
Translations Alone Do Not Help Programmers Work With
Unfamiliar Abstractions

Jacob Yim

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-224
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-224.html

December 19, 2024



Copyright © 2024, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
First, I want to thank my advisor, Sarah, and my mentor, Justin–thank you so
much not only for your guidance on this project, but also for teaching me
how to do research! I am immensely grateful to have the opportunity to do
this kind of work, and I owe it all to you both. I would also like to thank
Kevin and Laila, my collaborators on this project, without whom this would
never have been possible. A huge thank you goes out to the many, many
participants who took part in our study, and to friends who joined pilot
studies, gave insightful feedback, and recruited participants. Special thanks
to Sami for encouraging me every step of the way, and finally, to my parents
for their unconditional love and support.



Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II. 

Approval for the Report and Comprehensive Examination: 

Committee: 

Professor Sarah E. Chasins 
Research Advisor 

(Date) 

* * * * * * * 

Professor Marcia C. Linn 
Second Reader 

 December 18, 2024

(Date) 

Translations Alone Do Not Help Programmers Work With Unfamiliar
Abstractions 

by Jacob Yim 

Research Project 

December 17, 2024



Translations Alone Do Not Help Programmers Work With Unfamiliar Abstractions

by

Jacob Yim

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science, Plan II

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sarah E. Chasins, Chair
Professor Marcia C. Linn

Fall 2024



Translations Alone Do Not Help Programmers Work With Unfamiliar Abstractions

Copyright 2024
by

Jacob Yim



1

Abstract

Translations Alone Do Not Help Programmers Work With Unfamiliar Abstractions

by

Jacob Yim

Master of Science, Plan II in Computer Science

University of California, Berkeley

Professor Sarah E. Chasins, Chair

When programmers edit other programmers’ code or computer-generated code, they often
need to work with unfamiliar abstractions—e.g., when adopting a new library or language,
or entering a preexisting codebase. Prior work has hypothesized that showing a translation
from unfamiliar abstractions into familiar abstractions will help. We explored this question
in a 98-participant user study. We asked participants to edit Python programs that used an
unfamiliar library, with or without access to a translation into vanilla Python. Participants
with access to the translation were neither faster nor less error-prone. We used a set of
interfaces that augment translations in a range of ways to further explore the question of
whether translations can help programmers work with unfamiliar abstractions. Our results
suggest design opportunities for the problem of supporting programmers in working with
new libraries and languages.



i

Acknowledgments

First, I want to thank my advisor, Sarah, and my mentor, Justin–thank you so much not
only for your guidance on this project, but also for teaching me how to do research! I am
immensely grateful to have the opportunity to do this kind of work, and I owe it all to
you both. I would also like to thank Kevin and Laila, my collaborators on this project,
without whom this would never have been possible. A huge thank you goes out to the many,
many participants who took part in our study, and to friends who joined pilot studies, gave
insightful feedback, and recruited participants. Special thanks to Sami for encouraging me
every step of the way, and finally, to my parents for their unconditional love and support.



1

1.1 Introduction

Programmers are often tasked with reading, editing, and reusing code written by other
programmers and, increasingly, automatic code generators. With the recent rise of LLM
programming, there is a particularly urgent need to support programmers in working with
code they didn’t write themselves. While we expect that programmers know the abstractions
they use in their own code, machine-written or peer-written code may use abstractions they
do not know. Updating or adapting programs with unfamiliar abstractions can be difficult.
These unfamiliar abstractions may include unknown libraries or even unknown program-
ming languages. In this work, we explore automatic tooling for supporting programmers in
modifying code that uses unfamiliar libraries or languages.

Prior work has speculated that automatically generated programs can help programmers
use unfamiliar abstractions [54, 23, 116, 12], in particular by showing translations [92, 18, 4,
37]—that is, by juxtaposing code using unfamiliar abstractions with equivalent code using
abstractions the programmer already knows. However, this intervention has not yet been
tested. We are not aware of any empirical evidence about whether program translations are
helpful to programmers working with unfamiliar abstractions. To fill this gap, we conducted
a user study of 98 participants performing modifications to Python code with unfamiliar
functions from the TensorFlow library. We use this study to ask: Do translations help
programmers work with unfamiliar abstractions?

Our study reveals that translations alone do not help programmers work with unfamiliar
abstractions. We use a series of custom-designed interfaces to explore whether presenting
additional information about translations can make translations helpful; for the four custom
translation interfaces we tested, the interfaces do make successful participants faster but do
not increase the number of successful participants.

This study is certainly not the final word on whether translations help programmers work
with unfamiliar abstractions. It may be that translations are helpful if they are particularly
readable or are designed for a particular domain. The utility of translations may also de-
pend on the task the user is trying to accomplish, the user’s expertise, the perceived distance
between source and target language, or other factors entirely. However, it is clear that, in
contrast to prior speculation, we do not have reason to believe that translations alone—in
absence of other factors or augmentations—help programmers work with unfamiliar abstrac-
tions.

Specialized translation interfaces did speed the editing process relative to the no-translation
control. This observation leads us to a set of design opportunities. We expect future work
can uncover other ways to make translations useful for unfamiliar abstractions.

Contributions This short paper presents the following contributions:

1. A 98-participant user study assessing participants’ success in editing pro-
grams that used unfamiliar abstractions. We compared seven conditions, includ-
ing five conditions that presented translations into familiar abstractions.



2

2. A set of design opportunities based on the findings from this study. In par-
ticular, we offer implications for HCI researchers as well as HCI practitioners regarding
tool support for program modification tasks.

Overall, our findings confirm that supporting users in program modification tasks remains
an open problem in HCI research. While prior work has speculated that translations may
help, our findings suggest that future HCI work cannot necessarily rely on translations alone
to fill this gap. Building on these findings, we conclude with lessons and open questions
and for the HCI community on how to support program modification tasks as opposed to
program authoring tasks.

1.2 Related Work

Despite the repeated speculation that translations may help programmers, there are no
existing works that study users to identify whether translations help them with programming
tasks. We therefore split the landscape of related works into categories according to whether
they (i) study users’ use of program translations, (ii) study users doing program modification,
program reading, or program comprehension tasks, or (iii) less relatedly, offer tool support
for users doing program modification, program reading, or program comprehension tasks.
We are not aware of any studies that cover both (i) translations and (ii) their effect on a
programming task.

Studies of Users Seeing Translations

We are aware of one study showing translated programs to programmers. Transfer Tu-
tor [92] “guides programmers through code snippets of two programming languages and
highlights reusable concepts from a familiar language to learn a new language. Transfer Tu-
tor also warns programmers about potential misconceptions carried over from the previous
language” [92]. From qualitative analysis of a thinkaloud study of Transfer Tutor users, they
concluded that users did use “learning transfer” as a cognitive strategy. This study did not
aim to shed light on the effects of translation on any programming tasks, so there was no
non-translation control condition.

Aside from the above, the works that come closest to touching on the topic of showing
users translations are other studies related to transfer of learning. Comprehending code
that uses unfamiliar abstractions can be thought of as a small-scale instance of transfer of
programming languages. Transfer is a topic of ongoing interest in the computer science
education research community [88, 87, 104, 9, 75, 99, 100, 42, 98, 62] with some perspec-
tives from software engineering researchers as well [93]. Such research typically focuses on
transferring programming skills from one language to another over a relatively long period
of time, often in the context of a classroom.



3

Studies of Users Doing Program Modification, Program Reading,
or Program Comprehension

Since the literature includes few studies on the specific task that interests us—working with
and modifying code that includes unfamiliar abstractions—we here widen our net to con-
sider works that may touch on related themes. For instance, program reading and program
comprehension may be part of the process of program modification.

Working With Others’ Code Is Hard

The literature offers clear evidence that working with code that one has not written oneself
is difficult [96, 17, 47, 32, 68, 107]. Studies identify that the process is time-consuming [17,
47, 68, 107], and even that professional developers spend 58% of their working hours on code
comprehension tasks [107], which may be one component of work with others’ code. Espe-
cially relevant to our own context, a study of developers performing small code modification
tasks found that participants spent 35% of their time understanding unfamiliar code [47].

Making it easier to understand code written by others may be especially important as
large language models (LLMs) are increasingly being used for code generation. While many
studies have found that LLMs help experienced programmers write code [8, 59, 70], others
have found that programmers struggle to use them effectively, in large part because of issues
around understanding the LLM-written code [101, 35, 83, 102, 15, 26, 74]. Existing work
highlights issues around understanding code enough to check whether it is correct [26, 74]
and struggling with unfamiliar abstractions in the LLM-generated code [61, 26, 74].

Studies of Program Comprehension

Since at least the 1970s, there has been a long line of work studying how both novice and
expert programmers comprehend code in a familiar language [91, 11, 96, 106, 57, 82, 48, 27,
103, 47, 51, 52, 86, 63, 94, 49, 2]. In contrast to these works, we are interested in exploring
how programmers work with code using unfamiliar abstractions.

A smaller corpus of work has investigated how programmers comprehend code when
working with new languages [89, 46] or domains [90], including the resources they turn to
for learning [1, 4]. Additionally, Gross and Kelleher [30] studied how non-programmers
comprehend programs. Most relevantly, Shaft and Vessey [90] identify that program com-
prehension can be easier in a familiar domain with an unfamiliar language than an unfamiliar
domain with a familiar language, and Ko and Uttl [46] identify domain knowledge as the
best predictor of debugging success. Neither work touches on translation.



4

Tool Support for Program Modification, Program Reading, or
Program Comprehension

Finally, we conclude with existing work on tool support for a variety of tasks related to
program modification.

Debugging

Program modification tasks can be thought of as debugging tasks. A wide variety of de-
bugging support tools have been introduced, including tools based on program slicing [105,
21, 31, 108, 115, 45, 44, 7, 58] and tools that characterize failing tests [84, 39, 5, 29, 33,
60, 78, 3]. Researchers have previously highlighted the difficulty in creating tools that can
measurably improve debugging outcomes [19, 79].

Pseudocode Generation

Prior work has investigated how to automatically generate pseudocode, with a major appli-
cation in improving comprehension of programs using unfamiliar abstractions [76, 28, 16].
In one case, Oda et al. [76] evaluate their pseudocode generation system with a user study,
providing evidence that pseudocode can improve code comprehension.

Natural Language Explanations

Another related approach is to generate program explanations in natural language. Many
researchers have found large language models (LLMs) promising for this purpose. Several
researchers found LLMs useful for explaining worked examples to students in computer sci-
ence classrooms [55, 65, 40], while Balse et al. [6] achieved similar results for explaining
student errors. Yan et al. [110] found that lightweight in-situ natural language explana-
tions from LLMs improve code understanding. LLM-powered conversational tools for code
understanding have also been a topic of new research: GILT [72] is an IDE plugin that
produces code explanations without user prompting, while IntelliExplain [109] enables users
to conversationally explain and write code in natural language. Both systems were found
to be generally helpful for explaining code to programmers during user studies. Researchers
have also reported success with less automated (non-LLM) approaches to explain snippets
of code—such as subparts of a program—using natural language summaries [41, 34, 67].

Understanding Large Codebases

Many prior tools have aimed to improve comprehension of large-scale codebases for devel-
opers working in a familiar language [71, 97, 56, 38, 85, 95, 36, 10, 20, 43, 50], sometimes to
understand changes over time [112, 111]. We focus on smaller code snippets with unfamiliar
abstractions, as might be produced by an automated code generator or program synthesizer.



5

Interpretable Program Synthesis

One line of work that seeks to explain small snippets of code with unfamiliar abstractions
is interpretable program synthesis. To explain their output, existing tools have used a
variety of techniques such as graphically depicting outputs in forms like comics [69] or block-
based programs [14], disambiguation interactions [67], presentation of corner cases [113], or
communication of intermediate results and provenance [116]. Another line of synthesis tools
aim to explain their work—that is, how they arrived at their solutions. Peleg et al. [81],
Hu et al. [37] and Zhang et al. [114] allow the user to guide synthesis, thus requiring the
user to understand the synthesizer’s work as it operates. Le et al. [53] and Peleg et al.
[80] introduce frameworks for modeling these kinds of tools. Nazari et al. [73] introduce a
system by which a synthesizer can explain subcomponents of its outputs based on top-level
specification.

1.3 Research Questions

Here we briefly describe our research questions and how they connect to our experimental
design.

Throughout this section, we use the term starter code to refer to a program that includes
uses of unfamiliar abstractions. We use the term translation to refer to a program with the
same input-output behavior, but using only familiar abstractions. We explore the following
research questions about translations:

RQ1 Do translations help programmers work with unfamiliar abstractions?

RQ2 How does translation compare to an alternative intervention—natural language explanation—
in helping programmers work with unfamiliar abstractions?

RQ3 How can translations be augmented to be more helpful to programmers working with
unfamiliar abstractions?

To answer RQ1, we compare programmer performance on a program editing task when
given two kinds of information:

1. The program using unfamiliar abstractions (starter code).

2. The program using unfamiliar abstractions and a translation using familiar abstrac-
tions.

To answer RQ2, we compare programmer performance on a program editing task when
given:

(3) The program using unfamiliar abstractions and a non-translation natural-language
explanation.



6

To answer RQ3, we started with a set of four hypotheses about information that might
make translations more helpful to programmers. RQ3 explores these hypotheses in partic-
ular:

H1 A mapping between familiar and unfamiliar program components helps.

H2 Translation of individual program components in isolation helps.

H3 Seeing fine-grained translation steps helps.

H4 Natural-language explanation of the translation helps.

We designed a set of four interfaces to explore these hypotheses (Section 1.4), each of which
augments translations in pointed ways. Each one embodies a particular hypothesis about
what may affect translations’ usefulness. If the hypothesis associated with one of these
interfaces is true, we expect to see improved programmer performance with that interface
compared to seeing the translation alone.

1.4 Interfaces

In this section, we describe the programming interface associated with each condition our
study. In addition to the RQ-relevant features highlighted below, all interfaces featured the
ability to read, edit, and run Python programs

Control and Translation Interfaces

We first describe the two interfaces we used to assess RQ1, Basic-Control. The Basic-
Control interface displays only the original TensorFlow program (Figure 1.1a). The
Basic-Translation interface displays the original TensorFlow program and a translation
to vanilla Python code produced by an automatic translation tool (Figure 1.1b).

Natural Language Interface

We now describe the interface we used to assess RQ2, Alt-NL. The Alt-NL interface
(Figure 1.1c) displays the original TensorFlow program alongside a natural language expla-
nation. We produced natural language explanations using the latest version of OpenAI’s
GPT-4 large language model [77]. We prompted the model using the following text: “Ex-
plain this TensorFlow program concisely:”, followed by the TensorFlow starter code. We ran
each prompt once, before the start of the study, so all participants saw the same explanation
for a given program.



7

Pointed Interfaces

We now describe the four pointed interfaces we developed and used to assess hypotheses
H1–H4 of RQ3. Recall that RQ3 is designed to explore four hypotheses about information
that might make translations more helpful to programmers.

We generated the pointed interfaces for each program automatically, based on extracting
translation-related information from an automatic translation tool. We intentionally con-
strained our pointed interfaces to information that can be collected automatically from a
translation tool, so that we can expect these kind of interfaces to be automatically gener-
atable rather than relying on human guidance or insights. However, our interface designs
are not specific to the particular translation tool we instrumented. We therefore follow the
description of each interface design with a description of what information a tool must export
in order to produce the interface in question.

Pointed Interface 1 (Pointed-Highlight): Highlighting Correspondence Between
Translated Components

We first describe Pointed-Highlight, the pointed interface designed to explore H1: A
mapping between familiar and unfamiliar program components helps.

This hypothesis centers on the idea of connecting regions of the source program and
translated program. For example, highlighting the correspondence between components
(such as uses of a particular variable) in a source and translated program may support
programmers. By emphasizing mapping, this interface lets us explore whether making the
mapping between components salient may play a role in programmers’ usage of translations.

Pointed-Highlight displays the source program, the translated program, and a set of
buttons. When clicked, each button highlights one of the TensorFlow functions in the source
program and the corresponding code in the translation. It also highlights each function
argument in its own color, in both the source and translated programs.

For example, Figure 1.1d showsPointed-Highlight after clicking the tf.math.reduce sum

button. This function computes the sum of the elements in a tensor and is highlighted in
yellow in the original TensorFlow program. The corresponding translated code is also high-
lighted in yellow. The argument of the function, tf.math.multiply(x, 2), doubles x and is
highlighted in red in the original TensorFlow program. This argument determines both the
number of iterations of the translated for loop and the value added to sum result at each
iteration. Consequently, these parts of the translation (and nothing else) are highlighted
in red. These highlighted visuals make explicit the mappings between function calls and
function arguments, even when they look different in the source and translated programs.

Tool Requirements for Implementation To generate aPointed-Highlight instance,
we need annotations in both the input and output programs. A tool that translates between
the source and target language substitutes abstractions from the target language in for
components of the source language. Whenever a substitution occurs, the tool must annotate



8

(a) Basic-Control (RQ1):
shows just the starter code.

(b) Basic-Translation
(RQ1): shows the starter code
and a translation. (c) Alt-NL (RQ2): shows the

starter code and a natural lan-
guage explanation.

(d) Pointed-
Highlight (RQ3):
shows the starter code
and a translation,
highlighting corre-
sponding components.

(e) Pointed-
Individual (RQ3):
shows the starter
code and buttons that
translate individual
components.

(f) Pointed-
StepByStep (RQ3):
shows the starter code
and a translation as
well as a sequence of
intermediate transla-
tion steps.

(g) Pointed-
Translation+NL
(RQ3): shows the
starter code, a trans-
lation, and a natural
language explanation
of why the translation
is equivalent.

Figure 1.1: The seven interfaces we use to answer our research questions. Each
interface specifically helps answer one of our research questions from Section 1.3. RQ1
asks whether translations help programmers work with unfamiliar abstractions; we compare
Basic-Control (a) and Basic-Translation (b) to answer it. RQ2 asks whether natural
language explanations help; we additionally compare Alt-NL (c) to answer it. RQ3 asks
whether translations can be augmented to be more helpful; we compare the pointed interfaces
(d–g) to answer it.

the start and end of the slice of the input program that was replaced; the tool must also
annotate the start and end of the slice of the output program that was produced by the
substitution. All annotations must remain, even as multiple substitutions are applied. The
tool must use this same process if part of a translated program is drawn from an annotated
portion of the source program. For example, in the example above, the red-highlighted
argument was tf.math.multiply(x, 2); when x was drawn from the argument to be used



9

as the input to len, the tool must add the annotations to maintain the red highlighting,
even for this partial use.

Pointed Interface 2 (Pointed-Individual): Translating Individual Components

We designed Pointed-Individual to explore H2: Translation of individual program
components in isolation helps.

Pointed-Individual does not display a whole-program translation of the original Ten-
sorFlow program. Instead, it provides a set of buttons that show translations of individual
components of the original TensorFlow program. Each button corresponds to a TensorFlow
function in the original program. When these buttons are clicked, Pointed-Individual
underlines the function call in the original program and displays a translation of the under-
lined component. Pointed-Individual provides a translation of the entire program only
when the user clicks the button that corresponds to the outermost TensorFlow function call.

For example, Figure 1.1e showsPointed-Individual after clicking the tf.math.multiply
button. Pointed-Individual underlines this function call in the source program and dis-
plays only this function’s translation.

Tool Requirements for Implementation To produce Pointed-Individual, we need
translations not only for the whole program, but also for each individual use of an unfa-
miliar abstraction. For a translation tool, a straightforward way of generating the requisite
information is as follows: During a translation, whenever the tool encounters a use of an
unfamiliar abstraction, rerun the tool on just the use of the unfamiliar abstraction. The
results of these smaller component translations can be stored alongside the whole-program
translation.

Pointed Interface 3 (Pointed-StepByStep): Step-by-Step Translations

We use Pointed-StepByStep for exploring hypothesis H3: Seeing fine-grained trans-
lation steps helps.

Rather than a single transformation, translations may also be viewed as a sequence of
more granular transitions between programs. If step-by-step translation helps, then dis-
playing the individual steps that form the full translation (rather than a single, all-at-once
transformation) may support programmers working with unfamiliar abstractions.

Pointed-StepByStep initially shows only the original TensorFlow program and a
“Translate one step” button. When the user clicks the step button, Pointed-StepByStep
displays one step of the translation process, with differences from the previous step high-
lighted in yellow. The user can click the step button repeatedly until the program is fully
translated. Pointed-StepByStep also displays a “Go back one step” button to hide the
latest step.1

1In our implementation, these translation steps correspond to underlying rewrite rules in the tool that
powers the interface. Pointed-StepByStep thus exposes the internals of the underlying tool.



10

For example, Figure 1.1f shows Pointed-StepByStep after clicking the “Translate one
step” button repeatedly until the program is fully translated. The final block of code is a
full translation, and all intermediate blocks are partial translations en route to the final
translation. Pointed-StepByStep thus emphasizes fine-grained steps of an incremental
translation process.

Tool Requirements for Implementation Pointed-StepByStep works naturally for
a translation tool that proceeds via a sequence of smaller translation steps. In addition to the
source program and translated program, this interface requires a sequence of intermediate
programs en route to the translated program. For the common case of a translation tool
that uses rewrite rules, the tool can log the program before and after each transformation
is applied. The “diff” between any given pair of programs can either be computed after
the fact at interface time (our approach), or packaged with the sequence of programs as an
output from the translation tool.

Pointed Interface 4 (Pointed-Translation+NL): Translations Supported by
Natural Language Explanations

We use Pointed-Translation+NL to explore hypothesis H4: Natural-language ex-
planation of the translation helps.

We posit that an explanation of the translation written in natural language may make
translations more useful to programmers. Pointed-Translation+NL thus shows the
original TensorFlow program, a translation, and a natural language explanation of why the
translation is equivalent.

We produced natural language explanations using the same large language model as
Alt-NL. We prompted the model using the text: ”Concisely explain why the following
TensorFlow and Python programs are equivalent:”, followed by the original TensorFlow
program and then the Python translation. As with Alt-NL, we ran all prompts ahead of
time so that all participants saw the same explanation.

Tool Requirements for Implementation To be compatible with this interface, a trans-
lation tool only needs to provide the translation itself. No additional information from the
internals of the translation process is required.

1.5 Study

We describe the study protocol and our findings.

Study Structure

We conducted a seven-condition between-subjects study with 98 participants.



11

Figure 1.2: The main part of the web interface for the study. Participants used this
interface (extended in a variety of ways we describe in Sections 1.4, 1.4, and 1.4 and show
in Figure 1.1) to complete program modification tasks. On the left is a (i) description of the
interface, (ii) a program modification task, (iii) the starter code, and (iv) buttons to submit
the current code, skip the task, exit the study, and discontinue participation and delete all
data. On the right is (i) a code editor initialized with the starter code and (ii) a run button
that runs the current code and displays the result.

Participants and Recruiting We recruited via a screening survey about respondents’
prior experience with Python and a variety of Python libraries (including TensorFlow), as
well as asking them to predict the outputs of three snippets of Python code. We recruited
participants who (i) self-identified as having experience with Python, (ii) did not self-identify
as having experience with TensorFlow, and (iii) correctly predicted the output of all three
snippets of Python code. We recruited 98 participants (14 per condition), primarily through
university-affiliated mailing lists, newsletters, and forums, and through snowball sampling.
We ran one-on-one study sessions over Zoom. We compensated each participant with a 30
USD Amazon gift card. This study was approved by our institution’s Institutional Review
Board.

We balanced self-identified programming experience levels across the seven conditions
using a survey question proposed and validated by Feigenspan et al. [25]. Figure B1 in
Appendix B shows the distribution of self-identified programming experience by condition.
Tables B1 and B2 in Appendix B show that the secondary metrics of familiarity with other
libraries such as NumPy and years of experience are roughly balanced among the conditions.



12

Session Protocol We asked each participant to complete a tutorial task, then three pro-
gram editing tasks (shown in Table A1 in Appendix A). Each participant used only a single
interface. Each task included starter code that uses some abstractions from the TensorFlow
high-performance computing library [66] and a request to modify the starter code to match a
new described behavior, as we show in Figure 1.2. We ran a between-subjects study in which
participants completed these tasks in a fixed order in one of seven conditions, corresponding
to the seven interfaces described in Section 1.4: two for studying RQ1, one for RQ2, and
four for RQ3. All interfaces featured the ability to read, edit, and run Python programs, as
well as to skip the task entirely.

After informed consent, we guided participants through the tutorial. During the tutorial,
the researcher explained the type of modification tasks participants would perform. The
researcher then explained the features of the study interface, including the interface elements
specific to the participant’s assigned condition. At the end of the tutorial, participants
completed the tutorial task, a simpler modification task than the main study tasks. After
completing this task, participants proceeded to the main study tasks.

During the main study tasks, participants were permitted to use all internet resources
and software tools except those capable of code generation (e.g. ChatGPT, Copilot, program
synthesizers). Study sessions were capped at 90 minutes, after which participants “timed
out” and were asked to close the study webpage. Text written in the code editor and
interactions on the webpage (e.g. button presses) were periodically logged by the study
interface.

Following the tasks, participants were asked to provide feedback on the study during a
short debriefing session.

Results

To answer our research questions, we examine two measurements:

1. Success rate, the number of tasks for which a participant performed the program
modification task successfully (within the 90-minute time limit) divided by the number
of tasks they were assigned (3).2 Higher is better.

2. Time taken, the total time taken by a participant who successfully completes all tasks
(not including the tutorial or tutorial task). Lower is better.

We do not examine success rates or time taken for individual tasks, as these may be subject
to learning effects that are not controlled for by our study design.

Success rate has a discrete distribution with possible values of 0%, 33%, 67%, and
100% (as shown in Figure B2 in Appendix B), so small distributional changes can shift the
median by 16.5% or more. Thus, we use the sample mean as a measure of central tendency

2We used the Hypothesis [64] property-based testing library to assess correctness over the domain of
integers from −1000 to +1000.



13

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Mean success rate among all participants

Pointed-Translation+NL

Pointed-StepByStep

Pointed-Individual

Pointed-Highlight

Alt-NL

Basic-Translation

Basic-Control

60% 76% 90%

56% 74% 88%

45% 64% 81%

56% 71% 86%

69% 83% 95%

55% 74% 90%

71% 86% 98%

Figure 1.3: Mean success rate among all participants from our study broken down
by interface. Success rate is defined as the number of tasks for which a participant
performed the program modification task successfully (within the 90-minute time limit)
divided by the number of tasks they were assigned (3). Error bars are 95% bootstrap
confidence intervals for the estimator and do not directly correspond to dispersion of the
data nor to statistical significance. Chart coloring indicates which research question analyzes
the interface in question.

for success rate. On the other hand, time taken has a continuous distribution. As time
taken is always positive, we expect it to be right-skewed, possibly with outliers. Figure B3 in
Appendix B confirms this expectation. Therefore, we use the sample median as a measure of
central tendency for time taken. Moreover, we report information about time taken only
for successful participants (those who finished all three tasks successfully), as the time a par-
ticipant takes to skip a task or provide an incorrect answer does not help answer our research
questions. Figures 1.3 and 1.4 display estimates of these measures from our dataset with
two-sided 95% confidence intervals (CIs) computed via the BCa bootstrap [24] with 99,999
resamples. We avoid p-values and instead quantify the uncertainty in our measurements
with CIs in light of best practices for fair statistical communication in HCI [22].

Translations Alone Do Not Help Programmers Work With Unfamiliar
Abstractions

To answer RQ1, we compare Basic-Control and Basic-Translation. Figure 1.3 shows
Basic-Control has a mean success rate of 86% (CI: 71–98%) and Basic-Translation
has a mean success rate of 74% (CI: 55%–90%). Figure 1.4 shows Basic-Control has
a median time taken for successful participants of 32.0 minutes (CI: 18.4–45.7 minutes)



14

0 10 20 30 40 50 60 70
Median time taken (in minutes) among successful participants

Pointed-Translation+NL

Pointed-StepByStep

Pointed-Individual

Pointed-Highlight

Alt-NL

Basic-Translation

Basic-Control

14.7 20.4 40.7

18.0 21.2 32.9

12.1 22.0 44.8

18.3 25.3 69.3

16.9 20.5 30.3

38.3 41.1 51.9

18.4 32.0 45.7

Figure 1.4: Median time taken among successful participants from our study bro-
ken down by interface. Time taken is defined as the total time taken by a participant
to complete all tasks, and we consider only participants who successfully completed all three
tasks for this chart. Error bars are 95% bootstrap confidence intervals for the estimator and
do not directly correspond to dispersion of the data nor to statistical significance. Chart
coloring indicates which research question analyzes the interface in question.

and Basic-Translation has a median time taken for successful participants of 41.1 (CI:
38.3–51.9 minutes). Participants using Basic-Translation thus did not perform better
than Basic-Control on either measure.

Natural Language Explanations Moderately Speed Work With Unfamiliar
Abstractions

To answer RQ2, we additionally compare to Alt-NL. Figure 1.3 shows Alt-NL has a
mean success rate of 83% (CI: 69–95%), and Figure 1.4 shows Alt-NL has a median time
taken for successful participants of 20.5 minutes (CI: 16.9–30.3 minutes). Participants using
Alt-NL thus performed substantially better than Basic-Translation and moderately
better than Basic-Control, having a similar mean success rate and a lower time taken
compared to the latter.

Augmented Translations Moderately Speed Work With Unfamiliar
Abstractions

To answer RQ3, we additionally compare to our four pointed interfaces. Figure 1.3 indicates
all four pointed interfaces have moderately lower mean success rate than Basic-Control



15

or Alt-NL, roughly on par with Basic-Translation. Figure 1.4 indicates all four pointed
interfaces have median time taken substantially better than Basic-Translation and
moderately better than Basic-Control, on par with Alt-NL. One caveat is the large CI
for Pointed-Highlight (18.3–69.3 minutes), which indicates substantially less certainty
in our measurement for this condition.

Threats to Validity and Limitations

Threats to Validity Comparing time taken only among successful participants may
introduce survivorship bias. An alternative study design could be to ask participants to
keep re-submitting their answer until it was correct. This design would assume participants
have access to a correctness oracle, which may reduce ecological validity.

The particular interfaces, translations, and large language model prompts we used in this
study are not representative of all possibilities that test our research questions. While we
do see consistent results across the four pointed interfaces, it is possible that other designs
would yield different outcomes. Moreover, our interfaces and others may perform differently
on different tasks or task domains. We also used one particular library (TensorFlow) and
language (Python) for our study, and our results may not generalize to libraries or languages
that are substantially different from these choices, such as those relying heavily on static
types or manual memory management. Additionally, our findings may not generalize to
populations beyond the one we studied, which consisted of programmers already familiar
with Python (but not TensorFlow) who primarily were students and recent alumni of R1
universities in the United States.

Lastly, even with a small effect size (such as improving time taken by 1 second), increas-
ing the number of participants in each condition would eventually yield confidence intervals
that detect these differences. It is therefore possible that we fail to detect true differences
between the conditions due to small effect size.

Limitations This study is limited in that we did not conduct qualitative data analysis,
which could provide nuanced insights into participants’ experience of each interface. We also
cannot make comparisons among the individual tasks due to possible learning effects from
one task to the next. This could have been mitigated by a between-subjects counterbalanced
study design, but we chose not to make the additional assumption that aggregating among
different task orders would yield a meaningful estimate of the success rate and time taken
on each interface.

Lastly, we emphasize that, although it may be tempting to use our data about program
modification to draw conclusions about program comprehension or learning outcomes, the
ability to work with and modify programs does not necessarily require a deeper understanding
of the programs or the abstractions it relies on.



16

Exploratory Observations About Additional Resources

We did not formally collect or analyze qualitative data, but we did note some exploratory ob-
servations during our study sessions that point to how participants used additional resources.
We observed that many participants used internet resources, including official TensorFlow
documentation, Google search, and StackOverflow. Additionally, many participants used
the text editor to iteratively run, modify, and rerun code. Some participants also used print
statements, commented code, or, when provided translations, copied translated programs
into the editor to run or modify them. Finally, during post-study debriefing, many partici-
pants expressed that running the code in the text editor was helpful, and some participants
mentioned that looking at library documentation was unhelpful, citing its verbosity or the
difficulty of finding relevant information.

1.6 Design Opportunities

Here we take up the question of what our results should mean for future work in HCI.
Our results confirm that supporting programmers in program modification tasks remains

a huge open problem. With interventions including state-of-the-art LLM-written explana-
tions, translation into familiar abstractions, and interface-augmented translations, program
editing times were still in the above-15-minutes range. We have seen program drafting tools
that improve program authoring times dramatically, sometimes by an order of magnitude.
We see an opportunity for making progress towards delivering the same speedups for program
modification. Here we suggest four directions for future design work to advance us on that
path.

For Synthesizers, Compilers, and Other Tools that Make Translations: Transla-
tion Augmentations May Speed Editing Our findings offered evidence that transla-
tions alone are not enough to help participants complete the particular tasks we assigned.
For user-facing tools that produce translations—e.g., some program synthesizers—designers
may be tempted to provide translations as an aid to users. Although this may increase our
confidence as tool builders that our tool really explains what it’s doing, it may not actually
help users. Designers should consider: (i) Assessing whether translations help. (ii) De-
signing their tools to produce the kinds of supplementary information described in Section
1.4; all four pointed interfaces made participants faster than the control or translation-only
conditions, which suggests a possible role for those translation augmentations.

For Situations Where Users Must Understand Translations: Translation Aug-
mentations May Affect Understanding Setting aside the goal of supporting mod-
ification tasks, all four pointed interfaces changed participants’ behaviors relative to the
translation-only condition. It is therefore possible that translation augmentations may af-
fect programmers’ understanding of the translation, not just their ability to work with the



17

unfamiliar code. This suggests one direction for researchers, and another for practitioners.
For researchers: Does the additional information surfaced in the four pointed interfaces sup-
port programmers’ understanding of a translation? For practitioners: For situations where
understanding or interpreting a translation is a key goal, consider adding and assessing the
interactions we prototyped in the pointed interfaces we describe in Section 1.4.

For Low Data Regimes: Classical Methods as an Alternative Our results offer
evidence that classical methods—specifically, mechanical program translations, paired with
information extracted from the translation process—are competitive with natural language
explanations. For situations where LLMs do not work well—e.g., brand new abstractions,
low data regimes [13]—designers can consider translation-based programming aids. With
LLMs driving a surge of research on automatic programming aids, but often limited to
high-resource programming languages, we posit that translation-backed techniques suggest
a design opportunity: For programming tools where LLM-generated explanations fail for low-
resource languages or niche problems, is there an opportunity to combine both approaches?

How should we support modification tasks? Finally, although our pointed interfaces
allowed us to explore four hypotheses about what kind of information makes translations
more helpful, this study should not be the last entry on this question. Of all seven condi-
tions in our study, participants completed the highest number of editing tasks in the control
condition! Natural language explanations, translations, and augmented translations all low-
ered the success rate, even as explanations and augmented translations improved completion
times. Seeing only the program with the unfamiliar abstractions produced the highest rate
of successful task completions even though—because?—it was far from the fastest. This
suggests clear design opportunities: (i) What interventions can designers invent that will
lower task times without lowering completion rates? (ii) Further, what interventions can
designers invent that will lower program modification times even more, delivering the order-
or-magnitude speedups we’ve seen for program authoring?

1.7 Conclusion

Prior work has hypothesized that showing a translation from unfamiliar abstractions into
familiar abstractions will help programmers work with unfamiliar libraries and languages.
In a 98-participant user study, we found that participants with access to a translation were
neither faster nor less error-prone than participants without access to a translation. We
found that programmatically-generated supplementary information, in a variety of different
interfaces, made successful participants faster at using translations—but did not make more
participants successful.

Our results suggest an open problem: Beyond the four pointed interfaces introduced here,
how can tools use translations to help programmers work with new libraries and languages?



18

Beyond this design opportunity, the work suggests a broad set of open translation-related
research questions for future work. Here we list a few:

1. If we are constrained to show only a translation with no additional information, what
makes a translation better or worse?

2. We used a fixed translated program for all conditions, including the translation-only
condition. Is there a tradeoff between making a translated program easy to under-
stand in isolation versus making the translation itself—the mapping between input
and output—easy to understand?

3. Can we characterize situations in which translations are more or less helpful? Based
on the domain, the kind of task, the conceptual distance between source and target
language, the background or experience levels of the programmers, or other features?

We hope future work will take up these questions so that, as a community, we can build
even better tools to aid programmers in the increasingly common situation of working with
code they did not write themselves.



19

Appendix A

Study Tasks



APPENDIX A. STUDY TASKS 20

Table A1: Program modification tasks for our study. Data from the tutorial task was
not included in any analysis.

Name Task Description Starter Code

Tutorial Modify the TensorFlow program so that
it sets the variable new x to the sum of
the product of each entry of x with 3.

Example: If x = tf.constant([1, 1,
2, 3, 5]), new x should evaluate to a
Tensor with the value 36.

new_x = tf.math.reduce_sum(tf.math.multiply(x, 2))

Task 1 Modify the TensorFlow program so that
it sets the variable new x to a new array
containing only the elements of the array
x divisible by 5. If an element is also
NOT divisible by 10, additionally square
it; otherwise, leave it the same.

Example: If x = tf.constant([5, 2,
20, 15, 32, 100]), new x should evalu-
ate to a Tensor with the values [25, 20,
225, 100].

new_x = tf.where(
tf.boolean_mask(x, x % 2 == 0) % 10 == 0,
tf.square(tf.boolean_mask(x, x % 2 == 0)),
tf.boolean_mask(x, x % 2 == 0)

)

Task 2 Modify the TensorFlow program so that
it sets the variable new x to a rolling
weighted sum of array x with a window
size of 2. The weights should be 2 and 1.
That is, the first element of the new array
should be the first element of xmultiplied
by 2 plus the second element of x multi-
plied by 1; the second element of the new
array should be the second element of x
multiplied by 2 plus the third element of
x multiplied by 1; and so on.

Example: If x = tf.constant([4,
12, 8, 8]), new x should evaluate to a
Tensor with the values [20, 32, 24].

new_x = tf.squeeze(
tf.nn.conv1d(
tf.reshape(x, [1, int(x.shape[0]), 1]),
tf.constant([[[1]], [[1]], [[1]]]),
1,
’VALID’

)
)

Task 3 Modify the TensorFlow program so that
it sets the variable new x to the maximum
of the minimum of every other sub-array
in the array x (that is, the array at index
0, index 2, index 4, etc.).

Example: If x = tf.constant([[1,
2, 3], [101, 102, 103], [11, 12,
13]]), new x should evaluate to a Tensor
with the value 11.

new_x = tf.math.reduce_min(
tf.math.reduce_max(
tf.boolean_mask(x, tf.range(len(x)) % 3 == 0),
axis=1

)
)



21

Appendix B

Distributions of Study Data



APPENDIX B. DISTRIBUTIONS OF STUDY DATA 22

1 2 3 4 5 6 7 8 9 10
0
4
8

Basic-Control Median
Mean

1 2 3 4 5 6 7 8 9 10
0
4
8

Basic-Translation

1 2 3 4 5 6 7 8 9 10
0
4
8

Alt-NL

1 2 3 4 5 6 7 8 9 10
0
4
8

Pointed-Highlight

1 2 3 4 5 6 7 8 9 10
0
4
8

Pointed-Individual

1 2 3 4 5 6 7 8 9 10
0
4
8

Pointed-StepByStep

1 2 3 4 5 6 7 8 9 10
Self reported experience among all participants

0
4
8

Pointed-Translation+NL

Figure B1: Distribution of self-reported experience (on a scale of 1–10) among all
participants broken down by interface. Self-reported experience is discrete data, so we
use a bar chart (with a proportional x-axis) to display it; the widths of the bin do not carry
meaning.



APPENDIX B. DISTRIBUTIONS OF STUDY DATA 23

0% 33% 67% 100%
0
4
8

12
Basic-Control Median

Mean

0% 33% 67% 100%
0
4
8

12
Basic-Translation

0% 33% 67% 100%
0
4
8

12
Alt-NL

0% 33% 67% 100%
0
4
8

12
Pointed-Highlight

0% 33% 67% 100%
0
4
8

12
Pointed-Individual

0% 33% 67% 100%
0
4
8

12
Pointed-StepByStep

0% 33% 67% 100%
Success rate among all participants

0
4
8

12
Pointed-Translation+NL

Figure B2: Distribution of success rate among all participants broken down by
interface. Success rate is defined as the number of tasks for which a participant performed
the program modification task successfully (within the 90-minute time limit) divided by the
number of tasks they were assigned (3). Each interface was used by 98/7 = 14 participants.
Success rate is discrete data, so we use a bar chart (with a proportional x-axis) to display
it; the widths of the bin do not carry meaning.



APPENDIX B. DISTRIBUTIONS OF STUDY DATA 24

0 10 20 30 40 50 60 70 80 90
0
2
4

Basic-Control Median
Mean

0 10 20 30 40 50 60 70 80 90
0
2
4

Basic-Translation

0 10 20 30 40 50 60 70 80 90
0
2
4

Alt-NL

0 10 20 30 40 50 60 70 80 90
0
2
4

Pointed-Highlight

0 10 20 30 40 50 60 70 80 90
0
2
4

Pointed-Individual

0 10 20 30 40 50 60 70 80 90
0
2
4

Pointed-StepByStep

0 10 20 30 40 50 60 70 80 90
Time taken (in minutes) among successful participants

0
2
4

Pointed-Translation+NL

Figure B3: Distribution of time taken among correct participants broken down
by interface. Time taken is defined as the total time taken by a participant to complete
all tasks. Time taken is continuous data, so we use a histogram to display it.



APPENDIX B. DISTRIBUTIONS OF STUDY DATA 25

beautiful soup flask matplotlib nltk numpy pandas pytorch
Basic-Control 3 0 12 2 14 11 1

Basic-Translation 3 0 9 0 13 10 3
Alt-NL 3 3 10 0 12 10 2

Pointed-Highlight 4 3 8 2 14 10 4
Pointed-Individual 3 5 9 1 12 11 3

Pointed-StepByStep 4 2 11 0 11 12 3
Pointed-Translation+NL 2 3 9 0 11 10 2

Table B1: The number of participants in each condition that had worked with
a variety of existing libraries. All participants indicated that they had not worked
with the library we used in this study, TensorFlow. The three most similar libraries, numpy,
pandas, and pytorch, had roughly the same number of participants that had worked with
it in each condition.

YoE Weekly YoE
Basic-Control 4.0 2.5

Basic-Translation 3.5 2.5
Alt-NL 4.0 2.0

Pointed-Highlight 5.5 2.0
Pointed-Individual 4.0 3.0

Pointed-StepByStep 4.5 4.0
Pointed-Translation+NL 5.0 2.0

Table B2: The median years of programming experience participants had in each
condition. The YoE column indicates median years of overall experience programming,
and the Weekly YoE column indicates median years of experience programming on a
weekly basis. The overall median YoE is 4 and Weekly YoE is 3.



26

Bibliography

[1] Parastoo Abtahi and Griffin Dietz. “Learning Rust: How Experienced Programmers
Leverage Resources to Learn a New Programming Language”. In: Extended Abstracts
of the 2020 CHI Conference on Human Factors in Computing Systems. Chi Ea ’20.
New York, NY, USA: Association for Computing Machinery, Apr. 2020, pp. 1–8.
isbn: 978-1-4503-6819-3. doi: 10.1145/3334480.3383069. (Visited on 03/30/2024).

[2] Abdulaziz Alaboudi and Thomas D. LaToza. “Using Hypotheses as a Debugging
Aid”. In: 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). Aug. 2020, pp. 1–9. doi: 10.1109/vl/hcc50065.2020.9127273. (Visited
on 03/30/2024).

[3] Abdulaziz Alaboudi and Thomas D. Latoza. “Hypothesizer: A Hypothesis-Based De-
bugger to Find and Test Debugging Hypotheses”. In: Proceedings of the 36th An-
nual ACM Symposium on User Interface Software and Technology. Uist ’23. New
York, NY, USA: Association for Computing Machinery, Oct. 2023, pp. 1–14. isbn:
9798400701320. doi: 10.1145/3586183.3606781. (Visited on 03/30/2024).

[4] Gina R. Bai, Joshua Kayani, and Kathryn T. Stolee. “How Graduate Computing
Students Search When Using an Unfamiliar Programming Language”. In: Proceedings
of the 28th International Conference on Program Comprehension. Icpc ’20. New York,
NY, USA: Association for Computing Machinery, Sept. 2020, pp. 160–171. isbn: 978-
1-4503-7958-8. doi: 10.1145/3387904.3389274. (Visited on 03/30/2024).

[5] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. “From symptom to cause: local-
izing errors in counterexample traces”. In: Proceedings of the 30th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. Popl ’03. New York,
NY, USA: Association for Computing Machinery, Jan. 2003, pp. 97–105. isbn: 978-
1-58113-628-9. doi: 10.1145/604131.604140. url: https://dl.acm.org/doi/10.
1145/604131.604140 (visited on 09/11/2024).

[6] Rishabh Balse et al. “Evaluating the Quality of LLM-Generated Explanations for Log-
ical Errors in CS1 Student Programs”. In: Proceedings of the 16th Annual ACM India
Compute Conference. Compute ’23. New York, NY, USA: Association for Comput-
ing Machinery, Dec. 2023, pp. 49–54. isbn: 9798400708404. doi: 10.1145/3627217.
3627233. url: https://dl.acm.org/doi/10.1145/3627217.3627233 (visited on
09/08/2024).

https://doi.org/10.1145/3334480.3383069
https://doi.org/10.1109/vl/hcc50065.2020.9127273
https://doi.org/10.1145/3586183.3606781
https://doi.org/10.1145/3387904.3389274
https://doi.org/10.1145/604131.604140
https://dl.acm.org/doi/10.1145/604131.604140
https://dl.acm.org/doi/10.1145/604131.604140
https://doi.org/10.1145/3627217.3627233
https://doi.org/10.1145/3627217.3627233
https://dl.acm.org/doi/10.1145/3627217.3627233


BIBLIOGRAPHY 27

[7] David Binkley et al. “ORBS: language-independent program slicing”. In: Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. FSE 2014. New York, NY, USA: Association for Computing Ma-
chinery, Nov. 2014, pp. 109–120. isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.
2635893. url: https://dl.acm.org/doi/10.1145/2635868.2635893 (visited on
09/11/2024).

[8] Christian Bird et al. “Taking Flight with Copilot: Early insights and opportunities
of AI-powered pair-programming tools”. In: Queue 20.6 (Jan. 2023), pp. 35–57. issn:
1542-7730. doi: 10.1145/3582083. url: https://doi.org/10.1145/3582083.

[9] Matt Bower and Annabelle McIver. “Continual and Explicit Comparison to Promote
Proactive Facilitation during Second Computer Language Learning”. In: Proceedings
of the 16th Annual Joint Conference on Innovation and Technology in Computer
Science Education. ITiCSE ’11. New York, NY, USA: Association for Computing
Machinery, June 2011, pp. 218–222. isbn: 978-1-4503-0697-3. doi: 10.1145/1999747.
1999809. (Visited on 09/12/2024).

[10] Andrew Bragdon et al. “Code Bubbles: A Working Set-Based Interface for Code
Understanding and Maintenance”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. Chi ’10. New York, NY, USA: Association
for Computing Machinery, Apr. 2010, pp. 2503–2512. isbn: 978-1-60558-929-9. doi:
10.1145/1753326.1753706. (Visited on 03/30/2024).

[11] Ruven Brooks. “Towards a Theory of the Comprehension of Computer Programs”.
In: International Journal of Man-Machine Studies 18.6 (June 1983), pp. 543–554.
issn: 0020-7373. doi: 10.1016/s0020-7373(83)80031-5. (Visited on 03/28/2024).

[12] José Cambronero et al. “FlashFill++: Scaling Programming by Example by Cutting
to the Chase”. In: Proc. ACM Program. Lang. 7.POPL (Jan. 2023), 33:952–33:981.
doi: 10.1145/3571226. (Visited on 09/12/2024).

[13] Federico Cassano et al. “MultiPL-E: A Scalable and Polyglot Approach to Bench-
marking Neural Code Generation”. In: IEEE Transactions on Software Engineering
49.7 (July 2023), pp. 3675–3691. issn: 1939-3520. doi: 10.1109/TSE.2023.3267446.
(Visited on 09/12/2024).

[14] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. “Rousillon: Scraping Dis-
tributed Hierarchical Web Data”. In: Proceedings of the 31st Annual ACM Symposium
on User Interface Software and Technology. Uist ’18. New York, NY, USA: Associa-
tion for Computing Machinery, Oct. 2018, pp. 963–975. isbn: 978-1-4503-5948-1. doi:
10.1145/3242587.3242661. (Visited on 03/31/2022).

[15] John Chen et al. “Learning Agent-based Modeling with LLM Companions: Experi-
ences of Novices and Experts Using ChatGPT & NetLogo Chat”. In: Proceedings of
the CHI Conference on Human Factors in Computing Systems. Chi ’24. Honolulu,

https://doi.org/10.1145/2635868.2635893
https://doi.org/10.1145/2635868.2635893
https://dl.acm.org/doi/10.1145/2635868.2635893
https://doi.org/10.1145/3582083
https://doi.org/10.1145/3582083
https://doi.org/10.1145/1999747.1999809
https://doi.org/10.1145/1999747.1999809
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1016/s0020-7373(83)80031-5
https://doi.org/10.1145/3571226
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1145/3242587.3242661


BIBLIOGRAPHY 28

HI, USA: Association for Computing Machinery, 2024. isbn: 9798400703300. doi:
10.1145/3613904.3642377. url: https://doi.org/10.1145/3613904.3642377.

[16] Heetae Cho and Seonah Lee. “Java2Pseudo: Java to Pseudo Code Translator”. In:
CEURWorkshop Proceedings. Iseapsec ’22’. 2022. url: https://www.semanticscholar.
org/paper/Java2Pseudo%3A- Java- to- Pseudo- Code- Translator- Cho- Lee/

ce1774ad621bc5127e7a9e026761b86fec0a08e6 (visited on 09/08/2024).

[17] T. A. Corbi. “Program understanding: Challenge for the 1990s”. In: IBM Systems
Journal 28.2 (1989). Conference Name: IBM Systems Journal, pp. 294–306. issn:
0018-8670. doi: 10.1147/sj.282.0294. url: https://ieeexplore.ieee.org/
document/5387570 (visited on 09/11/2024).

[18] Will Crichton. Human-Centric Program Synthesis. en. Sept. 2019. url: https://
arxiv.org/abs/1909.12281v1 (visited on 09/09/2024).

[19] Brian de Alwis, Gail C. Murphy, and Martin P. Robillard. “A Comparative Study
of Three Program Exploration Tools”. In: 15th IEEE International Conference on
Program Comprehension (ICPC ’07). June 2007, pp. 103–112. doi: 10.1109/icpc.
2007.6. (Visited on 03/30/2024).

[20] Robert DeLine and Kael Rowan. “Code Canvas: Zooming towards Better Develop-
ment Environments”. In: Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 2. Icse ’10. New York, NY, USA: Association
for Computing Machinery, May 2010, pp. 207–210. isbn: 978-1-60558-719-6. doi:
10.1145/1810295.1810331. (Visited on 03/30/2024).

[21] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. “Critical slicing for software
fault localization”. In: Proceedings of the 1996 ACM SIGSOFT international sympo-
sium on Software testing and analysis. Issta ’96. New York, NY, USA: Association
for Computing Machinery, May 1996, pp. 121–134. isbn: 978-0-89791-787-2. doi: 10.
1145/229000.226310. url: https://dl.acm.org/doi/10.1145/229000.226310
(visited on 09/11/2024).

[22] Pierre Dragicevic. “Fair Statistical Communication in HCI”. In: Modern Statistical
Methods for HCI. Ed. by Judy Robertson and Maurits Kaptein. Cham: Springer
International Publishing, 2016, pp. 291–330. isbn: 978-3-319-26633-6. doi: 10.1007/
978-3-319-26633-6_13. (Visited on 09/10/2024).

[23] Ian Drosos et al. “Wrex: A Unified Programming-by-Example Interaction for Syn-
thesizing Readable Code for Data Scientists”. en. In: Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. Honolulu HI USA: Acm, Apr.
2020, pp. 1–12. isbn: 978-1-4503-6708-0. doi: 10.1145/3313831.3376442. url:
https://dl.acm.org/doi/10.1145/3313831.3376442 (visited on 09/10/2024).

[24] Bradley Efron. “Better Bootstrap Confidence Intervals”. In: Journal of the American
Statistical Association 82.397 (Mar. 1987), pp. 171–185. issn: 0162-1459. doi: 10.
1080/01621459.1987.10478410. (Visited on 09/10/2024).

https://doi.org/10.1145/3613904.3642377
https://doi.org/10.1145/3613904.3642377
https://www.semanticscholar.org/paper/Java2Pseudo%3A-Java-to-Pseudo-Code-Translator-Cho-Lee/ce1774ad621bc5127e7a9e026761b86fec0a08e6
https://www.semanticscholar.org/paper/Java2Pseudo%3A-Java-to-Pseudo-Code-Translator-Cho-Lee/ce1774ad621bc5127e7a9e026761b86fec0a08e6
https://www.semanticscholar.org/paper/Java2Pseudo%3A-Java-to-Pseudo-Code-Translator-Cho-Lee/ce1774ad621bc5127e7a9e026761b86fec0a08e6
https://doi.org/10.1147/sj.282.0294
https://ieeexplore.ieee.org/document/5387570
https://ieeexplore.ieee.org/document/5387570
https://arxiv.org/abs/1909.12281v1
https://arxiv.org/abs/1909.12281v1
https://doi.org/10.1109/icpc.2007.6
https://doi.org/10.1109/icpc.2007.6
https://doi.org/10.1145/1810295.1810331
https://doi.org/10.1145/229000.226310
https://doi.org/10.1145/229000.226310
https://dl.acm.org/doi/10.1145/229000.226310
https://doi.org/10.1007/978-3-319-26633-6_13
https://doi.org/10.1007/978-3-319-26633-6_13
https://doi.org/10.1145/3313831.3376442
https://dl.acm.org/doi/10.1145/3313831.3376442
https://doi.org/10.1080/01621459.1987.10478410
https://doi.org/10.1080/01621459.1987.10478410


BIBLIOGRAPHY 29

[25] Janet Feigenspan et al. “Measuring programming experience”. en. In: 2012 20th
IEEE International Conference on Program Comprehension (ICPC). Passau, Ger-
many: Ieee, June 2012, pp. 73–82. isbn: 978-1-4673-1216-5 978-1-4673-1213-4 978-1-
4673-1215-8. doi: 10.1109/icpc.2012.6240511. url: http://ieeexplore.ieee.
org/document/6240511/ (visited on 09/09/2024).

[26] Molly Q Feldman and Carolyn Jane Anderson. “Non-Expert Programmers in the Gen-
erative AI Future”. In: Proceedings of the 3rd Annual Meeting of the Symposium on
Human-Computer Interaction for Work. Chiwork ’24. Newcastle upon Tyne, United
Kingdom: Association for Computing Machinery, 2024. isbn: 9798400710179. doi:
10.1145/3663384.3663393. url: https://doi.org/10.1145/3663384.3663393.

[27] Vikki Fix, Susan Wiedenbeck, and Jean Scholtz. “Mental Representations of Pro-
grams by Novices and Experts”. In: Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems. Chi ’93. New York, NY, USA:
Association for Computing Machinery, May 1993, pp. 74–79. isbn: 978-0-89791-575-5.
doi: 10.1145/169059.169088. (Visited on 03/27/2024).

[28] Walaa Gad et al. “DLBT: Deep Learning-Based Transformer to Generate Pseudo-
Code from Source Code”. en. In: Computers, Materials & Continua 70.2 (2021).
Publisher: Tech Science Press, pp. 3117–3132. issn: 1546-2218, 1546-2226. doi: 10.
32604/cmc.2022.019884. url: https://www.techscience.com/cmc/v70n2/44664
(visited on 09/08/2024).

[29] Alex Groce, Daniel Kroening, and Flavio Lerda. “Understanding Counterexamples
with explain”. en. In: Computer Aided Verification. Ed. by Rajeev Alur and Doron
A. Peled. Berlin, Heidelberg: Springer, 2004, pp. 453–456. isbn: 978-3-540-27813-9.
doi: 10.1007/978-3-540-27813-9_35.

[30] Paul Gross and Caitlin Kelleher. “Non-Programmers Identifying Functionality in Un-
familiar Code: Strategies and Barriers”. In: Journal of Visual Languages & Com-
puting. Part Special Issue on Selected Papers from VL/HCC’09 21.5 (Dec. 2010),
pp. 263–276. issn: 1045-926x. doi: 10.1016/j.jvlc.2010.08.002. (Visited on
03/30/2024).

[31] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. “An efficient relevant slicing
method for debugging”. In: SIGSOFT Softw. Eng. Notes 24.6 (Oct. 1999), pp. 303–
321. issn: 0163-5948. doi: 10.1145/318774.319248. url: https://dl.acm.org/
doi/10.1145/318774.319248 (visited on 09/11/2024).

[32] Michael Hansen, Robert L. Goldstone, and Andrew Lumsdaine. What Makes Code
Hard to Understand? arXiv:1304.5257 [cs]. Apr. 2013. doi: 10.48550/arXiv.1304.
5257. url: http://arxiv.org/abs/1304.5257 (visited on 09/11/2024).

https://doi.org/10.1109/icpc.2012.6240511
http://ieeexplore.ieee.org/document/6240511/
http://ieeexplore.ieee.org/document/6240511/
https://doi.org/10.1145/3663384.3663393
https://doi.org/10.1145/3663384.3663393
https://doi.org/10.1145/169059.169088
https://doi.org/10.32604/cmc.2022.019884
https://doi.org/10.32604/cmc.2022.019884
https://www.techscience.com/cmc/v70n2/44664
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1016/j.jvlc.2010.08.002
https://doi.org/10.1145/318774.319248
https://dl.acm.org/doi/10.1145/318774.319248
https://dl.acm.org/doi/10.1145/318774.319248
https://doi.org/10.48550/arXiv.1304.5257
https://doi.org/10.48550/arXiv.1304.5257
http://arxiv.org/abs/1304.5257


BIBLIOGRAPHY 30

[33] Dan Hao et al. “A similarity-aware approach to testing based fault localization”. In:
Proceedings of the 20th IEEE/ACM International Conference on Automated Soft-
ware Engineering. Ase ’05. New York, NY, USA: Association for Computing Ma-
chinery, Nov. 2005, pp. 291–294. isbn: 978-1-58113-993-8. doi: 10.1145/1101908.
1101953. url: https://dl.acm.org/doi/10.1145/1101908.1101953 (visited on
09/11/2024).

[34] Andrew Head et al. “Tutorons: Generating Context-Relevant, on-Demand Explana-
tions and Demonstrations of Online Code”. In: 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). Oct. 2015, pp. 3–12. doi:
10.1109/VLHCC.2015.7356972. (Visited on 09/12/2024).

[35] Arto Hellas et al. “Exploring the Responses of Large Language Models to Beginner
Programmers’ Help Requests”. In: Proceedings of the 2023 ACM Conference on In-
ternational Computing Education Research - Volume 1. Icer ’23. Chicago, IL, USA:
Association for Computing Machinery, 2023, pp. 93–105. isbn: 9781450399760. doi:
10.1145/3568813.3600139. url: https://doi.org/10.1145/3568813.3600139.

[36] Emily Hill, Lori Pollock, and K. Vijay-Shanker. “Exploring the Neighborhood with
Dora to Expedite Software Maintenance”. In: Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering. Ase ’07. New York,
NY, USA: Association for Computing Machinery, Nov. 2007, pp. 14–23. isbn: 978-1-
59593-882-4. doi: 10.1145/1321631.1321637. (Visited on 03/30/2024).

[37] Jingmei Hu et al. “Assuage: Assembly Synthesis Using A Guided Exploration”. In:
The 34th Annual ACM Symposium on User Interface Software and Technology. Uist
’21. New York, NY, USA: Association for Computing Machinery, Oct. 2021, pp. 134–
148. isbn: 978-1-4503-8635-7. doi: 10.1145/3472749.3474740. (Visited on 03/26/2024).

[38] Doug Janzen and Kris De Volder. “Navigating and Querying Code without Get-
ting Lost”. In: Proceedings of the 2nd International Conference on Aspect-oriented
Software Development. Aosd ’03. New York, NY, USA: Association for Computing
Machinery, Mar. 2003, pp. 178–187. isbn: 978-1-58113-660-9. doi: 10.1145/643603.
643622. (Visited on 03/30/2024).

[39] James A. Jones, Mary Jean Harrold, and John Stasko. “Visualization of Test In-
formation to Assist Fault Localization”. In: Proceedings of the 24th International
Conference on Software Engineering. Icse ’02. New York, NY, USA: Association
for Computing Machinery, May 2002, pp. 467–477. isbn: 978-1-58113-472-8. doi:
10.1145/581339.581397. (Visited on 03/30/2024).

[40] Breanna Jury et al. “Evaluating LLM-generated Worked Examples in an Introductory
Programming Course”. In: Proceedings of the 26th Australasian Computing Education
Conference. Ace ’24. New York, NY, USA: Association for Computing Machinery,
Jan. 2024, pp. 77–86. isbn: 9798400716195. doi: 10.1145/3636243.3636252. url:
https://dl.acm.org/doi/10.1145/3636243.3636252 (visited on 09/08/2024).

https://doi.org/10.1145/1101908.1101953
https://doi.org/10.1145/1101908.1101953
https://dl.acm.org/doi/10.1145/1101908.1101953
https://doi.org/10.1109/VLHCC.2015.7356972
https://doi.org/10.1145/3568813.3600139
https://doi.org/10.1145/3568813.3600139
https://doi.org/10.1145/1321631.1321637
https://doi.org/10.1145/3472749.3474740
https://doi.org/10.1145/643603.643622
https://doi.org/10.1145/643603.643622
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/3636243.3636252
https://dl.acm.org/doi/10.1145/3636243.3636252


BIBLIOGRAPHY 31

[41] Sean Kandel et al. “Wrangler: interactive visual specification of data transforma-
tion scripts”. en. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. Vancouver BC Canada: Acm, May 2011, pp. 3363–3372. isbn:
978-1-4503-0228-9. doi: 10.1145/1978942.1979444. url: https://dl.acm.org/
doi/10.1145/1978942.1979444 (visited on 09/10/2024).

[42] Yvonne Kao, Bryan Matlen, and David Weintrop. “From One Language to the Next:
Applications of Analogical Transfer for Programming Education”. In: ACM Trans.
Comput. Educ. 22.4 (Nov. 2022), 42:1–42:21. doi: 10.1145/3487051. (Visited on
09/12/2024).

[43] Holger M. Kienle and Hausi A. Müller. “Rigi—An Environment for Software Reverse
Engineering, Exploration, Visualization, and Redocumentation”. In: Science of Com-
puter Programming. Experimental Software and Toolkits (EST 3): A Special Issue of
the Workshop on Academic Software Development Tools and Techniques (WASDeTT
2008) 75.4 (Apr. 2010), pp. 247–263. issn: 0167-6423. doi: 10.1016/j.scico.2009.
10.007. (Visited on 03/30/2024).

[44] Amy J. Ko and Brad A. Myers. “Extracting and Answering Why and Why Not
Questions about Java Program Output”. In: ACM Transactions on Software Engi-
neering and Methodology 20.2 (Sept. 2010), 4:1–4:36. issn: 1049-331x. doi: 10.1145/
1824760.1824761. (Visited on 03/30/2024).

[45] Amy J. Ko and Brad A. Myers. “Finding Causes of Program Output with the Java
Whyline”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. Chi ’09. New York, NY, USA: Association for Computing Machinery, Apr.
2009, pp. 1569–1578. isbn: 978-1-60558-246-7. doi: 10.1145/1518701.1518942.
(Visited on 03/30/2024).

[46] Amy J. Ko and Bob Uttl. “Individual Differences in Program Comprehension Strate-
gies in Unfamiliar Programming Systems”. In: 11th IEEE International Workshop on
Program Comprehension, 2003. May 2003, pp. 175–184. doi: 10.1109/wpc.2003.
1199201. (Visited on 03/27/2024).

[47] Amy J. Ko et al. “An Exploratory Study of How Developers Seek, Relate, and Collect
Relevant Information during Software Maintenance Tasks”. In: IEEE Transactions on
Software Engineering 32.12 (Dec. 2006), pp. 971–987. issn: 1939-3520. doi: 10.1109/
tse.2006.116. (Visited on 03/30/2024).

[48] Jürgen Koenemann and Scott P. Robertson. “Expert Problem Solving Strategies for
Program Comprehension”. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. Chi ’91. New York, NY, USA: Association for Computing
Machinery, Mar. 1991, pp. 125–130. isbn: 978-0-89791-383-6. doi: 10.1145/108844.
108863. (Visited on 03/27/2024).

https://doi.org/10.1145/1978942.1979444
https://dl.acm.org/doi/10.1145/1978942.1979444
https://dl.acm.org/doi/10.1145/1978942.1979444
https://doi.org/10.1145/3487051
https://doi.org/10.1016/j.scico.2009.10.007
https://doi.org/10.1016/j.scico.2009.10.007
https://doi.org/10.1145/1824760.1824761
https://doi.org/10.1145/1824760.1824761
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1109/wpc.2003.1199201
https://doi.org/10.1109/wpc.2003.1199201
https://doi.org/10.1109/tse.2006.116
https://doi.org/10.1109/tse.2006.116
https://doi.org/10.1145/108844.108863
https://doi.org/10.1145/108844.108863


BIBLIOGRAPHY 32

[49] Naveen Kulkarni and Vasudeva Varma. “Supporting Comprehension of Unfamiliar
Programs by Modeling Cues”. In: Software Quality Journal 25.1 (Mar. 2017), pp. 307–
340. issn: 1573-1367. doi: 10.1007/s11219-015-9303-5. (Visited on 03/30/2024).

[50] Thomas D. LaToza and Brad A. Myers. “Visualizing Call Graphs”. In: 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). Sept.
2011, pp. 117–124. doi: 10.1109/vlhcc.2011.6070388. (Visited on 03/30/2024).

[51] Thomas D. LaToza et al. “Program Comprehension as Fact Finding”. In: Proceedings
of the the 6th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software Engineering. Esec-
fse ’07. New York, NY, USA: Association for Computing Machinery, Sept. 2007,
pp. 361–370. isbn: 978-1-59593-811-4. doi: 10.1145/1287624.1287675. (Visited on
03/30/2024).

[52] Joseph Lawrance et al. “Using Information Scent to Model the Dynamic Foraging
Behavior of Programmers in Maintenance Tasks”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. Chi ’08. New York, NY, USA:
Association for Computing Machinery, Apr. 2008, pp. 1323–1332. isbn: 978-1-60558-
011-1. doi: 10.1145/1357054.1357261. (Visited on 03/30/2024).

[53] Vu Le et al. Interactive Program Synthesis. Mar. 2017. doi: 10.48550/arXiv.1703.
03539. arXiv: 1703.03539 [cs]. (Visited on 03/26/2024).

[54] Mina Lee, Sunbeom So, and Hakjoo Oh. “Synthesizing regular expressions from ex-
amples for introductory automata assignments”. In: SIGPLAN Not. 52.3 (Oct. 2016),
pp. 70–80. issn: 0362-1340. doi: 10.1145/3093335.2993244. url: https://doi.
org/10.1145/3093335.2993244.

[55] Juho Leinonen et al. “Comparing Code Explanations Created by Students and Large
Language Models”. en. In: Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1. Turku Finland: Acm, June 2023,
pp. 124–130. isbn: 9798400701382. doi: 10.1145/3587102.3588785. url: https:
//dl.acm.org/doi/10.1145/3587102.3588785 (visited on 09/09/2024).

[56] Timothy C. Lethbridge and Francisco Herrera. “Assessing the Usefulness of the TkSee
Software Exploration Tool”. In: Advances in Software Engineering: Comprehension,
Evaluation, and Evolution. Ed. by Hakan Erdogmus and Oryal Tanir. New York,
NY: Springer, 2002, pp. 73–93. isbn: 978-0-387-21599-0. doi: 10.1007/978-0-387-
21599-0_4. (Visited on 03/30/2024).

[57] Stanley Letovsky. “Cognitive Processes in Program Comprehension”. In: Journal of
Systems and Software 7.4 (Dec. 1987), pp. 325–339. issn: 0164-1212. doi: 10.1016/
0164-1212(87)90032-x. (Visited on 03/28/2024).

https://doi.org/10.1007/s11219-015-9303-5
https://doi.org/10.1109/vlhcc.2011.6070388
https://doi.org/10.1145/1287624.1287675
https://doi.org/10.1145/1357054.1357261
https://doi.org/10.48550/arXiv.1703.03539
https://doi.org/10.48550/arXiv.1703.03539
https://arxiv.org/abs/1703.03539
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3587102.3588785
https://dl.acm.org/doi/10.1145/3587102.3588785
https://dl.acm.org/doi/10.1145/3587102.3588785
https://doi.org/10.1007/978-0-387-21599-0_4
https://doi.org/10.1007/978-0-387-21599-0_4
https://doi.org/10.1016/0164-1212(87)90032-x
https://doi.org/10.1016/0164-1212(87)90032-x


BIBLIOGRAPHY 33

[58] Xiangyu Li and Alessandro Orso. “More Accurate Dynamic Slicing for Better Sup-
porting Software Debugging”. In: 2020 IEEE 13th International Conference on Soft-
ware Testing, Validation and Verification (ICST). ISSN: 2159-4848. Oct. 2020, pp. 28–
38. doi: 10.1109/ICST46399.2020.00014. url: https://ieeexplore.ieee.org/
abstract/document/9159078 (visited on 09/12/2024).

[59] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. “A Large-Scale Survey on the
Usability of AI Programming Assistants: Successes and Challenges”. In: Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering. Icse ’24.
Lisbon, Portugal: Association for Computing Machinery, 2024. isbn: 9798400702174.
doi: 10.1145/3597503.3608128. url: https://doi.org/10.1145/3597503.
3608128.

[60] Ben Liblit et al. “Scalable statistical bug isolation”. In: SIGPLAN Not. 40.6 (June
2005), pp. 15–26. issn: 0362-1340. doi: 10.1145/1064978.1065014. url: https:
//dl.acm.org/doi/10.1145/1064978.1065014 (visited on 09/11/2024).

[61] Michael Xieyang Liu et al. ““What It Wants Me To Say”: Bridging the Abstraction
Gap Between End-User Programmers and Code-Generating Large Language Mod-
els”. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems. Chi ’23. Hamburg, Germany: Association for Computing Machinery, 2023.
isbn: 9781450394215. doi: 10.1145/3544548.3580817. url: https://doi.org/10.
1145/3544548.3580817.

[62] Kuang-Chen Lu et al. “What Happens When Students Switch (Functional) Languages
(Experience Report)”. In: Proceedings of the ACM on Programming Languages 7.Icfp
(Aug. 2023), 215:796–215:812. doi: 10.1145/3607857. (Visited on 03/30/2024).

[63] Walid Maalej et al. “On the Comprehension of Program Comprehension”. In: ACM
Transactions on Software Engineering and Methodology 23.4 (Sept. 2014), 31:1–31:37.
issn: 1049-331x. doi: 10.1145/2622669. (Visited on 03/27/2024).

[64] David MacIver, Zac Hatfield-Dodds, and Many Contributors. “Hypothesis: A new ap-
proach to property-based testing”. In: Journal of Open Source Software 4.43 (Nov. 21,
2019), p. 1891. issn: 2475-9066. doi: 10.21105/joss.01891. url: http://dx.doi.
org/10.21105/joss.01891.

[65] Stephen MacNeil et al. “Experiences from Using Code Explanations Generated by
Large Language Models in a Web Software Development E-Book”. In: Proceedings
of the 54th ACM Technical Symposium on Computer Science Education V. 1. Sigcse
2023. New York, NY, USA: Association for Computing Machinery, Mar. 2023, pp. 931–
937. isbn: 978-1-4503-9431-4. doi: 10.1145/3545945.3569785. url: https://dl.
acm.org/doi/10.1145/3545945.3569785 (visited on 09/08/2024).

[66] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. url: https://www.tensorflow.
org/.

https://doi.org/10.1109/ICST46399.2020.00014
https://ieeexplore.ieee.org/abstract/document/9159078
https://ieeexplore.ieee.org/abstract/document/9159078
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/1064978.1065014
https://dl.acm.org/doi/10.1145/1064978.1065014
https://dl.acm.org/doi/10.1145/1064978.1065014
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3607857
https://doi.org/10.1145/2622669
https://doi.org/10.21105/joss.01891
http://dx.doi.org/10.21105/joss.01891
http://dx.doi.org/10.21105/joss.01891
https://doi.org/10.1145/3545945.3569785
https://dl.acm.org/doi/10.1145/3545945.3569785
https://dl.acm.org/doi/10.1145/3545945.3569785
https://www.tensorflow.org/
https://www.tensorflow.org/


BIBLIOGRAPHY 34

[67] Mikaël Mayer et al. “User Interaction Models for Disambiguation in Programming
by Example”. In: Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology. Uist ’15. New York, NY, USA: Association for Computing
Machinery, Nov. 2015, pp. 291–301. isbn: 978-1-4503-3779-3. doi: 10.1145/2807442.
2807459. (Visited on 03/26/2024).

[68] Roberto Minelli, Andrea Mocci, and Michele Lanza. “I Know What You Did Last
Summer - An Investigation of How Developers Spend Their Time”. In: 2015 IEEE
23rd International Conference on Program Comprehension. Issn: 1092-8138. May
2015, pp. 25–35. doi: 10.1109/icpc.2015.12. url: https://ieeexplore.ieee.
org/abstract/document/7181430 (visited on 09/11/2024).

[69] F. Modugno and B. A. Myers. “Visual Programming in a Visual Shell—A Unified
Approach”. In: Journal of Visual Languages & Computing 8.5 (Dec. 1997), pp. 491–
522. issn: 1045-926x. doi: 10.1006/jvlc.1997.0049. (Visited on 03/27/2024).

[70] Konstantinos Moratis et al. “Write me this Code: An Analysis of ChatGPT Quality for
Producing Source Code”. In: Proceedings of the 21st International Conference on Min-
ing Software Repositories. Msr ’24. Lisbon, Portugal: Association for Computing Ma-
chinery, 2024, pp. 147–151. isbn: 9798400705878. doi: 10.1145/3643991.3645070.
url: https://doi.org/10.1145/3643991.3645070.

[71] Hausi A. Müller et al. “A Reverse-Engineering Approach to Subsystem Structure
Identification”. In: Journal of Software Maintenance: Research and Practice 5.4 (1993),
pp. 181–204. issn: 1096-908x. doi: 10.1002/smr.4360050402. (Visited on 03/30/2024).

[72] Daye Nam et al. “Using an LLM to Help With Code Understanding”. In: Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering. Icse ’24.
New York, NY, USA: Association for Computing Machinery, Apr. 2024, pp. 1–13.
isbn: 9798400702174. doi: 10.1145/3597503.3639187. url: https://dl.acm.org/
doi/10.1145/3597503.3639187 (visited on 09/08/2024).

[73] Amirmohammad Nazari et al. “Explainable Program Synthesis by Localizing Speci-
fications”. In: Proceedings of the ACM on Programming Languages 7.Oopsla2 (Oct.
2023), 298:2171–298:2195. doi: 10.1145/3622874. (Visited on 03/30/2024).

[74] Sydney Nguyen et al. “How Beginning Programmers and Code LLMs (Mis)read Each
Other”. In: Proceedings of the CHI Conference on Human Factors in Computing
Systems. Chi ’24. Honolulu, HI, USA: Association for Computing Machinery, 2024.
isbn: 9798400703300. doi: 10.1145/3613904.3642706. url: https://doi.org/10.
1145/3613904.3642706.

[75] Casey O’Brien, Max Goldman, and Robert C. Miller. “Java Tutor: Bootstrapping
with Python to Learn Java”. In: Proceedings of the First ACM Conference on Learn-
ing @ Scale Conference. L@S ’14. New York, NY, USA: Association for Computing
Machinery, Mar. 2014, pp. 185–186. isbn: 978-1-4503-2669-8. doi: 10.1145/2556325.
2567873. (Visited on 12/06/2024).

https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1109/icpc.2015.12
https://ieeexplore.ieee.org/abstract/document/7181430
https://ieeexplore.ieee.org/abstract/document/7181430
https://doi.org/10.1006/jvlc.1997.0049
https://doi.org/10.1145/3643991.3645070
https://doi.org/10.1145/3643991.3645070
https://doi.org/10.1002/smr.4360050402
https://doi.org/10.1145/3597503.3639187
https://dl.acm.org/doi/10.1145/3597503.3639187
https://dl.acm.org/doi/10.1145/3597503.3639187
https://doi.org/10.1145/3622874
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/2556325.2567873
https://doi.org/10.1145/2556325.2567873


BIBLIOGRAPHY 35

[76] Yusuke Oda et al. “Learning to Generate Pseudo-Code from Source Code Using Sta-
tistical Machine Translation”. In: 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). Nov. 2015, pp. 574–584. doi: 10.1109/ase.
2015.36. url: https://ieeexplore.ieee.org/document/7372045/?arnumber=
7372045 (visited on 09/08/2024).

[77] OpenAI et al. GPT-4 Technical Report. arXiv:2303.08774 [cs]. Mar. 2024. doi: 10.
48550/arXiv.2303.08774. url: http://arxiv.org/abs/2303.08774 (visited on
09/11/2024).

[78] Mike Papadakis and Yves Le Traon. “Metallaxis-FL: mutation-based fault localiza-
tion”. en. In: Software Testing, Verification and Reliability 25.5-7 (2015). eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1509, pp. 605–628. issn: 1099-
1689. doi: 10.1002/stvr.1509. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/stvr.1509 (visited on 09/12/2024).

[79] Chris Parnin and Alessandro Orso. “Are Automated Debugging Techniques Actu-
ally Helping Programmers?” In: Proceedings of the 2011 International Symposium on
Software Testing and Analysis. Issta ’11. New York, NY, USA: Association for Com-
puting Machinery, July 2011, pp. 199–209. isbn: 978-1-4503-0562-4. doi: 10.1145/
2001420.2001445. (Visited on 03/30/2024).

[80] Hila Peleg, Shachar Itzhaky, and Sharon Shoham. “Abstraction-Based Interaction
Model for Synthesis”. In: Verification, Model Checking, and Abstract Interpretation.
Ed. by Isil Dillig and Jens Palsberg. Cham: Springer International Publishing, 2018,
pp. 382–405. isbn: 978-3-319-73721-8. doi: 10.1007/978-3-319-73721-8_18.

[81] Hila Peleg et al. “Programming with a Read-Eval-Synth Loop”. In: Proceedings of
the ACM on Programming Languages 4.Oopsla (Nov. 2020), 159:1–159:30. doi: 10.
1145/3428227. (Visited on 04/05/2024).

[82] Nancy Pennington. “Stimulus Structures and Mental Representations in Expert Com-
prehension of Computer Programs”. In: Cognitive Psychology 19.3 (July 1987), pp. 295–
341. issn: 0010-0285. doi: 10.1016/0010-0285(87)90007-7. (Visited on 09/07/2020).

[83] James Prather et al. “”It’s Weird That it Knows What I Want”: Usability and In-
teractions with Copilot for Novice Programmers”. In: ACM Trans. Comput.-Hum.
Interact. 31.1 (Nov. 2023). issn: 1073-0516. doi: 10.1145/3617367. url: https:
//doi.org/10.1145/3617367.

[84] Thomas Reps et al. “The use of program profiling for software maintenance with appli-
cations to the year 2000 problem”. In: Proceedings of the 6th European SOFTWARE
ENGINEERING conference held jointly with the 5th ACM SIGSOFT international
symposium on Foundations of software engineering. Esec ’97/fse-5. Berlin, Heidel-
berg: Springer-Verlag, Nov. 1997, pp. 432–449. isbn: 978-3-540-63531-4. doi: 10.
1145/267895.267925. url: https://dl.acm.org/doi/10.1145/267895.267925
(visited on 09/11/2024).

https://doi.org/10.1109/ase.2015.36
https://doi.org/10.1109/ase.2015.36
https://ieeexplore.ieee.org/document/7372045/?arnumber=7372045
https://ieeexplore.ieee.org/document/7372045/?arnumber=7372045
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://arxiv.org/abs/2303.08774
https://doi.org/10.1002/stvr.1509
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1509
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1509
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1007/978-3-319-73721-8_18
https://doi.org/10.1145/3428227
https://doi.org/10.1145/3428227
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3617367
https://doi.org/10.1145/267895.267925
https://doi.org/10.1145/267895.267925
https://dl.acm.org/doi/10.1145/267895.267925


BIBLIOGRAPHY 36

[85] Martin P. Robillard. “Automatic Generation of Suggestions for Program Investiga-
tion”. In: Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. Esec/fse-13. New York, NY, USA: Association for Computing Ma-
chinery, Sept. 2005, pp. 11–20. isbn: 978-1-59593-014-9. doi: 10.1145/1081706.
1081711. (Visited on 03/30/2024).

[86] Tobias Roehm et al. “How Do Professional Developers Comprehend Software?” In:
Proceedings of the 34th International Conference on Software Engineering. Icse ’12.
Zurich, Switzerland: IEEE Press, June 2012, pp. 255–265. isbn: 978-1-4673-1067-3.
(Visited on 04/16/2021).

[87] Jean Scholtz and Susan Wiedenbeck. “Learning New Programming Languages: An
Analysis of the Process and Problems Encountered”. In: Behaviour & Information
Technology 11.4 (July 1992), pp. 199–215. issn: 0144-929x. doi: 10.1080/01449299208924339.
(Visited on 03/30/2024).

[88] Jean Scholtz and Susan Wiedenbeck. “Learning Second and Subsequent Programming
Languages: A Problem of Transfer”. In: International Journal of Human–Computer
Interaction 2.1 (Jan. 1990), pp. 51–72. issn: 1044-7318. doi: 10.1080/10447319009525970.
(Visited on 03/30/2024).

[89] Jean Scholtz and Susan Wiedenbeck. “Using Unfamiliar Programming Languages:
The Effects on Expertise”. In: Interacting with Computers 5.1 (Mar. 1993), pp. 13–
30. issn: 0953-5438. doi: 10.1016/0953-5438(93)90023-m. (Visited on 03/27/2024).

[90] Teresa M. Shaft and Iris Vessey. “Research Report—The Relevance of Application
Domain Knowledge: The Case of Computer Program Comprehension”. In: Informa-
tion Systems Research (Sept. 1995). doi: 10.1287/isre.6.3.286. (Visited on
03/27/2024).

[91] Ben Shneiderman. “Exploratory Experiments in Programmer Behavior”. In: Inter-
national Journal of Computer & Information Sciences 5.2 (June 1976), pp. 123–143.
issn: 1573-7640. doi: 10.1007/bf00975629. (Visited on 03/28/2024).

[92] Nischal Shrestha, Titus Barik, and Chris Parnin. “It’s Like Python But: Towards
Supporting Transfer of Programming Language Knowledge”. In: 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). Oct. 2018,
pp. 177–185. doi: 10.1109/VLHCC.2018.8506508. (Visited on 09/12/2024).

[93] Nischal Shrestha et al. “Here We Go Again: Why Is It Difficult for Developers to
Learn Another Programming Language?” In: 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). Oct. 2020, pp. 691–701. (Visited on
09/12/2024).

https://doi.org/10.1145/1081706.1081711
https://doi.org/10.1145/1081706.1081711
https://doi.org/10.1080/01449299208924339
https://doi.org/10.1080/10447319009525970
https://doi.org/10.1016/0953-5438(93)90023-m
https://doi.org/10.1287/isre.6.3.286
https://doi.org/10.1007/bf00975629
https://doi.org/10.1109/VLHCC.2018.8506508


BIBLIOGRAPHY 37

[94] Janet Siegmund. “Program Comprehension: Past, Present, and Future”. In: 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER). Vol. 5. Mar. 2016, pp. 13–20. doi: 10.1109/saner.2016.35.
(Visited on 03/27/2024).

[95] Vineet Sinha, David Karger, and Rob Miller. “Relo: Helping Users Manage Context
during Interactive Exploratory Visualization of Large Codebases”. In: Proceedings
of the 2005 OOPSLA Workshop on Eclipse Technology eXchange. Eclipse ’05. New
York, NY, USA: Association for Computing Machinery, Oct. 2005, pp. 21–25. isbn:
978-1-59593-342-3. doi: 10.1145/1117696.1117701. (Visited on 03/30/2024).

[96] Elliot Soloway and Kate Ehrlich. “Empirical Studies of Programming Knowledge”.
In: IEEE Transactions on Software Engineering Se-10.5 (Sept. 1984), pp. 595–609.
issn: 1939-3520. doi: 10.1109/tse.1984.5010283. (Visited on 03/27/2024).

[97] Tarja Systä, Kai Koskimies, and Hausi Müller. “Shimba—an Environment for Re-
verse Engineering Java Software Systems”. In: Software: Practice and Experience
31.4 (2001), pp. 371–394. issn: 1097-024x. doi: 10 . 1002 / spe . 386. (Visited on
03/30/2024).

[98] Ethel Tshukudu. “Understanding Conceptual Transfer in Students Learning a New
Programming Language”. PhD thesis. University of Glasgow, 2022. doi: 10.5525/
gla.thesis.82984. (Visited on 03/30/2024).

[99] Ethel Tshukudu and Quintin Cutts. “Semantic Transfer in Programming Languages:
Exploratory Study of Relative Novices”. In: Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education. ITiCSE ’20. New
York, NY, USA: Association for Computing Machinery, June 2020, pp. 307–313.
isbn: 978-1-4503-6874-2. doi: 10.1145/3341525.3387406. (Visited on 03/30/2024).

[100] Ethel Tshukudu and Quintin Cutts. “Understanding Conceptual Transfer for Stu-
dents Learning New Programming Languages”. In: Proceedings of the 2020 ACM
Conference on International Computing Education Research. Icer ’20. New York, NY,
USA: Association for Computing Machinery, Aug. 2020, pp. 227–237. isbn: 978-1-
4503-7092-9. doi: 10.1145/3372782.3406270. (Visited on 03/30/2024).

[101] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. “Expectation vs. Experi-
ence: Evaluating the Usability of Code Generation Tools Powered by Large Language
Models”. In: Extended Abstracts of the 2022 CHI Conference on Human Factors in
Computing Systems. Chi Ea ’22. New Orleans, LA, USA: Association for Comput-
ing Machinery, 2022. isbn: 9781450391566. doi: 10.1145/3491101.3519665. url:
https://doi.org/10.1145/3491101.3519665.

[102] Priyan Vaithilingam et al. “Towards More Effective AI-Assisted Programming: A Sys-
tematic Design Exploration to Improve Visual Studio IntelliCode’s User Experience”.
In: Proceedings of the 45th International Conference on Software Engineering: Soft-
ware Engineering in Practice. Icse-seip ’23. Melbourne, Australia: IEEE Press, 2023,

https://doi.org/10.1109/saner.2016.35
https://doi.org/10.1145/1117696.1117701
https://doi.org/10.1109/tse.1984.5010283
https://doi.org/10.1002/spe.386
https://doi.org/10.5525/gla.thesis.82984
https://doi.org/10.5525/gla.thesis.82984
https://doi.org/10.1145/3341525.3387406
https://doi.org/10.1145/3372782.3406270
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665


BIBLIOGRAPHY 38

pp. 185–195. isbn: 9798350300376. doi: 10.1109/icse-seip58684.2023.00022.
url: https://doi.org/10.1109/ICSE-SEIP58684.2023.00022.

[103] Anneliese von Mayrhauser and A. Marie Vans. “Program Comprehension During
Software Maintenance and Evolution”. In: Computer 28.8 (Aug. 1995), pp. 44–55.
issn: 0018-9162. doi: 10.1109/2.402076. (Visited on 04/15/2021).

[104] Karen P. Walker and Stephen R. Schach. “Obstacles to Learning a Second Program-
ming Language: An Empirical Study”. In: Computer Science Education 7.1 (Jan.
1996), pp. 1–20. issn: 0899-3408. doi: 10.1080/0899340960070101. (Visited on
03/30/2024).

[105] Mark Weiser. “Program Slicing”. In: IEEE Transactions on Software Engineering
Se-10.4 (July 1984). Conference Name: IEEE Transactions on Software Engineering,
pp. 352–357. issn: 1939-3520. doi: 10 . 1109 / tse . 1984 . 5010248. url: https :
// ieeexplore.ieee .org/ document/5010248 /?arnumber= 5010248 (visited on
09/11/2024).

[106] Susan Wiedenbeck. “Beacons in Computer Program Comprehension”. In: Interna-
tional Journal of Man-Machine Studies 25.6 (Dec. 1986), pp. 697–709. issn: 0020-
7373. doi: 10.1016/s0020-7373(86)80083-9. (Visited on 03/27/2024).

[107] Xin Xia et al. “Measuring Program Comprehension: A Large-Scale Field Study with
Professionals”. In: IEEE Transactions on Software Engineering 44.10 (Oct. 2018).
Conference Name: IEEE Transactions on Software Engineering, pp. 951–976. issn:
1939-3520. doi: 10.1109/tse.2017.2734091. url: https://ieeexplore.ieee.
org/document/7997917 (visited on 09/11/2024).

[108] Xiangyu Zhang, R. Gupta, and Youtao Zhang. “Precise dynamic slicing algorithms”.
en. In: 25th International Conference on Software Engineering, 2003. Proceedings.
Portland, OR, USA: Ieee, 2003, pp. 319–329. isbn: 978-0-7695-1877-0. doi: 10.1109/
icse.2003.1201211. url: http://ieeexplore.ieee.org/document/1201211/
(visited on 09/11/2024).

[109] Hao Yan, Thomas D. Latoza, and Ziyu Yao. IntelliExplain: Enhancing Interactive
Code Generation through Natural Language Explanations for Non-Professional Pro-
grammers. en. arXiv:2405.10250 [cs]. May 2024. url: http://arxiv.org/abs/2405.
10250 (visited on 09/09/2024).

[110] Litao Yan et al. “Ivie: Lightweight Anchored Explanations of Just-Generated Code”.
In: Proceedings of the CHI Conference on Human Factors in Computing Systems. CHI
’24. New York, NY, USA: Association for Computing Machinery, May 2024, pp. 1–15.
isbn: 9798400703300. doi: 10.1145/3613904.3642239. (Visited on 09/12/2024).

[111] YoungSeok Yoon and Brad A. Myers. “Semantic Zooming of Code Change History”.
In: 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). Oct. 2015, pp. 95–99. doi: 10.1109/vlhcc.2015.7357203. (Visited
on 03/30/2024).

https://doi.org/10.1109/icse-seip58684.2023.00022
https://doi.org/10.1109/ICSE-SEIP58684.2023.00022
https://doi.org/10.1109/2.402076
https://doi.org/10.1080/0899340960070101
https://doi.org/10.1109/tse.1984.5010248
https://ieeexplore.ieee.org/document/5010248/?arnumber=5010248
https://ieeexplore.ieee.org/document/5010248/?arnumber=5010248
https://doi.org/10.1016/s0020-7373(86)80083-9
https://doi.org/10.1109/tse.2017.2734091
https://ieeexplore.ieee.org/document/7997917
https://ieeexplore.ieee.org/document/7997917
https://doi.org/10.1109/icse.2003.1201211
https://doi.org/10.1109/icse.2003.1201211
http://ieeexplore.ieee.org/document/1201211/
http://arxiv.org/abs/2405.10250
http://arxiv.org/abs/2405.10250
https://doi.org/10.1145/3613904.3642239
https://doi.org/10.1109/vlhcc.2015.7357203


BIBLIOGRAPHY 39

[112] YoungSeok Yoon, Brad A. Myers, and Sebon Koo. “Visualization of Fine-Grained
Code Change History”. In: 2013 IEEE Symposium on Visual Languages and Human
Centric Computing. Sept. 2013, pp. 119–126. doi: 10.1109/vlhcc.2013.6645254.
(Visited on 03/30/2024).

[113] Tianyi Zhang et al. “Interactive Program Synthesis by Augmented Examples”. In:
Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology. Uist ’20. New York, NY, USA: Association for Computing Machinery,
Oct. 2020, pp. 627–648. isbn: 978-1-4503-7514-6. doi: 10.1145/3379337.3415900.
(Visited on 03/26/2024).

[114] Tianyi Zhang et al. “Interpretable Program Synthesis”. In: Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. Chi ’21. New York, NY,
USA: Association for Computing Machinery, May 2021, pp. 1–16. isbn: 978-1-4503-
8096-6. doi: 10.1145/3411764.3445646. (Visited on 03/26/2024).

[115] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. “Pruning dynamic slices with
confidence”. In: Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation. Pldi ’06. Ottawa, Ontario, Canada: Association
for Computing Machinery, 2006, pp. 169–180. isbn: 1595933204. doi: 10 . 1145 /
1133981.1134002. url: https://doi.org/10.1145/1133981.1134002.

[116] Zhanhui Zhou et al. “INTENT: Interactive Tensor Transformation Synthesis”. In:
Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology. Uist ’22. New York, NY, USA: Association for Computing Machinery,
Oct. 2022, pp. 1–16. isbn: 978-1-4503-9320-1. doi: 10 . 1145 / 3526113 . 3545653.
(Visited on 03/26/2024).

https://doi.org/10.1109/vlhcc.2013.6645254
https://doi.org/10.1145/3379337.3415900
https://doi.org/10.1145/3411764.3445646
https://doi.org/10.1145/1133981.1134002
https://doi.org/10.1145/1133981.1134002
https://doi.org/10.1145/1133981.1134002
https://doi.org/10.1145/3526113.3545653

