

Result. Fig. 5.12a compares SuperServe with Clipper™ and InFaaS on the real-world MAF
trace. SuperServe achieves an SLO attainment (R1) of 0.99999 (five '9’s). Compared to
Clippert and InFaaS , SuperServe is 4.65% more accurate (R2) at the same level of SLO
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Figure 5.12: SuperServe on a Real World Trace. SuperServe on Microsoft Azure Func-
tions (MAF) [273] trace. (a) SuperServe is compared with Clipper™ and INFaaS baselines,
reaching 4.67% higher accuracy at same SLO attainment and 2.85x higher SLO attainment
at same accuracy than any fixed accuracy point that can be served by INFaaS (in the absence
of accuracy constraints) and Clipper™. (b) System dynamics w.r.t. batch size and SubNet
activation control decisions over time in response to ingest rate in the top graph.

attainment. It also achieves a 2.85x factor improvement in SLO attainment at the same
mean serving accuracy. Moreover, Clipper™(79.44, 80.16) diverges on the MAF trace.

System Dynamics. Fig. 5.12b shows the ingest throughput (qps), serving accuracy and
batch size control decisions (made by SlackFit) for the MAF trace. As seen in the figure,
the trace contains periodic short-interval spikes that reach upto 8750 qps, demonstrating
the agility of the system. SlackFit selects both smaller accuracy model and higher batch
size during the load spikes to meet the deadline (R1). SlackFit makes such control decisions
because it uses query’s slack as a signal to maximize batch size. As the query slack decreases,



5.6. EVALUATION 86

0.9999 + + + + £
0.999 ! 1 < 60000 e
] : : 9 m —e— |deal PR
. 1 1 %)
1 1
|

£ 30000 —e— Actual (0.999 SLO att.)

>
Fes 33060
S 10000
¢ d 7000
z = 4000
H*
% 5
z k7
0 10 20 30 40 50 60 1000 2 4 8 16 32
Timeline (s) Number of workers
(a) Fault-Tolerance (b) Scalability
MaxAcc —— MaxBatch —— SlackFit
1.000 ‘ ﬁﬁ
_—
,.0.975 -
5 ’//
£
£oss0, 1
£ 0.04~ -
@
g 002 @ CVi=2 ¢ cvi=s

2
0.00 A Cvi=4

7790 77.95 7800 7805 78.10 78.15 78.20
Mean serving accuracy (%)

(c) Policy Space Exploration

Figure 5.13: SuperServe’s Micro-benchmarks. (a) SuperServe resiliency to faults.
SuperServe maintains high SLO attainment in the system by dynamically adjusting served
accuracy as workers drop out over time. The trace stays statistically the same (A = 3500
aps, CV2 = 2 (last row)). (b) SuperServe scales linearly with the number of workers,
achieving up to 33000 qps (orders of magnitude higher than published SotA systems) while
maintaining high .999 SLO attainment. (c) SlackFit finds the best tradeoff on the SLO
attainment/accuracy maximization continuum automatically (§5.6.4).

it selects maximum batch size control parameters in the lower latency buckets. Furthermore,
these control decisions increase the system throughput instantly through SubNetAct. Lastly,
SlackFit serves higher accuracy models when the ingest rate is low and hence, achieves better
mean serving accuracy (R2).

5.6.4 Microbenchmarks

Fault Tolerance. SubNetAct mechanism provides an additional advantage of transparent
fault tolerance. We run SuperServe with 100% capacity (8 workers) with a bursty traffic
trace (A = 3500 qps, C'V.2 = 2) for 60 seconds and gradually kill a worker every 12 seconds
to simulate faults. SuperServe shows resilience to decreases in system throughput to as low as
50% by maintaining SLO attainment as high as 0.999 for the unchanging trace as it leverages
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subnetwork activation to serve lower accuracy models automatically. Similar methodology
was used in [316].

Fig. 5.13a shows SLO attainment as a function of time (along with other system dy-
namics). As the faults occur (workers killed, dotted red lines), SuperServe automatically
transitions to lower accuracy models to maintain high SLO attainment. We attribute Su-
perServe’s fault tolerance to (a) a wide-dynamic throughput range afforded by SubNetAct
(Fig. 5.5¢) that allows SuperServe to serve the workload even with 50% capacity, and (b)
SubNetAct’s low actuation delay that provides agility to rapidly increase system-throughput
(during faults) without sacrificing SLO attainment (R1).

Scalability.  We assess if SuperServe reaches high SLO attainment at scale. To show
this, we scale the number of workers and observe the maximum throughput SuperServe
sustains to reach SLO attainment of 0.999. We serve ResNet-18 [139] across all the workers
with clients providing a batch of 8 images*. Scalability experiments are conducted with
CV?2 = 0. Fig. 5.13b shows sustained ingest throughput with the increase in workers. In this
experiment SuperServe achieves an SLO attainment of 0.999 while reaching throughputs as
high as ~ 33000 gps.

Policy Space Exploration. We now compare the following different scheduling policies:

e MaxBatch Policy: This policy first maximizes the batch size and then the accuracy.
It greedily finds a maximal batch size (b) for the smallest accuracy subnetwork that
fits within latency slack #.Within the chosen batch size MaxBatch finds the maximum
accuracy subnetwork (s) such that the profiled latency L(b,s) < 6 . It returns the
control choice (b, s). This policy leverages insights (I1) and (I2). It takes O(log(B))
operations to find b and O(log(S)) operations to find s (binary search on monotonically
increasing latency with respect to batch size and accuracy). As a result, this lightweight
policy scales well with the profile table, taking only O(log(B) + log(S)) operations to
make control decisions.

e MaxAcc Policy. MaxAcc first maximizes the accuracy and then the batch size.
Mirroring MaxBatch, MaxAcc performs a binary search for the largest accuracy (s)
with L(1,s") < 0 first. Then, it finds the maximal batch size (0') keeping the subnet-
work choice fixed to the chosen s, such that L(b,s’) < 6 ms. Similarly to MaxBatch
policy, it leverages insights (I1) and (I2) and takes O(log(B) + log(S)) operations to
return the control choice (', s').

e SlackFit Policy.  This is our best performing policy. At a high level, SlackFit
partitions the set of feasible profiled latencies into evenly sized latency buckets. Each
bucket consists of control tuples (b, s) with L(b, s) within the range of bucket width.
Then the policy chooses a bucket with latency < #. Finally, from the choices within
the selected bucket, it picks the control choice that maximizes batch size. Intuitively,

4We don’t perform adaptive batching for this experiment
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selecting control parameters closest to slack 6 configures the system to operate as
close to capacity as possible.In other words, choices with latency less than that either
reduce the throughput capacity or the serving accuracy, eventually lowering system’s
SLO attainment and accuracy. This draws on the monotonicity insights (I1) and (I2).
SlackFit’s novelty is in insight (I3). We observe that SlackFit dynamically detects
and adapts to the runtime difficulty of the trace. A well-behaved trace (e.g., low
ingest rate, variation, acceleration) results in higher 6. Higher 6 leads to the choice of
higher latency buckets. And higher latency buckets are correlated strongly with fewer
control tuple choices (Fig. 5.6), maximizing the probability of choosing higher accuracy
models. Conversely, mal-behaved traces (higher ingest rate, variation, acceleration)
lead to lower latency bucket choices, as the scheduler is operating under much lower
0 conditions. There are more control choices in lower latency buckets, which leads to
control tuples within those buckets to favor higher batch sizes. This leads to processing
the queue faster.

In Fig. 5.13c we show that SlackFit achieves the best tradeoff with respect to our suc-
cess metrics compared to both MaxAcc — a policy that greedily maximizes accuracy and
MaxBatch — a policy that greedily maximizes batches. The traces used mean A = 7000
aps (A = 1500) + (A, = 5550)) and CV? € {2,4,8}. SlackFit reaches the highest SLO
attainment(0.999) for all CV2. MaxBatch starts under performing with respect to SLO at-
tainment with C'V2 increase. The SlackFit and MaxBatch difference is most pronounced
at the highest C'V2, eventually causing a significant 5% drop in the SLO attainment. Both
policies maximize the batch size within latency slack # when operating under small §. When
0 increases, however, MaxBatch continues to maximize the batch size unconditionally—a
greedy choice that leads to packing larger batches. This greedy decision causes more time to
be spent in a worker compared to SlackFit, which adaptively shifts to higher accuracy models
under larger 6 conditions with compound effect on queued queries, eventually missing their
SLOs. maxAcc is unable to keep up with this trace. It never switches to policy decisions
that process the queue faster. This policy comparison shows a continuum between faster
queue processing and serving higher accuracy, with SlackFit automatically finding the best
point in this continuum.

5.7 Related Work

Training SuperNets was first proposed by OFA [61]. Recent works such as CompOFA
[264] and BigNAS [334] propose improvements to the SuperNet training. CompOFA makes
the training of SuperNets faster and more accurate by training a fewer number of SubNets
simultaneously. On the other hand, BigNAS trains the SuperNet in one-shot with a wider
range of SubNets. DynaBERT [144] trains a SuperNet based on the Transformer architecture
for text datasets. Similarly, AutoFormer [70] trains SuperNets derived from vision transform-
ers. NasViT [120] trains the SuperNet for semantic segmentation tasks and achieves a better
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trade-off between accuracy and latency at fewer FLOPs. SuperServe provides system support
for serving SuperNets trained using any existing technique.

Model Serving Systems can be divided into two categorizes — a) Non-Automated, and
b) Automated. Non-automated serving system expect developers to provide the predic-
tion models and make explicit choices in the accuracy-latency trade-off space. TensorFlow
Serving [228] serves the models trained in TensorFlow framework while Clipper [79] and
Triton [225] support models trained from multiple frameworks. Clockwork [132| guarantees
predictable tail latency for DNN inference by making cross-stack design decisions explic-
itly for worst case predictability. Inferline [80] provides support for provisioning inference
pipelines that consist of multiple models, but the models are still hard coded in the pipeline
vertices. Prior works in this category are complementary to SuperServe. For instance, Su-
perServe’s workers can be made more predictable by consolidating choices like Clockwork.
Inferline’s autoscaling policy can be used on top of SuperServe Triton’s model optimizations
for GPU serving can be done to the SuperNet itself.

In contrast, automated serving systems [260, 342] automate the navigation of the accuracy-
latency trade-off space with a policy, resulting in automatic DNN selection at runtime. How-
ever, both [260] and [342] use state-of-the-art DNNs (e.g., ResNets, MobileNets) and rely
on model loading mechanisms instead of SuperNets, which offers better pareto-optimality
and orders of magnitude faster model switching enabled via proposed SubNetAct. More
importantly, these mechanisms implicitly bias their policies to avoid model switching, which
limits their ability to respond to bursty request rates in an agile fashion. Specifically, In-
FaaS’s DNN switching policy is biased towards selecting the least accurate DNNs that satisfy
accuracy constraints, as the goal of the stated goal of the system is to satisfy constraints in-
stead of treating accuracy as an optimization objective. SuperServe supports model serving
via SubNet activation, thus addressing the model switching overhead through its proposed

SubNetAct and SlackFit.

5.8 Conclusion

We describe a novel mechanism SubNetAct that carefully inserts specialized control flow
operators into SuperNets to enable a resource-efficient, fine-grained navigation of the latency-
accuracy tradeoff space. SubNetAct unlocks the design space of reactive scheduling policies.
We design a simple, yet effective greedy heuristic-based scheduling policy SlackFit. Super-
Serve, which uses SubNetAct and SlackFit, achieves 4.67% better accuracy at the same level
of SLO attainment or 2.85x better SLO attainment at the same level of accuracy compared
to state-of-the-art inference serving systems.



90

Chapter 6

DAGSched: Deadline and DAG-Aware
Declarative Scheduling

An AV’s sensor suite generates data at a higher frequency (see Table 1.1) than the pro-
cessing rate of the computational pipeline shown in Fig. 1.2. As a result, an execution
system like ERDOS must efficiently multiplex the available compute resources at the hard-
ware layer amongst the various invocations of an AV’s computational pipeline executing
concurrently. The AV pipelines developed using D3 present three key scheduling require-
ments: (i) precedence constraints, due to the DAG-based structure of D3, (ii) placement
preferences, to efficiently exploit the heterogeneous resources available in the AV, and (i)
timing constraints, that require the computational pipeline to finish within a deadline.

State-of-the-art schedulers provide partial support for these requirements through either
suboptimal heuristics or brittle, hand-crafted mathematical models. These approaches neg-
atively impact the efficiency of resource utilization, the ability to meet deadlines and are
tedious and error-prone to implement and maintain. In this chapter, we introduce a frame-
work for simplifying the development of efficient solver-based schedulers through a declarative
specification of requirements. Schedulers built using DAGSched simply specify the tasks of
the job along with their requirements using the intuitive abstractions of its specification
language, STRL++. The language automatically constructs a rich context surrounding the
specified scheduling problem, and uses it to guide complex modelling decisions to generate
tailored, efficient mathematical models for each invocation, without any human input.

The remainder of this chapter explores the design of the specification language, STRL++,
and the optimization framework of DAGSched. §6.6 evaluates the efficacy of our approach
with a goal of ensuring higher resource efficiency and attainment of deadlines.

6.1 Introduction

Modern jobs (e.g., data processing and ML training) are structured as Directed Acyclic
Graphs (DAGs) of tasks. This programming model has seen widespread success in big
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Table 6.1: Current schedulers fail to support R1-R3. Both heuristic and solver-based
approaches do not support R1-R3. Non-declarative schedulers (not marked with D) rely on
experts to develop complex heuristics or models, significantly hindering their development.

data [88, 336, 338, 153, 63, 10, 204, 121], ML training [4, 73, 235| and workflow execution
frameworks |27, 83, 247, 117], all of which collectively account for a significant fraction of the
resource utilization in modern clusters [237]. As a result, the schedulers for these frameworks
have the arduous task of making efficient use of these expensive resources [174], while also
meeting three key requirements of the jobs that they execute:

R1: Precedence Constraints arising from data dependencies amongst vertices of the
computational DAG of the job [302, 19].

R2: Placement Preferences arising out of task affinity (e.g., preference of heterogeneous
hardware), anti-affinity (to prevent interference), and gang scheduling [49, 137, 292, 304].

R3: Timing Constraints arising out of production jobs requiring completion within strin-
gent deadlines [53, 166, 185, 82, 302].

Table 6.1 shows that state-of-the-art schedulers fall short of collectively supporting R1-
R3. Indeed, heuristic-based schedulers [115, 126, 82, 125, 198] trade-off task placement
decision quality for efficiency, and cannot guarantee job-level objectives such as placement
preferences amongst tasks (R2) or deadlines (R3). On the other hand, solver-based sched-
ulers promise high-quality placement decisions, but either: (i) rely on domain experts to
hand-craft mathematical models [118, 154, 206], or (i7) automatically generate models from
a declarative specification of scheduling requirements in higher-level languages [82, 310, 287|.
While hand-crafted models can be efficient, developing them for the complex application re-
quirements (R1-R3) is a formidable challenge that severely limits scheduler evolvability [287].
On the other hand, declarative approaches to building schedulers vastly simplify the process
of developing solver-based schedulers. However, limitations in their specification languages
mean that these schedulers cannot collectively support R1-R3 and cannot generate models
as efficient as hand-crafted ones.

This paper introduces DAGSched—a declarative framework that resolves this tension in
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developing solver-based schedulers through two novel contributions: (a) a high-level require-
ment specification language that can comprehensively capture R1-R3, and (b) an extensible
optimization framework that leverages the expressivity of this language to automatically
generate efficient models. DAGSched’s key innovation is its careful language design that
automatically constructs a rich context surrounding the scheduling problem from the indi-
vidual placement choices of tasks. DAGSched then exploits this contextual information to
automatically guide modelling decisions that typically require domain experts. Together,
DAGSched maintains the simplicity and ease-of-development afforded by declarative sched-
ulers while generating bespoke, efficient models for each scheduler invocation that scale
amidst the extended combinatorial search space required to support R1-R3.

The design of a language that declaratively captures R1-R3 necessitates: (i) efficient
abstractions over resource allocations across space and time to enable placement and timing
preferences (R2-R3) of tasks, and (i) expressive primitives to reason about placement and
completion times of these tasks, and specify dependencies between them (R1). In §6.4, we
introduce STRL++ that provides novel extensions to the robustly validated abstractions of
STRL [310] to address (7). In addition, STRL++ introduces novel abstractions that enable
it to declaratively reason about the start and end time of the placement choices for tasks,
allowing it to address (i7) efficiently.

To meet R3 while respecting R1, DAGSched must schedule all the individual tasks of an
application collectively. However, a direct translation of STRL++ for such increased problem
sizes generates intractable models. To address this challenge, DAGSched exploits STRL++s
expressivity to construct additional context surrounding the placement decisions requested
by an application. §6.5 elaborates on the extensible optimization framework enabled by this
insight that allows DAGSched to scale to real-world problem sizes. Specifically, we provide
representative optimizations that exploit this context for: (i) fidelity-preserving transfor-
mations that efficiently prune the model of infeasible placement choices for tasks, and (1)
fidelity-altering transformations that automatically make modelling decisions which vastly
reduce complexity at the expense of decision quality (e.g., the granularity of placement de-
cisions). Prior schedulers rely on solvers for (i), which must reconstruct the context from
a mathematical representation, significantly hampering scalability. More importantly, they
leave the critical modelling decisions for (i7) to their users. As a result, the users are forced to
make these decisions statically, which significantly degrades the placement decision quality.

We instantiate Spark-DAGSched and evaluate the efficacy of our system DAGSched in
scheduling real-world DAGs derived from the Alibaba cluster trace [19] and on a Spark
cluster running TPC-H [249] jobs. We achieve a 43.75% improvement in job arrival rate for
99% deadline attainment, and up to 3.7x increase in deadline attainment under high load.

The remainder of this chapter describes the contributions that enable STRL++ and
DAGSched, and is organized as follows:

1. §6.2 motivates an R1-R3-aware scheduler.

2. §6.3 presents an overview of DAGSched and the critical challenges it must solve to
enable efficient, declarative, R1-R3-aware schedulers.
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3. §6.4 details STRL++, the first declarative scheduling language that supports R1-R3.
STRL++ is expressive and lends itself to the development of efficient optimizations.

4. §6.5 details DAGSched’s optimization framework that exploits STRL++’s expressivity
to automatically guide modelling decisions and generate efficient solver encodings.

5. §6.6 evaluates the efficacy of DAGSched across several real-world workloads, with a goal
of quantifying its higher resource efficiency and ability to meet end-to-end deadlines.

6.2 Motivation

We now underscore the key concerns that led to the development of DAGSched: (§6.2.1)
the increasing prevalence of R1-R3 in modern applications, (§6.2.2) the need for schedulers
to consider R1-R3 collectively, and (§6.2.3) the significant complexity of developing mathe-
matical solver-based schedulers.

6.2.1 Scheduling Requirements

The complexity and importance to decision making of modern applications, such as Big
Data processing and ML training, have established three key requirements [137, 282]:

R1: Precedence Constraints. Growing processing demands of applications are addressed
with ever larger clusters. To effectively utilize these expensive resources [174], complex jobs
are increasingly being broken down into DAGs of inter-dependent tasks to maximize parallel
execution. For example, Microsoft’s data processing platform has seen a 12x increase in the
available resources and a 108 x increase in DAG-based jobs in the last decade [245]. Similarly,
an analysis of multiple production traces revealed an increase in DAG-based jobs from 2% to
50% between 2011-18, with such jobs now accounting for &~ 80% of cluster utilization [302].

R2: Placement Preferences. Efficient execution requires placement preferences in terms
of resource type and data locality. An analysis of the Google cluster in [275] shows that
these preferences arise due to: (i) resource heterogeneity, e.g., GPUs for ML [137, 206], (i)
application optimization, e.g., preferring tasks to be closely located to required data [88], and
(#ii) problem avoidance, which requires tasks to be placed on exclusive resources to prevent
interference [115, 126].

R3: Timing Constraints. As these applications become indispensable [137, 282], their
output is regularly consumed by analysts, business processes and customers, that demand
timely results [53, 166, 302]. A missed deadline can adversely impact quality of service, engi-
neer efficiency, and lead to significant economic losses [53, 137, 185, 166]. This requirement’s
criticality is evidenced by the fact that it accounts for 25% of scheduler-related escalations
in Microsoft’s big data cluster [166].

These requirements lead to the following concrete problem:
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Figure 6.1: Schedulers must support R1-R3. We underscore the need for schedulers
to be R1-R3 aware by showing: (a) an example workload with jobs J;-J3, where collectively
considering R1-R3 meets 3x deadlines compared to considering R1 or R3 alone, and (b) an up
to 4.29% increase in goodput when considering R1-R3 collectively (compared to selectively)
on a replay of the Alibaba industrial trace [19].
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Problem Statement. Jobs J arrive for execution at a cluster with heterogeneous resources.
Each job J; € J requests execution of tasks T; to complete within a deadline D; (R3). The
execution of tasks in 7; is constrained by R1: a precedence relation (—) that defines a
partial order such that for (t,,t,) € T;, t, — t, implies that ¢, must complete before t,
starts. FEach task t € T; specifies its requirements for resources for a fixed duration, and may
(optionally) present preferences for specific hardware, co-location with data, anti-affinity
with other tasks etc. (R2). The goal is to map 7T; to the available resources under these
constraints, and maximize goodput, i.e., the number of jobs that complete by their deadlines.

6.2.2 Scheduling Applications

We now establish that maximizing goodput necessitates a collective consideration of R1-
R3. Our discussion focuses on R1 and R3, as prior work [90, 206, 253, 323, 310, 49, 287 has
thoroughly underscored the importance of R2 awareness.

An Illustrative Example. Fig. 6.1a shows a workload with jobs J;-J3 to be scheduled on
one node with one unit of a resource. Each job contains a chain of tasks (denoted by ¢;) and
has a deadline as indicated. The duration and resource requirements of these jobs is labeled
in the boxes on the left and indicated by the size of the boxes on the schedules on the right.
For example, t; requires 0.8 resources for 5 time units.

A typical class of schedulers focuses on minimizing makespan under task precedence
(R1) irrespective of deadlines (R3). That is, schedulers like Graphene [125] or Decima [198]
maximize resource utilization by analyzing permissible task execution orders across all jobs
in the system. In this example, they find that the resource requirements of ¢3 and t5 allow
perfect utilization of 1R, likewise t4 and tg as well as ¢t and t;. But this perfect utilization
requires ¢; and t5 to execute first. The result is the schedule shown in Fig. 6.1a (R1), which
violates the deadlines of #, and t; and shows that optimizing makespan/utilization is not
aligned with optimizing goodput.

The other popular class of task-based schedulers instead greedily prioritize the earliest
deadline (R3) irrespective of task precedence (R1). That is, EDF simply dispatch ready tasks
in order of the deadline of their jobs. As illustrated in Fig. 6.1a (R3 aware), these schedulers
prioritize executing the resource intensive task t3 of job Jy with deadline 20T. This leaves
insufficient resources for ready tasks t; and t5. It delays t; until after completion of ¢3 and
in turn prioritization of the resource intensive task t, further delays t5 and its dependent
tasks. The resulting schedule misses all but the first deadline. This shows greedy scheduling
of individual tasks irrespective of resource requirements and precedence can cascade into
unavoidable delays exacerbated by cascading dependencies.

The optimal R1-R3-aware scheduler carefully plans the progress of all jobs in the system
to maximize goodput. It can find the opportune interleaving of the jobs J; and J, with tight
deadlines (R1-R3 aware in Fig. 6.1a). Collectively considering the resource, precedence, and
deadline requirements reveals to the optimal scheduler that resource demands of ¢, and 3
are compatible and can execute concurrently allowing the dependent task ¢4 to finish on
time. This allows the scheduler to complete more jobs within their specified deadlines (3x



6.2. MOTIVATION 96

in this case). The questions now are how this improvement opportunity extends to realistic
workloads and how to build such optimal scheduler that has tractable overhead.

An Industrial Workload. We now seek to quantify the effects of considering R1-R3
collectively on a real-world industrial trace. We measure the goodput of jobs from the
Alibaba big data execution platform under increasing cluster load [19]. To achieve this, we
simulate the execution of 300 randomly sampled jobs on a cluster with 30 units of resources
and random deadlines 1.1 — 2x the critical path of jobs. We model increasing cluster load
through increasing job arrival rate in a Poisson process but avoid cluster overload. We report
the mean and standard deviation of the number of jobs completed within their deadline from
5 runs with distinct random seeds.

Fig. 6.1b compares the drop in goodput from a solver-based R1-R3 aware scheduler to
solver-based R1 aware, R3 aware schedulers along with a heuristic EDF scheduler. We find
that an R1-R3 aware scheduler meets up to 4.29x more deadlines than an R1 aware scheduler
(Fig. 6.1b ). This is because the latter maximizes task packing, but does not prioritize jobs
based on their deadlines. Thus, it achieves a higher cluster utilization (up to 85%), but
does not allocate resources to jobs with tighter deadlines earlier. This negative impact
of deadline unwareness is more pronounced under increased arrival rates, as the increased
resource contention makes the prioritization of jobs with earlier deadlines more pertinent.

Conversely, both EDF and an R3 aware scheduler prioritize jobs according to their dead-
lines and achieve higher goodput than an R1 aware scheduler. However, these schedulers
fail to effectively pack task executions since they either cannot pack (EDF) or do not col-
lectively consider all the tasks of the job (R3 aware). Due to these shortcomings, an R1-R3
aware scheduler meets up to 1.5x more deadlines compared to these baselines even under
lower resource utilization regimes. As packing of task executions becomes more important
with increased arrival rates, the gap between these baselines and an R1-R3 aware scheduler
increases significantly (up to 3.8%). This creates a sizeable opportunity gap.

6.2.3 Scheduler Design: Why Declarative?

The challenge for schedulers of moderns applications are jobs with arbitrarily complex
requirements. Applications can submit jobs with arbitrary DAGs of precedence constraints,
arbitrary placement preferences for any (subset of) tasks, and with or sans deadlines. Ignor-
ing these requirements can severely degrade goodput (§6.2.2). This tasks scheduler devel-
opers to consider combinatorially many possible requirement scenarios across heterogeneous
jobs in the system. This renders conventional schedulers and heuristics brittle and incapable
to evolve, as motivated above and emphasized by [159, 44, 125].

Developing solver-based schedulers is a promising avenue to address complex scheduling
problems [310, 207, 287|. A declarative design of solver-based schedulers can unlock an
effortless, sound and efficient scheduling. It promises the separation of concerns between
expression of the scheduling problem and formulation of the solver model. A high-level
declarative language allows the developer to express their scheduling problem without math-
ematical modelling expertise by relying instead on a compiler to lower the specification into



6.3. DAGSCHED 97

a model for the solver to consume automatically. This separation of concerns promises an
advantage of enabling independent development of expressing scheduling requirements and
rendering scheduling decisions efficiently. Thus, combining an expressive language with an
efficient compiler can ensure models that are both more accurate and more performant—the
two desired properties for high quality scheduling decisions.

6.3 DAGSched

DAGSched aims to simplify the development of solver-based schedulers by enabling them
to specify the jobs (with R1-R3) and the resources in the cluster using its proposed spec-
ification language, STRL++. DAGSched determines which tasks to dispatch where (what
resources) and when (what start time).

6.3.1 Design Challenges
To enable this, DAGSched must address two core challenges:

(1) Design a concise yet expressive language. For an effortless specification of R1-
R3, the language must be concise to elide enumeration of an exponentially large set of a
job’s placement options. Indeed, this enumeration quickly becomes intractable due to the
combinatorial nature of R1-R2, as developers must consider the cumulative cascading effects
of a task’s placement choices on other tasks. For example, to specify precedence (R1) between
M choices of t; and N choices of t5 from Fig. 6.2, the developer must enumerate O(MN)
choices. To achieve conciseness, the language must provide a minimum set of expressions
whose composition captures the entire space of placement choices. However, this conciseness
should not come at the cost of expressivity, i.e., the language should never capture a reduced
set of placement choices for a job and affect placement quality. For example, for R1, the
language must ensure that it accurately captures the complete set of topological orderings for
task executions and does not introduce any false dependencies (false positives) nor miss any
true “happens before” relations (false negatives) while striving for a concise representation.

(2) Scale the model generation and solving. A balance between conciseness and ex-
pressivity of the language exposes two challenges that affect scheduler scalability:

e Fxpanded search space: An expressive language that captures R1-R3 vastly increases
the search space of placement options which an underlying solver must explore for
optimal placement. Further, this search space exponentially increases with the number
of jobs, impacting solver time and limiting scheduler scalability.

e FEfficient mathematical modelling: High-level expressions of the language are necessary
for a concise representation of a job’s placement options. However, expressions can be
modelled in a variety of ways (e.g., different types of variables, indicator or integer),
that may produce equivalent mathematical models but with vastly different solver run-
times [287|. Crucially, optimal modelling cannot be static as it depends on the workload
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Figure 6.2: Workflow of a scheduler built using DAGSched. The scheduler specifies
the tasks and their requirements by constructing a DAG of STRL++ expressions. The DAG
is optimized and compiled into a model and passed to an off-the-shelf solver. Finally, the
scheduler retrieves the placements for all tasks from DAGSched and dispatches the tasks to
the assigned resources at the specified time.

and cluster state, varying widely with each invocation. For instance, placement choices
for workloads may be modelled by different granularity of time discretizations to tame
solver runtimes with minimal impact on decision quality (§6.5).

6.3.2 DAGSched’s Workflow

DAGSched’s workflow seeks to overcome these challenges through 4 distinct phases start-
ing from capturing resource requirements to making spatiotemporal placement decisions.
Fig. 6.2 illustrates a job following the steps below to determine its start time and resource
allocation on 3 CPUs and 2 GPUs:

Step @: Specifying R1-R3 in STRL++. The scheduler specifies resource requirements
and expected runtimes for ¢;_3, and identifies the available resources in the cluster by con-
structing a DAG of STRL++ expressions. An important aspect of this construction is that
the scheduler only enumerates the placement choices for each task independently, without
considering their impact on choices for other tasks. These expressions (defined in §6.4.2)
capture: R1, the ordering between t; — {t9,t3}; R2, the preference of t3 for a GPU; and
R3, the deadline of 57" by which all of the job’s tasks must complete. Unlike the job’s task
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graph, a STRL++ DAG concisely captures the space of placement options for all tasks and
how they’re constrained by the placement choices of other tasks.

Step @: Optimizing the STRL++ DAG. In the face of the expanded search space
required to support R1-R3, STRL++ designs all of its expressions to be time-aware by au-
tomatically adding declarative start and end time annotations to each expression. This
unlocks a rich optimization framework atop STRL++ where optimizations reason about the
time bounds of the feasible placement choices captured by each expression, and use them to

automatically prune the expanded search space. Schedulers can benefit from optimizations
provided by the DAGSched framework (§6.5) to their STRL++ DAG.

Step @: Compiling the STRL++ DAG. DAGSched automatically compiles the now
optimized STRL++ DAG into a mathematical model, e.g., Integer Linear Program (ILP). At
this stage, DAGSched automatically uses integer decision variables to efficiently encode R1,
leveraging time-aware expressions generated in Step @. This key insight allows DAGSched
to express the t; — to relation, with M ¢; and N t, placement options using only O(1)
constraints! In sharp contrast, prior work [82] modelled time using indicator variables,
requiring O(M N) constraints to capture t; — t5. This difference in modelling was a “key
limiting factor for practical use”, and led [82] authors to abandon solver-based scheduling
resolving to best-effort heuristics.

Step @: Solving the model. Finally, DAGSched passes the model to an off-the-shelf ILP
solver while interposing on the solving process to ensure scalability:

e Warm Starts: DAGSched reuses prior placement decisions to provide an initial feasible
solution to the current model, speeding up the solver’s search for the optimal solution.

e Interrupts: DAGSched computes an upper bound on the ILP model’s objective and
issues a solver interrupt as soon as an objective satisfying solution is found.

6.4 STRL++

This section details the key challenges for a concise yet expressive specification of job
requirements R1-R3 (§6.4.1). We then discuss how STRL++’s expressions overcome them
to capture a combinatorial space of placement options and enable an effortless declarative
specification of the scheduler (§6.4.2). Finally, we elaborate on how DAGSched efficiently
compiles the STRL++ expressions to an ILP model (§6.4.3).

6.4.1 Language Requirements

A specification language must provide an abstraction of the available resources. Intu-
itively, this is represented by a discrete resource-time space where each unit in the space
represents the availability of a given resource at a particular time. Schedulers then make
control decisions w.r.t. allocation of this resource-time space. In this language, the unit of
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specification is a placement choice that represents a rectangle within the resource-time
space. The height of this rectangle refers to the quantity of resources required by a task,
and the width—the task’s duration. The position of the rectangle in the space indicates the
type of resources allocated, along with the task’s start time.

Thus, language primitives should then enable the specification of the shape of this
resource-time rectangle, as well as the segment of the resource-time space within which
it must lie, with the latter—modifiable to support R1-R3 as follows:

e R3: Schedulers should be able to enumerate only the placement choices that complete
within the task’s deadline. To do so, the language should enable the resource-time space
to be bounded with respect to time. For example, Fig. 6.3a visualizes a constrained
space for ¢; (in red) that restricts rectangles to complete within 5 time units to meet
t1’s deadline.

e R2: To specify preferences for a task’s execution at a certain resource or time, the
language must enable schedulers to define partial orders over the discrete units of the
resource-time space. For example, for ¢3’s preference of a GPU, the scheduler orders
the two resources CPU < GPU, signifying that all time units of resource-time space
from the GPU are strictly ordered (i.e., preferred) relative to the CPU, but follow a
partial order amongst themselves (Fig. 6.3b).

e R1: The language must provide: (a) Transitive abstractions that restrict a task’s
resource-time space based on its dependencies, ensuring that schedulers only need to
specify immediate dependencies without considering the broader effects on placement
choices of all ancestors and successors. (b) Commutative abstractions that merge
the resource-time space of tasks without R1, allowing them to execute arbitrarily in
parallel. We highlight that a composition of transitive and commutative abstractions
enables a concise specification that captures all topological orderings of a job. For
example, commutativity captures a parallel execution of ¢, and t3 from Fig. 6.2, while
transitivity constrains the resource time of space of choices due to t; — {to,t3} and
requires t;’s placement to finish before ¢y or ¢3’s placements start (Fig. 6.3c).

6.4.2 STRL++ Expressions

We now discuss the different types of expressions provided by STRL++ using the workload
from Fig. 6.2. Schedulers compose these expressions into a STRL++ DAG to concisely capture
the placement choices for £;_3 in the presence of R1-R3:

€ Choose forms the leaves of the STRL++ DAG. It captures a segment of the resource-time
space that contains a combinatorial number of placement options for a task ¢, all of which
start at Ty and consume any k resource units (out of n available). A Choose expression is
satisfied if one of the (Z) placement choices is selected. Fig. 6.4a visualizes the segment of
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Figure 6.3: A Declarative Language for R1-R3 must provide abstractions for develop-
ers to specify the resource-time space of placement choices, and constrain the choices with
respect to time to meet R3 and R1. Additionally, developers must be able to partially order
the individual units of the space to enable specification of R2.

the space constructed for t3’s placement on a CPU starting at T;=1, along with a specific
choice within the space.

Specifically, Choose(t, R, k, Ts, d, w) captures the shape of a rectangle for task ¢,
whose height denotes the usage of k resource units and whose width d denotes the task’s
duration. In addition, it specifies a segment of the resource-time space where the rectangle
is to be positioned by defining the resource type R and the start time 7. To further reflect
preferences (R2), schedulers assign a weight w € R indicative of the task’s desire to be
placed at R starting at Ts. This weight w across all placement choices of a task enables the
specification of a partial order, which we discuss in WeightedAny.

@ VWindowedChoose is a leaf expression that expands the space of a Choose’s placement
choices across time. Fig. 6.4b shows the extension of the resource-time space of choices from
Fig. 6.4a for t3 until its deadline at 57". Additionally, it shows two placement choices for t3
within this space with T, = 1 or T, = 2, both of which complete within the deadline of 5T'.

In addition to Choose’s inputs, it takes a parameter, T, that specifies the time by which
the choices must complete. Thus, it enables schedulers to bound the resource-time space to
include only placement choices that satisfy a task’s deadline (R3). It efficiently enumerates
O((}) |Ty — d — T|) placement choices within the time interval [Ty, Ty — d]. Like Choose, it
is satisfied if one of the choices in this space is selected.

@) VeightedAny is a non-leaf expression that enforces the selection of any one placement
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Figure 6.4: Primary expressions in STRL++ that enable schedulers to declara-
tively specify the tasks and their requirements. For the job in Fig. 6.2, schedulers use
WindowedChoose to define the resource-time space of placement choices for t;_s that meet
their deadline 57" (R3). The preference of ¢3 for a GPU (R2) is specified by annotating the
space with weights and using a WeightedAny to select a choice with the highest weight. To
specify parallel execution, choices for t5_3 are combined with a WeightedAll and ordered
with ¢; using a LessThan to capture R1.
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Figure 6.5: STRL++ DAG constructed by a scheduler invocation to specify the tasks
shown in Fig. 6.2 and their requirements R1-R3.

choice from its child expressions: ey, ..., ¢;. To make R2-aware decisions, it prioritizes the
selection of choices with higher weights reflecting their priority in the partial ordering of the
units of the resource-time space.

For instance, to indicate the preference of placing t3 on a GPU, a scheduler applies
WeightedAny to two expressions: a WindowedChoose with weight w,,, capturing the place-
ment choices for ¢3 on the CPU between times 1 and 5, and a WindowedChoose with weight
Wypy, capturing ts’s choices on the GPU. Here, t3’s placement is prioritized on the GPU (if
Wopu>Wep,) illustrating how a WeightedAny satisfies R2.

@ veightedAll is a non-leaf expression that enforces the selection of a placement choice
from each of its child expressions: ej, ..., ¢;. It is a commutative expression such that
WeightedAll(ey, ..., €;) is equivalent to WeightedAll(ej, ..., e1), enabling schedulers to
specify all orderings of the placement choices of tasks that can execute in parallel.

For example, in Fig. 6.2, t5 and 3 may execute in parallel, but must begin after ¢; com-
pletes. To specify the parallel execution of ¢, and t3, a scheduler constructs a WeightedAll
with two children: (a) a WindowedChoose enumerating the placement choices of ¢5 on the
CPU, and (b) a WeightedAny containing the two WindowedChoose for placing t3 on the CPU
and GPU respectively. As shown in Fig. 6.4d, the WeightedAll is satisfied by choosing a
placement choice for both ¢y and t3, while prioritizing the placement of 3 on the GPU.

e LessThan is a non-leaf expression that orders the execution of its two children e; and e,
such that the feasible choices for e; end before the feasible choices for ey start. Crucially,
it is transitive such that LessThan(eq, e5) and LessThan(es, e3) imply LessThan(es, e3), thus
enabling schedulers to only specify each task’s immediate dependencies and concisely repre-
senting the effects on its placement choices due to R1.

In our example, to specify t; — {t2, 3}, the scheduler generates a LessThan whose left
child is a WindowedChoose enumerating the placement choices for t; on the CPU and whose
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right child is a WeightedAll capturing the choices of executing ¢ and t3 in parallel (as
discussed above). Fig. 6.4d visualizes the space of choices captured by this LessThan.

@ Objective is the root expression of a STRL++ DAG that takes the specification of
placement choices for a set of jobs and constructs a joint optimization problem for the
solver. Schedulers use an Objective expression to collate the individual STRL++ DAGs of
requirements for the various independent jobs to be scheduled in a particular invocation.
Fig. 6.5 visualizes the DAG that the schedulers must construct to specify R1-R3 for the
three tasks t;_3 shown in Fig. 6.2.

The above expressions collectively form the set of primary expressions in STRL++ and
enable it to concisely capture R1-R3 for any job. However, for practical considerations that
arise when dealing with a continuous arrival of jobs with varying priorities, STRL++ provides
auxiliary expressions that were useful in the development of our prototype scheduler:

@ Scale is a unary, non-leaf expression that amplifies the weight of its child e. We found
it to be useful for two specific cases: (i) prioritizing certain jobs among those available to
the scheduler, and (#7) normalizing weights of placing a specific job among other schedulable
jobs in an invocation.

During the development of our prototype scheduler, we observed that simply accumulat-
ing weights from the children expressions in WeightedAll or LessThan biased DAGSched
towards placement of jobs with more tasks. To counteract this, DAGSched automatically
adjusts the weights by integrating Scale expressions into the STRL++ DAG to normalize
the weights for each job relative to all schedulable jobs.

We emphasize that schedulers only need to generate Scale to specify (7), while DAGSched
handles (4i) automatically. For example, Fig. 6.6a shows how a scheduler can prioritize the
job from Fig 2. by amplifying the weight of the LessThan expression that captures the space
of feasible choices for ¢;_s.

@ Allocation is a leaf expression that specifies a fixed placement of a task. Specifically,
Allocation(t;, R=CPU, k=2, T,=1, d=3), shown in Fig. 6.6b, is used to specify a fixed
placement of ¢; starting at T,=1 for 3T and taking 2 units of CPU.

We found the Allocation expression to be useful in specifying the execution of running
tasks that cannot be preempted. Schedulers emit an Allocation to inform DAGSched of
the placement of such running tasks to: (i) ensure that resources are not oversubscribed, and
(7) R1 can be correctly specified between running and schedulable tasks (i.e., t; — {t2, 3}
when ¢; is running). This allows DAGSched to constantly re-plan the placements for tasks
of in-progress jobs to better meet the scheduler objective during continuous arrivals of jobs.

@ MalleableChoose is a leaf expression that specifies the choice of a fixed number of
rectangles of the same size in the resource-time space between T, and 7. Specifically, it
takes an extra parameter z (in addition to the parameters of a WindowedChoose) and is
satisfied if z rectangles are allocated, each of whose size is defined by the WindowedChoose.

Execution frameworks (notably big data systems such as Apache Spark [338]) parallelize
computation through a large number of small tasks that perform the same computation
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Figure 6.6: Secondary expressions in STRL++ that address practical concerns of spec-
ifying: (a) job priorities, (b) non-preemptible tasks, and (¢) independent tasks that perform
similar computation.

on partitions of the data [336]. As a result, such tasks present equivalent resource and
runtime requirements, and can be executed in parallel (i.e., no R1). The specification of
such tasks using a WindowedChoose and WeightedAll is cumbersome and leads to inefficient
mathematical models. Thus, MalleableChoose enables schedulers to efficiently specify this
requirement in STRL++ which collectively places these tasks and constructs a skyline of
rectangles as shown in Fig. 6.6.

Decision Variable Description

T Integer variable for start time of the placement.
Ty Integer variable for end time of the placement.

1 Indicator for satisfaction of the placement choice.
w Continuous variable for weight of the placement.

Table 6.2: Decision variables in a CompiledExpression used to compile the STRL++
DAG to an ILP model. An expression uses the variables from its children to emit constraints
for the ILP, and creates new variables for its parent(s). ERDOS’s key insight is to model T}
and T using integer decision variables, which reduces the number of constraints required to
encode R1 from O(MN) to O(1).
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6.4.3 Compilation of STRL++

This expressive specification presents an expanded search space that must be carefully
and accurately modelled to limit solver runtime without affecting placement decision quality.
DAGSched addresses this challenge through two contributions:

Idempotent Compilation. The recursive compilation of a STRL++ DAG begins at the
Objective expression, which instantiates a shared ResourceUsage map to track the usage
of resource R at time T'. Each expression’s compilation generates a CompiledExpression,
which encapsulates the four decision variables shown in Table 6.2. These variables are
used by the expression’s parents to emit constraints for an ILP model according to their
semantics. Finally, Objective emits an optimization objective for the ILP. We concretely
specify DAGSched’s compilation strategy in Table 6.3.

A critical feature of this compilation is its idempotency, i.e., the compilation of a sub-
expression generates a unique CompiledExpression regardless of the parent invoking it. This
ensures an accurate compilation of the STRL++ DAG with arbitrary precedence constraints
(R1). For instance, consider the constraints ¢, — t;, and t. — {t;,t4}. To specify this, a
scheduler constructs a single WindowedChoose to capture the space of placement choices for
t, and connects it to both ¢, and ¢. under a LessThan expression. Idempotency ensures
that the placement variables for ¢, are generated only once and used consistently across both
constraints. In contrast, the lack of idempotency in prior work [82] results in either: (a)
generation of the placement choices for ¢, twice, leading to incorrect accounting of resource
utilization, or (b) introduction of a false dependency between t, and t4, both of which degrade
the quality of scheduling decisions by the language.

Integer Domain Modelling of Time. A novel contribution of DAGSched’s ILP modelling
is to attach integer decision variables for start (75) and end (7)) time with each expression.
These variables represent the time at which an expression’s selected placement choice(s)
begin and end respectively. While leaf expressions (i.e., Choose, WindowedChoose) provide
static values for T and Ty, DAGSched automatically emits constraints to compute them for
non-leaf expressions, i.e., WeightedAny, WeightedAll and LessThan (Table 6.3).

This crucial insight of attaching 75 and 7%, modelled using integer variables, with each
expression enables DAGSched to scale. Specifically, it allows DAGSched to efficiently encode
t1 — to for M placement choices of t; and /N choices of ¢, using a single constraint ¢;.7F <
to.Ts (see Table 6.3). In contrast, prior work [82] models the start and end time of placement
choices using an array of indicator variables, with each indicator variable specifying if the
placement choice for a particular time was selected. This requires O(M N) constraints to
specify t; — to, and was cited as a “key limiting factor for practical use” that led them to
abandon solver-based scheduling.
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Expression Compilation Description
Objective Vec € €child : €c.compile(); Recursively compile all children.
{(R1,n1), V(R,n) VT Ensures that usage of R; at T'
. ResourceUsage|R|[T| < n; never exceeds capacity n;.
(R, m) }) maximize ) e.W Maximizes the weighted sum.
eTy =T, eIy =Ts+d | Start and finish time of choices.
h
?t o;sek el=1 eW=wxl Weight is w if the expression is satisfied.
T; d: u;) VT € [e.Ts,e.Tf]:
ResourceUsage|R|[T| += k * I'| Allocate k units of R between [T, T¥].
el = Zeceechild ec.I Satisfy up to one child expression.
WeightedAny eTy = Zeceechild ec. *e.. Ty S‘Fal'rt tir.ne of the satis.ﬁed Chﬂ-d.
eTy =73 eeCeonild ec.d xe.. Ty Finish time of the satisfied child.
eW =3 cepny €l xecW Weight of the satisfied child.
WindowedChoose Automatically decomposed into
(t, R, k, - WeightedAny (VT € [T, Ty — dJ:
Ts, T}, d, w) Choose(t, R, k, T, d, w))
Enforces the satisfaction if
el =1 s.t. . .
all the children are satisfied.
Zeceechild eC'I = ‘eChild| * I . . . .
Start time is the earliest start time
ely =1Ts s.t. .
across all children.
WeightedAll Vee € echitd : Ts < ec.Ts L , —
Finish time is the highest finish time
G.Tf = Tf s.t. .
across all children.
Vee € echild - Tf > eC.Tf Weight is th ¢
B eight is the sum o
W = Leccenia W weights of all the children.
el =1 s.t. Enforces the satisfaction if both
left-d + €right- I = 2% I the children are satisfied.
LessThan eTs < epept-Ts e Ty > eright-T'y| Start and finish time of children.
left- 1t < €rignt-T's Left finishes earlier than right’s start.
eW = epept. W + eprigne W Sum of weights of the two children.
Scale (s) e W = s X ecpita W Modifies the weight.
eTs =1Ts eTy =Ts+d | Start and finish time of placement.
Allocation e=1 eW =w | Weight is 1 as expression is satisfied.
(t7 R7 kv TS7 d7 w) VT c [B.Ts,e.Tf]:

ResourceUsage|R||T| +=k

Allocate k units of R between [T}, Ty]|.

Table 6.3: DAGSched’s strategy for compiling STRL++ expressions into an ILP
model. A parent expression recursively compiles its children and emits the specified con-
straints using the four decision variables from Table 6.2. Finally, the Objective expression
ensures that no resource is oversubscribed at any time, collates the weights from its children
and constructs an optimization objective for an off-the-shelf ILP solver.
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6.5 Optimization of STRL++ DAGs

Our decision to design STRL++ as a task-focused specification language raises a critical
challenge for scheduler scalability. While the task-focused specification simplifies scheduler
development, it captures a combinatorial search space of placement choices in the presence
of R1-R2. A literal compilation of these choices generates intractable models (even with
efficient encodings, like the one discussed in §6.4.3).

This section discusses STRL++’s approach to addressing this challenge: time-aware ez-
pressions. §6.5.1 discusses how STRL++ annotates each expression with information about
its captured resource-time space of choices, facilitating an effortless development of a rich
class of optimizations that can efficiently prune the search space. §6.5.2 provides key opti-
mizations implemented by DAGSched atop time-aware expressions, that have been essential
in ensuring its scalability.

6.5.1 Interface: Time-Aware Expressions

A composition of STRL++ expressions constrains the space of feasible task placement
choices to reflect R1-R3. However, a naive compilation of this specification passes the com-
binatorial complexity to the solver by generating mathematical encodings for the entire set
of placement choices for each task, along with the R1-R3 constraints. . This raises two
challenges: (7) it generates models with a large number of variables and constraints leading
to significant compilation bottlenecks, and (ii) the solver must sift through an expanded
combinatorial search space, which negatively affects solver runtime and significantly hinders
scheduler scalability.

The goal of STRL++ is to programmatically expose the effects of these constraints on
the set of feasible choices captured by an expression. This seeks to enable the development
of optimizations that can make efficient modelling decisions and prune the search space by
reasoning about the effects of the constraints before invoking the underlying solver.

STRL++ achieves this by making expressions time-aware, i.e., it exposes the method
getTimeBounds, which outputs a tuple (start, end) representing the feasible time ranges
for the start and end of the choices captured by an expression. Specifically, the range is
captured through a lower bound (1b) representing the earliest time that the choices can
start (or end) and upper bound (ub) representing the latest time that the choices can start
(or end). In addition, updateTimeBounds takes the (start, end) bounds and removes the
infeasible choices that do not fall within the updated bounds.

For example, for a WindowedChoose that captures the choices within [T, T%], start
provides the time bounds on the start time of choices, i.e., [T, Tf — d], where d is the task’s
duration. This conveys that no placement choice can start before 1b= T} or after ub= 7y —d.
Similarly, end can vary between [T, + d, T}, signifying that the earliest placement choice
finishes at 1b= T + d, while the last finishes at ub= T.
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Input: STRL++ DAG
1 for e € DFS POSTORDER(DAG) do

2 if e.type=LessThan then
3 _bounds < €. GETTIMEBOUNDS();
4 r_bounds < e€;gnt. GETTIMEBOUNDS();
5 if »_bounds.start.lb <l _bounds.end.lb then
6 // eright Must start after the earliest ejr; ends
7 r__bounds.start.lb =1 _bounds.end.lb;
8 €right-UPDATETIMEBOUNDS(7__bounds);
9 end
10 if [ bounds.end.ub > r_bounds.start.ub then
11 // eiepr must end before latest e,;qpn; starts
12 [ _bounds.end.ub = r_bounds.start.ub;
13 €eft.-UPDATETIMEBOUNDS(!_bounds);
14 end
15 end
16 end

Algorithm 2: Critical Path optimization purges placement choices that are rendered
infeasible due to precedence (—) using STRL++’s time-aware expression LessThan.

6.5.2 DAGSched’s Optimizations

We find STRL++’s time-aware expressions to be a powerful abstraction to enable two key
classes of optimization passes: fidelity-preserving and fidelity-altering. Fidelity-preserving
optimizations provide a sound analysis of the STRL++ DAG, and purge placement choices
that are deemed infeasible. Conversely, fidelity-altering optimizations make modelling deci-
sions that improve solver runtime with minimal impact to placement decision quality. This
section details three optimizations provided by DAGSched spanning these two classes.

Critical Path Optimization

The Critical Path optimization is a fidelity-preserving optimization that removes place-
ment choices rendered infeasible by the cumulative effects of a task’s dependencies. For
example, the start time of 2 in Fig. 6.2 is infeasible for ¢; due to t; — ¢, and can be purged.

STRL++’s time-aware expressions significantly ease the implementation of this optimiza-
tion (Algorithm 2). The optimization does a post-order depth-first traversal of the STRL++
DAG, and purges placement choices from the children e;.r; and e, of a LessThan using
two conditions: (i) Line 5 ensures that the earliest placement choice for e,;gn; should only
start after the earliest placement for e;.s; ends, and (7i) Line 10 ensures that the last choice
for e;.¢ should end before the last placement for e,;z: starts. The optimization computes
the updated bounds for e;.s; and e,igns, and uses STRL++’s updateTimeBounds to recursively
purge the placement choices due to the new bounds in both children.
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Data: STRL++ DAG
1 Procedure NONOVERLAPPINGEXPRESSIONS

2 NonOverlapExprs < {};
3 for e € DFS POSTORDER(DAG) do
4 if e.ISLEAF() then
5 // A choice e cannot overlap with itself.
6 NonOwverlapExprs [e] < {e}
7 end
8 else if e.type=WeightedAdny or e.type=LessThan then
9 // Mutually exclusive so no children can overlap.
10 children < e.GETCHILDREN();
11 for eyi1q € children do
12 for eyier € children — epijg do
13 ‘ NonOverlapExprs [ecpua) U NonOverlapExprs [€other];
14 end
15 end
16 end
17 end

Input: STRL++ DAG
18 MaxzUsage < {};
19 for e € LEAVES(DAG) do

0]

20 bounds < e.GETTIMEBOUNDS();

21 // i is a unique identifier for £

22 (i, E) <~ NONOVERLAPPINGEXPRESSIONS(e);
23 for t « [bounds.start.lb, bounds.end.ub] do

24 // Get max usage of non-overlapping expressions.
25 u; < 0;

26 for e; € £V do

27 ‘ u; <— max(u;, ;. GETRESQTY());

28 end

29 MazUsage [(i,t)] < u;;

30 end

31 end

32 for t € ResourceUsage do
33 | maxzUsageAtTime < ). MaxUsage [(i,1)];
34 if maxUsageAtTime < n then

35 remove ResourceUsagelt];
36 end
37 end

Algorithm 3: Resource Constraint Purging tracks the usage of each resource at
t by computing the maximum quantity of resources required by each set of expressions
with non-overlapping placement choices E. If the resource cannot be over-subscribed at
t, DAGSched does not emit capacity constraints for ¢.
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Resource Constraint Purging

DAGSched must ensure that the placements of the tasks do not violate resource quan-
tities, i.e., for a resource R; with a total quantity n;, the usage of a set of tasks running
at each time on R; should not exceed n;. DAGSched achieves this by tracking the usage
of a resource at each time through a ResourceUsage map. Leaves of a STRL++ DAG that
efficiently enumerate the placement choices (i.e., Choose and WindowedChoose) register their
usage of a resource R at a particular time T by adding k x I, where I indicates the selection
of the choice, to ResourceUsage|R|[T| (as shown in Table 6.3).

To ensure that the resource quantities are not violated, a literal translation of STRL++
needs to emit O(|R||T'|) constraints. However, the specification of R1-R2 ensures that some
of these constraints will never be violated. For example, consider ¢; and ¢, from Fig. 6.2 that
each require 2 CPUs and must must be placed atop a cluster with 3 CPUs. The constraint
t; — to ensures that selected placement choices for ¢; and t5 can never overlap. This ensures
that for any given time, only one of ¢; and t5 can run, and an individual usage from these
tasks cannot violate the resource quantity of 3 CPUs.

Algorithm 3 depicts DAGSched’s fidelity-preserving optimization to remove such super-
fluous constraints. It computes the sets of expressions that present non-overlapping place-
ment choices with each expression e, and tracks the maximum usage of a specific resource
across all these choices. Finally, it ensures that the constraint to prevent resource over-
subscription at time t is only emitted to the solver if the sum of the maximum usage across
all sets of non-overlapping choices is higher than the quantity n.

Dynamic Discretization

The Dynamic Discretization optimization is a fidelity-altering optimization that aims to
remove the finer-grained placement choices based on the workload dynamics. The key insight
in this optimization pass is to remove such placement choices from the resource-time space
where the resources are less contended. Resources remain less contended when the arrival
rate in the workload becomes low. Under such conditions, making coarse-grained decisions
can vastly reduce solver time with little or no effect on decision quality.

To remove fine-grained placement choices, this pass varies the discretization of the resource-
time space. A lower discretization renders fine-grained placement choices, whereas, higher
discretization leads to coarse-grained choices. It leverages STRL++’s time-aware expressions
to calculate the resource contentions over the entire space. Specifically, this pass iterates
over leaf STRL++’s expressions and adds its requested resource to the resource contention
map for the time given by the getTimeBounds method. Then, this pass uses a simple linear
decay method that predicts a higher discretization for low resource contention and vice-versa.
Using this function, it predicts a discretization for each contended resource. Based on the
predicted discretization, it removes all fine-grained child expressions from WeightedAny ex-
pressions that lie within the discretization window. The algorithm is detailed in Algorithm 4.
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Input: STRL++ DAG
ResContention[t] =0,V t e [0,T]
// calculate resource contention map
for e € LEAVES(DAG) do

bounds < e.GETTIMEBOUNDS()

for t « [bounds.start.lb, bounds.end.ub] do

| ResContention [t] += ¢.GETRESQTY/()

end
end
// decay fn that outputs a discretization for res contention (r)
F(r) = MAX(MaxDisc — k xr, MinDisc) // k is decay rate
PredGranularity = | |
for t € ResContention do
predDisc = F(ResContention [t])
while predDisc #t+ 1 do

. t+predDise posContentionlt
AvgContention = =t . 4
predDisc

if predDisc == F(AvgContention) then
PredGranularity. APPEND((t,t + predDisc))

break
end
predDisc -=1
end
end

// remove fine-grain exprs
for t;,ty € PredGranularity do
for €., € MAXOVERLEAVES(DAG) do
cnt <+ 0
for e € e,4,. CHILDWITHTIMEBOUND(t,,t¢) do
if ecnt # 0 then
| €mas-REMOVECHILD )

end
ent +=1
end
end
end

Algorithm 4: Dynamic Discretization optimization automatically decides the gran-
ularity of placement choices based on resource contention and prunes finer-grained Choose
expressions that do not conform to the chosen granularity.
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6.5.3 Implementation

DAGSched is an open-source framework implemented in 7k lines of C++. We instanti-
ate an open-source scheduler for Apache Spark [338] using DAGSched, and refer to it as
Spark-DAGSched in the remainder of the paper. Below, we discuss our implementation of
DAGSched (§6.5.3) and Spark-DAGSched (§6.5.3).

DAGSched

DAGSched is provided as a dynamic library that schedulers attach into their process
space. The library provides both C++ and Python interfaces for constructing STRL++ DAGs,
invoking optimizations and retrieving Placements (see Fig. 6.2).

We highlight the key features of our implementation below:

Parallel Compilation. DAGSched exploits the natural decomposition of a STRL++ DAG
to automatically parallelize the compilation process — a significant bottleneck in earlier im-
plementations of DAGSched, sometimes taking upwards of 1s.

Selective Rescheduling. We explore ideas from [207] to allow schedulers to specify 7, such
that DAGSched randomly drops the replanning of n% of the jobs in each scheduling cycle
by converting their WindowedChoose expressions into Allocation expressions. §6.6 explores
its effects on the placement decision quality and the runtime of DAGSched.

Interaction with Multiple Solvers. DAGSched implements a shim layer mimicking vari-
ous off-the-shelf solvers, and automatically interfaces with either of CPLEX [148], Gurobi [135]
or Google OR-Tools [239] based on availability.

Warm Starts. Since solvers may spend a significant amount of time finding initial solu-
tions [134], DAGSched provides initial values for the variables retrieved from prior invoca-
tions. This enables the solver to begin its search from a feasible, but suboptimal solution,
thus significantly reducing solver runtime.

Objective-Based Interrupts. Solvers repair the initial feasible solution provided by
DAGSched, and are able to heuristically construct an optimal solution to the ILP model
for a significant fraction of our scheduler invocations. However, to terminate, the solver
must prove the solution’s optimality — an expensive process. DAGSched uses STRL++’s
Objective to automatically construct an upper bound on the achievable objective value,
and interrupts the solver as soon as the objective is reached.

Spark-DAGSched

We develop a scheduler for Apache Spark [338], Spark-DAGSched, atop DAGSched in
2.6k lines of Python. Our implementation executes in Spark’s standalone cluster mode, and
allocates the available executors (i.e., the smallest resource unit) across the tasks. To achieve
this, Spark-DAGSched interacts with Spark via gRPC [129], and executes the following steps:
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. Applications arrive at the Spark Master with a deadline and are compiled into a DAG.

It then communicates the DAG along with the deadline to Spark-DAGSched via RPC.

. Spark-DAGSched retrieves the job’s execution profiles and constructs a STRL++ DAG.

It then invokes DAGSched and retrieves the Placements mapping the tasks of the DAG
to the number of executors along with a start time.

. The typical workflow in Spark standalone involves the Master allocating executors to

an application’s DAGScheduler, which allocates them to its tasks (i.e., stages). We
modify this workflow such that the DAGScheduler regularly polls Spark-DAGSched,
which informs it of the number of executors to allocate to a stage at the start time
computed by DAGSched.

. The DAGScheduler in Spark requests the specific number of executors from Master,

and executes the specified tasks.

. Finally, upon task completion, the DAGScheduler returns the executors, and notifies

Spark-DAGSched of the completion.

6.6 Evaluation

We evaluate the benefits of DAGSched through Spark-DAGSched, an open-source sched-
uler for Apache Spark [338| built using DAGSched, on a real-world Spark cluster and in sim-
ulation. We refer the interested reader to the implementation details of Spark-DAGSched’s
integration with Spark to §6.5.3. Our key metric of success is goodput maximization, i.e., the
number of jobs that meet their deadline, or minimization of deadline misses. Our evaluation
answers three key questions:

1.

Can Spark-DAGSched scale to realistic workloads while providing better placement
decisions than prior works? (§6.6.1)

Does the ability of DAGSched to make R1-R3-aware placement decisions lead to quan-
titative benefits? (§6.6.2)

How well does Spark-DAGSched perform under periods of stress — constrained clusters
and tighter deadlines? (§6.6.3)

Do DAGSched’s automatic optimization and compilation strategies help reduce sched-
uler runtime? (§6.6.4)

Experimental Setup. We instantiate a 20-node CloudLab [98] cluster using ¢6420 ma-
chines as worker nodes for Spark, and run Spark-DAGSched on a GCP ¢2d-highcpu-32 VM
running Ubuntu 22.04 and Gurobi 11.0. We consider the following scheduler baselines:



6.6. EVALUATION 115

‘n
5 0.201
_ £
S E 0.15 -
~ = U.
) a2
15 =
2 2 0.10-
2 %
2 2
= ] —f— Spark-FIFO _é 0.05 1
1 Spark-DSched s
10 1ix* , 2 .00 A L

50 70 90 110 130 150 TPC-H
Job Arrival Rate (per hour)

Figure 6.7: Spark-DAGSched scales to real workloads and achieves up to 5.25x
higher goodput on a workload of 100 TPC-H jobs. DAGSched’s optimizations help keep the
latency under 225ms.

1. Spark’s FIFO scheduler that allocates resources based on a task’s arrival time, and is
a non R1-R3-aware heuristic.

2. An EDF scheduler that prioritizes tasks based on their deadlines (R3), greedily tries
to satisfy R2, and is R1-unaware (i.e., it only schedules among the ready tasks).

3. TetriSched [310], an R2-R3-aware scheduler that packs among the set of ready tasks
(i.e., is Rl-unaware). We perform a sweep of its hyper-parameter, plan-ahead, which
decides how long to plan task placements into the future, and report the most favorable
results to TetriSched.

4. A faithful re-implementation of Graphene’s two-step scheduling [125] where: (i) the
offline stage finds the most efficient topological ordering of each job on the cluster using
an ILP solver, and (7) the online stage packs among the set of ready tasks of each job
using an ILP solver.

We evaluate these baselines on a faithful discrete time simulator written in 7k lines of Python
code using a workload from the real-world Alibaba trace [19]. Additionally, we compare
Spark-DAGSched to Spark’s default FIFO scheduling on our Spark cluster using the TPC-
H [249] workload.

6.6.1 Can DAGSched scale?

We first evaluate Spark-DAGSched’s ability to provide quantitative benefits on its metric
of success, goodput, on real workloads. For the workload, we randomly sample 100 TPC-H
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Figure 6.8: Benefits of R1, R3 awareness (a) Spark-DAGSched is compared by varying
arrival rates, achieves 2x less deadline misses on higher arrival rates. (b) Spark-DAGSched
serves 43.75% more requests per hour, and (c) has 40% more cluster utilization at 99%
goodput on jobs (DAGs) derived from the Alibaba Trace. Spark-DAGSched outperforms
baselines as DAGSched captures both R1 and R3 effectively.

jobs from all 22 queries and an input size of 250GB, resulting in jobs that vary in their
execution time from 2 minutes to 10 minutes. These jobs are submitted to our Spark cluster
using a Poisson process, with the inter-arrival time varying from 25 to 70s. We emphasize
that these conditions are similar to prior works [125, 198|, and hence, represent real workloads
that Spark-DAGSched may be required to schedule.

Fig. 6.7 (left) compares Spark-DAGSched to Spark’s default FIFO scheduling policy,
and plots the deadline miss rate, i.e., the % of jobs that miss their deadline, as the jobs
arrive more frequently (i.e., inter-arrival time between jobs decreases). We highlight two key
results pertaining to Spark-DAGSched’s ability to meet deadlines: (i) Spark-DAGSched can
maintain a 38% higher job arrival rate than Spark’s FIFO scheduler while meeting 99% of
job deadlines. (i) Spark-DAGSched can meet upto 5.25x more deadlines under periods of
high cluster load. Thus, Spark-DAGSched provides significant benefits in goodput, under
both normal cluster utilization, and under stress.

Fig. 6.7 (right) highlights Spark-DAGSched’s efficacy in addressing the second critical
concern: the ability to make scheduling decisions quickly. DAGSched’s effective optimiza-
tions and modelling enable Spark-DAGSched to maintain a p90 latency of under 225ms,
leading to a sub 0.2% scheduling latency of the length of the shortest job.

Takeaway: Spark-DAGSched meets significantly more deadlines in real deployments —
managing up to 5.2x higher goodput — while maintaining a p90 latency of under 225ms.

6.6.2 Does R1-R3 awareness benefit DAGSched?

We now establish that DAGSched’s ability to collectively consider R1-R3 in making its
placement decisions leads to significant quantitative benefits in meeting deadlines. We carry
out two independent experiments to isolate the efficacy of R1-R3 using a common workload
derived from the Alibaba trace [19].

Our workload consists of 1000 random jobs sampled from the Alibaba trace being exe-
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cuted atop a cluster with 30k executors. We choose these values to remain faithful to the
experiment settings of prior works [198]. Further, each job is randomly assigned a deadline
between 1.1x to 2.5x its critical path — a value we define as the deadline factor.

Increasing Job Arrivals. Our first experiment isolates the efficacy of considering R1 and
R3. We compare Spark-DAGSched with our baselines on increasing arrival rates from 80-175
jobs per hour (as a Poisson process). Intuitively, we expect R3 aware schedulers to shine
in periods of low cluster utilizations as efficient packing of jobs matters less and execution
of jobs must be prioritized by their deadlines. However, as the cluster load increases under
increased job arrivals, the consideration of both R1 and R3 is critical as efficient schedules
require prioritization of tight deadlines and an efficient utilization of the contended resources
through better packing using R1.

Fig. 6.8 shows the results of our experiment. As expected, under lower arrival rates when
packing of jobs is not the critical concern, R3-aware schedulers like EDF and TetriSched
achieve high goodput, and maintain a lower miss rate than just R1l-aware schedulers like
Graphene. Importantly, even under low arrival rates, DAGSched achieves a higher goodput
than just R3-aware schedulers. However, DAGSched’s ability to be R1-aware really shines,
as it is able to sustain an up to 43.75% higher job arrival rate while meeting 99% of the job
deadlines. The efficacy of R1l-aware packing here is evidenced by the fact that DAGSched
can sustain 99% goodput with a high cluster utilization of 75%, while R1-unaware baselines
require a 40% lower cluster utilization for the same, signifying their inefficient utilization of
resources. As the job arrival rate and the load in the cluster increase, DAGSched benefits
from R1-R3 awareness by missing 2x less deadlines than TetriSched. Tetrisched misses out
on the opportunity to pack tasks efficiently, signifying the benefits of capturing R1.

For the remainder of the experiments, we choose to show results for an arrival rate of

135 jobs per hour, as it achieves a 90% goodput under 86% cluster utilization, and is a good
representative of the stable state of our dagsched.
Varying Resource Heterogeneity. We now additionally evaluate the benefits of R2-
awareness to DAGSched’s metric of success. We modify our cluster and convert 5k executors
(from a total of 30k) to provide a 50% reduction in task runtimes, and vary the heteroge-
neous factor — the percentage of tasks that have preferences for these 5k executors. The
deadlines are determined based on the runtime of executing the critical path on their pre-
ferred resources. We expect Spark-DAGSched’s gains to considerably increase as its R2-R3
awareness can better identify the packing opportunities for tasks.

We skip the comparison with Graphene as its offline step cannot be extended to be
R2-aware. At a low heterogeneity factor, the majority of jobs have relaxed deadlines and
only a minority of tasks have heterogeneous preferences. Therefore, schedulers can simply
place tasks over either of the resources and still meet the deadline. Therefore, we observe
that all the schedulers (including R2-unaware schedulers like EDF, FIFO) perform better
at low heterogeneous factors. At higher heterogeneity factor, however, job deadlines are
tighter, with the majority of tasks having a preference. Tighter deadlines require schedulers
to prioritize urgent jobs and an increase in the preference for 5k executors demands optimal
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Figure 6.9: Benefits of R2-awareness. Spark-DAGSched achieves up to 3.97x lower

deadline misses than the baselines.

packing of tasks. We, therefore, observe that the schedulers that are R2 and/or R3 unaware
perform worse with the increase in the heterogeneous factor. TetriSched, though being R2-
aware misses out on optimally packing tasks as it is R1-unaware. Spark-DAGSched has the
fewest deadline misses at high heterogeneous factor, as it is both R1 and R2 aware.

Takeaway: Spark-DAGSched benefits from R1-R3 aware decisions, achieving 2x reduced
deadlines misses and sustaining a 43.75% increased job arrival rate to meet 99% of job
deadlines. R2-consideration leads to higher gains— up to 3.97x reduction in deadline misses.

6.6.3 How well does DAGSched handle stress?

We now stress test DAGSched to understand how its performance degrades.
Constrained Deadlines. We subject Spark-DAGSched and our baselines to reduced dead-
line factors from 3x to 1.1x. For the entire experiment, we keep both arrival rate and
resources constant at 135 jobs per hour and 30k executors respectively. We believe that the
tighter deadlines will require better scheduling, and expect Spark-DAGSched to shine there.

Fig. 6.10 compares Spark-DAGSched with the baselines on the varied deadline factor.
Even under tighter deadlines (1.1x deadline factor), Spark-DAGSched miss rate remains
lower than 10%. This demonstrates that DAGSched succinctly captures R3 preferences.
Moreover, Spark-DAGSched consistently outperforms baselines. Under relaxed deadlines,
the schedulers simply pack tasks efficiently and still meet deadlines. Therefore, we observe
that the R3 unaware scheduler like Graphene tends to perform better under relaxed deadlines
in Fig. 6.10. Under tighter deadlines, prioritizing jobs with tighter deadlines matters, and
R3 unaware schedulers start performing worse. Moreover, under tighter deadlines, packing
tasks based on their dependencies also matters as it provides a better task ordering to satisty
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Figure 6.10: Comparison on Varying Deadlines. Spark-DAGSched is compared with
the baselines by varying deadlines with the deadline factor. Spark-DAGSched achieves lower
deadline miss rate than baselines. It violates a mere 10% of the jobs with extremely tight
deadlines (1.1x deadline factor).

jobs’ end-to-end deadlines. Therefore, Spark-DAGSched performs better than R1-unaware
schedulers TetriSched and EDF under tighter deadlines.

Constrained Cluster. We simulate a constrained cluster by lowering the cluster size from
30k to bk, with all other settings remaining the same (arrival rate fixed at 135 jobs/hour and
job deadlines sampled from 1.1-1.25 deadline factor). Spark-DAGSched still outperforms
baselines, achieving the highest goodput. We expect Spark-DAGSched gains to increase
further under tighter cluster size conditions, as a more constrained cluster demands efficient
packing of tasks from the scheduler.

Fig. 6.11 compares Spark-DAGSched with the baselines on different cluster sizes. Spark-
DAGSched’s gains in goodput increase with tighter cluster sizes. It achieves upto 6.42x better
goodput than the baselines. Spark-DAGSched achieves better performance as DAGSched
makes it R1-R3 aware. Specifically, considering all three requirements together provides bet-
ter packing opportunities to Spark-DAGSched. Schedulers that pack without deadline aware-
ness (e.g., Graphene) achieve less goodput as they don’t prioritize urgent jobs. TetriSched
is R3-aware but doesn’t consider R1, missing opportunities for better packing.

Takeaway: Spark-DAGSched gracefully degrades under conditions of extreme stress—
managing to sustain 90% goodput with tight deadline factor of 1.1x, and upto 6.42x better
goodput under constrained cluster sizes.
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Figure 6.11: Comparison under Resource Constraints. Spark-DAGSched is com-

pared with the baselines under resource constraints by reducing the cluster size from 30k to
5k. DAGSched consistently outperforms the baselines and is upto 6.42x better in goodput.
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6.6.4 Do DAGSched’s Optimizations Help?

We now assess the efficacy of DAGSched’s proposed optimization. We ask whether these
optimizations reduce the scheduler runtime. To provide attribution of benefits to each of
the optimizations passes, we incrementally add optimization to Spark-DAGSched’s STRL++
DAG and compare scheduler runtime and goodput. The comparison is done for the arrival
rate of 135 jobs/hr (where DAGSched reaches 85% cluster utilization). To give a fair chance
to DAGSched run with no optimizations, the scheduler runtime limit is kept 60s (10% of
the jobs critical path). Fig. 6.12 compares DAGSched run with no optimization passes
(DAGSched NoOpt) to incrementally added optimization passes that include critical path
(+CP) and dynamic discretization (+Dyn) optimization pass. We add one more optimization
(+SEL) derived from prior work [207] which allows Spark-DAGSched to specify 7, such that
DAGSched randomly drops the replanning of 7% of the jobs in each scheduling cycle.

Our key finding is that the optimization passes not only reduce the solver runtime but also
increase goodput. Specifically, with the dynamic discretization added as the optimization
pass DAGSched reaches 96% goodput, increases goodput by 11% and reduces solver runtime’s
90th percentile latency by 6x compared to DAGSched run with no optimization. The increase
in goodput comes as the search space reduced by the DAGSched’s optimization passes reduces
the presolve time and allows solvers to spend more time finding better solutions.

Takeaway: DAGSched’s optimizations reduce solver runtime with 60x reduction in p90
latency and increase goodput by 5.29% compared to DAGSched with no optimization passes.
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Figure 6.12: Evaluating DAGSched’s Optimization Passes. DAGSched’s optimiza-
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6.7 Related Work

Heuristic-Based Schedulers like Graphene [125], Decima [198], Tetris [126], DRF [115]
provide selective support for R1-R3, and often trade-off decision quality for efficiency.

Solver-Based, Non-Declarative Schedulers. Quincy [154] and Firmament [118] model
the scheduling problem as a min-cut, max-flow network graph, but crucially cannot support
either of R1-R3. Other solver-based workers that model the scheduling problem as ILPs,
e.g., Gravel [206] develop hand-crafted mathematical models that do not support R1, R3.

Solver-Based, Declarative Schedulers. Alsched [309] and DCM [287] propose languages
with no notion of time, and thus unable to express deadlines (R3) or task orderings (R1).
RDL [82] and STRL [310] provide similar abstractions to construct the resource-time space
of placement choices. However, STRL does not support ordering constraints (R1), and RDL
has no R2 awareness, unable to partially order the choices according to task preferences.
Furthermore, specifying R1 for complex jobs in RDL requires introduction of false task
dependencies. This prevents RDL from capturing all topological orderings of the job affecting
placement decision quality.

6.8 Conclusion

We have proposed a declarative scheduling framework DAGSched, whose specification
language STRL++ enables concise yet expressive specification of R1-R3. We instantiate a
scheduler for Apache Spark using DAGSched, and evaluate it on a production trace, achieving
a 43.75% improvement in job arrival rate for 99% deadline attainment, and up to 6.42x
increase in deadline attainment under high load.
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Chapter 7

Conclusions

This dissertation explored a clean-slate design for a synergistic development of modular
AV pipelines in tandem with the “execution systems” orchestrating their execution on the
constrained resources in the AV. We observe and underscore the need for AVs to adhere
to dynamically-varying deadlines that are dictated by the environment around the AV. To
help achieve this, we proposed a new programming model, D3, that centralizes deadline
management and exploits the presence of a multitude of solutions for each component in the
AV decision-making computational pipeline to meet dynamic deadlines.

We show how to realize the D3 model through novel extensions to concepts from stream-
ing data systems in ERDOS. ERDOS exposes fine-grained execution events and allows the
enforcement of dynamic daedlines between any two events. To help achieve these dead-
lines, ERDOS crucially provides speculative execution, whose efficient and timely execution
is enabled by two key scheduling techniques: SuperServe and DAGSched. In SuperServe,
we develop a fine-grained inference serving system for ML models that unlocks a resource-
efficient serving of the entire range of ML models spanning the latency-accuracy tradeoff
space. DAGSched proposes a declarative language, STRL++, and unlocks an efficient multi-
plexing of the available compute resources amongst the decision making components, while
maximizing the resource utilization and attainment of deadlines.

Finally, we address the crucial lack of AV benchmarks by providing the first completely
open-source AV pipeline, Pylot, and use it to evaluate the positive effects of D3 and ERDOS
on the driving safety of AVs. Over a challenging driving scenario spanning 50kms, D3 achieves
a 68% reduction in collisions as compared to prior state-of-the-art programming models.

We open-source all of the contributions of this thesis, and hope that these systems and
platforms will empower the broader AV community to conduct impactful research that will
lead to a safer autonomous future.

In the remainder of this chapter, we look back towards the work conducted in the disser-
tation and summarize the lessons learnt during the process (§7.1). In addition, in §7.2, we
enumerate several concrete lines of research that remain unexplored, and will prove critical
to enabling D3 and ERDOS to be deployed on production vehicles.
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7.1 Lessons Learnt

We now summarize the key lessons learnt during the development of the abstractions and
systems that support D3 and make it amenable for AV development.

Harnessing Application Knowledge for Efficient Abstractions

We believe that the techniques that we have proposed in this dissertation remain broadly
applicable to modern cyber-physical systems that must continuously interact with an envi-
ronment inhabited by humans, but without a human safety operator in the loop.

Our initial prototypes of ERDOS began by trying to develop abstractions that could act
as a common substrate for all such applications. Specifically, we ported common applications
involving robot arms, specialized gripping mechanisms etc., but found that these collective
applications led to general abstractions that did not highlight unique characteristics. Thus,
while our initial prototypes offered various quality-of-life improvements for developers of
robotic applications as compared to ROS (e.g., centralized package management, ease of
deployment across versions, better operator scheduling leading to efficient communication
etc.), they did not lead to the design of fundamentally new abstractions that could offer any
tangible safety benefits to cyber-physical systems.

To achieve a better understanding of the challenges, we decided to focus on AVs as
a key example of modern cyber-physical systems, and spearheaded an initial prototype of
Pylot. Pylot was a multi-year effort whose interfaces amongst components had to be con-
stantly reworked in order to understand the key characteristics that must be supported by
execution systems. Our development efforts led us to distill the two unique characteris-
tics:  Environment-Dependent Deadlines (C1) and Environment-Dependent Computational
Complexity (C2), which were crucial in the development of the D3 programming model.

Similarly, the port of Pylot to a real vehicle, provided us with greater insight on Pylot’s
interfaces amongst components, and led to the design of cleaner abstractions in ERDOS that
could help us deploy Pylot to both simulators and real-vehicles seamlessly.

Performance Through Simple Abstractions

A key driving goal in the research proposed in this dissertation was the search for min-
imalist abstractions. Surprisingly, we found that the design of such simple abstractions
often did not come at the cost of the performance, and instead, aided in achieving better
performance than prior state-of-the-art abstractions.

A prime example of these simple abstractions is STRL++ (§6.4.2), the declarative lan-
guage for capturing the three key scheduling requirements: Precedence Constraints (R1),
Placement Preferences (R2) and Timing Constraints (R3). We strove to ensure that STRL++
borrowed from prior languages that were robustly validated by the community, while adding
the minimal set of new language constructs required to support R1-R3. Together, we found
that these new abstractions captured a wealth of information about the placement choices
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that could guide an automatic optimization of the generated mathematical models and scale
them to bigger problem sizes at lower latencies.

A similar observation was made in the design of the timestamp and frequency deadlines
that were able to efficiently capture the entire set of possible deadlines enumerated in prior
works using just the simple boolean functions discussed in §3.4.1. These functions were not
only easier to specify for the developers, they were also extremely simple to evaluate and
allowed ERDOS to provide extremely fine-grained execution events that dynamically-varying
deadlines could be enforced upon.

7.2 Future Work

We now enumerate two concrete lines of future work that present unique challenges, and
will prove critical in enabling D3 and ERDOS to be deployed on production vehicles.

7.2.1 STRL++: An Intermediate Representation for Scheduling

Prior work in resource scheduling algorithms either relies on application-specific heuris-
tics [125, 79, 80, 260, 126, 198| or optimization solver-backed mathematical models [287, 310,
234] tailored to specific requirements of an application. However, these approaches typically
construct their own intermediate data structures to represent a scheduling problem [125,
198, 287| which fail to generalize across different application requirements. As a result, each
subsequent work must undergo the extremely tedious work of constructing an appropri-
ate formulation for their specific requirements, which ultimately hinders the reproducibility,
analysis and comparison of different scheduling algorithms.

In this line of work, we draw inspiration from the success of the LLVM IR [177| and
logical algebra in DBMS query planning [124, 213] to undertake the development of an ex-
pressive intermediate representation that allows applications to specify their placement re-
quirements and scheduling techniques to convert them to space-time allocations on physical
resources. Both LLVM and logical algebra for query planning significantly eased the develop-
ment of efficient, backend-specific program/query transformations to exploit parallelism and
application-specific optimizations [213]. Similarly, a scheduling IR will enable subsequent
works to eschew the development of application-specific data structures and instead suggest
novel transformations to the IR to meet application-specific scheduling requirements.

For example, prior work in optimization solver-backed scheduling algorithms [287, 310,
234, 154, 118] relies on vastly different optimization techniques. Specifically, while DCM [287]
uses Constraint Programming (CP; realized using Google OR-Tools [240]) for scheduling its
application, Tetrisched [310] relies on Mixed Integer-Linear Programming (MILP; realized
using CPLEX [148] and Gurobi [135]) to achieve its objectives. Thus, while they both
compute space-time allocation of resources to an application, their underlying mechanisms
(CP and MILP) provide vastly different primitives to achieve their objectives that have been
shown to have complimentary strength and weaknesses [6, 142, 143, 141]. The goal of an
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expressive IR should be to enable application’s requirements to be efficiently lowered into
either of the aforementioned formulations in order to dynamically switch between them and
exploit their complementary strengths and offset their weaknesses.

To realize our vision of the development of a general, yet expressive intermediate repre-
sentation for space-time scheduling of applications, we propose the following action items:

MILP CP-SAT
PUT, 1) = Rp if task T started at time ¢ S(T) = Start time of task T (7.1)
’ 0 otherwise

(a) Start-time formulation. In MILP, we associate an integer PI(T,t) for each possible
start time t that resolves to Ry if task T starts at ¢, and 0 otherwise. In CP-SAT, the start
time of a task is represented as an integer variable S(7°).

D—r
> PUT,t) < Rp VT € {Ty, Ty} S(T) e [s,D—r) (7.2)

t=s

(b) Mutual exclusivity of placements. In MILP we ensure that only one start time is
chosen for each task 7" from all start times ¢ € [s, D —r). In CP-SAT, we restrict the domain
of the start time S(7') to the same range.

vite{s.. D} S(Th) +r > S(T»)
. . VS(Ty) +r = 8(Th)  (7.3)
> PTi+t)+ Y PlTy+ty) < |M| = Ry, + Ry, < |M|
ti=t—r ta=t—r

Respecting resource constraints. In MILP, we ensure that for all discretizations ¢, the
sum of resource-requirements of all task placements for T € {T1,T,} that could possibly
execute at t is less than the available resources. In CP-SAT, we use logical conditions to
ensure that if T} and 75 overlap, they do not oversubscribe the set of available resources.

Figure 7.1: Alternate formulations for MILP and CP-SAT backend for placing two
tasks {71, T>} both with a start time s, deadline D, runtime r and requirements of Ry, and
Ry, resources respectively from a set of M machines.

(1) Generalizing STRL++ to support alternate backends (CP-SAT, MILP, Flow).
This line of work seeks to focus on the correct return and side-effect semantics of each
expression such that they can be efficiently lowered to multiple backends (e.g., CP-SAT [240]
and Min-Cost, Max-Flow (MCMF) [154, 118]). We discuss one such lowering in Fig. 7.1,
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where we show a hand-written MILP and CP modelling of a deadline-aware scheduling of two
tasks: T and T. Notably, while MILP formulation represents the start time St of a task as a
discrete choice amongst integer placement variables PI(T,t) such that PI(T,t) = S(T) =t
(enforced using Eq. (7.1), Eq. (7.2)). On the other hand, CP-SAT encodes the start time as an
integer variable whose domain ranges from [s, D —r). As a result of the difference in the way
each approach models the start time of tasks, both MILP and CP-SAT require fundamentally
different modelling techniques to ensure that capacity constraints of the resource-time space
are respected. Eq. (7.3) shows that MILP ensures that all possible start times of each Task
T that could use the resource at a time ¢ require < |M| machines to execute. On the
other hand, CP-SAT uses logical conditions to ensure that if 77 and T, overlap, they do
not oversubscribe the set of available resources. Moreover, prior work [154, 118| has shown
considerable performance improvements by using network flows to schedule a set of tasks.
However, network flows also require a different approach to modeling the scheduling problem,
and only work for a particular structure of scheduling problems (namely, they do not support
DAG-aware scheduling). This difference in modelling encourages us to investigate the correct
semantics for each expression such that STRL++ is amenable to multiple backends, and can
harness their performance benefits. Thus, we seek to specify the formal semantics of each
STRL++ expression and define their composability rules.

(2) Optimization and Performance Scaling. The ability to lower STRL++ to multiple
solver backends will unlock a systematic and detailed study of the strengths and weaknesses
of such backends for scheduling soft real-time ML applications. Prior works [6, 160] have
discussed the general strengths and weaknesses of both MILP and CP approaches. We seek
to build on this work to understand the nature of specific problem instances (described by
both the structure of the DAGs available for scheduling and the state of the resources in the
system) that benefit from each modelling approach. For example, conventional wisdom [160]
dictates that CP techniques are much more efficient at finding feasible solutions whereas
MILP solvers are more efficient at optimization. Using this intuition, we conjecture that the
latency of the scheduler would benefit from using the CP formulation when the deadline of
the tasks is lax and thus feasible solutions are easier to find. On the other hand, the latency
of the MILP solver will be lower when the deadline is tight, feasible solutions are hard to find
and an optimal solution is required. Fig. 7.2 tests this hypothesis by comparing the latency
of solving hand-written MILP and CP models (Fig. 7.1) as a function of the SLO factor
of tasks. We notice that at tighter deadlines, MILP is 2.3x faster than CP-SAT, whereas
CP-SAT is 2.04x faster as the SLO factor increases and the deadlines become more lax.

In addition, the definition of the formal semantics of the STRL++ language along with the
composability rules for expressions will enable us to define semantic-preserving transforma-
tions that can significantly impact the overall solver time by constructing more efficient
underlying mathematical models for the given problem. Finally, we seek to explore the ex-
pressiveness and efficacy of STRL++ as an IR for development of scheduling heuristics, similar
to the ones proposed in literature [125, 126, 132, 79, 260]. Specifically, we will undertake
the expression of selected scheduling heuristics as transformations to the STRL++ represen-



7.2. FUTURE WORK 127

80 -
— CP
ILP
70 -
2 60 -
2
£ 501
C
Z
g 407 o 0
3 —
(7]
30 1
20 -
2 4 s 10 20

SLO Factor

Figure 7.2: Comparing MILP and CP. MILP optimizes placement 2.3x faster under
tight SLOs due to a reduced number of placement choices. CP is 2.04x faster at lax deadlines
since it is able to find feasible solutions quickly.

tation of an application’s requirements. In addition, we also seek to develop novel heuristics
atop STRL++ that are not only performant and provide efficient resource-time placements
for specific application requirements, but can also be used to come up with initial feasible
solutions quickly. These initial feasible solutions can then be amended by MILP solvers to
construct optimal resource-time placements for the application quickly.

7.2.2 Scheduling for Conditional DAGs

In Chapter 6, we explored DAGSched, a technique for end-to-end scheduling of job DAGs
that conform to the D3 programming model. In DAGSched, we assume knowledge of the
job graph along with an estimate of the runtime and resource profiles for each component.
These constraints are similar to data-parallel jobs where the job graphs are considered to be
static (or are reconfigured by external mechanisms that are known to the scheduler).

However, a key requirement of D3 is to allow components to adapt their computation to
meet the dynamically-varying deadlines. This leads to an execution model where job graphs
encode all possible execution paths of the computation, and dynamically actuate only some
paths at runtime corresponding to the data-driven execution choices made by the graph.

This execution model has been recently formalized as the “conditional DAG model” [201].
In addition to D3, such an execution model shows up in two major areas of work:

(1) Video Analytics where recent works [162, 328, 130] have transformed the optimization
of the latency-accuracy curve for video analytics into a job graph with dynamically-chosen
branches. Each branch represents a choice of the “knobs” that provides a singular point on
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Figure 7.3: A sample job exhibiting the need for conditionality-aware scheduling. Each
task in the job requests two resources { Ry, Ry} and executes for the annotated 7" time units.
The deadline of the job is set at 367", and task A executes task B with a 10% probability.

the pareto-optimal curve of latency-accuracy for the choice of detection + tracking models.

(2) Workflow Orchestration tools (e.g., Airflow [27]|, Dagster [83], Prefect [247] etc.)
provide constructs for branching inside the DAG, which eases the analysis of the job graph.

A formal analysis has shown that the schedulability of any possible execution variant
of conditional-DAGs (preemptive vs. non-preemptive, etc.) is P-SPACE complete [45]. In
Fig. 7.3, we show a sample job that contains 8 tasks, each of which request a fixed amount of
the resources { Ry, R2} (each with a unit of resource available), and task A only conditionally
executes the task G with a 10% probability. Fig. 7.4 shows two equivalent schedules (decided
by DAGSched) under the worst-case assumption that all tasks (including task B) execute.
However, we observe that the two schedules are not equivalent. The schedule shown in the
top box of Fig. 7.4 lends itself to a less efficient resource utilization when task B does not
execute, and the schedule is replanned after task A finishes execution. On the other hand,
the schedule shown in the bottom box of Fig. 7.4 leads to a much more efficient resource
utilization. In this line of work, we seek to incorporate the notion of robustness under
the worst-case schedule planning, to ensure that the resources are efficiently utilized when
mispredictions occur in the conditional DAG execution model.
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Figure 7.4: A need to consider robustness in the scheduling algorithms. Both
“Original” schedules are equivalent when task B is executed, but the bottom schedule is
much more robust to mispredictions in the branches of the conditional DAG, and leads to
more efficient resource utilization under mispredictions.
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