
Design and Analysis of Uncertainty-Aware Modularized
Autonomy Stacks

David Shen

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-204
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-204.html

December 1, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Design and Analysis of Uncertainty-Aware Modularized Autonomy Stacks

by

Haotian Shen

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Claire J. Tomlin, Chair
Professor Avideh Zakhor

Spring 2024

Design and Analysis of Uncertainty-Aware Modularized Autonomy Stacks

Copyright 2024
by

Haotian Shen

1

Abstract

Design and Analysis of Uncertainty-Aware Modularized Autonomy Stacks

by

Haotian Shen

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire J. Tomlin, Chair

We present the framework of uncertainty-aware modularized autonomy stack to describe
modern robotic systems that utilize uncertainty quantification (UQ). In the first part of the
thesis, we introduce a realization of the framework in navigation. We present a novel pipeline
to obtain probabilistically safe and dynamically feasible reachable sets from a trajectory
forecasting model using conformal prediction, as well as a planning method that leverages
the safety guarantees of those sets. We showcase the efficacy of our pipeline in simulation
with real autonomous driving data and in an experiment with Boeing vehicles. In the second
part, we present an analysis of the framework through studying the system-wide impact
of using UQ. We use level set estimation tools to efficiently quantify system robustness
and calibration, even when the evaluation process is costly. We apply our analysis to two
realistic industry-grade systems. We discover that UQ improves overall system robustness
in the presence of input error, and that UQ enables a downstream module to give calibrated
outputs despite erroneous outputs from upstream.

i

To my parents

ii

Contents

Contents ii

List of Figures iii

List of Tables v

1 Introduction 1

2 Multi-Agent Reachability Calibration with Conformal Prediction 3
2.1 Overview . 3
2.2 Related Works . 4
2.3 Assurances from Uncertainty . 6
2.4 Probabilistic Reachability and Planning . 8
2.5 Results . 10
2.6 Acknowledgements . 14

3 A System Perspective on the Uncertainty of Learning-Based Compo-
nents in the Autonomy Stack 15
3.1 Overview . 15
3.2 Related Works . 16
3.3 Problem Setup . 16
3.4 Analyzing System Robustness . 20
3.5 The Calibration Perspective . 24
3.6 Acknowledgments . 25

4 Conclusion and Future Directions 26

Bibliography 27

iii

List of Figures

1.1 An example perception-planning-control pipeline for vision-based navigation. Neu-
ral network icon by dmitrychae. 1

2.1 Our method can be outlined as follows: given a trajectory forecasting model with
an associated uncertainty heuristic, we design a quantile regression model that
correlates uncertainty with prediction error, creating an approximate confidence
interval on the model’s prediction. We then apply conformal prediction to cal-
ibrate the confidence intervals and provide guarantees on miscoverage rate. We
map the calibrated intervals in control action space to sets in state space through
reachability analysis, and we demonstrate the utility of these confidence sets in
planning tasks. 4

2.2 Visualization of the running example. The autonomous ego vehicle is shown in
red, and the human driver is shown in blue. The ego vehicle aims to navigate to
the pink star while avoiding a collision with the human-driven vehicle. Confidence
sets for the next three prediction steps are shown. In fig. 2.2b, the redder regions
represent confidence sets for earlier prediction timesteps, and the translucent
regions represent conformal prediction’s calibration effect. 6

2.3 Case Study of Uncertainty Metrics. We demonstrate a simple example in which
the choice of uncertainty measure affects the size of sets, with coverage rate held
constant. 13

2.4 Our algorithm is applied to assure safety in potential runway incursion scenar-
ios. Once the ground vehicle is determined to have crossed a designated safety
threshold, the aircraft is cleared to land. 13

3.1 A general autonomy stack consisting of n functions arranged sequentially. The
yi’s are output by the modules fi while the σi’s are uncertainties measures by an
(optional, drawn as dotted lines) uncertainty quantification method Unci. x is
the input of the stack. C(yn) is the cost of the final output. 17

3.2 A visualization of the level set (shaded area) over two-dimensional input errors
ϵx with respect to the entire stack. For points within the level set, the system
specification is satisfied (green). For points outside the level set, the system
specification is violated (red). 18

3.3 A visualization of the level set (shaded area) over the loss and uncertainty of the
previous module. 19

iv

3.4 Our analysis shows that incorporating uncertainty yields larger sub-level sets and
thus more robust AV stacks. Sub-level sets of size 0 are not shown. Sub-level sets
of size 1 are shown as a rectangle occupying the whole space. 22

3.5 A visualization of the qualitative differences between the three planner designs
in the presence of input error. The proposed plan in 3.5b creates a larger buffer
between the ego vehicle and the nearby agent than that of the baseline 3.5a. The
plan in 3.5c most closely adheres to the lane center. 23

3.6 Our analysis shows that the Regression Tracker is a superior design with lower
miscalibration when given large errors of the upstream detector network. Mod-
ule Errors denote cross-entropy loss on the softmax distribution of the detector
network. Model Uncertainties are the mean confidences on a track. 25

v

List of Tables

2.1 Coverage Rates and Set Sizes for 1− γ = 0.95. 11
2.2 Waymo Planning Benchmarks . 12

3.1 Sub-Level Set Sizes and Costs for AV Designs 22

vi

Acknowledgments

None of this work could be done without the immense support from my advisor Professor
Claire Tomlin. Thank you for the opportunity to allow me explore my research interests
in the past two years and your guidance along the way. I am also grateful for the support
from my second reader Professor Avideh Zakhor, who played an important role in my early
interests in robotics and control during my undergraduate study.

I’d like to thank my wonderful collaborators: Professor Claire Tomlin, Anish Muthali,
Sampada Deglurkar, Michael H. Lim, as well as industry partners and collaborators: Re-
becca Roelofs, Aleksandra Faust from Google Research; Dragos Margineantu, James Pau-
nicka, Blake Edwards, Jose Medina, Brandon Schwiesow, Zachary Tane and many more from
Boeing; Professor Marco Pavone, Peter Karkus, Boris Ivanovic from NVIDIA Research. My
work would not be possible with your support. It was a pleasure working with every one.
It was an enlightening experience working with all the colleagues at Hybrid Systems Lab. I
will forever cherish the memories of HSL.

Finally, I am indebted to my parents, who have made many sacrifices to support my
academic and career pursuits. I would not be here without you. Thank you.

1

Chapter 1

Introduction

Many modern robotic systems are organized in terms of sequential modularized pipelines.
For example, the perception-planning-control loop is a common architecture for vision-based
robot navigation: the perception module is responsible for estimating the states of the agents;
the planner proposes a high-level plan given the state estimates; and the controller tracks
a trajectory based on the high-level plans. The outputs of the previous module are fed
into the next one to enable downstream decision-making. Learning-based components are
increasingly prevalent in the design of these pipelines. However, the learned components
are often black-box models that lack interpretability and do not provide safety guarantees,
especially in the presence of data distribution shifts. In the example above, the perception
module may be a neural network trained on daylight image data, which can fail unexpectedly
during operation at night time. Hence, it is challenging to produce assurances on the overall
system’s performance.

Figure 1.1: An example perception-planning-control pipeline for vision-based navigation. Neural network
icon by dmitrychae.

Uncertainty quantification helps us mitigate model failures. Each upstream module aug-
ments its outputs with an uncertainty measure, representing how uncertain (or conversely,
how confident) it is about its output. The downstream modules can thus incorporate the
uncertainty measures to make safer and more robust decisions in the presence of large up-
stream errors. This work studies the the use of uncertainty quantification in autonomy
stacks to provide system-wide safety assurances. In particular, we aim to advance our un-
derstanding of the following questions: How do we provide rigorous probabilistic guarantees
for pipelines involving state-of-the-art black-box models? How do we quantify the impact of
using uncertainty in the system beyond performance metrics? In Chapter 2, we present a
novel pipeline to obtain probabilistically safe and dynamically feasible reachable sets from

CHAPTER 1. INTRODUCTION 2

a trajectory forecasting model, as well as a planning framework that leverages the safety
guarantees of those sets. In Chapter 3, we present a novel perspective on the design, use,
and role of uncertainty measures for learning-based modules in an autonomous system. We
use level-set estimation methods to analyze two real-world complex systems from the per-
spectives of robustness and calibration. In Chapter 4, we summarize our contributions and
discuss several future directions.

3

Chapter 2

Multi-Agent Reachability Calibration
with Conformal Prediction

2.1 Overview

The chapter investigates methods to provide rigorous safety assurances for autonomy stacks
involving black-box models. In particular, we examine scenarios in which an autonomous
agent, commonly described as “ego” agent, navigates around other, uncontrolled agents.
Agents are allowed to be humans or be controlled by humans. Safety is critical in such situa-
tions, so modern systems employ forecasting models that reason about human behaviors. For
example, in self-driving tasks, the autonomous car makes predictions of agents’ trajectories
to ensure the the safety of itself and the other vehicles it encounters. State-of-the-art systems
try to achieve this through black-box behavior prediction and motion forecasting models [43,
51, 26], which lack rigorous safety assurances. While lower dimensional models can provide
safety assurances, these methods rely on parametric assumptions on, for example, a human’s
rationality [23]. These assumptions can be inadequate for complex, multi-modal, and noisy
decision-making scenarios. Uncertainty quantification methods can be applied. However,
they alone are insufficient for safety assurance because they do not provide guarantees on
model behavior and may be unreliable or uninterpretable [31, 58, 11].

We propose a novel pipeline to address the above issues. We first utilize conformal
prediction to calibrate measures of uncertainty [54]. Conformal prediction is a statistical tool
that uses a heuristic notion of risk to non-parametrically estimate quantiles of risk given a
sequence of past observations [2]. Existing methods that leverage conformal prediction in
the context of trajectory forecasting do not explicitly use interpretable metrics of prediction
uncertainty [37, 17, 50, 12, 36]. We propose a method that provides rigorous confidence
intervals on model error, a form of probabilistic assurance, given any interpretable heuristics
on a trajectory forecasting model’s prediction uncertainty. Our approach also allows us
to examine the efficacy of various uncertainty quantification heuristics when attempting to
predict model error. In addition, we extend our analysis to multi-agent environments to
closely reflect real-world assurance cases.

By producing estimates of model error, we are able to couple statistical assurances with
dynamical assurances to allow for safe downstream navigation. In particular, we turn to

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 4

Figure 2.1: Our method can be outlined as follows: given a trajectory forecasting model with an associated
uncertainty heuristic, we design a quantile regression model that correlates uncertainty with prediction error,
creating an approximate confidence interval on the model’s prediction. We then apply conformal prediction
to calibrate the confidence intervals and provide guarantees on miscoverage rate. We map the calibrated
intervals in control action space to sets in state space through reachability analysis, and we demonstrate the
utility of these confidence sets in planning tasks.

Hamilton-Jacobi (HJ) reachability analysis [5], which provides guarantees on dynamical sys-
tems by means of reachable sets and associated controllers. In HJ reachability, a Hamilton-
Jacobi partial differential equation is solved to obtain an optimal value function and con-
troller. The sub-zero level sets of this value function are the reachable sets (possible states
of an agent at a given time) and tubes (possible states of an agent up to and including a
given time).

The contributions of this chapter include:

1. A novel way to interpret trajectory forecasting models’ prediction uncertainty and
obtain approximate confidence intervals (Section 2.3);

2. A technique to calibrate the aforementioned intervals using conformal prediction (Sec-
tion 2.3);

3. Dynamically-feasible, probabilistic reachable sets using calibrated intervals (Section 2.4);

4. A planning framework that leverages assurances developed in the previous steps (Sec-
tion 2.4).

The chapter is organized as follows: Section 2.2 discusses related works in conformal predic-
tion and assurances in trajectory forecasting models, Section 2.3 and Section 2.4 describe
the contributions outlined above, and Section 2.5 showcases the safety and performance of
our methods compared to baseline methods.

This chapter is primarily based on the joint work [39] with Anish Muthali, Sampada
Deglurkar, Michael H. Lim, Rebecca Roelofs and Aleksandra Faust. The author would like
to acknowledge and express gratitude for Anish’s significant contribution in the writing of
the chapter.

2.2 Related Works

Conformal Prediction

Conformal prediction [54, 2] is a class of uncertainty quantification methods for constructing
prediction sets that satisfy a significance level (false negative rate) requirement. Tradi-

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 5

tionally, conformal prediction creates empirical histograms of measures of risk, called non-
conformity scores, and uses these to estimate prediction intervals. Classical techniques in-
clude split conformal prediction, which creates empirical histograms from hold-out sets, and
full conformal prediction, which creates empirical histograms using all available data [54].
Inductive conformal prediction, a variant of split conformal prediction, uses a non-conformity
score that measures distance between train and test data [8]. These methods require that the
data are identically distributed and exchangeable (any permutation of data points are iden-
tically distributed). Methods such as [49] relax the requirement for identically distributed
data, and [57, 6] relax the exchangeability requirement. Adaptive Conformal Inference [25]
and Rolling Risk Control (RollingRC) [20] have been proposed to relax all assumptions by
further calibrating the significance level to match a desired error rate. We adapt RollingRC
to provide safety assurances in any multi-agent scenario.

Probabilistic Reachability Frameworks

In this work, we introduce a method to generate probabilistic reachable sets to account for
agents’ dynamics. Previous work in this space typically involves randomly generating inputs
and observing corresponding outputs of a dynamics model, with some associated guarantees
in the sampling process [16]. Other methods, much like ours, leverage neural network un-
certainty [40]. Specifically, the method of Nakamura and Bansal [40] uses Gaussian mixture
models (GMMs) output by a trajectory forecasting model to generate parametric confidence
intervals on control actions, which are then used as control bounds in reachability calcu-
lations. In our work, we attempt to relax assumptions that the control actions follow any
parametric distribution by applying non-parametric inference techniques.

Safety Assurances in Trajectory Prediction

Various methods for incorporating uncertainty quantification have been examined for the
purposes of providing safety assurances in trajectory prediction problems. Some methods
provide probabilistic assurances by inferring parameters of a distribution on an agent’s con-
trol actions [4, 23]. Methods such as [37] and [17] estimate confidence intervals with conformal
prediction, implicitly leveraging prediction uncertainty through the non-conformity measure.
Specifically, the method of Luo et al. [37] uses split conformal prediction to create a warning
system, alerting drivers of “dangerous” situations. These warnings can be transformed into
confidence sets, as shown in [17], which additionally eliminates exchangeability assumptions
and incorporates trajectory optimization, much like our approach. Other methods emphasize
the design process of the trajectory prediction neural networks, for instance by opting to use
ReLU networks [12] or by opting to incorporate conformal prediction in the neural network’s
loss function [50]. In contrast to our approach, none of these methods consider the dynamic
feasibility of confidence sets, and some methods that investigate conformal prediction, such
as [12] and [37], assume exchangeability. Our method relaxes these assumptions while pro-
viding interpretability in the uncertainty quantification process and dynamic feasibility in
confidence sets.

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 6

(a) Output of Trajectron++ in a
simple scene with two vehicles.

(b) Approximate (opaque) and
calibrated (translucent) reach-
able sets.

(c) Probabilistically-safe plan
generated by the reachability-
based planner.

Figure 2.2: Visualization of the running example. The autonomous ego vehicle is shown in red, and the
human driver is shown in blue. The ego vehicle aims to navigate to the pink star while avoiding a collision
with the human-driven vehicle. Confidence sets for the next three prediction steps are shown. In fig. 2.2b,
the redder regions represent confidence sets for earlier prediction timesteps, and the translucent regions
represent conformal prediction’s calibration effect.

2.3 Assurances from Uncertainty

Our approach can be summarized in four primary steps: trajectory forecasting with uncer-
tainty quantification (Section 2.3), leveraging uncertainty to obtain approximate prediction
intervals (Section 2.3), calibrating approximate prediction intervals (Section 2.3), and ob-
taining dynamically feasible prediction sets (Section 2.4). We summarize our algorithm in
Section 2.4, and we apply our approach to ego agent planning tasks in Section 2.4.

Running Example: To motivate and illustrate our method, we introduce a simple
running example with two vehicles at an intersection, one of them designated as the “ego”
vehicle. In Figure 3.5, the autonomous ego vehicle, shown in red, aims to safely navigate to
the pink-colored star while avoiding the blue vehicle.

Trajectory Forecasting Model

We start by assuming access to a known dynamics model for each agent and a trajectory
forecasting model capable of predicting an agent’s control input. This trajectory forecasting
model may maintain the capability to predict control actions for multiple agents at once,
while considering interactions between agents. We denote the model as fT (·) : X → U , where
X is some arbitrary input space and U is a space over control actions. The network predicts
ut:t+h ∈ U , which is a collection of control action vectors indexed by timesteps t through t+h,
for each of N total agents. Here, h is a fixed prediction horizon. We also assume the existence
of an uncertainty measure on the network’s outputs, denoted as σT (·) : X×U → Rd, with d as
the dimension of uncertainty representation. For example, a variance prediction or a variance
estimate from inference-time dropout [31] is a valid uncertainty measure. Additionally, some
neural network architectures, such as Trajectron++ [43], provide alternative uncertainty
measures. This network architecture predicts a GMM over possible control actions, leading
to understandings of prediction uncertainty such as the variance of the GMM’s modes.

Running Example: Given some sequence of the other vehicle’s position history, Tra-

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 7

jectron++, our trajectory forecasting model of choice, predicts a GMM in action space, and
then integrates the actions to obtain states. We assume that vehicles follow the extended Du-

bins’ car dynamics model. The state of this system is x =
[
x y v θ

]⊤
, and the dynamics

are given by ẋ =
[
v cos(θ) v sin(θ) u1 u2

]⊤
. The variance of the highest-probability Gaus-

sian component, among other features of the GMM, are incorporated into the design of the
uncertainty measure.

Estimating Model Error from Uncertainty

To obtain confidence intervals on a black-box model’s outputs, we estimate the neural net-
work’s confidence in an online manner, correlating its prediction uncertainty with prediction
error. Quantile regression models enable us to map heuristic notions of uncertainty to an
approximate confidence interval [34] along each action dimension. We choose a linear model
since its simple parametrization allows for fast online updates and interpretability in how
it perceives uncertainty. We demonstrate an example of interpretability in Section 2.5.
Intuitively, our quantile regression models are approximately “calibrating” the network’s
uncertainty to obtain an estimate of its error.

As we observe new datapoints online, we collect ut−h:t, the last h ground truth control
actions prior to timestep t. In practice, we estimate control actions by observing the state
history of an agent, and then numerically computing derivatives to estimate actions from
an assumed dynamics model. We contrast ut−h:t with the network’s previous prediction h
timesteps ago, i.e., ût−h:t, and define et−h:t := ut−h:t − ût−h:t as the prediction error.

Now, suppose we require a 1 − α approximate confidence interval on the ground truth
control action. We can construct two quantile regression models q̂α

2
: Rd → U and q̂1−α

2
:

Rd → U where q̂ε estimates the ε-quantile on the network’s prediction error from timesteps
t to t + h for each agent, denoted êε. For notational convenience, let us denote Pt(A) as the
probability of event A conditioned on information until time t. We obtain an approximate
1− α confidence interval as follows:

Pt

(
êα

2
≤ et:t+h ≤ ê1−α

2

)
(2.1)

= Pt

(
êα

2
≤ ut:t+h − ût:t+h ≤ ê1−α

2

)
(2.2)

= Pt

(
ût:t+h + êα

2
≤ ut:t+h ≤ ût:t+h + ê1−α

2

)
(2.3)

≈ 1− α. (2.4)

Thus, our approximate 1−α confidence interval on ut:t+h is Ît:t+h = [ût:t+h+êα
2
, ût:t+h+ê1−α

2
].

Traditionally, quantile regression models are trained using computationally expensive
linear programs [34], so instead, we opt for a faster, online gradient descent approach. We
define our loss function for the quantile regression model q̂ε to be L(y, ŷ) = (y−ŷ)ε1{y ≥ ŷ}+
(ŷ − y)(1 − ε)1{y < ŷ} (the “pinball loss”) [46]. We set y to be the true model error,
e, and ŷ = βββ⊤σσσ, where βββ represents the weights of the regression model, and σσσ is the
uncertainty measure from the trajectory forecasting model. We update the weights according
to βββ ← βββ − ζ∇βββL(et−h:t,βββ), with learning rate ζ.

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 8

Calibrating Approximate Confidence Intervals

Given that the confidence intervals we obtained in the previous section are merely approx-
imate, we aim to calibrate these intervals. To this end, we apply the RollingRC algorithm
[20], which perfectly adapts to the online requirements of our method. We are motivated to
use the RollingRC algorithm compared to other conformal prediction methods due to a desire
to remove the data exchangeability assumption, since we allow for sequentially-dependent
data and potential distribution shifts. In addition, we would like to train and calibrate the
quantile regression models in a sample-efficient manner. RollingRC guarantees that the error
rate deviates from α as O

(
1/T

)
, where T is the total number of datapoints provided to the

algorithm.
Following the notation from the RollingRC algorithm, we define θt ∈ R as our conformal

parameter, and φ(·) : R→ U as the algorithm’s “stretching function”. Now, we claim that

Pt

(
êα

2
− φ(θθθ) ≤ et:t+h ≤ ê1−α

2
+ φ(θθθ)

)
≥ 1− α−O

(
1/t

)
.

(2.5)

Following similar steps as before, we obtain our newly calibrated confidence interval on ut:t+h

as It:t+h = [ût:t+h + êα
2
− φ(θθθ), ût:t+h + ê1−α

2
+ φ(θθθ)].

2.4 Probabilistic Reachability and Planning

Probabilistic Reachability among Multiple Agents

In the previous sections, we have designed a method to provide confidence intervals on agents’
control actions. However, for some downstream tasks, such as safe planning, confidence sets
in spatial dimensions are more desirable. Hence, we use HJ reachability to obtain spatial
sets, in the form of forward reachable tubes, on each agent’s location given its dynamics and
the probabilistic bound on control [44]. This procedure asserts that an agent’s location will
be contained in the produced reachable tube with probability 1− α.

Suppose we wish to upper bound the probability that the ego vehicle collides with any
agent. Let x

(i)
t be the location of non-ego agent i at timestep t and S[t](i) be the corresponding

agent’s forward reachable tube, as computed by our algorithm. We define miscoverage rate
as the proportion of instances in which the ground truth position of any agent i at time t
is outside S[t](i). We aim to obtain an upper bound on miscoverage rate, such that the ego
agent can navigate in regions outside of S[t](i) for all i ∈ {1, . . . , N} and guarantee that the
probability of collision is at most γ, a pre-specified parameter. Consequently, we set the
confidence interval significance level α according to our desired total miscoverage rate γ and
number of agents N .

Theorem 2.4.1 (Significance Level Correction)
Suppose that we wish to have a total miscoverage rate of γ, where total miscoverage rate is
an upper bound on the probability that any human agent is miscovered:

Pt

 N⋃
i=1

{
x
(i)
t ̸∈ S[t](i)

} ≤ γ. (2.6)

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 9

Algorithm 1 Conformal Reachability Calibration.
1: procedure GenerateSets(θθθ, ût:t+h, σσσ)
2: êα

2
← q̂α

2
(σσσ) ▷ Obtain lower α

2 quantile
3: ê1−α

2
← q̂1−α

2
(σσσ) ▷ Obtain upper α

2 quantile

4: It:t+h ←
[
ût:t+h + êα

2
− φ(θθθ),

ût:t+h + ê1−α
2
+ φ(θθθ)

]
5: S ← []
6: for t′ ∈ {t, t+∆t, . . . , t+ h} do
7: S[t′]← HJReachability(It′)
8: return S, It:t+h

9: procedure Update(θθθ, ut−h:t, It−h:t)
10: for t′ ∈ {t, t+∆t, . . . , t+ h} do
11: θθθ

{
t′
}
← θθθ

{
t′
}
+ ξ

(
1{ut′−h ̸∈ It′−h} − α

)
12: GradientDescent(q̂α

2
, ut−h:t)

13: GradientDescent(q̂1−α
2
, ut−h:t)

14: return q̂α
2
, q̂1−α

2
, θθθ

15: procedure Main(γ, N)

16: α← 1− (1− γ)
1
N

17: θθθ{t, t+∆t, . . . , t+ h} ← 0
18: q̂α

2
, q̂1−α

2
← InitializeRandomWeights()

19: I← {}
20: t← 0
21: while true do
22: ût:t+h,σσσ ← fT (·), σT (·) ▷ Get trajectory predictions and uncertainty from model
23: S, It:t+h ← GenerateSets(θθθ, ût:t+h, σσσ)
24: I← I ∪ It:t+h

25: if t ≥ h then
26: ut−h:t ← ObserveHistory()
27: It−h:t ← I[t− h : t]
28: q̂α

2
, q̂1−α

2
, θθθ ← Update(θθθ, ut−h:t, It−h:t)

29: t← t+∆t

We claim that the following α achieves an (asymptotic) total miscoverage rate of γ for N
human agents:

α = 1− (1− γ)
1
N . (2.7)

The proof of Theorem 2.4.1 is available in Appendix A, which uses the fact that the N agents
act independently conditioned on past information [39]. Since α must be a fixed quantity
in our algorithm, we must also fix N . Hence, we fix our algorithm to only consider the N
agents closest to the ego vehicle.

Running Example: Suppose we want a 95% probability safety assurance. Since there is
only one other vehicle, we get α = 0.05 from Theorem 2.4.1. Given the previous predictions
of the blue agent’s trajectory, we generate uncalibrated, time-indexed intervals on ranges
of possible control actions, denoted Ît, Ît+∆t, Ît+2∆t. We calibrate these using conformal
prediction to obtain It, It+∆t, It+2∆t. As we explain in the next subsection, HJ reachability
allows us to take any sequence of intervals on control actions and generate a time-indexed

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 10

set of states. In Figure 2.2b, we distinguish the effects of quantile regression and RollingRC’s
calibration.

Full Algorithm

In Algorithm 1, we demonstrate the final algorithm to generate probabilistic reachable sets.
The HJReachability function generates reachable sets given a probabilistic range of con-
trol actions, It:t+∆t. Since the range can differ over time (e.g., It ̸= It+∆t necessarily), we
iteratively compute time-indexed forward reachable tubes by computing the forward reach-
able tube over [t, t + ∆t] and using the reachable set at t + ∆t as the initial condition to
compute the reachable tube over [t+∆t, t+2∆t]. We also utilize a GradientDescent func-
tion that updates the weights of the quantile regression models as described in Section 2.3.
In Algorithm 1, ξ is the “learning rate” associated with the RollingRC algorithm.

Safe Planning Framework

Given the time-indexed sets S[t] ⊆ S[t+∆t] ⊆ · · · ⊆ S[t+h], we desire that the autonomous
agent’s location at time t′ is outside S[t+ k∆t], where t+ (k− 1)∆t ≤ t′ ≤ t+ k∆t. We can
plan by treating each agent’s time-indexed forward reachable tube as a dynamic obstacle
that grows with time. The obstacle-aware planning requirement motivates the application
of a forward reach-avoid tube for the ego agent [21, 5]. We use this to derive an optimal
control trajectory by selecting the Hamiltonian-maximizing control trajectory to a desired
final state within the forward reach-avoid tube. In practice, this trajectory can involve bang-
bang control, so one can track it using a tracker with a provable tracking error bound, such
as a constrained iterative linear quadratic regulator. The planner’s output is visualized in
Appendix D.

Running Example: From the previous section, we obtained S[t],S[t + ∆t],S[t + 2∆t]
as a probabilistic occupancy region on the location of the other vehicle. Now, we can use the
time-varying avoidance regions to plan a safe path to the goal in Figure 2.2c. Notice that the
planner allows the ego agent to traverse in the yellow-colored region: it is aware that the ego
vehicle would not violate the safety assurance as it can leave the yellow region by the time
the other agent would enter it.

2.5 Results

We compare the empirical safety and efficiency of our contribution to two baselines, Online
Update of Safety Assurances Using Confidence-Based Predictions by Nakamura and Bansal
[40] and Sample-Efficient Safety Assurances using Conformal Prediction by Luo et al. [37].
For both baselines, we perform the significance level correction described in Section 2.4.

For all benchmarking purposes, we use Trajectron++ trained on the relevant datasets.
We follow the same architecture and hyperparameters as [43] by using 4 seconds (8 steps)
of history to predict 3 seconds (6 steps) into the future. This is consistent with the other
baselines’ approaches. Set sizes are shown in square meters. We use a pre-specified total
miscoverage rate of γ = 0.05, and we generate predictions for the closest N = 3 agents, which

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 11

Table 2.1: Coverage Rates and Set Sizes for 1− γ = 0.95.

Coverage Rates for Prediction Step

Methods 1st (.5s) 2nd (1s) 3rd (1.5s) 4th (2s) 5th (2.5s) 6th (3s)

nuScenes Dataset
Nakamura and Bansal 0.926 ±0.012 0.854 ±0.017 0.816 ±0.023 0.842 ±0.023 0.868 ±0.022 0.902 ±0.020
Luo et al. 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000 0.998 ±0.002 0.989 ±0.006 0.968 ±0.012
Our Method 0.964 ±0.008 0.962 ± 0.011 0.968 ±0.010 0.975 ±0.008 0.981 ±0.007 0.985 ±0.007

Waymo Dataset
Nakamura and Bansal 0.981 ±0.007 0.954 ±0.012 0.938 ±0.014 0.937 ±0.015 0.952 ±0.014 0.955 ±0.015
Luo et al. 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.998 ±0.002 0.985 ±0.009 0.955 ±0.015
Our Method 0.997 ±0.002 0.986 ±0.006 0.980 ±0.008 0.967 ±0.011 0.965 ±0.011 0.965 ±0.013

Set Sizes for Prediction Step

nuScenes Dataset
Nakamura and Bansal 57 ±2 320 ±12 886 ±35 2060 ±85 3259 ±128 4285 ±160
Luo et al. 425 ±11 523 ±16 683 ±34 1097 ±109 1426 ±140 1814 ±186
Our Method 39 ±3 157 ± 13 462 ±39 1078 ±88 2150 ±170 3713 ±268

Waymo Dataset
Nakamura and Bansal 64 ±7 311 ±32 951 ±96 2117 ±195 3814 ±328 5892 ±475
Luo et al. 448 ±8 736 ±43 1110 ±94 1568 ±169 2126 ±237 2687 ±301
Our Method 61 ±6 246 ±27 655 ±71 1361 ±143 2422 ±240 3885 ±365

strikes a balance between the speed of our HJ reachability calculations and the practical
safety of the system.

nuScenes Dataset Results

We compare the coverage rate and efficiency of our method against the two baselines on
nuScenes self-driving data [9]. We calculate average coverage rate and average set sizes
individually for each forward prediction step t, t + ∆t, . . . , t + h on 100 randomly sampled
scenes. For each scene, we use the first 13 seconds to calibrate each method and make
predictions on the last 5.5 seconds. Table 2.1 shows step coverage and set sizes at all
prediction steps. Note that an ideal algorithm maintains a coverage rate over 1 − γ while
providing the smallest prediction sets.

Waymo Open Motion Dataset Results

To demonstrate the planning safety and efficiency of each method, we also perform experi-
ments on the Waymo Open Motion Dataset [18], coupled with the Nocturne simulator [53].
This allows us to apply control actions to the ego vehicle while all other agents replay their
respective sequences of control actions from the dataset. We use the same planning method
discussed in Section 2.4 for all three methods, since neither of the baselines have associated
planners. For each scene, we calibrate using the first 7 seconds and use model-predictive
control to plan for the last 3 seconds, where the goal is the final position of the ego vehicle in
the ground truth data. We measure three quantities: (1) progress to goal, defined as the ratio
of the distance from the final state of the ego vehicle to the goal compared to the distance
from the start to the goal, subtracted from 1; (2) collision rate; (3) conservatism of each
method compared to the ego vehicle’s ground truth trajectory, defined as the ratio of mini-

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 12

Table 2.2: Waymo Planning Benchmarks

Method Progress Collision Conservatism
to Goal Rate

Nakamura and Bansal 0.494 ±0.029 0.0 1.504 ±0.068

Luo et al. 0.305 ±0.028 0.005 1.626 ±0.072

Our Method 0.544 ±0.028 0.0 1.507 ±0.068

mum distance between the ego vehicle to other agents at all times as a result of the planner,
compared to that of the ground truth. The formulas and computations of these metrics are
described in detail in Appendix B [39]. In Appendix C, we additionally demonstrate the im-
pact of the aforementioned theoretical guarantees by providing safety and efficiency metrics
in the absence of conformal prediction [39]. We performed the benchmarks on 200 randomly
sampled scenes. Table 2.1 depicts coverage rates and set sizes for all prediction timesteps.
Table 2.2 depicts average collision rate, average progress to goal, and conservatism.

Discussion of Results

For the nuScenes dataset, we notice that our method achieves more efficient set sizes for
initial prediction steps, while Luo et al. achieves more efficient set sizes for later prediction
timesteps. Nevertheless, neither of these two methods violates the miscoverage requirement
of γ = 0.05. The method of Nakamura and Bansal violates the miscoverage rate, however,
supporting the introduction of uncertainty calibration into the algorithm. Hence, calibrating
neural network uncertainty is important, not only to provide the desired coverage rate but
also to generate efficient prediction sets.

For the Waymo dataset, we notice a very similar phenomenon with set sizes and coverage
rates. In the planning benchmarks, our method has the best progress to goal, likely due to
the initial-timestep sets being smaller. This is also reflected in the conservatism scores, with
reachability-based methods performing the best. The method of Luo et al. also encountered
one collision scenario in which the produced set was very large and forced the planner to
take a sharp avoid action. Thus, we note the importance of initial-timestep sets being small
to allow the reachability-based methods to perform better in the planning benchmarks. This
allows the ego vehicle to make some progress, whereas a large initial-timestep set would
inhibit any progress regardless of the relative size of later timesteps’ sets.

Case Studies

Understanding Uncertainty Measures

In this case study, we demonstrate the usefulness of our interpretable quantile regression
model when understanding the efficacy of uncertainty metrics. Consider the scene in Fig-
ure 2.3a. We choose the uncertainty measure based on properties of the GMM, including
the distance between peaks and the (co)variance of the highest-weighted mode. The learned
regression model indicates a positive correlation between prediction error and variance of the

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 13

(a) Sample scenario in which we
observe the reachable sets of the
three agents closest to the ego ve-
hicle.

(b) Calibrated confidence sets
generated by quantile regression
without covariance features.

(c) Calibrated confidence sets
generated by quantile regression
with covariance features.

Figure 2.3: Case Study of Uncertainty Metrics. We demonstrate a simple example in which the choice of
uncertainty measure affects the size of sets, with coverage rate held constant.

Figure 2.4: Our algorithm is applied to assure safety in potential runway incursion scenarios. Once the
ground vehicle is determined to have crossed a designated safety threshold, the aircraft is cleared to land.

most-likely GMM mode. In Figure 2.3b and Figure 2.3c, we can visually discern the benefit
of including these features.

Overall, this case study shows the importance of understanding the usefulness of different
components of the uncertainty measure. A more useful uncertainty metric can provide more
efficient sets, since a more accurate quantile regression model would require less calibration
(less “stretching” from conformal prediction). Conformal prediction cannot derive confidence
intervals conditional on some input, so quantile regression’s accuracy is crucial for providing
efficient sets.

Safety in Aerospace Applications

In this case study, we apply our algorithm to satisfy a real-world safety assurance requirement
by demonstrating our algorithm on Boeing vehicles. We consider the case of an aircraft
attempting to land on a runway while accounting for potential runway incursions from ground
vehicles. We use our algorithm to provide assurances on the motion of a ground vehicle on
the runway. Given a fixed landing plan for the plane, we adapt the sets from our algorithm
to design a warning system similar to Luo et al.’s original algorithm. If a prediction set

CHAPTER 2. MULTI-AGENT REACHABILITY CALIBRATION WITH
CONFORMAL PREDICTION 14

intersects the runway, a warning is issued. A visualization of this application is shown in
Figure 2.4. The ground vehicle’s state history is shown in red, and its uncalibrated prediction
set is shown in purple. The “stretching” effect from conformal prediction is shown in orange.

2.6 Acknowledgements

This material is based upon work supported by the DARPA Assured Autonomy Program, the
SRC CONIX program, Google-BAIR Commons, the NASA ULI program on Safe Aviation
Autonomy, and the National Science Foundation Graduate Research Fellowship Program
under Grant Nos. DGE 1752814 and DGE 2146752. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of any aforementioned organizations. The author also thanks
James Paunicka, Blake Edwards, Dragos Margineantu, Douglas Stuart, and the entire team
at Boeing for all their help and contributions in demonstrating our method on Boeing’s
runway incursion dataset. Finally, the author thanks Marius Wiggert for helping with the
implementations in the HJ reachability toolbox.

15

Chapter 3

A System Perspective on the
Uncertainty of Learning-Based
Components in the Autonomy Stack

3.1 Overview

Chapter 2 describes the design of an uncertainty-aware modular pipeline centered around
providing rigorous, probabilistic safety assurance. In this chapter, we take a step back and
consider the general principles behind systems that use uncertainty quantification. We ex-
amine the safety properties of a system on a high level. Robustness and calibration are two
important safety axes of autonomous systems. A robust system does not degrade drastically
in the presence of errors. A well-calibrated system provides probability estimates representa-
tive of the true likelihood. We hypothesize that by incorporating uncertainty quantification
in the modules, we can create a more robust and well-calibrated pipeline overall. We investi-
gate the design, use and role of uncertainty measures, in an attempt to quantify the impact
of using uncertainty.

Different techniques for computing uncertainty for neural networks have been proposed,
including test-time dropout [24], model ensembling [35], variance propagation [42], and out-
of-distribution (OoD) detection [45], to name a few. Some models are even designed to
output a distribution, which can provide natural uncertainty heuristics [30, 28]. There is not
a systematic way to differentiate between the plethora of techniques. As a result, it is difficult
for system architects to select an uncertainty measure best suited for their use case. We argue
that the efficacy of an uncertainty measure needs to be considered in conjuction with the
decision-making under uncertainty algorithm. An uncertainty measure is only “good” if it
can produce good downstream performance, which motivates viewing uncertainty from the
perspective of the overall system. Our first key insight lies in the use of level set estimation
tools to quantitatively and efficiently analyze the robustness of a system, even when the
evaluation process is costly. We propose a metric, the sub-level set size in input error space,
and argue its usefulness in judging system robustness. Our second key insight is that a
downstream module is capable of giving calibrated outputs despite erroneous outputs from
upstream. We show this by evaluating module i’s calibration error conditioned on the error

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 16

and uncertainty of module i− 1.
The chapter is organized as follows: Section 3.2 discusses the related works, Section 3.3

describes our abstraction of an uncertainty-aware modularized stack, the formulation of our
two key insights, and a level set estimation technique. In Section 3.4, we demonstrate a
robustness analysis on a modern modular self-driving stack. In Section 3.5, we discuss the
calibration perspective on an aircraft runway incursion detection system.

This chapter is primarily based on the joint work with Sampada Deglurkar, Anish
Muthali, Marco Pavone, Dragos Margineantu, Peter Karkus, Boris Ivanovic. The author
would like to acknowledge and express gratitude for Sampada’s significant contribution in
the writing of the chapter.

3.2 Related Works

There is an abundance of work in the controls community on systems theory and design.
Scenario optimization considers the design of modules or entire systems under uncertainty,
which takes the form of “scenarios”, which are random variables from an unknown distribu-
tion. The principle is that a system design should be performant while also being robust and
satisfying constraints that are functions of the uncertainty. There has also been much recent
interest in system design that takes advantage of differentiability in the system components,
using it to simplify optimization [32], [15].

Much of this theory also helps lay the groundwork to study the robustness of a system
to external disturbances or errors, and to study system sensitivity and failure points [14].
For learning-in-the-loop systems, some of this robustness analysis often takes the form of
backward or forward reachability analysis for neural networks, either as standalone modules
or as part of feedback loops [19], [52]. The level sets that we will produce in this work are
reminiscent of such reachable sets. Additionally, [33] shows how this kind of set generation
is also a form of specification generation – that is, producing specifications on module prop-
erties given system-level specifications. In our work, we recognize the dual role of level set
generation as a way to both produce specifications and assess robustness.

Calibration is an extensively studied topic in deep learning literature, including tech-
niques of calibration [27], metrics of calibration [41, 3] and theoretical analysis of calibration
measures [7]. [38] considers calibration in the context of reinforcement learning. [56] studies
the effect of using calibration and conformal prediction simultaneously.

There has also been much interest in contextualizing individual modules within the larger
system or otherwise better taking into account interconnections between modules [60], [39],
[29], [13], [10]. There is a growing realization in the community that modules, especially
learned ones, should not be designed in isolation. We take a similar philosophy in this work.

3.3 Problem Setup

Definitions and Assumptions

We consider a general robotics stack consisting of n modules. The first module f1 : X → Y1

takes in the input sensor measurement x ∈ X . Each subsequent module, indexed by i =

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 17

Figure 3.1: A general autonomy stack consisting of n functions arranged sequentially. The yi’s are output by
the modules fi while the σi’s are uncertainties measures by an (optional, drawn as dotted lines) uncertainty
quantification method Unci. x is the input of the stack. C(yn) is the cost of the final output.

2, ..., n, can be represented as a function fi that maps the previous module’s outputs to its
own. We denote the output as yi ∈ Yi. Each module is also optionally equipped with an
uncertainty quantification function Unci(·), which produces an uncertainty measure σi ∈ Rdi

indicating to the subsequent modules how “trustworthy” the output yi is. In the event that
we choose to not use such Unci, we let σi = null. Thus, for i = 2, ..., n we have

yi = fi(yi−1, σi−1) (3.1)

and

σi =

{
Unci(fi, yi−1, σi−1)

null if Unci unavailable
(3.2)

We keep the functional form of Unci(·) generic to allow our framework to accommodate
various uncertainty quantification techniques. We also have access to a cost function for
evaluating the overall performance of the entire stack for a given input, written as C : Yn →
R. Figure 3.1 depicts our general setting. Each fi is assumed to be deterministic and time
invariant. Our methods do not make a distinction between learned and non-learned (i.e.
classical) modules. We slightly abuse notations for simplicity by writing

gi(zi−1) :=
(
fi(yi−1, σi−1),Unci(fi, yi−1, σi−1)

)
(3.3)

where zi := (yi, σi). Hence we are able to “chain” the modules and express the end-to-end
cost as

C̃(x) := (C ◦ gn ◦ gn−1... ◦ g1)(x, null) (3.4)

A common system specification is to require a system to overall perform “well enough” in
expectation. Formally, we desire:

Ex∼D[C̃(x)] < c (3.5)

where D is the distribution of input data x and c is an acceptable threshold on the end-to-end
cost.

Robustness

In this work, we define robustness as the ability of a system to perform at an acceptable
level, even in the presence of external disturbances. We define input error to be any errors
that may exist in x, for example due to sensor inaccuracies or data corruption, and denote it

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 18

Figure 3.2: A visualization of the level set (shaded area) over two-dimensional input errors ϵx with respect
to the entire stack. For points within the level set, the system specification is satisfied (green). For points
outside the level set, the system specification is violated (red).

as ϵx ∈ X . A meaningful metric of system robustness is the size of the set of input errors that
the system can “tolerate”, or operate on while still satisfying the specification. Formally,
this is

Sϵx := {ϵx | Ex∼D[C̃(x + ϵx)] < c} (3.6)

where we approximate the expectation using samples from the dataset. Note that Sϵx is
a sub-level set of the expected cost function, therefore making the computation of system
robustness a level set estimation problem. We can produce Sϵx for different choices of fis and
Uncis in order to evaluate different system designs. In this way, we can quantify the impact
of using uncertainty in the system. Figure 3.2 depicts the goal of this problem statement.

Calibration

For this problem statement we zoom in on a module (as opposed to the whole stack) designed
to output a probability, such as an algorithm predicting probability of vehicle collision.
Suppose yi = fi(yi−1, σi−1) and σi ∈ [0, 1], generated by Unci, represents its confidence on
yi. Let y∗i be the ground truth label. If we have access to the ground truth probability p∗,
perfect calibration is simply σi = p∗, so miscalibration is written as Eσi

|p∗ − σi|. However,
we typically do not possess the knowledge of the ground truth p∗, in which case the existing
literature define perfect calibration as

P(yi = y∗i | σi = p) = p ∀p ∈ [0, 1] (3.7)

and miscalibration [27] as

Eσi

[
| P(yi = y∗i | σi = p)− p |

]
(3.8)

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 19

Figure 3.3: A visualization of the level set (shaded area) over the loss and uncertainty of the previous module.

In the context of a modularized stack, we extend the notion of miscalibration to miscal-
ibration conditioned on the error and uncertainty of the preceding module. Formally, let
∆i =| P(yi = y∗i | σi = p)− p |, li = L(yi, y

∗
i) for some loss function L. We compute

Eσi

[
∆i | li−1 = a, σi−1 = b

]
(3.9)

Similar to our first problem, given a threshold c on miscalibration, we can define the set

Sσ := {(a, b) | Eσi

[
∆i | li−1 = a, σi−1 = b

]
< c} (3.10)

which we visualize in Figure 3.3. Note this is again a sub-level set. We desire the set to be
large, which means despite high loss at module i − 1, thanks to the design of module i, it
is still possible to obtain relatively well-calibrated confidences. We will later demonstrate a
comparison between two uncertainty-aware modules in which the more “intelligent” design
obtains larger sets.

Sub-Level Set Estimation Using Gaussian Processes

We introduce the tool of sub-level set estimation that we use to solve the problems defined
above. Note that various techniques exist for level set estimation, and any one of them can
be used without losing sight of the overall system-aware uncertainty argument.

In both of the subsections above, we desire to estimate the set of inputs to a function such
that the output of the function is below a threshold. A Monte-Carlo sampling-based approach
seems reasonable for working with general sequences of system modules. However, in the
event that the dataset size is large and the dimensionality of the input space is high, naive
Monte-Carlo sampling over each grid point is potentially computationally prohibitive and
motivates using Gaussian Processes (GPs) instead within a Bayesian optimization framework
[22]. In this framework, we take samples of the expectations over the input space and model
the expectation as a GP. We use an acquisition function to determine where in the input

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 20

space to sample next. This usage of the GP to relate relevant quantities to system-level
specifications is according to the guidance given by Katz et al. [33].

Let us use the placeholder F (η) to refer to the expectations in Equations (3.6) and (3.10),
where η represents the input variable. We would like η to be included in the level set if

P(F (η) < c) > λ (3.11)

for a confidence threshold λ. The probability is over the posterior of the GP. Similar to Katz
et al., we use the MILE acquisition function [59] to produce samples of η. We then evaluate
F on those samples and produce the posterior probability distribution over F , expressed
in terms of the mean function µGP (η) and the standard deviation sGP (η). A point ηtest is
included in the level set if

µGP (ηtest) + β ∗ sGP (ηtest) < c (3.12)

where β is set according to the confidence threshold λ.

3.4 Analyzing System Robustness

In this section, we explore our first problem statement, robustness analysis, on a realis-
tic, industry-grade autonomous vehicle (AV) system. We first describe the system before
explaining how we apply the problem in Section 3.3 on the system.

Modular Autonomous Vehicle Stack

We consider a modular AV stack that is based on the DiffStack system described in [32]. This
system is composed of (1) a predictor f1 for forecasting the trajectory of uncontrolled agents
in the environment, (2) a sampling-based planner f2 and (3) a model-predictive controller
(MPC) f3. The ego vehicle controlled by the system operates in real road environments
from the nuScenes dataset [9]. We focus our analysis on the uncertainty at the output of the
trajectory predictor and as used by the planner.

In our AV stack, the trajectory predictor is the Trajectron++ model [43], a state-of-the-
art Conditional Variational Autoencoder. Its output is a Gaussian Mixture Model (GMM)
whose modes are the predicted agent future states. Due to its output structure, we can
capture the prediction uncertainty of Trajectron++ via certain heuristics. For example,
the variances of each Gaussian in the mixture are reasonable measures of uncertainty. The
sampling-based planner is designed with an internal cost function that balances the objectives
of self-driving:

C int = Ccoll(y1) + Cgoal + Cl⊥ + Cl∡ + Cu (3.13)

where the terms denote the cost of collision, distance to goal, lane lateral deviation, lane
heading deviation, and control effort, respectively. The planner proposes candidate plans
by sampling dynamically feasible splines and selecting the plan with the lowest cost. In
this work, we modify this cost function to include an uncertainty measure amenable to our
analysis. Finally, the MPC controller [1] solves an iterative linear quadratic regulator (iLQR)
problem to further optimize planner’s best candidate plan under a quadratic approximation

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 21

of the same cost function. Without loss of generality, following [32], the system produces
predictions only for the uncontrolled agent closest to the ego vehicle and uses the ground
truth future states of other agents.

We propose numerous designs that explicitly incorporate uncertainty into the modular
AV pipeline. We use two uncertainty heuristics naturally derived from the GMM output
of Trajectron++: (i) the entropy of the most-likely Gaussian, denoted as σML, and (ii) the
entropy of the categorical distribution over GMM modes, denoted as σK . We normalize
the uncertainty to lie in [0, 1]. Given imperfect predictions, the planner should utilize the
uncertainty measure to re-weight each of the cost terms in Equation (3.13) to ensure the
ego agent’s safety. In the face of high uncertainty, one such design is to be extra cautious in
avoiding the predicted agent by inflating the safety margin, leading to the uncertainty-aware
cost function:

C int
avoid = eασ1Ccoll(y1) + Cgoal + Cl⊥ + Cl∡ + Cu (3.14)

where α is a scaling factor. An alternative design is to encourage lane keeping (often con-
sidered the “default” safe driving behavior), deprioritize goal-reaching, and give less trust to
the quality of the collision cost, as shown in the following:

C int
lane = σ1(Ccoll(y1) + Cgoal) +

1

1− σ1

(Cl⊥ + Cl∡ + Cu) (3.15)

Robustness Analysis Results

We compare the performance and robustness of five AV stacks, namely the baseline sys-
tem without the use of uncertainty and the four uncertainty-aware AV stack combinations
(σML, C

int
avoid), (σML, C

int
lane), (σK , C

int
avoid), (σK , C

int
lane).

We obtain the sub-level sets in the space of input errors. More concretely, we add input
error ϵx by adding acceleration error ϵaccel ∈ [−5, 5] and steering rate error ϵω ∈ [−π, π] to
the final step of the closest agent’s history states and recomputing the history trajectory to
ensure dynamical feasibility of x + ϵx. We choose two different costs to evaluate the overall
system. The holistic cost described in Equation (3.13) offers a holistic assessment of quality
of the output planned trajectories. The safety cost is defined as the negative of the minimum
distance between the output ego plans and any other agent, across all agents and all steps
in the planning horizon. It offers an interpretable and safety-oriented view on the systems.

The systems are evaluated on a subset of the nuScenes dataset that is unseen by Trajec-
tron++ at training time. Such evaluation is computationally costly due to the size of the
dataset, so computing the sub-level set exactly is intractable. Hence, we employ Bayesian
optimization, where we allow 15 random warm-start evaluations for initial GP fitting and 20
more evaluations sampled at locations determined by the MILE acquisition function. Cost
thresholds c in Equation (3.6) are modeling choices, which are set to c = 0.05 for holistic
cost and c = 0.02 for safety cost. For every cost metric, we consider the cost itself as a
measurement of performance (without input error) and the size of the sub-level set as a
measurement of robustness. We report cost values relative to a version of the system with
access to ground truth agent future states and no input errors. (More precisely, cost of our
designs subtracted by cost of the GT version). The size of the sub-level sets is the proportion
of the input error space. Quantitative results are reported in Table 3.1. The sub-level sets
visualizations are shown in Fig. 3.4.

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 22

Table 3.1: Sub-Level Set Sizes and Costs for AV Designs

System Holistic Cost Safety Cost
Size of Cost Size of Cost

Sub-Level Set ↑ ×10−2 ↓ Sub-Level Set ↑ ×10−2 ↓
GT Prediction — 0 — 0

Baseline 0.092 1.44 0.036 0.46
(σML, C

int
avoid) 0.0 -0.76 0.036 0.38

(σML, C
int
lane) 1.0 -0.49 0.0 7.77

(σK , C
int
avoid) 0.084 2.90 0.073 -2.63

(σK , C
int
lane) 1.0 -0.19 0.0 8.28

(a) (b)

Figure 3.4: Our analysis shows that incorporating uncertainty yields larger sub-level sets and thus more
robust AV stacks. Sub-level sets of size 0 are not shown. Sub-level sets of size 1 are shown as a rectangle
occupying the whole space.

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 23

(a) Baseline system. (b) Using C int
avoid. (c) Using C int

lane.

Figure 3.5: A visualization of the qualitative differences between the three planner designs in the presence
of input error. The proposed plan in 3.5b creates a larger buffer between the ego vehicle and the nearby
agent than that of the baseline 3.5a. The plan in 3.5c most closely adheres to the lane center.

Discussion

For both costs, we’ve found one (or more) uncertainty-aware designs that outperforms the
baseline system in terms of the size of the sub-level sets. The quantitative results demonstrate
the efficacy of explicitly modeling and utilizing uncertainty at the interconnections between
system components. Among our designs, the systems with the best sub-level set size also tend
to have superior costs compared to the baseline. For example, (σML, C

int
lane) has large sub-level

set and lower cost than the baseline in terms of holistic cost, and similarly for (σK , C
int
avoid)

in terms of safety cost. It suggests system robustness and system performance are not
competing objectives. We do not necessarily sacrifice performance to gain robustness, unlike
the typical findings in the field of adversarial machine learning [61]. The robustness analysis
also provides quantitative evidence to the earlier claim that lane-keeping is the “default”
safe driving behavior. With the excellent sub-level set size (1.0) of designs involving C int

lane

on the holistic cost, it shows lane-keeping is an effective fallback controller in the presence
of large input errors.

The sub-level sets also reveal interesting properties of the system and the dataset that
might not be obvious or intuitive. Observe that both sub-level sets in Fig. 3.4 tend to
have volume at ϵω < 0, but not at ϵω > 0. We attribute the tendency to two factors.
First, a negative steering rate error does not degrade the prediction quality of the trajectory
forecaster as much as a positive one. We found that the negative log-likelihood loss of
Trajectron++ is consistently lower at a negative ϵω than a positive ϵω for the same |ϵω|. We
conjecture that such behavior in the predictor model is caused by bias in the training data
distribution. Second, the corrupted predictions caused by negative steering rate errors are
less detrimental to the ego agent’s planner than positive errors. We empirically verify that
ϵω < 0 tend to increase the distance between the current (perturbed) position of the predicted
agent and the goal position of the ego agent, which means the corrupted predictions are less
likely to intersect with ego’s planned path. Beyond measuring robustness, the sub-level
sets provide insights about the system and the dataset previously unknown to the system
designers, which might aid future diagnostics of the system.

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 24

3.5 The Calibration Perspective

We move onto the calibration perspective of modules that provide probability estimates. We
demonstrate the problem described in Section 3.3 in the aviation domain.

Runway Incursion Detection System for Aircraft

We demonstrate our approach on a pilot warning system that detects runway intrusions
during landing. Runway incursions have proven to be a non-trivial hazard in recent times
[47], so designing a robust system for detecting incursions is highly important. We approach
this problem using a Boeing aircraft fitted with cameras, which we utilize for learning-enabled
detection.

The system is comprised of three modules: a detector f1, a tracker f2, and an advisory
component f3 that issues a warning to the pilot. The detector is provided images of the
runway, and, using a fully-convolutional one-stage detector [48], marks vehicles on the runway
with a bounding box. These bounding boxes not only encode spatial information about the
object, but also include a confidence score that is between 0 and 1. A higher confidence score
can be perceived as a higher likelihood of an object existing. This provides a natural choice
of an uncertainty metric. The tracker receives the bounding-boxed detections, along with
their associated uncertainty scores, and uses a classical Kalman filtering-based approach to
track objects. Additionally, we implement the tracker to constantly monitor the probability
of an object’s existence, using Wald’s sequential likelihood ratio test [55]. Given the input
confidence score, we apply a model to liken this confidence score to the probability a track
exists, to fit the framework of the sequential probability ratio test (SPRT). Finally, we
provide the collection of tracks to the advisory module. This module collects all tracks that
appear to intrude on the runway, and it calculates the probability that at least one of these
tracks exists, using the existence probabilities derived from Wald’s SPRT previously. If the
total probability of an intrusion exceeds a given threshold, we advise the pilot not to land.

Calibration is especially important in this safety-critical probabilistic system. Well-
calibrated probability estimates provide interpretable results, improving pilots’ safety assess-
ment on the fly. It also helps to increase buy-in from aviation regulators who are especially
interested in quantifying the risk of learning-based components.

On Calibration of Uncertainty-Aware Trackers

The module of interest is the tracker f2. We consider two uncertainty-aware tracker designs,
denoted by “Naive” and “Regression”. These designs are differentiated by how they map a
confidence value on a detection to the existence probability of the associated track. The Naive
tracker defines this ratio as simply the detection confidence divided by 1 minus the confidence.
The Regression tracker, however, uses an autoregressive linear model that incorporates a
rolling confidence mean and variance. Thus, both the numerator and denominator of the
likelihood ratio are linear models whose weights are learned from a separate dataset.

In the context of our analysis, σ is the mean confidence score on a track; l is cross-entropy
loss on the softmax distribution of the detector. Each point in Figure 3.6 represents a single
track. The miscalibration threshold c is 0.4. All data are collected during real flight tests in

CHAPTER 3. A SYSTEM PERSPECTIVE ON THE UNCERTAINTY OF
LEARNING-BASED COMPONENTS IN THE AUTONOMY STACK 25

(a) Sub-level set size: 0.0251 (b) Sub-level set size: 0.0442

Figure 3.6: Our analysis shows that the Regression Tracker is a superior design with lower miscalibration
when given large errors of the upstream detector network. Module Errors denote cross-entropy loss on the
softmax distribution of the detector network. Model Uncertainties are the mean confidences on a track.

collaboration with Boeing. The structure of the data leads to a lack of coverage in parts of
the l× σ space. Thus, we bin the space with a bin size of 0.02 and use a GP to interpolate.
We only include points in the sub-level set with λ = 0.9.

Notice that the Regression Tracker obtains a larger sub-level set size, meaning it is
considered relatively well-calibrated for more values of detector loss and confidences. We
highlight that the Naive Tracker’s level set does not have any volume when l > 4, while
the Regression Tracker has a level set that has a non-trivial volume up to l = 7. Hence the
Regression Tracker is more tolerant to upstream failures, which, considering its ability to
maintain a sliding window of past confidences, is consistent with our expectation.

3.6 Acknowledgments

This material is based upon work supported by the DARPA Assured Autonomy Program, the
NASA ULI on Safe Aviation Autonomy, and the NSF GRFP under Grant No. 2146752. Any
opinions, findings, and conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of any aforementioned organizations.
Additionally, the author would like to thank James Paunicka, Blake Edwards, Jose Medina,
Brandon Schwiesow, Zachary Tane, and the rest of the team at Boeing for their help and
contributions. The author would also like to thank Michael H. Lim for his early contributions
to this work.

26

Chapter 4

Conclusion and Future Directions

We presented our definition of an uncertainty-aware modularized autonomy stack, which en-
capsulates many modern robot system architectures involving learning-based components.
We first contributed a novel self-driving pipeline design that provides rigorous safety guar-
antees by combining statistical tools (i.e. conformal prediction) with control theory tools
(i.e. HJ reachability). We then advocate for the use of uncertainty quantification in general
autonomy stacks by analyzing system robustness and calibration through level set estimation.

There are several important yet under-explored directions on the topic of probabilistic
safety assurance, first of which is any-time valid guarantee. Unlike existing methods that
provide miscoverage error rate between the initial and the current time, we’d like an algorithm
to provide an assurance on the current prediction regardless of the past errors. It demands
the algorithm to provide valid guarantees any-time, effectively disallowing it from generating
trivial, degenerate sets for some time steps while still maintaining the guarantee on average.
Another extension of our work is probabilistic calibration. Probabilistic calibration requires
a forecaster to output distributions that are valid at every quantile level, not just 1 − α
level. Finally, we’d like to see practical algorithms that can operate at extreme significance
levels such as 0.01% error rate. Current safety assurances of learning-based autonomous
systems are typically benchmarked at the 5 − 10% error level. It is still prohibitively high
for safety-critical situations like aviation, where a single mistake can lead to catastrophic
consequences.

We are also interested in turning our work on the analysis of general, uncertainty-aware
pipelines into optimization of such pipelines. Namely, how do we devise optimization meth-
ods to maximize level sets for improved robustness and calibration? A promising direction is
to develop a surrogate loss for the level set maximization problem. Another important topic
is system-wide rigorous safety assurances. Current works mostly focus on providing assur-
ances for one module in the entire pipeline. Systems composing of multiple neural networks
pose a new type of safety challenge in autonomous systems.

27

Bibliography

[1] Brandon Amos et al. “Differentiable MPC for End-to-end Planning and Control”. In:
Advances in Neural Information Processing Systems. 2018, pp. 8299–8310.

[2] Anastasios N Angelopoulos and Stephen Bates. “A gentle introduction to confor-
mal prediction and distribution-free uncertainty quantification”. In: arXiv preprint
2107.07511 (2021).

[3] Imanol Arrieta-Ibarra et al. “Metrics of calibration for probabilistic predictions”. In:
Journal of Machine Learning Research 23.351 (2022), pp. 1–54.

[4] Andrea Bajcsy et al. “A scalable framework for real-time multi-robot, multi-human
collision avoidance”. In: 2019 International Conference on Robotics and Automation.
IEEE. 2019, pp. 936–943.

[5] Somil Bansal et al. “Hamilton-jacobi reachability: A brief overview and recent ad-
vances”. In: 2017 IEEE 56th Annual Conference on Decision and Control. IEEE. 2017,
pp. 2242–2253.

[6] Rina Foygel Barber et al. “Conformal prediction beyond exchangeability”. In: arXiv
preprint 2202.13415 (2022).

[7] Jaros law B lasiok et al. “A unifying theory of distance from calibration”. In: Proceedings
of the 55th Annual ACM Symposium on Theory of Computing. 2023, pp. 1727–1740.

[8] Dimitrios Boursinos and Xenofon Koutsoukos. “Assurance monitoring of learning-
enabled cyber-physical systems using inductive conformal prediction based on distance
learning”. In: AI EDAM 35.2 (2021), pp. 251–264.

[9] Holger Caesar et al. “nuScenes: A multimodal dataset for autonomous driving”. In:
Computer Vision and Pattern Recognition. IEEE. 2020.

[10] Kaustav Chakraborty and Somil Bansal. “Discovering Closed-Loop Failures of Vision-
Based Controllers Via Reachability Analysis”. In: IEEE Robotics and Automation Let-
ters PP (May 2023), pp. 1–8. doi: 10.1109/LRA.2023.3258719.

[11] Bertrand Charpentier et al. “Disentangling epistemic and aleatoric uncertainty in re-
inforcement learning”. In: arXiv preprint 2206.01558 (2022).

[12] Yuxiao Chen et al. “Reactive motion planning with probabilistic safety guarantees”.
In: Conference on Robot Learning. PMLR. 2021, pp. 1958–1970.

[13] Anthony Corso et al. “Risk-Driven Design of Perception Systems”. In: ArXiv abs/2205.10677
(2022).

https://doi.org/10.1109/LRA.2023.3258719

BIBLIOGRAPHY 28

[14] Charles Dawson and Chuchu Fan. “A Bayesian Approach to Breaking Things: Ef-
ficiently Predicting and Repairing Failure Modes via Sampling”. In: Conference on
Robot Learning. 2023.

[15] Charles Dawson and Chuchu Fan. “Certifiable Robot Design Optimization using Dif-
ferentiable Programming”. In: Robotics: Science and Systems. 2022.

[16] Alex Devonport et al. “Data-driven reachability analysis with Christoffel functions”.
In: 2021 60th IEEE Conference on Decision and Control. IEEE. 2021, pp. 5067–5072.

[17] Anushri Dixit et al. “Adaptive Conformal Prediction for Motion Planning among Dy-
namic Agents”. In: arXiv preprint 2212.00278 (2022).

[18] Scott Ettinger et al. “Large Scale Interactive Motion Forecasting for Autonomous Driv-
ing: The Waymo Open Motion Dataset”. In: International Conference on Computer
Vision. IEEE. Oct. 2021, pp. 9710–9719.

[19] Michael Everett et al. “Reachability Analysis of Neural Feedback Loops”. In: IEEE
Access PP (2021), pp. 1–1. url: https://api.semanticscholar.org/CorpusID:
236957330.

[20] Shai Feldman et al. “Achieving Risk Control in Online Learning Settings”. In: arXiv
preprint 2205.09095 (2023).

[21] Jaime F Fisac et al. “Reach-avoid problems with time-varying dynamics, targets and
constraints”. In: Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control. 2015, pp. 11–20.

[22] P. Frazier. “A Tutorial on Bayesian Optimization”. In: ArXiv abs/1807.02811 (2018).
url: https://api.semanticscholar.org/CorpusID:49656213.

[23] David Fridovich-Keil et al. “Confidence-aware motion prediction for real-time collision
avoidance”. In: The International Journal of Robotics Research 39.2-3 (2020), pp. 250–
265.

[24] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning”. In: Proceedings of The 33rd Interna-
tional Conference on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q.
Weinberger. Vol. 48. Proceedings of Machine Learning Research. New York, New York,
USA: PMLR, 20–22 Jun 2016, pp. 1050–1059.

[25] Isaac Gibbs and Emmanuel Candes. “Adaptive conformal inference under distribution
shift”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 1660–
1672.

[26] Junru Gu, Chen Sun, and Hang Zhao. “Densetnt: End-to-end trajectory prediction
from dense goal sets”. In: International Conference on Computer Vision. IEEE. 2021,
pp. 15303–15312.

[27] Chuan Guo et al. “On calibration of modern neural networks”. In: International con-
ference on machine learning. PMLR. 2017, pp. 1321–1330.

[28] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-of-
distribution examples in neural networks”. In: arXiv preprint arXiv:1610.02136 (2016).

https://api.semanticscholar.org/CorpusID:236957330
https://api.semanticscholar.org/CorpusID:236957330
https://api.semanticscholar.org/CorpusID:49656213

BIBLIOGRAPHY 29

[29] B. Ivanovic and M. Pavone. “Injecting Planning-Awareness into Prediction and Detec-
tion Evaluation”. In: IEEE Intelligent Vehicles Symposium. 2022.

[30] Boris Ivanovic and Marco Pavone. “The Trajectron: Probabilistic multi-agent trajec-
tory modeling with dynamic spatiotemporal graphs”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2019, pp. 2375–2384.

[31] HM Dipu Kabir et al. “Neural network-based uncertainty quantification: A survey of
methodologies and applications”. In: IEEE access 6 (2018), pp. 36218–36234.

[32] Peter Karkus et al. “DiffStack: A Differentiable and Modular Control Stack for Au-
tonomous Vehicles”. In: 6th Annual Conference on Robot Learning. 2022.

[33] Sydney M. Katz et al. “Efficient Determination of Safety Requirements for Perception
Systems”. In: Digital Avionics Systems Conference. 2023.

[34] Roger Koenker. Quantile regression. Vol. 38. Cambridge university press, 2005.

[35] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and scal-
able predictive uncertainty estimation using deep ensembles”. In: Proceedings of the
31st International Conference on Neural Information Processing Systems. NIPS’17.
Long Beach, California, USA: Curran Associates Inc., 2017, pp. 6405–6416. isbn:
9781510860964.

[36] Lars Lindemann et al. “Safe planning in dynamic environments using conformal pre-
diction”. In: IEEE Robotics and Automation Letters (2023).

[37] Rachel Luo et al. “Sample-efficient safety assurances using conformal prediction”. In:
Algorithmic Foundations of Robotics XV: Proceedings of the Fifteenth Workshop on
the Algorithmic Foundations of Robotics. Springer. 2022, pp. 149–169.

[38] Ali Malik et al. “Calibrated model-based deep reinforcement learning”. In: Interna-
tional Conference on Machine Learning. PMLR. 2019, pp. 4314–4323.

[39] Anish Muthali et al. “Multi-agent reachability calibration with conformal prediction”.
In: arXiv preprint arXiv:2304.00432 (2023).

[40] Kensuke Nakamura and Somil Bansal. “Online update of safety assurances using
confidence-based predictions”. In: arXiv preprint 2210.01199 (2022).

[41] Jeremy Nixon et al. “Measuring calibration in deep learning.” In: CVPR workshops.
Vol. 2. 7. 2019.

[42] Janis Postels et al. “Sampling-Free Epistemic Uncertainty Estimation Using Approxi-
mated Variance Propagation”. In: 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV) (2019), pp. 2931–2940.

[43] Tim Salzmann et al. “Trajectron++: Dynamically-feasible trajectory forecasting with
heterogeneous data”. In: Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16. Springer. 2020, pp. 683–
700.

[44] Edward Schmerling. hj reachability. https://github.com/StanfordASL/hj_reachability.
2021.

https://github.com/StanfordASL/hj_reachability

BIBLIOGRAPHY 30

[45] Apoorva Sharma, Navid Azizan, and Marco Pavone. “Sketching Curvature for Efficient
Out-of-Distribution Detection for Deep Neural Networks”. In: ArXiv abs/2102.12567
(2021).

[46] Ingo Steinwart and Andreas Christmann. “Estimating conditional quantiles with the
help of the pinball loss”. In: arXiv preprint 1102.2101 (2011).

[47] Cara Tabachnick. “What to know about the recent close calls on airport runways”. In:
CBS News (2023).

[48] Zhi Tian et al. “FCOS: Fully Convolutional One-Stage Object Detection”. In: Oct.
2019, pp. 9626–9635. doi: 10.1109/ICCV.2019.00972.

[49] Ryan J Tibshirani et al. “Conformal prediction under covariate shift”. In: Advances in
Neural Information Processing Systems 32 (2019).

[50] Renukanandan Tumu et al. “Physics Constrained Motion Prediction with Uncertainty
Quantification”. In: arXiv preprint 2302.01060 (2023).

[51] Balakrishnan Varadarajan et al. “Multipath++: Efficient information fusion and tra-
jectory aggregation for behavior prediction”. In: International Conference on Robotics
and Automation. IEEE. 2022, pp. 7814–7821.

[52] Joseph A. Vincent and Mac Schwager. “Reachable Polyhedral Marching (RPM): An
Exact Analysis Tool for Deep-Learned Control Systems”. In: ArXiv abs/2210.08339
(2022).

[53] Eugene Vinitsky et al. “Nocturne: a scalable driving benchmark for bringing multi-
agent learning one step closer to the real world”. In: arXiv preprint 2206.09889 (2022).

[54] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a
random world. Vol. 29. Springer, 2005.

[55] A. Wald. Sequential Analysis. John Wiley and Sons, New York, 1947.

[56] Huajun Xi et al. “Does Confidence Calibration Help Conformal Prediction?” In: arXiv
preprint arXiv:2402.04344 (2024).

[57] Chen Xu and Yao Xie. “Conformal prediction interval for dynamic time-series”. In:
International Conference on Machine Learning. PMLR. 2021, pp. 11559–11569.

[58] Jiayu Yao et al. “Quality of uncertainty quantification for Bayesian neural network
inference”. In: arXiv preprint 1906.09686 (2019).

[59] Andrea Zanette, Junzi Zhang, and Mykel J. Kochenderfer. “Robust Super-Level Set
Estimation using Gaussian Processes”. In: ECML/PKDD. 2018.

[60] Hanli Zhang et al. “Why Change Your Controller When You Can Change Your Planner:
Drag-Aware Trajectory Generation for Quadrotor Systems”. In: ArXiv abs/2401.04960
(2024).

[61] Hongyang Zhang et al. “Theoretically principled trade-off between robustness and
accuracy”. In: International conference on machine learning. PMLR. 2019, pp. 7472–
7482.

https://doi.org/10.1109/ICCV.2019.00972

	Contents
	List of Figures
	List of Tables
	Introduction
	Multi-Agent Reachability Calibration with Conformal Prediction
	Overview
	Related Works
	Assurances from Uncertainty
	Probabilistic Reachability and Planning
	Results
	Acknowledgements

	A System Perspective on the Uncertainty of Learning-Based Components in the Autonomy Stack
	Overview
	Related Works
	Problem Setup
	Analyzing System Robustness
	The Calibration Perspective
	Acknowledgments

	Conclusion and Future Directions
	Bibliography

