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ABSTRACT
Ethereum is the world’s largest permissionless blockchain that sup-

ports a large, decentralized validator set that is resilient to Byzantine

faults and dynamic participation. However, Ethereum’s consensus

protocol, Gasper, is plagued by requiring consecutive honest lead-

ers to commit transactions or blocks. Thus, malicious leaders and

even unsuspecting software bugs can easily weaken liveness of the

system.

We reduce the commit latency of Gasper by relaxing the require-

ment of consecutive honest leaders to any honest leaders, allowing

non-consecutive honest leaders to commit transactions. Our modifi-

cations, named Gasper-Siesta, maintains quadratic word complexity

for message communication and retains properties that Ethereum

strives to maintain. Furthermore, our changes to the Ethereum con-

sensus protocol are fairly limited in code, showing the feasibility of

integrating the modifications into the Ethereum consensus protocol

in production.

1 INTRODUCTION
Ethereum is the world’s largest permissionless blockchains with a

large, decentralized validator set that is resilient to dynamic partic-

ipation, network partitions, and Byzantine actors. Ethereum com-

bines traditional state machine replication (SMR) with an execution

environment that allows network participants and clients to send re-

quests that get ordered by consensus and executed by the Ethereum

Virtual Machine (EVM). Thus, Ethereum provides users with the

abstraction of a centralized, highly-available service. Ethereum

guarantees that a set of replicas linearize a sequence of transactions

despite bad actors, since it solves BFT SMR. Furthermore, with its

emphasis on decentralization and open-participation, Ethereum

also scales to a large number of network participants, where partic-

ipants are clients sending requests as well as replicas participating

in BFT SMR.

Ethereum uses a proof-of-stake consensus protocol to solve BFT

SMR by combining two different gadgets: a fork-choice rule and

a finality gadget. The fork-choice rule, LMD-GHOST, is used to

produce new blocks. On the other hand, Casper is the finality gadget

used to finalize existing blocks produced via LMD-GHOST. The

combination of both gadgets is used in Ethereum today and is

known as Gasper[6]. Two key techniques of Gasper are chaining
and leader-speaks-once. Many other consensus protocols also build

on the same properties, such as HotStuff[25], DiemBFTv4[24], and

Jolteon[12].

Chaining is a technique used to ensure safety of the proto-

col while reducing expensive cryptography and reusing messages.

BFT SMR protocols use voting phases to create quorum certificates
(QCs) to prove honest replicas signed a given proposal. To improve

throughput, protocols often pipeline quorum certificates to use

votes on the second or third phase of a block from round 𝑣 to certify

a block in round 𝑣 +1. This helps minimize expensive cryptographic

operations and reuse messages. Leader-speaks-once (LSO) is a tech-

nique that helps minimize the effect of Byzantine leaders on the

progress of the protocol. In this design, leaders propose a block in

a given round or view and are rotated out. Other BFT and crash

tolerant protocols, such as PBFT[7] and Paxos[17], use stable lead-

ers and only rotate when leaders do not make progress or behave

faulty.

Today, Ethereum uses 𝑘-finality, where 𝑘 = 2. 𝑘-finality refers

to a BFT SMR protocol requiring 𝑘 consecutive honest leaders to

commit or finalize a set of transactions or block. Thus, liveness

requires 2, or 𝑘 + 1 consecutive honest leaders. However, this leads
to significant performance issues in practice. For example, on May

11, 2023, Ethereum faced a mainnet liveness issue with finality [16].

There were 2 incidents where Ethereum failed to finalize blocks for

4 and 9 epochs respectively. Although the incident was caused by

a bug in attestation processing in a validator implementation, the

chain was unable to finalize blocks due to the fact a high number of

slots were missed. Furthermore, the bug lead to significant financial

loss, with validators losing an estimated 28 ether on inactivity leak

penalties and 50 ether due to missed vote bonuses. The inactivity

leak is a small, dynamic penalty that "fines" validators small portions

of its stake if the network does not send or sign attestations across

several epochs. To make matters worse, the chain recovered due to

failover methods that allowed validators to run different validator

implementations and revive finality. The consensus protocol was

not robust to such validator bugs and failed to restore finality on

its own.

We aim to reduce Ethereum’s commit latency by relaxing Casper

FFG. By allowing Casper FFG to finalize over any 𝑘 + 1 honest

leaders, we can strengthen liveness and resilience of Ethereum. We

show that we can modify Casper to satisfy a property called any

honest leaders (AHL), introduced by BeeGees[1].

Definition 1 (AHL). After GST, if an honest leader in view 𝑉

proposes a block 𝐵, it is guaranteed to commit if possibly non-

contiguous views 𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑘 have honest leaders.

With a stronger finality rule that does not impose the consecutive

honest leaders invariant on finality, Ethereum would have been

more resilient to finality and replica implementation bugs such as

the incident discussed above. Ethereum could have finalized quicker

and not relied on alternative failover mechanisms to ensure stability.

Our work extends the contributions of BeeGees[1] to Ethereum by

modifying Gasper. We extend the core concepts that were applied to

HotStuff to the Casper finality gadget. We design Gasper-Siesta to

guarantee safety for finality gadgets and liveness of the fork-choice

rule. We show that Gasper-Siesta will in practice reduce commit

latency and is feasible to implement in the Ethereum ecosystem.
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2 PRELIMINARIES
2.1 BFT SMR Preliminaries
BFT SMR assumes 𝑛 network participants and 𝑓 Byzantine actors

such that 𝑛 ≥ 3𝑓 + 1. Since Ethereum is a proof-of-stake BFT SMR

protocol, we can assume that honest participants of the network

hold over
2

3
of the network’s total stake. BFT SMR protocols follow

two properties:

Definition 2 (BFT SMR). A Byzantine fault tolerant state machine

replication protocol satisfies safety and liveness in a linearized log

of client requests.

(1) Safety All honest replicas commit the same block 𝐵 at the

same slot 𝑗 .

(2) Liveness All client requests eventually receive a response

and all honest replicas eventually commit each request.

We also formalize chained leader-speaks-once (CLSO), inspired

by [2] and [1]. Ethereum currently implements chained leader-

speaks-once, but does not provide the AHL property for CLSO

discussed above.

Definition 3 (CLSO). A CLSO BFT SMR protocol advances in

views or rounds and satisfies 3 properties.

(1) Every view change changes the leader.

(2) Blocks cannot be committed within a single view.

(3) Honest leaders eventually lead a view, infinitelymany times.

Essentially, honest leaders will lead an infinite number of

views.

2.2 Ethereum Preliminaries

Figure 1: Relationship between LMD-GHOST and Casper.
Inspired by Goldfish[8].

Ethereum is a permissionless, decentralized blockchain that al-

lows anyone to participate in BFT SMR with low hardware and

network requirements. Since Ethereum aims to be resilient to dy-

namic participation changes, the blockchain provides two ledgers:

dynamic availability and finalized prefix ledger. The dynamic avail-

ability ledger is essentially a longest-chain protocol that is always

live. The ledger always attempts to produce blocks and extend the

chain. However, the dynamic availability ledger does not guarantee

safety at all times: it is safe unless there is a network partition. On

the other hand, the finalized prefix ledger is a prefix of the dynamic

availability ledger that is always safe. However, it is only live under

high-enough network participation (> 2

3
of network stake).

Ethereum chooses to allow leaders to propose blocks for slots, and
uses epochs as checkpoints for finalizing blocks. In traditional BFT

SMR literature, slots are essentially leader proposals and epochs are

when blocks within the past view are committed. More formally, for

an epoch 𝑗 , there are 32 slots. Slots increase monotonically and last

for 12 seconds. We can find the global slot number within an epoch

with the formula 𝑖 = 32 𝑗 + 𝑘 , where 𝑗 is the epoch number and 𝑘 is

the index of the slot within the epoch. The 12 seconds in a slot are

divided into blocks of 4 seconds. The first 4 seconds are used for a

leader to propose and broadcast a block. The next 4 seconds are used

for replicas to vote on the leader’s proposal. The last 4 seconds are

used for BLS signature aggregation [3] to batch signatures together

into the block for finalization and slashing checks.

Ethereumuses a committee structure that is inspired by a sharding-

focused scalability design. Each slot consists of several committees

of validators or replicas. The leader of a slot proposes a block. To

decide which block to vote on, other replicas in the committees

determine whether they should vote on this "leaf" block in the chain

and if it satisfies all correctness rules to extend their last seen block.

It is important to note that there is 1 leader, but many commit-

tees. Thus, committees without the leader wait to receive the block

broadcasted by the leader and decide whether they should vote on

the newly produced block. Committees aggregate their votes using

BLS signature aggregation once the voting phase is complete.

Figure 2: Anatomy of an Ethereum slot.

Figure 3: Relationship between epochs, slots, and check-
points

2.2.1 Network Model. Ethereum follows an partial synchrony net-

working model in practice, but in theory can perform correctly in

asynchrony. Following the slot timing described above and shown

in Figure 2, replicas expect to receive a block from the leader within

the first 4 seconds, and so forth. However, the 12 second period per

slot is not a strict requirement: the chain can move faster if blocks

and votes are gossiped quicker than the maximum 4 seconds allo-

cated per phase of the slot. Thus, Ethereum has a weak synchrony

network model that uses a known maximum delay in network par-

titions. It is important to note that Ethereum is designed to tolerate

missed slots, or slots that do not have blocks proposed or did not

accrue enough votes to be finalized into the chain. To formalize this,

Ethereum can assume periods of asynchrony until an unknown but

bounded global stabilization time (GST)[11], and synchronously

thereafter in practice. This distinction is crucial to our safety and

liveness arguments for Gasper-Siesta.
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2.2.2 LMD-GHOST and Fork Choice Rule. Last Message Driven

Greediest Heaviest SubTree (LMD-GHOST) allows validators to de-

termine what the latest block in the chain is with the most support.

LMD-GHOST is a modification of Sompolinsky and Zohar in [22].

Given a view 𝑉 and attestations 𝐴, the weight of a block 𝐵 is the

sum of the stake of validators that attested to 𝐵 or descendants.

Views are equivalent to the chain’s state at a given slot number and

attestations are votes. LMD-GHOST returns the heaviest leaf block

in the subtree, where the weight is computed using the expression

above. For our work, LMD-GHOST is black-boxed, as we do not

necessarily modify the fork-choice rule.

Algorithm 1 LMD-GHOST Fork Choice Rule

1: procedure LMD-GHOST(𝑉 )

2: 𝐵 ← 𝐵𝑔𝑒𝑛 ⊲ Start from genesis

3: 𝐴← most recent attestations from validators

4: while 𝐵 is not leaf in 𝑉 do
5: 𝐵 ← argmax𝐵′ child of 𝐵 𝑤 (𝑉 , 𝐵′, 𝐴)
6: return 𝐵

2.2.3 Casper and Finality. Casper FFG[5] finalizes blocks produced
by validators and voted on by LMD-GHOST. Similar to many other

consensus protocols, such as PBFT[7], Casper uses 2 phases of

voting to finalize blocks. The first phase of voting is known as

justification and the second phase is known as finalization. The
justification phase consists of a replica broadcasting its local best

checkpoint, where best is defined as the latest or highest known

checkpoint. The replica waits to hear from other participants to

determine if other replicas also believe it is the highest known

checkpoint. If over
2

3
of the network stake agree, the checkpoint

is now justified. The finalization phase consists of replicas broad-

casting their latest or highest known justified checkpoint to other

replicas. If over
2

3
of the network stake of participants agree with

the replica, the checkpoint is considered finalized.
Formally, Casper FFG takes a justified subset of a view 𝑉 , de-

noted as 𝐽 (𝑉 ), and tries to produce a finalized subset denoted as

𝐹 (𝑉 ) such that 𝐹 (𝑉 ) ⊂ 𝐽 (𝑉 ) ⊂ 𝑉 . Finalization occurs between

checkpoints 𝐴 and 𝐵 where there is over
2

3
of network stake at-

testing to the transition from 𝐴 →𝐽 𝐵, where →𝐽
indicates the

finalization threshold is achieved. This is known as a supermajority
link.

Casper aims to guarantee two core properties: accountable safety
and plausible liveness. Accountable safety ensures two checkpoints

on different branches cannot be finalized unless a provable set

of validators acted against the protocol. This is similar to most

safety properties. Plausible liveness ensures new checkpoints can

be finalized if the block production rule creates new blocks.

Casper FFG can be generalized into 𝑘-finality that requires 𝑘-

consecutive epochs to be finalized to commit an epoch. For example,

if epochs 100, 101, 102, and 103 were justified in an instantiation

of 4-finality, we can finalize epoch 100. This generalization follows

the same accountable safety and plausible liveness properties as

"vanilla" Casper. However, Ethereum in production, only checks

to finalize over the 4 most recent epochs of checkpoints under 2-

finality. This is a choice made by the consensus spec and subsequent

validator implementations to help recent epochs with delayed at-

testations still get finalized, but not reach far into the history of

the chain. With 𝑘-finality, Casper FFG falls into the same class of

consensus protocols as HotStuff and requires 𝑘 consecutive honest

leaders to commit. However, we aim to reduce commit latency by

generalizing 𝑘-finality to any 𝑘 honest leaders.

As noted in the accountable safety property, Casper FFG slashes

for two main rules to slash for incorrect behavior.

• Double voting: A validator cannot broadcast votes 𝑠1 → 𝑡1
(from source block 𝑠1 to target block 𝑡1) and 𝑠2 → 𝑡2 such

that ℎ(𝑡1) = ℎ(𝑡2). Therefore, a validator can only vote one

block per target epoch.

• Surround voting: A validator cannot publish votes 𝑠1 → 𝑡1
and 𝑠2 → 𝑡2 such that ℎ(𝑠1) < ℎ(𝑠2) < ℎ(𝑡2) < ℎ(𝑡1).
Effectively, a validator’s votes cannot forget existing history

by voting around it.

Figure 4: Example of Casper FFG double voting. Epochs 100
and 101 are justified, whereas epoch 102 is not

Figure 5: Examples of Casper FFG surround voting. In the
first example, we see the vote from epoch 100 to 103 surround
the vote from 101 to 102. In the second example, we see the
same surrounding, despite when epoch 103 extends epoch
100 directly.

The Ethereum spec implements checks for double voting, but

surprisingly does not check for surround voting. Surround voting

is complex to detect and requires traversing and maintaining large

amounts of historical state (up to 54,000 epochs of votes). Thus,

it is left to various researchers and client implementations such

as Lighthouse[21] and Prysm[20]. Lighthouse uses an approach

called min-max slashing[23], inspired by [18], to efficiently store

attestations and search over them for slashing at runtime.

Despite using different terminology, Casper FFG closely borrows

concepts from PBFT. The justification and finalization phases of
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Casper FFG are analogous to prepare and commit phases of PBFT.

Casper FFG voting or attestations showcase some of the differences

between the two protocols. Casper FFG follows chaining, requiring
blocks to extend an existing parent. Thus, votes/attestations must

extend a parent block to a descendant block. Furthermore, 𝑘-finality

implies Casper FFG can only commit a set of operations once 𝑘-

consecutive honest leaders have completed the justification phase.

PBFT does not use a notion of 𝑘-finality.

3 RELATEDWORK
PBFT [11] is a foundational work that Gasper draws from. Casper

follows PBFT-style communication and message structure to com-

mit new blocks. Ethereum’s Gasper consensus protocol follows a

similar paradigm to Algorand’s 𝐵𝐴★ protocol[14]. Algorand was

one of the first protocols to deploy proof-of-stake in production

to thousands of users. Gasper draws from the tree and DAG based

fork-choice rule for choosing the head of the chain similar to Algo-

rand. 𝐵𝐴★ also uses a two-phase protocol to commit, but does not

follow the slot-epoch design of Ethereum.

HotStuff [25] extends PBFT to the partially synchronous network

model that allows consensus to be driven at the pace of network

delays and linear communication complexity. HotStuff and Casper

are conceptually similar in their commit mechanisms, but have dif-

ferent communication complexity due to the paradigm of replica to

replica attestation gossip in Ethereum, compared to leader to replica

communication in HotStuff. Tendermint[4] is another popular BFT

SMR consensus protocol used in blockchain settings. Tendermint

has a similar commit rule to PBFT. Tendermint and PBFT do not

use the notion of 𝑘-finality to commit blocks or sets of transactions:

once a transaction has over
2

3
of votes, it is considered final. All of

the aforementioned works extend Dwork et. al [11], which is the

first solution to partial synchrony that uses a one-chain commit,

which can unfortunately lead to deadlocks. Gasper-Siesta draws

closely from BeeGees[1], as we apply their techniques for any-

honest leaders to finalize blocks to the Casper setting.

Other variations of HotStuff include Jolteon[13] and Fast-HotStuff

[15]. Jolteon and Fast-HotStuff take similar approaches to achieving

linear message complexity in the optimal case for commits, improv-

ing on PBFT. HotStuff-2 [19] is an improvement to HotStuff by

Malkhi et. al that also makes similar improvements as Jolteon and

Fast-HotStuff. All three protocols take 2 phases of messages to com-

mit in the normal cases. This is an improvement from the 3 phases

required in traditional HotStuff. However, HotStuff-2 and Jolteon

and Fast-HotStuff differ in their view-change protocols. HotStuff-2

follows similar techniques to Tendermint to achieve a view-change

where leaders proceeds if it has a lock from the highest preceding

view or waits a delay period. Jolteon uses timeout certificates to

view-change more efficiently than HotStuff. It does not aim for

linear communication complexity as the view-synchronization is

practically bound to quadratic complexity. Fast-HotStuff adds a

pre-commit phase to achieve 2 rounds of communication in the

optimal case.

4 GASPER-SIESTA
To understand the challenges of relaxing the Casper commit rule,

we motivate readers with an example. In a naive implementation

where we attempt to relax CLSO from 𝑘 consecutive honest leaders

to 𝑘 non-contiguous leaders across views, safety violations can

occur under periods of network asynchrony. Consider the follow-

ing example, where without loss of generality, we assume that

Ethereum uses a model of one slot per epoch:

Epoch 1: Leader 𝐿1 proposes block 𝐵1. Assume 𝐵1 is justified by at

least
2

3
of replicas and thus finalizes parent block 𝐵0.

Epoch 2: Leader 𝐿2 proposes block 𝐵2 extends 𝐵1. Assume 𝐵2 is jus-

tified by at least
2

3
of replicas, but leader 𝐿3 is partitioned

and does not see 𝐵2’s justification.

Epoch 3: Leader 𝐿3 proposes block 𝐵3 extending 𝐵1. Assume 𝐵3 is

also justified by at least
2

3
of replicas, but leader 𝐿4 is par-

titioned and does not observe 𝐵3 or it’s justification. Note

that 𝐵3’s justification is not a safety violation, as it is not

finalized.

Epoch 4: Leader 𝐿4 proposes block 𝐵4 extending 𝐵2. However, 𝐵4
cannot be justified, as justifying 𝐵4 requires a portion of

validators to surround vote over 𝐵3. However, no further

blocks can be finalized, as finalizing a block on 𝐵3’s fork of

the chain requires surround voting around justified block

𝐵2. This is also a safety concern in naive AHL. Consider

a replica that has not seen the block in epoch 3 due to

network partition. It may believe epoch 2 can be finalized

as there are 2 honest leaders, but it does not know of epoch

3 conflicting with epoch 2. However, no validators acted

maliciously under the protocol and network assumptions.

Figure 6: Example of Casper ping-pong effect for finalization
with naive any honest leaders.

Solving the safety and liveness concerns of relaxing the con-

secutive honest property of Gasper requires careful inspection of

historical attestations. The core intuition behind Gasper-Siesta uses

the same insights as BeeGees[1]. By inspecting previous attesta-

tions, we can determine whether epochs not in the non-contiguous

commit path could have been committed. If we notice that another

epoch may have been committed, we can abort any conflicting com-

mits. This approach avoids the so-called ping-pong effect shown

in the example above. Furthermore, we also make use of the QC

materialization approach used by [1] to strengthen liveness, and

apply that to Gasper’s protocol.

4.1 Modifying Casper
4.1.1 Fast-Vew Change Commit. The Casper commit rule can be

categorized into two modes for simplicity. The first is the normal

steady state of consecutive honest leaders. We dub this the fast
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Algorithm 2 Utilities used in pseudocode. For brevity, we blackbox

implementations.

1: procedure 𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑃𝑟𝑜𝑝𝑜𝑠𝑒
2: Generate block to propose for a leader in slot 𝑗

3: procedure 𝑐𝑟𝑒𝑎𝑡𝑒𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝛽)
4: Generate valid attestation for given replica voting on 𝛽

5: procedure 𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝐵𝑙𝑜𝑐𝑘(𝛽)
6: Check if 𝛽 is a valid block for leader in slot 𝑗

7: procedure 𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝛼)
8: Check if 𝛼 is valid attestation for current epoch and slot

9: procedure 𝑖𝑠 𝐽𝑢𝑠𝑡𝑖 𝑓 𝑖𝑒𝑑(𝛽,𝐴)
10: Check if block 𝛽 is justified by attestations in 𝐴

11: procedure 𝑖𝑠𝐾 𝐽𝑢𝑠𝑡𝑖 𝑓 𝑖𝑒𝑑(𝐽𝐶)
12: Check if last 𝑘 checkpoints are justified on the same chain

13: procedure 𝑒𝑥𝑖𝑠𝑡𝑠𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝑉𝑜𝑡𝑒𝑠(𝐹𝐶, 𝐽𝐶)
14: Check if there exists conflicting votes against the current

justified chain of checkpoints

15: If there is at least 1 Gwei of conflicting stake, there may

have been another block finalized, so we must abort in such

scenarios

16: procedure 𝑒𝑥𝑖𝑠𝑡𝑠𝑉𝑎𝑙𝑖𝑑𝐶ℎ𝑎𝑖𝑛(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)
17: Check if there is a chain between given start and end blocks

view change case. In this scenario, the leader proposes a block 𝐵

by broadcasting it to replicas within committees in the slot. The

replicas, vote on the block and let it be justified. Since the fast view

change takes place under synchrony, replicas send their votes in

support of 𝐵 and extend the previous justified checkpoint block

𝐵′. Therefore, we can finalize 𝐵′ safely. We focus on the slow view

change, as it is the focus of our modifications and improvements.

Below, we show case the commit rule under the fast-view change

and contiguous views with honest leaders.

4.1.2 Slow-View Change Commit. The slow-view change case of

Casper does not follow the contiguous honest leaders across epochs

paradigm. Thus, we must guarantee safety whilst allowing progress

from honest leaders. To achieve this, we must ensure no blocks

that can violate safety can be finalized. We carefully design Gasper-

Siesta to allow for blocks to be justified if they do not violate Casper

slashing rules, but not finalize if any other block could have been

finalized across non-contiguous views.

We keep track of the previous attestations from replicas voting

on proposals to create equivocation proofs that show whether cer-

tain blocks could have finalized across non-contiguous views. If

we have any equivocation proofs, or conflicting votes with over
2

3

of network stake on each vote, in an attempted commit, we must

abort the commit in the current epoch. We also recognize, similar to

BeeGees[1], that in the partial synchrony model, we cannot assume

blocks will be justified before GST. Thus, we prior to committing

a block, we check for other potential committed blocks during pe-

riods of asynchrony. We achieve this using the helper function

existsConflictingVotes(FC, JC). This function allows replicas

to iterate through the slots of history between the finalized check-

point and the current justified checkpoint. We iterate through every

slot to ensure there were no forks of the chain that may have been

Algorithm 3 Fast-View Change Commit Rule Pseudocode

1: 𝐵 ← {} ⊲ Store blocks

2: 𝐴← {} ⊲ Store attestations

3: 𝐽𝐶 ← {} ⊲ Store justified checkpoints

4: 𝐹𝐶 ← {} ⊲ Store most recent finalized checkpoint

5: upon 𝑡𝑖𝑚𝑒𝑟 = 0 do
6: if 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 () then
7: 𝛽 ← 𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑃𝑟𝑜𝑝𝑜𝑠𝑒 ()
8: send 𝛽 to all

9: upon 𝑡𝑖𝑚𝑒𝑟 = Δ do
10: while 𝑡𝑖𝑚𝑒𝑟 < 2Δ do
11: upon receiving 𝛽 from 𝐿𝑒 do
12: if 𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝐵𝑙𝑜𝑐𝑘 (𝛽) then
13: 𝐵 ← 𝐵 ∪ {𝛽}
14: 𝛼 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝛽)
15: 𝐴← 𝐴 ∪ {𝛼}
16: send 𝛼 to all

17: upon 𝑡𝑖𝑚𝑒𝑟 = 2Δ do
18: while 𝑡𝑖𝑚𝑒𝑟 < 3Δ do
19: upon receiving 𝛼 from 𝑅𝑖 do
20: if 𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝛼) then
21: 𝐴← 𝐴 ∪ {𝛼}
22: upon 𝑡𝑖𝑚𝑒𝑟 = 3Δ do
23: 𝛽 ← 𝐵 [−1]
24: if 𝑖𝑠 𝐽𝑢𝑠𝑡𝑖 𝑓 𝑖𝑒𝑑 (𝛽,𝐴) then
25: 𝐽𝐶 ← 𝐽𝐶 ∪ 𝛽
26: if 𝑗 mod 𝑒 == 0 ∧ 𝑖𝑠𝐾 𝐽𝑢𝑠𝑡𝑖 𝑓 𝑖𝑒𝑑 (𝐽𝐶) then
27: 𝐹𝐶 ← 𝐽𝐶 [−1]

justified in a conflicting manner. If no conflicting blocks or forks

could have been finalized, we are safe to commit! If we detect any
conflicting stake used to attest conflicting blocks, we must abort our

commit. This is because up to
1

3
of network stake can be inactive

or not attest to a slot transition due to network asynchrony, and an

additional
1

3
can be Byzantine stake. When we sum this stake, we

see this already reaches the
2

3
of network stake, so any additional

stake voting for such a transition may have finalized in another

chain’s view.

In our pseudocode, Implementing this change requires changes

to the core data structures and functionality of Ethereum validators,

discussed in section 4.3. We iterate over the history and past attes-

tations in lockstep to check whether there is conflicting history.

We abstract this logic away in existsConfictingVotes(FC, JC),
where we get the local view of the block proposed at a slot. We

use the set 𝐴 to index the attestations that specify the block at

the current slot as the target. The set 𝐴 tracks all of the proposals

from leaders and responses from replicas at a given slot. We also

attach the local view of the replica that send an attestation to check

the attestations are voting along the same view (no equivocation).

If a slot is missed, we also check to make sure no other blocks

were proposed for that slot that a replica may not have seen due to

asynchrony.

We also check to ensure there exists a valid chain between the

given start and end block. Validators try to commit between their

current finalized checkpoint, previous justified checkpoint, and the
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current justified checkpoint.We use existsValidChain(start, end)
to check there is a valid chain and attestations between these blocks.

We also check for isKJustified(JC) to ensure there are 𝑘 + 1
blocks justified for finalization.

Algorithm 4 Slow-View Change Commit Rule Pseudocode

1: 𝐵 ← {} ⊲ Store blocks

2: 𝐴← {} ⊲ Store attestations

3: 𝐽𝐶 ← {} ⊲ Store justified checkpoints

4: 𝐹𝐶 ← {} ⊲ Store most recent finalized checkpoint

5: upon 𝑡𝑖𝑚𝑒𝑟 = 0 do
6: if 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 () then
7: 𝛽 ← 𝑏𝑙𝑜𝑐𝑘𝑇𝑜𝑃𝑟𝑜𝑝𝑜𝑠𝑒 ()
8: send 𝛽 to all

9: upon 𝑡𝑖𝑚𝑒𝑟 = Δ do
10: while 𝑡𝑖𝑚𝑒𝑟 < 2Δ do
11: upon receiving 𝛽 from 𝐿𝑒 do
12: if 𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝐵𝑙𝑜𝑐𝑘 (𝛽) then
13: 𝐵 ← 𝐵 ∪ {𝛽}
14: 𝛼 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝛽)
15: 𝐴← 𝐴 ∪ {𝛼}
16: send 𝛼 to all

17: upon 𝑡𝑖𝑚𝑒𝑟 = 2Δ do
18: while 𝑡𝑖𝑚𝑒𝑟 < 3Δ do
19: upon receiving 𝛼 from 𝑅𝑖 do
20: if 𝑖𝑠𝑉𝑎𝑙𝑖𝑑𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝛼) then
21: 𝐴← 𝐴 ∪ {𝛼}
22: upon 𝑡𝑖𝑚𝑒𝑟 = 3Δ do
23: 𝛽 ← 𝐵 [−1]
24: if 𝑖𝑠 𝐽𝑢𝑠𝑡𝑖 𝑓 𝑖𝑒𝑑 (𝛽,𝐴) then
25: 𝐽𝐶 ← 𝐽𝐶 ∪ 𝛽
26: if 𝑗 mod 𝑒 == 0 then
27: 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑖𝑒𝑑 ← 𝑖𝑠𝐾 𝐽𝑢𝑠𝑡𝑖 𝑓 𝑖𝑒𝑑 (𝐽𝐶)
28: 𝑎𝑏𝑜𝑟𝑡 ← 𝑒𝑥𝑖𝑠𝑡𝑠𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝑉𝑜𝑡𝑒𝑠 (𝐹𝐶, 𝐽𝐶)
29: if 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑖𝑒𝑑∧¬𝑎𝑏𝑜𝑟𝑡∧𝑒𝑥𝑖𝑠𝑡𝑠𝑉𝑎𝑙𝑖𝑑𝐶ℎ𝑎𝑖𝑛(𝐹𝐶, 𝐽𝐶) then
30: 𝐹𝐶 ← 𝐽𝐶 [−1]

4.2 Properties and Proofs
4.2.1 Correctness Proofs. First, we discuss the safety proof of Gasper-
Siesta. As discussed above, safety in CLSO BFT SMR protocols is

found in Definition 2.2. We start by defining properties of a justifed

block.

Definition 4 (Conflicting Blocks). Blocks𝐵 and𝐵′ are conflicting if
𝐵 and𝐵′ do not extend each other. Formally,¬ (𝐵 ← 𝐵′ ∨ 𝐵′ ← 𝐵)∨
𝐵 ≠ 𝐵′.

Lemma 1. For any two justified blocks 𝐵 and 𝐵′ where 𝐵.𝑒𝑝𝑜𝑐ℎ =

𝐵′ .𝑒𝑝𝑜𝑐ℎ, then 𝐵 = 𝐵′.

Proof. Consider the contradiction where 𝐵! = 𝐵′. Since we be-
lieve both blocks are justified, this means both blocks received at

least
2

3
of the total network’s stake of votes. However, by quorum

intersection, we know that the intersection of the two attestations

must have at least
1

3
of honest stake, otherwise the network is

1

3
-slashable by [6]. Therefore, there is a contradiction.

Next, we can define properties of extension and equivocation

proofs.

Definition 5 (Block Extension). A block 𝐵′ extends 𝐵, denoted by

𝐵 ← 𝐵′, if 𝐵′ is a descendant of 𝐵. Thus, there must exist a path of

blocks between 𝐵 and 𝐵′.

Definition 6 (Equivocation Proof). We define 𝜋 𝑗 to be an equivoca-

tion proof for epoch 𝑗 . An equivocation proof contains attestations

𝛼 and 𝛼 ′ for epoch 𝑗 that contain conflicting history.

Lemma 2. If there exists a justified block 𝐵 and a valid attestation
𝛼 , s.t. 𝛼.𝑏𝑙𝑜𝑐𝑘 = 𝐵, where 𝐵′ .𝑒𝑝𝑜𝑐ℎ > 𝐵.𝑒𝑝𝑜𝑐ℎ, and 𝐵 ↚ 𝐵′, there is
an equivocation proof 𝜋 𝑗 that 𝐵′ extends.

Proof. Consider the contradiction where 𝐵′ does not extend an

equivocation proof 𝜋 𝑗 . Let 𝐵𝑙 be the lowest epoch ancestor of 𝐵′

where 𝐵𝑙 .𝑒𝑝𝑜𝑐ℎ > 𝐵.𝑒𝑝𝑜𝑐ℎ and 𝐵 ↚ 𝐵𝑙 . Then, let 𝐵𝑝 be 𝐵𝑙 ’s direct

parent. We know that by definition, 𝐵𝑝 cannot conflict with 𝐵. Thus,

we are left with three cases.

Case 1: 𝐵 ← 𝐵𝑝 . Then, 𝐵 ← 𝐵𝑝 and 𝐵𝑝 ← 𝐵𝑙 , and it is implied

𝐵 ← 𝐵𝑙 . However, this is a contradiction since 𝐵 ↚ 𝐵𝑙 .

Case 2: 𝐵𝑝 ← 𝐵. Then, 𝐵𝑝 .𝑒𝑝𝑜𝑐ℎ < 𝐵.𝑒𝑝𝑜𝑐ℎ by virtue of blocks only

extending blocks from previous epochs. We know 𝐵 is justified, so

by quorum intersection, at least
1

3
of the network stake voted on

𝐵, and one of the participants must be honest. However, this is a

contradiction since 𝐵𝑙 ’s parent is 𝐵𝑝 , which is in a lower epoch

than 𝐵.

Case 3: 𝐵.𝑒𝑝𝑜𝑐ℎ = 𝐵𝑝 .𝑒𝑝𝑜𝑐ℎ. If 𝐵 = 𝐵𝑝 , then 𝐵 ← 𝐵𝑙 ← 𝐵′. How-
ever, this is a contradiction, as we know they conflict. In the case

where 𝐵! = 𝐵𝑝 , since 𝐵 is justified, 𝐵𝑙 must contain an attestation

pointing to 𝐵 as the source. Similarly, since 𝐵𝑙 ’s parent is 𝐵𝑝 , 𝐵𝑙
must also contain an attestation with a 𝐵𝑝 as the source. However,

this forms a contradiction.

Lemma 3. If block 𝐵 is committed by an honest replica, then for
every justified block 𝐵′ where 𝐵.𝑒𝑝𝑜𝑐ℎ < 𝐵′ .𝑒𝑝𝑜𝑐ℎ < 𝐵∗ .𝑒𝑝𝑜𝑐ℎ,
𝐵 ← 𝐵′.

Proof. Consider the contradiction where a justified block 𝐵′ exists
s.t. 𝐵.𝑒𝑝𝑜𝑐ℎ < 𝐵′ .𝑒𝑝𝑜𝑐ℎ < 𝐵∗ .𝑒𝑝𝑜𝑐ℎ and 𝐵 ↚ 𝐵′. We know since

𝐵′ is justified it must have an attestation where 𝐵′ is the target.
Through lemma 1, we know 𝐵′ must have an ancestor block that

contains an equivocation proof for epoch 𝐵.𝑒𝑝𝑜𝑐ℎ. Since 𝐵 ← 𝐵∗

and 𝐵 ↚ 𝐵′, we know 𝐵 ↚ 𝐵∗. By Lemma 1, we know 𝐵∗ must

also have an ancestor block with an equivocation proof for epoch

𝐵′ .𝑒𝑝𝑜𝑐ℎ. However, this is a contradiction because an honest replica
committed 𝐵, as it checked for a conflicting ancestor of 𝐵∗ and did

not find a conflicting vote, yet an equivocation proof exists for 𝐵′.

Lemma 4. If an honest replica commits block 𝐵 after receiving
justified block 𝐵 𝑗 , then for every valid attestation with target block
𝐵′ s.t. 𝐵′ .𝑒𝑝𝑜𝑐ℎ > 𝐵 𝑗 .𝑒𝑝𝑜𝑐ℎ, then 𝐵 ← 𝐵′.

Proof Sketch. We sketch this property via induction. In the base

case, we consider the case where we inspect the epoch after our

current justified checkpoint, denoted as 𝑒 = 𝐵.𝑒𝑝𝑜𝑐ℎ + 1. We know

that every block in an epoch after 𝐵 must extend 𝐵, given by Lem-

mas 1 and ??. Inspecting 𝐵 𝑗 ’s parent block 𝐵𝑝 , we know that since

𝐵 𝑗 is justified, it must have attestations that specify 𝐵 𝑗 as the target

epoch. Since we know epoch 𝐵 is consecutive and 1 epoch before 𝐵 𝑗 ,
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𝐵 = 𝐵𝑝 . Therefore, we know 𝐵 ← 𝐵′. We can also loosely inducton

this for cases where 𝐵 and 𝐵′ are not across contiguous epochs. We

can use the same argument of justification to show that all parents

of 𝐵′ that are justified must also extend 𝐵, by Lemmas 1 and 2. We

know that epochs after 𝐵 must extend 𝐵, so we see that 𝐵 ← 𝐵′.

Lemma 5. If an honest validator commits block 𝐵, then every
justifed block 𝐵′ s.t. 𝐵.𝑒𝑝𝑜𝑐ℎ < 𝐵′ .𝑒𝑝𝑜𝑐ℎ, must contain 𝐵 in it’s chain
𝑐ℎ𝑎𝑖𝑛(𝐵′). We can also express this as 𝐵 ← 𝐵′.

Proof Sketch. Using lemmas 1, 2, 3, we know a justified block 𝐵′

s.t. 𝐵.𝑒𝑝𝑜𝑐ℎ < 𝐵′ .𝑒𝑝𝑜𝑐ℎmust extend 𝐵. By Lemma 4, any attestation

where 𝐵.𝑒𝑝𝑜𝑐ℎ < 𝐵′ .𝑒𝑝𝑜𝑐ℎ must also extend 𝐵. Thus, any justified

block in an epoch after 𝐵′ must also extend 𝐵.

Lemma 6. For any blocks 𝐵 and 𝐵′ committed by an honest val-
idator, either 𝐵 ← 𝐵′ or 𝐵′ ← 𝐵′.

Proof Sketch. By Lemma 1, we know𝐵 ≠ 𝐵′. Therefore, if𝐵.𝑒𝑝𝑜𝑐ℎ <

𝐵′ .𝑒𝑝𝑜𝑐ℎ, Lemma 5 tells us 𝐵 ← 𝐵′. Else, also by Lemma 5, we know

𝐵′ ← 𝐵.

4.2.2 Plausible Liveness Proof. Similar to the work in [6], we see

that Gasper-Siesta is amodification to the finality rule that Ethereum

uses. However, it does not modify the underlying fork-choice rule

protocol, LMD-GHOST, so we only concern ourselves with prov-

ing that the plausible liveness properties of Gasper-Siesta does not

change from Casper. As long as satisfy this property, we can show

liveness of the chain.

Definition 7 (Ethereum Formalities). Let function 𝐿𝐽 (𝐵) be de-
fined as a function to retrieve the last justified block in the chain

𝑐ℎ𝑎𝑖𝑛(𝐵). Let function 𝐸𝐵𝐵(𝐵, 𝑗) be defined as a function to re-

trieve the boundary block, or most recent block in epoch 𝑗 , of chain

𝑐ℎ𝑎𝑖𝑛(𝐵).

Definition 8 (Chain Stability). Drawing from [6], we say a chain

𝑐 = 𝑐ℎ𝑎𝑖𝑛(𝐵) at an epoch 𝑗 is stable if the last justified checkpoint

at the boundary block of epoch 𝑗 is block 𝐵′ from epoch 𝑗 − 1. More

formally, 𝐿𝐽 (𝐸𝐵𝐵(𝐵, 𝑗)) = (𝐵′, 𝑗 − 1).

To show that Gasper-Siesta satisfies plausible liveness, we prove

the following lemma.

Lemma 7. If at least 2

3
of the network stake is honest, then it is

always possible for a new block 𝐵 to be finalized with honest validators
that follow the protocol after GST.

Proof Sketch. Consider an arbitrary epoch 𝑗 and arbitrary slot

within the epoch 𝑖 , in a network after GST. We do not consider

the case before GST, as we can make no guarantees about the

underlying protocol functioning correctly under asynchrony. Due

to plausible liveness, we can plausibly assume the proposer of

slot 𝑖 produces block 𝐵 after running LMD-GHOST honestly on

its previous slot. To show plausible liveness holds true for the

next epoch, we must show 𝑐ℎ𝑎𝑖𝑛(𝐵) is stable at the beginning of

epoch 𝑗𝑘1 , where 𝑗 < 𝑗𝑘1 . We know that the network must restore

some synchrony to make progress under LMD-GHOST, so in an

arbitrary 𝑗𝑘1 where we partial synchrony is restored, we know

at least
2

3
of the network stake is honest, so they can attest to 𝐵

or arbitrary descendant 𝐵∗ s.t. 𝐵 ← 𝐵∗. Thus, in epoch 𝑗𝑘1 , it is

plausible for a descendant 𝐵∗ to include the attestations s.t. 𝐵 is

justified, implying 𝑐ℎ𝑎𝑖𝑛(𝐵∗) is also stable in epoch 𝑗𝑘1 . Therefore,

we have a supermajority link between 𝐵’s parent block in epoch

𝑗𝑘0 and 𝐵 in epoch 𝑗 , shown as

(
𝐵′, 𝑗𝑘0

)
→𝐽 (𝐵, 𝑗)

Now, we can relax our assumptions of synchrony and show

plausible liveness under the 𝑘 = 1 finalization. Assuming that there

is asynchrony after epoch 𝑗𝑘1 , we want to show that any epoch

𝑗𝑘1 s.t. 𝑗 < 𝑗𝑘1 can plausibly finalize if that epoch is after GST and

has
2

3
honest network stake and an honest proposer. Similar to

our above analysis, after GST, we know that at least
2

3
of honest

network stake must vote on an honest leader’s proposal 𝐵∗. The
honest validator’s proposal receives at least

2

3
of honest stake’s

attestations, as incorrect blocks would not receive incorrect votes.

Thus, we know that 𝐵′ can be finalized, as

(
𝐵′, 𝑗𝑘0

)
→𝐽 (𝐵, 𝑗) →𝐽(

𝐵∗, 𝑗𝑘1
)
. Therefore, we satisfy plausible liveness in the simple 𝑘 =

1 finalization case. We can induct and show this applies to any

arbitrary 𝑘 non-contiguous honest leaders.

4.2.3 Message Complexity. Gasper-Siesta has similar message com-

plexity across the fast- and slow-view commit cases. This is due

to the slot and networking design of Ethereum. In the fast-view

commit, the leader sends a single block to all replicas in committees.

This step sends𝑂 (1) messages to𝑂 (𝑛) replicas. In the voting phase,

each replica sends 𝑂 (1) messages to all other replicas, leading to

𝑂 (𝑛2)message complexity. In the slow-view commit, we also expect

message complexity of 𝑂 (𝑛2) words, as we have leaders broadcast
messages to replicas, and then replicas broadcast messages to each

other. To be more precise, we expect𝑂 (𝑘𝑛2) words to be sent before
we commit across both scenarios, where 𝑘 is the number of epochs

between justification and finalization. In fast-view commits, we

expect 𝑘 to be 2, and in slow-view commit we expect it to be larger,

but in the same order of magnitude. We do more analysis on this in

section 4.4.

We see both cases have the same message complexity due to the

broadcasting of attestations in the gossip layer between committees.

Due to the committee and sharding-oriented design of Ethereum,

replicas must gossip their votes to all other replicas in the voting

phase, leading to 𝑂 (𝑛2) words sent.

4.3 Implementing in Ethereum’s Consensus
Specifications

Etheruem core developers have developed a Python implementa-

tion of the Ethereum consensus protocol, known as the Ethereum

consensus specifications[9]. The consensus specifications provide

a common abstraction of the core data structures and functional-

ity of the blockchain at a high level. Various parts of a validator’s

core duties, such as signing attestations, producing blocks, slashing,

and networking, are defined in the specification. Most importantly,

the specification provides a common abstraction to generate test

correctness and functionality of new modifications to the protocol.

This is useful for our work, as we can test the correctness of our

Gasper-Siesta changes for finality in non-contigious epochs with

honest leaders. Furthermore, it provides a simple method for con-

sensus client developers to integrate our work into their replica

implementations, such as Lighthouse and Prysm.
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Implementing the Gasper-Siesta changes into the Ethereum con-

sensus specifications was a fairly small code diff ontop of the exist-

ing specification. Our modifications changed some of the core data

structures used by the specification, outlined in Appendix A. We

also modify some of the core slot, epoch, and attestation processing

functionality of the consensus specification. We summarize the

changes here and discuss why we deemed the changes necessary.

Weweremotivated tominimize the code delta asmuch as possible to

showcase the feasibility and simplicity of our protocolmodifications.

Furthermore, maintaining a small delta motivates Ethereum consen-

sus client implementations, such as Lighthouse[21] and Prysm[20]

to implement these changes to make Ethereum more resilient.

We update the JUSTIFICATION_BITS_LENGTH constant of the

protocol to alignwith the finalitywindowwewant tomake Ethereum

follow. In theory, Gasper-Siesta can finalize between any window of

epochs: there is no bound on the window size for finality. However,

to ensure validators are not overburdened with managing too much

state over large epoch windows. A JUSTIFICATION_BITS_LENGTH
of 256 indicates Ethereum can finalize across at most 256 epochs, ap-

proximately 27 hours. We believe this is a realistic balance between

a sufficiently large window to finalize over in the case of network

asynchrony or replica failures and not storing too much historical

state. We also add a HISTORICAL_FINALITY_WINDOW constant to

track the same concept. We choose to decouple the two constants

is because JUSTIFICATION_BITS_LENGTH already exists in the pro-

tocol, and reusing across our new changes can be misleading.

We modify Attestations and BeaconState classes in the con-

sensus specification to track additional state required for our Gasper-

Siesta commit rule. Attestation represents a vote object and

BeaconState represents a replica’s state. We add an additional

attribute to Attestation to track the voting replica’s view of the

chain when creating the vote. We do so to allow replicas to de-

termine whether a block may have been committed between the

replica’s view of the previous justified checkpoint to the current

block produced. In periods of network asynchrony, a replica may

not have the full network view of the chain. Thus, this leaves us

with two options. The first is to attach each replica’s view of the

chain to each replica. This leads to relatively-bloated attestation

messages, but self-contained messages. The second approach is to

use a synchronization step during the vote propagation and pro-

cessing phase of the slot that uses gossip to acquire the necessary

slots that a replica is missing. However, this can add additional

latency to the protocol and require extra network infrastructure

at the peer-to-peer gossip layer. We modify the BeaconState con-

tainer to store the historical attestations and historical view of the

chain. The traditional Ethereum consensus spec does not store the

"true" chain history with forks and branches, as it models a correct

validator’s performance. Thus, we had tomodify the consensus spec-

ification to store a full chain via a ChainHistory abstraction. Each

ChainHistory object can be viewed as a tuple of the current block

root, parent block root, current slot, and parent slot. A replica uses

the data stored in the BeaconState and Attestations to determine

whether its most recent justified checkpoint can be finalized across

any honest leaders. We add an attribute, historical_chain, that
tracks this generalized version of the chain history. We can store up

to 1 ChainHistory object per slot across each of the epochs in our fi-
nality window. We store an attribute, historical_attestations,

that tracks the votes our replica has seen over the same finality

window. For brevity, we do not discuss the existing attributes in

the consensus specification for both data structures.

Listing 1: Attestation pseudocode in Ethereum
1 class AttestationData(Container):

2 slot: Slot

3 index: CommitteeIndex

4 # LMD GHOST vote

5 beacon_block_root: Root

6 # FFG vote

7 source: Checkpoint

8 target: Checkpoint

9

10 class Attestation(Container):

11 aggregation_bits: Bitlist[

MAX_VALIDATORS_PER_COMMITTEE]

12 data: AttestationData

13 signature: BLSSignature

We also update 3 core functions in the consensus specification

that are crucial for processing slots, attestations, and update final-

ity. We modify the process_slot function to manage the state of

our BeaconState.historical_chain, which stores the historical

chain of the current replica. As we see a new slot, we phase out stale

ChainHistory objects stored in the historical chain of the replica.

After removing stale chain history, we prepend the new chain

history object received by the validator. We do the state removal

when processing a new epoch for the historical_attestations
in a replica’s state in the process_epoch function. We update

process_attestation to insert new attestations into

historical_attestations of a replica. We do careful bookkeep-

ing to ensure attestations are added correctly and old attestations

are discarded. Our main contribution is to the commit rule, found

in weigh_justification_and_finalization. We maintain the

core logic in the function that updates justification checkpoints by

weighing the attestations and network state, as this is not changed

by our Gasper-Siesta commit rule. We only replace the finality logic

to relax 𝑘 + 1 consecutive honest leaders to 𝑘 + 1 non-contiguous
honest leaders. To achieve this, we iterate between the previous

justified checkpoint of a replica to the current slot. In each step, we

check if any other block may have been committed in the epochs be-

tween the previous justified checkpoint and the current slot. If there

may have been such an epoch or block, we abort the finalization

process and update our local state accordingly. If we do not detect

such an epoch or block, we check if there are 𝑘 + 1 justified check-

points between the previous checkpoint and the current epoch. If

both criteria are satisfied, we know there are 𝑘 + 1 non-contiguous
justified checkpoint, allowing our previous justified checkpoint to

be finalized!

Listing 2: Validator state pseudocode in Ethereum
1 class BeaconState(Container):

2 slot: Slot

3 justification_bits: Bitvector[

JUSTIFICATION_BITS_LENGTH]

9
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4 previous_justified_checkpoint:

Checkpoint

5 current_justified_checkpoint:

Checkpoint

6 finalized_checkpoint: Checkpoint

7 historical_attestations: List[List[

Attestation , MAX_ATTESTATIONS],

SLOTS_PER_EPOCH *

HISTORICAL_EPOCH_FINALITY_WINDOW]

8 historical_chain: List[ChainHistory ,

SLOTS_PER_EPOCH *

HISTORICAL_EPOCH_FINALITY_WINDOW]

Implementing our modifications in the protocol lead to roughly

75 lines of code delta within the Ethereum consensus specifica-

tion. This includes the core data structure changes, core function

changes, and helper functions. We also implemented tests for our

changes to ensure parity with existing Ethereum functionality with

respect to upgrading the network to use our modifications and cor-

rectness of our data structures. Most importantly, we also test for

correctness of finalization under various scenarios, including the

existing Ethereum tests as well as tests ensuring finalization across

non-contiguous epochs. We implemented our work in Python and

use existing libraries within the official Ethereum consensus specifi-

cations. The official Ethereum spec also allows potential consensus

client implementations to easily generate test vectors to verify

correct implementations of Gasper-Siesta across clients.

4.4 Expected Commit Latency Improvement
Theorem 9. With randomized leader election, Gasper-Siesta com-

mits a block in expected (𝑘+1)𝑛
𝑛−𝑓 epochs after GST and with omission

faults only.

Proof : Inspired by [1], we can prove this theorem holds. Gasper-

Siesta needs 𝑘 + 1 non-contiguous epochs to commit as a CLSO

protocol. The probability of an honest leader being selected is given

by 𝑝 =
𝑛−𝑓
𝑛 . We know leaders are selected independently, so we

can assign 𝑘 + 1 random variables to each leader, denoted by 𝐿𝑖 ∈
{𝐿1, 𝐿2, . . . , 𝐿𝑘 }. The expected number of rounds until we select the

𝑖-th honest leader is given by E[𝐿𝑖 ] = 1

𝑝 = 𝑛
𝑛−𝑓 . Over 𝑘 + 1 rounds,

we see 𝐿 =
∑𝑘
𝑖=0 E[𝐿𝑖 ] =

𝑘+1
𝑝 =

(𝑘+1)𝑛
𝑛−𝑓 .

Theorem 10. With randomized leader election, after GST, the
expected number of rounds to commit a block in traditional Gasper

is 𝐿 =
(1−𝑝𝑘 )
(1−𝑝 )𝑝𝑘 , where 𝑝 =

𝑛−𝑓
𝑛 and 𝑘 is the number of consecutive

honest leaders required to commit.

This result is shown in [10].

Using the parameter 𝑘 = 3, similar to what is used in Ethereum

in production today, we can compute the difference in expected

commit latency for Gasper and Gasper-Siesta. We can assume the

probability of an honest node being selected is at least
2

3
; other-

wise, the network would not function as a valid proof-of-stake

network. Thus, using the formulas from above, the expected com-

mit latency of Gasper is 19 epochs and the expected commit latency

of Gasper-Siesta is 4.5 epochs, in partially synchronous network

conditions. Thus, Gasper can take up to 2 hours in production under

partial synchrony conditions, whereas Gasper-Siesta takes about

28 minutes.

One may argue in practice Ethereum and Gasper do not take 19

epochs to finalize on average. However, our contribution bounds

the worst case commit latency to be significantly better than Gasper

today. Drawing from BeeGees[1], we see that AHL protocols have

a worst case commit latency of 18 rounds, whereas CHL protocols

with 𝑘 = 3 have a worst case commit time of 76 rounds. Gasper-

Siesta should compare to Gasper in the same fashion.

5 CONCLUSION
Our contribution, Gasper-Siesta, combines the novel techniques

from [1] to the Ethereum proof-of-stake consensus protocol to re-

duce the expected commit latency. We use novel techniques to

relax the consecutive honest leaders property of the Casper finality

gadget to any honest leaders across potentially non-contiguous

epochs. We prove safety, liveness, and message complexity proper-

ties of our contribution. We also do analysis to show the expected

commit latency of our work comapred to traditional Casper and

showcase how we improve average and worst-case commit latency.

We also implement our work in the official Ethereum consensus

specification, showcasing the small protocol changes required to

implement our protocol modifications as well as provide a baseline

for well-maintained Ethereum consensus clients. We hope our work

can make production Ethereum more resilient to various Byzantine

scenarios and improve average-case epoch commitment to make

the protocol more stable in the long-run.
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A ETHEREUM CONSENSUS SPECIFICATION
DATA STRUCTURE DELTAS

We specify our modification to the official Ethereum consensus

specification’s data structures to test the Gasper-Siesta commit

rule. Ethereum follows a custom serialization format, known as

simple serialize (SSZ). SSZ is a deterministic serialization protocol

that efficiently serializes and Merklizes data. Thus, the Container
keywords indicate a Python class can be serialized using SSZ. All

attributes in a class is serializable using SSZ as a primitive or com-

pound type.

To summarize the data structure changes, we update some con-

stants of the protocol. Then, we add an abstraction to store the chain

history for slots and the blocks produced. We use this to model

the relaxation of the commit rule and verify whether our finalized

block is safe. Finally, we modify attestations and validator’s state

to store this additional metadata.

Listing 3: Update constants to denote how many epochs we
look back to finalize.

1 # 256 epochs is approx 27 hours

2 JUSTIFICATION_BITS_LENGTH = 256

3 HISTORICAL_FINALITY_WINDOW = 256

Listing 4: An abstraction to store an explicit chain of slots
and each slot’s block roots.

1 class ChainHistory(Container):

2 root: Root

3 parent_root: Root

4 slot: Slot

5 parent_slot: Slot

Listing 5: Extending attestations to store the replica’s justifi-
cation chain.

1 class Attestation(phase0.Attestation):

2 justification_chain: List[

ChainHistory , SLOTS_PER_EPOCH *

HISTORICAL_FINALITY_WINDOW]

Listing 6: Modification to validator’s state to run Gasper-
Siesta commit rule.

1 class BeaconState(phase0.BeaconState):

2 historical_attestations: List[List[

Attestation , MAX_ATTESTATIONS],

SLOTS_PER_EPOCH *

HISTORICAL_EPOCH_FINALITY_WINDOW]

3 historical_chain: List[ChainHistory ,

SLOTS_PER_EPOCH *

HISTORICAL_EPOCH_FINALITY_WINDOW]

Listing 7: Modification to slot processing function.
1 def process_slot(state: BeaconState) ->

None:

2 # Cache state root

3 previous_state_root = hash_tree_root(

state)

4 state.state_roots[state.slot %

SLOTS_PER_HISTORICAL_ROOT] =

previous_state_root

5 # Cache latest block header state

root

6 if state.latest_block_header.

state_root == Bytes32 ():

7 state.latest_block_header.

state_root =

previous_state_root

8 # Cache block root

9 previous_block_root = hash_tree_root(

state.latest_block_header)

10 state.block_roots[state.slot %

SLOTS_PER_HISTORICAL_ROOT] =

previous_block_root

11
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11 + state.historical_chain [1:] = state.

historical_chain [:( SLOTS_PER_EPOCH *

HISTORICAL_EPOCH_FINALITY_WINDOW) - 1]

12 + state.historical_chain [0] =

ChainHistory(

13 + block_root=previous_block_root ,

14 + parent_root=previous_state_root ,

15 + slot=state.slot ,

16 + parent_slot=state.slot - 1 if

state.slot > 0 else 0,

17 + )

Listing 8: Modification to slot processing function.
1 def process_attestation(state:

BeaconState , attestation: Attestation)

-> None:

2 data = attestation.data

3 assert data.target.epoch in (

get_previous_epoch(state),

get_current_epoch(state))

4 assert data.target.epoch ==

compute_epoch_at_slot(data.slot)

5 assert data.slot +

MIN_ATTESTATION_INCLUSION_DELAY <=

state.slot <= data.slot +

SLOTS_PER_EPOCH

6 assert data.index <

get_committee_count_per_slot(state

, data.target.epoch)

7

8 committee = get_beacon_committee(

state , data.slot , data.index)

9 assert len(attestation.

aggregation_bits) == len(committee

)

10

11 pending_attestation =

PendingAttestation(

12 data=data ,

13 aggregation_bits=attestation.

aggregation_bits ,

14 inclusion_delay=state.slot - data

.slot ,

15 proposer_index=

get_beacon_proposer_index(

state),

16 )

17

18 if data.target.epoch ==

get_current_epoch(state):

19 assert data.source == state.

current_justified_checkpoint

20 state.current_epoch_attestations.

append(pending_attestation)

21 else:

22 assert data.source == state.

previous_justified_checkpoint

23 state.previous_epoch_attestations

.append(pending_attestation)

24

25 + slots_ago = state.slot - attestation

.data.slot

26 + assert slots_ago <=

HISTORICAL_EPOCH_FINALITY_WINDOW *

SLOTS_PER_EPOCH

27 + state.historical_attestations[

slots_ago ]. append(attestation)

28

29 # Verify signature

30 assert is_valid_indexed_attestation(

state , get_indexed_attestation(

state , attestation))

Listing 9: Modification to slot processing function.
1 +def get_conflicting_attestation_stake(

state: BeaconState , slot: Slot ,

block_root: Root) -> Gwei:

2 + """

3 + Return the total stake of validators

that made conflicting attestations

for the given slot and block root.

4 + """

5 + conflicting_stake = Gwei (0)

6 + attestation_index = state.slot -

slot

7 + assert attestation_index <

SLOTS_PER_EPOCH *

HISTORICAL_EPOCH_FINALITY_WINDOW , f"

Attestation is too old to get

conflicting historical conflicting

stake: {state.slot}, {slot}"

8 + for attestation in state.

historical_attestations[

attestation_index ]:

9 + if attestation.data.target.root

!= block_root or not

is_in_justified_checkpoint_chain(state

, attestation):

10 + conflicting_stake += sum(

state.validators[index].

effective_balance for index in

get_attesting_indices(state ,

attestation))

11 + return conflicting_stake

12
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