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Abstract

Extending Data Priors Across Domains with Di↵usion Distillation

by

David McAllister

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Angjoo Kanazawa, Chair

Score distillation sampling (SDS) has proven to be an important tool, enabling the use of
large-scale di↵usion priors for tasks operating in data-poor domains. Unfortunately, SDS has
a number of characteristic artifacts that limit its usefulness in general-purpose applications.
In this paper, we make progress toward understanding the behavior of SDS and its variants
by viewing them as solving an optimal-cost transport path from a source distribution to a
target distribution. Under this new interpretation, these methods seek to transport corrupted
images (source) to the natural image distribution (target). We argue that current methods’
characteristic artifacts are caused by (1) linear approximation of the optimal path and (2)
poor estimates of the source distribution. We show that calibrating the text conditioning of
the source distribution can produce high-quality generation and translation results with little
extra overhead. Our method can be easily applied across many domains, matching or beating
the performance of specialized methods. We demonstrate its utility in text-to-2D, text-based
NeRF optimization, translating paintings to real images, optical illusion generation, and 3D
sketch-to-real. We compare our method to existing approaches for score distillation sampling
and show that it can produce high-frequency details with realistic colors.
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Chapter 1

Introduction

Di↵usion models have shown tremendous success in modeling complex data distributions like
images [49, 52, 3, 23], videos [57, 4] and robot action policies [13]. In domains where data
is plentiful, they produce state-of-the-art results. Many data modalities, however, cannot
enjoy the same scaling benefits due to their lack of su�ciently large datasets. In these cases,
it is useful to exploit di↵usion models trained on domains with rich data sources as a prior in
an optimization framework. Score Distillation Sampling (SDS) [46, 67] and its variants [68,
20, 74] are a widely adopted way to optimize parametric images, i.e., images produced by
a model like NeRF, with a pre-trained di↵usion model. Despite being applicable to a wide
range of applications, SDS is also known to su↵er from several significant artifacts, such as
oversaturation and oversmoothing. As such, several variants have been proposed to alleviate
these artifacts [68, 74, 32], often at the cost of e�ciency, diversity, or other artifacts.

In this paper, we investigate the core issues with SDS by casting the class of score
distillation optimization problems as a Schrödinger Bridge (SB) problem [53, 12, 11, 33],
which finds the optimal transport between two distributions. The density flow formed by
these mappings is transport-optimal, as defined in the SB problem. In an optimization
framework, the di↵erence between paired source and target samples, computed with an SB,
can be used as a gradient to update the source. Su et al [63] have shown that this path
can be explicitly solved using two pre-trained di↵usion models. We show that one can also
compose these models as an optimizer to approximate transport paths on the fly. Under
this framework, we can understand SDS and its variants as approximating a source-to-target
distribution bridge with the di↵erence of two denoising directions. The denoising scores
point to the source and target distributions respectively, with the source representing the
current optimized image that updates with each optimization step.

This framing reveals two sources of errors. Our analysis reveals that SDS approximates
the current distribution with the unconditional image distribution, which is not accurate
and results in a distribution mismatch error. We show that recent SDS variants [68, 74, 32]
can be seen as proposals to improve this distribution mismatch error.

Finally, our analysis motivates a simple method that rectifies the distribution mismatch
issue without additional computational overhead. Our insight is that the large-scale text-
to-image di↵usion models learn from billions of caption-image pairs [54], where a breadth of
image corruptions are present in their training sets. They are also equipped with powerful
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pre-trained text encoders, which empower the models with zero-shot capacity in generating
unseen concepts [51, 50]. As such, simply describing the current source distribution with
text, even if it is not part of the real image manifold, can approximate the distribution of
the current optimized image, leading to improved transport paths. Our simple and e�cient
solution can be easily applied to any existing application that uses SDS. We show that it
consistently improves the visual quality in the desired domain. We comprehensively compare
our approach with standard distillation sampling methods over several generation tasks,
where our approach matches or outperforms the baselines.

Our contributions are as follows:

• We propose to cast the problem of using a pre-trained di↵usion model as a prior in
an optimization problem as solving the Schrödinger Bridge (SB) problem between two
image distributions. Specifically, it can be seen as bridging the distribution of the
current optimized image to the target distribution under a dual-bridge framework.

• We analyze recent SDS-based methods under the lens of our framework and explain
the pros and cons of the individual methods.

• Our analysis motivates a simple yet e↵ective alternative to SDS by using textual de-
scriptions to specify the current optimized image distribution. It achieves consistently
more realistic results than SDS, producing quality comparable with VSD [68] with-
out its computational overhead. We compare various generation tasks to show its
wall-clock e�ciency and quality generations against state-of-the-art methods.
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Chapter 2

Related Work

Score Distillation Sampling

Although modalities like 3D, 4D, sketch, and vector graphics (SVGs) lack the large-scale,
diverse, and high-quality datasets needed to train a domain-specific di↵usion model, previous
works find it useful to exploit image or video as a proxy modality [26, 16]. By computing
the gradient on a proxy representation with a pretrained model, optimization in the target
modality is viable with di↵erentiable mappings, e.g. di↵erentiable rasterization [34] for
SVGs or di↵erentiable rendering [44] for 3D objects and scenes. The seminal method, Score
Distillation Sampling (SDS) [46], first proposed to apply a pretrained text-to-image di↵usion
model for text-to-3D generation. However, it requires a high classifier-free guidance weight
and, therefore, su↵ers from artifacts such as over-saturation and over-smoothing. Recent
works have built upon SDS to adapt it for editing tasks [30, 20, 45, 29] or more broadly
improve over the original SDS formulation [28, 1, 68, 75, 74, 76]. NFSD [28] and LMC-
SDS [1] inspect the individual components of the SDS gradient and propose methods to
rectify the high guidance weights. However, the over-saturation problem is mitigated but
not fully resolved. VSD [68] formulates the problem as particle-based variational inference
and proposes to train a LoRA [24] on the fly to estimate the score of proxy distribution.
We presented a new framework that allows rethinking all the variants under the same lens.
This framework also motivates a method that improves the quality of SDS without losing
e�ciency.

Visual Content Generation with SDS

Since SDS was developed for text-to-3D generation, it has also been adopted to generate
various other visual content such as SVGs [18, 71], sketches [70], texture [43, 6, 7, 8, 73],
typography [25], dynamic 4D scenes [2, 58, 38] and illusions [5]. Among these applications,
text-to-3D has been the most active research direction. In addition to designing better
distillation sampling methods [68, 75, 28], prior work has also studied the underlying 3D
neural representations [72, 64, 36, 9] and leveraging multiview data to improve the 3D
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consistency [55, 41, 40, 47, 76]. We note that these explorations are orthogonal to our study
and should be able to work jointly with our method. In this paper, we looked into existing
applications like text-based NeRF optimization, painting-to-real, and illusion generation.
We also propose a new AR application called 3D sketch-to-real.
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Chapter 3

Method

In this section, we present an analytical framework that casts the score distillation sampling
(SDS) family of methods as instantiations of a Schrödinger Bridge problem. We show that
many recent SDS based methods can be interpreted as an online solver for the problem.
That is, each SDS optimization step is a first-order approximation of a dual di↵usion bridge
formed by two probability flow (PF) ODEs [63].

We analyze SDS and its variants under this general framework. Then, we present a
simple solution based on the analysis, which leads to significant quality improvement with
little extra computational overhead.

Background

Di↵usion models define a forward “noising” process that degrades data samples x grad-
ually from the image distribution to noised samples zt, and eventually the i.i.d. Gaussian
distribution [22, 60]. This process is indexed by timesteps t, where t = 1 indexes the full
Gaussian noise distribution and t = 0 indexes the data distribution. A di↵usion model,
parameterized by �, is then trained to reverse this encoding process, iteratively transforming
the noise distribution into the data distribution with the score-matching objective:

LDi↵(�,x) = Et⇠U(0,1),✏⇠N (0,I)

⇥
w(t) k✏� (↵tx+ �t✏; y, t)� ✏k22

⇤
, (3.1)

where y is a conditioning text prompt, and ↵t and �t are hyperparameters from the predefined
noise schedule.

Probability Flow ODE. Denoising score matching [62, 27, 59] shows that the di↵usion
model denoising prediction can be rewritten as a score vector field:

rx log pt(x) = � 1p
1� ↵t

✏t. (3.2)

Because of its special connection to marginal probability densities, the resulting ODE is
named the probability flow (PF) ODE with the following expression:
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Figure 3.1: Optimization with di↵usion models as approximation of a Schrödinger

Bridge Problem (SBP). (a) We propose to formulate optimization with di↵usion models
as bridging the distribution of the current optimized image x✓ to the target distribution
under a dual-bridge framework (a). Current methods can be interpreted as approximating
the optimal transport ✏⇤SBP between these distributions via the di↵erence between projections
of a noised image x✓,t onto the two distributions. This analysis reveals two sources of error:
(1) these gradients are linear approximations of the optimal path, as illustrated in (a), and
(2) the source distribution used for computing this approximation (e.g., the unconditional
distribution in SDS [46]) may not be aligned with the current distribution, illustrated in (b).

dx = [f(x, t)� 1

2
g2(t)rx log pt(x))]dt, (3.3)

where f(x, t) and g(t) are pre-defined schedule coe�cients. This PF-ODE can be solved
deterministically [61], mapping a noise sample to its corresponding data sample through
the reverse process and the opposite through the forward process (inversion). This cycle-
consistent conversion between image and latent representations is important in establishing
dual di↵usion implicit bridges.

Dual Di↵usion Implicit Bridges. Dual Di↵usion Implicit Bridges (DDIBs) [63] com-
pose a di↵usion inversion and generation process for solving image-to-image translation prob-
lems without requiring a paired image dataset. Instead, DDIBs use two di↵usion models
trained on di↵erent domains (or, analogously, one model with two di↵erent text conditions).
DDIB inverts the source image into a noise latent via the forward PF-ODE and then decodes
the latent in the target domain via the reverse PF-ODE. DDIBs can be interpreted as a con-
catenation of the Schrödinger Bridges from source-to-latent and latent-to-target, hence the
dual bridges in its name. DDIBs enable solving transport between two distributions using a
single pre-trained di↵usion model. We build on this insight in an optimization context.
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Optimization with Di↵usion Model Approximates a Dual

Schrödinger Bridge

Many generative vision tasks involve optimizing corrupted images to the image manifold. For
example, in 3D generation, a 3D representation like NeRF is optimized to render natural
images matching a prescribed text prompt. Methods like SDS enable this by using a pre-
trained di↵usion model as a prior. We propose formulating such optimization problems
as solutions to an instantiation of a Schrödinger Bridges Problem (SBP). SBP finds cost-
optimal paths between a source image distribution psrc and a target image distribution
ptgt [66, 14]. Optimizing a parametrized image toward the natural image distribution can be
cast as finding the optimal paths between the current optimized image(s) and the natural
image distribution. Instead of solving this problem directly, which would require training a
generative model from scratch [39, 14, 10], we show that pre-trained di↵usion models can
be exploited as an optimizer that approximates the path. Further, the gradient computed
by the existing score distillation methods can be viewed as the first-order approximation of
this path. This formulation is illustrated in Figure 3.1

Let x✓ 2 Rd represent a parametric image, i.e, an image produced di↵erentiably by a
model with parameter ✓, such as a NeRF. To leverage the pretrained di↵usion model, we
add noise ✏ ⇠ N (0, I) to obtain a latent at timestep t:

x✓,t = ↵tx+ �t✏

Suppose that  t0,src and  t0,tgt denote the paths obtained by solving the PF ODE as in
Eq. 3.3 from t to 0, both starting from x✓,t, such that  0,src 2 psrc,  0,tgt 2 ptgt,  t,src =
 t,tgt = x✓,t. This forms a dual di↵usion bridge [63] from  0,src to  0,tgt. We approximate
this path per-iteration using a pretrained di↵usion model. We denote the displacement of
this path as:

✏⇤SBP =  0,tgt �  0,src. (3.4)

Fully simulating this bridge involves solving two PF ODEs, which invokes dozens of
neural function evaluations (NFEs) to estimate the gradient of each iteration. Instead,
one can estimate each half of the bridge with a single-step prediction by computing two
denoising directions ✏�,src and ✏�,tgt. We thus obtain a first-order approximation of a dual
di↵usion bridge with the di↵erence vector:

✏SBP = ✏�,tgt � ✏�,src, (3.5)

which is subject to the following sources of errors.

1. First-order approximation error. Instead of performing full PF-ODE simulations,
the single-step noising and prediction are less accurate and can induce errors. Recent
work ISM [35] can be interpreted as reducing this error with a multi-step simulation
to obtain x✓,t.
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Figure 3.2: Comparision of SDS variants under our analysis. We illustrate the major
gradient components of di↵erent SDS variants and provide a straightforward comparison
with ✏SBP.

2. Source distribution mismatch. The dual di↵usion bridge relies on ✏�,src accurately
estimating the distribution of the current sample, x✓. A series of works can be viewed
as improving this error [68, 28, 74] by computing more accurate ✏�,src .

We show that ✏�,tgt � ✏�,src is an e↵ective gradient when both the source and target
distribution are well expressed. Next, we discuss the popular score distillation methods
under this analysis. We argue that their characteristic artifacts can largely be understood
due to the errors above.

Analyzing Existing Score Distillation Methods

We analyze SDS and its variants through our framework by inspecting each component in the
computed gradient. For notation, ytgt is the text prompt representing the target distribution,
and ? denotes the unconditional prompt. For each method, we present its gradient update
and discuss its implications.

Score Distillation Sampling [46]:

✏SDS = ✏� (x✓,t;?, t) + s · (✏� (x✓,t; ytgt, t)� ✏� (x✓,t;?, t))� ✏,

where s is the strength of classifier-free guidance. When s is small, the ✏ functions as an
averaging term to regress the image to the mean. However, the SDS gradient has been
shown to work best with extreme values of classifier-free guidance s like 100. We can rewrite
the gradient to emphasize how the conditional-unconditional delta dominates at high CFG
scales.

✏SDS = s · (✏� (x✓,t; ytgt, t)� ✏� (x✓,t;?, t))| {z }
Dominant when s�1

+✏� (x✓,t;?, t)� ✏,

Experimentally, we produce very similar results at high CFG with or without the non-
dominant terms. We argue that SDS should be interpreted through the dominant term,
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which fits within our analysis. Under this interpretation, the unconditional distribution ap-
proximates the distribution of x✓ poorly, instead representing images of any identity with
low contrast and geometric artifacts. Figure 3.1(b) illustrates the e↵ect of a poor approxima-
tion. The bridge from the unconditional to conditional distribution leads to the characteristic
oversaturation and smoothing of SDS results.

Delta Distillation Sampling [20]:

✏DDS = ✏� (x✓,t; ytgt, t)� ✏� (xref,t; ysrc, t) ,

where xref,t is a noised version of a reference image in the image editing task. As shown in
Figure 3.2 (b), this increases the source distribution mismatch since ✏�,src is not calculated
based on the current optimized image x✓,t.

Noise Free Score Distillation [28]:

✏NFSD = (✏� (x✓,t;?, t)� (t < 0.2) · ✏� (x✓,t; yneg, t)) + s · (✏� (x✓,t; ytgt, t)� ✏� (x✓,t;?, t)),

where the strength of classifier-free guidance s is set to 7.5 and yneg =“unrealistic, blurry,
low quality ...”. NFSD greatly reduces the guidance strength while it is observed to perform
very similarly to SDS in practice. We can better explain this phenomenon since the prompt
yneg does not accurately describe the source distribution as it omits the image’s content.
In addition, the second component with weight s = 7.5 still forms the major part of the
gradient, which is the dominant term in SDS.

Classifier Score Distillation [74]:

✏CSD = w1 · (✏� (x✓,t; ytgt, t)� ✏� (x✓,t;?, t)) + w2 · (✏� (x✓,t;?, t)� ✏� (x✓,t; ysrc, t)),

where w1 and w2 are hyperparameters. As shown in Figure 3.2 (c), the second term approx-
imates the bridge from the source distribution to the unconditional distribution, which is
not ideal since it does not point to the target distribution. It explains the observation made
by the authors [74] that this undermines the alignment with the text prompt. Therefore,
the authors always anneal w2 to 0 during the optimization. However, we show this often
reintroduces the SDS artifacts in practice.

Variational Score Distillation [lee2024dreamflow, 68]:

✏VSD = ✏� (x✓,t;?, t) + s · (✏� (x✓,t; ytgt, t)� ✏� (x✓,t;?, t))� ✏LoRA (x✓,t; ytgt, t) .

Out of all the discussed methods, VSD attempts to minimize the source distribution
mismatch error most directly by test-time finetuning a copy of the di↵usion model with LoRA
on the current set of x✓. Note that in the original paper, the use of LoRA was motivated based
on a particle-based variational framework. Our analysis enables an alternative understanding
of VSD. As shown in Figure 3.2 a), this approach is well-justified in our dual di↵usion bridge
framework. However, training a LoRA every iteration is computationally expensive, adds
complexity, and introduces its own low-rank approximation errors. Given this insight, we
propose a simple yet e�cient approach to mitigating source distribution without LoRA.
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Mitigating Source Distribution Mismatch with Textual

Descriptions

Our analysis reveals that the LoRA model in VSD most closely approximates the distribution
of the current optimized parametrized image, addressing the distribution mismatch error.
Unfortunately, it incurs 200� 300% runtime overhead on top of SDS, making it impractical,
despite its significant performance gains. With this understanding, we propose a simple ap-
proach that better expresses the source distribution. Our insight is that pre-trained di↵usion
models have learned the distribution of natural and corrupted images through a combina-
tion of powerful text representation and enormous image-caption datasets. We find that by
simply describing image corruptions with a text prompt, we can improve our estimate of the
source distribution.

Specifically, we propose to use the gradient

✏ours = w · (✏� (x✓,t; ytgt, t)� ✏� (x✓,t; ysrc, t)),

where we get ysrc by adding descriptions of the current image distribution to ytgt (the
base prompt). The remaining question is how to set this description. In generation tasks,
we propose a simple two-stage solution.

1. We use ✏SDS to produce a generation with the method’s characteristic artifacts:

2. We switch to optimization with our gradient, ✏ours, to transport the image parameter
toward the natural image distribution.

To describe the artifacts produced by SDS, we append the descriptors “, oversaturated,
smooth, pixelated, cartoon, foggy, hazy, blurry, bad structure, noisy, malformed”
and drop the descriptors of the high-quality generation. Note that in all of our generation ex-
periments, the description of ysrc is fixed as above. We explored searching for other prompts
but did not find that variations in these descriptions made a big di↵erence.

In editing tasks, we have an initialization that ysrc describes accurately. In such cases,
we omit the first SDS stage and only apply our gradient to optimization. We also append a
“domain descriptor.” For instance, in painting-to-real, this is simply “, painting” to represent
the initial distribution.

While the use of such negative prompting has been explored before, such as in NFSD,
our analysis motivates a principled way to incorporate it into score distillation. We find that
these simple modifications significantly narrow the quality gap between SDS and resource-
intensive methods like VSD. We verify this finding experimentally with qualitative results
and quantitative comparisons across applicable tasks.
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DDIM Sampling SDS NFSD

CSD VSD Ours

Figure 3.3: Text-to-image generation results with COCO Captions. We compare
di↵erent score distillation methods for generating images with COCO captions by optimizing
a randomly initialized image. DDIM sampling indicates the lower bound that the di↵usion
model can achieve. VSD [68] and our method generate the least color artifacts while ours is
more e�cient than VSD.

3.1 Experiments

In this section, we test our proposed method on several generation problems where SDS
is adopted. We compare against SDS and other task-specific baselines. Note that our
goal is not to show another state-of-the-art text-to-3D generation method, but to verify
our findings, where the proposed score distillation approach based on textual description
e�ciently improves the results by mitigating the source distribution mismatch error. We first
perform a thorough experiment in a controlled setting on zero-shot text-to-image generation.
Then, we compare it on text-guided NeRF optimization to SDS and VSD and evaluate the
painting-to-real image translation task against image editing baselines. Please see more
qualitative results, as well our method’s application to optical illusion generation and 3D-
sketch-to-real task, in the appendix.

Zero-Shot Text-to-Image Generation with Score Distillation

To verify our analysis of existing SDS variants and the proposed method, we perform text-
to-image generation by optimizing an image of size 64⇥ 64⇥ 4 in the Stable Di↵usion latent
space [68, 28]. The benefit of choosing image generation as the evaluation task is that its
generation quality has the least confounding variables among other tasks. (e.g., in text-to-
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Table 3.1: Zero-shot FID comparison with di↵erent score distillation methods. We
report FID scores of text-to-image generation using 5K captions randomly sampled from the
COCO dataset. The best score distillation result is indicated in bold, while the second best
is underlined.

DDIM (lower bound) SDS [46] NFSD [28] CSD [74] VSD [68] Ours

Zero-Shot FID (#) 49.12 86.02 91.70 89.96 59.22 67.89
Zero-Shot CLIP FID (#) 16.56 28.39 29.25 27.07 18.86 20.31
Time per Sample (mins) 0.05 4.48 7.20 6.21 16.02 4.48

3D, many designs like regularizations [75], initialization [36], 3D representations [9, 65, 72,
64], and 2D prior models [55, 41, 40, 47, 76] could a↵ect the final quality.)

We use the MS-COCO [37] dataset for the evaluation. Consistent with the prior study [3],
we randomly sample 5K captions from the COCO validation set as conditions for generating
images. For each caption, we optimize a randomly initialized the image with the score
distillation gradients. We compare our method with several SDS variants including SDS [46],
NFSD [28], CSD [74], and VSD [68]. For all the methods, we use the same learning rate
of 0.01 and optimize for 2, 500 steps where we generally observe convergence. We compute
the zero-shot FID [21] and CLIP FID scores [31] between these generated images and the
ground truth images. We also report results generated by DDIM with 20 steps as a lower
bound for renference.

We report the FID scores and the time to optimize one image in Table 3.1. Among all
the score distillation methods, VSD [68] achieves the lowest FID scores. However, it requires
training a LoRA along the optimization process. Instead, ours achieves a comparable FID
score with over 3⇥ faster speed. We visualize random examples generated by di↵erent score
distillation methods in Figure 3.3. We notice that SDS and NSFD su↵er from the over-
saturation and over-smoothness issues. CDS has slightly fewer color artifacts. VSD and
ours generate the samples that most closely resemble the DDIM sampling.

Text-guided NeRF Optimization

We now evaluate the text-to-3D generation problem, where we intentionally aim to exclude
variables that could a↵ect the generation quality other than the score distillation methods.
We use the ThreeStudio [19] repository to optimize a NeRF with settings tuned for Prolific-
Dreamer stage 1 (NeRF optimization) [68]. Note that we do not perform stages 2 and 3,
i.egeometry fine-tuning and texture refinement. Specifically, we initialize the NeRF with the
method proposed by Magic3D [36], use the regularization losses on the sparsity and opacity,
and optimize for 25K steps. We adopt the native SDS and VSD guidance implementations
for comparison.

We first show visual comparisons of di↵erent score distillation methods in Figure 3.4. We
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A giant rock with moss on it, detailed, high 
resolution, high quality, sharp

A wooden chair, detailed, high resolution, 
high quality, sharp

A 3D model of an adorable cottage with a thatched roof.

VSD SDS Ours VSD SDS Ours

Various hollow, asymmetrical, textured seashells, collected 
in a sand-filled, clear glass jar with a twine-tied neck

Figure 3.4: Text-guided NeRF optimization with di↵erent score distillation meth-

ods. We make a fair comparison of SDS and VSD for text-to-3D generation. For each
generation, we show three uniformly sampled views. SDS results like the cottage and pepper
mill still su↵er from over-saturation problems, while ours and VSD can produce realistic
details, color, and texture.

ViT-L/14 ViT-B/16 ViT-B/32

SDS [46] 0.2811 0.3196 0.3139

VSD [68] 0.2837 0.3292 0.3166

Ours 0.2848 0.3282 0.3148

Table 3.2: Quantitative comparisons of NeRF optimization. We measure the average
CLIP similarity of rendered views using SDS, VSD and our experimental method.

notice that SDS tends to generate fewer details, as shown by the rock and chair examples,
and sometimes su↵ers from over-saturation issues, as in 2D, as demonstrated by the cottage
and seashell examples. Instead, both VSD and ours can generate highly photo-realistic 3D
objects, while ours does not require training a LoRA model and shares a similar computa-
tional cost as SDS.

We also perform a quantitative evaluation and user study on the NeRFs optimized based
on 31 di↵erent text prompts. Note that this number is similar to the choice of existing
works on the text-to-3D task [35, 32, 15]. However, di↵erent from these works that ignore
the confounding 3D variables that contribute to the generation quality, we disentangle this
by isolating the score distillation method as the only comparison variable. We follow these
works to evaluate the generation quality with CLIP [48]. We report the CLIP similarity
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Input Plug-and-Play SDS OursCycleGANSDEdit Strength 0.5

“a DSLR photo of a blue pond with water lilies”

Input Plug-and-Play SDS OursCycleGANSDEdit Strength 0.5

“a DSLR photo of a historic stone church in a park with gravel and trees”

Figure 3.5: Painting-to-Real comparison. We compare our gradient in optimization
to image restoration and image-conditional generation baselines. While SDEdit produces
convincing textures, its di�cult to find a strength value that balances structure and quality.
Other baselines fail to reproduce natural image quality, while our method produces the best
combination of quality and faithfulness.

in Table 3.2. Our method consistently outperforms SDS and achieves comparable results
with VSD. In addition, in a user study consisting of 37 users, shown pairwise comparisons
of rotating 3D renders (i.e., comparisons of our result and a random choice of VSD or SDS,
with the prompt: “For a text-to-3D system, given the prompt [p], which result would you
be happiest with?”), our results were chosen in 75.7% of all responses. We also show more
results in the Appendix.

Painting-to-Real.

We examine our method’s ability to serve as a general-purpose realism prior. Paintings are
“near-manifold” images, meaning they do not possess natural image statistics but live near
the image distribution in image space. An e↵ective image prior should guide a painting
toward a nearby natural image through optimization.

We initialize a latent image by encoding scans of the artwork through Stable Di↵usion’s
encoder. We specify a prompt for each painting to condition the di↵usion model and then
apply the second optimization stage of our method (SDS stage omitted). We experimented
with automatically generating prompts via pretrained vision language models but found the
results inconsistent, so we leave this to future work. Since the large image datasets used to
train di↵usion models contain artwork, we append the domain descriptor “, painting” to ysrc
to optimize away from this distribution.
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While SDS is proposed to leverage a pretrained text-to-image di↵usion model as an image
prior, its artifacts make it ine↵ective in practice. In comparison, our method realistically
synthesizes details and relights the image naturally. We observe that SDS methods diverge
more easily in 2D experiments than in 3D but that the issue can be mostly resolved with
tuning. A future goal is to formulate a gradient that can be applied idempotently [56]. We
compare with image reconstruction baselines in Figure 3.5 and provide a small gallery of
painting-to-real results in Figure 3.6.

Figure 3.6: Painting-to-Real results.We show selected Painting-to-Real samples with
diverse art styles and subjects. Initialization images are shown on the left, optimized images
are shown on the right.
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Chapter 4

Conclusion

4.1 Discussion

As we have shown that reducing the distribution mismatching error can significantly improve
the generation quality of the score distillation optimization, it is natural to ask whether one
can also reduce the first approximation error, induced by linear bridge estimation, to improve
the results further. Several recent studies including SDI [42] and ISM [35] can be viewed
as mitigating this error by replacing the single-step estimation with multi-step estimation.
Instead of performing multiple PF-ODE steps, one can solve the entire PF-ODE path to
recover the dual bridge and estimate the endpoint of the bridge  0,tgt that is coupled with
 0,src. In this way, we obtain the most accurate gradient direction with little approximation
error ✏⇤SBP = w · ( 0,tgt �  0,src).

However, solving the inversion ODE is not trivial [27]. We noticed that the inversion
can exaggerate the distribution mismatch error and cause the optimization to get stuck at a
local optimal at the beginning of the optimization. Instead, the high variance of the single-
step methods often shows more robustness to the input image. Therefore, we first perform
the single-step score distillation optimization to obtain reasonable results before moving to
solving the full bridge. We find that in text-to-2D, such a method can produce high-quality
results closer to the DDIM sampling results, as demonstrated by a COCO-FID score of
55.65, which is better than VSD results. However, the same trend does not fully transfer to
the text-to-3D experiments. We observe that it typically introduces additional artifacts and
makes the optimization less stable. We leave the best way of leveraging this gradient as a
future research exploration.
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4.2 Closing Remarks

We present an analysis that formulates the use of a pre-trained di↵usion model in an opti-
mization framework as seeking an optimal transport between two distributions. Under this
lens, we analyze SDS variants with a unified framework. We also develop a simple approach
based on textual descriptions that work comparably well to the best-performing approach,
VSD, without its significant computational burden. However, neither approach has yet to
achieve the quality and diversity of images generated by the reverse process. We hope that
our analysis enables the development of a more sophisticated solution that can one day
achieve the same quality and diversity as the reverse process in an optimization framework.
Combining our proposed method with multi-step approximations like ISM [35] or schedules
like DreamFlow [32] could mitigate the first-order approximation error and further improve
the e�ciency, which is an interesting future research direction. With the rise of high-quality
video di↵usion models, we anticipate that the question of how to e↵ectively use such models
as a prior in various problems will become even more important.

Potential Social Impacts We analyze how to use a pre-trained image di↵usion as a prior
in an optimization setup, necessary for domains such as 3D. On the positive side, these models
can empower individuals to make 3D content creation more accessibly without requiring
specialized skills. Additionally, professional artists and designers could rapidly prototype
and visualize their ideas, accelerating the creative process. On the negative side, the ease of
generating visual content could facilitate the spread of misinformation, proliferate biases in
the training set and enable the usage of generated content for malicious purposes. In addition,
there are ethical concerns regarding the potential for job displacement in industries reliant
on traditional art-making skills and the copyright issues appeared in the training dataset.
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Chapter 5

Appendix

5.1 Additional Experimental Setup

In this section, we describe our experimental setups in more detail.

Text-to-image generation with score distillation. For CSD, we follow the original
paper [74] to use w1 = w2 = 40 at the initialization steps and anneal w2 = 0 within the first
500 steps. We use s = 100 for SDS and s = 7.5 for NFSD and VSD, which are consistent
with the best practice. We use s = 40 and w = 25 for our method. And we optimize with
✏SDS loss for 500 iterations and then switch to ✏ours for the rest of 2, 000 iterations. For all
the methods, we use a learning rate of 0.01, and we use a learning rate of 1e� 4 to train the
LoRA in VSD.

Text-guided NeRF optimization with score distillation. For our method, we op-
timize with ✏SDS loss for 20, 000 iterations and then switch to ✏ours for the rest of 5, 000
iterations. We use s = 100 and w = 1 for our method. We find that a high s is necessary to
establish geometry in the first stage of the text-to-3D setting, but our method is not too sen-
sitive to this hyperparameter in 2D. We use the rest of the learning rates and regularization
strengths as the default settings.

5.2 More Visual Results

In this section, we provide extra visual results. Specifically, we show 3D sketch-to-real and
optical illusion generation as additional applications of our method. We also report more
comparisons and ablation studies of text-based NeRF optimzition.

3D Sketch-to-Real Head-mounted displays with hand tracking are a natural platform
for a sort of ”3D sketching,” where 3D primitives trail from your hand like ink from a pen.
The resulting coarse mesh is structurally accurate but lacks geometric or texture detail. To
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3D Sketching SDS BaselineOurs with Prompt “a flower”

Figure 5.1: 3D sketch-to-real. We introduce a conditional generation task in 3D where
a coarse human-drawn mesh is optimized into a high-quality mesh. While SDS and our
gradient both adhere to the prompt and shape conditions, our method produces higher
fidelity colors and texture.

this end, we propose a new application that transfers these 3D sketches to more realistic
versions. We extend our text-to-3D solution to generate these details.

We first fit an implicit SDF volume to multi-view renders of the mesh, then apply our
gradient with the same schedule as in text-based NeRF optimization. We lower the learning
rate for geometry parameters to prevent divergence from the guiding sketch. Holding other
hyperparameters equal, we compare our gradient and the SDS gradient in Figure 5.1.

Illusion Generation. Prior works have shown that di↵usion models can be leveraged to
generate optical illusions [17, 5]. In these settings, the same image looks semantically di↵erent
when transformed. To use the di↵usion model sampling process, a previous study shows that
the transformation has to be orthogonal [17]. However, there remain interesting illusions that
are not formed by orthogonal transformation. One such is the rotation overlays. Given a
base and a rotator image, by composing the base image with the rotator image at di↵erent
angles, rotation overlays use two images to display four images. As such composition is not
defined by an orthogonal matrix, the existing method [5] employs SDS to optimize the base
and rotator images. Such a method su↵ers from the over-saturation problem, as shown in
Figure 5.2. We show that our method can generate such optical illusions with better visual
quality.

Additional text-guided NeRF optimization results. For text-guided NeRF optimiza-
tion comparison against baselines, we follow show more results in Fig. 5.4. We test on the
prompts used in the original paper [68] and additional prompts [69] that we find to be
challenging. We notice that SDS often su↵ers from over-saturation problems. Our method
does not require training a LoRA while it can still improve SDS by getting rid of the color
artifacts and generating more details.
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SDS [46] Ours

Figure 5.2: Di↵usion illusions. We generate overlaid optic illusions with SDS and our
method. While SDS su↵ers from color artifacts, our methods produce more details and
proper color.

A 3D model of an adorable cottage with a thatched roof. A large, multi-layered, symmetrical wedding cake, with smooth fondant, delicate 
piping, and lifelike sugar flowers in full bloom, displayed on a silver stand.

Figure 5.3: Ablation study of our method without stage 1. We show directly opti-
mizing with ysrc from the start could undermine the quality of the geometry and produce
unnecessary content.

Ablation study of stage 2. Instead of switching to stage 2 during the optimization pro-
cess, we ablate with starting without any SDS optimization from the beginning. That is, we
always use the ysrc with the descriptors “, oversaturated, smooth, pixelated, cartoon,
foggy, hazy, blurry, bad structure, noisy, malformed”. As shown in Figure 5.3,
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this makes it hard to generate the proper geometry even though the local texture looks rea-
sonable and is inclined to produce excessive details that are not described by the texts. We
suspect that this is because using ysrc increases the mismatching error at the beginning of
the optimization process when the initialization does not resemble the target prompt at all.
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A pineapple, detailed, high resolution, high quality, sharp. A toucan on the wood.

A plate piled high with chocolate chip cookies.

VSD SDS Ours

A llama, detailed, high resolution, high quality, sharp.

VSD SDS Ours

A tree of potatoes, detailed, high resolution, high quality, sharp. An elephant skull.

A solid, smooth, symmetrical porcelain teapot, with a cobalt blue dragon design, 
steam rising from the spout, suggesting it's just been filled with boiling water

A large, multi-layered, symmetrical wedding cake, with smooth fondant, delicate 
piping, and lifelike sugar flowers in full bloom, displayed on a silver stand.

A model of a house in Tudor style. A bulldog, detailed, high resolution, high quality, sharp.

A walnut, detailed, high resolution, high quality, sharp. A medium-sized, layered, radially symmetrical conch shell, with a rough texture 
on the outside, fading from pink to cream, sitting alone on a sandy beach

Figure 5.4: Additional comparison of text-guided NeRF optimization. We show
more examples to compare with di↵erent distillation methods, SDS and VSD.


