
Scalable Lifelong Imitation Learning for Robot Fleets

Ryan Hoque

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-69

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-69.html

May 9, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Scalable Lifelong Imitation Learning for Robot Fleets

by

Ryan Hoque

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Ken Goldberg, Chair
Pieter Abbeel
Anca Dragan
Shuran Song

Spring 2024

Scalable Lifelong Imitation Learning for Robot Fleets

Copyright 2024
by

Ryan Hoque

1

Abstract

Scalable Lifelong Imitation Learning for Robot Fleets

by

Ryan Hoque

Doctor of Philosophy in Computer Science

University of California, Berkeley

Ken Goldberg, Chair

Recent breakthroughs in deep learning have revolutionized natural language processing, com-
puter vision, and robotics. Nevertheless, reliable robot autonomy in unstructured environ-
ments remains elusive. Without the Internet-scale data available for language and vision,
robotics faces a unique chicken-and-egg problem: robot learning requires large datasets from
deployment at scale, but robot learning is not yet reliable enough for deployment at scale.
We propose a scalable human-in-the-loop learning paradigm as a potential solution to this
paradox, and we argue that it is the key ingredient behind the recent growth of large-scale
robot deployments in applications such as autonomous driving and e-commerce order fulfill-
ment. We develop novel formalisms, algorithms, benchmarks, systems, and applications for
this setting and evaluate its performance in extensive simulation and physical experiments.

This dissertation is composed of three complementary parts. In Part I, we propose novel
algorithms and systems for interactive imitation learning, in which autonomous robots can
actively query human supervisors for assistance when needed. In Part II, we introduce in-
teractive fleet learning, which generalizes interactive imitation learning to multiple robots
and multiple human supervisors. In Part III, we introduce and study systems for remote
supervision of robot fleets over the Internet, enabling interactive fleet learning at a distance.
Throughout this thesis, we design algorithms and systems with an emphasis on scalability
in terms of the number of robots, number of humans, amount of human supervision re-
quired, dataset size, and distribution of physical locations. We conclude with a discussion
of limitations and opportunities for future work.

i

To my parents, and to all of my teachers.

ii

Contents

Contents ii

1 Introduction 1
1.1 Scalable Interactive Imitation Learning . 2
1.2 Interactive Fleet Learning . 3
1.3 Systems for Remote Fleet Supervision . 3
1.4 Related Work . 4
1.5 Thesis Contributions . 6

I Scalable Interactive Imitation Learning 7

2 LazyDAgger: Reducing Context Switching 8
2.1 Introduction . 8
2.2 Background and Related Work . 10
2.3 Problem Statement . 11
2.4 Preliminaries: SafeDAgger . 12
2.5 LazyDAgger . 13
2.6 Experiments . 16
2.7 Discussion and Future Work . 21

3 ThriftyDAgger: Budget-Aware Novelty and Risk 22
3.1 Introduction . 22
3.2 Related Work . 24
3.3 Problem Statement . 25
3.4 ThriftyDAgger . 26
3.5 Experiments . 29
3.6 Discussion and Future Work . 33

4 IntervenGen: Interventional Data Generation 35
4.1 Introduction . 35
4.2 Related Work . 37

iii

4.3 Preliminaries . 39
4.4 IntervenGen . 40
4.5 Experiment Setup . 42
4.6 Experiments . 45
4.7 Conclusion . 48

II Interactive Fleet Learning 50

5 Fleet-DAgger: Interactive Robot Fleet Learning 51
5.1 Introduction . 51
5.2 Related Work . 52
5.3 Interactive Fleet Learning Problem Formulation 54
5.4 Interactive Fleet Learning Algorithms . 55
5.5 Interactive Fleet Learning Benchmark . 57
5.6 Experiments . 59
5.7 Limitations and Future Work . 62

6 IIFL: Implicit Interactive Fleet Learning 63
6.1 Introduction . 63
6.2 Preliminaries and Related Work . 64
6.3 Problem Statement . 67
6.4 Approach . 68
6.5 Experiments . 69
6.6 Limitations and Future Work . 73

III Systems for Remote Fleet Supervision 75

7 Real-Time Remote Robot Manipulation 76
7.1 Introduction . 76
7.2 Related Work . 77
7.3 The Google Reach Testbed . 78
7.4 Garment Folding Algorithms . 81
7.5 Experiments . 85
7.6 Conclusion and Future Work . 89

8 FogROS2-SGC: Cloud Robotics with Secure Global Connectivity 91
8.1 Introduction . 91
8.2 Related Work . 94
8.3 Ten FogROS2-SGC Features . 95
8.4 FogROS2-SGC Design . 97
8.5 Evaluation . 102

iv

8.6 Conclusions and Limitations . 107

IV Conclusion 108

9 Conclusion 109
9.1 Summary . 109
9.2 Limitations and Opportunities for Future Work 110
9.3 Broader Perspective on Robot Learning . 112

Bibliography 113

V Appendices 137

A Appendix for Chapter 2 138
A.1 MuJoCo . 138
A.2 LazyDAgger Switching Thresholds . 139
A.3 Fabric Smoothing in Simulation . 139
A.4 Fabric Manipulation with the ABB YuMi . 144

B Appendix for Chapter 3 147
B.1 Algorithm Details . 147
B.2 Hyperparameter and Implementation Details 150
B.3 Environment Details . 152
B.4 User Study Details . 152

C Appendix for Chapter 5 155
C.1 Mathematical Details of the IFL Problem Formulation 155
C.2 Fleet-DAgger Algorithm Details . 156
C.3 Additional Experiment Details . 157
C.4 Hyperparameter Sensitivity and Ablation Studies 159

D Appendix for Chapter 6 165
D.1 Jeffreys Divergence Identity . 165
D.2 Additional Details on Implicit Models . 165
D.3 Uncertainty Estimation with Larger Ensembles 166
D.4 Additional Experimental Details . 169

E Appendix for Chapter 7 173
E.1 Flattening Algorithm Details . 173
E.2 Folding Algorithm Details . 178
E.3 Graphical User Interface . 179

v

E.4 Action Primitive Details . 179
E.5 Ablation Studies . 184

vi

Acknowledgments

This year marks my eighth year in a row at the University of California, Berkeley in the
Electrical Engineering and Computer Sciences (EECS) department. I began my studies here
as a wide-eyed freshman undergraduate in 2016 and entered the Ph.D. program in 2020. My
time here has been a transformative one of intense personal growth, learning, and fun, and
I owe many individuals a debt of gratitude.

First, to the EECS faculty and staff. I have always had a love of learning throughout my
life, and here I’ve been able to indulge it to the fullest extent. I’ve taken dozens of courses
over the years, each one more fascinating than the last. The EECS curriculum is truly
exceptional, with an attention to detail and rigor that I deeply admire as well as dedicated
and inspiring instructors. The amount of work that happens behind the scenes to offer these
courses so smoothly is something I had taken for granted until I got the chance to serve on
the other side of things as a graduate student instructor near the end of my Ph.D. Thanks
especially to my committee members Prof. Anca Dragan and Prof. Pieter Abbeel, whose
teaching of CS 188 and CS 287 respectively first piqued my interest in robotics and AI.
Thanks also to EECS staff (especially Shirley Salanio and Jean Nguyen) and BAIR staff
(especially Angie Abbatecola), who have been consistently helpful throughout my Ph.D.

My path into research and a Ph.D. was much more of a serendipitous accident than a
premeditated effort. I owe a great deal to three people in particular. First is Prof. Daniel
Seita, who was my research mentor when I first joined the AUTOLab as a junior in 2018 and
is now a professor at USC. I came in knowing virtually nothing about robotics research, and
Daniel patiently mentored me over the course of two years as we worked closely on several
research projects. Research is challenging, and after a few months I felt that I was in over
my head and wasn’t cut out for it. Daniel convinced me to keep going and generously helped
me through the research roadblocks I was facing at the time, and since then I have come to
love research.

Second is Dr. Ashwin Balakrishna, who was a Ph.D. student in the AUTOLab two
years ahead of me. We started working together in 2019, and he then became my closest
collaborator during the first two years of my Ph.D. from 2020 to 2022. Much of the research
in this thesis grew out of our frequent discussions and would not be possible without him,
and he has been a role model for me throughout my Ph.D. I have grown significantly as
a researcher under his mentorship and I continue to learn a great deal from our friendship
today.

Third is my advisor, Prof. Ken Goldberg, who took a chance on me as an undergraduate
eager to prove myself in the lab. It has been an absolute pleasure to be in the AUTOLab
for the last six years, and Prof. Goldberg has been one of the biggest mentors in my life.
He has given extremely detailed and helpful feedback on multiple iterations of every single
manuscript and presentation I’ve worked on. He has skillfully guided me toward fruitful
research directions based on his decades of experience while simultaneously giving me the
freedom to deeply pursue my interest in imitation learning. He is also a perpetual champion

vii

of my work and has regularly given me invaluable career opportunities throughout my time
here. I look forward to fun research discussions for many years to come.

Countless others deserve acknowledgements, but for the sake of brevity I’ll highlight only
a small fraction. To my senior collaborators, especially Prof. Daniel Brown, Dr. Ellen
Novoseller, and Dr. Brijen Thananjeyan: thank you for all your valuable advice and men-
torship, and it has been a joy working together over the years. To the undergraduate and
Master’s students I’ve had the opportunity to mentor and work with, especially Satvik
Sharma, Gaurav Datta, Kaushik Shivakumar, and Karthik Dharmarajan: I have been con-
sistently impressed by your talent, and it has been very rewarding to watch you become
skilled researchers. To my collaborators at NVIDIA during my recent internship there, es-
pecially Dr. Ajay Mandlekar: thank you for your consistent generosity with your time and
valuable perspective on imitation learning; I feel that as a result I have grown significantly
as a researcher in a short time. To my Ph.D. student peers in my lab and others, especially
Justin Kerr and Rohan Taori: your research trajectories have been very inspiring to watch
and I’ve learned a lot from our frequent discussions and friendship. Finally, to my family
and friends, especially Chester Leung, Rohen Sukkawala, Aditya Ganapathi, Chanan Walia,
Amog Kamsetty, my brother, and my parents: thank you for your consistent support and
friendship over the last 10+ years of my life. I would not have had the tenacity and optimism
required to finish my Ph.D. without all of you, so it is as much your accomplishment as it is
mine.

1

Chapter 1

Introduction

Machines that are operated by humans are capable of human-level dexterity [278]. With
teleoperation, such operation can be performed at a distance, enabling applications from
driving a vehicle remotely over the Internet to exploring the surface of Mars. However, fully
autonomous robots still struggle with achieving this level of dexterity in the same range of
unstructured environments.

Meanwhile, in the last few years, large high-capacity models trained with supervised
machine learning on Internet-scale data have achieved dramatic breakthroughs in natural
language processing and computer vision [206, 186, 10]. Can we apply a similar supervised
learning recipe to robotics, using human control data collected via teleoperation?

This approach presents three major challenges. First, because robots must execute their
control policies in physical environments rather than imitate static datasets, they encounter
distribution shift between the states they were trained on and the states they visit during
policy execution. Second, real-world data distributions consist of “long-tail” phenomena:
a large variety of low-probability data that is unlikely to appear at training time. Third,
teleoperated robot control data is not freely available on the Internet. Robot control data is
extremely scarce compared to text and image data, and the data scaling laws are unknown.
We have a catch-22: robot learning requires large datasets from deployment at scale, but
robot learning is not yet reliable enough to be deployed at scale.

Despite these challenges, large-scale deployments of robot learning systems have begun
to emerge in industrial and commercial settings ranging from autonomous driving to e-
commerce order fulfillment. How is this possible? A popular approach is to fall back on
human teleoperators when robot autonomy is unreliable [28, 240, 154, 50].

Rather than considering robot autonomy as a binary decision variable, where a system is
either fully teleoperated or fully autonomous, we consider the setting of supervised autonomy,
in which systems are partially autonomous and partially teleoperated. With supervised
autonomy, an autonomous robot system that encounters an edge case can cede control to
a human supervisor. This setting confers several compelling advantages: (1) the degree of
autonomy can improve continuously over time; (2) a single human can supervise multiple
robots; and (3) the human-robot team can be deployed immediately without full robot

CHAPTER 1. INTRODUCTION 2

autonomy. Moreover, when deployed with a large robot fleet, more long-tail situations are
encountered and each robot can learn from the experience of the other robots. In this
dissertation, we focus on this idea of supervised autonomy and how it may be implemented
at scale.

This thesis is structured in three parts. In Part I, we propose novel algorithms and
systems for implementing supervised autonomy with interactive imitation learning (IIL), in
which human supervisors can provide corrective interventions during robot policy execution.
In Part II, we explore how scalable IIL algorithms enable the supervision of large robot
fleets with a small set of human supervisors (i.e., where the number of robots exceeds the
number of humans by 10× or more). Then, in Part III, we study systems that enable human
supervision of robot fleets remotely over the Internet.

Putting these components together, we propose a comprehensive approach to supervised
autonomy that both facilitates reliable robot deployment in contemporary society and builds
a potential path toward increasingly capable robot autonomy. A central emphasis through-
out this work is scalability : by minimizing the burden on human supervisors, enabling the
simultaneous supervision of multiple robots, and allowing supervision to come from any-
where on Earth, we design our algorithms and systems to facilitate the scaling of robot data
collection toward the colossal size of modern language and vision datasets.

1.1 Scalable Interactive Imitation Learning

Imitation learning (IL), in which robots learn from human feedback and examples, has
become a leading paradigm for training robot control policies. The simplest approach is
behavior cloning: first a set of human demonstrations are collected via teleoperation, then a
mapping from observations to actions is learned via supervised learning. However, behavior
cloning can lead to a mismatch between the state distribution visited by the human and that
visited by the robot [215]. To address this, interactive imitation learning (IIL) algorithms
such as DAgger [215] and its variants [171, 125, 276] have the robot periodically cede control
to a human supervisor during policy execution for corrective interventions.

In Part I, we propose novel algorithms and systems for the IIL setting. IIL confers
two benefits over behavioral cloning: (1) the human-robot team can provide higher relia-
bility than the autonomous robot alone, and (2) the human intervention data can refine
the robot policy via additional supervised learning. Chapters 2 and 3 present LazyDAg-
ger and ThriftyDAgger, respectively: two novel algorithms for robot-gated IIL, in which the
system autonomously decides when human interventions should occur and actively queries
for human assistance. As opposed to human-gated IIL [125], robot-gated algorithms enable
“on-demand” supervision: the human supervisor does not have to continuously monitor the
system and is only called when necessary. This significantly facilitates scalability by freeing
human attention to attend to other tasks (such as helping other robots). In Chapter 4,
we further explore scalability with IntervenGen, a data generation system for IIL. IL is
notoriously burdensome for human supervisors in terms of data collection time and effort,

CHAPTER 1. INTRODUCTION 3

and IIL is arguably even more burdensome. But how much of the data actually consists of
unique behaviors? From a small budget of only 10 human interventions, IntervenGen can
autonomously synthesize 1000 interventions or more, providing broad coverage of the state
space without any additional burden on the human supervisor.

1.2 Interactive Fleet Learning

In Part II, we investigate how the on-demand supervision of Part I may facilitate the man-
agement of large fleets of robots that significantly outnumber the pool of available human
supervisors. Since robot-gated IIL does not require supervisors to actively monitor the robot
systems, a single human can flexibly supervise multiple robots, given an effective human-to-
robot allocation strategy. In Chapter 5, we propose interactive fleet learning (IFL): the first
formalism for interactive IL with multiple robots and multiple humans. We also introduce
novel algorithms and benchmarks for the IFL setting as well as large-scale empirical analysis
with fleets of 100+ robots in simulation and 4 physical robots. However, with multiple hu-
man supervisors, the human teleoperation policy may be multimodal according to individual
human preferences and proficiency. Accordingly, in Chapter 6, we propose Implicit IFL, an
algorithm that extends IFL by enabling the robot fleet to learn from heterogeneous human
demonstrations and interventions. To do so, we propose a novel technique for estimating
epistemic uncertainty in energy-based models [141].

1.3 Systems for Remote Fleet Supervision

Lastly, in Part III, we consider systems for remote supervision of robot fleets. Mature Inter-
net and telecommunication technology enables real-time robot teleoperation at a distance
[17]. This further facilitates scalability by allowing human supervision to come from any-
where around the globe, regardless of where the robot fleet is operating. Moreover, with
cloud and fog robotics [123], robots are no longer limited to on-board compute and memory
as they can tap into vast cloud computing resources. Chapter 7 studies Reach [266], a pro-
totype commercial remote robot workcell, and how it can be used to facilitate standardized
benchmarking for robotic manipulation. The system enables remote human teleoperation
and closed-loop visuomotor policy execution at 10 Hz over the Internet. Then, in Chap-
ter 8, we propose a cloud robotics platform for securely connecting disjoint Robot Operating
System (ROS) networks. We show that such a system can facilitate real-time robot fleet
operation with robots, compute nodes, and teleoperators distributed around the globe.

CHAPTER 1. INTRODUCTION 4

1.4 Related Work

Interactive Imitation Learning

Imitation learning is an increasingly popular paradigm for robot learning [15, 253, 54, 203,
95, 12]. However, learning from purely offline data often suffers from distribution shift [215,
138], as compounding approximation error leads to states that were not visited by the human.
This can be mitigated with online data collection with interactive imitation learning (IIL)
algorithms such as Dataset Aggregration (DAgger) [215] and its variants [42, 110, 211].
Human-gated IIL algorithms [125, 241, 160] require the human to monitor the robot learning
process and decide when to take and cede control of the system. While intuitive, these
approaches are not scalable to large fleets of robots or the long periods of time involved in
continual learning, as humans cannot effectively focus on many robots simultaneously [45,
200, 46] and are prone to fatigue [177].

In contrast, robot-gated IIL algorithms such as EnsembleDAgger [171] and SafeDAg-
ger [276] allow the robot to solicit interventions from a human when the system deems
necessary. In practice, these algorithms estimate various quantities correlated with task per-
formance [276, 214] and uncertainty [171, 139] and use them to determine when to solicit
interventions. Prior work has proposed intervention criteria which use the novelty of states
visited by the robot [171] or the predicted discrepancy between the actions proposed by the
robot policy and by the supervisor [276]. However, finding intervention criteria that effec-
tively balance task performance with supervisor burden is very challenging; we propose new
methods for improving this balance.

Interactive reinforcement learning (RL) [271, 135, 261, 116, 254, 150] is another ac-
tive area of research in which robots learn from both online human feedback and their
own experience. There has also been recent work that applies conformal prediction [9] to
uncertainty-based intervention criteria for robot planning with large language models [210].

Fleet Learning and Management

For human-robot teams, deciding when to transfer control between robots and humans during
execution is a widely studied topic in the literature of both sliding autonomy [229, 228,
67] and Human-Robot Interaction (HRI). In sliding autonomy, also known as adjustable
autonomy [224, 132] or adaptive automation [234], humans and robots dynamically adjust
their level of autonomy and transfer control to each other during execution [67, 234]. Since
identifying which robot to assist in a large robot fleet can be overwhelming for a human
operator [37, 142, 45, 200, 46], several strategies such as using a cost-benefit analysis to
decide whether to request operator assistance [229] and using an advising agent to filter robot
requests [213] have been proposed to improve the performance of human-robot teams [200,
213, 57] and increase the number of robots that can be controlled [274], a quantity known
as “fan-out” [184]. Other examples include user modeling [229, 228, 200, 57] and studying
interaction modes [32] for better system and interface design [6, 36]. Zheng et al. [279]

CHAPTER 1. INTRODUCTION 5

propose computing the estimated time until stopping for mobile robots and prioritizing
robots accordingly. Ji et al. [112] consider the setting where physical assistance is required
to resume tasks for navigation robots and formalize single-human, multi-robot allocation
as graph traversal. Dahiya et al. [62] formulate the problem of multi-human, multi-robot
allocation during execution as a Restless Multi-Armed Bandit problem. Allocation of humans
to robots has also been studied from the perspectives of queueing theory and scheduling
theory [46, 56, 230, 84, 216, 65]. The vast majority of the human-robot teaming and queueing
theory work, however, does not involve learning; the robot control policies are assumed to
be fixed. In contrast, we study supervisor allocation during robot learning, where allocation
affects not only human burden and task performance but also the efficiency of policy learning.

There have also been several works that involve learning across fleets of multiple robots
[109, 27, 94, 117, 3]. These primarily involve scaling data collection across multiple robots
for imitation learning [109, 27, 3] or reinforcement learning [117, 118, 94]. However, these
works do not study the supervisor allocation problem. Swamy et al. [245] consider multi-
robot interactive imitation learning but with a single human operator. In work subsequent to
ours, Ahn et al. [3] consider multi-robot, multi-human allocation, but humans are allocated
uniformly according to availability rather than to the robots that require the most assistance.

Remote Robot Systems

Goldberg et al. [83] pioneered remote robot control over the Internet in 1995 with the Telegar-
den, a garden maintained remotely by 10,000 people over 9 years. James Kaufner introduced
the term “Cloud Robotics” in 2010 to refer to robot systems that are not limited to on-board
compute and data [123]. Cloud and fog computing have been applied to robotic tasks such as
grasp planning [248, 122, 143], parallelized Monte-Carlo grasp perturbation sampling [120,
121, 124], and motion planning [136, 41, 104]. Ichnowski et al. [104] propose frameworks
for offloading computation to resources on the edge or cloud, while Anand et al. [8] present
systems that leverage serverless computing [170].

Modern computing paradigms have enabled new applications such as multi-robot fleet
learning [94] and remote sharing of robot systems [246, 17]. Some remote robotics testbeds
include Robotarium [202] for swarm robotics and Duckietown [195] for autonomous driving.
Mandlekar et al. [163] developed RoboTurk, a system for crowdsourcing of robot data collec-
tion via low-latency teleoperation over the Internet. More recently, Bauer et al. [17] hosted
the online “Real Robot Challenge” for manipulation in 2020 and 2021 at Neural Informa-
tion Processing Systems (NeurIPS). Six robotics groups from around the world were able
to access their tri-finger robot [269] remotely via the Internet and evaluate their algorithms
on the shared infrastructure. In this work, we use a new remote robot testbed for real-time
deformable object manipulation with closed-loop visuomotor control, and we introduce a
novel system for connecting disjoint robot networks around the globe.

CHAPTER 1. INTRODUCTION 6

1.5 Thesis Contributions

The primary contributions of this thesis are the following:

• Novel intervention criteria that enable robot systems to actively query for human
assistance with minimal burden on human supervisors in Chapters 2, 3, 5, and 6.

• New metrics for evaluating interactive IL including “context switching” in Chapter 2
and “return on human effort” in Chapter 5, as well as the first theoretical formalism
for multi-robot, multi-human interactive IL in Chapter 5.

• A system for autonomously generating synthetic interventional data in Chapter 4.

• A new computationally efficient technique for quantifying epistemic uncertainty in
energy-based models in Chapter 6.

• Open-source software infrastructure and thorough empirical analysis of human-to-robot
allocation with large-scale simulated fleets of 100+ robots in Chapters 5 and 6.

• Systems for real-time remote supervision of physical robot fleets over the Internet in
Chapters 5, 6, 7, and 8.

7

Part I

Scalable Interactive Imitation
Learning

8

Chapter 2

LazyDAgger: Reducing Context
Switching

In this chapter, we present LazyDAgger, a novel algorithm for robot-gated interactive imi-
tation learning. Compared to existing baselines, LazyDAgger significantly reduces context
switching between robot and human control.

2.1 Introduction

Imitation learning allows a robot to learn from human feedback and examples [12, 13, 187].
In particular, interactive imitation learning (IL) [241, 125, 276], in which a human super-
visor periodically takes control of the robotic system during policy learning, has emerged
as a popular imitation learning method, as interventions are a particularly intuitive form of
human feedback [241]. However, a key challenge in interactive imitation learning is to reduce
the burden that interventions place on the human supervisor [276, 125].

One source of this burden is the cost of context switches between human and robot
control. Context switches incur significant time cost, as a human must interrupt the task
they are currently performing, acquire control of the robot, and gain sufficient situational
awareness before beginning the intervention. As an illustrative example, consider a robot
performing a task for which an action takes 1 time unit and an intervention requires two
context switches (one at the start and one at the end). We define latency L as the number
of time units associated with a single context switch. For instance, L ≫ 1 for a human
supervisor who will need to pause an ongoing task and walk over to a robot that requires
assistance. If the supervisor takes control 10 times for 2 actions each, she spends 20L + 20
time units helping the robot. In contrast, if the human takes control 2 times for 10 actions
each, she spends only 4L + 20 time units. The latter significantly reduces the burden on
the supervisor. Furthermore, prior work suggests that frequent context switches can make it
difficult for the supervisor to perform other tasks in parallel [245] or gain enough situational
awareness to provide useful interventions [209].

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 9

Figure 2.1: LazyDAgger learns to cede control to a supervisor in states in which it estimates
that its actions will significantly deviate from those of the supervisor. LazyDAgger reduces
context switches between supervisor and autonomous control to reduce burden on a human
supervisor working on multiple tasks.

We present LazyDAgger (Figure 2.1), an algorithm which initiates useful interventions
while limiting context switches. The name LazyDAgger is inspired by the concept of lazy
evaluation in programming language theory [140], where expressions are evaluated only when
required to reduce computational burden. As in SafeDAgger [276], LazyDAgger learns a
meta-controller which determines when to context switch based on the estimated discrep-
ancy between the learner and supervisor. However, unlike SafeDAgger, LazyDAgger reduces
context switching by (1) introducing asymmetric switching criteria and (2) injecting noise
into the supervisor control actions to widen the distribution of visited states. One appealing
property of this improved meta-controller is that even after training, LazyDAgger can be
applied at execution time to improve the safety and reliability of autonomous policies with
minimal context switching. We find that across 3 continuous control tasks in simulation,
LazyDAgger achieves task performance on par with DAgger [215] with 88% fewer supervisor
actions than DAgger and 60% fewer context switches than SafeDAgger. In physical fab-
ric manipulation experiments, we observe similar results, and find that at execution time,
LazyDAgger achieves 60% better task performance than SafeDAgger with 60% fewer context
switches.

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 10

2.2 Background and Related Work

Challenges in learning efficiency and reward function specification have inspired significant
interest in algorithms that can leverage supervisor demonstrations and feedback for policy
learning.

Learning from Offline Demonstrations: Learning from demonstrations [12, 187,
13] is a popular imitation learning approach, as it requires minimal supervisor burden: the
supervisor provides a batch of offline demonstrations and gives no further input during policy
learning. Many methods use demonstrations directly for policy learning [203, 106, 194, 253],
while others use reinforcement learning to train a policy using a reward function inferred
from demonstrations [1, 281, 95, 29, 77]. Recent work has augmented demonstrations with
additional offline information such as pairwise preferences [31, 30], human gaze [221], and
natural language descriptions [255]. While offline demonstrations are often simple to provide,
the lack of online feedback makes it difficult to address specific bottlenecks in the learning
process or errors in the resulting policy due to covariate shift [215].

Learning from Online Feedback: Many policy learning algorithms’ poor perfor-
mance stems from a lack of online supervisor guidance, motivating active learning methods
such as DAgger, which queries the supervisor for an action in every state that the learner
visits [215]. While DAgger has a number of desirable theoretical properties, labeling every
state is costly in human time and can be a non-intuitive form of human feedback [138]. More
generally, the idea of learning from action advice has been widely explored in imitation learn-
ing algorithms [16, 139, 115, 110]. There has also been significant recent interest in active
preference queries for learning reward functions from pairwise preferences over demonstra-
tions [220, 49, 102, 190, 21, 30]. However, many forms of human advice can be unintuitive,
since the learner may visit states that are significantly far from those the human supervisor
would visit, making it difficult for humans to judge what correct behavior looks like without
interacting with the environment themselves [241, 208].

Learning from Supervisor Interventions: There has been significant prior work on
algorithms for learning policies from interventions. Xie et al. [271] and Kurenkov et al. [135]
leverage interventions from suboptimal supervisors to accelerate policy learning, but assume
that the supervisors are algorithmic and thus can be queried cheaply. Thananjeyan et al.
[247], Wagener et al. [260], and Saunders et al. [222] also leverage interventions from algorith-
mic policies, but for constraint satisfaction during learning. Kelly et al. [125], Spencer et al.
[241], Wang et al. [261], Kahn et al. [116], Mandlekar et al. [160], and Amir et al. [7] instead
consider learning from human supervisors and present learning algorithms which utilize the
timing and nature of human interventions to update the learned policy. By giving the human
control for multiple timesteps in a row, these algorithms show improvements over methods
that only hand over control on a state-by-state basis [18]. However, the above algorithms
assume that the human is continuously monitoring the system to determine when to inter-
vene, which may not be practical in large-scale systems or continuous learning settings [58,
36, 245, 126]. Such algorithms also assume that the human knows when to cede control to
the robot, which requires guessing how the robot will behave in the future. Zhang et al.

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 11

[276] and Menda et al. [171] present imitation learning algorithms SafeDAgger and Ensem-
bleDAgger, respectively, to address these issues by learning to request interventions from a
supervisor based on measures such as state novelty or estimated discrepancy between the
learner and supervisor actions. These methods can still be sample inefficient, and, as we dis-
cuss later, often result in significant context switching. By contrast, LazyDAgger encourages
interventions that are both easier to provide and more informative. To do this, LazyDAgger
prioritizes (1) sustained interventions, which allow the supervisor to act over a small number
of contiguous sequences of states rather than a large number of disconnected intervals, and
(2) interventions which demonstrate supervisor actions in novel states to increase robustness
to covariate shift in the learned policy.

2.3 Problem Statement

We consider a setting in which a human supervisor is training a robot to reliably perform a
task. The robot may query the human for assistance, upon which the supervisor takes control
and teleoperates the robot until the system determines that it no longer needs assistance.
We assume that the robot and human policy have the same action space, and that it is
possible to pause task execution while waiting to transfer control. We formalize these ideas
in the context of prior imitation learning literature.

We model the environment as a discrete-time Markov decision process (MDP) M with
states s ∈ S, actions a ∈ A, and time horizon T [205]. The robot does not have access to the
reward function or transition dynamics of M but can cede control to a human supervisor,
who executes some deterministic policy πH : S → A. We refer to times when the robot is
in control as autonomous mode and those in which the supervisor is in control as supervisor
mode. We minimize a surrogate loss function J(πR) to encourage the robot policy πR : S → A
to match that of the supervisor (πH):

J(πR) =
T∑
t=1

Est∼d
πR
t

[L(πR(st), πH(st))] , (2.1)

where L(πR(s), πH(s)) is an action discrepancy measure between πR(s) and πH(s) (e.g., the
squared loss or 0-1 loss), and dπR

t is the marginal state distribution at timestep t induced by
executing πR in MDPM.

In interactive IL we require a meta-controller π that determines whether to query the
robot policy πR or to query for an intervention from the human supervisor policy πH ; im-
portantly, π consists of both (1) the high-level controller which decides whether to switch
between πR and πH and (2) the low-level robot policy πR. A key objective in interactive IL
is to minimize some notion of supervisor burden. To this end, let mI(st; π) be an indicator
which records whether a context switch between autonomous (πR) and supervisor (πH) modes
occurs at state st (either direction). Then, we define C(π), the expected number of context
switches in an episode under policy π, as follows: C(π) =

∑T
t=1 Est∼dπt

[mI(st; π)], where dπt

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 12

is the marginal state distribution at timestep t induced by executing the meta-controller π
in MDP M. Similarly, let mH(st; π) indicate whether the system is in supervisor mode at
state st. We then define D(π), the expected number of supervisor actions in an episode for
the policy π, as follows: D(π) =

∑T
t=1 Est∼dπt

[mH(st; π)].
We define supervisor burden B(π) as the expected time cost imposed on the human

supervisor. This can be expressed as the sum of the expected total number of time units spent
in context switching and the expected total number of time units in which the supervisor is
actually engaged in performing interventions:

B(π) = L · C(π) +D(π), (2.2)

where L is context switch latency (Section 7.1) in time units, and each time unit is the time
it takes for the supervisor to execute a single action. The learning objective is to find a
policy π that matches supervisor performance, πH , while limiting supervisor burden to lie
within a threshold Γb, set by the supervisor to an acceptable tolerance for a given task. To
formalize this problem, we propose the following objective:

π = argmin
π′∈Π

{J(π′
R) | B(π′) ≤ Γb}, (2.3)

where Π is the space of all meta-controllers, and π′
R is the low-level robot policy associated

with meta-controller π′.

2.4 Preliminaries: SafeDAgger

We consider interactive IL in the context of the objective introduced in Equation (2.3): to
maximize task reward while limiting supervisor burden. To do this, LazyDAgger builds
on SafeDAgger [276], a state-of-the-art algorithm for interactive IL. SafeDAgger selects be-
tween autonomous mode and supervisor mode by training a binary action discrepancy clas-
sifier f to discriminate between “safe” states which have an action discrepancy below a
threshold βH (i.e., states with L(πR(s), πH(s)) < βH) and “unsafe” states (i.e. states with
L(πR(s), πH(s)) ≥ βH). The classifier f is a neural network with a sigmoid output layer (i.e.,
f(s) ∈ [0, 1]) that is trained to minimize binary cross-entropy (BCE) loss on the datapoints
(st, πH(st)) sampled from a dataset D of trajectories collected from πH . This is written as
follows:

LS(πR(st), πH(st), f) = −f ∗(πR(st), πH(st)) log f(st)

−(1− f ∗(πR(st), πH(st))) log(1− f(st)),
(2.4)

where the training labels are given by f ∗(πR(st), πH(st)) = 1 {L(πR(st), πH(st)) ≥ βH}, and
1 denotes the indicator function. Thus, LS(πR(st), πH(st), f) penalizes incorrectly classifying
a “safe” state as “unsafe” and vice versa.

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 13

SafeDAgger executes the meta-policy π which selects between πR and πH as follows:

π(st) =

{
πR(st) if f(st) < 0.5

πH(st) otherwise,
(2.5)

where f(st) < 0.5 corresponds to a prediction that L(πR(st), πH(st)) < βH , i.e., that st is
“safe.” Intuitively, SafeDAgger only solicits supervisor actions when f predicts that the
action discrepancy between πR and πH exceeds the safety threshold βH . Thus, SafeDAgger
provides a mechanism for querying the supervisor for interventions only when necessary. In
LazyDAgger, we utilize this same mechanism to query for interventions but enforce new
properties once we enter these interventions to lengthen them and increase the diversity of
states observed during the interventions.

2.5 LazyDAgger

We summarize LazyDAgger in Algorithm 1. In the initial phase (Lines 1-3), we train πR

and safety classifier f on offline datasets collected from the supervisor policy πH . In the
interactive learning phase (Lines 4-19), we evaluate and update the robot policy for N
epochs, ceding control to the supervisor when the robot predicts a high action discrepancy.

Predicted Action Loss

Supervisor
Mode

Autonomous
Mode

Supervisor
Mode + Noise

Autonomous
Mode

SafeDAgger LazyDAgger

Predicted Action Loss

True Action Loss

Figure 2.2: LazyDAgger Switching Strategy: SafeDAgger switches between supervisor
and autonomous mode if the predicted action discrepancy is above threshold βH . In contrast,
LazyDAgger uses asymmetric switching criteria and switches to autonomous mode based on
ground truth action discrepancy. The gap between βR and βH defines a hysteresis band [23].

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 14

Figure 2.3: MuJoCo Simulation Results: We study task performance (A), ablations (B),
online supervisor burden (C), and total bidirectional context switches (D) for LazyDAgger
and baselines over 3 random seeds. For Columns (A)-(D), the x-axis for all plots shows the
number of epochs over the training dataset, while the y-axes indicate normalized reward
(A, B), counts of supervisor actions (C, log scale), and context switches (D) with shading
for 1 standard deviation. We find that LazyDAgger outperforms all baselines and ablations,
indicating that encouraging lengthy, noisy interventions improves performance. Additionally,
LazyDAgger uses far fewer context switches than other baselines while requesting far fewer
supervisor actions than DAgger.

Action Discrepancy Prediction

SafeDAgger uses the classifier f to select between πR and πH (Equation (2.5)). However,
in practice, this often leads to frequent context switching (Figure 2.3). To mitigate this, we
make two observations. First, we can leverage that in supervisor mode, we directly observe
the supervisor’s actions. Thus, there is no need to use f , which may have approximation
errors, to determine whether to remain in supervisor mode; instead, we can compute the
ground-truth action discrepancy L(πR(st), πH(st)) exactly for any state st visited in super-
visor mode by comparing the supplied supervisor action πH(st) with the action proposed
by the robot policy πR(st). In contrast, SafeDAgger uses f to determine when to switch
modes both in autonomous and supervisor mode, which can lead to very short interventions
when f prematurely predicts that the agent can match the supervisor’s actions. Second, to
ensure the robot has returned to the supervisor’s distribution, the robot should only switch

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 15

Algorithm 1 LazyDAgger

Require: Number of epochs N , time steps per epoch T , intervention thresholds βH , βR, supervisor policy
πH , noise σ2

1: Collect D,DS offline with supervisor policy πH

2: πR ← argminπR
E(st,πH(st))∼D [L(πR(st), πH(st))] ▷ Eq. (2.1)

3: f ← argminf E(st,πH(st))∼D∪DS
[LS(πR(st), πH(st), f)] ▷ Eq. (2.4)

4: for i ∈ {1, . . . N} do
5: Initialize s0, Mode ← Autonomous
6: for t ∈ {1, . . . T} do
7: at ∼ πR(st)
8: if Mode = Supervisor or f(st) ≥ 0.5 then
9: aHt = πH(st)
10: D ← D ∪ {(st, aHt)}
11: Execute ãHt ∼ N (aHt , σ2I)
12: if L(at, aHt) < βR then
13: Mode ← Autonomous
14: else
15: Mode ← Supervisor

16: else
17: Execute at
18: πR ← argminπR

E(st,πH(st))∼D [L(πR(st), πH(st))]
19: f ← argminf E(st,πH(st))∼D∪DS

[LS(πR(st), πH(st), f)]

back to autonomous mode when the action discrepancy falls below a threshold βR, where
βR < βH . As illustrated in Figure 2.2, LazyDAgger’s asymmetric switching criteria create
a hysteresis band, as is often utilized in control theory [23]. Motivated by Eq. (2.3), we
adjust βH to reduce context switches C(π) and adjust βR as a function of βH to increase
intervention length. We hypothesize that redistributing the supervisor actions into fewer
but longer sequences in this fashion both reduces burden on the supervisor and improves the
quality of the online feedback for the robot. Details on setting these hyperparameter values
in practice, the settings used in our experiments, and a hyperparameter sensitivity analysis
are provided in the Appendix.

Noise Injection

If the safety classifier is querying for interventions at state st, then the robot either does not
have much experience in the neighborhood of st or has trouble matching the demonstrations
at st. This motivates exploring novel states near st so that the robot can receive maximal
feedback on the correct behavior in areas of the state space where it predicts a large action
discrepancy from the supervisor. Inspired by prior work that has identified noise injection
as a useful tool for improving the performance of imitation learning algorithms (e.g. Laskey
et al. [138] and Brown et al. [29]), we diversify the set of states visited in supervisor mode
by injecting isotropic Gaussian noise into the supervisor’s actions, where the variance σ2 is
a scalar hyperparameter (Line 11 in Algorithm 1).

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 16

2.6 Experiments

Figure 2.4: Fabric Smoothing Simulation Results: We study task performance mea-
sured by final fabric coverage (A), total supervisor actions (B), and total context switches
(C) for LazyDAgger and baselines in the Gym-Cloth environment from [227]. The hori-
zontal dotted line shows the success threshold for fabric smoothing. LazyDAgger achieves
higher final coverage than Behavior Cloning and SafeDAgger with fewer context switches
than SafeDAgger but more supervisor actions. At execution time, we again observe that
LazyDAgger achieves similar coverage as SafeDAgger but with fewer context switches.

We study whether LazyDAgger can (1) reduce supervisor burden while (2) achieving
similar or superior task performance compared to prior algorithms. Implementation details
are provided in the supplementary material. In all experiments, L measures Euclidean
distance.

Simulation Experiments: MuJoCo Benchmarks

Environments: We evaluate LazyDAgger and baselines on 3 continuous control environ-
ments from MuJoCo [251], a standard simulator for evaluating imitation and reinforcement
learning algorithms. In particular, we evaluate on HalfCheetah-v2, Walker2D-v2 and Ant-v2.

Metrics: For LazyDAgger and all baselines, we report learning curves which indicate
how quickly they can make task progress in addition to metrics regarding the burden imposed
on the supervisor. To study supervisor burden, we report the number of supervisor actions,
the number of context switches, and the total supervisor burden (as defined in Eq. (2.2)).
Additionally, we define L∗ ≥ 0 to be the latency value such that for all L > L∗, LazyDAgger
has a lower supervisor burden than SafeDAgger. We report this L∗ value, which we refer to
as the cutoff latency, for all experiments to precisely study the types of domains in which
LazyDAgger is most applicable.

Baselines: We compare LazyDAgger to Behavior Cloning [253], DAgger [215], and
SafeDAgger [276] in terms of the total supervisor burden and task performance. The Be-

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 17

havior Cloning and DAgger comparisons evaluate the utility of human interventions, while
the comparison to SafeDAgger, another interactive IL algorithm, evaluates the impact of
soliciting fewer but longer interventions.

Experimental Setup: For all MuJoCo environments, we use a reinforcement learn-
ing agent trained with TD3 [78] as an algorithmic supervisor. We begin all LazyDAgger,
SafeDAgger, and DAgger experiments by pre-training the robot policy with Behavior Cloning
on 4,000 state-action pairs for 5 epochs, and similarly report results for Behavior Cloning
after the 5th epoch. To ensure a fair comparison, Behavior Cloning uses additional offline
data equal to the average amount of online data seen by LazyDAgger during training. All
results are averaged over 3 random seeds.

Results: In Figure 2.3, we study the performance of LazyDAgger and baselines. After
every epoch of training, we run the policy for 10 test rollouts where interventions are not
allowed and report the task reward on these rollouts in Figure 2.3. Results suggest that
LazyDAgger is able to match or outperform all baselines in terms of task performance across
all simulation environments (Figure 2.3A). Additionally, LazyDAgger requires far fewer con-
text switches compared to SafeDAgger (Figure 2.3D), while requesting a similar number of
supervisor actions across domains (Figure 2.3C): we observe a 79%, 56%, and 46% reduc-
tion in context switches on the HalfCheetah, Walker2D, and Ant environments respectively.
LazyDAgger and SafeDAgger both use an order of magnitude fewer supervisor actions than
DAgger. While SafeDAgger requests much fewer supervisor actions than LazyDAgger in
the Ant environment, this limited amount of supervision is insufficient to match the task
performance of LazyDAgger or any of the baselines, suggesting that SafeDAgger may be
terminating interventions prematurely. We study the total supervisor burden of SafeDAgger
and LazyDAgger as defined in Equation (2.2) and find that in HalfCheetah, Walker2D, and
Ant, the cutoff latencies L∗ are 0.0, 4.3, and 7.6 respectively, i.e. LazyDAgger achieves lower
supervisor burden in the HalfCheetah domain for any L as well as lower burden in Walker2D
and Ant for L > 4.3 and L > 7.6 respectively. The results suggest that LazyDAgger can
reduce total supervisor burden compared to SafeDAgger even for modest latency values, but
that SafeDAgger may be a better option for settings with extremely low latency.

Ablations: We study 2 key ablations for LazyDAgger in simulation: (1) returning to
autonomous mode with f(·) rather than using the ground truth discrepancy (LazyDAgger
(-Switch to Auto) in Figure 2.3), and (2) removal of noise injection (LazyDAgger (-Noise)).
LazyDAgger outperforms both ablations on all tasks, with the exception of ablation 1 on
Walker2D, which performed similarly well. We also observe that LazyDAgger consistently
requests more supervisor actions than either ablation. This aligns with the intuition that
both using the ground truth action discrepancy to switch back to autonomous mode and
injecting noise result in longer but more useful interventions that improve performance.

Fabric Smoothing in Simulation

Environment: We evaluate LazyDAgger on the fabric smoothing task from [227] (shown
in Figure 2.4) using the simulation environment from [227]. The task requires smoothing an

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 18

Figure 2.5: Physical Fabric Manipulation Task: Left: We evaluate on a 3-stage
fabric manipulation task consisting of smoothing a crumpled fabric, aligning the fabric so all
corners are visible in the observations, and performing a triangular fold. Right: Rollouts
of the fabric manipulation task, where each frame is a 100 × 100 × 3 overhead image.
Human supervisor actions are denoted in red while autonomous robot actions are in green.
Rollouts are shaded to indicate task progress: blue for smoothing, red for alignment, and
green for folding. SafeDAgger ends human intervention prematurely, resulting in poor task
performance and more context switches, while LazyDAgger switches back to robot control
only when confident in task completion.

initially crumpled fabric and is challenging due to the infinite-dimensional state space and
complex dynamics, motivating learning from human feedback. As in prior work [227], we
utilize top-down 100 × 100 × 3 RGB image observations of the workspace and use actions
which consist of a 2D pick point and a 2D pull vector. See [227] for further details on the
fabric simulator.

Experimental Setup: We train a fabric smoothing policy in simulation using DAgger
under supervision from an analytic corner-pulling policy that leverages the simulator’s state
to identify fabric corners, iterate through them, and pull them towards the corners of the
workspace [227]. We transfer the resulting policy for a 16×16 grid of fabric into a new sim-
ulation environment with altered fabric dynamics (i.e. lower spring constant, altered fabric
colors, and a higher-fidelity 25×25 discretization) and evaluate LazyDAgger and baselines on
how rapidly they can adapt the initial policy to the new domain. As in [227], we terminate
rollouts when we exceed 10 time steps, 92% coverage, or have moved the fabric more than
20% out of bounds. We evaluate performance based on a coverage metric, which measures

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 19

Algorithm Task Successes Task Progress Context Switches Supervisor Actions Robot Actions Failure Modes
(1) (2) (3) A B C D

Behavior Cloning 0/10 6/10 0/10 0/10 N/A N/A 119 2 1 7 0
SD-Execution 2/10 6/10 4/10 2/10 53 34 108 5 0 0 3
LD-Execution 8/10 10/10 10/10 8/10 21 43 47 0 0 0 2

Table 2.1: Physical Fabric Manipulation Experiments: We evaluate LazyDAgger-
Execution and baselines on a physical 3-stage fabric manipulation task and report the success
rate and supervisor burden in terms of total supervisor actions and bidirectional context
switches (summed across all 10 trials). Task Progress indicates how many trials completed
each of the 3 stages: Smoothing, Aligning, and Folding. LazyDAgger-Execution achieves
more successes with fewer context switches (L∗ = 0.28). We observe the following failure
modes (Table 2.1): (A) action limit hit (> 15 total actions), (B) fabric is more than 50%
out of bounds, (C) incorrect predicted pick point, and (D) the policy failed to request an
intervention despite high ground truth action discrepancy.

the percentage of the background plane that the fabric covers (fully smooth corresponds to
a coverage of 100).

Results: We report results for the fabric smoothing simulation experiments in Fig-
ure 2.4. Figure 2.4 (A) shows the performance of the SafeDAgger and LazyDAgger policies
during learning. To generate this plot we periodically evaluated each policy on test rollouts
without interventions. Figure 2.4 (B) and (C) show the number of supervisor actions and
context switches required during learning; LazyDAgger performs fewer context switches than
SafeDAgger but requires more supervisor actions as the interventions are longer. Results sug-
gest that the cutoff latency (as defined in Section 2.6) is L∗ = 1.5 for fabric smoothing. De-
spite fewer context switches, LazyDAgger achieves comparable performance to SafeDAgger,
suggesting that LazyDAgger can learn complex, high-dimensional robotic control policies
while reducing the number of hand-offs to a supervisor. We also evaluate LazyDAgger-
Execution and SafeDAgger-Execution, in which interventions are allowed but the policy is
no longer updated (see Section 2.6). We see that in this case, LazyDAgger achieves similar
final coverage as SafeDAgger with significantly fewer context switches.

Physical Fabric Manipulation Experiments

Environment: In physical experiments, we evaluate on a multi-stage fabric manipulation
task with an ABB YuMi robot and a human supervisor (Figure 2.5). Starting from a
crumpled initial fabric state, the task consists of 3 stages: (1) fully smooth the fabric,
(2) align the fabric corners with a tight crop of the workspace, and (3) fold the fabric
into a triangular fold. Stage (2) in particular requires high precision, motivating human
interventions. As in the fabric simulation experiments, we use top-down 100× 100× 3 RGB
image observations of the workspace and have 4D actions consisting of a pick point and
pull vector. The actions are converted to workspace coordinates with a standard calibration

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 20

procedure and analytically mapped to the nearest point on the fabric. Human supervisor
actions are provided through a point-and-click interface for specifying pick-and-place actions.
See the supplement for further details.

Experimental Setup: Here we study how interventions can be leveraged to improve
the final task performance even at execution time, in which policies are no longer being
updated. We collect 20 offline task demonstrations and train an initial policy with behavior
cloning. To prevent overfitting to a small amount of real data, we use standard data augmen-
tation techniques such as rotating, scaling, changing brightness, and adding noise to create
10 times as many training examples. We then evaluate the behavior cloning agent (Behavior
Cloning) and agents which use the SafeDAgger and LazyDAgger intervention criteria but
do not update the policy with new experience or inject noise (SafeDAgger-Execution and
LazyDAgger-Execution respectively). We terminate rollouts if the fabric has successfully
reached the goal state of the final stage (i.e. forms a perfect or near-perfect dark brown
right triangle as in Hoque et al. [100]; see Figure 2.5), more than 50% of the fabric mask
is out of view in the current observation, the predicted pick point misses the fabric mask
by approximately 50% of the plane or more, or 15 total actions have been executed (either
autonomous or supervisor).

Results: We perform 10 physical trials of each technique. In Table 2.1, we report
both the overall task success rate and success rates for each of the three stages of the task:
(1) Smoothing, (2) Alignment, and (3) Folding. We also report the total number of con-
text switches, supervisor actions, and autonomous robot actions summed across all 10 trials
for each algorithm (Behavior Cloning, SafeDAgger-Execution, LazyDAgger-Execution). In
Figure 2.5 we provide representative rollouts for each algorithm. Results suggest that Behav-
ior Cloning is insufficient for successfully completing the alignment stage with the required
level of precision. SafeDAgger-Execution does not improve the task success rate signifi-
cantly due to its inability to collect interventions long enough to navigate bottleneck regions
in the task (Figure 2.5). LazyDAgger-Execution, however, achieves a much higher suc-
cess rate than SafeDAgger-Execution and Behavior Cloning with far fewer context switches
than SafeDAgger-Execution: LazyDAgger-Execution requests 2.1 context switches on aver-
age per trial (i.e. 1.05 interventions) as opposed to 5.3 switches (i.e. 2.65 interventions).
LazyDAgger-Execution trials also make far more task progress than the baselines, as all 10
trials reach the folding stage. LazyDAgger-Execution does request more supervisor actions
than SafeDAgger-Execution, as in the simulation environments. LazyDAgger-Execution also
requests more supervisor actions relative to the total amount of actions due to the more con-
servative switching criteria and the fact that successful episodes are shorter than unsuccessful
episodes on average. Nevertheless, results suggest that for this task, LazyDAgger-Execution
reduces supervisor burden for any L > L∗ = 0.28, a very low cutoff latency that includes all
settings in which a context switch is at least as time-consuming as an individual action (i.e.
L ≥ 1).

In experiments, we find that SafeDAgger-Execution’s short interventions lead to many
instances of Failure Mode A (see Table 2.1), as the policy is making task progress, but not
quickly enough to perform the task. We observe that Failure Mode C is often due to the fabric

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING 21

reaching a highly irregular configuration that is not within the training data distribution,
making it difficult for the robot policy to make progress. We find that SafeDAgger and
LazyDAgger experience Failure Mode D at a similar rate as they use the same criteria
to solicit interventions (but different termination criteria). However, we find that all of
LazyDAgger’s failures are due to Failure Mode D, while SafeDAgger also fails in Mode A
due to premature termination of interventions.

2.7 Discussion and Future Work

We propose context switching between robot and human control as a metric for supervisor
burden in interactive imitation learning and present LazyDAgger, an algorithm which can
be used to efficiently learn tasks while reducing this switching. We evaluate LazyDAgger
on 3 continuous control benchmark environments in MuJoCo, a fabric smoothing environ-
ment in simulation, and a fabric manipulation task with an ABB YuMi robot and find that
LazyDAgger is able to improve task performance while reducing context switching between
the learner and robot by up to 79% over SafeDAgger. In the next chapter, we investigate
improved intervention criteria and apply robot-gated interventions to controlling a small fleet
of robots, where context switching can negatively impact task throughput.

22

Chapter 3

ThriftyDAgger: Budget-Aware
Novelty and Risk

In this chapter, we introduce ThriftyDAgger, another novel algorithm for robot-gated inter-
active imitation learning. ThriftyDAgger addresses shortcomings in LazyDAgger and uses
novelty and risk estimation to significantly outperform prior work in balancing task perfor-
mance with burden on the human supervisor.

3.1 Introduction

Imitation learning (IL) [12, 15, 187] has seen success in a variety of robotic tasks ranging
from autonomous driving [203, 191, 53] to robotic manipulation [74, 73, 80, 244, 133]. In
its simplest form, the human provides an offline set of task demonstrations to the robot,
which the robot uses to match human behavior. However, this offline approach can lead
to low task performance due to a mismatch between the state distribution encountered in
the demonstrations and that visited by the robot [215, 138], resulting in brittle policies
that cannot be effectively deployed in real-world applications [108]. Interactive imitation
learning, in which the robot periodically cedes control to a human supervisor for corrective
interventions, has emerged as a promising technique to address these challenges [125, 241,
110, 98]. However, while interventions make it possible to learn robust policies, this can come
at the expense of requiring the human to spend significant time providing these interventions.
Thus, the central challenge in interactive IL algorithms is to control the timing and length
of interventions to strike a balance between task performance and the burden imposed on
the human supervisor [276, 98]. Achieving such a balance is even more critical if the human
supervisor must oversee multiple robots at once [58, 38, 245], for instance supervising a robot
fleet in a warehouse or manufacturing setting.

One way to determine when to solicit interventions is to allow the human supervisor to
decide when to provide the corrective interventions. However, these approaches—termed
“human-gated” interactive IL algorithms [125, 241, 160]—require the human supervisor to

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 23

Figure 3.1: ThriftyDAgger: Given a desired context switching rate αh, ThriftyDAgger
transfers control to a human supervisor if the current state st is (1) sufficiently novel or (2)
sufficiently risky, indicating that the probability of task success is low under robot policy πr.
Intuitively, one should not only distrust πr in states significantly out of the distribution of
previously-encountered states, but should also cede control to a human supervisor in more
familiar states where the robot predicts that it is unlikely to successfully complete the task.

continuously monitor the robot to determine when to intervene. This imposes significant
burden on the supervisor and cannot effectively scale to settings in which a small number
humans supervise a large number of robots. To address this challenge, there has been recent
interest in approaches that enable the robot to actively query humans for interventions, called
“robot-gated” algorithms [276, 139, 171, 98]. Robot-gated methods allow the robot to reduce
burden on the human supervisor by only requesting interventions when necessary, switching
between robot control and human control based on some intervention criterion. Hoque et
al. [98] formalize the idea of supervisor burden as the expected total cost incurred by the
human in providing interventions, which consists of the expected cost due to context switching
between autonomous and human control and the time spent actually providing interventions.
However, it is difficult to design intervention criteria that limit this burden while ensuring
that the robot gains sufficient information to imitate the supervisor’s policy.

This paper makes several contributions. First, we develop intervention criteria based on
a synthesis of two estimated properties of a given state: novelty, which measures whether
the state is significantly out of the distribution of previously encountered states, indicating
that the robot policy should not be trusted; and risk, which indicates whether the robot
is unlikely to make task progress. In particular, we propose a novel risk metric estimat-
ing the probability of task success. Second, we present a novel robot-gated interactive IL
algorithm, ThriftyDAgger (Figure 3.1), which employs these measures jointly to solicit hu-
man interventions only when necessary. Third, while prior robot-gated algorithms [276, 98]
require careful parameter tuning to modulate the timing and frequency of human inter-
vention requests, ThriftyDAgger only requires the supervisor to specify a desired context

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 24

switching rate and automatically tunes other parameters accordingly. Fourth, experimen-
tal results demonstrate ThriftyDAgger’s effectiveness for reducing supervisor burden while
learning challenging tasks both in simulation and in an image-based cable routing task on
a physical robot. Finally, the results of a human user study applying ThriftyDAgger to
control a fleet of three simulated robots suggest that ThriftyDAgger significantly improves
performance on both the robots’ task and an independent human task while imposing fewer
context switches, fewer human intervention actions, and lower mental load and frustration
than prior algorithms.

3.2 Related Work

Imitation Learning from Human Feedback: There has been significant prior work in
offline imitation learning, in which the agent leverages an offline dataset of expert demonstra-
tions either to directly match the distribution of trajectories in the offline dataset [203, 95,
12, 187, 13, 106, 194], for instance via Behavior Cloning [253, 54], or to learn a reward func-
tion that can then be optimized via reinforcement learning [1, 95, 29]. However, while these
approaches have shown significant success in a number of domains [74, 244, 80, 54], learning
from purely offline data leads to a mismatch in the state distributions of the trajectories
used for learning and those visited by the agent’s policy, leading to suboptimal performance
both in theory and practice [215, 138]. To address this problem, there have been a number
of approaches that utilize online human feedback while the agent acts in the environment,
such as providing suggested actions [215, 16, 115, 110] or preferences [220, 49, 102, 190, 21,
30]. However, many of these forms of human feedback may be unreliable if the robot visits
states that significantly differ from those the human supervisor would themselves visit; in
such situations, it is challenging for the supervisor to determine what correct behavior should
look like without directly interacting with the environment [241, 208]. Furthermore, allowing
only the robot to act in the environment can be unsafe, and most of these algorithms result
in relatively high supervisor burden. DAgger [215] requires the supervisor to suggest an
action at every timestep, and the preference learning approaches require the supervisor to
indicate a preference over every pair of executed actions or trajectories. SHIV [139] reduces
the required number of suggested actions but still faces the aforementioned pitfalls.

Interactive Imitation Learning: A natural way to collect reliable online feedback for
imitation learning is to periodically cede control to a human supervisor, who then provides
a corrective intervention to illustrate desired behavior. Human-gated interactive IL algo-
rithms [125, 241, 160] such as HG-DAgger require the human to determine when to engage
in interventions. However, these algorithms require a human to continuously monitor the
robot to determine when to intervene, which imposes significant burden on the supervisor
and is particularly impractical if a small number of humans must supervise a large number of
robots or if a human must supervise for a very long period of time. Furthermore, it requires
the human to determine when the robot needs help and when to cede control, which can be
unintuitive and result in suboptimal switching points.

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 25

By contrast, robot-gated interactive IL algorithms, such as EnsembleDAgger [171], Safe
DAgger [276], and LazyDAgger [98], allow the robot to solicit interventions from a human
when the system deems necessary. In practice, these algorithms estimate various quantities
correlated with task performance [276, 98, 214, 139] and uncertainty [171] and use them to
determine when to solicit interventions. Prior work has proposed intervention criteria which
use the novelty of states visited by the robot [171] or the predicted discrepancy between
the actions proposed by the robot policy and by the supervisor [276, 98]. However, while
state novelty provides a valuable signal for soliciting interventions, we argue that this alone
is insufficient, as a state’s novelty does not convey information about the level of precision
with which actions must be executed in that state. In practice, many robotic tasks involve
moving through critical “bottlenecks” [160], which, though not necessarily novel, still present
challenges. Examples include moving an eating utensil close to a person’s mouth or placing
an object on a shelf without disturbing nearby objects. Similarly, even if predicted accurately,
action discrepancy is often a flawed risk measure, as high action discrepancy between the
robot and the supervisor may be permissible when fine-grained control is not necessary (e.g. a
robot gripper moving in free space) but impermissible when precision is critical (e.g. a robot
gripper actively trying to grasp an object). In contrast, ThriftyDAgger carefully designs
asymmetric intervention criteria incorporating both state novelty and a novel risk metric,
allowing more efficient use of human supervision. ThriftyDAgger also significantly reduces
the need for parameter tuning, to which prior algorithms can be highly sensitive [171].

3.3 Problem Statement

Given a robot, a task for the robot to accomplish, and a human supervisor with a specified
context switching budget, the goal is to train the robot to imitate supervisor performance
within the budget. We model the robot environment as a discrete-time Markov Decision
Process (MDP) M with continuous states s ∈ S, continuous actions a ∈ A, and time
horizon T [205]. We consider the interactive imitation learning (IL) setting [125], where
the robot does not have access to a shaped reward function or transition dynamics of the
MDP but can temporarily cede control to a supervisor who uses policy πH : S → A. We
specifically focus on tasks where there is a goal set G which determines success, but that can
be challenging and long-horizon, making direct application of RL highly sample inefficient.

We assume that the human and robot utilize the same action space (e.g. through a
teleoperation interface) and that task success can be specified by convergence to some goal
set G ⊆ S within the time horizon (i.e., the task is successful if G is reached within T
timesteps). We further assume access to an indicator function 1G : S → {0, 1}, which
indicates whether a state belongs to the goal set G.

The IL objective is to minimize a surrogate loss function J(πR) to encourage the robot

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 26

policy πR : S → A to match πH :

J(πR) =
T∑
t=1

Est∼d
πR
t

[L(πR(st), πH(st))] , (3.1)

where L(πR(s), πH(s)) is an action discrepancy measure between πR(s) and πH(s) (e.g. MSE
loss), and dπR

t is the marginal state distribution at timestep t induced by the robot policy
πR inM.

In the interactive IL setting, meanwhile, in addition to optimizing Equation 3.1, a key
design goal is to minimize the imposed burden on the human supervisor. To formalize
this, we define a switching policy π, which determines whether the system is under robot
control πR (which we call autonomous mode) or human supervisor control πH (which we
call supervisor mode). Following prior work [98], we define C(π), the expected number of
context switches in an episode under policy π, as follows: C(π) =

∑T
t=1 Est∼dπt

[mI(st; π)],
where mI(st; π) is an indicator for whether or not a context switch occurs from autonomous
to supervisor control. Similarly, we define I(π) as the expected number of supervisor actions
in an intervention solicited by π. We then define the total burden B(π) imposed on the
human supervisor as follows:

B(π) = C(π) ·
(
L+ I(π)

)
, (3.2)

where L is the latency of a context switch between control modes (summed over both switch-
ing directions) in units of timesteps (one action per timestep). The interactive IL objective
is to minimize the discrepancy from the supervisor policy while limiting supervisor burden
within some Γb:

π = argmin
π′∈Π

{J(πR) | B(π′) ≤ Γb}. (3.3)

3.4 ThriftyDAgger

ThriftyDAgger determines when to switch between autonomous and human supervisor con-
trol modes by leveraging estimates of both the novelty and risk of states. Below, we discuss
the estimation of state novelty and risk of task failure, ThriftyDAgger’s integration of these
measures to determine when to switch control modes, a procedure to automatically tune
key parameters to regulate switches between control modes, and the full control flow of
ThriftyDAgger.

Novelty Estimation

When the robot policy visits states that lie significantly outside the distribution of those
encountered in the supervisor trajectories, it does not have any reference behavior to imitate.
This motivates initiating interventions to illustrate desired recovery behaviors in these states.

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 27

However, estimating the support of the state distribution visited by the human supervisor
is challenging in the high-dimensional state spaces common in robotics. Following prior
work [171], we train an ensemble of policies with bootstrapped samples of transitions from
supervisor trajectories. We then measure the novelty of a given state s by calculating the
variance of the policy outputs at state s across ensemble members. In practice, the action
a ∈ A outputted by each policy is a vector; thus, we measure state novelty by computing the
variance of each component of the action vector a across the ensemble members and then
averaging over the components. We denote this quantity by Novelty(s). Once in supervisor
mode, as noted in Hoque et al. [98], we can obtain a more precise correlate of novelty by
computing the ground truth action discrepancy between actions suggested by the supervisor
and the robot policy.

Risk Estimation

Interventions may be required not only in novel states outside the distribution of supervisor
trajectories, but also in familiar states that are prone to result in task failure. To address
this challenge, we propose a novel measure of a state’s “riskiness,” capturing the likelihood
that the robot cannot successfully converge to the goal set G. We first define a Q-function
to quantify the discounted probability of successful convergence to G from a given state and
action under the robot policy:

Qπr
G (st, at) = Eπr

[
∞∑
t′=t

γt′−t
1G(s

′
t)|st, at

]
, (3.4)

where 1G(st) is equal to 1 if st belongs to G. We estimate Qπr
G (st, at) via a function ap-

proximator Q̂πr
ϕ,G parameterized by ϕ, and define a state’s riskiness in terms of this learned

Q-function:

Riskπr(s, a) = 1− Q̂πr
ϕ,G(s, a). (3.5)

In practice, we train Q̂πr
ϕ,G on transitions (st, at, st+1) collected by the supervisor from both

offline data and online interventions by minimizing the following MSE loss inspired by [247]:

JQ
G (st, at, st+1;ϕ) =

1

2

(
Q̂πr

ϕ,G(st, at)− (1G(st)+ (1− 1G(st))γQ̂
πr
ϕ,G(st+1, πr(st+1)))

)2

. (3.6)

Note that since Q̂πr
ϕ,G is only used to solicit interventions, it need only be accurate enough to

distinguish risky states from others, rather than be able to make the fine-grained distinctions
between different states required for accurate policy learning in reinforcement learning.

Regulating Switches in Control Modes

We now describe how ThriftyDAgger leverages the novelty estimator from Section 3.4 and
the risk estimator from Section 3.4 to regulate switches between autonomous and supervisor

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 28

control. While in autonomous mode, the switching policy π initiates a switch to supervisor
mode at timestep t if state st is either (1) sufficiently unfamiliar or (2) the robot policy has
a low probability of task success from st. Stated precisely, π initiates a switch to supervisor
mode from autonomous mode at timestep t if the predicate Intervene(st, δh, βH) evaluates to
True, where Intervene(st, δh, βH) is True if (1) Novelty(st) > δh or (2) Riskπr(st, πr(st)) >
βH and False otherwise. Note that the proposed switching policy only depends on Riskπr

for states which are not novel (as novel states already initiate switches to supervisor control
regardless of risk), since the learned risk measure should only be trusted on states in the
neighborhood of those on which it has been trained.

In supervisor mode, π switches to autonomous mode if the action discrepancy between
the human and robot policy and the robot’s task failure risk are both below threshold
values (Section 3.4), indicating that the robot is in a familiar and safe region. Stated pre-
cisely, π switches to autonomous mode from supervisor mode if the predicate Cede(st, δr, βR)
evaluates to True, where Cede(st, δr, βR) is True if (1) ||πR(st) − πH(st)||22 < δr and (2)
Riskπr(st, πr(st)) < βR, and False otherwise. While the former condition prevents re-
liance on the learned risk measure in unfamiliar regions, the latter prevents switching to
autonomous mode when precise control may be necessary. Motivated by prior work [98]
and hysteresis control [23], we use stricter switching criteria in supervisor mode (βR < βH)
to encourage longer interventions and reduce context switches experienced by the human
supervisor.

Automatic Parameter Tuning

One challenge of the control strategy presented in Section 3.4 lies in tuning the key param-
eters (δh, δr, βH , βR) governing when context switching occurs. As noted in prior work [171],
performance and supervisor burden can be sensitive to these thresholds. To address this diffi-
culty, we assume that the user specifies their availability in the form of a desired intervention
budget αh ∈ [0, 1], indicating the desired proportion of timesteps in which interventions will
be requested. This desired context switching rate can be interpreted in the context of su-
pervisor burden as defined in Equation (3.2): if the latency of a context switch dominates
the time cost of the intervention itself, limiting the expected number of context switches to
within some intervention budget directly limits supervisor burden.

Given αh, we set βH to be the (1−αh)-quantile of Risk
πr(s, πr(s)) for all states previously

visited by πR and set δh to be the (1 − αh)-quantile of Novelty(s) for all states previously
visited by πR. We set δr to be the mean action discrepancy on the states visited by the
supervisor after πR is trained and set βR to be the median of Riskπr(s, πr(s)) for all states
previously visited by πR. (Note that βR can easily be set to different quantiles to adjust
mean intervention length if desired.) We find that these settings strike a balance between
informative interventions and imposed supervisor burden.

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 29

ThriftyDAgger Overview

We now summarize the ThriftyDAgger procedure, with full pseudocode available in the
supplement. ThriftyDAgger first initializes πr via Behavior Cloning on offline transitions
(Dh from the human supervisor, πh). Then, πr collects an initial offline dataset Dr from
the resulting πr, initializes Q̂πr

ϕ,G by optimizing Equation (3.5) on Dr ∪ Dh, and initializes
parameters βH , βR, δh, and δr as in Section 3.4. We then collect data for N episodes, each
with up to T timesteps. In each timestep of each episode, we determine whether robot
policy πr or human supervisor πh should be in control using the procedure in Section 3.4.
Transitions in autonomous mode are aggregated into Dr while transitions in supervisor mode
are aggregated into Dh. After each episode, πr is updated via supervised learning on Dh,
while Q̂πr

ϕ,G is updated on Dr ∪ Dh to reflect the probability of task success of the resulting
πr.

3.5 Experiments

In the following experiments, we study whether ThriftyDAgger can balance task perfor-
mance and supervisor burden more effectively than prior IL algorithms in three contexts:
(1) training a simulated robot to perform a peg insertion task; (2) supervising a fleet of three
simulated robots to perform the peg insertion task in a human user study; and (3) training
a physical surgical robot to perform a cable routing task.

Evaluation Metrics

We consider ThriftyDAgger’s performance during training and execution. For the latter, we
evaluate both the (1) autonomous success rate, or success rate when deployed after training
without access to a human supervisor, and (2) intervention-aided success rate, or success rate
when deployed after training with a human supervisor in the loop. These metrics are reported
in the Peg Insertion study (Section 3.5) and the Physical Cable Routing study (Section 3.5).
For all experiments, during both training and intervention-aided execution, we evaluate
the number of interventions per episode and the numbers of human and robot actions per
episode. During execution time, all three of these metrics are computed using successful
episodes only, in order not to bias the metrics by the maximum episode horizon length, T .
In our user study (Section 3.5), we also report the following quantities: throughput (total
number of task successes across the three robots), performance on an independent human
task, the idle time of the robots in the fleet, and users’ qualitative ratings of mental load
and frustration.

Comparisons

We compare ThriftyDAgger to the following algorithms: Behavior Cloning, which does not
use interventions; HG-DAgger [125], which is human-gated and always requires supervision;

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 30

SafeDAgger [276], which is robot-gated and performs interventions based on estimated ac-
tion discrepancy between the human supervisor and robot policy; and LazyDAgger [98],
which builds on SafeDAgger by introducing an asymmetric switching criterion to encourage
lengthier interventions. We also implement two ablations: one that does not use a novelty
measure to regulate context switches (ThriftyDAgger (-Novelty)) and one that does not use
risk to regulate context switches (ThriftyDAgger (-Risk)).

Peg Insertion in Simulation

We first evaluate ThriftyDAgger on a long-horizon peg insertion task (Figure 3.2) from the
Robosuite simulation environment [280]. The goal is to grasp a ring in a random initial
pose and thread it over a cylinder at a fixed target location. This task has two bottlenecks
which motivate learning from interventions: (1) correctly grasping the ring and (2) correctly
placing it over the cylinder (Figure 3.2). A human teleoperates the robot through a keyboard
interface to provide interventions. The states consist of the robot’s joint angles and ring’s
pose, while the actions specify 3D translation, 3D rotation, and opening or closing the
gripper. For ThriftyDAgger and its ablations, we use target intervention frequency αh = 0.01
and set other parameters via the automated tuning method (Section 3.4). We collect 30
offline task demos (2,687 state-action pairs) from a human supervisor to initialize the robot
policy for all compared algorithms. Behavior Cloning is given 15 additional offline demos
for a fair comparison. For ThriftyDAgger and each interactive IL baseline, we perform
10,000 environment steps, during which each episode takes at most 175 timesteps and system
control switches between the human and robot. Hyperparameter settings for all algorithms
are detailed in the supplement.

Results (Table 3.1) suggest that ThriftyDAgger achieves a significantly higher autonomous
success rate than prior robot-gated algorithms, although it does request more human actions
due to its conservative exit criterion for interventions (Cede(st, δr, βR)). However, the number
of interventions is similar to prior robot-gated algorithms, indicating that while ThriftyDAg-
ger requires more human actions, it imposes a similar supervisor burden to SafeDAgger and
LazyDAgger in settings in which context switches are expensive or time-consuming (e.g.
high latency L in Equation 3.2). We find that all interactive IL algorithms substantially
outperform Behavior Cloning, which does not have access to supervisor interventions. No-
tably, ThriftyDAgger achieves a higher autonomous success rate than even HG-DAgger, in
which the supervisor is able to decide the timing and length of interventions. This indicates
that ThriftyDAgger’s intervention criteria enable it to solicit more informative interven-
tions than those chosen by a human supervisor. Furthermore, ThriftyDAgger achieves a
100% intervention-aided success rate at execution time, suggesting that ThriftyDAgger suc-
cessfully identifies the required states at which to solicit interventions. We find that both
ablations of ThriftyDAgger (Ours (-Novelty) and Ours (-Risk)) achieve significantly lower
autonomous success rates, indicating that both the novelty and risk measures are critical to
ThriftyDAgger’s performance. We calculate ThriftyDAgger’s context switching rate to be

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 31

Figure 3.2: Experimental Domains: We visualize the peg insertion simulation domain
(top row) and the physical cable routing domain with the physical robot (bottom row). We
visualize sample start and goal states, in addition to states which ThriftyDAgger categorizes
as novel, risky, and neither. ThriftyDAgger marks states as novel if they are far from behavior
that the supervisor would produce, and risky if it is stuck in a bottleneck, e.g. if the ring is
wedged against the side of the cylinder (top) or the cable is near all four obstacles (bottom).

1.15% novelty switches and 0.79% risk switches, both approximately in the range specified
by the budget of αh = 0.01.

User Study: Controlling A Fleet of Three Robots in Simulation

We conduct a user study with 10 participants (7 male and 3 female, aged 18-37). Participants
supervise a fleet of three simulated robots, each performing the peg insertion task from
Section 3.5. We evaluate how different interactive IL algorithms affect the participants’
(1) ability to provide effective robot interventions, (2) performance on a distractor task
performed between robot interventions, and (3) levels of mental demand and frustration.
For the distractor task, we use the game Concentration (also known as Memory or Matching
Pairs), in which participants identify as many pairs of matching cards as possible among a
set of face-down cards. This is intended to emulate tasks which require continual focus, such
as cooking a meal or writing a research paper, in which frequent context switches between
performing the task and helping the robots is frustrating and degrades performance.

The participants teleoperate the robots using three robot-gated interactive IL algo-
rithms: SafeDAgger, LazyDAgger, and ThriftyDAgger. The participant is instructed to
make progress on the distractor task only when no robot requests an intervention. When an
intervention is requested, the participant is instructed to pause the distractor task, provide
an intervention from the requested state until the robot (or multiple robots queued after each
other) no longer requires assistance, and then return to the distractor task. The participants
also teleoperate with HG-DAgger, where they no longer perform the distractor task and are

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 32

Algorithm Training Interventions Auto Succ. Execution Interventions Int-Aided Succ.
Ints Acts (H) Acts (R) Ints Acts (H) Acts (R)

Behavior Cloning N/A N/A 108.0± 15.9 24/100 N/A N/A N/A N/A
SafeDAgger 3.89± 1.44 19.8± 9.9 88.8± 19.4 24/100 4.00± 1.37 19.5± 5.3 77.5± 11.7 17/20
LazyDAgger 1.46± 1.15 13.2± 12.4 102.1± 18.2 48/100 1.73± 1.29 12.6± 14.4 91.7± 24.0 11/20
HG-DAgger 1.49± 0.88 20.3± 15.6 97.1± 17.5 57/100 1.15± 0.73 17.1± 11.6 103.6± 14.0 20/20
Ours (-Novelty) 0.79± 0.81 35.1± 23.1 70.0± 35.8 49/100 0.33± 0.62 2.5± 5.0 114.0± 26.0 12/20
Ours (-Risk) 0.99± 0.96 7.8± 12.0 104.2± 19.2 49/100 1.39± 0.95 9.8± 12.0 109.1± 22.9 18/20
Ours: ThriftyDAgger 0.88± 1.01 43.6± 24.5 60.0± 32.8 73/100 1.35± 0.66 21.3± 15.0 84.8± 21.8 20/20

Table 3.1: Peg Insertion in Simulation Results: We first report training performance
(number of interventions (Ints), number of human actions (Acts (H)), and number of robot
actions (Acts (R))) and report the success rate of the fully-trained policy at execution time
when no interventions are allowed (Auto Succ.). We then evaluate the fully-trained poli-
cies with interventions allowed and report the same intervention statistics and the success
rate (Int-Aided Succ.). We find that ThriftyDAgger achieves the highest autonomous and
intervention-aided success rates among all algorithms compared. Notably, ThriftyDAgger
even achieves a higher autonomous success rate than HG-DAgger, in which the human de-
cides when to intervene during training.

instructed to continually monitor all three robots simultaneously and decide on the length
and timing of interventions themselves. Each algorithm runs for 350 timesteps, where in
each timestep, all robots in autonomous mode execute one action and the human executes
one action on the currently-supervised robot (if applicable). The supplement illustrates the
user study interface and fully details the experiment protocol. All algorithms are initialized
as in Section 3.5.

Results (Table 3.2) suggest that ThriftyDAgger achieves significantly higher throughput
than all prior algorithms while requiring fewer interventions and fewer human actions, in-
dicating that ThriftyDAgger requests interventions more judiciously than prior algorithms.
Furthermore, ThriftyDAgger also enables a lower mean idle time for robots and higher perfor-
mance on the distractor task. Notably, ThriftyDAgger solicits fewer interventions and total
actions while achieving a higher throughput than even HG-DAgger, in which the participant
chooses when to intervene. We also report metrics of users’ mental workload and frustration
using the NASA-TLX scale [93] in the appendix. Results suggest that users experience lower
degrees of frustration and mental load when interacting with ThriftyDAgger and LazyDAg-
ger compared to HG-DAgger and SafeDAgger. We hypothesize that participants struggle
with HG-DAgger due to the difficultly of monitoring multiple robots simultaneously, while
SafeDAgger’s frequent context switches lead to user frustration during experiments.

Physical Experiment: Visuomotor Cable Routing

Finally, we evaluate ThriftyDAgger on a long-horizon cable routing task with a da Vinci sur-
gical robot [119]. Here, the objective is to route a red cable into a Figure-8 pattern around 4
pegs via teleoperation with the robot’s master controllers (see supplement). The algorithm

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 33

Algorithm Interventions Human Actions Robot Actions Concentration Pairs Throughput Mean Idle Time
HG-DAgger 10.6 ± 2.5 198.0 ± 32.1 834.4 ± 38.1 N/A 5.1 ± 1.9 N/A
SafeDAgger 22.1 ± 4.8 234.1 ± 31.8 700.7 ± 70.4 17.7 ± 8.2 3.0 ± 2.4 38.4 ± 14.1
LazyDAgger 10.0 ± 2.1 219.5 ± 43.3 719.2 ± 89.7 20.9 ± 7.9 5.1 ± 1.7 37.1 ± 20.5
Ours: ThriftyDAgger 7.9± 2.1 179.4± 34.9 793.2 ± 86.6 33.0± 8.5 9.2± 2.0 25.8± 19.3

Table 3.2: Three-Robot Fleet Control User Study Results: Results for experiments
with 10 human subjects and 3 simulated robots on the peg insertion task. We report the total
numbers of interventions, human actions, and robot actions, as well as the throughput, or
total task successes achieved across robots, for all algorithms. Additionally, for robot-gated
algorithms, we report the Concentration score (number of pairs found) and the mean idle
time of robots in the fleet in timesteps. Results suggest that ThriftyDAgger outperforms all
prior algorithms across all metrics, requesting fewer interventions and total human actions
while achieving higher throughput, lowering the robots’ mean idle time, and enabling higher
performance on the Concentration task.

only observes high-dimensional 64×64×3 RGB images of the workspace and generates con-
tinuous actions representing delta-positions in (x, y). As in Section 3.5, ThriftyDAgger uses
a target intervention frequency of αh = 0.01. We collect 25 offline task demonstrations (1,381
state-action pairs) from a human supervisor to initialize the robot policy for ThriftyDAgger
and all comparisons. We perform 1,500 environment steps, where each episode has at most
100 timesteps and system control can switch between the human and robot. The supplement
details the hyperparameter settings for all algorithms.

Results (Table 3.3) suggest that both ThriftyDAgger and HG-DAgger achieve a sig-
nificantly higher autonomous success rate than Behavior Cloning, which is never able to
complete the task. Furthermore, ThriftyDAgger achieves a higher autonomous success rate
than even HG-DAgger while requesting fewer interventions and a similar number of total
human actions. This again suggests that ThriftyDAgger’s intervention criteria enable it to
solicit more informative interventions than those chosen by a human supervisor. Finally, at
execution time ThriftyDAgger achieves a 100% intervention-aided success rate with minimal
supervision, again indicating that ThriftyDAgger successfully identifies the required states
at which solicit interventions to increase policy reliability.

3.6 Discussion and Future Work

We present ThriftyDAgger, a scalable robot-gated interactive imitation learning algorithm
that leverages learned estimates of state novelty and risk of task failure to reduce burden on
a human supervisor during training and execution. Experiments suggest that ThriftyDAgger
effectively enables long-horizon robotic manipulation tasks in simulation, on a physical robot,
and for a three-robot fleet while limiting burden on a human supervisor.

One direction for future work is casting ThriftyDAgger in the context of goal-conditioned
reinforcement learning, where the learned risk measure is leveraged to update the robot policy

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK 34

Algorithm Training Interventions Auto Succ. Execution Interventions Int-Aided Succ.
Ints Acts (H) Acts (R) Ints Acts (H) Acts (R)

Behavior Cloning N/A N/A N/A 0/15 N/A N/A N/A N/A
HG-DAgger 1.55± 1.16 13.9± 10.9 55.5± 10.9 10/15 0.40± 0.49 2.7± 3.5 73.9± 7.9 15/15
Ours: ThriftyDAgger 1.42± 1.14 15.2± 12.4 45.5± 18.3 12/15 0.40± 0.71 1.5± 3.1 61.3± 6.5 15/15

Table 3.3: Physical Cable Routing Results: We first report intervention statistics during
training (number of interventions (Ints), number of human actions (Acts (H)), and number of
robot actions (Acts (R))) and report the success rate of the fully-trained policy at execution
time when no interventions are allowed (Auto Succ.). We then evaluate the fully-trained
policies with interventions allowed and report the same intervention statistics and the success
rate (Int-Aided Succ.). We find that ThriftyDAgger achieves the highest autonomous and
intervention-aided success rates among all algorithms compared. Notably, ThriftyDAgger
even achieves a higher autonomous success rate than HG-DAgger, in which the human
decides when to intervene during training.

to potentially outperform the demonstrator by explicitly minimizing the likelihood of task
failure. In addition, it would interesting to experimentally evaluate how ThriftyDAgger’s
performance varies with the target supervisor burden (specified via αh). In practice, αh

could be time-varying: for instance, αh may be significantly lower at night, when human
operators may have limited availability. Similarly, αh may be set to a higher value during
training than at deployment, when the robot policy is typically higher quality.

In Chapter 5, we evaluate ThriftyDAgger and other algorithms in fleet learning experi-
ments with a large number of simulated and physical robots learning different tasks.

35

Chapter 4

IntervenGen: Interventional Data
Generation

In this chapter, we present IntervenGen, an alternative approach to facilitating scalability in
interactive IL. From a small set of 10 human interventions, IntervenGen can autonomously
generate thousands of new interventions.

4.1 Introduction

Imitation learning (IL) from human demonstrations is a promising paradigm for training
robot policies. One approach is to collect a set of offline task demonstrations via human
teleoperation [163, 158] and employ behavior cloning (BC) [204] to train robot policies via
supervised learning, where the labels are robot actions. There have been recent efforts to
scale this approach by collecting thousands of demonstrations using hundreds of human
operator hours and training high-capacity neural networks on the large-scale data [109, 27,
69, 2, 152].

However, IL policies can suffer from distribution shift, where the conditions at evaluation
time differ from those in the training data [215]. As an example, consider a policy that
makes decisions based on object pose observations. A common source of distribution shift
in the real world is object pose estimation error, which can occur due to a wide range of
factors such as sensor noise, occlusion, network delay, and model misspecification. This can
cause inaccuracy in the robot’s belief of where critical objects are located in the environment,
leading the robot to visit states outside the training distribution that result in poor policy
performance.

One approach to addressing distribution shift is to collect a large set of demonstrations
under diverse conditions and hope that agents trained on this data can generalize. However,
human teleoperation data is notoriously difficult to collect due to the human time, effort,
and financial cost required [109, 27, 69, 2, 152].

An alternative approach is interactive IL (i.e., DAgger [215] and variants [125, 160, 97]),

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 36

Human Intervention Synthetic Interventions

IntervenGen

Figure 4.1: Overview. IntervenGen automatically generates corrective interventional data
from a small number of human interventions, with coverage across both diverse scene con-
figurations and policy mistake distributions. Here, the robot mistakenly believes the peg is
at the position highlighted in red and requires demonstration of recovery behavior toward
the true peg position.

where humans can intervene during robot execution and demonstrate recovery behaviors to
help the robot return to the support of the training distribution. Subsequent training on
these corrections can increase policy robustness and performance both theoretically and in
practice [215]. However, interactive IL imposes even more burden on the human supervisors
than behavior cloning, as the human must continuously monitor robot task execution and
intervene when they see fit, typically over multiple rounds of interleaved data collection
and policy training. Moreover, a significant amount of recovery data may be required to
adequately cover the distribution of mistakes the policy may make.

We raise the following question: do we actually need to have a human operator collect
corrections every single time a policy makes a mistake? MimicGen [159], a recently proposed
data generation system, raises an intriguing possibility: a large dataset of synthetically gen-
erated demonstrations derived from a small set of human demonstrations (typically 100×
smaller or more) can produce performant robot policies. The system’s key insight is that
similar object-centric manipulation behaviors can be applied in new contexts by appropri-
ately transforming demonstrated behavior to the new object frame. Inspired by this insight,
we propose a data generation system for interventional data (see Fig. 4.1). With a small set
of corrective interventions from a human operator, we can autonomously generate data with
significantly higher coverage of the distribution of potential policy mistakes. Our system
can be applied to a broad range of applications such as improving policy success rates on a

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 37

task of interest, making policies robust to errors in perception, and more broadly, acting as
a domain randomization [250] procedure to aid in sim-to-real transfer of IL policies without
requiring additional data collection from a human supervisor. In this work, we focus on
improving policy robustness to errors in perception.

We make the following contributions:

1. IntervenGen (I-Gen), a system for automatically generating interventional data across
diverse scene configurations and broad mistake distributions from a small number of
human interventions.

2. An application of I-Gen to improve policy robustness against 2 sources of object pose
estimation error (sensor noise and geometry error) in 5 high-precision 6-DOF manip-
ulation tasks. I-Gen increases policy robustness by up to 39× with only 10 human
interventions.

3. Experiments demonstrating the utility of I-Gen over alternate uses of a human data
budget of equivalent or even greater size. A policy trained on synthetic I-Gen data
from 10 source human interventions can outperform one trained on even 100 human
interventions by 24%, with 12% of the data collection time and effort.

4. An experiment that shows that policies trained in simulation with I-Gen are amenable
to real-world deployment and retain robustness to erroneous state estimation.

4.2 Related Work

Data Collection Approaches for Robot Learning. Many prior works address the
need for large-scale data in robotics. Some use self-supervised data collection [118, 64],
but the data can have low signal-to-noise ratio due to the trial-and-error process. Other
works collect large datasets using experts that operate on privileged information available
in simulation [113, 63, 169]. Still, designing such experts can require significant engineering.
One popular approach is to collect demonstrations by having human operators teleoperate
robot arms [163, 158, 27, 109]; however, this can require hundreds of hours of human operator
time. Some systems also allow for collecting interventions to help correct policy mistakes [151,
160, 148]. In this work, we make effective use of a handful of interventional corrections
provided by a single human operator to autonomously generate large-scale interventional
data, substantially reducing the operator burden.

Imitation Learning from Human Demonstrations. Behavioral Cloning (BC) [204]
on demonstrations collected using robot teleoperation with human operators has shown
remarkable performance in solving real-world robot manipulation tasks [277, 161, 162, 27,
109, 2]. However, scaling this paradigm can be costly due to the need for large amounts of
data, requiring many hours of human operator time [27, 109, 152]. Furthermore, policies
trained via IL are often brittle and can fail when deployment conditions change from the
training data [215].

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 38

Sample New
Task and Error

Mistake Generation:
Policy Execution

Recovery Generation:
Trajectory Replay

Sample Source
Intervention

Mistake
Detection

Transform
Trajectory

Figure 4.2: I-Gen Data Generation Example. We provide an example of how I-Gen
generates a new intervention. First, a new task instance is sampled with a new configuration
(square peg location) and observation corruption (incorrect peg location highlighted in red).
We execute the robot policy to generate mistake behavior for the new task instance. When
a mistake is detected, we sample a human intervention segment from the source dataset and
transform it to adapt to the current scene. Finally, we executed the transformed recovery
segment in the environment.

Interactive Imitation Learning. Interactive IL allows demonstrators to provide cor-
rective supervision in situations where policies require assistance. Some approaches require
an expert to relabel states encountered by the agent with actions that the expert would
have taken [215, 42], but it can be difficult for human supervisors to relabel robot actions
in hindsight [137]. An alternative is to cede control of the system to a human supervisor for
short corrective trajectories (termed interventions) in states where the robot policy needs
assistance. Interventional data collection can either be human-gated [125, 151], where the
human monitors the policy and decides when to provide interventions, or robot-gated [98,
97, 99], where the robot decides when the human should provide interventions. However,
these approaches require collecting a sufficient number of human interventions for the robot
to learn robust recovery. In this work, we develop a novel data generation mechanism based
on replay-based imitation [159, 263, 114] in order to alleviate this burden.

Policy Adaptation under Domain Shift. There are other approaches besides interac-
tive IL for increasing policy robustness. These include injecting noise during demonstration
collection [138], having human operators intentionally introduce mistakes and corrections
during data collection [24], and enabling policies to deal with partial observability [181, 48].
Other approaches include employing a planner to return to states that the agent has seen

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 39

before [267, 52], using Reinforcement Learning (RL) with learned rewards to help an agent
adapt to new object distributions [91], and using counterfactual data augmentation to iden-
tify irrelevant concepts and ensure agent behavior will not be affected by them [196]. There
are also approaches to make policies trained with RL more robust, such as domain random-
ization [250, 197], using adversarial perturbations [164], and training agents to recover from
unsafe situations [247].

MimicGen. MimicGen [159] is a recently proposed system for automatically generating
task demonstrations via trajectory adaptation via leveraing known object poses. I-Gen
employs a similar mechanism for synthesizing trajectories but has several key differences.
Unlike MimicGen, I-Gen (1) generates interventional data rather than full demonstrations,
(2) relaxes the assumption of precise object pose knowledge, which is critical to MimicGen’s
success, (3) integrates closed-loop policy execution that allows the robot to visit novel states
during the data generation process, and (4) allows variation in not just object poses but also
robot belief states about these object poses.

4.3 Preliminaries

Problem Statement. We model the task environment as a Partially Observable Markov
Decision Process (POMDP) with state space S, observation space O, and action space A.
The robot does not have access to the transition dynamics or reward function but has a
dataset of samples D = {(o, a)}Ni=1 from an expert human policy πH : O → A. We assume
that while the human observes observation o, the robot’s observation is corrupted by some
function z, yielding z(o) = o′ ∈ O (e.g., due to sensor noise or network delay). In this work
we train policies on demonstration datasets D using supervised learning with the objective
argminθ E(o,a)∼D[− log πθ(a|o)].

Assumptions. I-Gen has assumptions similar to MimicGen [159]. (Assumption 1) the
action space consists of delta-pose commands in Cartesian end effector space; (Assumption
2) the task is a known sequence of object-centric subtasks; (Assumption 3) object poses
can be observed at the beginning of each subtask during data collection (but not deployment).
(Assumption 4) We also assume that demonstrated recovery behavior can be explained by
some component of the robot’s observations {o′1, o′2, . . . } during a human intervention despite
corruption by z. Without this assumption, it would not be possible for the robot to learn a
policy that maps o′ to πH(o). This information can be provided, for instance, in additional
observation modalities such as force-torque sensing or tactile sensing that provide a coarse
signal about an object’s pose. Some settings may not require any additional information:
for example, a fully closed gripper can inform the robot it must recover from a missed grasp.

MimicGen Data Generation System. MimicGen [159] takes a small set of source hu-
man demonstrations Dsrc and uses it to automatically generate a large dataset D in a target
environment. It first divides each source trajectory τ ∈ Dsrc into object-centric manipula-
tion segments {τi}Mi=1, each of which corresponds to an object-centric subtask (Assumption
2 above). Each segment is a sequence of end effector poses. Then, to generate a demon-

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 40

stration in a new scene, it uses the pose of the object corresponding to the current subtask,
and transforms the poses in a source human segment τi (with an SE(3) transform) such that
the relative poses between the end effector and the object frame are preserved between the
source demonstration and the new scene. It also adds an interpolation segment between the
robot’s current configuration and the start of the transformed segment. Then, the sequence
of poses in the interpolation segment and transformed segment are executed by the robot end
effector controller open-loop until the current subtask is complete, at which point the process
repeats for the next subtask. We use a data generation mechanism similar to MimicGen to
generate intervention trajectory segments in Section 4.4.

4.4 IntervenGen

Algorithm 2 displays the full pseudocode for IntervenGen. It takes as input the initial state
distribution p0, a base dataset of demonstrations D, and three hyperparameters k,m, n. On
each of one or more iterations, the system: (1) trains a policy πθ on the current dataset; (2)
rolls out πθ for interventional data collection with human teleoperation; (3) synthesizes new
interventions with closed-loop policy execution and open-loop trajectory replay; (4) returns
the new synthetic dataset.

Interventional Data Collection

We consider human-gated interventions [125], in which the human monitors the robot policy
execution and intermittently takes control to correct policy mistakes. As in DAgger [215],
this enables the human to demonstrate corrective recovery behavior from mistakes made
by the robot policy that otherwise would not be visited in full human task demonstrations
(due to distribution shift). The base robot policy πθ executed during interventional data
collection can come from anywhere, but is typically initialized from behavior cloning on an
initial set of offline task demonstrations D [97, 160, 215]. Each collected trajectory can be
coarsely divided into robot-generated “mistake” segments and human-generated “recovery”
segments.

Mistake Generation: Closed-Loop Policy Execution

We aim to use the collected human interventions to automatically synthesize interventions for
new scene configurations. Recall that, in prior work, MimicGen generates data by executing
a sequence of object-centric trajectories in an open-loop manner. In contrast, an appealing
property of our interventional IL setting is access to the robot policy πθ that is executed
during interventional data collection with the human operator.

We use this robot policy during the data generation process to broaden the distribution
of visited mistake states. Unlike MimicGen, we can execute the policy in the new scene
configuration. This has two benefits: (1) rather than assuming the policy will fail in the

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 41

same manner as the source trajectory, the generated mistake will reflect the genuine behavior
of the policy in the new configuration, and (2) it becomes possible to generate new mistake
trajectories for new corruptions of the observed object poses. For example, if sensor noise
corrupts the object pose during interventional data collection, a new noise corruption can
be applied during the data generation process. This allows data diversity in both object
poses and the robot’s erroneous beliefs about where the objects are (see Fig. 4.2). The use
of policy execution during data generation requires that we know when to terminate the
policy execution. In our experiments, we use contact detection to determine whether or not
the policy made a mistake. A more flexible option could be to use a learned classifier or
robot-gated intervention criteria such as ThriftyDAgger [97].

Recovery Generation: Open-Loop Trajectory Replay

In each episode of synthetic data generation, once we have completed policy execution and
entered a new mistake state, we generate a recovery trajectory. We select a random source
trajectory, segment out the human recovery portion of the trajectory, and adapt the tra-
jectory to the current environment state. This adaptation consists of (1) transforming the
source trajectory to the current object pose, (2) linearly interpolating in end-effector space
to the beginning of the transformed trajectory, and (3) executing the transformed trajectory
open-loop (see Fig. 4.2). Note that each object-centric subtask in a single task instance can
have zero, one, or multiple instances of alternating between mistake and recovery.

Output Filtering and Dataset Aggregation

It is possible that the executed trajectory may not complete the task successfully. For
instance, the recovery trajectory may be unable to recover from the new mistake state reached
by the robot. Consequently, we only keep the generated demonstration if it successfully
completes the task. We also filter out the segment of the synthetic demonstration that
corresponds to the human recovery segment; such filtering is used by common algorithms
such as DAgger [215] and HG-DAgger [125] and can prevent the imitation of mistakes. Each
filtered episode of synthetic data is aggregated into the base dataset D (used to train the
base policy πθ), and the policy is retrained on the new dataset after data generation. If
desired, the entire process of data collection, data generation, and policy training can be
iterated.

Inter-Subtask Recovery and Offline Mode

The I-Gen framework accommodates additional modules not considered in the main set of
experiments that greatly increases its range of applications, including (1) policy recovery
from more severe failure modes that revert to earlier subtasks and (2) “offline” I-Gen, which
allows humans to demonstrate mistakes intentionally [24]. We include experiments for these
modules on the supplemental website.

https://sites.google.com/view/intervengen2024

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 42

Algorithm 2 IntervenGen

Require: Initial state distribution p0, base dataset D
Require: Number of iterations k, human intervention episodes m, and synthesized trajectories n
1: procedure I-Gen(p0, D; k,m, n)
2: for i ∈ [1, ..., k] do ▷ One or more iterations
3: πθ ← train-policy(D)
4: D = ∅
5: for j ∈ [1, ...,m] do ▷ Data Collection
6: s0 ∼ p0 ▷ Sample initial state
7: τ ← execute-policy(s0, πθ)
8: intervene(τ) ▷ Human intervention
9: D ← D ∪ τ
10: for j ∈ [1, ..., n] do ▷ Data Generation
11: s0 ∼ p0
12: ξ ← execute-policy(s0, πθ)
13: t← terminate-policy(ξ)
14: τ ∼ D ▷ Sample source demonstration
15: τ ← τ [human] ▷ Filter intervention
16: τ ′ ← adapt(ξ, τ) ▷ Transform trajectory
17: ξ ← ξ ⊕ replay(τ ′)
18: if satisfies-goal(ξ[−1]) then
19: D ← D ∪ ξ[t :] ▷ Filter intervention

20: return D

4.5 Experiment Setup

Normal Task
Execution

Mistake and
Recovery

Nut Insertion Two Piece Assembly Coffee Nut-and-Peg Assembly

Figure 4.3: Tasks. We evaluate I-Gen in several contact-rich, high-precision tasks. The
top row shows normal task execution while the bottom row shows typical mistakes encoun-
tered by the agent when using inaccurate object poses (or object geometry for Nut-and-Peg
Assembly) and associated recovery behaviors.

We consider 4 tasks in the MuJoCo [251] robosuite simulation environment [280] (Fig. 4.3)

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 43

and 1 physical experiment. Each task involves contact-rich manipulation via continuous
control. The tasks vary in object geometry, object pose, observation error, and number of
manipulation stages.

Nut Insertion: The robot must place a square nut (held in-hand) onto a square peg.
The peg position is sampled in a 10 cm x 10 cm region at the start of each episode.

2-Piece Assembly: The robot must place an object into a square receptacle with a
narrow affordance region. The receptacle position is sampled in a 10 cm x 10 cm region at
the start of each episode.

Coffee: The robot must place and release a coffee pod into a coffee machine pod holder
with a narrow affordance region. The coffee machine position is sampled in a 10 cm x 10 cm
region at the start of each episode.

Nut-and-Peg Assembly [280, 162]: A multi-stage task consisting of (1) grasping a nut
with a varying initial position and orientation and (2) placing it on a peg in a fixed target
location. The nut is placed in a 0.5 cm x 11.5 cm region with a random top-down rotation
at the start of each episode.

Physical Block Grasp: A Franka robot arm must reach a block and grasp it. The
initial block position is sampled in a 20 cm x 30 cm region at the start of each episode.

Sources of Observation Error. In most environments, the source of observation error is
sensor noise: at test time, uniform random noise is applied to the observed position of the
peg (±4 cm in each dimension, with at least 2 cm in one dimension), receptacle (±4 cm in each
dimension, with at least 1 cm in one dimension), coffee machine (radial noise between 2 cm
and 4 cm), and block (±1 cm in x and ±7 cm in y, with at least 2.5 cm in y) respectively. In
the Nut-and-Peg Assembly environment, the source of observation error is object geometry :
for an identical observed nut pose, the nut handle may exist on either of two sides of the
nut. This setting corresponds to object model misspecification during pose registration.

Experimental Setup

Data Collection. For interventional data collection, we use the remote teleoperation system
proposed by Mandlekar et al. [160]. The observation space consists of robot proprioception
(6DOF end effector pose and gripper finger width) and object poses, while the action space
consists of 6DOF pose deltas and a binary gripper open/close command (except for Block
Grasp, which uses 3DOF position control with fixed rotation). For the base policy πθ used
in each task, we (1) collect 10 full human task demonstrations in each environment without
observation corruption (i.e., ground truth poses), (2) synthesize 1000 demonstrations with
MimicGen [159], and (3) train an off-the-shelf BC-RNN policy with default hyperparameters
using the robomimic framework [162], with the exception of an increased learning rate of
0.001 [159].

Data Generation. We then deploy πθ in the test environment with observation corrup-
tion (i.e., object pose error) and collect 10 human-gated interventions. These interventions
are expanded to 1000 synthetic interventions with I-Gen and aggregated with the 1000

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 44

demonstrations used to train the base policy. Finally, we train a new BC-RNN policy on
the aggregated dataset. We report policy performance as the success rate over 50 trials for
the highest performing checkpoint during training (where training takes 2000 epochs with
evaluation every 50 epochs), as in [162, 159].

Observability. In order for demonstrated recovery behavior to be learnable (Sec-
tion 4.3), I-Gen and all baselines can access additional observation information in Nut In-
sertion, Two-Piece Assembly, Coffee, and Block Grasp upon contact between (1) the nut
and peg, (2) object and receptacle, (3) pod and pod holder, and (4) gripper and cube, re-
spectively. We study both the idealized case of full observability (i.e., ground truth pose)
upon contact in Section 4.6 and partially improved observability (e.g., position of contact)
in Section 4.6. These are intended to be surrogates for sensor modalities such as force-torque
sensing that can help inform the robot about the object pose when its belief is wrong. For
Nut-and-Peg Assembly, we do not add additional information, as a closed gripper state is
sufficient for the policy to map a missed grasp to learned recovery.

Physical Experiment Setup. We wish to evaluate whether or not policies trained on
simulation data from I-Gen can retain their robustness to erroneous state estimation when
they are deployed directly in the real world. To do this, we train a policy for the Block
Grasp task in simulation and deploy it zero-shot on a physical robot. We use a Franka
Research 3 robot arm and gripper and a red cube with a side length of 5 cm. We use an Intel
RealSense D415 depth camera and Iterative Closest Point (ICP) for cube pose estimation.
The deployed policies output continuous control delta-pose actions at 20 Hz and do not
require any real-world data or fine-tuning. See Figure 4.4 for images of the transfer process.

Baselines

We implement and evaluate the following baselines. Each baseline corresponds to a different
dataset used to train the agent (all agents are trained with BC-RNN [162]):

Base: Deploy the base policy in the test environment without any additional data or
fine-tuning.

Source Interventions (Source Int): Deploy the base policy πθ, collect 10 human inter-
ventions when the policy makes mistakes, and add them to the base dataset.

Weighted Source Interventions (Weighted Src Int) [160]: Same as Source Interven-
tions, but weight the intervention data higher so that it is sampled as frequently as the base
data despite its smaller quantity.

Source Demonstrations (Source Demo): Collect 10 full human task demonstrations
in the test environment.

MimicGen Demonstrations (MG Demo) [159]: Same as Source Demonstrations, but
use (regular) MimicGen to generate 1000 synthetic demonstrations from the initial 10.

Policy Execution Ablation (I-Gen - Policy): Augment the 10 source interventions to
1000 I-Gen interventions, but do not use policy execution to generate new mistake states.

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 45

Normal
Task

Execution

Mistake
and

Recovery

Simulation Physical

Figure 4.4: Sim-to-Real. We evaluate sim-to-real transfer for a block grasping task with a
Franka Panda robot. Similar to Figure 4.3 we show normal task execution, typical mistakes
due to inaccurate object poses, and associated recovery for the simulation and real world
environments. The results show that I-Gen can facilitate sim-to-real transfer of learned
control policies, and that these policies retain robustness to erroneous perception.

4.6 Experiments

In this section, we summarize the key takeaways from the comparisons presented in Tables 4.1
and 4.2.

I-Gen vastly improves policy robustness under pose estimation error. In Ta-
ble 4.1, we observe that I-Gen improves policy performance by 3.5×, 10.7×, and 39× over
the base policy in Nut Insertion, 2-Piece Assembly, and Coffee respectively, despite only
collecting 10 human interventions.

I-Gen significantly improves upon näıve uses of an equivalent amount of full
human demonstration data. I-Gen consistently outperforms human demonstrations col-
lected at test time (Source Demo, Table 4.1) by 56%-68%. Even if these demonstrations are
expanded by 100× with MimicGen (MG Demo), I-Gen still outperforms by 34%-62%. Since
the human’s observability does not match the robot’s, the human can teleoperate toward
the true object poses. Thus, the robot does not observe any recovery behavior in the offline
data.

I-Gen significantly improves upon näıve uses of an equivalent amount of in-
terventional human data. Source Int in Table 4.1 underperforms I-Gen by 58%-70%.

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 46

While helpful, with only 10 human interventions, the data is insufficient to learn robust
recovery under pose error. This remains the case even if the intervention data is weighted
higher, in which case the agent overfits to the 10 interventions and underperforms I-Gen by
48%-74%. With the same budget of interventional human data, I-Gen can generate much
richer coverage of the distribution of mistakes under the base policy.

I-Gen significantly improves upon näıve uses of MimicGen. We observe a sig-
nificant 34%-62% improvement over MimicGen on full task demonstrations (MG Demo,
Table 4.1). We also observe that the policy execution component (Section 4.4) boosts per-
formance by 12%-38% respectively over the ablation, indicating that expanding the mistake
distribution is valuable. While the ablation dataset covers variation in the object pose, it
does not cover variation in the error; only the 10 mistake segments in the source dataset are
available. This shows that the novel components we introduced in I-Gen are crucial for high
performance.

I-Gen is useful across different environments. While 2-Piece Assembly and Coffee
have narrower tolerance regions than Nut Insertion that lower success rates across the board
(16%-20% for the base policy, 30%-48% for other baselines, and 18%-28% for I-Gen), the
relative performance of I-Gen remains consistent across environments: I-Gen outperforms all
baselines by 12%-76% in Nut Insertion, 18%-64% in 2-Pc Assembly, and 38%-78% in Coffee.

I-Gen is useful across different sources of observation error. Results for the Nut-
and-Peg Assembly task with object geometry error are in Table 4.2. We evaluate each policy
with 50 evaluations of each of the two possible geometries. Base and Source Int attain perfect
performance on the original geometry but struggle with the alternate geometry (0%-6%
performance). MG Demo has the opposite issue: since it consists of test-time demonstrations
with the alternate geometry, it can attain perfect performance on the alternate but 0% on the
original. A mixture of full demonstrations on both geometries (Base + MG Demo) attains an
even 60% and 64%; since it does not observe recovery behavior it must guess between the two
object geometries and has difficulty performing much higher than the 50% expected value
of random chance. Finally, I-Gen maintains 92% performance on the original geometry but
also learns to recover when missing its grasp due to the alternate geometry (88%), leading
to a 28%-40% improvement in the average case over baselines. See the website for videos.

I-Gen facilitates sim-to-real transfer of learned control policies, and these
policies retain robustness to erroneous state estimation. In Table 4.4 we observe
that state-based policies for the Block Grasp task deployed zero-shot on the physical system
perform similarly to simulation. By improving robustness to incorrect pose estimation,
I-Gen facilitates sim-to-real transfer for state-based policies, which are easier to transfer
across visual domain gaps than image-based policies but rely on accurate perception. I-
Gen outperforms baselines by 14%-94% in simulation and 30%-90% in real world trials,
suggesting learned recovery behaviors can transfer to real. The policy is also robust to
physical perturbations, dynamic object pose changes, and visual distractors; see the website
for videos.

https://sites.google.com/view/intervengen2024
https://sites.google.com/view/intervengen2024

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 47

Dataset Nut Insertion 2-Pc Assembly Coffee
Base 22% 6% 2%
Source Int 40% 6% 10%
Weighted Src Int [160] 50% 16% 6%
Source Demo 42% 12% 12%
MG Demo [159] 64% 16% 18%
I-Gen - Policy (Ours) 86% 52% 42%
I-Gen (Ours) 98% 70% 80%

Table 4.1: Results in three simulation domains with noisy pose estimation and full observ-
ability upon contact. I-Gen outperforms baselines across environments.

Dataset Geometry 1 Geometry 2 Mixture
Base 100% 0% 50%
Source Int 100% 6% 53%
MG Demo [159] 0% 100% 50%
Base + MG Demo 64% 60% 62%
I-Gen 92% 88% 90%

Table 4.2: Results in the Nut-and-Peg Assembly experiment. While baselines typically overfit
to one geometry or struggle with disambiguating the two, I-Gen attains high performance
on the mixture of geometries.

Analysis

In this section, we present further analysis on various aspects of I-Gen.
How is agent performance affected as observability decreases? For Nut Insertion,

we replace true pose information upon contact with the mean position of the first contact
between the nut and peg; for 2-Piece Assembly, we provide the unit vector in the direction of
the true pose at the first point of contact. Table 4.3 in comparison with Table 4.1 shows that,
as expected, a degradation in observability results in a degradation in agent performance.
However, I-Gen performance falls by only 4%-8%, indicating partial observability can be
sufficient to ground recovery behavior. An important direction for future work is investigating
raw real-world perception signals such as force-torque sensing.

How does performance vary across training seeds? I-Gen in the (full observability)
Nut Assembly task attains 98%, 100%, and 98% for 3 training seeds, indicating stability
across runs (more evidence on supplemental website).

How does synthetic IntervenGen data compare to an equal amount of human
data? In 2-Piece Assembly, 100 I-Gen interventions (from 10 human interventions) attain
24% while 100 human interventions attain 46%. Both improve upon 10 human interventions,
which only attains 6% (Table 4.1). However, 1000 I-Gen interventions from 10 human

https://sites.google.com/view/intervengen2024

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 48

Dataset Nut Insertion 2-Pc Assembly
Base 26% 6%
Source Int 40% 6%
MG Demo [159] 46% 22%
I-Gen - Policy 68% 42%
I-Gen 90% 66%

Table 4.3: Additional evaluation in two domains with partially improved (rather than full)
observability upon contact.

Dataset Simulation Real
Base 6% 0%
Source Int 26% 10%
MG Demo [159] 42% 50%
I-Gen - Policy 86% 60%
I-Gen 100% 90%

Table 4.4: Sim-to-real results for the block grasping task in simulation (50 trials) and zero-
shot evaluation of these policies in the real world (10 trials).

interventions (70%) can outperform 100 human interventions, and 100 human interventions
take significantly more human time and effort to collect than 10 human interventions (29.9
minutes instead of 3.6 minutes).

How does performance scale with the amount of synthetically generated in-
terventions? With the same 10 human source interventions in 2-Piece Assembly, an agent
trained on 200 synthetic I-Gen interventions attains 34%, 1000 interventions attains 70%
(Table 4.1), and 5000 interventions attains 88%. This suggests performance scales with
dataset size, at the cost of additional data generation time.

4.7 Conclusion

We present IntervenGen (I-Gen), a data generation system for corrective interventions that
cover a large distribution of policy mistakes given a small number of source human interven-
tions. We show that training on synthetic data generated by I-Gen compares favorably to
collecting more human demonstrations and interventions in terms of both policy performance
and human effort.

Although I-Gen improves on MimicGen and reduces its reliance on accurate pose es-
timation, I-Gen shares some of its limitations. Specifically, we consider only quasi-static
tasks with rigid body objects, and we assume valid interventions can be synthesized by
transforming source trajectory data.

CHAPTER 4. INTERVENGEN: INTERVENTIONAL DATA GENERATION 49

Future work involves applying I-Gen in settings with force-torque sensing to improve
behavioral adaptation for contact-rich and high-precision tasks. I-Gen can also be used to
rapidly adapt policy behavior toward individual human preferences over how a manipulation
task should be carried out without extensive data collection. Finally, I-Gen can also be
applied to facilitating sim-to-real transfer of IL policies by acting as a domain randomiza-
tion [250] procedure. Namely, while RL algorithms can autonomously learn adaptations to
dynamical domain randomization, IL typically requires generating new human behavior for
these variations. I-Gen may dramatically reduce the data requirements and enable policies
to deal with such variations with only a handful of corrective behaviors.

50

Part II

Interactive Fleet Learning

51

Chapter 5

Fleet-DAgger: Interactive Robot
Fleet Learning

Part II extends the interactive IL of Part I to the fleet setting of multiple robots and multiple
humans. This chapter formalizes this setting as interactive fleet learning (IFL) and introduces
new IFL algorithms, benchmarks, and experiments.

5.1 Introduction

Amazon, Nimble, Plus One, Waymo, and Zoox use remote human supervision of robot fleets
in applications ranging from self-driving taxis to automated warehouse fulfillment [28, 240,
149, 154, 50]. These robots intermittently cede control during task execution to remote
human supervisors for corrective interventions. The interventions take place either during
learning, when they are used to improve the robot policy, or during execution, when the
policy is no longer updated but robots can still request human assistance when needed
to improve reliability. In the continual learning setting, these occur simultaneously: the
robot policy has been deployed but continues to be updated indefinitely with additional
intervention data. Furthermore, any individual robot can share its intervention data with
the rest of the fleet. As opposed to robot swarms that must coordinate with each other
to achieve a common objective, a robot fleet is a set of independent robots simultaneously
executing the same control policy in parallel environments. We refer to the setting of a robot
fleet learning via interactive requests for human supervision (see Figure 5.1) as Interactive
Fleet Learning (IFL).

Of central importance in IFL is the supervisor allocation problem: how should limited
human supervision be allocated to robots in a manner that maximizes the throughput of the
fleet? Prior work studies this in the single-robot, single-human case. A variety of interactive
learning algorithms have been proposed that estimate quantities such as uncertainty [171],
novelty [127, 139, 97], risk [139, 97], and predicted action discrepancy [276, 98]. However, it
remains unclear which algorithms are the most effective when generalized to the multi-robot,

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 52

𝟂

Figure 5.1: In the Interactive Fleet Learning (IFL) setting, a set of M remote human su-
pervisors are allocated to a fleet of N robots (N ≫M) with a robot-gated allocation policy
ω. The humans share control policy πH and the robot fleet shares control policy πθt , which
learns from new human intervention data over time (Section 3).

multi-human case.
To this end, we formalize the IFL problem and present the IFL Benchmark (IFLB), a

new open-source Python toolkit and benchmark for developing and evaluating human-to-
robot allocation algorithms for fleet learning. The IFLB includes environments from Isaac
Gym [157], which enabled efficient simulation of thousands of learning robots for the first
time in 2021. This paper makes the following contributions: (1) the first formalism for
multi-robot, multi-human interactive learning, (2) the Return on Human Effort (ROHE)
metric for evaluating IFL algorithms, (3) the IFLB, an open-source software benchmark and
toolkit for IFL algorithms with 3 Isaac Gym environments for complex robotic tasks, (4)
Fleet-DAgger, a novel family of IFL algorithms for supervisor allocation, (5) results from
large-scale simulation experiments with a fleet of 100 robots, and (6) real robot results with
4 physical robot arms and 2 human supervisors providing teleoperation remotely over the
Internet.

5.2 Related Work

Allocating Human Supervisors to Robots at Execution Time

For human-robot teams, deciding when to transfer control between robots and humans during
execution is a widely studied topic in the literature of both sliding autonomy [229, 228,
67] and Human-Robot Interaction (HRI). In sliding autonomy, also known as adjustable
autonomy [224, 132] or adaptive automation [234], humans and robots dynamically adjust
their level of autonomy and transfer control to each other during execution [67, 234]. Since
identifying which robot to assist in a large robot fleet can be overwhelming for a human
operator [37, 142, 45, 200, 46], several strategies, such as using a cost-benefit analysis to
decide whether to request operator assistance [229] and using an advising agent to filter robot
requests [213], have been proposed to improve the performance of human-robot teams [200,

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 53

213, 57] and increase the number of robots that can be controlled [274], a quantity known
as “fan-out” [184]. Other examples include user modeling [229, 228, 200, 57] and studying
interaction modes [32] for better system and interface design [6, 36]. Zheng et al. [279]
propose computing the estimated time until stopping for mobile robots and prioritizing
robots accordingly. Ji et al. [112] consider the setting where physical assistance is required
to resume tasks for navigation robots and formalize single-human, multi-robot allocation
as graph traversal. Dahiya et al. [62] formulate the problem of multi-human, multi-robot
allocation during execution as a Restless Multi-Armed Bandit problem. Allocation of humans
to robots has also been studied from the perspectives of queueing theory and scheduling
theory [46, 56, 230, 84, 216, 65]. The vast majority of the human-robot teaming and queueing
theory work, however, does not involve learning; the robot control policies are assumed to
be fixed. In contrast, we study supervisor allocation during robot learning, where allocation
affects not only human burden and task performance but also the efficiency of policy learning.

Single-Robot, Single-Human Interactive Learning

Imitation learning (IL) is a paradigm of robot learning in which a robot uses demonstrations
from a human to initialize and/or improve its policy [15, 253, 54, 203, 95, 12]. However,
learning from purely offline data often suffers from distribution shift [215, 138], as com-
pounding approximation error leads to states that were not visited by the human. This
can be mitigated with online data collection with algorithms such as Dataset Aggregration
(DAgger) [215] and interactive imitation learning [42, 110, 211]. Human-gated interactive
IL algorithms [125, 241, 160] require the human to monitor the robot learning process and
decide when to take and cede control of the system. While intuitive, these approaches are
not scalable to large fleets of robots or the long periods of time involved in continual learn-
ing, as humans cannot effectively focus on many robots simultaneously [45, 200, 46] and are
prone to fatigue [177]. To reduce the burden on the supervisor, several robot-gated interac-
tive IL algorithms such as SafeDAgger [276], EnsembleDAgger [171], LazyDAgger [98], and
ThriftyDAgger [97] have been proposed, in which the robot actively solicits human inter-
ventions when certain criteria are met. Interactive reinforcement learning (RL) [271, 135,
261, 116, 254] is another active area of research in which robots learn from both online hu-
man feedback and their own experience. However, these interactive learning algorithms are
designed for and primarily studied in the single-robot, single-human setting. Other works
related to single-robot interactive learning include task allocation [259]; in contrast, we focus
on efficient robot learning of a single control policy.

Multi-Robot Interactive Learning

In this paper, we study allocation policies for multiple humans and multiple robots. While
many existing works [165, 270, 72, 198, 219] have leveraged NVIDIA’s Isaac Gym’s [157]
capability of parallel simulation to accelerate reinforcement learning with multiple robots,
these approaches do not involve human supervision. The work that is closest to ours is

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 54

by Swamy et al. [245], who study the multi-robot, single-human problem of allocating the
attention of one human operator during robot fleet learning. They propose to learn an
internal model of human preferences as a human supervises a small fleet of 4 robots and use
this model to assist the human in supervising a larger fleet of 12 robots. While this approach
mitigates the scaling issue in human-gated interactive IL, even a small fleet of robots can be
difficult for a single human supervisor to simultaneously monitor and control.

To the best of our knowledge, this work is the first to formalize and study multi-robot,
multi-human interactive learning. This problem setting poses unique challenges, especially
as the size of the fleet grows large relative to the number of humans, as each human allocation
affects both the robot that receives supervision and the robots that do not receive human
attention.

5.3 Interactive Fleet Learning Problem Formulation

We consider a fleet of N robots operating in parallel as a set of N independent Markov
decision processes (MDPs) {Mi}Ni=1 specified by the tuple (S,A, p, r, γ, p0i) with the same
state space S, action space A, unknown transition dynamics p : S ×A× S → [0, 1], reward
function r : S ×A → R, and discount factor γ ∈ [0, 1), but potentially different initial state
distributions p0i . We assume the MDPs have an identical indicator function c(s) : S → {0, 1}
that identifies which states s ∈ S violate a constraint in the MDP. States that violate MDP
constraints are fault states from which the robot cannot make further progress. For instance,
the robot may be stuck on the side of the road or have incurred hardware damage. We
assume that the timesteps are synchronized across all robots and that they share the same
non-stationary policy πθt : S → A, parameterized by θt at each timestep t.

The collection of {Mi}Ni=1 can be reformulated as a single MDPM = (SN ,AN , p̄, r̄, γ, p̄0),
composed of vectorized states and actions of all robots in the fleet (denoted by bold font)
and joint transition dynamics. In particular, s = (s1, ..., sN) ∈ SN , a = (a1, ..., aN) ∈ AN ,
p̄(st+1|st, at) = ΠN

i=1p(s
t+1
i |sti, ati), r̄(s, a) = ΣN

i=1r(si, ai), and p̄0 = ΠN
i=1p

0
i (s

0
i).

We assume that robots can query a set of M ≪ N human supervisors for assistance
interactively (i.e., during execution of πθt). We assume that each human can help only one
robot at a time and that all humans have the same policy πH : S → AH , whereAH = A∪{R}
and R is a hard reset, an action that resets the MDP to the initial state distribution s0 ∼ p0i .
As opposed to a soft reset that can be performed autonomously by the robot via a reset
action r ∈ A (e.g., a new bin arrives in an assembly line), a hard reset requires human
intervention due to constraint violation (i.e., entering some s where c(s) = 1). A human
assigned to a robot either performs hard reset R (if c(s) = 1) or teleoperates the robot
system with policy πH (if c(s) = 0). A hard reset R takes tR timesteps to perform, and all
other actions take 1 timestep.

Supervisor allocation (i.e., the assignment of humans to robots) is determined by an

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 55

allocation policy

ω : (st, πθt ,α
t−1,xt) 7→ αt ∈ {0, 1}N×M s.t.

M∑
j=1

αt
ij ≤ 1 and

N∑
i=1

αt
ij ≤ 1 ∀i, j, (5.1)

where st are the current states for each of the robots, αt is an N ×M binary matrix that
indicates which robots will receive assistance from which human at the current timestep t,
and xt is an augmented state containing any auxiliary information for each robot, such as
the type and duration of an ongoing intervention. Unlike Dahiya et al. [62] which studies
execution-time allocation, the allocation policy ω here depends on the current robot policy
πθt , which in turn affects the speed of the policy learning. While there are a variety of
potential objectives to consider, e.g., minimizing constraint violations in a safety-critical
environment, we define the IFL objective as return on human effort (ROHE):

max
ω∈Ω

Eτ∼pω,θ0
(τ)

[
M

N
·

∑T
t=0 r̄(s

t, at)

1+
∑T

t=0 ∥ω(st, πθt ,α
t−1,xt)∥2F

]
, (5.2)

where Ω is the set of allocation policies, T is the total amount of time the fleet operates
(rather than the time horizon of an individual task execution), θ0 are the initial parameters
of the robot policy, and ∥ · ∥F is the Frobenius norm. The objective is the expected ratio
of the cumulative reward across all timesteps and all robots to the total amount of human
time spent helping robots with allocation policy ω, with a scaling factor to normalize for the
number of robots and humans and an addition of 1 in the denominator for the degenerate
case of zero human time. Intuitively, the ROHE measures the performance of the robot fleet
normalized by the total human effort required to achieve this performance. We provide a
more thorough derivation of the ROHE objective in Appendix C.1.

Since human teleoperation with πH provides additional online data, this data can be used
to update the robot policy πθt with some policy update function f (e.g., gradient descent):{

Dt+1 ← Dt ∪Dt
H where Dt

H := {(sti, πH(s
t
i)) : πH(s

t
i) ̸= R and

∑M
j=1α

t
ij = 1}

πθt+1 ← f(πθt , D
t+1)

(5.3)

5.4 Interactive Fleet Learning Algorithms

Fleet-DAgger

Given the problem formulation above, we propose Fleet-DAgger, a family of IFL algorithms,
where an IFL algorithm is a supervisor allocation strategy (i.e., it specifies an ω ∈ Ω as de-
fined in Section 5.3). The learning algorithm in Fleet-DAgger is interactive imitation learning
with dataset aggregation from prior work [215, 125, 97]: its policy update function f is su-
pervised learning on Dt, which consists of all human data collected so far (Section 5.3). The
novel component of each Fleet-DAgger algorithm is its supervisor allocation scheme based on

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 56

unique priority function p̂ : (s, πθt)→ [0,∞) that indicates a priority score to assign to each
robot based on its state s and the current policy πθt , where, similar to scheduling theory, a
higher value indicates a higher priority robot. To reduce thrashing [98, 97], Fleet-DAgger
algorithms also specify tT , the minimum time a human supervisor must spend teleoperating
a robot.

Fleet-DAgger uses priority function p̂ and tT to define an allocation ω as follows (see
Appendix C.2 for the full pseudocode). At each timestep t, Fleet-DAgger first scores all
robots with p̂ and sorts the robots by their priority values. If a human supervisor is currently
performing hard reset action R and tR timesteps have not elapsed, that human continues to
help that robot. If a human is currently teleoperating a robot and the minimum tT timesteps
have not elapsed, that human continues to teleoperate the robot. If a robot with a human
supervisor continues to be high priority after the minimum intervention time (tR for a hard
reset or tT for teleoperation) has elapsed, that human remains assigned to the robot. If a
human is available to help a robot, the human is reassigned to the robot with the highest
priority value that is currently unassisted. Finally, if a robot has priority p̂(·) = 0, it does
not receive assistance even if a human is available.

Fleet-DAgger Algorithms

All algorithms below specify a unique priority function p̂, which is synthesized with Fleet-
DAgger as described in Section 5.4 to specify an allocation ω. More details are available in
the appendix.

Constraint (C): The Constraint baseline measures the performance of the robot fleet
when only trained on offline human demonstrations (i.e., ∀t, πθt = πθ0). At all timesteps t,
this baseline gives priority p̂(·) = 1 for robots that have violated a constraint (c(sti) = 1) and
require a hard reset, and p̂(·) = 0 for all other robots. We refer to this as C-prioritization
for Constraint. Thus, the robot fleet can only receive hard resets from human supervisors
(no human teleoperation). Without C-prioritization, robots that require hard resets would
remain indefinitely idle.

Random: This baseline simply assigns a random priority for each robot at each timestep.
To control the total amount of human supervision, we introduce a threshold hyperparameter
such that if a robot’s priority value is below the threshold, its priority is set to zero and it
will not request help.

Fleet-EnsembleDAgger (U.C.): This baseline adapts EnsembleDAgger [171] to the
IFL setting. EnsembleDAgger uses the output variance among an ensemble of neural net-
works bootstrapped on subsets of the training data as an estimate of epistemic uncertainty;
accordingly, we define the robot priority for Fleet-EnsembleDAgger as ensemble variance.
Since ensemble variance is designed for continuous action spaces, for environments with
discrete action spaces we instead estimate the uncertainty with the Shannon entropy [232]
among the outputs of a single classifier network.We refer to this priority function as U -
prioritization for Uncertainty. Finally, since EnsembleDAgger was not designed for envi-
ronments with constraint violations and idle robots will negatively affect the ROHE, we

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 57

add C-prioritization for a more fair comparison. Specifically, given an uncertainty threshold
value, robots with uncertainty above threshold are prioritized first in order of their uncer-
tainty (U), followed by constraint-violating robots (C).

Fleet-ThriftyDAgger (U.G.C.): This baseline adapts the ThriftyDAgger algorithm [97]
to the IFL setting. ThriftyDAgger uses a synthesis of uncertainty (which we refer to as the
U -prioritization value) and the probability of task failure (G-prioritization, estimated with
a Goal critic Q-function) to query a human for supervision. Since Fleet-DAgger requires
a single metric by which to compare different robots, we adapt ThriftyDAgger to the fleet
setting by calculating a linear combination of the U value and G value after normalizing
each value with running estimates of their means and standard deviations. As in [97], we
pretrain the goal critic on an offline dataset of human and robot task execution. Similar to
Fleet-EnsembleDAgger, we first prioritize by the combined uncertainty-goal value above a
parameterized threshold, followed by C-prioritization.

Constraint-Uncertainty-Risk (C.U.R.): Here we propose a novel Fleet-DAgger al-
gorithm. As the name suggests, C.U.R. does C-prioritization, followed by U -prioritization,
followed by R-prioritization. R stands for Risk, which we define as the probability of con-
straint violation. Intuitively, idle robots should be reset in order to continue making progress,
uncertain robots should receive more human supervision in areas with little to no reference
behavior to imitate, and robots at risk should request human teleoperation to safety before
an expensive hard reset. As in [247], we estimate the probability of constraint violation with
a safety critic Q-function and initialize the safety critic on an offline dataset of constraint
violations. C.U.R. also prioritizes differently at the beginning of execution for a parameter-
ized length of time, during which constraint violations are assigned zero priority rather than
high priority. Here, the intuition is that rather than attending to hard resets for an initially
low-performing policy, human intervention should instead be spent on valuable teleoperation
data that can improve the robot policy. Hence, during the initial period, constraint-violating
robots remain idle and human attention is allocated to the teleoperation of a smaller number
of robots.

5.5 Interactive Fleet Learning Benchmark

While many algorithms have been proposed for interactive learning [98, 171, 97, 276], to
our knowledge there exists no unified benchmark for evaluating them. To facilitate re-
producibility and standardized evaluation for IFL algorithms, we introduce the Interactive
Fleet Learning Benchmark (IFLB). The IFLB is an open-source Python implementation of
IFL with a suite of simulation environments and a modular software architecture for rapid
prototyping and evaluation of new IFL algorithms.

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 58

Figure 5.2: Isaac Gym benchmark environments in the IFLB.

Environments

The IFLB is built on top of NVIDIA Isaac Gym [157], a highly optimized software platform
for end-to-end GPU-accelerated robot learning released in 2021, without which the simulation
of hundreds of learning robots would be computationally intractable. The IFLB can run
efficiently on a single GPU and currently supports the following 3 Isaac Gym environments
with high-dimensional continuous state and action spaces (see Figure 5.2): (1) Humanoid,
a bipedal legged locomotion task from OpenAI Gym [25], (2) Anymal, a quadruped legged
locomotion task with the ANYmal robot by ANYbotics, and (3) AllegroHand, a task
involving dexterous manipulation of a cube with a 4-finger Allegro Hand by Wonik Robotics.
Constraint violation is defined as (1) the humanoid falling down, (2) the ANYmal falling
down on its torso or knees, and (3) dropping the cube from the hand, respectively. End
users can also add their own custom Isaac Gym environments with ease.

Software Architecture

The IFLB defines 3 interfaces for the development of IFL algorithms: (1) agents, (2) su-
pervisors, and (3) allocations. An agent is an implementation of the robot fleet policy πθt

(Section 5.3), such as an IL or RL agent. A supervisor is an implementation of the supervisor
policy πH (Section 5.3), such as a fully trained RL agent, a model-based planner, or a teleop-
eration interface for remote human supervisors. Lastly, an allocation is an implementation
of the priority function p̂ (Section 5.4), such as C.U.R. priority or ThriftyDAgger priority.
For reference, the IFLB includes an imitation learning agent, a fully trained RL supervisor
using Isaac Gym’s reference PPO [226] implementation, and all allocations from Section 5.4,
which we use in our experiments. Users of the IFLB can flexibly implement their own IFL
algorithms by defining new agents, supervisors, and allocations.

Given an agent, supervisor, allocation, and environment, the IFLB runs Fleet-DAgger as
described in Section 5.4. IFLB allows flexible command line configuration of all parameters
of the experiment (e.g., tT , tR, N , M) as well as the parameters of the agent, supervisor, and
allocation. If desired, the code can also be modified to support families of IFL algorithms

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 59

other than Fleet-DAgger. The benchmark is available open-source at https://github.com/
BerkeleyAutomation/ifl_benchmark.

5.6 Experiments

Metrics

Throughout online training, we measure four metrics at each timestep t: (1) the cumulative
number of successful task completions across the fleet and up to time t; (2) cumulative hard
resets (i.e., constraint violations); (3) cumulative idle time, i.e., how long robots spend idle
in constraint-violating states waiting for hard resets; and (4) the return on human effort
(ROHE, Equation 5.2), where reward is a sparse r ∈ {0, 1} for successful task completion
and cumulative human time is measured in hundreds of timesteps. For the Humanoid and
Anymal locomotion environments, success is defined as reaching the episode horizon without
constraint violation and with reward of at least 95% of that of the supervisor policy. For
the goal-conditioned tasks, i.e., AllegroHand and the physical block-pushing task, success is
defined by reaching the goal state.

IFLB Simulation Experiments

Experimental Setup: We evaluate all Fleet-DAgger algorithms in the 3 benchmark simu-
lation environments: Humanoid, Anymal, and AllegroHand. We use reinforcement learning
agents fully trained with PPO [226] as the algorithmic supervisor πH . We initialize the
robot policy πθ0 with behavior cloning on an offline dataset of 5000 state-action pairs. For a
fair comparison, the Constraint baseline is given additional offline data equal to the average
amount of human time solicited by C.U.R. by operation time boundary T . The Random
baseline’s priority threshold is set such that in expectation, it reaches the average amount
of human time solicited by C.U.R. by time T . Since Fleet-ThriftyDAgger requires a goal-
conditioned task, it is only evaluated on AllegroHand. All training runs are executed with
N = 100 robots, M = 10 humans, tT = 5, tR = 5, and operation time T = 10000, and are
averaged over 3 random seeds. In the appendix, we provide additional experiments including
ablation studies on each component of the C.U.R. algorithm and an analysis of hyperparam-
eter sensitivity to the number of humans M , minimum intervention time tT , and hard reset
time tR. The IFLB code provides instructions for reproducing results.

Results: We plot results in Figure 5.3. First, we observe that the choice of IFL algorithm
has a significant impact on all metrics in all environments, indicating that allocation matters
in the IFL setting. We also observe that the robot fleet achieves a higher throughput (num-
ber of cumulative task successes) with C.U.R. allocation than baselines in all environments
at all times. C.U.R. also attains a higher ROHE, indicating more efficient use of human
supervision. An increase in ROHE over time signifies that the improvement in the robot
policy πθt outpaces cumulative human supervision, indicating that the IFL algorithms learn

https://github.com/BerkeleyAutomation/ifl_benchmark
https://github.com/BerkeleyAutomation/ifl_benchmark

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 60

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

C Random U.C. C.U.R.U.G.C.

Figure 5.3: Simulation results in the IFLB with N = 100 robots and M = 10 human
supervisors, where the x-axis is timesteps from 0 to T = 10, 000. Shading indicates 1
standard deviation. The C.U.R. algorithm outperforms all baselines on all environments in
terms of ROHE and cumulative successes. (Note that the shape of the Anymal curves is due
to its success classification, episode horizon of 2500, and low hard resets.)

not only where to allocate humans but also when to stop requesting unnecessary supervi-
sion. C.U.R. also incurs fewer hard resets than baselines, especially Constraint, which must
constantly hard reset robots with a low-performing offline policy. For AllegroHand, however,
C.U.R. incurs higher hard resets and a smaller ROHE margin over baselines. We hypoth-
esize that since the task is too challenging to execute without human supervision in the
given fleet operation time, prioritizing hard resets ironically only gives the robots additional
opportunities to violate constraints. We also see that C-prioritization effectively eliminates
idle time; C.U.R. idle time flattens out after the initial period without C-prioritization.

Physical Block-Pushing Experiment

Experimental Setup: Finally, we evaluate Fleet-DAgger in a physical block-pushing ex-
periment with N = 4 ABB YuMi robot arms and M = 2 human supervisors. Each robot
arm has an identical setup for the block-pushing task that consists of a square wooden
workspace, a small blue cube, and a cylindrical end-effector. See Figure 5.4 for the hard-
ware setup. Constraint violation occurs when the cube hits the boundary or has moved

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 61

Remote Teleoperation

Hard
Reset

Autonomous
Autonomous

πθ

πθ

Figure 5.4: Physical Task Setup: an example timestep t in the physical experiment with
2 humans and 4 independent identical robot arms each executing the block pushing task.
Robot 1 queries robot policy πθt for an action given an overhead image of the workspace
and executes it in the workspace. Robot 2 is teleoperated by a remote Human 1, where
the human views the overhead image and specifies a pushing action through a user interface.
The red region at the edges of the workspace are constraint violation regions. Human 2 is
performing a physical hard reset for Robot 3, which has violated a constraint in a previous
timestep. Robot 4 autonomously executes the same robot policy as that of Robot 1 on its
own state.

into regions out of reach for the end-effector at two opposite corners of the workspace. The
objective of each robot is to reach a goal position randomly sampled from the allowable
region of the workspace. At each timestep, the robot chooses one of four discrete pushing
actions corresponding to pushing each of the four vertical faces of the cube orthogonally by
a fixed distance. The robot policy takes an overhead image observation of the cube in the
workspace with the goal programatically generated in the image. Hard resets are physical
adjustments of the cube, while teleoperation is performed over the Internet by a remote
human supervisor, who specifies one of the 4 pushing actions via a keyboard interface. We
set tT = 3, tR = 5, and T = 250 for a total of 4× 250 pushing actions per trial and run each
algorithm with 3 random seeds. All algorithms are initialized with an offline dataset of 3750
image-action pairs (375 samples with 10× data augmentation).

Results: We plot results in Figure 5.5. We observe that the C.U.R. algorithm achieves
higher ROHE, higher cumulative successes, lower hard resets, and lower idle time than
baselines, albeit by a small margin. Results suggest that (1) training an accurate safety
critic is more difficult in high-dimensional image space, leading to a smaller gap between
C.U.R. and U.C. (i.e., Fleet-EnsembleDAgger), and (2) U -prioritization in its current form
is less suitable for real-world multimodal human supervisors than it is for deterministic
algorithmic supervisors, resulting in a smaller increase in ROHE over time. Since a human
may arbitrarily choose one of multiple equally suitable actions, high robot uncertainty over
these actions does not necessarily translate to a need for human supervision.

CHAPTER 5. FLEET-DAGGER: INTERACTIVE ROBOT FLEET LEARNING 62

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

C Random U.C. C.U.R.

Figure 5.5: Physical results for the block-pushing task with 4 robots and 2 humans, where
the x-axis is timesteps. C.U.R. achieves higher ROHE and cumulative successes as well as
lower cumulative hard resets and idle time. Shading indicates 1 standard deviation.

5.7 Limitations and Future Work

The IFL formulation has a number of modeling assumptions that limit its generality. (1)
The human supervisors are homogeneous, (2) all robots operate in the same state and action
space, (3) all robots are independent and do not coordinate with each other, (4) humans have
perfect situational awareness [46] and can move to different robots without any switching
latency, (5) hard reset time is constant, and (6) timesteps are synchronous without network
latency or other communication issues [131]. In terms of experiments, the simulations have
algorithmic rather than human supervision, and the physical task is relatively straightforward
with discrete planar actions.

Future work involves lifting the assumptions above. In the next chapter, we introduce an
algorithm that lifts the first assumption by enabling learning from nonhomogeneous super-
visors. Other interesting directions are reinforcement learning algorithms for IFL and more
large-scale physical experiments. We hope that other robotics researchers will develop their
own IFL algorithms and evaluate them using the benchmark toolkit to accelerate progress.

63

Chapter 6

IIFL: Implicit Interactive Fleet
Learning

In this chapter, we extend implicit behavioral cloning [75] to the IFL setting and introduce
a novel technique for estimating uncertainty in energy-based models [141]. This enables
learning from multimodal data and heterogeneous human behavior.

6.1 Introduction

Imitation learning (IL), the paradigm of learning from human demonstrations and feedback,
has been applied to diverse tasks such as autonomous driving [191, 204, 39], robot-assisted
surgery [193, 129], and deformable object manipulation [227, 14, 101]. The most common
IL algorithm is behavior cloning (BC) [204], where the robot policy is derived via supervised
machine learning on an offline set of human task demonstrations. Since BC can suffer from
distribution shift between the states visited by the human and those visited by the robot,
interactive IL (IIL) algorithms including DAgger [215] and variants [97, 125, 171] iteratively
improve the robot policy with corrective human interventions during robot task execution.
These algorithms are typically designed for the single-robot, single-human setting; interactive
fleet learning (IFL) [99] extends IIL to multiple robots and multiple human supervisors.
However, learning from multiple humans can be unreliable as the data is often multimodal.

Training data is multimodal when the same state is paired with multiple (correct) action
labels: {(s, ai), (s, aj), . . . }, ai ̸= aj. Almost all robot tasks such as grasping, navigation,
motion planning, and manipulation can be performed in multiple equally correct ways; as a
result, almost all demonstration data has some degree of multimodality. Multimodality is
especially severe when learning from different human supervisors with varying preferences
and proficiency, as they demonstrate the same task in different ways [162]. Multimodality can
also occur in the demonstrations of one individual human who may make mistakes, become
more proficient at the task over time, or execute a different valid action when subsequently
encountering the same state [162, 183].

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 64

Florence et al. [75] propose Implicit Behavior Cloning (IBC), an IL algorithm that trains
an energy-based model (EBM) [141] to represent state-action mappings implicitly rather than
explicitly. While this makes model training and inference more computationally expensive
(Section 6.6), implicit models can represent multiple actions for each state. This property
allows them to handle both single-human multimodality and multi-human heterogeneity, as
they are indistinguishable from a data-centric perspective. However, IBC suffers from the
same distribution shift as (Explicit) BC.

In this paper we combine implicit models with interactive fleet learning to facilitate
interactive learning from multiple humans. See Figure 6.1 for intuition. As existing IFL
algorithms rely on estimates of epistemic uncertainty like the output variance among an
ensemble of networks, which are incompatible with implicit models (Section 6.4), we propose
a new technique for estimating the epistemic uncertainty in EBMs using Jeffreys divergence
[111].

This paper makes the following contributions: (1) Implicit Interactive Fleet Learning
(IIFL), the first IIL algorithm to use implicit policies, (2) a novel metric for estimating
uncertainty in energy-based models, (3) simulation experiments with a fleet of 100 robots
and 10 heterogeneous algorithmic supervisors, (4) physical experiments with a fleet of 4
robots and 2 heterogeneous human supervisors. Open-source Python code is available at
https://github.com/BerkeleyAutomation/IIFL.

6.2 Preliminaries and Related Work

Interactive Imitation Learning

Learning from an offline set of human task demonstrations with behavior cloning (i.e., super-
vised learning) is an intuitive and effective way to train a robot control policy [12, 204, 227,
191]. However, behavior cloning can suffer from distribution shift [215], as compounding ap-
proximation errors and real-world data distributions (e.g., variable lighting in a warehouse)
can lead the robot to visit states that were not visited by the human. To mitigate distribu-
tion shift, Ross et al. [215] propose dataset aggregation (DAgger), an IIL algorithm which
collects online action labels on states visited by the robot during task execution and iter-
atively improves the robot policy. Since DAgger can request excessive queries to a human
supervisor, several IIL algorithms seek to reduce human burden by intermittently ceding
control to the human during robot execution based on some switching criteria [125, 97, 276].
Human-gated IIL [125, 241, 148] has the human decide when to take and cede control, while
robot-gated IIL [98, 97, 171, 276] has the robot autonomously decide. Hoque et al. [99] pro-
pose Interactive Fleet Learning (IFL), which generalizes robot-gated IIL to multiple robots
supervised by multiple humans. In this work, we consider the IFL setting.

Sun et al. [243] propose a method for interactive imitation learning from heterogeneous
experts, but their method is not based on implicit policies and is limited to autonomous
driving applications. Gandhi et al. [81] also interactively learn from multiple experts and

https://github.com/BerkeleyAutomation/IIFL

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 65

(A) Robot
Paths

(B) IIFL
Energy

BC IIFL

x xxxx x

Junction Hallway Wind

IBC

Figure 6.1: In the 2D navigation experiments from Section 6.5, the robot must navigate from
the blue X marker on the left to the green X marker on the right, where the robot can go
either above or below the rectangular grey obstacle and continue through a section subject
to upward wind forces (blue arrows) that shift commanded motions upward. (A) Robot
Trajectories: After training on 100 demonstrations of the two paths around the obstacle,
pure behavior cloning cannot make progress past the fork due to multimodal demonstrations,
while Implicit Behavior Cloning cannot overcome the distribution shift due to wind in the
+y direction at execution time (denoted in light blue). IIFL reaches the goal by handling
both multimodality and distribution shift. (B) Implicit Interactive Fleet Learning
Energy: We display normalized IIFL energy distributions from representative states in the
trajectory. Lower energy (darker) indicates a more optimal action, and the x and y axes are
the 2D action deltas â that the robot can execute (which can be mapped directly onto the
corresponding 1×1 cell in the maze). At the junction point, both upward and downward
actions attain low energy; in a straight hallway, the rightmost actions attain low energy;
in the windy area, actions toward the lower right corner (making progress toward the goal
while fighting the wind) attain low energy.

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 66

propose actively soliciting the human supervisors to provide demonstrations that are com-
patible with the current data. However, this prevents the robot from learning alternative
modes and requires the human supervisors to comply with suggestions, which may not occur
due to human suboptimality, fatigue, or obstinacy [47].

Robot Learning from Multimodal Data

Learning from multimodal demonstrations is an active challenge in machine learning and
robotics. A mixture density network [20] is a popular approach that fits a (typically Gaus-
sian) mixture model to the data, but it requires setting a parameter for how many modes to
fit, which may not be known a priori. When actions can be represented as pixels in an image
(e.g., pick points), a Fully Convolutional Network [233] can be applied to learning pixelwise
multimodality [101, 275]. Shafiullah et al. [231] propose Behavior Transformers, a technique
that applies the multi-token prediction of Transformer neural networks [258] to imitation
learning. Other Transformer-based policies report similar benefits for multimodal data [237,
113]; however, these approaches require action discretization to cast behavior prediction as
next-token prediction. In a very recent paper, Chi et al. [43] introduce diffusion policies, an
application of diffusion models [96] to imitation learning from multimodal data.

Florence et al. [75] propose implicit behavior cloning, a technique that trains a conditional
energy-based model [141] and is found to outperform (explicit) BC and mixture density
networks in their experiments. As opposed to explicit models that take the form π : S → A,
implicit models take the form of a scalar-valued function E : S × A → R; the action is an
input rather than an output of the model. To sample an action from the policy, instead of
evaluating the explicit model â = π(s), the implicit model must perform optimization over
E conditioned on state s:

â = argmin
a∈A

E(s, a) (6.1)

In this work, we combine IBC with IFL to mitigate the effects of both distribution shift and
multimodality. To our knowledge, we are the first to extend implicit policies to interactive
IL.

Jeffreys Divergence

The Jeffreys divergence [111] is a statistical measure of the distance between two probability
distributions and is a symmetric version of the Kullback-Leibler (KL) divergence:

DJ(P∥Q) = DKL(P∥Q) +DKL(Q∥P).

The KL divergence is widely used in machine learning algorithms, most commonly in vari-
ational autoencoders [130] and generative adversarial networks [85]. It has also been used
for dimensionality reduction [153], information bottlenecks [249], and policy gradient meth-
ods for reinforcement learning [225, 226]. The Jensen-Shannon divergence [145] is another
symmetric KL divergence that sums the KL divergences of both distributions against the

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 67

mixture of the two, but neither the Jensen-Shannon nor the asymmetric KL divergences
have the structural properties that make Jeffreys divergence amenable to our setting (Sec-
tion 6.4). Nielsen [182] derives a proposition similar to Identity 1 (Section 6.4) with Jeffreys
divergence for exponential families but does not apply it to energy-based models. To our
knowledge, IIFL is the first algorithm to use Jeffreys divergence for uncertainty estimation
in energy-based models, exploiting its structural properties for fast computation.

6.3 Problem Statement

We consider the interactive fleet learning (IFL) setting proposed by Hoque et al. [99]. A
fleet of N robots operate in parallel independent Markov Decision Processes (MDPs) that are
identical apart from their initial state distributions. The robots can query a set of M < N
human supervisors with action space AH = A ∪ {R}, where a ∈ A is teleoperation in the
action space of the robots and R is a “hard reset” that physically resets a robot in a failure
state (e.g., a delivery robot tipped over on its side). As in [99], we assume that (1) the
robots share policy πθt : S → A, (2) the MDP timesteps are synchronous across robots,
and (3) each human can only help one robot at a time. However, unlike the original IFL
formulation [99], we do not assume that the human supervisors are homogeneous; instead,
each human i may have a unique policy πi

H : S → AH . Furthermore, each πi
H may itself be

nondeterministic and multimodal, but is assumed to be optimal or nearly optimal.
An IFL supervisor allocation algorithm is a policy ω that determines the assignment αt

of humans to robots at time t, with no more than one human per robot and one robot per
human at a time:

ω : (st, πθt , ·) 7→ αt ∈ {0, 1}N×M s.t.
M∑
j=1

αt
ij ≤ 1 and

N∑
i=1

αt
ij ≤ 1 ∀i, j. (6.2)

The allocation policy ω in IFL must be autonomously determined with robot-gated cri-
teria [97, 171] rather than human-gated criteria [125, 241, 148] in order to scale to large
ratios of N to M . The IFL objective is to find an ω that maximizes return on human effort
(ROHE), defined as the average performance of the robot fleet normalized by the amount of
human effort required [99]:

max
ω∈Ω

Eτ∼pω,θ0
(τ)

[
M

N
·

∑T
t=0 r̄(s

t, at)

1 +
∑T

t=0 ∥ω(st, πθt ,α
t−1,xt)∥2F

]
(6.3)

where ∥ · ∥F is the Frobenius norm, T is the amount of time the fleet operates (rather
than an individual episode horizon), and θ0 are the initial parameters of πθt .

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 68

6.4 Approach

Preliminaries: Implicit Models

We build on Implicit Behavior Cloning [75]. IBC seeks to learn a conditional energy-based
model E : S ×A → R, where E(s, a) is the scalar “energy” for action a conditioned on state
s. Lower energy indicates a higher correspondence between s and a. The energy function
defines a multimodal probability distribution π of action a conditioned on state s:

π(a|s) = e−E(s,a)

Z(s)
(6.4)

where Z(s) is a normalization factor known as the “partition function.” In practice, we
estimate E with a learned neural network function approximator Eθ parameterized by θ and
train Eθ on samples {si, ai} collected from the expert policies πH . Training Eθ is described
in Appendix D.2.

Implicit Interactive Dataset Aggregation

Behavior cloning is prone to distribution shift due to compounding approximation errors
[215], and any data-driven robot policy may encounter edge cases during execution that are
not represented in the training data [99]. We extend IBC to interactive imitation learning
using dataset aggregation of online human data, and iteratively update the shared robot
policy with the aggregate dataset at a fixed interval 1 ≤ t̂ ≤ T via supervised learning, as
in DAgger [215] and variants [125, 99]:{

Dt+1 ← Dt ∪Dt
H , where Dt

H := {(sti, π
j
H(s

t
i)) : π

j
H(s

t
i) ̸= R and

∑M
j=1 α

t
ij = 1}

πθt ← argminθ L(πθ, D
t), if t ≡ 0 (mod t̂)

where πj
H(s

t
i) is the teleoperation action from human j for robot i at time t, and αt

ij is the
assignment of human j to robot i at time t, as in Equation 6.2. Ross et al. [215] show
that such a policy incurs approximation error that is linear in the time horizon rather than
quadratic, as in behavior cloning.

Uncertainty Estimation for EBMs

While prior work computes the output variance among a bootstrapped ensemble of neural
networks to estimate epistemic uncertainty [51, 171, 97], this approach is not applicable to
implicit policies because multimodality results in a false positive: different ensemble members
may select equally optimal actions from different modes, resulting in high variance despite
high certainty. Furthermore, training and inference in EBMs are much more computationally
expensive than in explicit models (Section 6.6), making ensembles of 5+ models impractical.

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 69

Finally, inference in implicit models is nondeterministic, creating an additional source of
variance that is not due to uncertainty.

The notion of ensemble disagreement can still be applied to EBMs by considering the
action distributions at a given state rather than the single predicted actions. At states within
the distribution of the human data, a bootstrapped EBM will predict action distributions
that are concentrated around the human actions. However, outside of the human data
distribution, the models have no reference behavior to imitate, and will likely predict different
conditional action distributions due to random initialization, stochastic optimization, and
bootstrapping. Accordingly, we propose bootstrapping 2 implicit policies and calculating
the Jeffreys divergence DJ [111] between them as a measure of how their conditional action
distributions differ at a given state. Jeffreys divergence in this setting has two key properties:
(1) it is symmetric, which is useful as neither bootstrapped policy is more correct than the
other, and (2) it is computationally tractable for EBMs as it does not require estimating the
partition function Z(s) (Equation 6.4). To show (2), we derive the following novel identity
(proof in Appendix D.1):

Identity 1. Let E1 and E2 be two energy-based models that respectively define distributions
π1 and π2 according to Equation 6.4. Then,

DJ (π1(·|s)∥π2(·|s)) = Ea∼π1(·|s) [E2(s, a)− E1(s, a)] + Ea∼π2(·|s) [E1(s, a)− E2(s, a)] .

Crucially, the intractable partition functions do not appear in the expression due to the
symmetry of Jeffreys divergence. We estimate the expectations in Identity 1 using Langevin
sampling. Note that this method is not limited to the interactive IL setting and may have
broad applications for any algorithms or systems that use energy-based models. We provide
more intuition on the proposed metric in Figure D.1 in the appendix and consider how this
method may be generalized to a greater number of models in Appendix D.3.

Energy-Based Allocation

To extend IBC to the IFL setting, we synthesize the Jeffreys uncertainty estimate with
Fleet-DAgger [99]. Specifically, we set the Fleet-DAgger priority function p̂ : (s, πθt) →
[0,∞) to prioritize robots with high uncertainty, followed by robots that require a hard reset
R. This produces a supervisor allocation policy ω with Fleet-EnsembleDAgger, the U.C.
(Uncertainty-Constraint) allocation scheme in [99]. We refer to the composite approach as
IIFL.

6.5 Experiments

Simulation Experiments: 2D Navigation

To evaluate the correctness of our implementation and provide visual intuition, we first
run experiments in a 2D pointbot navigation environment. See Figure 6.1 for the maze

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 70

environment, representative trajectories, and energy distribution plots. We consider discrete
2D states s = (x, y) ∈ N2 (the Cartesian pose of the robot) and continuous 2D actions
a = (∆x,∆y) ∈ [−1, 1]2 (relative changes in Cartesian pose). The maze has a fixed start and
goal location and consists of a forked path around a large obstacle followed by a long corridor.
An algorithmic supervisor provides 100 demonstrations of the task, randomly choosing to
go upward or downward at the fork with equal probability. Since a model can simply overfit
to the demonstrations in this low-dimensional environment, to induce distribution shift we
add “wind” at execution time to a segment of the right corridor with magnitude 0.75 in the
+y direction.

In 100 trials, (explicit) BC achieves a 0% success rate, IBC achieves a 0% success rate,
and IIFL achieves a 100% autonomous success rate (i.e., robot-only trajectories without
human interventions, after interactive training). In Figure 6.1 we observe that BC cannot
pass the fork due to averaging the two modes to zero. Meanwhile, IBC is not robust to the
distribution shift: once the wind pushes the robot to the top of the corridor, it does not
know how to return to the center. We also observe that the IIFL energy distributions in
Figure 6.1(B) reflect the desired behavior in accordance with intuition.

Simulation Experiments: IFL Benchmark

Environments: Evaluating IIFL in simulation is uniquely challenging as it requires all
of the following, precluding the use of most existing benchmarks in similar papers: (1)
efficient simulation of large robot fleets, (2) simulation of multiple algorithmic humans, (3)
interactive human control, and (4) heterogeneous human control, which is difficult to specify
in joint space. To accommodate these requirements, following prior work [99] we evaluate
with Isaac Gym [157] and the IFL Benchmark [99]. We separate these experiments into two
domains: (1) homogeneous human control in 3 environments (Ball Balance, Ant, Anymal)
to compare with prior IFL algorithms that assume unimodal supervision; (2) heterogeneous
human control in FrankaCubeStack, the only Isaac Gym environment with Cartesian space
control. More details are available in Appendix D.4.

Metrics: Following prior work [99], we measure the total successful task completions
across the fleet and the total number of hard resets. For interactive algorithms, we also
measure the return on human effort (Equation 6.3) where reward is a sparse r ∈ {0, 1} for
task completion. Task execution is deemed successful if the robot completes its trajectory
without a hard reset and reaches 95% of expert human reward.

Baselines: We compare IIFL to the following baselines: (explicit) BC, IBC, (explicit)
IFL (specifically, Fleet-EnsembleDAgger [99]), and IIFL-Random (IIFL-R), which is an ab-
lation of IIFL that allocates humans to robots randomly instead of using the Jeffreys un-
certainty estimate. Human supervisors for BC and IBC perform only hard resets (i.e., no
teleoperation) during execution.

Experimental Setup: We run experiments with a fleet of N = 100 robots and M = 10
algorithmic supervisors, where the supervisors are reinforcement learning agents trained with
Isaac Gym’s reference implementation of PPO [226]. All training runs have hard reset time

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 71

Ball
Balance

Ant

Anymal

Cumulative
Successes

Cumulative
Hard Resets

Return on
Human Effort

IFLBC IBC IIFLIIFL-R

Figure 6.2: IFL Benchmark simulation experiment results. Despite unimodal supervision,
IIFL is competitive with or outperforms IFL and other baselines across 3 environments, sug-
gesting benefits of implicit policies beyond robustness to multimodality. Shading represents
±1 standard deviation.

Algorithm Avg. Reward Task Successes ROHE
BC 29.27± 14.05 0.3± 0.5 N/A
IBC 24.96± 0.83 0.0± 0.0 N/A
IFL 230.39± 53.41 7.0± 2.2 2.30± 0.53

IIFL-R 166.24± 28.63 0.0± 0.0 1.66± 0.29
IIFL 784.26± 122.41 26.7± 4.5 7.84± 1.22

Table 6.1: Execution results from the FrankaCubeStack Isaac Gym environment with 4
heterogeneous expert policies. IIFL significantly outperforms the baselines in average reward,
task successes, and return on human effort.

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 72

tR = 5 timesteps, minimum intervention time tT = 5 timesteps, and fleet operation time
T = 10, 000 timesteps [99], and are averaged over 3 random seeds. The initial robot policy πθ0

for all algorithms is initialized with behavior cloning on 10 full task demonstrations. While
IFL trains at every timestep following prior work [99], the implicit interactive algorithms
train at intervals of 1000 timesteps with an equivalent total amount of gradient steps for
increased stability of EBM training.

FrankaCubeStack, in which a Franka arm grasps a cube and stacks it on another (see
Appendix D.4 for images and details), has several differences from the other 3 environments.
First, since it allows Cartesian space control, we can script 4 heterogeneous supervisor policies
with grasps corresponding to each face of the cube; the M = 10 supervisors are split into 4
groups, each of which has a unique policy. Second, due to the difficulty of scripting interactive
experts, the online interventions take place at execution-time (i.e., the robot policy is frozen).
Third, since there is no notion of catastrophic failure in the cube stacking environment, we
do not report hard resets as there are none.

Results: The results are shown in Figure 6.2 and Table 6.1. In the homogeneous control
experiments, we observe that IIFL rivals or outperforms all baselines across all metrics, with
the exception of hard resets in the Anymal environment. We hypothesize that the latter
results from learning more “aggressive” locomotion that makes greater progress on average
but is more prone to failure. These results suggest that implicit policies may have desirable
properties over explicit policies such as improved data efficiency and generalization even
when multimodality is not present in the data, as suggested by prior work [75]. The severity
of distribution shift due to compounding approximation error [215] in the homogeneous
experiments roughly corresponds to the performance gap between BC and IFL (or IBC and
IIFL). Surprisingly, (explicit) IFL underperforms BC in Ball Balance; we hypothesize that
this is due to its frequent policy updates on a shifting low-dimensional data distribution.
In the FrankaCubeStack environment, IIFL significantly outperforms the baselines across
all metrics, indicating the value of implicit policies for heterogeneous supervision. The 74%
performance gap between IFL and IIFL corresponds to the severity of multimodality in
this environment. Only IFL and IIFL attain nontrivial success rates; while IIFL-R makes
progress, it is not able to successfully stack the cube, suggesting that IIFL allocates human
attention more judiciously.

Physical Experiments: Pushing Block to Target Point amid
Obstacle

Experimental Setup: To evaluate IIFL in experiments with real-world human multimodal-
ity and high-dimensional state spaces, we run an image-based block-pushing task with a fleet
of N = 4 ABB YuMi robot arms operating simultaneously and M = 2 human supervisors,
similar to Hoque et al. [99]. See Figure 6.3 for the physical setup. Each robot has an identical
square workspace with a small blue cube and rectangular pusher as an end effector. Unlike
Hoque et al. [99], we add a square obstacle to the center of each workspace. The task for each

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 73

1 2 3 4Observation

Actions

YuMi #1 YuMi #2

Figure 6.3: Physical experiment setup with 2 ABB YuMi robots for a total of 4 independent
arms.

robot is to push the cube to a goal region diametrically opposite the cube’s initial position
without colliding with the walls or the obstacle. Once this is achieved, the goal region is
procedurally reset based on the new cube position. As described in Section 6.3, the role
of human superivsion is to (1) teleoperate when requested and (2) provide a physical hard
reset when requested. When both paths to the goal are equidistant, Human 1 pushes the
cube clockwise around the obstacle while Human 2 pushes the cube counterclockwise; if one
path is closer, the human takes that path. Hard resets R are defined to be collisions of the
cube with the obstacle or the boundaries of the workspace. Furthermore, unlike the discrete
action space in Hoque et al. [99], we use a continuous 2D action space of a = (∆x,∆y) that
corresponds to the vector along which to push the block, starting from the block’s center.
We run 3 trials of each algorithm in Table 6.2 for T = 150 timesteps; see Appendix D.4 for
more details.

Results: The results are shown in Table 6.2. We observe that implicit policies are crucial
for success, as the explicit methods rarely reach the goal and incur many hard resets. Results
suggest that IIFL improves the success rate by 80% over IBC and improves ROHE by 4.5×
over IFL. However, IIFL incurs a similar number of hard resets to IBC. We hypothesize
that the duration of the physical experiment, difficult to extend due to the significant robot
and human time required, is insufficient to learn subtle collision avoidance behaviors that
noticeably reduce the number of hard resets.

6.6 Limitations and Future Work

Since IIFL extends IBC, it inherits some of its limitations. First, model training and inference
require 18× and 82× more computation time than explicit methods: on one NVIDIA V100
GPU, we measure implicit training to take an additional 0.34 seconds per gradient step
and implicit inference to take an additional 0.49 seconds. Second, Florence et al. [75] find
that IBC performance falls on some tasks when the action space dimensionality is very
high (|A| > 16); we do not observe this in our experiments as |A| ≤ 12 but IIFL likely

CHAPTER 6. IIFL: IMPLICIT INTERACTIVE FLEET LEARNING 74

Algorithm Successes (↑) Hard Resets (↓) ROHE (↑)
BC 2.0± 0.8 51.0± 0.8 N/A
IBC 20.3± 4.1 35.3± 6.8 N/A
IFL 7.0± 0.8 47.3± 0.5 0.13± 0.01
IIFL 36.3± 1.2 37.0± 2.2 0.71± 0.01

Table 6.2: Physical block pushing experiment results. IIFL outperforms all baselines in
number of task successes and ROHE and explicit methods in hard resets. Implicit BC and
IIFL incur similar amounts of hard resets.

incurs this property with higher-dimensional actions. Third, while it is 7× faster than
alternate methods for implicit models and has sub-second latency for a fleet of 100 robots,
IIFL uncertainty estimation is nevertheless 340× slower than its highly efficient explicit
counterpart (Appendix D.4). Finally, the real-world evaluation of IIFL is limited to block
pushing with fixed block properties; more comprehensive evaluation of IIFL in a wider range
of physical domains is required to assess its full applicability.

Future work involves evaluating IIFL in additional physical environments as well as ex-
tending recently proposed alternative approaches for handling multimodality such as Behav-
ior Transformers [231] and Diffusion Policies [43] to the IFL setting. It will also be important
to develop algorithms that effectively learn from human demonstrations that are not only
multimodal but also suboptimal. We note that as the Jeffreys uncertainty quantification
method does not rely on any IFL assumptions, it may be broadly useful beyond this setting
to any applications involving Boltzmann distributions and EBMs.

75

Part III

Systems for Remote Fleet
Supervision

76

Chapter 7

Real-Time Remote Robot
Manipulation

Here we study a prototype robot workcell that enables research and evaluation in real time
remotely over the Internet. We conduct a case study of remote robotics research with the
first systematic benchmarking of fabric manipulation algorithms on physical hardware.

7.1 Introduction

Reproducibility is the cornerstone of scientific progress. It allows researchers to verify results,
assess the state of the art, and build on prior work. Recent advances in computer vision (CV),
for instance, were facilitated by the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [66], a standard benchmark in CV literature.

In robotics, there is no equivalent benchmark. Simulation benchmarks [238, 25, 146] are
useful but cannot replace physical experiments as the “reality gap” remains prohibitively
large [55]. Physical robots are expensive and vary greatly in their capabilities and morpholo-
gies. Each research lab has a unique hardware setup, making it difficult to reliably compare
results. Cost also poses a significant obstacle to individuals or institutions who wish to
perform robotics research, but lack the resources to do so.

One option is to provide shared access to a remote hardware testbed via the Cloud.
In this paper, we describe algorithms and experiments performed entirely remotely using
Reach, a prototype hardware testbed from Robotics at Google [266]. Reach includes several
physical robot workcells and open source software for remote execution of control policies
in real time. Each workcell is configured for a benchmark task: one such task is folding a
T-shirt with a UR5 robot arm and 3-jaw piSOFTGRIP gripper [201] (Figure 7.1).

While folding T-shirts and other garments is a ubiquitous daily task for humans, ma-
nipulating fabric remains challenging for robots. Fabric is difficult to model due to its
infinite-dimensional state space, complex dynamics, and high degree of self-occlusion. Fur-
thermore, accurately simulating gripper contact mechanics and fabric self-collision remains

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 77

Figure 7.1: Reach cloud robotics workcell developed by Robotics at Google.

elusive for existing fabric simulators due to challenges in modeling deformation, friction, and
electrostatic forces [146, 227], highlighting the need for physical benchmarking.

This paper makes the following contributions: (1) four novel learning-based algorithms
for the unimanual folding task, (2) the first physical benchmarking of fabric manipulation
algorithms, and (3) a case study of robotics research performed exclusively using a remotely
managed robot workcell. This paper does not contribute the design of the Reach platform,
which is being developed by a larger team at Google [266].

7.2 Related Work

Remote Testbeds: Remote robotics testbeds include Robotarium [202] for swarm robotics
and Duckietown [195] for autonomous driving. The most similar remote testbed is from
Bauer et al. [17], who hosted the online “Real Robot Challenge” for manipulation in 2020
and 2021 at Neural Information Processing Systems (NeurIPS). Six robotics groups from
around the world were able to access their tri-finger robot [269] remotely via the Internet
and evaluate their algorithms on the shared infrastructure. Our study differs from this

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 78

project in the following ways: (1) they consider dexterous manipulation of rigid objects
while we consider deformable object manipulation; (2) they use a custom tri-finger robotic
system while we use a UR5 robot arm, standard in industrial settings; and (3) the Real
Robot Challenge submissions are either learning-free [79, 35] or learned only in simulation
[168, 5], while we consider learning algorithms trained on real data.

Reproducibility in Robotics: Several other approaches have been proposed for fa-
cilitating reproducibility in robotics research. One direction is benchmarking in simulation,
where evaluation is inexpensive and reproducible. Simulation environments have been devel-
oped for robot locomotion [25], household tasks [238], and deformable object manipulation
[146]. While researchers have made significant progress on these benchmarks, especially us-
ing reinforcement learning [89], such advances do not readily transfer to physical robots [55].
Another initiative for improving reproducibility is development of a low-cost open source
platform that can be assembled independently by different labs [273, 269]. A third approach
considers benchmarking performance on large offline datasets such as robot grasps on 3D
object models, e.g., EGAD [174] and Dex-Net [155]; RGBD scans and meshes of real-world
common household objects, e.g., the YCB Object and Model set [33]; and video frames of
robot experience, e.g., RoboNet [64]. These datasets have been used to explore and compare
algorithms [128], but they limit evaluation to states within the dataset.

Autonomous Fabric Folding: Autonomous fabric manipulation is an active chal-
lenge in robotics. Maitin-Shepard et al. [156] and Doumanoglou et al. [68] present early
approaches to reliably fold towels and garments, respectively, from crumpled initial config-
urations. Weng et al. [264] and Ha et al. [88] develop learning-based algorithms for fabric
manipulation using optical flow and dynamic flinging motions respectively. However, these
approaches were evaluated on dual-armed robots, which require coordination and are more
costly. There has been recent interest in learning algorithms for unimanual (single-arm)
fabric manipulation [100, 227]. These achieve strong results on fabric smoothing and folding
tasks, but robust and precise unimanual T-shirt folding remains an open problem. Lin et
al. [146] propose an environment for fabric manipulation and benchmark several learning
algorithms, but limit results to simulation. Garcia-Camacho et al. [82] propose benchmark-
ing tasks for bimanual fabric manipulation but allow robot hardware to vary and do not
evaluate learning algorithms.

7.3 The Google Reach Testbed

In this section, we review the details of the Google Cloud Robotics testbed [266] that are
most salient for this case study.

Hardware

See Figure 7.1 for an image of the workcell. The robot is a single Universal Robot UR5e arm
equipped with a Piab piSOFTGRIP vacuum-driven soft 3-jaw gripper [201]. The workcell is

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 79

equipped with 4 Intel Realsense D415 cameras which each capture 640 × 360 RGB images
at 20 FPS and 640 × 360 depth images at 1 FPS. The worksurface is a bright pink silicone
mat and the garment is a blue crew-neck short sleeve T-shirt. The workcell is maintained by
lab technicians who are onsite 8 hours a day to reset the robot and troubleshoot system-level
errors.

Software

Reach includes PyReach, an open source Python library developed by Robotics at Google for
interfacing with the Reach system. The software includes infrastructure for authenticated
users to establish a network connection with the robot server over the Internet, a viewer
tool for locally displaying the 4 workcell camera feeds in real time (Figure 7.2), a simulated
workcell that mimics the real workcell for safely testing motions prior to deployment on the
real system, and utility functions such as a pixel-to-world transform using the depth camera
and conversions between different pose representations.

PyReach also includes PyReach Gym, an application programming interface (API) mod-
eled after OpenAI Gym [25]. Remote agents receive observations of the environment and
request actions through this interface. In particular, at each time step with frequency up
to 10 Hz, a remote agent can receive the joint angles and Cartesian pose of the arm, the
binary state of the gripper (closed or open), and camera observations. The agent specifies
an action to execute as a desired pose of the arm in either joint or Cartesian space and a
desired binary state of the gripper.

Garment Folding Case Study: Problem Definition

We assume that the target folded configuration is known beforehand, that training and
evaluation are performed in real (not simulation), that the hardware setup is as specified
in Section 7.3, and that the garment stays the same during training and evaluation. The
task is to iteratively execute two procedures in a loop: (1) crumple the T-shirt and (2)
fold the T-shirt. Crumpling is performed via a series of 6 random drops of the T-shirt
resulting in an average of 37.5% coverage (Section 7.5), where coverage is the fraction of
the maximum 2D area the T-shirt is able to attain. The folding task is to manipulate the
T-shirt toward the target configuration in Figure 7.3. We decompose the folding task into
two subtasks: (1) flattening, i.e., spreading out from an initially crumpled configuration
until the garment is smooth, followed by (2) folding, i.e., folding the t-shirt from initially
flattened until sufficiently close to the target configuration. We measure folding accuracy
with a combination of Intersection over Union (IOU) and wrinkle detection (Section 7.5).

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 80

Figure 7.2: The client PyReach viewer, which updates the RGB images from the workcell
cameras at 10 Hz and depth images at 1 Hz. Our algorithms use the overhead RGB images
(top left panel). Note that the lower two panels on the right are from the same camera as
the top left panel.

Figure 7.3: Examples of crumpled states (Row 1) and folded states (Row 2).

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 81

ot Cropped RGB observation of the
workcell state from the overhead Re-
alsense camera at timestep t (Fig-
ure 7.2).

at The action at time t, expressed as a
pick-and-place action (p0, p1) in pixel
coordinates except in Section 7.4.

om
t Color-thresholded mask of the T-shirt

analytically computed from ot.

com(om
t) A function that returns the visual

center of the T-shirt.

c(om
t) A function that computes the 2D fab-

ric coverage.

T A template image of a fully flattened
shirt in the workspace.

Table 7.1: Notation for Section 7.4.

7.4 Garment Folding Algorithms

Due to the unique challenges of the flattening and folding subtasks, we benchmark each
subtask with its own set of algorithms. Hyperparameter and implementation details for all
algorithms are available in the appendix, and notation for this section is defined in Table 7.1.
With the exception of Drop, all actions are quasistatic pick-and-place actions from pick point
p0 to place point p1, where p0 and p1 are specified as (x, y) coordinates in pixel space; see
Appendix E.4 for implementation details.

Flattening: 4 New Algorithms

Learned Pick-Analytic Place (LP0AP1)

Inspired by prior work in imitation learning for fabric manipulation [227, 98], we develop
an algorithm to learn pick points from human demonstrations. Since we empirically observe
that human-selected pick points combined with analytic placing performs well on flattening,
we propose only learning the pick points p0 and analytically computing place points with the
strategy in Section 7.4 to improve sample efficiency. While other work has considered learn-
ing a pick-conditioned place policy for fabric manipulation [268], we define analytic placing
actions that make the pick-conditioned policy unnecessary. To handle the inherent multi-
modality in the distribution of human-specified pick points, we train a fully convolutional
network (FCN) [233] to output a heatmap corresponding to probability density instead of

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 82

Figure 7.4: LP0AP1 pick point predictions on the test set. Bright red and yellow regions
correspond to high probability pick points. The output heatmap is able to capture the
multimodality in human actions.

regressing to an individual action (Figure 7.4). The FCN can be interpreted as an implicit
energy-based model [75, 275] where the state and action pairs are the receptive fields of the
network. As in DAgger [215], we reduce distribution shift by iteratively adding on-policy
action labels to the dataset.

Learning Keypoints (KP)

This approach separates perception from planning and proposes to only learn the perception
component. Specifically, we collect a hand-labeled dataset of images with up to 5 visible
keypoints on the fabric corresponding to the collar, 2 sleeves, and 2 base corners (Figure 7.5).
While the dataset generation policy is open-ended for this approach, we choose to first train
an initial KP policy on random data (Section 7.4) and then augment the dataset with
states encountered under the policy to mitigate distribution mismatch similar to DAgger
[215]. We train a FCN with 3 output heatmaps to predict each of the 3 classes of keypoints
separately. Using keypoint predictions, we propose an analytic corner-pulling policy inspired
by [227] that iteratively moves the keypoints from their current positions to their respective
locations on a template flattened shirt T . To reduce ambiguity, we compute the rotation
and translation of T that best matches the current state and first move the keypoint farthest
from its target location to its destination. To our knowledge, the combination of the FCN
for multi-class keypoint prediction, T-shirt template matching, and corner pulling is a novel
flattening policy.

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 83

Figure 7.5: KP predictions on the test set. The predicted collar is colored green, the two
sleeves are red, and the two base points are blue. Shirt images are shown in grayscale for
viewing convenience.

Coverage Reward Learning (CRL)

This approach seeks to learn a reward function corresponding to fabric coverage c(·) from data
and execute a policy using this reward function. We learn this reward with self-supervised
learning and execute a greedy policy that seeks to maximize the 1-step reward at each time
step. Specifically, we fit a Convolutional Neural Network (CNN) Rθ(ot, at) to the scalar
change in coverage (i.e., c(om

t+1) − c(om
t)) that results from executing action at on ot. At

execution time we randomly sample thousands of pick points on the fabric mask om
t and

place points in the workspace and select the action with the highest predicted change in
coverage. To our knowledge, greedy planning over a learned model of coverage dynamics for
fabric flattening is novel. Once again, dataset generation is a design choice; here, we opt for
a random action policy (Section 7.4) to enable large-scale self-supervised data collection and
increase data diversity.

Drop (DROP)

Inspired by Ha et al. [88], we investigate whether dynamic motions can leverage aerodynamic
effects to accelerate the flattening of the shirt when combined with Approach 7.4. We propose
a simple vertical drop primitive that grabs the visual center of mass com(om

t), lifts the shirt
into the air, and releases. We profile the coverage dynamics of the drop and the LP0AP1

pick-and-place and run Q-value iteration to determine which primitive to execute (i.e., drop
or pick-and-place) given a discretized version of the current coverage c(om

t). Q-value iteration

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 84

on the following reward function produces a policy that minimizes the total number of actions
required to flatten the shirt:

r(s = c(·), a) =

{
−1 c(·) < C

0 c(·) ≥ C

where C is a coverage threshold defined in Section 7.5 and c(·) is the discretized current
coverage.

Flattening: 4 Baselines

Random (RAND)

As a simple baseline, we implement a random pick-and-place policy that selects p0 uniformly
at random from om

t and p1 uniformly at random in the workspace within a maximum distance
from p0.

Human Teleoperation (HUMAN)

As an upper bound on performance and action efficiency, a human selects pick and place
points through a point-and-click interface (see the appendix for details).

Analytic Edge-Pull (AEP)

We implement a fully analytic policy to explore to what extent learning is required for the
T-shirt flattening task. The policy seeks to flatten the shirt by picking the edges and corners
and pulling outwards. Formally, we sample p0 uniformly from the set of points in the shirt
mask om

t that are within a distance k from the perimeter of om
t , where k is a hyperparameter.

Given p0, we compute p1 by pulling a fixed distance l in the direction of the average of two
unit vectors: (1) away from com(om

t) and (2) toward the nearest pixel outside om
t .

Learning an Inverse Dynamics Model (IDYN)

A inverse dynamics model f(ot,ot+1) produces the action at that causes the input transition
from ot to ot+1. Here we implement the algorithm proposed by Nair et al. [179], which learns
to model visual inverse dynamics. Specifically, we approximate the dynamics with a Siamese
CNN fθ(·, ·) trained on the random action dataset collected in Section 7.4. As in [179], the
network factors the action by predicting the pick point p0 before the pick-conditioned place
point p1 to improve sample efficiency. During policy evaluation, the inputs to the network
are the current observation ot and the template goal observation T .

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 85

Folding Algorithms

Human Teleoperation (HUMAN)

As an upper bound on performance, a human chooses pick and place points for folding
through a point-and-click interface.

Analytic Shape-Matching (ASM)

Since the folding subtask is significantly more well-defined than flattening, we investigate
whether an open-loop policy computed via shape matching can successfully fold the shirt.
We specify a fixed sequence of folding actions with a single human demonstration. During
evaluation, we compute rotations and translations of the corresponding template images
to find the best match with ot and transform the folding actions in the demonstration
accordingly.

Learned Pick-Learned Place (LP0LP1)

This approach is identical to Section 7.4 but learns both pick points and place points, as the
analytically computed place point is designed for flattening. Since folding demonstrations
are difficult to obtain (the garment must be flattened first) and successful folding episodes
are short-horizon and visually similar, we collect only two demonstrations and augment the
data by a factor of 20 with affine transforms that encourage rotational and translational
invariance.

Fully Autonomous Flattening with Analytic Shape-Matching (A-ASM)

The algorithms above are evaluated after the garment is fully flattened via human teleop-
eration to study the folding subtask in isolation. This approach, A-ASM, combines the
best-performing autonomous flattening algorithm (i.e., LP0AP1) with ASM (Section 7.4) to
evaluate the performance of a fully autonomous pipeline for manipulating the garment from
crumpled to folded.

7.5 Experiments

Experimental Setup

All actions executed on the robot are either a pick-and-place primitive (p0, p1) or a drop
primitive (for the DROP algorithm). See Appendix E.4 or the code for the exact implemen-
tation details. During data collection, actions are chosen either autonomously (e.g., with
RAND in Section 7.4) or by a human via a point-and-click graphical user interface (see the
appendix). At execution time, actions are parameterized by outputs from trained models.

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 86

To improve the performance of the deployed flattening algorithms, we include two addi-
tional primitives: (1) a recentering primitive for when the shirt has drifted too far from the
center of the workspace, and (2) a recovery primitive that executes a random action when
the coverage is stalled for an extended period of time. See the appendix for ablation studies
suggesting the usefulness of such primitives.

Flattening Metrics

We perform 10 trials of all flattening algorithms from an initially crumpled state (Figure 7.3).
Crumpling is performed autonomously via a series of 6 actions, each of which grabs the T-
shirt at a random point, quickly lifts it into the air, and releases, resulting in an initial
coverage of 37.5% ± 14.9% over 45 trials. In Table 7.2 we report maximum coverage as
a percentage of the pixel coverage of a fully flattened shirt, i.e. 47,000 pixels in the shirt
mask om

t . We also report the number of samples used to train the algorithm, the execution
time per action, and the number of actions executed, where we allow a maximum of 100
actions but terminate early if a coverage threshold is reached (C = 45,000 pixels or 96% of
maximally flattened).

Folding Metrics

We perform 5 trials of all folding algorithms from an initially flattened state. A-ASM initial
states are flattened by LP0AP1 while all other initial states are flattened via human teleop-
eration. In Table 7.3 we report the number of actions and execution time per action, and
we measure the quality of the final state against a goal configuration (Figure 7.3) according
to two metrics: (1) intersection over union (IoU) and (2) a penalty for edges and wrinkles.
IoU is calculated between the shirt mask and the goal template, after rotating and trans-
lating the goal to best match the shirt mask. The wrinkle penalty calculates the fraction of
pixels in the interior of the shirt mask detected as edges by the Canny edge detector [34]. A
high-quality folding episode achieves a high IoU score and low edge penalty; for reference,
the scores for a fully folded goal image are provided in Table 7.3 as GOAL.

Flattening Results

See Table 7.2 and Figure 7.6 for results. We find that fully analytical policies such as RAND
and AEP are unable to attain high coverage while HUMAN is able to consistently flatten
the garment in 11.9 actions on average, suggesting the efficacy of the pick-and-place action
primitive and the value of intelligently selecting pick points. Interestingly, we find that
despite training an inverse dynamics model on nearly 4,000 real samples, IDYN is unable to
outperform RAND. We hypothesize that the fully flattened goal image T provided as input
is too distant from the encountered states, resulting in a data sample outside the training
data distribution.

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 87

Table 7.2: Flattening results. We report the metrics in Section 7.5, where averages and standard
deviations are computed over 10 trials.

Algorithm % Coverage Actions Dataset Time/Act (s)

RAND 55.0 ± 6.0 100.0 ± 0.0 N/A 23.9 ± 2.5

HUMAN 97.7 ± 3.9 11.9 ± 5.3 N/A 45.1 ± 18.6

AEP 55.3 ± 5.5 100.0 ± 0.0 N/A 24.6 ± 2.0

IDYN 57.0 ± 5.9 100.0 ± 0.0 3936 23.7 ± 3.7

KP 72.4 ± 9.2 100.0 ± 0.0 681 25.7 ± 2.7

CRL 73.8 ± 8.4 100.0 ± 0.0 3936 32.1 ± 5.3

DROP 97.7 ± 1.3 38.6 ± 20.6 524 25.7 ± 0.8

LP0AP1 97.7 ± 1.4 31.9 ± 17.2 524 25.6 ± 0.9

CRL is better able to leverage the large self-supervised dataset as it attains higher cov-
erage, though it does require more time per action due to thousands of forward passes
through the network during planning. However, since the dataset is generated by RAND,
which achieves an average maximum coverage of only 55.0%, CRL has trouble producing
high-quality actions in the high coverage regime, where it has encountered relatively little
data. Modifications to the dataset such as actively interleaving data collection and training
with policy execution is an interesting direction for future work. KP also achieves a higher
maximum coverage than AEP and RAND, but it is prone to executing regressive actions
that prevent it from maintaining this coverage. Results suggest that KP can be improved
by (1) autonomous labeling, e.g. with fiducial markers, to avoid human error on challenging
states with high self-occlusion, and (2) improvements to the analytic corner-pulling policy,
which, for example, can struggle when all visible keypoints are positioned correctly but other
keypoints are not visible.

We find that LP0AP1 significantly outperforms all other algorithms, rivaling HUMAN-
level performance by consistently reaching the threshold coverage C in less than 3 times the
amount of actions as HUMAN. We hypothesize that this is due to increased sample efficiency
from analytic placing in conjunction with the modeling power of the FCN, which exhibits
equivariance by sharing parameters for pixel predictions and is an implicit energy-based
model like other state-of-the-art architectures [75, 275].

Finally, we find that DROP, which converges through Q-iteration to a policy that executes
a drop if coverage is below 45% and LP0AP1 otherwise, is unable to improve upon LP0AP1.
This may occur due to our modeling of the coverage dynamics of LP0AP1 as the same
regardless of the current coverage, whereas in reality, LP0AP1 improves coverage faster in
lower-coverage states (Figure 7.6). Nevertheless, the DROP framework may be an effective
way to combine multiple action primitives given more powerful dynamic primitives, such as
bimanual actions that can better leverage aerodynamic effects [88].

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 88

Figure 7.6: Coverage vs. time plot for the various flattening policies that we benchmark on
the workcell, averaged across 10 rollouts. Shading represents one standard deviation, and
the horizontal dashed line is the flattening success threshold (96%).

Folding Results

See Table 7.3 for results and Figure 7.7 for folding episodes. The folding subtask presents
unique challenges: (1) data collection and evaluation require an initially flattened state,
which is difficult to attain through a remote interface, (2) slightly incorrect actions can
dramatically alter the fabric state, often requiring re-flattening the garment, and (3) the
single-arm pick-and-place primitive is not well-suited for the precise manipulation required
for crisp garment folding. Indeed, we find that even with folding optimizations to pick-
and-place (Section 7.5), a human teleoperator attains only 76% of the goal IoU on average
(Table 7.3). However, we find that both ASM and LP0LP1 are able to effectively leverage
the primitive to achieve near human-level performance, where ASM performs similarly to
LP0LP1. We also find that the fully autonomous pipeline A-ASM is able to reach similar per-

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 89

Figure 7.7: Representative episodes of the folding subtask executed by HUMAN (Row 1),
LP0LP1 (Row 2), and ASM (Row 3). LP0LP1 and ASM achieve performance competitive
with human teleoperation.

Table 7.3: Folding results. We report the metrics in Section 7.5, where averages and standard
deviations are computed over 5 trials.

Algo. IoU (↑) Wrinkle (↓) Actions Time (s)

GOAL 0.98 0.093 N/A N/A

HUMAN 0.74 ± 0.06 0.088 ± 0.023 4.4 ± 0.5 63.8 ± 15.

ASM 0.69 ± 0.08 0.087 ± 0.038 4.0 ± 0.0 35.1 ± 1.9

LP0LP1 0.68 ± 0.08 0.112 ± 0.032 4.0 ± 0.0 35.7 ± 1.3

A-ASM 0.62 ± 0.12 0.112 ± 0.038 4.0 ± 0.0 35.5 ± 1.7

formance from an initially crumpled state, setting a baseline score for the end-to-end folding
task. Although ASM is open-loop and LP0LP1 learns from only 2 demonstrations, HUMAN
cannot significantly outperform them due to the difficulty of correcting inaccurate actions in
folding with only top-down pick-and-place actions. Further progress on the folding subtask
will likely require both improved manipulation primitives and algorithmic innovations.

7.6 Conclusion and Future Work

In this work, we benchmark novel and existing algorithms for T-shirt smoothing and folding
tasks on a remote hardware testbed. We find that policies that combine learning with

CHAPTER 7. REAL-TIME REMOTE ROBOT MANIPULATION 90

analytical methods achieve the highest performance in practice, suggesting the value of
future work in this area.

The ability to access robot hardware remotely, an intuitive API, maintenance by dedi-
cated staff, and the consistency of the task environment all contribute to quick and effective
experimentation. On the other hand, onsite technicians have limited availability, variable-
latency 2D camera projections are at times insufficient for fully understanding the scene,
and manual resets (e.g., flattening the T-shirt) become difficult to perform, suggesting the
importance of learning self-supervised reset policies [87].

Opportunities for future work include (1) further optimizing performance on the uniman-
ual folding task, (2) evaluating alternative approaches such as continuous control, reinforce-
ment learning, and different action primitives, and (3) evaluating each algorithm’s ability to
generalize to other garments with variation in color, shape, size, and material.

91

Chapter 8

FogROS2-SGC: Cloud Robotics with
Secure Global Connectivity

In this chapter, we present FogROS2-SGC, a cloud robotics platform for securely connecting
ROS2 networks in different physical locations. We study how this system may facilitate
robot fleet learning with robots, compute nodes, and human supervisors distributed around
the world.

8.1 Introduction

As robots are increasingly deployed worldwide, they require mechanisms to efficiently, reli-
ably, and securely communicate with other robots, sensors, computers, and the cloud. The
applications are broad, from mobile robots with changing IP addresses due to traveling
through different networks, to a fleet of globally distributed robots learning collaboratively.
Cloud and fog robotics [123] empower robots and automation systems to harness off-board
resources in cloud-based computers. In prior work, we introduced FogROS2 [104], now an
official part of the ROS2 ecosystem [76], to enable robots to execute modern compute and
memory-intensive algorithms using on-demand hardware resources on the edge and cloud.
However, ROS2 and FogROS2 assume all robots are locally connected and each robot has
full access and control of other robots. Robots connecting to the cloud, a nearby computer
on a different network, or a robot halfway around the world introduce additional challenges:
(1) Robots that are accessible to other systems on the public internet may be vulnerable
to unauthorized connections and data breaches. (2) The heterogeneity of interconnected
devices, communication protocols, and configurations causes incompatibilities that hinder
integration and operation. (3) The changing network topology of mobile robots and Un-
manned Aerial Vehicles (UAVs) challenges their ability to stay connected. To illustrate
some of these challenges (Fig. 8.1), consider:

(A) Security and inspection drones: Drones navigate a construction site and stream data
to a central station that updates a dynamically-changing SLAM map [242]. As drones fly

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 92

Figure 8.1: FogROS2-SGC enables Secure Global Connectivity for robots, allowing robots
to communicate with other robots, computers, and the cloud through a standard ROS2
interface. With FogROS2-SGC, (A) drones navigating large construction sites can seam-
lessly communicate, even when their IP addresses are constantly changing due to switching
Wi-Fi and cellular networks; (B) shipping and stocking robots from different corporations
can securely share only the required topics necessary to facilitate the transfer of goods at a
warehouse; and (C) globally distributed robots can participate in fleet learning. In experi-
ments, we demonstrate FogROS2-SGC on Fleet-DAgger [99], a fleet learning algorithm, with
4 robot arms operating simultaneously in different locations.

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 93

through different cellular and Wi-Fi networks, their IP addresses change, but they should
remain securely connected.

(B) Coordinating heterogeneous mobile robots in a warehouse: Robots belonging to dif-
ferent companies (e.g., shipping vs. warehouse) and of different makes and models hand
off items between container and warehouse. Each robot has unique software packages and
versions (e.g., operating systems and network protocols) and must communicate, but only a
few selected topics are necessary for the handoff.

(C) Distributed fleet learning: Robot arms at different locations pool their data and
collectively update a shared control policy. Robots unable to make progress can fall back on
remote human teleoperators, using algorithms such as Fleet-DAgger [99].

To address these challenges, we present FogROS2-SGC (Secure Global Connectivity),
an extension of FogROS2 that securely and reliably connects robots across different soft-
ware components, network protocols, and physical locations. FogROS2-SGC enables dis-
joint ROS2 networks to connect to ROS2 topic interfaces named with globally-unique and
location-independent identifiers. The robots using FogROS2-SGC can roam freely while
staying connected because the identifiers are constant. They are 256-bit strings that are
secure and anonymous to unauthorized attackers by construction —a brute-force attack
would have to find a match among 1077 possibilities (a value close to the number of protons
in the observable universe1). FogROS2-SGC adopts a security-first routing design, where
only authenticated parties can connect to the robot and establish secure communication. In
contrast to prior work such as SROS2 [167] and FogROS2 [104], FogROS2-SGC does not
require merging distributed ROS2 networks, allowing robots to keep their ROS2 networks
private and expose public topics only if explicitly configured. Providing fine-grain isolation
and access control reduces the attack surface and enhances scalability.

FogROS2-SGC seamlessly integrates with ROS2 applications without code modifications
via an SGC proxy. Its implementation and security policy configuration are agnostic to
ROS2 distributions and their network transport middleware vendors. FogROS2-SGC is also
compatible with non-ROS2 programs that interact with ROS2 components and can provide
secure global connectivity to non-cloud servers and computers. Furthermore, since mem-
ory copy and synchronization operations are expensive for memory-constrained robots, the
implementation of FogROS2-SGC processes can route data without performing unnecessary
copies (also known as “zero copy”).

Experiments suggest that FogROS2-SGC reduces the network latency of a cloud-based
grasp planning application by 9.42× compared to unsecured rosduct [212]-rosbridge [59].
We also deploy FogROS2-SGC to simultaneously control a fleet of 4 robot arms in different
physical locations with compute off-loaded to a server 3600 km away.

This paper makes the following contributions:

1. FogROS2-SGC, an extension of FogROS2 that connects disjoint ROS2 networks by
assigning public ROS2 topics with globally-unique and location-independent identifiers.

1The Eddington Number [70] (NEdd) is currently estimated to be 1080.

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 94

FogROS2-SGC

SROS2/
Cyclone
SROS2/

FastDDS

rti_connext

Rosbridge

Zenoh

FogROS2

(c) security

(e) isolation

(f) global

connectivity

(g) resilient

connectivity

(h) agnostic to

DDS vendor

(i) non-ROS

compatibility

✗ Not supported — Not trivial ✓ Supported

✗

✓
✓

✓
✓
✓

✓

(j) efficient

message

processing

—

✓ ✗

✓ ✗

✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓
✓

✓ ✓
✗

✗

✗ ✗ ✗

✗

— ✗ ✗ ✗

✗ ✗ ✗

✗ ✗

—

— — —
—

— —
—

✗ * ✗ *

*

Figure 8.2: Comparison of FogROS2-SGC with other distributed ROS2 systems.
In this table, we compare the feature support of different distributed ROS2 systems with the
features in Section 8.3. Some features can be supported but require non-trivial effort beyond
changing the configuration. For example, both the routing service in rti connext and discov-
ery server in FastDDS/SROS2 support global connectivity but require manually modifying
routing rules or setting up a point-to-point VPN when a new node joins [223]. Rosbridge
and FogROS2 support only unidirectional global and resilient connectivity (marked with *),
meaning that one side of the communication must have a fixed IP. In contrast, the identifier-
based routing of FogROS2-SGC allows either side to have a dynamic IP address.

2. Method for secure and efficient routing with FogROS2-SGC.

3. A Rust implementation of FogROS2-SGC that uses zero-copy message processing and
asynchronous network operations for robots with memory and compute constraints.

4. Evaluation of FogROS2-SGC on cloud robotics applications (vSLAM, grasp planning,
motion planning, simultaneous fleet control) demonstrating up to 9.42× latency reduc-
tion and enhanced usability.

8.2 Related Work

James Kaufner introduced the term ’Cloud Robotics’ in 2010 [123]. Cloud and fog computing
have been applied to robotic tasks such as grasp planning (Tian et al. [248], Kehoe et al. [122],
and Li et al. [143]), parallelized Monte-Carlo grasp perturbation sampling (Kehoe et al.

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 95

[120, 121, 124]), and motion planning (Lam et al. [136]). Chen et al. [41] and Ichnowski et
al. [104]. propose frameworks for offloading computation to resources on the edge or cloud,
while Ichnowski et al. [105] and Anand et al. [8] present systems that leverage serverless
computing [170]. Modern computing paradigms have enabled new applications such as multi-
robot interactive fleet learning (Swamy et al. [245], Hoque et al. [99]) and remote sharing of
robot systems (Tanwani et al. [246], Bauer et al. [17]).

Remote interactions between robots and the cloud raise security, compatibility, and con-
nectivity challenges for robots. Virtual Private Networks (VPNs) are the most common
approach for establishing secure communication between robots and the cloud for both ROS
and ROS2 (e.g., Lim et al. [144]). Establishing a VPN link between a robot and the cloud is
a complex process [90]. FogROS [41] and FogROS2 [104] automate the certificate generation
and VPN setup. SROS2 [167] is an alternative approach to securing ROS2 communication
that enforces access control of ROS2 topics. However, it requires DDS-dependent discovery
mechanisms to ensure connectivity. Discovery mechanisms for DDS (such as the discovery
server for FastDDS [71] and the RTI routing service for RTI Connext [218]) are vendor-
specific and not compatible with other DDS implementations. Zenoh for ROS2 [107] is
integrated with CycloneDDS to enhance peer-to-peer connectivity, but it is not compatible
with other DDS implementations. ROS Remote [199] by Pereira et al. and MSA [272] by Xu
et al. propose alternative protocols to unify cloud-robot communication. However, alterna-
tive protocols require modifications to ROS applications and are not compatible with ROS2.
Finally, rosbridge [59] proposed by Crick et al. is widely adopted by both ROS1 and ROS2
to allow non-ROS software to interact with ROS2 nodes. It can also be used to bridge two
non-compatible and remote ROS applications when used in conjunction with rosduct [212].
However, rosduct and rosbridge have significantly high message latency when the message
size is large (e.g., images). A summary of how FogROS2-SGC differs from related work can
be found in Fig. 8.2.

8.3 Ten FogROS2-SGC Features

FogROS2-SGC extends FogROS2 to address the Secure Global Connectivity (SGC) problem
of securely and reliably connecting globally distributed robots, sensors, computers, and the
cloud. We enumerate 10 new features to differentiate from related libraries and alternative
approaches.

Globally identifiable addresses FogROS2-SGC enables a scalable number of ROS2 net-
works to publish a subset of ROS2 topics to other disjoint ROS2 networks around the globe.
In scenario (C) from Fig. 8.1, the robot arms are located at different geographic locations
with different local ROS2 networks. FogROS2-SGC allows remote human teleoperators to
operate the robot arms as if the arms are connected to local networks. FogROS2-SGC also
allows disjoint robots to publish to the same local ROS2 topics with globally unique and
identifiable addresses.

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 96

Transparency to ROS2 applications ROS2 modularizes a robotics application into
nodes, and connects the nodes into a graph. Nodes communicate with each other through
a publish-subscribe (pub/sub) system, where publisher nodes send messages to topics, and
nodes subscribed to these topics receive these messages. FogROS2-SGC adheres to the
abstractions and interfaces of ROS2. ROS2 applications interact with remote nodes as if
they are nodes on the same robot or subnetwork.

Communication security FogROS2-SGC guarantees that no unauthorized attacker can
eavesdrop or tamper with ROS2 messages. Authorization is identified by user-configured
cryptographic keys. In all three scenarios from Section 8.1, the robots communicate across
wide-area networks with untrusted infrastructure. FogROS2-SGC prevents attackers from
accessing any content in ROS2 messages and differentiates authentic robots from spoofing
attackers.

Global anonymity Authorized participants can deterministically derive global identifi-
able addresses with ROS2 topic information and cryptographic secrets. Attackers cannot
reverse any information used to recover addresses or topics. FogROS2-SGC prevent attack-
ers that know part of the ROS2 topic information from deducing the global address. For
example, the attackers who know the topic name and type information cannot guess the
address, because they lack the author information and security credentials of the ROS2
node.

ROS2 network isolation and topic-level access control FogROS2-SGC connects
robots without merging distributed ROS2 networks. Every robot can have an arbitrary
number of private ROS2 topics and only public interfaces are shared with other authorized
ROS2 networks. Other ROS2 nodes interact with these public interfaces just as they interact
with a local ROS2 topic. This protects the privacy of the robot and prevents unintended
messages from being shared with other disjoint networks of the system. For example, in
scenario (B), a delivering robot from one company and receiving robot from another may
have some proprietary topics that are kept private from each other. FogROS2-SGC isolates
the topics private to each robot.

Global connectivity Some robots are connected to subnetworks that are not directly
accessible from the outside. For example, robots in scenario (C) are in local area networks
behind Network Address Translation (NAT). NAT allows multiple robots to share the same
IP, but the translation is dynamic and ROS2 nodes outside cannot directly access the robots.
FogROS2-SGC can connect ROS2 nodes that are behind firewalls and NAT.

Seamless and resilient connectivity to network dynamism FogROS2-SGC adapts
to the dynamic network behaviors of drones and mobile robots. FogROS2-SGC does not
rely on static IP addresses to identify the robots because such addresses are usually bound

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 97

to a physical location. Adding or reconnecting to robots should not restart the ROS2 node
entirely, as this causes service interruptions and failures.

DDS-agnostic compatibility ROS2 adopts the Data Distribution Service (DDS) as its
underlying network transport middleware to marshal, unmarshal, and exchange messages.
ROS2 supports different DDS implementations, such as CycloneDDS [22], FastDDS [71],
and RTI Connext [218]. However, a warehouse in scenario (B) may have robots running
different versions of ROS2 and DDS. FogROS2-SGC is DDS-agnostic by leveraging ROS2
abstractions and not using any DDS-specific interfaces.

Compatibility with non-ROS2 software FogROS2-SGC allows non-ROS2 software to
interact with ROS2 nodes. This principle is inspired by rosbridge [59]. Besides common
transport protocols, while ROS2 officially supports C++ and Python, FogROS2-SGC allows
programs to use gRPC [86], the most widely used Remote Procedure Call (RPC) framework
that can run in heterogeneous environments and popular programming languages (including
Go, Java, Javascript, PHP, and Rust) to control the robots.

Efficient message processing and routing ROS2 messages are buffered in memory to
be processed by FogROS2-SGC. Because robots often have memory and compute resource
constraints, FogROS2-SGC is memory-efficient by reducing unnecessary message copying
and memory synchronization. Since FogROS2-SGC requires frequent exchange of packets to
and from the network, network operations (such as send and recv) are not on the critical
path of message processing.

8.4 FogROS2-SGC Design

See Fig. 8.3 for system architecture. FogROS2-SGC sends messages via a globally unique
identifier. This identifier is unique to a robot and topic pair; thus, it can be used for send-
ing and receiving messages regardless of robot location or network address. The identifier
is secure, and communication is encrypted, meaning only authorized robots and nodes can
access messages from its referenced topic. To implement routing based on the identifier,
FogROS2-SGC consists of two main software components—(1) a router, responsible for se-
curely routing messages between other routers and nodes, and (2) a proxy, that converts
between ROS2 messages and the secure routers. As robots can be compute- and memory-
constrained, FogROS2-SGC provides an efficient implementation.

Global Addressability

Maintaining a globally unique identifier enables the identification of a specific robotic com-
ponent across subnetworks. FogROS2-SGC uses ROS2 topics as the minimal granularity for
the global identifier because a topic is an interface to ROS2 nodes, and a ROS2 node can

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 98

FogROS2
Robot

Camera
Node

SGC
Routing (IV.B)

SGC Proxy (IV.D)

SGC
Routers

(IV.E)

SGC
Router
(IV.E)

Identity
Manager

(IV.A)
SGC Proxy (IV.D)

SGC
Router
(IV.E)

Identity
Manager

(IV.A)

Security (IV.C)

Fleet
Learning

Node

SGC Network
ROS2 Nodes

ROS2 Network

 /image Global
Identifier
(IV. A):
[75e…0fc] /image

FogROS2 Cloud
SGC Components
SGC Routers

Figure 8.3: System overview of FogROS2-SGC’s architecture showing a connec-
tion between a robot camera stream (on the ROS2 topic /image) and the cloud. The
FogROS2-SGC assigns the ROS2 topic /image an anonymous, globally-unique and location-
independent 256-bit identifier [75e...0fc] (truncated for brevity). The messages between
identifiers are securely routed with SGC router.

publish or subscribe to multiple ROS2 topics at the same time. For example, a ROS2 vSLAM
node in openVSLAM [242] has four ROS2 topics for camera information, video streaming,
output localization, and mapping information. These ROS2 topics expose standardized in-
terfaces with fixed message types. Users can limit the exposure of the ROS2 network by
allowing only parts of the interface to be public. Partitioning public and private interfaces
also enhances privacy and isolation, prevents unintended message exchanges, and reduces
communication overhead.

The identifier is designed to be unique, deterministic, and location-independent. To
avoid name collisions, every identifier has 256 binary bits, leading to 2256 possible identifiers.
Instead of letting users decide, all identifiers are cryptographically derived from the metadata
of the ROS2 topics by an identifier manager in SGC proxy. The SGC proxy collects metadata
such as the ROS2 node’s name, author, maintainer, interface, and description from standard
ROS2 interface and user configuration file. The metadata also has a unique string in case
the user needs to deploy the same topic at different locations. Every topic has an associated
security certificate in X.509 [178] to verify the identity of those who want to publish or
subscribe to the network. All the metadata is serialized and converted into a 256-bit string
using SHA-256 [239], a widely used cryptographic hashing algorithm that maps arbitrary
lengths of text to almost-unique 256-bit binary strings.

Security Analysis: The hashed string is suitable for use as the globally unique identifier
for the followingreasons: (1) Deterministic: The hash is deterministic so that every party
holding the same metadata can derive the same hash value and thus the same global identifier.

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 99

(2) One-way: SHA-256 is a one-way function, so the attacker cannot deduce or reverse the
original metadata from the 256-bit identifier. (3) Avalanche effect: A small change to
the original metadata leads to a new hash value that appears unrelated to the original hash
value. (4) Large namespace: There are 2256 possible identifiers and it has been proved
to be computationally intractable to find two messages with the same hash. Verification of
these guarantees can be found in Appel [11].

Location-Independent Routing

Although having all identifiers in the same globally-flat namespace protects the privacy of the
node’s identity information and physical location, the identifiers do not carry any routing
information. Flipping a bit in the identifier may lead to a drastic change in its physical
location, or from existent to nonexistent. Therefore, securely routing messages between flat
identifiers is a challenging problem. To solve this problem, FogROS2-SGC consolidates and
extends the Global Data Plane (GDP) [173], a peer-to-peer network that routes messages
between location-independent identifiers. The routers are set up by the user and peer-wise
connected into a routing graph; robots do not need to know other robots’ addresses as long
as there is a connected routing path. The routers can be any machine that has network
and general compute capabilities, such as an edge computer or a cloud server. Every router
stores the mapping between the identifiers and the corresponding routing information of the
identifiers in Routing Information Base (RIB).

A joining robot or router broadcasts an advertisement packet that announces the exis-
tence of the identifier and the routing information to the robot. The packet format is aligned
with other FogROS2-SGC packets in Fig. 8.5. Other routers store the routing information
in RIB and broadcast the advertisement packet. Routing is achieved by looking up the
destination routing information in the RIB and forwarding to that destination.

Fig. 8.4 illustrates a step-by-step example of a publishing and subscribing /camera

topic with FogROS2-SGC. The figure assumes that all the connections between routers are
established. This can be achieved through configuration or dynamic node discovery [175].
The steps are:

1. The robot SGC proxy P1 generates an advertisement message for the ROS2 topic
/camera and sends it to Router 1.

2. After verifying the advertisement message, Router 1 records the advertisement in its
RIB and forwards the topic information to Router 2. There can be multiple routers
between Router 1 and Router 2.

3. Cloud SGC proxy P2 requests to subscribe to /camera, and the subscribe request is
sent to Router 2.

4. The subscribe request from Router 2 is routed to Router 1 by checking the source
information at Router 2’s RIB. After verifying the request, Router 1’s RIB records P2
as the data sink.

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 100

Router 1

Router 2

Identifier: [75e…0fc]
ROS2 Publisher: /camera

Identifier: [75e…0fc]
ROS2 Subscriber: /camera

RIB (Router 1)
75e…0fc [P1, source]

[R2, sink]

RIB (Router 2)
75e…0fc [R1, source]

[P2, sink]

Robot SCG Proxy (P1)
75e…0fc [R1, sink]

SCG Proxy (P2)
75e…0fc [R2, source]

Cloud
①

②
③

④⑤

⑥

Data
Identifier
Advertisement
Identifier
Subscribe Request

Figure 8.4: An illustration of how a routing connection is established between robot and
cloud. The steps are further described in Section 8.4. (1,2) Advertisement generation and
publish. (3,4,5) Subscribe request. (6) Data routing.

5. The subscribe request from Router 1 is routed to the robot by checking the source
information at Router 1’s RIB. If the destination is not found, the router broadcasts a
query to other routers.

6. The robot’s ROS2 publisher sends a ROS2 message to the proxy. The proxy forwards
it to Router 1, Router 1 forwards to Router 2, and Router 2 to the cloud subscriber.
At each hop, the messages are forwarded from source to sink.

Secure Communication

The security of the communication is achieved by using a secure network protocol between
routers. We use Datagram Transport Layer Security (DTLS) [239] to provide communica-
tions privacy. The DTLS protocol provides secure and authenticated communication on User
Datagram Protocol (UDP) and includes a built-in mechanism for dealing with lost or out-
of-order packets. DTLS on UDP is well suited for latency-critical robotics communications
systems, due to its lightweight nature and low overhead compared to transmission Control
Protocl(TCP). The cryptographic algorithms used to secure ROS2 packet generation process
can be found in Fig. 8.5. The message has the following security guarantees: Confidential-
ity: The ROS2 messages are encrypted with AES Encryption [61] to ensure that only parties
with the correct cryptographic key can decrypt the original ROS2 message data. Integrity:
The encrypted message is hashed by SHA-256 [11] so the receiver or third-party auditor can
easily verify that the message is intact and no other attacker has tampered with the message.
Authenticity: The hashed message is signed by the RSASSA-PSS [217] algorithm so that
receivers can verify that the message is sent from an authorized sender.

To tailor the security with the communication patterns of robotics applications, FogROS2-
SGC allows flexible peering with other routers or end points. One may choose to use a

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 101

Timestamp

Encrypted_Payload

Hash

Signature

SHA-256 Hash

RSASSA-PSS

AES Encryption

Topic Identifier

Sender Identifier

Packet Length

Certificate

ROS2 Topic Type

ROS2 Topic Name

SHA-256 Hash
(Anonymity)

(Confidentiality)

(Integrity)

(Authenticity)

ROS2
Message

[data: hello FogROS]

/chatter

/std/msg/String

Packet Action
GDPAction::Forward

Robot running ROS2 FogROS2-SGC
Proxy

FogROS2-SGC Packet

Figure 8.5: An illustration of the cryptographic tools used by SGC proxy to protect a ROS2
string message. The FogROS2-SGC Packet on the right is the message that is routed by
FogROS2-SGC. The payload is encrypted to protect the confidentiality of the original ROS2
message. The encrypted data is hashed so that the receiver can verify the message is intact.
The hash is signed with the sender’s key so that the receiver can verify that the message
comes from an authentic and authorized sender.

dedicated DTLS connection per ROS2 topic, which is ideal for large message payload and
frequent communication (e.g., video streaming). One may also choose to use a shared DTLS
tunnel, where multiple ROS2 topics share the same DTLS connection. Sharing the same con-
nection reduces the cost of secure connection management and message processing, which is
good for small message payloads and less frequent communication.

Transparent and Compatible SGC proxy

SGC proxy is the interface between FogROS2-SGC and the ROS2 network. In order to
allow seamless integration with any unmodified ROS 2 application code and mainstream
DDS vendors, SGC proxy converts between ROS2 communication and FogROS2-SGC com-
munication bidirectionally. The user first identifies ROS2 topics that they wish to publish
or subscribe through a configuration file. The proxy launches a local ROS2 publisher or
subscriber for the corresponding topic. New messages from the local ROS2 network are ac-

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 102

tively subscribed to by the proxy, and sent to the FogROS2-SGC network. Once the verified
subscribers receive the messages, they convert them to standard ROS messages and publish
to their local ROS2 network.

To allow non-ROS2 programs to communicate with ROS2 nodes, SGC proxy converts
ROS2 messages to a unified JSON-based message format in transit. As a result, FogROS2-
SGC can be extended to a variety of protocols such as TCP, UDP, DTLS, TLS, and gRPC.
Note, however, that some of the protocols need special handling to be aligned with FogROS2-
SGC. For example, gRPC requires the IP addresses of both robot and cloud for bi-directional
message passing.

Compute and Memory-Efficient SGC router

FogROS2-SGC can be deployed on low-power robots under memory and compute constaints,
so an efficient implementation of routing algorithm in Section 8.4 is crucial to the overall
performance of the system. Fig. 8.6 shows an architecture of SGC router. An idiomatic
workflow of the router implementation is to (1) receive data from ROS2/network, (2) decide
which network connection to forward, and (3) forward data to ROS2/network. Because
FogROS2-SGC needs to be extensible to heterogeneous network protocols, the router needs
to maintain many simultaneous network connections, ranging from ROS2’s publish/subscribe
protocol to general network protocol such as DTLS.

Because low-power robots run under memory constaints, memory copying operations and
synchronization operations (such as mutex) are expensive. SGC router is implemented in
Rust [166] to eliminate memory copying operations and the need for synchronization. Rust
is a programming language that features a single ownership model: every data object has a
single owner, and passing the data is moving the ownership from one variable to another.
As a result, it prevents race conditions and reduces data copying by enforcing the passing of
data objects by references instead of values.

Robots with few CPU cores usually have low network performance, because network
operations are usually blocking, where the entire packet processing halts and waits for the
network operations to finish. FogROS2-SGC improves CPU utilization by leveraging asyn-
chronous Rust interfaces [252]. Asynchronous interfaces are non-blocking, removing the
network operations out of the critical path of message processing.

8.5 Evaluation

We evaluate FogROS2-SGC on system benchmarks to show how it performs over alterna-
tive designs and on robotics benchmarks to show how robotics applications benefit from
FogROS2-SGC. We use an Intel NUC with an Intel® Pentium® Silver J5005 CPU @
1.50GHz with a 5Mbps network connection to act as the robot. The robot is connected
with a Standard DS3 v2 cloud instance (4 vCPUs, 14 GiB memory) on Microsoft Azure.
The robot is located at California (west coast of US), and the cloud server is located at Vir-

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 103

ROS2 Subscriber

DTLS Connection 1

Incoming

Other DTLS, TCP, gRPC, UDP connections…

RIB

ROS2 Publisher

DTLS Connection 2

Outgoing

Figure 8.6: SGC router architecture. (Orange) Subscribe to a local ROS2 network and
publish to FogROS2-SGC routing network. (Magenta) Receive from FogROS2-SGC rout-
ing network and publish to local ROS2 network. (Black) Intermediate SGC router that
facilitates message routing. SGC router asynchronously reads, writes, and manages all the
network connections. All the message passing (arrows) is zero-copy and does not require
movement of actual messages.

ginia (east coast of US). We also demonstrate FogROS2-SGC on four physical robot arms
running Fleet-DAgger [99], a multi-robot learning application.

System Benchmarks

We evaluate the performance of FogROS2-SGC’s message processing latency and throughput
against other distributed ROS2 systems. Messages are sent in binary with type sensor msgs

/CompressedImage and response with string type std msgs/String. We compare against
the following baselines (1) VPN: We use Wireguard VPN [265], which is the same VPN
as FogROS2 [105] (2) Rosbridge: Rosbridge is the most commonly used websocket proxy
that allows non-ROS code to interact with ROS code. We use Rosbridge in combination
with Rosduct in the same way as in FogROS [41]. (3) Capsule: We use Capsule, a software
switch inspired by Netbricks [192], to emulate the design of FogROS2-SGC. We also imple-
ment rosduct [212] in ROS2 that converts between ROS2 and network traffic. The detailed
description and implementation can be found in FogROS-G [40]. FogROS2-SGC uses the
default DTLS network protocol. We include FogROS2-SGC-TCP that uses TCP instead
of DTLS as a variant.

ROS2 Message Latency: We measure the Round Trip Time (RTT) between when a
robot publishes a ROS2 message to the cloud and when data is received by the cloud, which
echoes a short message on a separate ROS2 topic. The RTT also includes the time of parsing
the messages and analyzing the latency. The result can be found in Fig. 8.7. FogROS2-
SGC with DTLS has similar performance as VPN, which has 0.076s round trip latency for
small messages. FogROS2-SGC is 10.2% faster than VPN for 8000 byte messages (0.088
vs 0.097). FogROS2-SGC is 19× faster than rosduct-rosbridge (0.088 vs 1.67). There are

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 104

0 2000 4000 6000 8000

ROS Message Size(bytes)

0.0

0.5

1.0

1.5

La
te

nc
y(

s)

rosduct-rosbrige
rosduct-capsule
FogROS-SGC-TCP
VPN
FogROS-SGC

Figure 8.7: Message round trip latency to the cloud (lower is better). Latency is
averaged over more than 50 packet window. FogROS2-SGC is 19 times faster than rosbridge
baseline for 8000 byte message.

Protocol Throughput (msg/second)

Original ROS 330.43

SROS2 320.17

Rosduct-Rosbridge 152.79

FogROS2-SGC-TCP 268.03

FogROS2-SGC 320.40

Table 8.1: Message throughput evaluation of FogROS2-SGC (higher is better). Every
message is 1000 bytes. The throughput of FogROS2-SGC is near native performance while
adding secure and global connectivity and 2.1 times higher than rosbridge.

two reasons for this: (1) Rosduct is implemented in Python and provably slower than Rust.
It uses blocking network operations while FogROS2-SGC uses non-blocking asynchronous
network operations for sending and receiving data. (2) Rosbridge requires seralization of
binary messages in JSON, which require more bytes and lead to larger messages.

ROS2 Message Throughput: Message throughput is measured by the number of
messages processed per second. Different from other experiments, throughput is measured on
the local area network connected with Ethernet, in order to prevent network bandwidth from
being the bottleneck. Table 8.1 shows the message processing throughput. FogROS2-SGC
achieves near-native throughput as ROS2 and incurs only 3% overhead due to the security
and conversion to a unified message format. FogROS2-SGC has 2.1× higher throughput
than rosbridge, because rosbridge requires more bytes to serialize binary strings.

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 105

vSLAM Grasp Planning Motion Planning

Scenario angle=45,lap=-(1em)fr1/xyz1 angle=45,lap=-(1em)fr1/loop angle=45,lap=-(1em)raw matrix angle=45,lap=-(1em)Compressed angle=45,lap=-(1em)Apartment angle=45,lap=-(1em)Cubicle

rosduct-rosbridge 10.31 10.29 20.3 13.67 0.08 0.08

VPN 1.16 1.45 5.7 1.47 0.07 0.07

FogROS2-SGC-TCP 1.19 1.57 8.4 1.58 0.07 0.07

FogROS2-SGC 1.15 1.42 - 1.45 0.07 0.07

Table 8.2: Network latency of FogROS2-SGC on cloud robotics applications (lower
is better) FogROS2-SGC is better than rosduct-rosbridge and VPN on vSLAM and com-
pressed grasp planning. We conducted motion planning on other scenarios (Home, Twisty-
Cool) and the latency is the same.

Startup and Advertisement Time: In a RIB that has 10,000 routing records, the
average time for publishing a name to the RIB takes 4ms and subscribing to a name from
RIB takes 2ms. The average startup time from starting a program to receiving the first
message takes 2.4 ms.

Cloud Robotics Application Benchmarks

We evaluate the network latency of FogROS2-SGC with 3 example cloud robotics appli-
cations: SLAM with ORB-SLAM2 [176], Grasp Planning with Dex-Net [155], and Motion
Planning with Motion Planning Templates (MPT) [103]. The detailed description of these
benchmarks can be found in [41].

As detailed in Table 8.2, although FogROS2-SGC can scale to multiple robots and pro-
vide fine grained access control for the robots, it demonstrates even better point-to-point
performance than VPN in the vSLAM and grasp planning experiments. FogROS2-SGC is
9.42 times faster than rosbridge-rosduct on compressed grasp planning images. However,
FogROS2-SGC cannot reliably transmit large and uncompressed grasp planning matrices.
The raw matrix after serialization is larger than 13MB. We observe a significant amount
of lost and out of order messages because the default transport protocol of FogROS2-SGC
is DTLS over UDP and the communication channel does not recover from lost and out of
order messages. Although transmitting such large message within single ROS2 message is
rare, users can choose other supported transport protocols (such as TCP, gRPC) to meet
the requirement of their applications.

Case Study: Fleet-DAgger

We apply FogROS2-SGC to the control of a fleet of 4 physical robot arms, an increasingly
relevant setting in robotics and the third motivating example in Fig. 8.1. We use the
physical experiment setup from Fleet-DAgger [99], where each robot simultaneously performs
an image-based block-pushing task (see Fig. 8.1C). The task is to repeatedly push a cube
to a goal region randomly generated in the image, where a new goal is sampled from the
reachable workspace upon reaching the previous goal. The 4 workspaces have an identical

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 106

Robot 1 Robot 2Robot 1 Robot 2

Robot 1

Server

3600km

Robot 2
3 41 2

Server
(Pittsburgh)

Action
Image

Figure 8.8: The experiment setup of Fleet-DAgger. Two ABB YuMi robots located in
two separate buildings in Berkeley utilize computation from a server located in Pittsburgh
for an image based block pushing task.

setup (but different block positions and goals) to enable the aggregation of each robot’s data
into a shared dataset and training of a single shared policy on this dataset, as is typical in
fleet learning [99]. When autonomous control is unreliable, the robots fall back on and learn
from remote human teleoperation, where global connectivity can dramatically increase the
number of available humans. The arms belong to two bimanual ABB YuMi robots in two
different labs about 1 km apart with separate local area networks. To test global connectivity,
compute is off-loaded to a separate node in a third local area network at Carnegie Mellon
University 3600 km away, where the robot nodes send images of the current state and receive
actions to execute.

In a previous implementation, Hoque et al. [99] use Secure Shell (SSH) and Secure File
Transfer Protocol (SFTP) to communicate between robots and the centralized compute node
and Python multiprocessing to enable simultaneous execution. This approach requires stor-
ing all SSH credentials at a single node (a security concern), writing image data to the file
system of all nodes at every timestep, complex asynchronous programming, and restricting
all node locations to within the university campus firewall. To mitigate these issues, we (1)
re-implement the communication system with ROS2 and (2) seamlessly connect all nodes
with FogROS2-SGC with TCP by modifying only a single configuration text file on each
node. Relative to the previous implementation, the FogROS2-SGC implementation reduces
communication time by 64% (Table 8.3), where communication time includes image trans-
mission latency and synchronization across all arms but not machine learning or arm motion.
FogROS2-SGC also reduces communication time by 33% relative to the initial implementa-
tion even when the robots are in Berkeley, CA and the server is moved to Pittsburgh, PA.
Note that the SSH method does not work between Berkeley and Pittsburgh due to university
network firewalls [257]. A diagram of the system architecture is in Fig. 8.8.

CHAPTER 8. FOGROS2-SGC: CLOUD ROBOTICS WITH SECURE GLOBAL
CONNECTIVITY 107

Communication System Server Location Communication Time (s)

2*SSH + SFTP Berkeley, CA 0.86

Pittsburgh, PA -

2*FogROS2-SGC Berkeley, CA 0.31

Pittsburgh, PA 0.58

Table 8.3: Communication time of SSH+SFTP and FogROS2-SGC (lower is better).
FogROS2-SGC with TCP reduces the communication time per experiment step (i.e., one
simultaneous action on the 4 arms) by 64% when compared to SSH+SFTP, and has 33%
lower communication time than SSH+SFTP in Berkeley even if the server is moved to
Pittsburgh. SSH does not work if the server is in Pittsburgh due to a university firewall
restriction.

8.6 Conclusions and Limitations

We present FogROS2-SGC, an extension of FogROS2 that securely connects robotics com-
ponents across different physical locations and networks. One limitation of FogROS2-SGC
is that users are unable to use retransmission and Quality-of-Service (QoS) mechanisms pro-
vided by DDS for inter-ROS2 network communication. However, users can flexibly choose
any supported transport protocol (e.g., TCP and gRPC). FogROS2-SGC also requires the
intermediate routers to open certain ports for robots and services to connect.

108

Part IV

Conclusion

109

Chapter 9

Conclusion

9.1 Summary

In this dissertation, we present a comprehensive approach for scaling real-world robot learn-
ing to large-scale data collection and policy evaluation with robot fleets. As learned robot
policies are still notoriously brittle, a popular strategy to bridge the gap and deliver the
required level of reliability is to fall back to human control when needed. This approach,
termed supervised autonomy, has received little attention in academia despite its prevalence
in modern industrial settings. Supervised autonomy allows imperfect robots to deliver value
today while simultaneously enabling them to improve over time and reduce their reliance on
human supervision.

In Part I, we explore how supervised autonomy may be implemented with interactive
imitation learning. In particular, robot-gated interactive imitation learning facilitates scala-
bility by enabling robots to request supervision “on-demand,” similar to a push notification
on a smartphone. We propose LazyDAgger in Chapter 2 and ThriftyDAgger in Chapter 3,
novel robot-gated interactive IL algorithms that strike a balance between the competing
objectives of robot task performance and burden on the human supervisor. We also propose
IntervenGen in Chapter 4, a system for further reducing burden on the human supervisor
by synthetically generating large datasets of intervention behaviors from only a handful of
human interventions.

In Part II, we study how on-demand supervision enables supervised autonomy with large
robot fleets and multiple human supervisors, where robots can significantly outnumber hu-
mans. With fleet learning, each robot in the fleet can learn from the experience of all the
other robots and continually improve over time. In Chapter 5, we propose the interactive fleet
learning (IFL) formalism for the multi-robot, multi-human setting as well as Fleet-DAgger,
a family of IFL algorithms that adapt algorithms like LazyDAgger and ThriftyDAgger to the
fleet setting. We also propose an open-source software benchmark environment for systemati-
cally and efficiently evaluating the effectiveness of novel IFL algorithms (i.e., human-to-robot
allocation strategies) with large-scale fleets of 100+ robots in simulation. In Chapter 6, we

CHAPTER 9. CONCLUSION 110

develop a novel IFL algorithm for learning from heterogeneous human supervisors that may
teleoperate in different ways. To do so, we propose a novel approach for quantifying un-
certainty in energy-based models using Jeffreys Divergence [111] that is broadly applicable
beyond the IFL setting.

Finally, in Part III, we propose and study systems for remote fleet supervision. Since
modern networking technology enables real-time teleoperation across vast distances, the
human supervisors in the IFL paradigm do not need to be physically present with the robot
systems and may be located anywhere around the globe. Moreover, by connecting to cloud
computing resources, robots no longer need to be limited to on-board memory and compute
[123]. In Chapter 7, we perform a case study of fully remote robotics research with a
prototype industrial robot workcell, using it to perform the first systematic benchmarking
of fabric manipulation algorithms. In Chapter 8, we propose a cloud robotics platform for
seamlessly and securely connecting disjoint networks around the globe, enabling real-time
distributed robot fleet learning.

9.2 Limitations and Opportunities for Future Work

Like all research, despite its contributions, each part of this thesis has limitations. Addressing
these limitations poses exciting opportunities for future work.

Scalable Interactive Imitation Learning

The main limitation of LazyDAgger (Chapter 2) and ThriftyDAgger (Chapter 3) is in their
intervention criteria for actively soliciting human help. While they compare favorably to
prior approaches, there is still room to improve. Uncertainty quantification and out-of-
distribution detection in machine learning are still open challenges: models are generally
ignorant of their own blind spots, as this is an “unknown unknown.” For this reason, one
goal of the IFL Benchmark proposed in Chapter 5 is to facilitate the development and
standardized comparison of new intervention criteria. Continuing to iterate on these criteria
is an active area of research [147, 210]. One interesting direction is to provide statistical
performance guarantees and rigorous confidence intervals on the estimated uncertainty, e.g.,
with conformal prediction [9]. Another interesting direction is to optimize the intervention
points themselves with interactive reinforcement learning [150].

Central to the motivation of LazyDAgger, ThriftyDAgger, and IntervenGen (Chapter 4)
is the idea that all data is not created equal. It matters where in state space the data
is collected; given a finite budget of human data, this motivates active data acquisition in
the most informative and useful regions of state space with respect to the task and current
robot policy. Often there are two broad classes of states within a task: “bottleneck” regions
with narrow action tolerances (e.g., threading a needle), and more forgiving regions where
coarse imitation suffices (e.g., moving the end effector in free space). There have been some

CHAPTER 9. CONCLUSION 111

promising recent works in this direction that explicitly reason about this distinction between
coarse and fine actions [114, 19, 235].

Interactive Fleet Learning

The IFL formalism (Chapter 5) has modeling assumptions that limit its generality: (1) all
robots and humans operate in the same state and action space, (2) robots are independent
and do not coordinate with each other, (3) humans have perfect situational awareness [46] and
can move to different robots without any switching latency, and (4) timesteps are synchronous
without network latency or other communication issues [131]. Lifting these assumptions are
fruitful directions for future work. For instance, rather than requiring the human to provide
low-level teleoperation in the same action space as that of the robots, natural language is a
more flexible and intuitive modality for corrective feedback. While natural language feedback
is difficult to ground into robot control, recent works have made progress in this direction
[152, 60, 236].

As the IFL formalism does not specify a specific policy representation, it can be flexibly
changed to other representations. For instance, Implicit IFL (Chapter 6) changes the IFL
policy from an explicit one to an implicit one by extending Implicit Behavior Cloning [75].
A compelling newer alternative for representing multimodal data distributions is Diffusion
Policy [43]. Another option is to learn a multi-task, cross-embodiment policy such as RT-X
[189]: this further facilitates scalability by reusing data across robot embodiments and task
specifications.

Systems for Remote Fleet Supervision

One design decision in the systems of Chapters 7 and 8 is a centralized model, in which
the data from the different robots in the fleet are pooled into a single location for model
training and supervisor allocation. An interesting alternative to consider is a decentralized or
federated model [4, 131], especially for applications where privacy and security are paramount
concerns.

Another critical component in the design of a remote fleet supervision system is the
teleoperation interface. In imitation learning, the downstream robot control policies can
only be as performant as the human teleoperation permits. Systems with high-dimensional
input such as vision-based teleoperation [92] are an important direction for future work,
both for enabling high-dimensional control and facilitating large-scale data collection. Other
directions include getting haptic feedback [188] back to the human teleoperator, as well
as designing intuitive interfaces for fleet supervision with insights from human-computer
interaction research.

CHAPTER 9. CONCLUSION 112

9.3 Broader Perspective on Robot Learning

At the time of writing this thesis in 2024, robot learning systems have begun to graduate
from academic labs into real-world environments: autonomous taxis on the roads, humanoid
and bin-picking robots on the factory floor, and more. Imitation learning has become the
dominant paradigm for training these systems.

There is a palpable enthusiasm in the air and widespread hope that a watershed moment
for robotics is just around the corner via large-scale supervised learning, just as it has
transformed natural language processing and computer vision in the last couple years. Time
will tell whether this hope will materialize, and if so, over what timescale. My personal
stance is one of cautious optimism: there has certainly been dramatic progress in recent
years, but much research remains to be done before we have truly general-purpose robot
intelligence.

A few directions stand out to me as particularly promising lines of investigation. Imi-
tation learning has indeed produced very impressive results in the last couple years. Policy
representations like Diffusion Policy [43] that facilitate multimodal and high-dimensional
output are capable of remarkably dexterous control with modest amounts of human data.
Moreover, end-to-end imitation learning with large-scale data has begun to demonstrate im-
pressive levels of reliability in autonomous driving. As such, investigating the data scaling
laws for imitation learning in various domains (not limited to autonomous driving) will be
crucial. Toward this goal, it will likely be helpful to have clever teleoperation interfaces that
may facilitate large-scale robot data collection such as UMI [44].

Sim-to-real reinforcement learning has also been very impressive in recent years, par-
ticularly for biped and quadruped locomotion [134, 207], which until recently has relied
on highly engineered model-based control. Can this recipe extend to manipulation, where
accurate state estimation for relevant objects in the scene becomes crucial?

Finally, it will be very interesting to investigate the capabilities, properties, and scaling
laws of vision-language-action models: large models that are first trained on Internet-scale
text and image data and then fine-tuned on a much smaller dataset of robot trajectories
[26]. If large language models are indeed general pattern machines [172], perhaps robot
trajectories are just sentences in a new language.

It is an exceptionally exciting time to be in robotics, and I feel very fortunate to be
working in this field. The recent breakthroughs in vision and language are still confined to
the world of bits; robotics is a quest to unify the world of bits with our world of atoms. It
is an incredibly difficult endeavor, but that makes it all the more appealing. “We can only
see a short distance ahead, but we can see plenty there that needs to be done” [256].

113

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the twenty-first international conference on Machine
learning. 2004, p. 1.

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron
David, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al.
“Do as I can, not as I say: Grounding language in robotic affordances”. In: Conference
on Robot Learning (CoRL). 2022.

[3] Michael Ahn, Debidatta Dwibedi, Chelsea Finn, Montse Gonzalez Arenas, Keerthana
Gopalakrishnan, Karol Hausman, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan C. Ju-
lian, Sean Kirmani, Isabel Leal, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu,
Sharath Maddineni, Kanishka Rao, Dorsa Sadigh, Pannag R. Sanketi, Pierre Ser-
manet, Quan Ho Vuong, Stefan Welker, Fei Xia, Ted Xiao, Peng Xu, Steve Xu, and
Zhuo Xu. “AutoRT: Embodied Foundation Models for Large Scale Orchestration of
Robotic Agents”. In: ArXiv preprint arXiv:2401.12963 (2024).

[4] Oguzhan Akcin, Pohan Li, Shubhankar Agarwal, and Sandeep Chinchali. “Data Games:
A Game-Theoretic Approach to Swarm Robotic Data Collection”. In: Conference on
Robot Learning (CoRL) (2022).

[5] Arthur Allshire, Mayank Mittal, Varun Lodaya, Viktor Makoviychuk, Denys Makovi-
ichuk, Felix Widmaier, Manuel Wüthrich, Stefan Bauer, Ankur Handa, and Animesh
Garg. “Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-
World TriFinger”. In: arXiv preprint arXiv:2108.09779 (2021).

[6] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. “Power
to the people: The role of humans in interactive machine learning”. In: Ai Magazine
35.4 (2014), pp. 105–120.

[7] Ofra Amir, Ece Kamar, Andrey Kolobov, and Barbara J. Grosz. “Interactive Teaching
Strategies for Agent Training”. In: Proc. of the International Joint Conference on
Artificial Intelligence (IJCAI). 2016.

BIBLIOGRAPHY 114

[8] Raghav Anand, Jeffrey Ichnowski, Chenggang Wu, Joseph M Hellerstein, Joseph
E Gonzalez, and Ken Goldberg. “Serverless Multi-Query Motion Planning for Fog
Robotics”. In: IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2021.

[9] Anastasios Nikolas Angelopoulos and Stephen Bates. “A Gentle Introduction to Con-
formal Prediction and Distribution-Free Uncertainty Quantification”. In: arXiv preprint
arXiv:2107.07511 (2021).

[10] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexan-
dre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al.
“PaLM 2 technical report”. In: arXiv preprint arXiv:2305.10403 (2023).

[11] Andrew W Appel. “Verification of a cryptographic primitive: SHA-256”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 37.2 (2015), pp. 1–
31.

[12] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. “A survey
of robot learning from demonstration”. In: Robotics and autonomous systems 57.5
(2009), pp. 469–483.

[13] Saurabh Arora and Prashant Doshi. “A survey of inverse reinforcement learning:
Challenges, methods and progress”. In: arXiv preprint arXiv:1806.06877 (2018).

[14] Yahav Avigal, Lars Berscheid, Tamim Asfour, Torsten Kroger, and Ken Goldberg.
“SpeedFolding: Learning Efficient Bimanual Folding of Garments”. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (2022), pp. 1–8.

[15] J. Andrew Bagnell. An Invitation to Imitation. Tech. rep. CMU-RI-TR-15-08. Pitts-
burgh, PA: Carnegie Mellon University, Mar. 2015.

[16] Ashwin Balakrishna, Brijen Thananjeyan, Jonathan Lee, Felix Li, Arsh Zahed, Joseph
E. Gonzalez, and Ken Goldberg. “On-Policy Robot Imitation Learning from a Con-
verging Supervisor”. In: Conference on Robot Learning (CoRL). PMLR. 2019.

[17] Stefan Bauer, Felix Widmaier, Manuel Wüthrich, Niklas Funk, Julen Urain De Jesus,
Jan Peters, Joe Watson, Claire Chen, Krishnan Srinivasan, Junwu Zhang, Jeffrey
Zhang, Matthew R. Walter, Rishabh Madan, Charles B. Schaff, Takahiro Maeda,
Takuma Yoneda, Denis Yarats, Arthur Allshire, Ethan K. Gordon, Tapomayukh
Bhattacharjee, Siddhartha S. Srinivasa, Animesh Garg, Annika Buchholz, Sebastian
Stark, Thomas Steinbrenner, Joel Akpo, Shruti Joshi, Vaibhav Agrawal, and Bern-
hard Schölkopf. “A Robot Cluster for Reproducible Research in Dexterous Manipu-
lation”. In: arXiv preprint arXiv:2109.10957 (2021).

[18] Erik B̊avenstrand and Jakob Berggren. “Performance Evaluation of Imitation Learn-
ing Algorithms with Human Experts”. In: Technical Report KTH Royal Institute of
Technology Sweden. 2019.

[19] Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. “HYDRA: Hybrid Robot Actions
for Imitation Learning”. In: Conference on Robot Learning (CoRL). 2023.

BIBLIOGRAPHY 115

[20] Christopher M. Bishop. “Mixture Density Networks”. In: Neural Computing Research
Group Report (1994).

[21] Erdem Bıyık, Malayandi Palan, Nicholas C Landolfi, Dylan P Losey, and Dorsa
Sadigh. “Asking easy questions: A user-friendly approach to active reward learning”.
In: arXiv preprint arXiv:1910.04365 (2019).

[22] Erik Boasson, Angelo Corsaro, and Hans van t Hag. Eclipse Cyclone DDS. https:
//projects.eclipse.org/projects/iot.cyclonedds.

[23] B. K. Bose. “An adaptive hysteresis-band current control technique of a voltage-
fed PWM inverter for machine drive system”. In: IEEE Transactions on Industrial
Electronics 37.5 (1990).

[24] David Brandfonbrener, Stephen Tu, Avi Singh, Stefan Welker, Chad Boodoo, Nikolai
Matni, and Jake Varley. “Visual Backtracking Teleoperation: A Data Collection Pro-
tocol for Offline Image-Based Reinforcement Learning”. In: 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 11336–11342.

[25] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. “OpenAI Gym”. In: arXiv preprint arXiv:
1606.01540 (2016).

[26] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof
Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. “RT-
2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control”. In:
Conference on Robot Learning (CoRL) (2023).

[27] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. “RT-1: Robotics transformer for real-world control at scale”. In: Robotics:
Science and Systems (RSS) (2023).

[28] Alan Brown. “Robin deals with a world where things are changing all around it”. In:
Amazon Science Blog (Apr. 2022). url: https://www.amazon.science/latest-
news/robin-deals-with-a-world-where-things-are-changing-all-around-

it.

[29] Daniel S Brown, Wonjoon Goo, and Scott Niekum. “Better-than-Demonstrator Imi-
tation Learning via Automaticaly-Ranked Demonstrations”. In: Conference on Robot
Learning (CoRL). 2019.

[30] Daniel S Brown, Scott Niekum, Russell Coleman, and Ravi Srinivasan. “Safe Imitation
Learning via Fast Bayesian Reward Inference from Preferences”. In: International
Conference on Machine Learning. 2020.

[31] Daniel S. Brown, Wonjoon Goo, Nagarajan Prabhat, and Scott Niekum. “Extrapolat-
ing Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Ob-
servations”. In: Proceedings of the 36th International Conference on Machine Learn-
ing, ICML 2019. 2019.

https://projects.eclipse.org/projects/iot.cyclonedds
https://projects.eclipse.org/projects/iot.cyclonedds
https://www.amazon.science/latest-news/robin-deals-with-a-world-where-things-are-changing-all-around-it
https://www.amazon.science/latest-news/robin-deals-with-a-world-where-things-are-changing-all-around-it
https://www.amazon.science/latest-news/robin-deals-with-a-world-where-things-are-changing-all-around-it

BIBLIOGRAPHY 116

[32] Maya Cakmak, Crystal Chao, and Andrea L Thomaz. “Designing interactions for
robot active learners”. In: IEEE Transactions on Autonomous Mental Development
2.2 (2010), pp. 108–118.

[33] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and
Aaron M. Dollar. “Benchmarking in Manipulation Research: Using the Yale-CMU-
Berkeley Object and Model Set”. In: IEEE Robotics & Automation Magazine 22.3
(Sept. 2015), pp. 36–52.

[34] John Canny. “A computational approach to edge detection”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 6 (1986), pp. 679–698.

[35] Claire Chen, Krishna Parasuram Srinivasan, Jeffrey O. Zhang, and Junwu Zhang.
“Dexterous Manipulation Primitives for the Real Robot Challenge”. In: ArXiv preprint
arXiv:2101.11597 (2021).

[36] Jessie YC Chen and Michael J Barnes. “Human–agent teaming for multirobot con-
trol: A review of human factors issues”. In: IEEE Transactions on Human-Machine
Systems 44.1 (2014), pp. 13–29.

[37] Jessie YC Chen and Michael J Barnes. “Supervisory control of multiple robots: Effects
of imperfect automation and individual differences”. In: Human Factors 54.2 (2012),
pp. 157–174.

[38] Jessie YC Chen, Michael J Barnes, and Michelle Harper-Sciarini. “Supervisory control
of multiple robots: Human-performance issues and user-interface design”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
41.4 (2010), pp. 435–454.

[39] Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. “Deep Imitation Learning for
Autonomous Driving in Generic Urban Scenarios with Enhanced Safety”. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019),
pp. 2884–2890.

[40] Kaiyuan Chen, Jiachen Yuan, Nikhil Jha, Jeffrey Ichnowski, John Kubiatowicz, and
Ken Goldberg. “FogROS G: Enabling Secure, Connected and Mobile Fog Robotics
with Global Addressability”. In: arXiv preprint arXiv:2210.11691 (2022).

[41] Kaiyuan Eric Chen, Yafei Liang, Nikhil Jha, Jeffrey Ichnowski, Michael Danielczuk,
Joseph Gonzalez, John Kubiatowicz, and Ken Goldberg. “FogROS: An Adaptive
Framework for Automating Fog Robotics Deployment”. In: 2021 IEEE 17th Inter-
national Conference on Automation Science and Engineering (CASE). IEEE. 2021,
pp. 2035–2042.

[42] Sonia Chernova and Manuela Veloso. “Interactive policy learning through confidence-
based autonomy”. In: Journal of Artificial Intelligence Research 34 (2009), pp. 1–25.

[43] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel,
and Shuran Song. “Diffusion Policy: Visuomotor Policy Learning via Action Diffu-
sion”. In: arXiv preprint arXiv:2303.04137 (2023).

BIBLIOGRAPHY 117

[44] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng,
Russ Tedrake, and Shuran Song. “Universal Manipulation Interface: In-The-Wild
Robot Teaching Without In-The-Wild Robots”. In: arXiv preprint arXiv: 2402.10329.
2024.

[45] Shih-Yi Chien, Michael Lewis, Siddharth Mehrotra, and Katia Sycara. “Imperfect
automation in scheduling operator attention on control of multi-robots”. In: Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting. Vol. 57. 1. SAGE
Publications Sage CA: Los Angeles, CA. 2013, pp. 1169–1173.

[46] Shih-Yi Chien, Yi-Ling Lin, Pei-Ju Lee, Shuguang Han, Michael Lewis, and Katia
Sycara. “Attention allocation for human multi-robot control: Cognitive analysis based
on behavior data and hidden states”. In: International Journal of Human-Computer
Studies 117 (2018), pp. 30–44.

[47] Susan E. F. Chipman. The Oxford Handbook of Cognitive Science. Oxford University
Press, Oct. 2017. isbn: 9780199842193.

[48] Sanjiban Choudhury, Ashish Kapoor, Gireeja Ranade, and Debadeepta Dey. “Learn-
ing to gather information via imitation”. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2017, pp. 908–915.

[49] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. “Deep reinforcement learning from human preferences”. In: Proc. Advances
in Neural Information Processing Systems (NeurIPS). 2017.

[50] Eric Chu. “How Zoox Builds Autonomous Vehicles from the Wheels Up-Blog”. In:
AI Exchange (Apr. 2022). url: https://exchange.scale.com/public/blogs/
how - zoox - builds - autonomous - vehicles - from - the - wheels - up (visited on
06/16/2022).

[51] Kurtland Chua, Roberto Calandra, Rowan Thomas McAllister, and Sergey Levine.
“Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics
Models”. In: Neural Information Processing Systems. 2018.

[52] Geoffrey Cideron, Baruch Tabanpour, Sebastian Curi, Sertan Girgin, Leonard Hussenot,
Gabriel Dulac-Arnold, Matthieu Geist, Olivier Pietquin, and Robert Dadashi. “Get
Back Here: Robust Imitation by Return-to-Distribution Planning”. In: arXiv preprint
arXiv:2305.01400 (2023).

[53] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and Alexey Doso-
vitskiy. “End-to-end driving via conditional imitation learning”. In: 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 4693–
4700.

[54] Felipe Codevilla, Eder Santana, Lopez Antonio M., and Adrien Gaidon. “Explor-
ing the Limitations of Behavior Cloning for Autonomous Driving”. In: International
Conference on Computer Vision (2019).

https://exchange.scale.com/public/blogs/how-zoox-builds-autonomous-vehicles-from-the-wheels-up
https://exchange.scale.com/public/blogs/how-zoox-builds-autonomous-vehicles-from-the-wheels-up

BIBLIOGRAPHY 118

[55] John James Collins, David Howard, and J. Leitner. “Quantifying the Reality Gap
in Robotic Manipulation Tasks”. In: 2019 International Conference on Robotics and
Automation (ICRA) (2019), pp. 6706–6712.

[56] Robert B Cooper. “Queueing theory”. In: Proceedings of the ACM’81 conference.
1981, pp. 119–122.

[57] Jacob W Crandall, Mary L Cummings, Mauro Della Penna, and Paul MA De Jong.
“Computing the effects of operator attention allocation in human control of multiple
robots”. In: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans 41.3 (2010), pp. 385–397.

[58] Jacob W Crandall, Michael A Goodrich, Dan R Olsen, and Curtis W Nielsen. “Val-
idating human-robot interaction schemes in multitasking environments”. In: IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 35.4
(2005), pp. 438–449.

[59] C. Crick, G. Jay, S. Osentoski, and O. C. Jenkins. “ROS and Rosbridge: Roboticists
out of the loop”. In: 2012 7th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). 2012, pp. 493–494.

[60] Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy Liang,
and Dorsa Sadigh. “No, to the Right: Online Language Corrections for Robotic Ma-
nipulation via Shared Autonomy”. In: Proceedings of the 2023 ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (2023).

[61] Joan Daemen and Vincent Rijmen. “AES proposal: Rijndael”. In: (1999).

[62] Abhinav Dahiya, Nima Akbarzadeh, Aditya Mahajan, and Stephen L Smith. “Scal-
able operator allocation for multi-robot assistance: A restless bandit approach”. In:
IEEE Transactions on Control of Network Systems (2022).

[63] Murtaza Dalal, Ajay Mandlekar, Caelan Garrett, Ankur Handa, Ruslan Salakhutdi-
nov, and Dieter Fox. “Imitating Task and Motion Planning with Visuomotor Trans-
formers”. In: Conference on Robot Learning (CoRL) (2023).

[64] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl
Schmeckpeper, Siddharth Singh, Sergey Levine, and Chelsea Finn. “RoboNet: Large-
scale multi-robot learning”. In: Conference on Robot Learning (CoRL). Vol. 100.
PMLR. 2019, pp. 885–897.

[65] Andrew Daw, Robert C Hampshire, and Jamol Pender. “How to Staff when Customers
Arrive in Batches”. In: arXiv e-prints (2019), arXiv–1907.

[66] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet:
A large-scale hierarchical image database”. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition. 2009, pp. 248–255.

BIBLIOGRAPHY 119

[67] M Bernardine Dias, Balajee Kannan, Brett Browning, E Jones, Brenna Argall, M
Freddie Dias, Marc Zinck, M Veloso, and Anthony Stentz. “Sliding autonomy for
peer-to-peer human-robot teams”. In: Proceedings of the international conference on
intelligent autonomous systems. 2008, pp. 332–341.

[68] Andreas Doumanoglou, Jan Stria, Georgia Peleka, Ioannis Mariolis, Vladimı́r Petŕık,
Andreas Kargakos, Libor Wagner, Václav Hlaváč, Tae-Kyun Kim, and Sotiris Malas-
siotis. “Folding Clothes Autonomously: A Complete Pipeline”. In: IEEE Transactions
on Robotics 32.6 (2016), pp. 1461–1478.

[69] Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Geor-
gakis, Kostas Daniilidis, Chelsea Finn, and Sergey Levine. “Bridge data: Boost-
ing generalization of robotic skills with cross-domain datasets”. In: arXiv preprint
arXiv:2109.13396 (2021).

[70] Arthur Stanley Eddington. The mathematical theory of relativity. The University
Press, 1923.

[71] eProsima. Fast DDS. https://www.eprosima.com/index.php/products-all/
eprosima-fast-dds.

[72] Alejandro Escontrela, Xue Bin Peng, Wenhao Yu, Tingnan Zhang, Atil Iscen, Ken
Goldberg, and Pieter Abbeel. “Adversarial Motion Priors Make Good Substitutes for
Complex Reward Functions”. In: IEEE/RSJ International Conference on Robots and
Systems (IROS) (2022).

[73] Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan Wen, and Fuchun Sun. “Survey
of imitation learning for robotic manipulation”. In: International Journal of Intelligent
Robotics and Applications 3.4 (2019), pp. 362–369.

[74] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. “One-
Shot Visual Imitation Learning via Meta-Learning”. In: Conf. on Robot Learning
(CoRL) (2017).

[75] Peter R. Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura
Downs, Adrian S. Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. “Im-
plicit Behavioral Cloning”. In: Conference on Robot Learning (CoRL). 2021.

[76] FogROS2 Official ROS2 Repository. https://index.ros.org/p/fogros2/.

[77] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with Adversarial
Inverse Reinforcement Learning”. In: arXiv preprint arXiv:1710.11248 (2017).

[78] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Function Approxi-
mation Error in Actor-Critic Methods”. In: Proc. Int. Conf. on Machine Learning.
2018.

https://www.eprosima.com/index.php/products-all/eprosima-fast-dds
https://www.eprosima.com/index.php/products-all/eprosima-fast-dds
https://index.ros.org/p/fogros2/

BIBLIOGRAPHY 120

[79] Niklas Funk, Charles Schaff, Rishabh Madan, Takuma Yoneda, Julen Urain De Jesus,
Joe Watson, Ethan K. Gordon, Felix Widmaier, Stefan Bauer, Siddhartha S. Srini-
vasa, Tapomayukh Bhattacharjee, Matthew R. Walter, and Jan Peters. “Benchmark-
ing Structured Policies and Policy Optimization for Real-World Dexterous Object
Manipulation”. In: IEEE Robotics and Automation Letters 7.1 (Jan. 2022), pp. 478–
485.

[80] Aditya Ganapathi, Priya Sundaresan, Brijen Thananjeyan, Ashwin Balakrishna, Daniel
Seita, Jennifer Grannen, Minho Hwang, Ryan Hoque, Joseph E Gonzalez, Nawid Ja-
mali, Katsu Yamane, Soshi Iba, and Ken Goldberg. “Learning Dense Visual Corre-
spondences in Simulation to Smooth and Fold Real Fabrics”. In: Proc. IEEE Int.
Conf. Robotics and Automation (ICRA). 2021.

[81] Kanishk Gandhi, Siddharth Karamcheti, Madeline Liao, and Dorsa Sadigh. “Eliciting
Compatible Demonstrations for Multi-Human Imitation Learning”. In: Conference on
Robot Learning (CoRL). 2022.

[82] Irene Garcia-Camacho, Martina Lippi, Michael C. Welle, Hang Yin, Rika Antonova,
Anastasiia Varava, Julia Borras, Carme Torras, Alessandro Marino, Guillem Alenyà,
and Danica Kragic. “Benchmarking Bimanual Cloth Manipulation”. In: IEEE Robotics
and Automation Letters 5.2 (2020), pp. 1111–1118.

[83] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and J. Wiegley.
“Desktop teleoperation via the World Wide Web”. In: Proceedings of 1995 IEEE
International Conference on Robotics and Automation. Vol. 1. 1995, pp. 654–659.

[84] Matthew Gombolay, Ronald Wilcox, and Julie Shah. “Fast scheduling of multi-robot
teams with temporospatial constraints”. In: (2013).

[85] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Net-
works”. In: Advances in Neural Information Processing Systems. 2014.

[86] Google Remote Procedure Call. https://grpc.io/.

[87] Abhishek Gupta, Justin Yu, Tony Z. Zhao, Vikash Kumar, Aaron Rovinsky, Kelvin
Xu, Thomas Devlin, and Sergey Levine. “Reset-Free Reinforcement Learning via
Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human
Intervention”. In: arXiv preprint arXiv:2104.11203 (2021).

[88] Huy Ha and Shuran Song. “FlingBot: The Unreasonable Effectiveness of Dynamic
Manipulation for Cloth Unfolding”. In: Conference on Robot Learning (CoRL). 2021.

[89] Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor”.
In: International Conference on Machine Learning (ICML). 2018.

[90] Sami Salama Hussen Hajjaj and Khairul Saleh Mohamed Sahari. “Establishing re-
mote networks for ROS applications via Port Forwarding: A detailed tutorial”. In:
International Journal of Advanced Robotic Systems 14.3 (2017).

https://grpc.io/

BIBLIOGRAPHY 121

[91] Siddhant Haldar, Jyothish Pari, Anant Rai, and Lerrel Pinto. “Teach a Robot to
FISH: Versatile Imitation from One Minute of Demonstrations”. In: arXiv preprint
arXiv:2303.01497 (2023).

[92] Ankur Handa, Karl Van Wyk, Wei Yang, Jacky Liang, Yu-Wei Chao, Qian Wan, Stan
Birchfield, Nathan D. Ratliff, and Dieter Fox. “DexPilot: Vision-Based Teleoperation
of Dexterous Robotic Hand-Arm System”. In: IEEE International Conference on
Robotics and Automation (ICRA) (2020), pp. 9164–9170.

[93] Sandra G Hart. “NASA-task load index (NASA-TLX); 20 years later”. In: Proceedings
of the human factors and ergonomics society annual meeting. Vol. 50. Sage publica-
tions Sage CA: Los Angeles, CA. 2006, pp. 904–908.

[94] Alexander Herzog, Kanishka Rao, Karol Hausman, Yao Lu, Paul Wohlhart, Mengyuan
Yan, Jessica Lin, Montse Gonzalez Arenas, Ted Xiao, Daniel Kappler, Daniel Ho,
Jarek Rettinghouse, Yevgen Chebotar, Kuang-Huei Lee, Keerthana Gopalakrishnan,
Ryan C. Julian, Adrian Li, Chuyuan Fu, Bo Wei, Sangeetha Sukumari Ramesh, K. D.
Holden, Kim Kleiven, David Rendleman, Sean Kirmani, Jeffrey Bingham, Jonathan
Weisz, Ying Xu, Wenlong Lu, Matthew Bennice, Cody Fong, David Do, Jessica Lam,
Yunfei Bai, Benjie Holson, Michael J. Quinlan, Noah Brown, Mrinal Kalakrishnan,
Julian Ibarz, Peter Pastor, and Sergey Levine. “Deep RL at Scale: Sorting Waste
in Office Buildings with a Fleet of Mobile Manipulators”. In: Robotics: Science and
Systems (RSS). 2023.

[95] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”. In:
Advances in Neural Information Processing Systems. 2016.

[96] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic Mod-
els”. In: Neural Information Processing Systems (NeurIPS) (2020).

[97] Ryan Hoque, Ashwin Balakrishna, Ellen Novoseller, Albert Wilcox, Daniel S Brown,
and Ken Goldberg. “ThriftyDAgger: Budget-aware novelty and risk gating for inter-
active imitation learning”. In: Conference on Robot Learning (CoRL) (2021).

[98] Ryan Hoque, Ashwin Balakrishna, Carl Putterman, Michael Luo, Daniel S. Brown,
Daniel Seita, Brijen Thananjeyan, Ellen Novoseller, and Ken Goldberg. “LazyDAg-
ger: Reducing context switching in interactive imitation learning”. In: International
Conference on Automation Sciences and Engineering (CASE). 2021.

[99] Ryan Hoque, Lawrence Y. Chen, Satvik Sharma, Karthik Dharmarajan, Brijen Thanan-
jeyan, Pieter Abbeel, and Ken Goldberg. “Fleet-DAgger: Interactive Robot Fleet
Learning with Scalable Human Supervision”. In: Conference on Robot Learning (CoRL).
2022.

[100] Ryan Hoque, Daniel Seita, Ashwin Balakrishna, Aditya Ganapathi, Ajay Tanwani,
Nawid Jamali, Katsu Yamane, Soshi Iba, and Ken Goldberg. “VisuoSpatial Foresight
for Multi-Step, Multi-Task Fabric Manipulation”. In: Proc. Robotics: Science and
Systems (RSS). 2020.

BIBLIOGRAPHY 122

[101] Ryan Hoque, Kaushik Shivakumar, Shrey Aeron, Gabriel Deza, Aditya Ganapathi,
Adrian Wong, Johnny Lee, Andy Zeng, Vincent Vanhoucke, and Ken Goldberg.
“Learning to Fold Real Garments with One Arm: A Case Study in Cloud-Based
Robotics Research”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2022.

[102] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei.
“Reward learning from human preferences and demonstrations in Atari”. In: Advances
in Neural Information Processing Systems. 2018.

[103] Jeffrey Ichnowski and Ron Alterovitz. “Motion Planning Templates: A Motion Plan-
ning Framework for Robots with Low-power CPUs”. In: IEEE International Confer-
ence on Robotics and Automation (ICRA). 2019.

[104] Jeffrey Ichnowski, Kaiyuan Chen, Karthik Dharmarajan, Simeon Adebola, Michael
Danielczuk, Vıctor Mayoral-Vilches, Hugo Zhan, Derek Xu, Ramtin Ghassemi, John
Kubiatowicz, et al. “FogROS2: An Adaptive and Extensible Platform for Cloud and
Fog Robotics Using ROS 2”. In: arXiv preprint arXiv:2205.09778 (2022).

[105] Jeffrey Ichnowski, William Lee, Victor Murta, Samuel Paradis, Ron Alterovitz, Joseph
E Gonzalez, Ion Stoica, and Ken Goldberg. “Fog Robotics Algorithms for Distributed
Motion Planning Using Lambda Serverless Computing”. In: IEEE International Con-
ference on Robotics and Automation (ICRA). 2020, pp. 4232–4238.

[106] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal.
“Dynamical movement primitives: learning attractor models for motor behaviors”.
In: Neural computation 25.2 (2013).

[107] Integrating ROS2 with Eclipse zenoh. https://zenoh.io/blog/2021-04-28-ros2-
integration/. Accessed: 2021-02-15.

[108] Alex Irpan.Deep Reinforcement Learning Doesn’t Work Yet. https://www.alexirpan.
com/2018/02/14/rl-hard.html. 2018.

[109] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch,
Sergey Levine, and Chelsea Finn. “BC-Z: Zero-Shot Task Generalization with Robotic
Imitation Learning”. In: Conference on Robot Learning. 2021.

[110] Snehal Jauhri, Carlos Celemin, and Jens Kober. “Interactive Imitation Learning in
State-Space”. In: arXiv preprint arXiv:2008.00524 (2020).

[111] Harold Jeffreys. The Theory of Probability. Oxford University Press, 1939.

[112] Tianchen Ji, Roy Dong, and Katherine Driggs-Campbell. “Traversing Supervisor
Problem: An Approximately Optimal Approach to Multi-Robot Assistance”. In: Robotics:
Science and Systems (RSS) (2022).

https://zenoh.io/blog/2021-04-28-ros2-integration/
https://zenoh.io/blog/2021-04-28-ros2-integration/
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

BIBLIOGRAPHY 123

[113] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun
Chen, Li Fei-Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. “VIMA: General
Robot Manipulation with Multimodal Prompts”. In: NeurIPS 2022 Foundation Mod-
els for Decision Making Workshop. 2022.

[114] Edward Johns. “Coarse-to-Fine Imitation Learning: Robot Manipulation from a Sin-
gle Demonstration”. In: 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA) (2021), pp. 4613–4619.

[115] Kshitij Judah, Alan Fern, and Thomas Dietterich. “Active imitation learning via
state queries”. In: Proceedings of the icml workshop on combining learning strategies
to reduce label cost. Citeseer. 2011.

[116] Gregory Kahn, Pieter Abbeel, and Sergey Levine. “LaND: Learning to Navigate from
Disengagements”. In: arXiv preprint arXiv:2010.04689. 2020.

[117] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and
Sergey Levine. “QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based
Robotic Manipulation”. In: Conference on Robot Learning (CoRL) (2018).

[118] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jon-
schkowski, Chelsea Finn, Sergey Levine, and Karol Hausman. “Mt-opt: Continuous
multi-task robotic reinforcement learning at scale”. In: arXiv preprint arXiv:2104.08212
(2021).

[119] Peter Kazanzides, Zihan Chen, Anton Deguet, Gregory S Fischer, Russell H Taylor,
and Simon P DiMaio. “An open-source research kit for the da Vinci® Surgical Sys-
tem”. In: 2014 IEEE international conference on robotics and automation (ICRA).
IEEE. 2014, pp. 6434–6439.

[120] Ben Kehoe, Dmitry Berenson, and Ken Goldberg. “Estimating part tolerance bounds
based on adaptive cloud-based grasp planning with slip”. In: IEEE Conference on
Automation Science and Engineering (CASE). 2012, pp. 1106–1113.

[121] Ben Kehoe, Dmitry Berenson, and Ken Goldberg. “Toward cloud-based grasping with
uncertainty in shape: Estimating lower bounds on achieving force closure with zero-
slip push grasps”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2012, pp. 576–583.

[122] Ben Kehoe, Akihiro Matsukawa, Sal Candido, James Kuffner, and Ken Goldberg.
“Cloud-based robot grasping with the google object recognition engine”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2013, pp. 4263–4270.

[123] Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Goldberg. “A survey of research on
cloud robotics and automation”. In: IEEE Trans. Automation Science and Engineer-
ing 12.2 (2015), pp. 398–409.

BIBLIOGRAPHY 124

[124] Ben Kehoe, Deepak Warrier, Sachin Patil, and Ken Goldberg. “Cloud-based grasp
analysis and planning for toleranced parts using parallelized Monte Carlo sampling”.
In: IEEE Trans. Automation Science and Engineering 12.2 (2014), pp. 455–470.

[125] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochen-
derfer. “HG-DAgger: Interactive Imitation Learning with Human Experts”. In: Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). 2019.

[126] Taylor Kessler Faulkner, Reymundo A Gutierrez, Elaine Schaertl Short, Guy Hoffman,
and Andrea L Thomaz. “Active attention-modified policy shaping: socially interactive
agents track”. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems. 2019.

[127] Beomjoon Kim and Joelle Pineau. “Maximum Mean Discrepancy Imitation Learn-
ing.” In: Robotics: Science and systems. 2013.

[128] Chung Min Kim, Michael Danielczuk, Isabella Huang, and Ken Goldberg. “Simulation
of Parallel-Jaw Grasping using Incremental Potential Contact Models”. In: arXiv
preprint arXiv:2111.01391 (2021).

[129] Ji Woong Kim, Peiyao Zhang, Peter L. Gehlbach, Iulian I. Iordachita, and Marin Ko-
bilarov. “Towards Autonomous Eye Surgery by Combining Deep Imitation Learning
with Optimal Control”. In: Conference on Robot Learning (CoRL). 2020.

[130] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: Inter-
national Conference on Learning Representations (ICLR). 2014.

[131] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha
Suresh, and Dave Bacon. “Federated Learning: Strategies for Improving Communi-
cation Efficiency”. In: NIPS Workshop on Private Multi-Party Machine Learning.
2016.

[132] David Kortenkamp, Debra Keirn-Schreckenghost, and R Peter Bonasso. “Adjustable
control autonomy for manned space flight”. In: 2000 IEEE Aerospace Conference.
Proceedings (Cat. No. 00TH8484). Vol. 7. IEEE. 2000, pp. 629–640.

[133] Oliver Kroemer, Scott Niekum, and George Konidaris. “A Review of Robot Learn-
ing for Manipulation: Challenges, Representations, and Algorithms.” In: Journal of
Machine Learning Research 22 (2021), pp. 30–1.

[134] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. “RMA: Rapid Motor
Adaptation for Legged Robots”. In: Robotics: Science and Systems (RSS). 2021.

[135] Andrey Kurenkov, Ajay Mandlekar, Roberto Martin-Martin, Silvio Savarese, and Ani-
mesh Garg. “AC-Teach: A Bayesian Actor-Critic Method for Policy Learning with an
Ensemble of Suboptimal Teachers”. In: Conf. on Robot Learning (CoRL). 2019.

[136] Miu-Ling Lam and Kit-Yung Lam. “Path planning as a service PPaaS: Cloud-based
robotic path planning”. In: Proc. IEEE Int. Conf. on Robotics and Biomimetics (RO-
BIO). 2014, pp. 1839–1844.

BIBLIOGRAPHY 125

[137] Michael Laskey, Caleb Chuck, Jonathan Lee, Jeffrey Mahler, Sanjay Krishnan, Kevin
Jamieson, Anca Dragan, and Ken Goldberg. “Comparing human-centric and robot-
centric sampling for robot deep learning from demonstrations”. In: International Con-
ference on Robotics and Automation (ICRA). 2017, pp. 358–365.

[138] Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. “DART:
Noise Injection for Robust Imitation Learning”. In: Conf. on Robot Learning (CoRL).
2017.

[139] Michael Laskey, Sam Staszak, Wesley Hsieh, Jeffrey Mahler, Florian Pokorny, Anca
Dragan, and Ken Goldberg. “SHIV: Reducing Supervisor Burden using Support Vec-
tors for Efficient Learning from Demonstrations in High Dimensional State Spaces”.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2016.

[140] John Launchbury. “A Natural Semantics for Lazy Evaluation”. In: New York, NY,
USA: Association for Computing Machinery, 1993, pp. 144–154. isbn: 0897915607.

[141] Yann LeCun, Sumit Chopra, Raia Hadsell, Aurelio Ranzato, and Fu Jie Huang. “A
Tutorial on Energy-Based Learning”. In: Predicting Structured Data 1.0 (2006).

[142] Michael Lewis. “Human interaction with multiple remote robots”. In: Reviews of
Human Factors and Ergonomics 9.1 (2013), pp. 131–174.

[143] Pusong Li, Bill DeRose, Jeffrey Mahler, Juan Aparicio Ojea, Ajay Kumar Tanwani,
and Ken Goldberg. “Dex-Net as a service (DNaaS): A cloud-based robust robot
grasp planning system”. In: IEEE Conference on Automation Science and Engineer-
ing (CASE). 2018, pp. 1420–1427.

[144] Jia Zhi Lim and Danny Wee-Kiat Ng. “Cloud based implementation of ROS through
VPN”. In: Int. Conf. on Smart Computing & Communications (ICSCC). IEEE. 2019,
pp. 1–5.

[145] J. Lin. “Divergence measures based on the Shannon entropy”. In: IEEE Transactions
on Information Theory 37.1 (1991), pp. 145–151.

[146] Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. “SoftGym: Benchmarking
Deep Reinforcement Learning for Deformable Object Manipulation”. In: Conference
on Robot Learning (CoRL) (2020).

[147] Huihan Liu, Shivin Dass, Roberto Mart’in-Mart’in, and Yuke Zhu. “Model-Based
Runtime Monitoring with Interactive Imitation Learning”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2024.

[148] Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao Bao, and Yuke Zhu. “Robot
Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deploy-
ment”. In: arXiv abs/2211.08416 (2022).

[149] “Logistics Automation with Plus One Robotics”. en-US. In: Parcel Monitor (May
2022). url: https://www.parcelmonitor.com/blog/tech-spotlight-logistics-
automation-with-plus-one-automation/ (visited on 06/16/2022).

https://www.parcelmonitor.com/blog/tech-spotlight-logistics-automation-with-plus-one-automation/
https://www.parcelmonitor.com/blog/tech-spotlight-logistics-automation-with-plus-one-automation/

BIBLIOGRAPHY 126

[150] Jianlan Luo, Perry Dong, Yuexiang Zhai, Yi Ma, and Sergey Levine. “RLIF: Inter-
active Imitation Learning as Reinforcement Learning”. In: International Conference
on Learning Representations (ICLR). 2024.

[151] Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Wenzhao Lian, Chang Su, Mel Ve-
cerik, Ning Ye, Stefan Schaal, and Jon Scholz. “Robust multi-modal policies for indus-
trial assembly via reinforcement learning and demonstrations: A large-scale study”.
In: arXiv preprint arXiv:2103.11512 (2021).

[152] Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert
Baruch, Travis Armstrong, and Pete Florence. “Interactive language: Talking to
robots in real time”. In: IEEE Robotics and Automation Letters (2023).

[153] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In:
Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605.

[154] Alexis C. Madrigal. “Waymo’s Robot Cars, and the Humans Who Tend to Them”. en.
In: The Atlantic (Aug. 2018). Section: Technology. url: https://www.theatlantic.
com/technology/archive/2018/08/waymos-robot-cars-and-the-humans-who-

tend-to-them/568051/ (visited on 06/16/2022).

[155] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu,
Juan Aparicio Ojea, and Ken Goldberg. “Dex-Net 2.0: Deep Learning to Plan Ro-
bust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics”. In: Robotics:
Science and Systems (RSS). 2017.

[156] Jeremy Maitin-Shepard, Marco Cusumano-Towner, Jinna Lei, and Pieter Abbeel.
“Cloth grasp point detection based on multiple-view geometric cues with applica-
tion to robotic towel folding”. In: IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2010, pp. 2308–2315.

[157] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al.
“Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning”.
In: arXiv preprint arXiv:2108.10470 (2021).

[158] Ajay Mandlekar, Jonathan Booher, Max Spero, Albert Tung, Anchit Gupta, Yuke
Zhu, Animesh Garg, Silvio Savarese, and Li Fei-Fei. “Scaling Robot Supervision to
Hundreds of Hours with RoboTurk: Robotic Manipulation Dataset through Human
Reasoning and Dexterity”. In: arXiv preprint arXiv:1911.04052 (2019).

[159] Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang,
Linxi Fan, Yuke Zhu, and Dieter Fox. “MimicGen: A Data Generation System for
Scalable Robot Learning using Human Demonstrations”. In: Conference on Robot
Learning (CoRL). 2023.

[160] Ajay Mandlekar, Danfei Xu, Roberto Martin-Martin, Yuke Zhu, Li Fei-Fei, and Silvio
Savarese. “Human-in-the-Loop Imitation Learning using Remote Teleoperation”. In:
ArXiv preprint arXiv:2012.06733 (2020).

https://www.theatlantic.com/technology/archive/2018/08/waymos-robot-cars-and-the-humans-who-tend-to-them/568051/
https://www.theatlantic.com/technology/archive/2018/08/waymos-robot-cars-and-the-humans-who-tend-to-them/568051/
https://www.theatlantic.com/technology/archive/2018/08/waymos-robot-cars-and-the-humans-who-tend-to-them/568051/

BIBLIOGRAPHY 127

[161] Ajay Mandlekar, Danfei Xu, Roberto Mart́ın-Mart́ın, Silvio Savarese, and Li Fei-Fei.
“Learning to Generalize Across Long-Horizon Tasks from Human Demonstrations”.
In: arXiv preprint arXiv:2003.06085 (2020).

[162] Ajay Mandlekar, Danfei Xu, J. Wong, Soroush Nasiriany, Chen Wang, Rohun Kulka-
rni, Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. “What Mat-
ters in Learning from Offline Human Demonstrations for Robot Manipulation”. In:
Conference on Robot Learning (CoRL). 2021.

[163] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert
Tung, Julian Gao, John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, and
Li Fei-Fei. “RoboTurk: A Crowdsourcing Platform for Robotic Skill Learning through
Imitation”. In: Conference on Robot Learning. 2018.

[164] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. “Adver-
sarially robust policy learning: Active construction of physically-plausible perturba-
tions”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE. 2017, pp. 3932–3939.

[165] Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. “Rapid
Locomotion via Reinforcement Learning”. In: arXiv preprint arXiv:2205.02824 (2022).

[166] Nicholas D Matsakis and Felix S Klock II. “The rust language”. In: ACM SIGAda
Ada Letters. Vol. 34. 3. ACM. 2014, pp. 103–104.

[167] Vıctor Mayoral-Vilches, RuffinWhite, Gianluca Caiazza, and Mikael Arguedas. “SROS2:
Usable Cyber Security Tools for ROS 2”. In: arXiv e-prints (2022), arXiv–2208.

[168] Robert McCarthy, Francisco Roldan Sanchez, Qiang Wang, David Cordova Bulens,
Kevin McGuinness, Noel O’Connor, and Stephen J. Redmond. “Solving the Real
Robot Challenge using Deep Reinforcement Learning”. In: arXiv preprint arXiv:
2109.15233 (2021).

[169] Michael James McDonald and Dylan Hadfield-Menell. “Guided imitation of task and
motion planning”. In: Conference on Robot Learning. PMLR. 2022, pp. 630–640.

[170] Garrett McGrath and Paul R Brenner. “Serverless computing: Design, implementa-
tion, and performance”. In: 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW). IEEE. 2017, pp. 405–410.

[171] Kunal Menda, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. “Ensem-
bleDAgger: A Bayesian Approach to Safe Imitation Learning”. In: Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS). 2019.

[172] Suvir Mirchandani, F. Xia, Peter R. Florence, Brian Ichter, Danny Driess, Montse
Gonzalez Arenas, Kanishka Rao, Dorsa Sadigh, and Andy Zeng. “Large Language
Models as General Pattern Machines”. In: Conference on Robot Learning (CoRL).
2023.

BIBLIOGRAPHY 128

[173] Nitesh Mor, Richard Pratt, Eric Allman, Kenneth Lutz, and John Kubiatowicz.
“Global data plane: A federated vision for secure data in edge computing”. In: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS).
IEEE. 2019, pp. 1652–1663.

[174] Douglas Morrison, Peter Corke, and J. Leitner. “EGAD! An Evolved Grasping Anal-
ysis Dataset for Diversity and Reproducibility in Robotic Manipulation”. In: IEEE
Robotics and Automation Letters 5 (2020), pp. 4368–4375.

[175] Multicast DNS RFC 6762. https://www.rfc-editor.org/rfc/rfc6762.html.

[176] Raul Mur-Artal and Juan D Tardós. “ORB-SLAM2: An open-source slam system
for monocular, stereo, and RGB-D cameras”. In: IEEE Trans. Robotics 33.5 (2017),
pp. 1255–1262.

[177] Robin R Murphy and Erika Rogers. “Cooperative assistance for remote robot su-
pervision”. In: Presence: Teleoperators & Virtual Environments 5.2 (1996), pp. 224–
240.

[178] Michael Myers, Carlisle Adams, Dave Solo, and David Kemp. Internet X. 509 certifi-
cate request message format. Tech. rep. 1999.

[179] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, P. Abbeel, Jitendra Malik, and
Sergey Levine. “Combining self-supervised learning and imitation for vision-based
rope manipulation”. In: 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA) (2017), pp. 2146–2153.

[180] Radford M Neal. “Annealed importance sampling”. In: Statistics and computing 11
(2001), pp. 125–139.

[181] Hai Nguyen, Andrea Baisero, Dian Wang, Christopher Amato, and Robert Platt.
“Leveraging fully observable policies for learning under partial observability”. In:
arXiv preprint arXiv:2211.01991 (2022).

[182] Frank Nielsen. “Fast Approximations of the Jeffreys Divergence between Univari-
ate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distribu-
tions”. In: Entropy 23 (2021).

[183] Curtis G. Northcutt, Anish Athalye, and Jonas Mueller. “Pervasive Label Errors in
Test Sets Destabilize Machine Learning Benchmarks”. In: Neural Information Pro-
cessing Systems (NeurIPS). 2021.

[184] Dan R Olsen Jr and Stephen Bart Wood. “Fan-out: Measuring human control of
multiple robots”. In: Proceedings of the SIGCHI conference on Human factors in
computing systems. 2004, pp. 231–238.

[185] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation Learning with
Contrastive Predictive Coding”. In: ArXiv preprint arXiv:1807.03748 (2018).

[186] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

https://www.rfc-editor.org/rfc/rfc6762.html
https://arxiv.org/abs/2303.08774

BIBLIOGRAPHY 129

[187] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel,
and Jan Peters. “An algorithmic perspective on imitation learning”. In: arXiv preprint
arXiv:1811.06711 (2018).

[188] Claudio Pacchierotti, Stephen Sinclair, Massimiliano Solazzi, Antonio Frisoli, Vincent
Hayward, and Domenico Prattichizzo. “Wearable Haptic Systems for the Fingertip
and the Hand: Taxonomy, Review, and Perspectives”. In: IEEE Transactions on Hap-
tics 10.4 (2017), pp. 580–600.

[189] Abhishek Padalkar et al. “Open X-Embodiment: Robotic Learning Datasets and RT-
X Models”. In: IEEE International Conference on Robotics and Automation (ICRA).
2024.

[190] Malayandi Palan, Nicholas C. Landolfi, Gleb Shevchuk, and Dorsa Sadigh. “Learn-
ing Reward Functions by Integrating Human Demonstrations and Preferences”. In:
Proceedings of Robotics: Science and Systems (RSS). 2019.

[191] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos
Theodorou, and Byron Boots. “Agile Autonomous Driving using End-to-End Deep
Imitation Learning”. In: Proc. Robotics: Science and Systems (RSS). 2018.

[192] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and Scott
Shenker. “NetBricks: Taking the V out of NFV”. In: 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). 2016, pp. 203–216.

[193] Samuel Paradis, Minho Hwang, Brijen Thananjeyan, Jeffrey Ichnowski, Daniel Seita,
Danyal Fer, Thomas Low, Joseph E. Gonzalez, and Ken Goldberg. “Intermittent
Visual Servoing: Efficiently Learning Policies Robust to Instrument Changes for High-
precision Surgical Manipulation”. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). 2021, pp. 7166–7173.

[194] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. “Prob-
abilistic movement primitives”. In: Advances in neural information processing sys-
tems. 2013, pp. 2616–2624.

[195] Liam Paull, Jacopo Tani, Heejin Ahn, Javier Alonso-Mora, Luca Carlone, Michal
Cap, Yu Fan Chen, Changhyun Choi, Jeff Dusek, Yajun Fang, Daniel Hoehener,
Shih-Yuan Liu, Michael Novitzky, Igor Franzoni Okuyama, Jason Pazis, Guy Ros-
man, Valerio Varricchio, Hsueh-Cheng Wang, Dmitry Yershov, Hang Zhao, Michael
Benjamin, Christopher Carr, Maria Zuber, Sertac Karaman, Emilio Frazzoli, Domi-
tilla Del Vecchio, Daniela Rus, Jonathan How, John Leonard, and Andrea Censi.
“Duckietown: An open, inexpensive and flexible platform for autonomy education
and research”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). 2017, pp. 1497–1504.

BIBLIOGRAPHY 130

[196] Andi Peng, Aviv Netanyahu, Mark K Ho, Tianmin Shu, Andreea Bobu, Julie Shah,
and Pulkit Agrawal. “Diagnosis, Feedback, Adaptation: A Human-in-the-Loop Frame-
work for Test-Time Policy Adaptation”. In: International Conference on Machine
Learning (2023).

[197] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. “Sim-
to-real transfer of robotic control with dynamics randomization”. In: 2018 IEEE in-
ternational conference on robotics and automation (ICRA). IEEE. 2018, pp. 3803–
3810.

[198] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. “ASE:
Large-Scale Reusable Adversarial Skill Embeddings for Physically Simulated Charac-
ters”. In: arXiv preprint arXiv:2205.01906 (2022).

[199] Alyson Benoni Matias Pereira, Ricardo Emerson Julio, and Guilherme Sousa Bastos.
“ROSRemote: Using ROS on Cloud to Access Robots Remotely”. In: Robot Operating
System (ROS). Springer, 2019, pp. 569–605.

[200] Jeffrey R Peters, Vaibhav Srivastava, Grant S Taylor, Amit Surana, Miguel P Eck-
stein, and Francesco Bullo. “Human supervisory control of robotic teams: Integrating
cognitive modeling with engineering design”. In: IEEE Control Systems Magazine
35.6 (2015), pp. 57–80.

[201] Piab piSOFTGRIP Gripper. 2022. url: https://www.piab.com/en-us/suction-
cups-and-soft-grippers/soft-grippers/pisoftgrip-vacuum-driven-soft-

gripper-/pisoftgrip-/#overview.

[202] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron,
and Magnus Egerstedt. “The Robotarium: A remotely accessible swarm robotics re-
search testbed”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). 2017, pp. 1699–1706.

[203] Dean A Pomerleau. “Efficient training of artificial neural networks for autonomous
navigation”. In: Neural Computation 3.1 (1991).

[204] Dean A. Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural Network”.
In: Neural Information Processing Systems (NeurIPS). Ed. by D. Touretzky. Vol. 1.
Morgan-Kaufmann, 1988.

[205] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[206] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. “Learn-
ing transferable visual models from natural language supervision”. In: International
conference on machine learning. PMLR. 2021, pp. 8748–8763.

[207] Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra Malik, and Koushil
Sreenath. “Real-world humanoid locomotion with reinforcement learning”. In: Science
Robotics 9.89 (2024).

https://www.piab.com/en-us/suction-cups-and-soft-grippers/soft-grippers/pisoftgrip-vacuum-driven-soft-gripper-/pisoftgrip-/#overview
https://www.piab.com/en-us/suction-cups-and-soft-grippers/soft-grippers/pisoftgrip-vacuum-driven-soft-gripper-/pisoftgrip-/#overview
https://www.piab.com/en-us/suction-cups-and-soft-grippers/soft-grippers/pisoftgrip-vacuum-driven-soft-gripper-/pisoftgrip-/#overview

BIBLIOGRAPHY 131

[208] Siddharth Reddy, Anca D Dragan, and Sergey Levine. “Shared autonomy via deep
reinforcement learning”. In: Proc. Robotics: Science and Systems (RSS) (2018).

[209] Siddharth Reddy, Anca D. Dragan, and Sergey Levine. “Where Do You Think You’re
Going?: Inferring Beliefs about Dynamics from Behavior”. In: Proc. Advances in Neu-
ral Information Processing Systems (NeurIPS). 2018.

[210] Allen Z. Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah
Brown, Peng Xu, Leila Takayama, F. Xia, Jacob Varley, Zhenjia Xu, Dorsa Sadigh,
Andy Zeng, and Anirudha Majumdar. “Robots That Ask For Help: Uncertainty
Alignment for Large Language Model Planners”. In: Conference on Robot Learning
(CoRL). 2023.

[211] Marc Rigter, Bruno Lacerda, and Nick Hawes. “A framework for learning from demon-
stration with minimal human effort”. In: IEEE Robotics and Automation Letters 5.2
(2020), pp. 2023–2030.

[212] rosduct. https://github.com/uts-magic-lab/rosduct.

[213] Ariel Rosenfeld, Noa Agmon, Oleg Maksimov, and Sarit Kraus. “Intelligent agent sup-
porting human–multi-robot team collaboration”. In: Artificial Intelligence 252 (2017),
pp. 211–231.

[214] Stephane Ross and J. Andrew Bagnell. Reinforcement and Imitation Learning via
Interactive No-Regret Learning. 2014. arXiv: 1406.5979 [cs.LG].

[215] Stephane Ross, Geoffrey J Gordon, and J Andrew Bagnell. “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning”. In: International
Conference on Artificial Intelligence and Statistics (AISTATS). 2011.

[216] William B Rouse. “Adaptive allocation of decision making responsibility between
supervisor and computer”. In: Monitoring behavior and supervisory control. Springer,
1976, pp. 295–306.

[217] RSASSA-PSS RFC 4056. https://www.rfc-editor.org/rfc/rfc4056.

[218] RTI Connext DDS. https://www.rti.com/products.

[219] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. “Learning to walk
in minutes using massively parallel deep reinforcement learning”. In: Conference on
Robot Learning. PMLR. 2022, pp. 91–100.

[220] Dorsa Sadigh, Anca D. Dragan, S. Shankar Sastry, and Sanjit A. Seshia. “Active
Preference-Based Learning of Reward Functions”. In: Proceedings of Robotics: Science
and Systems (RSS). 2017.

[221] Akanksha Saran, Elaine Schaertl Short, Andrea Thomaz, and Scott Niekum. “Under-
standing Teacher Gaze Patterns for Robot Learning”. In: ed. by Leslie Pack Kaelbling,
Danica Kragic, and Komei Sugiura. Vol. 100. Proceedings of Machine Learning Re-
search. PMLR, Oct. 2020, pp. 1247–1258.

https://github.com/uts-magic-lab/rosduct
https://arxiv.org/abs/1406.5979
https://www.rfc-editor.org/rfc/rfc4056
https://www.rti.com/products

BIBLIOGRAPHY 132

[222] William Saunders, Girish Sastry, Andreas Stuhlmüller, and Owain Evans. “Trial with-
out Error: Towards Safe RL with Human Intervention”. In: 17th International Con-
ference on Autonomous Agents and MultiAgent Systems (2018).

[223] Scalable Distributed Robot Fleet With Fast DDS Discovery Server. https://husarnet.
com/blog/ros2-dds-discovery-server. Accessed: 2023-03-1.

[224] Paul Scerri, David V Pynadath, and Milind Tambe. “Towards adjustable autonomy
for the real world”. In: Journal of Artificial Intelligence Research 17 (2002), pp. 171–
228.

[225] John Schulman, Sergey Levine, P. Abbeel, Michael I. Jordan, and Philipp Moritz.
“Trust Region Policy Optimization”. In: International Conference on Machine Learn-
ing. 2015.

[226] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
“Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017).

[227] Daniel Seita, Aditya Ganapathi, Ryan Hoque, Minho Hwang, Edward Cen, Ajay
Kumar Tanwani, Ashwin Balakrishna, Brijen Thananjeyan, Jeffrey Ichnowski, Nawid
Jamali, Katsu Yamane, Soshi Iba, John Canny, and Ken Goldberg. “Deep Imitation
Learning of Sequential Fabric Smoothing From an Algorithmic Supervisor”. In: Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). 2020.

[228] Brennan Sellner, Frederik W Heger, Laura M Hiatt, Reid Simmons, and Sanjiv Singh.
“Coordinated multiagent teams and sliding autonomy for large-scale assembly”. In:
Proceedings of the IEEE 94.7 (2006), pp. 1425–1444.

[229] Brennan Sellner, Reid Simmons, and Sanjiv Singh. “User modelling for principled
sliding autonomy in human-robot teams”. In: Multi-Robot Systems. From Swarms to
Intelligent Automata Volume III. Springer, 2005, pp. 197–208.

[230] Lui Sha, Tarek Abdelzaher, Anton Cervin, Theodore Baker, Alan Burns, Giorgio But-
tazzo, Marco Caccamo, John Lehoczky, Aloysius K Mok, et al. “Real time scheduling
theory: A historical perspective”. In: Real-time systems 28.2 (2004), pp. 101–155.

[231] Nur Muhammad Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel Pinto.
“Behavior Transformers: Cloning k modes with one stone”. In: Neural Information
Processing Systems (NeurIPS). 2022.

[232] Claude Shannon. “A mathematical theory of communication”. In: Bell System Tech-
nical Journal (1948) (1948).

[233] Evan Shelhamer, Jonathan Long, and Trevor Darrell. “Fully Convolutional Networks
for Semantic Segmentation”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 39 (2017), pp. 640–651.

https://husarnet.com/blog/ros2-dds-discovery-server
https://husarnet.com/blog/ros2-dds-discovery-server

BIBLIOGRAPHY 133

[234] Thomas B Sheridan. “Adaptive automation, level of automation, allocation authority,
supervisory control, and adaptive control: Distinctions and modes of adaptation”. In:
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
41.4 (2011), pp. 662–667.

[235] Lucy Shi, Archit Sharma, Tony Zhao, and Chelsea Finn. “Waypoint-Based Imitation
Learning for Robotic Manipulation”. In: Conference on Robot Learning (CoRL). 2023.

[236] Lucy Xiaoyang Shi, Zheyuan Hu, Tony Zhao, Archit Sharma, Karl Pertsch, Jianlan
Luo, Sergey Levine, and Chelsea Finn. “Yell At Your Robot: Improving On-the-Fly
from Language Corrections”. In: ArXiv preprint arXiv:2403.12910 (2024).

[237] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. “Perceiver-Actor: A Multi-Task
Transformer for Robotic Manipulation”. In: Conference on Robot Learning (CoRL).
2022.

[238] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh
Mottaghi, Luke Zettlemoyer, and Dieter Fox. “ALFRED: A Benchmark for Interpret-
ing Grounded Instructions for Everyday Tasks”. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2020), pp. 10737–10746.

[239] Signature and hash algorithms for TLS and DTLS. https://www.ibm.com/docs/
en/zos/2.5.0?topic=support-signature-hash-algorithms.

[240] Jennifer Smith. “Robotic Arms Are Using Machine Learning to Reach Deeper Into
Distribution”. en-US. In: Wall Street Journal (Jan. 2022). issn: 0099-9660. url:
https://tinyurl.com/2p89zb35 (visited on 06/16/2022).

[241] Jonathan Spencer, Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle, Mung
Chiang, Peter Ramadge, and Siddhartha Srinivasa. “Learning from Interventions:
Human-robot Interaction as both Explicit and Immplicit Feedback”. In: Proc. Robotics:
Science and Systems (RSS). 2020.

[242] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. “OpenVSLAM: A Versatile
Visual SLAM Framework”. In: Proceedings of the 27th ACM International Conference
on Multimedia. MM ’19. Nice, France: ACM, 2019, pp. 2292–2295.

[243] Xiatao Sun, Shuo Yang, and Rahul Mangharam. “MEGA-DAgger: Imitation Learning
with Multiple Imperfect Experts”. In: ArXiv arXiv preprint arXiv:2303.00638 (2023).

[244] Priya Sundaresan, Priya Grannen, Brijen Thananjeyan, Ashwin Balakrishna, Michael
Laskey, Kevin Stone, Joseph E. Gonzalez, and Ken Goldberg. “Learning Interpretable
and Transferable Rope Manipulation Policies Using Depth Sensing and Dense Ob-
ject Descriptors”. In: International Conference on Robotics and Automation (ICRA).
IEEE. 2020.

[245] Gokul Swamy, Siddharth Reddy, Sergey Levine, and Anca D Dragan. “Scaled auton-
omy: Enabling human operators to control robot fleets”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 5942–5948.

https://www.ibm.com/docs/en/zos/2.5.0?topic=support-signature-hash-algorithms
https://www.ibm.com/docs/en/zos/2.5.0?topic=support-signature-hash-algorithms
https://tinyurl.com/2p89zb35

BIBLIOGRAPHY 134

[246] Ajay Kumar Tanwani, Raghav Anand, Joseph E Gonzalez, and Ken Goldberg. “RI-
LaaS: Robot inference and learning as a service”. In: IEEE Robotics & Automation
Letters 5.3 (2020), pp. 4423–4430.

[247] Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srini-
vasan, Minho Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Gold-
berg. “Recovery rl: Safe reinforcement learning with learned recovery zones”. In: IEEE
Robotics and Automation Letters 6.3 (2021), pp. 4915–4922.

[248] Nan Tian, MatthewMatl, Jeffrey Mahler, Yu Xiang Zhou, Samantha Staszak, Christo-
pher Correa, Steven Zheng, Qiang Li, Robert Zhang, and Ken Goldberg. “A cloud
robot system using the dexterity network and Berkeley robotics and automation as a
service (BRASS)”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2017, pp. 1615–1622.

[249] Naftali Tishby and Noga Zaslavsky. “Deep learning and the information bottleneck
principle”. In: 2015 IEEE Information Theory Workshop (ITW) (2015), pp. 1–5.

[250] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. “Domain randomization for transferring deep neural networks from simula-
tion to the real world”. In: 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE. 2017, pp. 23–30.

[251] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A Physics Engine for
Model-Based Control”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). 2012.

[252] Tokio. https://tokio.rs/.

[253] Faraz Torabi, Garrett Warnell, and Peter Stone. “Behavioral Cloning from Observa-
tion”. In: Proceedings of the 27th International Joint Conference on Artificial Intelli-
gence (IJCAI). Stockholm, Sweden, July 2018.

[254] Susanne Trick, Franziska Herbert, Constantin A. Rothkopf, and Dorothea Koert.
“Interactive Reinforcement Learning With Bayesian Fusion of Multimodal Advice”.
In: IEEE Robotics and Automation Letters 7.3 (2022), pp. 7558–7565.

[255] Hsiao-Yu Tung, AdamW Harley, Liang-Kang Huang, and Katerina Fragkiadaki. “Re-
ward learning from narrated demonstrations”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 7004–7013.

[256] Alan Turing. “Computing Machinery and Intelligence”. In: Mind 49 (1950), pp. 433–
460.

[257] UC Berkeley Minimum Security Standard. https : / / security . berkeley . edu /
policy/minimum-security-standards-networked-devices-mssnd.

[258] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In: Neural
Information Processing Systems (NeurIPS). 2017.

https://tokio.rs/
https://security.berkeley.edu/policy/minimum-security-standards-networked-devices-mssnd
https://security.berkeley.edu/policy/minimum-security-standards-networked-devices-mssnd

BIBLIOGRAPHY 135

[259] Shivam Vats, Oliver Kroemer, and Maxim Likhachev. “Synergistic Scheduling of
Learning and Allocation of Tasks in Human-Robot Teams”. In: arXiv preprint arXiv:
2203.07478 (2022).

[260] Nolan Wagener, Byron Boots, and Ching-An Cheng. “Safe Reinforcement Learn-
ing Using Advantage-Based Intervention”. In: International Conference on Machine
Learning (ICML). 2021.

[261] Fan Wang, Bo Zhou, Ke Chen, Tingxiang Fan, Xi Zhang, Jiangyong Li, Hao Tian, and
Jia Pan. “Intervention Aided Reinforcement Learning for Safe and Practical Policy
Optimization in Navigation”. In: Conf. on Robot Learning (CoRL). 2018.

[262] MaxWelling and YeeWhye Teh. “Bayesian Learning via Stochastic Gradient Langevin
Dynamics”. In: Proceedings of the 28th International Conference on Machine Learn-
ing. ICML’11. Bellevue, Washington, USA: Omnipress, 2011, pp. 681–688. isbn:
9781450306195.

[263] Bowen Wen, Wenzhao Lian, Kostas E. Bekris, and Stefan Schaal. “You Only Demon-
strate Once: Category-Level Manipulation from Single Visual Demonstration”. In:
Robotics: Science and Systems (RSS). 2022.

[264] Thomas Weng, Sujay Bajracharya, Yufei Wang, Khush Agrawal, and David Held.
“FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy”. In: Con-
ference on Robot Learning (CoRL). 2021.

[265] wireguard VPN. https://www.wireguard.com/.

[266] Adrian Wong, Andy Zeng, Arnab Bose, Ayzaan Wahid, Dmitry Kalashnikov, Ivan
Krasin, Jake Varley, Johnny Lee, Jonathan Tompson, Maria Attarian, Pete Florence,
Robert Baruch, Sichun Xu, Stefan Welker, Vikas Sindhwani, Vincent Vanhoucke, and
Wayne Gramlich. PyReach - Python Client SDK for Robot Remote Control. https:
//github.com/google-research/pyreach. 2022.

[267] Josiah Wong, Albert Tung, Andrey Kurenkov, Ajay Mandlekar, Li Fei-Fei, Silvio
Savarese, and Roberto Mart́ın-Mart́ın. “Error-aware imitation learning from teleop-
eration data for mobile manipulation”. In: Conference on Robot Learning. PMLR.
2022, pp. 1367–1378.

[268] Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, and Pieter Abbeel. “Learning
to Manipulate Deformable Objects without Demonstrations”. In: Robotics: Science
and Systems (RSS). 2020.

[269] Manuel Wüthrich, Felix Widmaier, Felix Grimminger, Shruti Joshi, Vaibhav Agrawal,
Bilal Hammoud, Majid Khadiv, Miroslav Bogdanovic, Vincent Berenz, Julian Viereck,
Maximilien Naveau, Ludovic Righetti, Bernhard Schölkopf, and Stefan Bauer. “TriFin-
ger: An Open-Source Robot for Learning Dexterity”. In: Conference on Robot Learn-
ing (CoRL). 2020.

[270] Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. “Masked visual
pre-training for motor control”. In: arXiv preprint arXiv:2203.06173 (2022).

https://www.wireguard.com/
https://github.com/google-research/pyreach
https://github.com/google-research/pyreach

BIBLIOGRAPHY 136

[271] Linhai Xie, Sen Wang, Stefano Rosa, Andrew Markham, and Niki Trigoni. “Learning
with Training Wheels: Speeding up Training with a Simple Controller for Deep Re-
inforcement Learning”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
2018.

[272] Binhuai Xu and Jing Bian. “A Cloud Robotic Application Platform Design Based on
the Microservices Architecture”. In: Int. Conf. on Control, Robotics and Intelligent
System. 2020, pp. 13–18.

[273] Brian Yang, Jesse Zhang, Vitchyr Pong, Sergey Levine, and Dinesh Jayaraman. “RE-
PLAB: A Reproducible Low-Cost Arm Benchmark Platform for Robotic Learning”.
In: IEEE International Conference on Robotics and Automation (ICRA). 2019.

[274] Sebastián A Zanlongo, Peter Dirksmeier, Philip Long, Taskin Padir, and Leonardo
Bobadilla. “Scheduling and path-planning for operator oversight of multiple robots”.
In: Robotics 10.2 (2021), p. 57.

[275] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria
Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny
Lee. “Transporter Networks: Rearranging the Visual World for Robotic Manipula-
tion”. In: Conference on Robot Learning (CoRL) (2020).

[276] Jiakai Zhang and Kyunghyun Cho. “Query-Efficient Imitation Learning for End-to-
End Autonomous Driving”. In: Association for the Advancement of Artificial Intelli-
gence (AAAI). 2017.

[277] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Ken Goldberg, and Pieter
Abbeel. “Deep Imitation Learning for Complex Manipulation Tasks from Virtual
Reality Teleoperation”. In: arXiv preprint arXiv:1710.04615 (2017).

[278] Tony Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. “Learning fine-grained
bimanual manipulation with low-cost hardware”. In: Robotics: Science and Systems
(RSS). 2023.

[279] Kuanhao Zheng, Dylan F Glas, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro
Hagita. “Supervisory control of multiple social robots for navigation”. In: 2013 8th
ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE.
2013, pp. 17–24.

[280] Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto Mart́ın-Mart́ın. “Robosuite:
A Modular Simulation Framework and Benchmark for Robot Learning”. In: arXiv
preprint arXiv:2009.12293. 2020.

[281] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. “Maxi-
mum entropy inverse reinforcement learning.” In: Association for the Advancement
of Artificial Intelligence (AAAI). 2008.

137

Part V

Appendices

138

Appendix A

Appendix for Chapter 2

Here we provide further details on our MuJoCo experiments, hyperparameter sensitivity,
simulated fabric experiments, and physical fabric experiments.

A.1 MuJoCo

As stated in the main text, we evaluate on the HalfCheetah-v2, Walker2D-v2, and Ant-v2
environments. To train the algorithmic supervisor, we utilize the TD3 implementation from
OpenAI SpinningUp (https://spinningup.openai.com/en/latest/) with default hyper-
parameters and run for 100, 200, and 500 epochs respectively. The expert policies obtain
rewards of 5330.78 ± 117.65, 3492.08 ± 1110.31, and 4492.88 ± 1580.42, respectively. Note
that the experts for Walker2D and Ant have high variance, resulting in higher variance for
the corresponding learning curves in Figure 2.3. We provide the state space dimensionality
|S|, action space dimensionality |A|, and LazyDAgger hyperparameters (see Algorithm 1) for
each environment in Table A.1. The βH value in the table is multiplied with the maximum
possible action discrepancy ||ahigh − alow||22 to become the threshold for training f(·). In
MuJoCo environments, ahigh = 1⃗ and alow = −1⃗. The βH value used for SafeDAgger in all
experiments is chosen by the method provided in the paper introducing SafeDAgger [276]:
the threshold at which roughly 20% of the initial offline dataset is classified as “unsafe.”

For LazyDAgger and all baselines, the actor policy πR(·) is a neural network with 2
hidden layers with 256 neurons each, rectified linear unit (ReLU) activation, and hyperbolic
tangent output activation. For LazyDAgger and SafeDAgger, the discrepancy classifier f(·)
is a neural network with 2 hidden layers with 128 neurons each, ReLU activation, and
sigmoid output activation. We take 2,000 gradient steps per epoch and optimize with Adam
and learning rate 1e-3 for both neural networks. To collect D and DS in Algorithm 1 and
SafeDAgger, we randomly partition our dataset of 4,000 state-action pairs into 70% (2,800
state-action pairs) for D and 30% (1,200 state-action pairs) for DS.

https://spinningup.openai.com/en/latest/

APPENDIX A. APPENDIX FOR CHAPTER 2 139

Environment |S| |A| N T βH βR σ2

HalfCheetah 16 7 10 5000 5e-3 βH / 10 0.30

Walker2D 16 7 15 5000 5e-3 βH / 10 0.10

Ant 111 8 15 5000 5e-3 βH / 2 0.05

Table A.1: MuJoCo Hyperparameters: |S| and |A| are aspects of the Gym environments
while the other values are hyperparameters of LazyDAgger (Algorithm 1). Note that T and
βH are the same across all environments, and that βR is a function of βH .

A.2 LazyDAgger Switching Thresholds

As described in Section 2.5, the main LazyDAgger hyperparameters are the safety thresholds
for switching to supervisor control (βH) and returning to autonomous control (βR). To tune
these hyperparameters in practice, we initialize βH and βR with the method in Zhang et al.
[276]; again, this sets the safety threshold such that approximately 20% of the initial dataset
is unsafe. We then tune βH higher to balance reducing the frequency of switching to the
supervisor with allowing enough supervision for high policy performance. Finally we set βR

as a multiple of βH , starting from βR = βH and tuning downward to balance improving
the performance and increasing intervention length with keeping the total number of actions
moderate. Note that since these parameters are not automatically set, we must re-run
experiments for each change of parameter values. Since this tuning results in unnecessary
supervisor burden, eliminating or mitigating this requirement is an important direction for
future work.

To analyze sensitivity to βR and βH , we plot the results of a grid search over parameter
values on each of the MuJoCo environments in Figure A.1. Note that a lighter color in the
heatmap is more desirable for reward while a darker color is more desirable for actions and
switches. We see that the supervisor burden in terms of actions and context switches is not
very sensitive to the threshold as we increase βH but jumps significantly for the very low
setting (βH = 5× 10−4) as a large amount of data points are classified as unsafe. Similarly,
we see that reward is relatively stable (note the small heatmap range for HalfCheetah) as
we decrease βH but can suffer for high values, as interventions are not requested frequently
enough. Reward and supervisor burden are not as sensitive to βR but follow the same trends
we expect, with higher reward and burden as βR decreases.

A.3 Fabric Smoothing in Simulation

Fabric Simulator

More information about the fabric simulator can be found in Seita et al. [227], but we review
the salient details here. The fabric is modeled as a mass-spring system with a n×n square grid

APPENDIX A. APPENDIX FOR CHAPTER 2 140

Figure A.1: LazyDAgger βR and βH sensitivity heatmaps across the 3 MuJoCo environments.
The x-axis denotes βH and the y-axis denotes βR. Note that βR is a function of βH . Each of
the 3 environments was run 9 times with the different settings of βR and βH . As in Figure 2.3
we plot test reward, number of supervisor actions, and number of context switches.

of point masses. Self-collision is implemented by applying a repulsive force between points
that are sufficiently close together. Blender (https://blender.org/) is used to render the
fabric in 100× 100× 3 RGB image observations. See Figure 2.4 for an example observation.
The actions are 4D vectors consisting of a pick point (x, y) ∈ [−1, 1]2 and a place point
(∆x,∆y) ∈ [−1, 1]2, where (x, y) = (−1,−1) corresponds to the bottom left corner of the
plane while (∆x,∆y) is multiplied by 2 to allow crossing the entire plane. In simulation,
we initialize the fabric with coverage 41.1 ± 3.4% in the hardest (Tier 3) state distribution
in [227] and end episodes if we exceed 10 time steps, cover at least 92% of the plane, are at
least 20% out of bounds, or have exceeded a tearing threshold in one of the springs. We use
the same algorithmic supervisor as [227], which repeatedly picks the coordinates of the corner
furthest from its goal position and pulls toward this goal position. To facilitate transfer to
the real world, we use the domain randomization techniques in [227] to vary the following
parameters:

https://blender.org/

APPENDIX A. APPENDIX FOR CHAPTER 2 141

• Fabric RGB values uniformly between (0, 0, 128) and (115, 179, 255), centered around
blue.

• Background plane RGB values uniformly between (102, 102, 102) and (153, 153, 153).

• RGB gamma correction uniformly between 0.7 and 1.3.

• Camera position (x, y, z) as (0.5+δ1, 0.5+δ2, 1.45+δ3) meters, where each δi is sampled
from N (0, 0.04).

• Camera rotation with Euler angles sampled from N (0, 90◦).

• Random noise at each pixel uniformly between -15 and 15.

For consistency, we use the same domain randomization in our sim-to-sim (“simulator to
simulator”) fabric smoothing experiments in Section 2.6.

Actor Policy and Discrepancy Classifier

The actor policy is a convolutional neural network with the same architecture as [227], i.e.
four convolutional layers with 32 3x3 filters followed by four fully connected layers. The
parameters, ignoring biases for simplicity, are:

policy/convnet/c1 864 params (3, 3, 3, 32)

policy/convnet/c2 9216 params (3, 3, 32, 32)

policy/convnet/c3 9216 params (3, 3, 32, 32)

policy/convnet/c4 9216 params (3, 3, 32, 32)

policy/fcnet/fc1 3276800 params (12800, 256)

policy/fcnet/fc2 65536 params (256, 256)

policy/fcnet/fc3 65536 params (256, 256)

policy/fcnet/fc4 1024 params (256, 4)

Total model parameters: 3.44 million

The discrepancy classifier reuses the actor’s convolutional layers by taking a forward pass
through them. We do not backpropagate gradients through these layers when training the
classifier, but rather fix these parameters after training the actor policy. The rest of the
classifier network has three fully connected layers with the following parameters:

policy/fcnet/fc1 3276800 params (12800, 256)

policy/fcnet/fc2 65536 params (256, 256)

policy/fcnet/fc3 1024 params (256, 4)

Total model parameters: 3.34 million

APPENDIX A. APPENDIX FOR CHAPTER 2 142

Training

Due to the large amount of data required to train fabric smoothing policies, we pretrain the
actor policy (not the discrepancy classifier) in simulation. The learned policy is then fine-
tuned to the new environment while the discrepancy classifier is trained from scratch. Since
the algorithmic supervisor can be queried cheaply, we pretrain with DAgger as in [227]. To
further accelerate training, we parallelize environment interaction across 20 CPUs, and before
DAgger iterations we pretrain with 100 epochs of Behavior Cloning on the dataset of 20,232
state-action pairs available at [227]’s project website. Additional training hyperparameters
are given in Table A.2 and the learning curve is given in Figure A.2.

Hyperparameter Value

BC Epochs 100

DAgger Epochs 100

Parallel Environments 20

Gradient Steps per Epoch 240

Env Steps per Env per DAgger Epoch 20

Batch Size 128

Replay Buffer Size 5e4

Learning Rate 1e-4

L2 Regularization 1e-5

Table A.2: DAgger Hyperparameters. After Behavior Cloning, each epoch of DAgger
(1) runs the current policy and collects expert labels for 20 time steps in each of 20 parallel
environments and then (2) takes 240 gradient steps on minibatches of size 128 sampled from
the replay buffer.

Experiments

In sim-to-sim experiments, the initial policy is trained on a 16x16 grid of fabric in a range of
colors centered around blue with a spring constant of k = 10, 000. We then adapt this policy
to a new simulator with different physics parameters and an altered visual appearance.
Specifically, in the new simulation environment, the fabric is a higher fidelity 25x25 grid
with a lower spring constant of k = 2, 000 and a color of (R, G, B) = (204, 51, 204) (i.e.
pink), which is outside the range of colors produced by domain randomization (Section A.3).
Hyperparameters are given in Table A.3.

APPENDIX A. APPENDIX FOR CHAPTER 2 143

Figure A.2: Behavior Cloning and DAgger performance across 10 test episodes evaluated
every 10 epochs. Shading indicates 1 standard deviation. The first 100 epochs (left half) are
Behavior Cloning epochs and the second 100 (right half) are DAgger epochs.

Hyperparameter Value

N 10

T 20

βH 0.001

βR βH

σ2 0.05

Initial |D| 1050

Initial |DS| 450

Batch Size 50

Gradient Steps per Epoch 200

π Learning Rate 1e-4

f Learning Rate 1e-3

L2 Regularization 1e-5

Table A.3: Hyperparameters for sim-to-sim fabric smoothing experiments, where the first
5 rows are LazyDAgger hyperparameters in Algorithm 1. Initial dataset sizes and batch
size are in terms of images after data augmentation, i.e. scaled up by a factor of 15 (see
Section A.4). Note that the offline data is split 70%/30% as in Section A.1.

APPENDIX A. APPENDIX FOR CHAPTER 2 144

A.4 Fabric Manipulation with the ABB YuMi

Experimental Setup

We manipulate a brown 10” by 10” square piece of fabric with a single parallel jaw gripper as
shown in Figure 2.1. The gripper is equipped with reverse tweezers for more precise picking
of deformable materials. Neural network architecture is consistent with Section A.3 for both
actor and safety classifier. We correct pick points that nearly miss the fabric by mapping
to the nearest point on the mask of the fabric, which we segment from the images by color.
To convert neural network actions to robot grasps, we run a standard camera calibration
procedure and perform top-down grasps at a fixed depth. By controlling the width of the
tweezers via the applied force on the gripper, we can reliably pick only the top layer of
the fabric at a given pick point. We provide LazyDAgger-Execution hyperparameters in
Table A.4.

Image Processing Pipeline

In the simulator, the fabric is smoothed against a light background plane with the same size
as the fully smoothed fabric (see Figure 2.4). Since the physical workspace is far larger than
the fabric, we process each RGB image of the workspace by (1) taking a square crop, (2)
rescaling to 100 × 100, and (3) denoising the image. Essentially we define a square crop of
the workspace as the region to smooth and align against, and assume that the fabric starts
in this region. These processed images are the observations that fill the replay buffer and
are passed to the neural networks.

User Interface

When the system solicits human intervention, an interactive user interface displays a scaled-
up version of the current observation. The human is able to click and drag on the image to
provide a pick point and pull vector, respectively. The interface captures the input as pixel
locations and analytically converts it to the action space of the environment (i.e. a ∈ [−1, 1]4)
for the robot to execute. See Figure A.3 for a screen capture of the user interface.

Data Augmentation

To prevent overfitting to the small amount of real data, before adding each state-action pair
to the replay buffer, we make 10 copies of it with the following data augmentation procedure,
with transformations applied in a random order:

• Change contrast to 85-115% of the original value.

• Change brightness to 90-110% of the original value.

APPENDIX A. APPENDIX FOR CHAPTER 2 145

Figure A.3: The user interface for human interventions. The current observation of the fabric
state from the robot’s perspective is displayed, with an overlaid green arrow indicating the
action the human has just specified.

• Change saturation to 95-105% of the original value.

• Add values uniformly between -10 and 10 to each channel of each pixel.

• Apply a Gaussian blur with σ between 0 and 0.6.

• Add Gaussian noise with σ between 0 and 3.

• With probability 0.8, apply an affine transform that (1) scales each axis independently
to 98-102% of its original size, (2) translates each axis independently by a value between
-2% and 2%, and (3) rotates by a value between -5 and 5 degrees.

APPENDIX A. APPENDIX FOR CHAPTER 2 146

Hyperparameter Value

βH 0.004

βR βH

|D| 875

|DS| 375

Batch Size 50

Gradient Steps per Epoch 125

π Learning Rate 1e-4

f Learning Rate 1e-3

L2 Regularization 1e-5

Table A.4: Hyperparameters for physical fabric experiments provided in the same format as
Table A.3. Since this is at execution time, N , T and σ2 hyperparameters do not apply.

147

Appendix B

Appendix for Chapter 3

In Appendix B.1, we discuss algorithmic details for ThriftyDAgger and all comparisons.
Then, Appendix B.2 discusses implementation and hyperparameter details for all algorithms.
In Appendix B.3, we provide additional details about the simulation and physical experi-
ment domains, and in Appendix B.4, we describe the protocol and detailed results from the
conducted user study.

B.1 Algorithm Details

Here we provide a detailed algorithmic description of ThriftyDAgger and all comparisons.

ThriftyDAgger

The full pseudocode for ThriftyDAgger is provided in Algorithm 3. ThriftyDAgger first
initializes πr via Behavior Cloning on offline transitions (Dh from the human supervisor, πh)
(line 1-2). Then, πr collects an initial offline dataset Dr from the resulting πr, initializes
Q̂πr

ϕ,G by optimizing Equation (3.5) on Dr ∪ Dh, and initializes parameters βH , βR, δh, and
δr as in Section 3.4 (lines 3-5). We then collect data for N episodes, each with up to
T timesteps. In each timestep of each episode, we determine whether robot policy πr or
human supervisor πh should be in control using the procedure in Section 3.4 (lines 10-20).
Transitions in autonomous mode are aggregated into Dr while transitions in supervisor mode
are aggregated into Dh. Episodes are terminated either when the robot reaches a valid goal
state or has exhausted the time horizon T . At this point, we re-initialize the policy to
autonomous mode and update parameters βH , βR, δh, and δr as in Section 3.4 (lines 21-23).
After each episode, πr is updated via supervised learning on Dh, while Q̂πr

ϕ,G is updated on
Dr ∪ Dh to reflect the task success probability of the resulting πr (lines 24-26).

APPENDIX B. APPENDIX FOR CHAPTER 3 148

Behavior Cloning

We train policy πR via direct supervised learning with a mean-squared loss to predict refer-
ence control actions given a dataset of (state, action) tuples. Behavior Cloning is trained only
on full expert demonstrations collected offline from πH and is not allowed access to online
interventions. Thus, Behavior Cloning is trained only on dataset Dh (line 1, Algorithm 3)
and the policy is frozen thereafter. In our simulation experiments, Behavior Cloning is given
50% more offline data than the other algorithms for a more fair comparison, such that the
amount of additional offline data is approximately equal to the average amount of online
data provided to the other algorithms.

SafeDAgger

SafeDAgger [276] is an interactive imitation learning algorithm which selects between au-
tonomous and supervisor mode using a classifier f that discriminates between “safe” states,
for which πR’s proposed action is within some threshold βH of that proposed by supervisor
policy πH , and “unsafe” states, for which this action discrepancy exceeds βH . SafeDAg-
ger learns this classifier using dataset Dh from Algorithm 3, and updates f online as Dh

is expanded through human interventions. During policy rollouts, if f marks a state as
safe, the robot policy is executed (autonomous mode), while if f marks a state as unsafe,
the supervisor is queried for an action. While this approach can be effective in some do-
mains [276], prior work [98] suggests that this intervention criterion can lead to excessive
context switches between the robot and supervisor, and thus impose significant burden on a
human supervisor. As in ThriftyDAgger and other DAgger [215] variants, SafeDAgger up-
dates πR on an aggregated dataset of all transitions collected by the supervisor (analogous
to Dh in Algorithm 3).

LazyDAgger

LazyDAgger [98] builds on SafeDAgger [276] and trains the same action discrepancy classifier
f to determine whether the robot and supervisor policies will significantly diverge at a given
state. However, LazyDAgger introduces a few modifications to SafeDAgger which lead to
lengthier and more informative interventions in practice. First, LazyDAgger observes that
when the supervisor has control of the system (supervisor mode), querying f for estimated
action discrepancy is no longer necessary since we can simply query the robot policy at
any state during supervisor mode to obtain a true measure of the action discrepancy be-
tween the robot and supervisor policies. This prevents exploiting approximation errors in f
when the supervisor is in control. Second, LazyDAgger introduces an asymmetric switching
condition between autonomous and supervisor control, where switches are executed from
autonomous to supervisor mode if f indicates that the predicted action discrepancy is above
βH , but switches are only executed from supervisor mode back to autonomous mode if the
true action discrepancy is below some value βR < βH . This encourages lengthier interven-

APPENDIX B. APPENDIX FOR CHAPTER 3 149

Algorithm 3 ThriftyDAgger

Require: Number of episodes N , time horizon T , supervisor policy πH , desired context switching rate αh

1: Collect offline dataset Dh of (s, ah) tuples with πH

2: Initialize πR via Behavior Cloning on Dh

3: Collect offline dataset Dr of (s, ar) tuples with πR

4: Initialize Q̂πr

ϕ,G by optimizing Equation (3.4) on Dr ∪ Dh

5: Optimize βH , βR, δh, δr on Dh ▷ Automatic tuning based on αh (Section 3.4)
6: for i ∈ {1, . . . N} do
7: Initialize s0, Mode ← Autonomous
8: for t ∈ {1, . . . T} do
9: art = πR(st)
10: if Mode = Supervisor or Intervene(st, δh, βH) then ▷ Determine control mode (Section 3.4)
11: aht = πH(st)
12: Dh ← Dh ∪ {(st, aht)}
13: Execute aht
14: if Cede(st, δr, βR) then ▷ Default control mode for next timestep (Section 3.4)
15: Mode ← Autonomous
16: else
17: Mode ← Supervisor

18: else
19: Execute art
20: Dr ← Dr ∪ {(st, at)}
21: if Terminal state reached then
22: Exit Loop, Mode ← Autonomous
23: Recompute βH , βR, δh ▷ Automatic tuning based on αh (Section 3.4)

24: πR ← argminπR
E(st,ah

t)∼Dh
[L(πR(st), πH(st))]

25: Collect Dr offline with robot policy πR

26: Update Q̂πr

ϕ,G on Dr ∪ Dh ▷ Update Q-function via Equation (3.6)

tions, leading to fewer context switches between autonomous and supervisor modes. Finally,
LazyDAgger injects noise into supervisor actions in order to spread the distribution of states
in which reference controls from the supervisor are available. ThriftyDAgger builds on the
asymmetric switching criterion introduced by LazyDAgger, but introduces a new switch-
ing criterion based on the estimated task success probability, which we found significantly
improved performance in practice.

HG-DAgger

Unlike SafeDAgger, LazyDAgger, and ThriftyDAgger, which are robot-gated and autonomously
determine when to solicit intervention requests, HG-DAgger is human-gated, and thus re-
quires that the supervisor determine the timing and length of interventions. As in ThriftyDAg-
ger, HG-DAgger updates πR on an aggregated dataset of all transitions collected by the
supervisor (analogous to Dh in Algorithm 3).

APPENDIX B. APPENDIX FOR CHAPTER 3 150

B.2 Hyperparameter and Implementation Details

Here we provide a detailed overview of all hyperparameter and implementation details for
ThriftyDAgger and all comparisons to facilitate reproduction of all experiments. We also
include code in the supplement, and will release a full open-source codebase after anonymous
review.

ThriftyDAgger

Peg Insertion (Simulation): We initially populate Dh with 2,687 offline transitions,
which correspond to 30 task demonstrations collected by an expert human supervisor to
initialize the robot policy πR. We represent πR with an ensemble of 5 neural networks,
trained on bootstrapped samples of data from Dh in order to quantify uncertainty for novelty
estimation. Each neural network is trained using the Adam Optimizer (learning rate 1e− 3)
with 5 training epochs, 500 gradient steps in each training epoch, and a batch size of 100.
All networks consist of 2 hidden layers, each with 256 hidden units with ReLU activations,
and a Tanh output activation.

The Q-function used for risk-estimation, Q̂πr
ϕ,G, is trained with a batch size of 50, and

batches are balanced such that 10% of all sampled transitions contain a state in the goal
set. We train Q̂πr

ϕ,G with the Adam Optimizer, with a learning rate of 1e − 3 and discount

factor γ = 0.9999. In order to train Q̂πr
ϕ,G, we collect 10 test episodes from πR every 2,000

environment steps. We represent Q̂πr
ϕ,G with a 2 hidden layer neural net in which each hidden

layer has 256 hidden units with ReLU activations and with a sigmoid output activation. The
state and action are concatenated before they are fed into Q̂πr

ϕ,G.

Cable Routing (Physical): We initially populate Dh with 1,381 offline transitions, cor-
responding to 25 task demonstrations collected by an expert human supervisor, to initialize
the robot policy πR. We again represent πR with an ensemble of 5 neural networks, trained on
bootstrapped samples of data fromDh in order to quantify uncertainty for novelty estimation.
Each neural network is trained using the Adam Optimizer (learning rate 2.5e−4) with 5 train-
ing epochs, 300 gradient steps per training epoch, and a batch size of 64. All networks consist
of 5 convolutional layers (format: (in channels, out channels, kernel size, stride)): [(3,24,5,2),
(24,36,5,2), (36,48,5,2), (48,64,3,1), (64,64,3,1)] followed by 4 fully connected layers (format:
(in units, out units)): [(64,100), (100,50), (50,10), (10,2)]. Here we utilize ELU (exponential
linear unit) activations with a Tanh output activation.

The Q-function used for risk-estimation, Q̂πr
ϕ,G, is trained with a batch size of 64 as well,

and batches are balanced such that 10% of all sampled transitions contain a state in the goal
set. We train Q̂πr

ϕ,G with the Adam Optimizer with a learning rate of 2.5e − 4 and discount

factor γ = 0.9999. In order to train Q̂πr
ϕ,G, we collect 5 test episodes from πR every 500

environment steps. We represent Q̂πr
ϕ,G with a neural network with the same 5 convolutional

layers as the policy networks above, but with the fully connected layers as follows (format:

APPENDIX B. APPENDIX FOR CHAPTER 3 151

(in units, out units)): [(64 + 2, 100), (100, 50), (50, 10), (10, 1)]. We concatenate the action
with the state embedding resulting from the 5 convolutional layers (hence the 64 + 2) and
feed the resulting concatenated embedding into the 4 fully connected layers above. We utilize
ELU (exponential linear unit) activations with a sigmoid output activation.

Behavior Cloning

Peg Insertion (Simulation): For Behavior Cloning, we initially populate Dh with 4,004
offline transitions, corresponding to 45 task demonstrations collected by an expert human
supervisor, to initialize the robot policy πR (note that this is more transitions than are
provided to ThriftyDAgger). All other details are the same as ThriftyDAgger for training
πR.

Cable Routing (Physical): We train πR with the same architecture and procedure as
for ThriftyDAgger, but only on the initial offline data.

SafeDAgger

We use the same hyperparameters and architecture for training πR as for ThriftyDAgger.
Unlike ThriftyDAgger, SafeDAgger does not have a mechanism to automatically tune hy-
perparameters when provided an intervention budget αh. Thus, we must specify a value for
the switching threshold βH . We use βH = 0.008, since this is recommended in [276] as the
value which was found to work well in experiments (in practice, this value marks about 20%
of states as “unsafe”).

LazyDAgger

We use the same hyperparameters and architecture for training πR as for ThriftyDAgger.
Unlike ThriftyDAgger, LazyDAgger does not have a mechanism to automatically tune hy-
perparameters when provided an intervention budget αh. Thus, we must specify a value for
both switching thresholds βH and βR. We use βH = 0.015, βR = 0.25βH and use a noise
covariance matrix of 0.02N (0, I) when injecting noise into the supervisor actions.

HG-DAgger

All hyperparameters and architectures are identical to those used for Behavior Cloning. Note
that for HG-DAgger, the supervisor determines the timing and length of interventions.

APPENDIX B. APPENDIX FOR CHAPTER 3 152

B.3 Environment Details

Peg Insertion in Simulation

We evaluate our algorithm and baselines in the Robosuite environment (https://robosuite.
ai) [280], which builds on MuJoCo [251] to provide a standardized suite of benchmark tasks
for robot learning. Specifically, we consider the “Nut Assembly” task, in which a robot must
grab a ring from a random initial pose and place it over a cylinder at a fixed location. We
consider the variant of the task that considers only 1 ring and 1 target, though the simulator
allows 2 rings and 2 targets. The states are s ∈ R51 and actions a ∈ R5 (translation in the
XY-plane, translation in the Z-axis, rotation around the Z-axis, and opening or closing the
gripper). The simulated robot arm is a UR5e, and the controller reaches a commanded pose
via operational space control with fixed impedance. To avoid bias due to variable teleop-
eration speeds, we abstract 10 timesteps in the simulator into 1 environment step, and in
supervisor mode we pause the simulation until keyboard input is received. Each episode is
terminated upon successful task completion or when 175 actions are executed. Interventions
are collected through a keyboard interface.

Physical Cable Routing

We also evaluate our algorithm on a visuomotor cable routing task with a da Vinci Research
Kit surgical robot. We take RGB images of the scene with a Zivid One Plus camera inclined
at about 45 degrees to the vertical. These images are cropped into a square and down-
sampled to 64 × 64 before they are passed to the neural network policy. The cable state
is initialized to approximately the same shape (see Figure 3.2) with the cable initialized in
the robot’s gripper. The workspace is approximately 10 cm × 10 cm, and each component
of the robot action (∆x,∆y) is at most 1 cm in magnitude. To avoid collision with the 4
obstacles, we implement a “logical obstacle” as 1-cm radius balls around the center of each
obstacle. Actions that enter one of these regions are projected to the boundary of the circle.
Each episode is terminated upon successful task completion or 100 actions executed. When
collecting data from the human supervisor, we calculate 2D pose deltas at 1 second intervals.
Interventions are collected through a 7DOF teleoperation interface that matches the pose of
the robot arm.

B.4 User Study Details

Here we detail the protocol for conducting user studies with ThriftyDAgger and comparisons
and discuss qualitative results based on participants’ answers to survey questions measuring
their mental load and levels of frustration when using each of the algorithms.

https://robosuite.ai
https://robosuite.ai

APPENDIX B. APPENDIX FOR CHAPTER 3 153

Figure B.1: User Study Survey Results: We illustrate the user study interface for the
human-gated and robot-gated algorithms (left) and users’ survey responses regarding their
mental load and frustration (right) for each algorithm. Results suggest that users report
similar levels of mental load and frustration for ThriftyDAgger and LazyDAgger, but signif-
icantly higher levels of both metrics for HG-DAgger and SafeDAgger. We hypothesize that
the sparing and sustained interventions solicited by ThriftyDAgger and LazyDAgger lead to
greater user satisfaction and comfort compared to algorithms which force the user to con-
stantly monitor the system (HG-DAgger) or frequently context switch between teleoperation
and the distractor task.

User Study Interface and NASA TLX Survey Results

Figure B.1 illustrates the interface used for the user study (left) and the survey results (right).
The user study is performed with the same peg insertion environment used for simulation
experiments, but with 3 robots performing the task in parallel. The base policy is initialized
from 30 demos, as in the other simulation experiments. To speed up the task execution for
the user study, each action has twice the magnitude as in the peg insertion experiments.
Since this results in shorter trajectories that are easier for Behavior Cloning to accomplish,
we also inject a small amount of Gaussian noise (covariance matrix = 0.02N (0, I)).

In the human-gated study with HG-DAgger, participants are shown videos of all 3 robots
attempting to perform the task in a side pane (Figure B.1, top right of left pane) and are
instructed to monitor all of the robots and intervene when they deem it appropriate. In
all robot-gated studies, participants are instructed to play the Concentration game until
they hear a chime, at which point they are instructed to switch screens to the teleoperation
interface. The Concentration game (also called Memory) is illustrated on the left of the left
pane in Figure B.1: the objective is to find pairs of cards (all of which are initially face-down)
which have matching pictures on their front side. Examples of a non-matching pair and a
matching pair are illustrated in Figure B.1.

All robots which require interventions are placed in a FIFO queue, with participants
serving intervention requests sequentially until no robot requires intervention. Thus, the
participant may be required to provide interventions for multiple robots in succession if
multiple robots are currently in the queue. When no robot requires assistance, the teleop-

APPENDIX B. APPENDIX FOR CHAPTER 3 154

eration interface turns black and reports that no robot currently needs help, at which point
participants are instructed to return to the Concentration game. After each participant is
subjected to all 4 conditions (SafeDAgger, LazyDAgger, ThriftyDAgger, and HG-DAgger)
in a randomized order, we give each participant a NASA TLX survey asking them to rate
their mental demand and frustration for each of the conditions on a scale of 1 (very low) - 5
(very high). Results (Figure B.1 right pane) suggest that ThriftyDAgger and LazyDAgger
impose less mental demand and make participants feel less frustrated than HG-DAgger and
SafeDAgger. During experiments, we found that participants found it cumbersome to keep
track of all of the robots simultaneously in HG-DAgger, while the frequent context switches
in SafeDAgger made participants frustrated since they were often unable to make much
progress in the Concentration Game and felt that the robot repeatedly asked for interven-
tions in very similar states.

Detailed Protocol

For the user study, we recruited 10 participants from the Berkeley graduate student and
post-doc community aged 18-37, including members without any knowledge or experience in
robotics or AI. All participants are first assigned a randomly selected user ID. Then, partic-
ipants are instructed to play a 12-card game of Concentration (also known as Memory)
(https://www.helpfulgames.com/subjects/brain-training/memory.html) in order to
learn how to play. Then, users are given practice with both the robot-gated and human-
gated teleoperation interfaces. To do this, the operator of the study (one of the authors)
performs one episode of the task in the robot-gated interface and briefly explains how to
control the human-gated interface. Then, participants are instructed to perform one prac-
tice episode in the robot-gated teleoperation interface and spend a few minutes exploring the
human-gated interface until they are confident in the usage of both interfaces and in how to
teleoperate the robots. In the robot-gated experiments, participants are instructed to play
Concentration when no robot asks for help, but to immediately switch to helping the robot
whenever a robot asks for help. In the human-gated experiment with HG-DAgger, partic-
ipants are instructed to continuously monitor all of the robots and perform interventions
which they believe will maximize the number of successful episodes. During the robot-gated
study, participants play the 24-card version of Concentration between robot interventions.
If a participant completes the game, new games of Concentration are created until a time
budget of robot interactions is hit. Then for each condition, the participant is scored based
on (1) the number of times the robot successfully completed the task and (2) the number of
total matching pairs the participant found across all games of Concentration.

https://www.helpfulgames.com/subjects/brain-training/memory.html

155

Appendix C

Appendix for Chapter 5

C.1 Mathematical Details of the IFL Problem

Formulation

Recall that ROHE takes the expectation over a distribution of trajectories, pω,θ0(τ), where
each trajectory τ = (s0, a0, ..., sT , aT) is composed of consecutive task episodes separated by
resets and where the state-action tuples come from both πθ and πH . This distribution of
trajectories is induced by ω and θ0 because θ0 parameterizes the initial robot policy πθ0 , and
ω affects the states that comprise Dt

H , which updates the robot policy πθ for subsequent
timesteps. In this section, we derive the mathematical relationship between the trajectory
distribution τ ∼ pω,θ0(τ) and the allocation policy ω.

Given an allocation policy ω, the human policy πH , and the robot policy πθt at each
timestep t, the joint hybrid human-robot policy of all robots can be expressed as

πt
H∪R(s) =

 πθt(s1)(1− 1ω(st,πθt
,αt−1,xt)1) + πH(s1)1ω(st,πθt

,αt−1,xt)1
...

πθt(sN)(1− 1ω(st,πθt
,αt−1,xt)N) + πH(sN)1ω(st,πθt

,αt−1,xt)N

 , (C.1)

where 1(.) is an indicator function that selects the robot policy πθt if robot i is allocated
to a human and selects the human policy πH(s) otherwise. For notational convenience,
ω(st, πθt ,α

t−1,xt)i :=
∑M

j=1α
t
ij ∈ {0, 1}.

The trajectory distribution pω,θ0(τ) can then be expressed as

pω,θ0(τ) = pω,θ0(s
0, a0, ..., sT , aT) (C.2)

= p̄0(s0)
T∏
t=0

πt
H∪R(a

t|st)
T−1∏
t=0

p̄(st+1|st, at). (C.3)

We comment that the soft and hard reset can be easily incorporated into the transition
dynamics p̄ depending on the task. For example, for constraint violations (i.e., hard resets)

APPENDIX C. APPENDIX FOR CHAPTER 5 156

Algorithm 4 Fleet-DAgger

Require: MDPM, Number of robotsN , Number of humansM , Priority function p̂, Minimum teleoperation
time tT , Hard reset time tR

Ensure: Allocation policy ω

1: function ω(st, πθt , α
t−1, xt) ▷ The allocation policy ω returns a matrix αt ∈ {0, 1}N×M

2: Compute priority scores of each robot: p̂(sti, πθt) ∀i = 1, ..., N
3: Initialize αt

ij = 0 ∀i, j
4: for i ∈ {1, . . . , N} do
5: for j ∈ {1, . . . ,M} do
6: if αt−1

ij = 1 then ▷ For robots that were receiving assistance during the last timestep, check

whether the minimum intervention time has lapsed using auxiliary information xt

7: if Intervention type for robot i = Hard reset and Intervention duration < tR then
8: αt

ij = 1

9: if Intervention type for robot i = Teleop and Intervention duration < tT then
10: αt

ij = 1

11: Let I = {i :
∑M

j=1 α
t
ij = 1} ▷ Set of robots that will continue with past assistance

12: Let J = {j :
∑N

i=1 α
t
ij = 1} ▷ Set of humans that will continue with past assistance

13: Sort robot indices with positive priority scores that are not in I from highest to lowest, denoted as
{i1, i2, ...}

14: Let k = 1
15: for j ∈ {1, . . . ,M} \ J do
16: αt

ik,j
= 1

17: k = k + 1

18: return α

19: return ω

c(sti) = 1, we can set p(st+k
i |sti, ati) = δ(sti) for 1 ≤ k ≤ tR − 1 and p(st+TR

i |sti, ati) = p0i (s
0)

where δ(·) is the Dirac delta function and tR is the hard reset time. Similarly, for goal-
conditioned tasks with goal g, soft resets after achieving the goal can be expressed through
the transition dynamics p(st+1

i |sti, ati) = p0i (s
0) if sti ⊆ g. For MDPs with finite time horizon

where the environment resets when the maximum time horizon is reached, we can augment
the state with additional time information that keeps track of the timestep in each episode,
and reset the state when it times out. In this case, the MDP transition dynamics will be
time-dependent: pt(s

t+1
i |sti, ati).

C.2 Fleet-DAgger Algorithm Details

In this section, we provide a detailed algorithmic description of Fleet-DAgger.
Fleet-DAgger uses priority function p̂ and tT to define an allocation policy ω. Concretely,

it can be interpreted as a function F where F (p̂) = ω, i.e., a “meta-algorithm” (algorithm
that outputs another algorithm) akin to function composition. The pseudocode of Fleet-
DAgger is provided in Algorithm 4.

APPENDIX C. APPENDIX FOR CHAPTER 5 157

C.3 Additional Experiment Details

Simulation Hyperparameters

Implementations of C.U.R. and baselines are available in the code supplement, where the
scripts are configured to run with the same hyperparameters as the simulation experiments
in the main text. Recall that N = 100 robots, M = 10 humans, minimum intervention time
tT = 5, hard reset time tR = 5, and operation time T = 10000. For reference, additional
parameters are in Table C.1, where |S| is the dimensionality of the (continuous) state space,
|A| is the dimensionality of the (continuous) action space, r̂ is the risk threshold below which
robots are assigned zero risk, û is the uncertainty threshold below which robots are assigned
zero uncertainty, and tI is the length of the initial C.U.R. period during which constraint
violation is not prioritized.

Environment |S| |A| r̂ û tI

Humanoid 108 21 0.5 0.05 1000

Anymal 48 12 0.5 0.05 250

AllegroHand 88 16 0.5 0.15 2500

Table C.1: Simulation environment hyperparameters.

Training Critic Q-Functions

Some IFL algorithms require pretraining a safety critic (C.U.R.) or goal critic (Fleet-Thrifty
DAgger) to assist in supervisor allocation. Here we provide details on how we train these
critics in practice. Additional details about training these critics in practice are also available
in Recovery RL [247] and ThriftyDAgger [97] for the safety critic and goal critic respectively.

To collect a dataset of constraint violations, we simply run Behavior Cloning for a fixed
amount of timesteps. Intuitively, since the initial robot policy πθ0 is not highly performant,
the robot should expect to encounter constraint violations, and these violations will occur
within the state distribution visited by the robot fleet in the initial stages of online train-
ing. One could also inject noise into the BC policy to induce more constraint violations,
or explicitly solicit human demonstrations of constraint violations as noted in [247]. For
Humanoid, Anymal, and AllegroHand, we collect a dataset of 19625 transitions with 376
constraint violations, 19938 transitions with 63 constraint violations, and 19954 transitions
with 47 constraint violations, respectively. The safety critic is then trained via Q-learning for
3000 gradient steps where a constraint-violating transition can be interpreted as incurring
sparse reward r = 1 and all other transitions have reward r = 0. To reduce class imbalance
issues, transitions are sampled from the replay buffer such that constraint-violating samples
constitute 25% of the minibatch, which was found to be useful in practice in [247].

APPENDIX C. APPENDIX FOR CHAPTER 5 158

To collect a dataset of successes to pretrain the goal critic, we instead run the expert
policy πH , which is more likely to reach the goal. For AllegroHand, we collect a dataset of
19994 transitions with 489 successes. We then pretrain the goal critic in the same manner
as the safety critic. Both the safety and goal critic continue to update during online training
with the additional constraint violation and success data encountered.

Physical Experiment Protocol

We execute 3 trials of each of 4 algorithms (Behavior Cloning, Random, Fleet-Ensemble
DAgger, C.U.R.) on the fleet of 4 robot arms for 250 timesteps each, for a total of 3 × 4 ×
4 × 250 = 12000 individual pushing actions. Human teleoperation and hard resets were
performed by the authors, where teleoperation is collected through an OpenCV (https:
//opencv.org/) graphical user interface and hard resets are physical adjustments of the
cube toward the center of the workspace. Each of the 2 ABB YuMi robots is connected via
Ethernet to a Linux machine on its local area network; the driver program connects to each
machine over the Internet via the Secure Shell Protocol (SSH) to send robot actions and
receive camera observations. The 2 YuMis are in different physical locations 0.5 miles apart,
and all 4 arms execute actions concurrently with multiprocessing. 10× data augmentation
is performed on the initial offline dataset of 375 state-action pairs as well as the online data
collected during execution as follows:

• Linear contrast uniformly sampled between 85% and 115%

• Add values uniformly sampled between -10 and 10 to each pixel value per channel

• Gamma contrast uniformly sampled between 90% and 110%

• Gaussian blur with σ uniformly sampled between 0.0 and 0.3

• Saturation uniformly sampled between 95% and 105%

• Additive Gaussian noise with σ uniformly sampled between 0 and 1
80
× 255

Evaluating Trained Simulation Policies

Here we execute all policies from Section 5.6 after the 10,000 timesteps of online training
for an additional 10,000 timesteps without additional human teleoperation to evaluate the
quality of the learned robot policies in isolation. As in Section 5.6, N = 100 robots, M = 10
humans (for hard resets only), tR = 5, and T = 10000, where allocation is performed
by C-prioritization. We also include the expert policy performance (all N = 100 robots
teleoperated by the trained PPO supervisor for T = 10000 steps) in the table for reference.

Results are in Table C.2. We find that the policy learned via C.U.R. outperforms baselines
and approaches expert-level performance for Humanoid and Anymal, but is second most
performant and significantly below expert-level performance for AllegroHand, indicating

https://opencv.org/
https://opencv.org/

APPENDIX C. APPENDIX FOR CHAPTER 5 159

Environment Algorithm Successes (↑) Hard Resets (↓) Idle Time (↓)
Humanoid BC 0.0 ± 0.0 11925.3 ± 118.8 62473.7 ± 869.1

Random 746.3 ± 40.5 340.0 ± 59.2 1700.0 ± 296.1

Fleet-ED 617.7 ± 66.3 570.3 ± 139.0 2851.7 ± 694.8

C.U.R. 771.0 ± 25.5 289.3 ± 21.1 1446.7 ± 105.3

Expert 894 115 575

Anymal BC 32.7 ± 0.5 1134.3 ± 33.9 5669.7 ± 170.0

Random 207.3 ± 27.2 232.3 ± 89.6 1162.3 ± 449.1

Fleet-ED 257.3 ± 1.2 109.0 ± 16.9 545.0 ± 84.4

C.U.R. 257.0 ± 8.8 64.3 ± 8.6 321.7 ± 42.9

Expert 293 1 5

AllegroHand BC 70.0 ± 5.0 523.0 ± 9.4 2614.3 ± 46.4

Random 7360.3 ± 231.0 2954.3 ± 131.0 14767.7 ± 653.2

Fleet-ED 3032.0 ± 191.2 1764.7 ± 225.4 8818.0 ± 1129.7

Fleet-TD 4296.3 ± 161.7 1397.7 ± 112.6 6988.0 ± 562.9

C.U.R. 6032.7 ± 236.2 2343.7 ± 82.5 11715.0 ± 411.9

Expert 21609 1202 6013

Table C.2: Robot policy performance for each of the algorithms in Section 5.6. We report
cumulative successes, hard resets, and idle time. We do not report return on human effort
as teleoperation is not performed for this experiment.

T = 10, 000 timesteps is insufficient for learning a highly performant robot policy in this
challenging environment.

C.4 Hyperparameter Sensitivity and Ablation Studies

In this section, we run additional simulation experiments in the IFL benchmark to study (1)
ablations of the components of the C.U.R. algorithm (Figure C.1), (2) sensitivity to the ratio
of number of robots N to number of humans M (Figure C.2), (3) sensitivity to minimum
intervention time tT (Figure C.3), and (4) sensitivity to hard reset time tR (Figure C.4). All
runs are averaged over 3 random seeds, where shading indicates 1 standard deviation.

Ablations: We test C.U.R.(-i), the C.U.R. algorithm without the initial period during
which constraint violation is not prioritized. We also test all subsets of the C.U.R. priority
function without the initial period. For example, U. indicates only prioritizing by uncertainty,
and C.R. indicates prioritizing by constraint violations followed by risk (no uncertainty).
Results suggest that C.U.R. outperforms all ablations in all environments in terms of ROHE
and cumulative successes and is competitive in terms of hard resets and idle time. However,

APPENDIX C. APPENDIX FOR CHAPTER 5 160

as in the main text, C.U.R. and C. incur more hard resets in AllegroHand than alternatives,
as again, prioritizing constraint violations for a hard environment where learning has not
converged may ironically enable more opportunities for hard resets. Interestingly, while
C.U.R. outperforms ablations in ROHE in AllegroHand for large T , U -prioritization’s ROHE
is significantly higher for small values of T . We observe that since U. achieves very low
cumulative successes in the same time period, U. must be requesting an extremely small
amount of human time early in operation, resulting in erratic ratio calculations.

Number of Humans: While keeping N fixed to 100 robots, we run C.U.R. with de-
fault hyperparameters and vary M to be 1, 5, 10, 25, and 50 humans. In the Humanoid
and Anymal environment, as expected, cumulative successes increases with the number of
humans. The performance boost gets smaller as M increases: runs with 25 and 50 humans
have very similar performance. Despite lower cumulative successes, M = 10 achieves the
highest ROHE, suggesting a larger set of humans provides superfluous interventions. We
also observe that with only 1 human, the number of hard resets and idle time is very large,
as the human is constantly occupied with resetting constraint-violating robots, which fail at
a faster rate than the human can reset them. Finally, in the AllegroHand environment, the
number of humans when M ≥ 5 does not make much of a visible difference, perhaps due to
the relatively high number of cumulative successes.

Minimum Intervention Time: We run C.U.R. with default hyperparameters but vary
tT to be 1, 5, 20, 50, 100, and 500 timesteps. We observe that both decreasing tT from 5 to
1 and increasing tT to 20 and beyond have a negative impact on the ROHE due to ceding
control prematurely (in the former case) and superfluous intervention length (in the latter).
Hard resets are low and idle time is high for large tT as the humans are occupied providing
long teleoperation interventions. This also negatively affects throughput, as cumulative
successes falls for very large tT . Long interventions may also be less useful training data, as
in the limit these interventions reduce to more offline data (i.e., labels for states encountered
under the human policy rather than that of the robot).

Hard Reset Time: Finally, we run C.U.R. with default hyperparameters but vary tR to
be 1, 5, 20, 50, 100, and 500 timesteps. As expected, the ROHE decreases as tR increases, as
more human effort is required to achieve the same return. The other metrics follow similar
intuitive trends: increasing tR results in a decrease in cumulative successes, decrease in hard
resets, and increase in idle time.

Other Parameters: We also found that the batch size (256 in our experiments) and
number of gradient steps per experiment timestep (1 in our experiments) significantly impact
the policy learning speed as well as computation time, and the effect varies with the size of
the fleet (N) and set of human supervisors (M). This is because N and M (and ω) determine
how much new data is available at each time t, the batch size and number of gradient steps
determine how much data to update the policy with at each time t, and updating the policy
with backpropagation is the computational bottleneck in the IFLB simulation.

APPENDIX C. APPENDIX FOR CHAPTER 5 161
H

um
an

oi
d

A
ny

m
al

A
lle

gr
o

H
an

d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

C. C.U.R.U. R. C.U. U.R. C.R. C.U.R.(-w)

Figure C.1: Ablations: Simulation results in the Isaac Gym benchmark tasks with ablations
of C.U.R., where the x-axis is timesteps from 0 to T = 10, 000. We plot the metrics described
in 5.6. The C.U.R. algorithm outperforms all ablations on all environments in terms of ROHE
and cumulative successes (except AllegroHand ROHE for low T values) and is competitive
with ablations for cumulative hard resets and idle time.

APPENDIX C. APPENDIX FOR CHAPTER 5 162
H

um
an

oi
d

A
ny

m
al

A
lle

gr
o

H
an

d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

1 5 10 25 50

Figure C.2: Number of Humans: Simulation results in the Isaac Gym benchmark tasks
with N = 100 robots and M human supervisors, where M varies and the x-axis is timesteps
from 0 to T = 10, 000.

APPENDIX C. APPENDIX FOR CHAPTER 5 163
H

um
an

oi
d

A
ny

m
al

A
lle

gr
o

H
an

d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

1 5 20 50 100 500

Figure C.3: Minimum Intervention Time: Simulation results in the Isaac Gym bench-
mark tasks for variations in minimum intervention time tT , where the x-axis is timesteps
from 0 to T = 10, 000.

APPENDIX C. APPENDIX FOR CHAPTER 5 164
H

um
an

oi
d

A
ny

m
al

A
lle

gr
o

H
an

d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

1 5 20 50 100 500

Figure C.4: Hard Reset Time: Simulation results in the Isaac Gym benchmark tasks for
variations in hard reset time tR, where the x-axis is timesteps from 0 to T = 10, 000.

165

Appendix D

Appendix for Chapter 6

D.1 Jeffreys Divergence Identity

We derive the following identity from the main text:
Identity 1. Let E1 and E2 be two energy-based models that respectively define distribu-

tions π1 and π2 according to Equation 6.4. Then,

DJ (π1(·|s)∥π2(·|s)) = Ea∼π1(·|s) [E2(s, a)− E1(s, a)] + Ea∼π2(·|s) [E1(s, a)− E2(s, a)] .

Proof. The proof follows from applying the definition of Jeffreys divergence to EBMs:

DJ (π1(·|s)∥π2(·|s)) = DKL (π1(·|s)∥π2(·|s)) +DKL (π2(·|s)∥π1(·|s))

= Ea∼π1(·|s)

[
log

π1(a|s)
π2(a|s)

]
+ Ea∼π2(·|s)

[
log

π2(a|s)
π1(a|s)

]
= Ea∼π1(·|s) [E2(s, a)− E1(s, a)]− logZ1(s) + logZ2(s)

+ Ea∼π2(·|s) [E1(s, a)− E2(s, a)]− logZ2(s) + logZ1(s)

= Ea∼π1(·|s) [E2(s, a)− E1(s, a)] + Ea∼π2(·|s) [E1(s, a)− E2(s, a)] .

To provide more intuition on this identity, we plot the Jeffreys divergence for a pair of
isotropic Gaussian energy functions in Figure D.1.

D.2 Additional Details on Implicit Models

Implicit BC trains an energy-based model Eθ on samples {si, ai} collected from the ex-
pert policies πH . After generating a set of counter-examples {ãji} for each si, Implicit BC
minimizes the following InfoNCE [185] loss function:

APPENDIX D. APPENDIX FOR CHAPTER 6 166

L =
N∑
i=1

− log p̂θ(ai|si, {ãji}), p̂θ(ai|si, {ãji}) :=
e−Eθ(si,ai)

e−Eθ(si,ai) +
∑

j e
−Eθ(si,ã

j
i)
. (D.1)

This loss is equivalent to the negative log likelihood of the training data, where the
partition function Z(s) is estimated with the counter-examples. Florence et al. [75] propose
three techniques for generating these counter-examples {ãji} and performing inference over
the learned model Eθ; we choose gradient-based Langevin sampling [262] with an additional
gradient penalty loss for training in this work as Florence et al. [75] demonstrate that it
scales with action dimensionality better than the alternate methods. This is a Markov
Chain Monte Carlo (MCMC) method with stochastic gradient Langevin dynamics. More
details are available in Appendix B.3 of Florence et al. [75].

We use the following hyperparameters for implicit model training and inference:

Hyperparameter Value

learning rate 0.0005

learning rate decay 0.99

learning rate decay steps 100

train counter examples 8

langevin iterations 100

langevin learning rate init. 0.1

langevin learning rate final 1e-5

langevin polynomial decay power 2

inference counter examples 512

Table D.1: Implicit model hyperparameters.

D.3 Uncertainty Estimation with Larger Ensembles

Prior works using ensembles of explicit models to estimate epistemic uncertainty [51, 171,
97] typically employ larger ensembles of n ≥ 5 models, whereas IIFL uses n = 2. We wish
to evaluate the impact of this smaller number of models. However, the Jeffreys divergence
is only defined for two distributions, and while other divergence measures (e.g. Jensen-
Shannon) can be generalized to an arbitrary number of distributions, they typically require
knowledge of the intractable partition functions of the distributions. Accordingly, we consider
estimating the uncertainty of n = 5 implicit models by computing the average of the Jeffreys
divergences between every pairwise combination of models. Figure D.2 provides intuition on
this measure, and we provide information on computation time in Section D.4.

APPENDIX D. APPENDIX FOR CHAPTER 6 167

State

Jeffreys Divergence

State

Energy Functions

E1 E2

A
ct

io
n

Figure D.1: Consider a pair of isotropic Gaussian energy functions E1(s, a) and E2(s, a) in
green and purple respectively, where each function is a negated Gaussian probability density
function and E1 adds a uniform offset of Z = −100 to all values (Left). Using numerical
integration to directly compute the expectations in the Jeffreys divergence identity (Identity
1), at each state we calculate the distance between the implicit policies defined by the two
energy functions (Right). As intuition suggests, the divergence peaks at the mean of each
Gaussian (where one energy function is highest and the other is near zero) and approaches
zero where the energy functions are the same (at the center and edges of the state space).
Note the symmetric structure of the Jeffreys curve, which produces identical values regardless
of the offset Z.

We evaluate the effect of adding more models by comparing the estimate of the Jeffreys
divergence with n = 2 models and the averaged estimate with n = 5 models to the L2
distance between the robot policy’s proposed action and the expert policy’s action at the
same state. While ground truth epistemic uncertainty is intractable to calculate, the ground
truth action discrepancy between the human and robot can provide a correlate of uncertainty:
higher discrepancy corresponds to higher uncertainty. The results are shown in Figure D.3.
We observe that both ensemble sizes are positively correlated with action discrepancy, and
that the ensemble with n = 5 models has a higher correlation (r = 0.804) than the ensemble
with n = 2 models (r = 0.688). We also observe that the n = 5 ensemble has lower variance
than n = 2: the standard deviation is 0.176 compared to 0.220. These results suggest that
larger ensembles can improve the uncertainty estimation at the cost of increased computation
time (2.6× in Section D.4).

APPENDIX D. APPENDIX FOR CHAPTER 6 168

(a) Consider 5 isotropic Gaussian energy functions, each a negative Gaussian
probability density function with some offset.

(b) We use numerical integration to calculate at each state the Jeffreys diver-
gences between each of the

(
5
2

)
= 10 unique pairs of models, and report the

average value. As intuition suggests, the calculated uncertainty is highest at
states −2 and 2.

Figure D.2

APPENDIX D. APPENDIX FOR CHAPTER 6 169

Figure D.3: We plot the Jeffreys divergence estimates and the ground truth action discrep-
ancies at the first 1000 states visited by a robot with a unimodal policy. Both variants of
the Jeffreys divergence calculation are positively correlated with the L2 distance between
the robot policy’s and expert policy’s actions. In the n = 2 case, the correlation coefficient
is r = 0.688; in the n = 5 case, the correlation coefficient is r = 0.804, indicating that
additional models can make the ensemble more predictive of when the agent will deviate
from the expert (at the cost of increased computation time).

D.4 Additional Experimental Details

IFL Benchmark Hyperparameters

Implementations of Implicit Interactive Fleet Learning and baselines are available in the
code supplement and are configured to run with the same hyperparameters we used in the
experiments. To compute the uncertainty thresholds û for Explicit IFL and IIFL (see Section
8.3.1 in [99] for definition), we run Explicit BC and Implicit BC respectively with N = 100
robots for T = 1000 timesteps and choose the 99th percentile value among all 100 × 1000
uncertainty values. The FrankaCubeStack environment sets these thresholds to zero since
there are no constraint violations (i.e., this sorts robot priority by uncertainty alone). See
Table D.2 for these values, state and action space dimensionality, and other hyperparameters.
The batch size is 512 and all algorithms pretrain the policy for N/2 gradient steps, where N

APPENDIX D. APPENDIX FOR CHAPTER 6 170

is the number of data points in the 10 offline task demonstrations. Finally, as in prior work
[99], the Random IIFL baseline is given a human action budget that approximately equals
the average amount of human supervision solicited by IIFL. See the code for more details.

Environment |S| |A| Explicit û Implicit û

BallBalance 24 3 0.1179 0.1206

Ant 60 8 0.0304 0.9062

Anymal 48 12 0.0703 2.2845

FrankaCubeStack 19 7 0.0 0.0

Table D.2: Simulation environment hyperparameters.

FrankaCubeStack Environment

The scripted supervisor for FrankaCubeStack is defined in human action() of env/isaacgym
/franka cube stack.py in the code supplement. Using known pose information and Carte-
sian space control, the supervisor policy does the following, where Cube A is to be stacked
on Cube B: (1) move the end effector to a position above Cube A; (2) rotate into a pre-grasp
pose; (3) descend to Cube A; (4) lift Cube A; (5) translate to a position above Cube B; (6)
place Cube A on Cube B; and (7) release the gripper. Heterogeneity is concentrated in Step
2: while one supervisor rotates to an angle θ ∈ [0, π

2
] that corresponds to a pair of antipodal

faces of the cube, the others rotate to θ−π, θ− π
2
, and θ+ π

2
. See Figure D.4 for intuition. We

also include results for only 2 hetereogeneous policies (θ and θ− π
2
) in Table D.3; results (in

conjunction with Table 6.1) suggest that relative performance of IIFL over baselines remains
approximately consistent as the number of modes varies and can improve as multimodality
increases.

Algorithm Avg. Reward Task Successes ROHE

BC 23.45± 0.99 0.0± 0.0 N/A

IBC 30.32± 2.78 0.0± 0.0 N/A

IFL 307.87± 118.59 9.3± 4.7 3.08± 1.19

IIFL-R 244.98± 32.58 0.0± 0.0 2.45± 0.33

IIFL 604.17± 263.06 17.7± 11.1 6.04± 2.63

Table D.3: Execution results from the FrankaCubeStack Isaac Gym environment with 2
heterogeneous supervisor policies (rather than 4).

APPENDIX D. APPENDIX FOR CHAPTER 6 171

Figure D.4: The scripted heterogeneous supervisors for the FrankaCubeStack Isaac Gym
environment pick different faces of the cube for the same cube pose.

Physical Experiment Protocol

We largely follow the physical experiment protocol in Hoque et al. [99] but introduce some
modifications to human supervision. We execute 3 trials of each of 4 algorithms (Explicit
BC, Implicit BC, Explicit IFL, Implicit IFL) on the fleet of 4 robot arms. Each trial lasts
150 timesteps (synchronous across the fleet) for a total of 3 × 4 × 4 × 150 = 7200 individual
pushing actions. The authors provide human teleoperation and hard resets, which differ from
prior work due to the continuous action space and the square obstacle in the center of the
workspace. Teleoperation is done using an OpenCV (https://opencv.org/) GUI by clicking
on the desired end point of the end-effector in the overhead camera view. Hard resets are
physical adjustments of the cube to a randomly chosen side of the obstacle. IIFL is trained
online with updated data at t = 50 and t = 100 while IFL is updated at every timestep
(with an equivalent total amount of gradient steps) to follow prior work [99].

The rest of the experiment protocol matches Hoque et al. [99]. The 2 ABB YuMi robots
are located about 1 km apart; a driver program uses the Secure Shell Protocol (SSH) to
connect to a machine that is connected to the robot via Ethernet, sending actions and
receiving camera observations. Pushing actions are executed concurrently by all 4 arms
using multiprocessing. We set minimum intervention time tT = 3 and hard reset time
tR = 5. All policies are initialized with an offline dataset of 3360 image-action pairs (336
samples collected by the authors with 10× data augmentation). 10× data augmentation on
the initial offline dataset as well as the online data collected during execution applies the
following transformations:

• Linear contrast uniformly sampled between 85% and 115%

APPENDIX D. APPENDIX FOR CHAPTER 6 172

• Add values uniformly sampled between -10 and 10 to each pixel value per channel

• Gamma contrast uniformly sampled between 90% and 110%

• Gaussian blur with σ uniformly sampled between 0.0 and 0.3

• Saturation uniformly sampled between 95% and 105%

• Additive Gaussian noise with σ uniformly sampled between 0 and 1
80
× 255 80 × 255

Computation Time

In Table D.4 we report the mean and standard deviation of various computation time metrics.
All timing experiments were performed with N = 100 robots and averaged across T = 100
timesteps in the Ant environment on a single NVIDIA Tesla V100 GPU with 32 GB RAM.
Training time is reported for a single gradient step with a batch size of 512. Note that
with default hyperparameters, IFL trains an ensemble of 5 (explicit) models and IIFL trains
an ensemble of 2 (implicit) models; hence, we also report the training time per individual
model. IFL inference consists of a single forward pass through each of the 5 models, while
IIFL inference performs 100 Langevin iterations; both of these are vectorized across all 100
robots at once. IFL uncertainty estimation also consists of a single forward pass through
each of the 5 models while IIFL performs both Langevin iterations and 2 forward passes
through each of the 2 models. While IIFL can provide policy performance benefits over
IFL, we observe that it comes with a tradeoff of computation time, which may be mitigated
with parallelization across additional GPUs. Furthermore, while uncertainty estimation is
the bottleneck in IIFL, it is performed with sub-second latency for the entire fleet. This is
significantly faster than alternatives such as directly estimating the partition function, which
is both less accurate and slower; we measure it to take an average of 7.10 seconds per step
using annealed importance sampling [180]. Finally, uncertainty estimation for the variant
described in Section D.3 that uses n = 5 implicit models required 2.599± 0.002s. While the
time complexity should grow as quadratic in n, in practice we observe that for small values
of n the growth is closer to linear as the latency is dominated by the O(n) sampling process
rather than the O(n2) forward passes.

Time IFL IIFL

Training step (s) 0.0385± 0.0205 0.694± 0.207

Training step per model (s) 0.0077± 0.0041 0.347± 0.104

Inference (s) 0.0060± 0.0395 0.494± 0.045

Uncertainty estimation (s) 0.0029± 0.0008 0.988± 0.008

Table D.4: Computation times for training, inference, and uncertainty estimation for IFL
and IIFL.

173

Appendix E

Appendix for Chapter 7

In Appendix E.1 and E.2, we provide implementation and hyperparameter details for all flat-
tening and folding algorithms. In Appendix E.3, we provide information about the graphical
user interface used to collect human-labeled data. In Appendix E.4, we describe the imple-
mentation details of the action primitives we use in this work. In Appendix E.5, we provide
the results of ablation studies suggesting the usefulness of various design choices.

E.1 Flattening Algorithm Details

RAND

As described in the main text, this baseline simply selects the pick point p0 uniformly at
random from the garment mask. The place point p1 is sampled uniformly at random from
the workspace, but resampled if p1 is separated from p0 by more than 50% of the workspace
in either x or y. This prevents excessively large action deltas, which has been shown to be
useful in prior fabric manipulation work [100].

HUMAN

As described in the main text, this baseline allows the human to freely specify both pick and
place points via the graphical user interface in Section E.3.

AEP

Our analytic smoothing policy is based on the observation that generally pulling outwards
on the shirt increases its coverage over time. Specifically, we do the following:

• Compute the edge mask of the current shirt by using the formula xor(erode(om
t)),

where xor(·) is pixelwise exclusive or and erode(·) is a function that removes a set
number of pixels (in our case, 40) at the boundary of the input mask.

APPENDIX E. APPENDIX FOR CHAPTER 7 174

• Sample uniformly among the resulting pixels to choose p0.

• Choose the place point analytically by moving away from the center of mass and
towards the edge of the shirt. Specifically, we compute p1 as

p1 = p0 + k1 · (p0 − com(om
t)) + k2 · (bgd(om

t , p0)− p0)

where bgd(om
t , p0) is the closest background (i.e., non-shirt) pixel to p0 and k1 = k2 =

23 are tuned constants, but action magnitudes are shrunk to k1 = k2 = 14 for higher
coverage states (at or equal to 75%) to improve stability and convergence to a flattened
state.

IDYN

We first collect a dataset of 4402 random actions (90% train / 10% test split) by allowing the
robot to run the RAND algorithm autonomously. The garment is reset after every 100 actions
(with the procedure in Section E.4). We then train a Siamese CNN on (ot, at,ot+1) tuples
to output the at that takes ot to ot+1. The convolutional layers are a ResNet-34 backbone
with rectified linear unit (ReLU) output activation and pretrained (but not frozen) weights,
shared between the two heads of the network. Each head encodes the input image into a
vector of dimension 1,000. The two vectors are concatenated and passed through a fully
connected layer with output size 2 and sigmoid activation, which generates the pick point.
The predicted pick point is then concatenated with the two vectors and passed through
another fully connected layer with output size 2 and sigmoid activation, which generates the
pick-conditioned place point. The CNN has a total of 21.8 million parameters.

We train the network for 100 epochs with a batch size of 16 and an Adam optimizer with
learning rate 1e − 4 and ℓ2 regularization 1e − 5, saving the model weights with the lowest
test loss. For stability the observation and action values are normalized to [0, 1], and the
640 × 360 images are center cropped to 360 × 360. After training, the ℓ2 distance between
predicted points and ground truth points are 51.1 ± 22.8 pixels (10.0 ± 4.5% of maximum
error) on the test set; see Figure E.1 for examples. At test time, the first input to the network
is the current observation and the second input is an observation of the fully flattened shirt.
The network output specifies the pick-and-place action to execute on the system. In this
algorithm and other algorithms with model outputs, if the pick point misses the fabric, it is
analytically corrected to the nearest point on the fabric mask.

CRL

Here we use the same dataset as the previous section. We train a CNN to predict the scalar
change in pixel coverage cover(om

t+1) − cover(om
t) from inputs (ot, at). Similar to IDYN, we

use a ResNet-34 with pretrained weights to encode ot into a 1000-dimensional vector. We
also tile the action 250× to match the dimension of the encoded image, which was found
to improve performance in this work and prior work [268]. After concatenating the two

APPENDIX E. APPENDIX FOR CHAPTER 7 175

Figure E.1: IDYN model predictions on the test set. Each of the two rows is an individual
transition where the left image is taken at time t and the right image is taken at time t+ 1.
Ground truth pick-and-place points are in green (dark green for pick, light green for place)
and predictions are in red (dark for pick, light for place). Transitions involving translations
of the fabric are modeled well (top; mean ℓ2 pixel distance 24.9) while more rare transitions
such as folding are more challenging (bottom; mean ℓ2 pixel distance 60.9).

vectors, the state is passed through two fully connected layers of size (2000, 256) and (256, 1)
respectively with ReLU activation and hyperbolic tangent output activation to produce the
predicted change in coverage. The CNN has a total of 22.3 million parameters.

As in IDYN, we train for 100 epochs with a batch size of 16 and an Adam optimizer with
learning rate 1e − 4 and ℓ2 regularization 1e − 5, saving the model weights with the lowest
test loss. For stability, observation and action values are normalized to [0, 1] and the delta
coverage values are normalized to [−1, 1]. The 640 × 360 images are center cropped to 360
× 360. After training, the predicted coverage deltas are 2603 ± 2230 pixels (2.6 ± 2.2% of
maximum error) off from the ground truth labels on the test set. At test time, we randomly
sample 10,000 pick-and-place actions on the current observation with the RAND strategy
and select the action that results in the highest network output. The forward passes are
batched into 100 observation-action pairs at a time to decrease total inference time. We also
implemented action sampling with the Cross Entropy Method (CEM) but found that this
did not significantly change the output actions.

LP0AP1

To train the imitation learning model, we first collect a dataset of 108 human-labeled pick
points on the T-shirt. The pick points are collected through the GUI in Section E.3, which
shows the analytically computed place points to the human teleoperator before the actions

APPENDIX E. APPENDIX FOR CHAPTER 7 176

are executed. The dataset is augmented with online data via 3 iterations of DAgger [215],
with potentially multiple pick points labeled per individual observation.

We train an Fully Convolutional Network (FCN) [233] with a ResNet-34 backbone to
output a heatmap corresponding to pixel-wise pick affordances, using a sigmoid activation
function at the final layer and binary cross-entropy loss. We center-crop the input images to
320 × 320. To provide a smooth target for the neural network, we add Gaussian distributions
(σ = 8 pixels) around each labeled pick point. While training, we augment the dataset using
the following sequential operations in a random order:

1. Flip left/right with probability 50%.

2. Flip up/down with probability 50%.

3. Rotate rk90
◦ where rk ∼ U({0, 1, 2, 3}).

4. Apply a continuous rotation of rk ∼ U(−90, 90).

5. Apply an affine transform with x and y scales in the range (0.9, 1.1), translation per-
centages of 5%. .

We train for 100 epochs with a batch size of 4, using an Adam optimizer with a learning
rate of 1e− 4. The total number of trainable parameters in the network is 22.8 million.

At runtime, we sample a pick point from the thresholded (value > 0.1) heatmap with
sampling probability proportional to the intensity of the output pixel value. The place point
is computed the same way as is done in AEP.

KP

We collect a training dataset with human-annotated keypoints for the collar, sleeve mid-
points, and base corners of the shirt (when discernible). We first collect and label 305 images
with the RAND policy to train an initial KP policy; we execute this policy to collect an ad-
ditional 376 images and labels that better represent the distribution of encountered states.
We train the same FCN as the previous subsection with the same hyperparameters but
have three output heatmaps (instead of one) for the collar, sleeves, and base points. These
heatmaps are transformed into a series of points by thresholding the normalized heatmaps
with a lower bound of 0.2, with each class of points restricted to an upper-bound of 1, 2,
and 2 points for the collar, sleeve, and base points, respectively.

To achieve the optimal transform between the current and template flattened T-shirt,
we compute argmin

θ
∥pobs − Rθptemplate∥2 where pobs specifies the SO(2) pose of the T-shirt,

Rθ is the 2D rotation matrix corresponding to a rotation of θ, and ptemplate specifies the
SO(2) pose of the template T-shirt centered at the visual center of mass of the observed
t-shirt. The ∥ · ∥2 cost is computed over the visible keypoints and their corresponding points
on the template T-shirt. Using the best-match template and observation keypoints, we find

APPENDIX E. APPENDIX FOR CHAPTER 7 177

the keypoint pair with the largest ℓ2 error and execute a pick-and-place action to move the
T-shirt keypoint to its target location on the template.

DROP

The DROP algorithm is a variant of the LP0AP1 algorithm. Here, we attempt to intelli-
gently combine a dynamic primitive (drop) with the algorithm to reduce the number of steps
required, as follows:

1. Define Sd as a discretized state space of coverage values that evenly divides the possible
coverage values into 200 bins. Define a hierarchical action space Ad = {LP0AP1, drop}.

2. Model the transition dynamics of each action in Ad. For LP0AP1, model

P (s′|s,LP0AP1) = s+ P (∆s|LP0AP1)

Boundary cases are handled via clipping and re-normalizing the distribution. For drop
actions, we model

P (s′|s, drop) = P (s′|drop)

Intuitively, we model the coverage after a drop as independent of the previous state
and the change in coverage from pick-and-place actions as conditional on the previous
state. We estimate these quantities in a data-driven manner by executing rollouts of
LP0AP1 or drop and recording the (s, s′) tuples.

3. Once we obtain a full matrix of transition probabilities P (s′|s, a), with s, s′ ∈ Sd, a ∈
Ad, we run tabular Q-iteration using Bellman backups, no discount factor, and the re-
ward function below to encourage reaching a high-coverage state as quickly as possible.

r(s, a) =

{
−1 s < C

0 s ≥ C

Transition dynamics at s ≥ C are modified to remain stationary.

4. Once we obtain an optimal policy from Q-iteration, we run this on the robot. In
practice, the policy ends up in the form

π(s) =

{
drop s < T

LP0AP1 s ≥ T

Intuitively, the stochastic drop can be interpreted as a geometric series with some
probability of escaping the low-coverage regime, after which it is optimal to execute
pick-and-place actions so as to prevent eliminating progress in high coverage states.
Q-iteration returns T = 45%.

APPENDIX E. APPENDIX FOR CHAPTER 7 178

E.2 Folding Algorithm Details

HUMAN

As described in the main text, this baseline allows the human to freely specify both pick and
place points via the graphical user interface in Section E.3.

ASM

Analytic Shape-Matching requires only a single human demonstration. The human is shown
a template image T of the flattened T-shirt and selects pick and place points for a folding
sequence. These points are specified only once for a given folding sequence.

During execution, we compute the best match of the template with the observation om
t

as follows:

argmax
θ

sum(and(om
t , RθT + (com(om

t)− com(T))))

where Rθ is the 2D rotation matrix corresponding to a rotation of θ, and(·) is the pixelwise
AND operation, and (com(om

t) − com(T)) is a translation from the template shirt’s center
of mass to that of the observation. We then transform each demonstration point p with
the resulting transform (i.e., Rθp + (com(om

t) − com(T))) to get the corresponding action.
Before executing actions we project pick points and place points onto the shirt mask to avoid
missed grasps.

LP0LP1

We collect 2 folding demonstrations with 4 pick-and-place actions each via human teleoper-
ation. We augment the dataset by a factor of 20 to get a total of 160 data points to reduce
overfitting and build robustness to rotations and translations. Specifically, we perform the
following affine transforms in a random order:

1. Rotate a random multiple of 90 degrees (i.e., 0, 90, 180, or 270)

2. Scale the image in x uniformly at random between 95% and 105%

3. Scale the image in y uniformly at random between 95% and 105%

4. Rotate uniformly at random between -45 degrees and 45 degrees

5. Translate in x uniformly at random between -5% and 5%

6. Translate in y uniformly at random between -5% and 5%

APPENDIX E. APPENDIX FOR CHAPTER 7 179

We also crop the images around the visual center of mass com(·) (without crossing the
workspace bounds) to encourage further translational invariance. We then train and run
inference with the same FCN as LP0AP1 but predict 2 output keypoints instead of 1 (i.e.,
pick and place point). See Figure E.2 for test set predictions. At test time we execute
the model outputs and terminate after 4 actions, though the termination condition may be
learned in future work to allow more closed-loop behavior.

A-ASM

This baseline simply executes ASM after the flattening is performed by LP0AP1 instead of
HUMAN.

E.3 Graphical User Interface

To enable human teleoperation, we develop a simple graphical user interface (GUI) with
OpenCV (https://opencv.org/). The GUI displays the overhead RGB camera image of
the current garment state and allows the user to specify pixels for the pick and/or place
point with the mouse (Figure E.3). These points are deprojected into 3D world coordinates
through the known depth camera transform and parameterize a pick-and-place action for
the robot to execute. The place points are analytically computed for LP0AP1 and human-
specified for LP0LP1, HUMAN flattening, and HUMAN folding. The GUI is used to provide
demonstration data for the former two algorithms and execute actions for the latter two.
Human labels of visible keypoints are collected with a similar interface for the KP algorithm.

E.4 Action Primitive Details

Flattening Pick-and-Place

A flattening pick-and-place primitive is parameterized by a 2D pixel pick point p0 and a 2D
pixel place point p1. It consists of the following steps, where all steps but the first are calls
to the step() function of the PyReach Gym API:

• Deproject the pick point p0 into the world coordinates (x1, y1, z1) of the top layer of
the fabric at p0 via the known depth camera transform. Deproject the place point p1
into world coordinates (x2, y2, z2).

• Move the gripper to a fixed initial pose in the center of the workspace about 0.2 meters
above the worksurface with the gripper oriented top-down and the jaw open.

• Translate the gripper to (x1, y1) without changing the height or rotation.

• Lower the gripper to z1.

https://opencv.org/

APPENDIX E. APPENDIX FOR CHAPTER 7 180

Figure E.2: LP0LP1 keypoint predictions on the test set (i.e., unseen affine transforms).
Each row is a different data sample where the left image shows the predicted pick and the
right shows the predicted place. The 4 steps together comprise a folding demonstration.

APPENDIX E. APPENDIX FOR CHAPTER 7 181

Figure E.3: Top: The user clicks to select a pick point and the place point is automatically
computed with the strategy in Section E.1. Bottom: The user clicks to select a pick point,
drags the mouse, and releases to select a place point.

• Close the gripper to grasp the fabric.

• Raise the gripper to 0.1 meters above its current height.

• Translate the gripper to (x2, y2) without changing the height.

• Open the gripper to release the fabric.

• Move the arm out of the field of view before the next image observation is captured.

All arm movements are commanded with joint velocity limits 1.04 radians per second and
joint acceleration limits 1.2 radians per seconds squared.

APPENDIX E. APPENDIX FOR CHAPTER 7 182

Folding Pick-and-Place

A folding pick-and-place primitive is also parameterized by a 2D pixel pick point p0 and a 2D
pixel place point p1. It consists of the following steps, where differences from the flattening
motion are in bold:

• Deproject the pick point p0 into the world coordinates (x1, y1, z1) of the top layer of
the fabric at p0 via the known depth camera transform. Deproject the place point p1
into world coordinates (x2, y2, z2).

• Move the gripper to a fixed initial pose in the center of the workspace about 0.2 meters
above the worksurface with the gripper oriented top-down and the jaw open.

• Translate the gripper to (x1, y1) without changing the height or rotation.

• Lower the gripper to at most 0.1 meters below z1, but not below the height of
the worksurface.

• Close the gripper to grasp the fabric.

• Raise the gripper to 0.1 meters above its current height.

• Translate the gripper to (x2, y2) without changing the height at a lower speed than
the other motions.

• Lower the gripper to z1.

• Open the gripper to release the fabric.

• Raise the gripper to 0.1 meters above z1.

• Move the arm out of the field of view before the next image observation is captured.

All arm movements but the translation to (x2, y2) are commanded with joint velocity limits
1.04 radians per second and joint acceleration limits 1.2 radians per seconds squared. The
translation has a joint velocity limit slower than the other motions by a factor of four (i.e.,
0.26 radians per second).

COM Drop

A center-of-mass (COM) drop motion is parameterized by pick point p0, which is automat-
ically computed as the visual COM of the fabric. Differences from the flattening pick-and-
place motion are in bold.

• Deproject the pick point p0 into the world coordinates (x1, y1, z1) of the top layer of
the fabric at p0 via the known depth camera transform.

APPENDIX E. APPENDIX FOR CHAPTER 7 183

• Move the gripper to a fixed initial pose in the center of the workspace about 0.2 meters
above the worksurface with the gripper oriented top-down and the jaw open.

• Translate the gripper to (x1, y1) without changing the height or rotation.

• Lower the gripper to z1.

• Close the gripper to grasp the fabric.

• Move the gripper to 0.3 meters above the center of the workspace.

• Open the gripper to release the fabric.

• Move the arm out of the field of view before the next image observation is captured.

Reset

A ‘crumple’ or reset operation for flattening performs the following motion 6 consecutive
times:

• Move the arm to a fixed initial pose in the center of the workspace about 0.2 meters
above the worksurface with the gripper oriented top-down and the jaw open.

• Compute a random x and y offset, each uniformly sampled between -0.1 and 0.1 (For
reference, the workspace is about 0.7m by 0.5m.).

• Move the gripper to the center of the workspace at the height of the workspace, but
offset in x and y as above.

• Close the gripper.

• Move the gripper to 0.3 meters above the center of the workspace.

• Open the gripper.

Recenter

During flattening rollouts, if the visual center of mass is sufficiently far away from the center
of the workspace in x or y (by about 100 pixels in each direction, where the full image is
640 × 360), we perform a recentering primitive. This is a flattening pick-and-place primitive
where p0 is the pixel nearest to the center of the workspace with a small amount of noise
applied (± 12.5 pixels in x and y) and p1 is the center of the workspace.

APPENDIX E. APPENDIX FOR CHAPTER 7 184

Recovery

We perform a random recovery action if no flattening progress is being made, i.e., coverage
is below 75%, at least 5 actions have been executed, and the last 2 actions achieve lower
mean coverage than the preceding 2 actions. Specifically, we select a random p0 on the shirt
mask and compute p1 with AEP.

E.5 Ablation Studies

We run ablation studies on LP0AP1 to evaluate the efficacy of various components. We find
that multiple design choices, when eliminated, cause the average number of actions required
to flatten the shirt to increase dramatically.

Recovery Actions

For this experiment, we disable the random recovery actions we take when we detect a lack
of progress in coverage (Section E.4).

Recentering Actions

Here, we remove the recentering actions we take when the shirt’s visual center of mass is too
far from the center of the workspace (Section E.4).

Action Shrinking

Here, we disable the reduction in action magnitudes when the shirt reaches higher coverage
states (Section E.1).

The ablation experiments demonstrate that the additional primitives we introduce in-
deed improve the performance of LP0AP1. Figure E.4 and Table E.1 illustrate the slower
convergence of LP0AP1 without each of these primitives and optimizations to a fully flat-
tened t-shirt state. These experiments show that for practical behavior cloning involving
deformable objects, adding such manipulation primitives can be beneficial in accelerating
progress to the goal state.

APPENDIX E. APPENDIX FOR CHAPTER 7 185

Table E.1: Flattening ablation results. We report maximum coverage, number of actions, num-
ber of samples in the dataset, and evaluation time, where averages and standard deviations are
computed over 10 trials.

Algorithm % Coverage Actions Dataset Time/Act (s)

LP0AP1 97.7 ± 1.4 31.9 ± 17.2 524 25.6 ± 0.9

No Recovery 96.0 ± 7.3 53.5 ± 30.3 524 25.5 ± 1.2

No Recentering 96.4 ± 1.0 65.6 ± 27.2 524 25.6 ± 1.2

No Shrinking 94.8 ± 6.6 61.2 ± 28.9 524 25.5 ± 0.8

Figure E.4: Coverage vs. time for each of the ablation experiments. Shading represents one
standard deviation, and the horizontal dashed line is the flattening succcess threshold (96%).
All ablations converge less quickly than LP0AP1.

	Contents
	Introduction
	Scalable Interactive Imitation Learning
	Interactive Fleet Learning
	Systems for Remote Fleet Supervision
	Related Work
	Thesis Contributions

	Scalable Interactive Imitation Learning
	LazyDAgger: Reducing Context Switching
	Introduction
	Background and Related Work
	Problem Statement
	Preliminaries: SafeDAgger
	LazyDAgger
	Experiments
	Discussion and Future Work

	ThriftyDAgger: Budget-Aware Novelty and Risk
	Introduction
	Related Work
	Problem Statement
	ThriftyDAgger
	Experiments
	Discussion and Future Work

	IntervenGen: Interventional Data Generation
	Introduction
	Related Work
	Preliminaries
	IntervenGen
	Experiment Setup
	Experiments
	Conclusion

	Interactive Fleet Learning
	Fleet-DAgger: Interactive Robot Fleet Learning
	Introduction
	Related Work
	Interactive Fleet Learning Problem Formulation
	Interactive Fleet Learning Algorithms
	Interactive Fleet Learning Benchmark
	Experiments
	Limitations and Future Work

	IIFL: Implicit Interactive Fleet Learning
	Introduction
	Preliminaries and Related Work
	Problem Statement
	Approach
	Experiments
	Limitations and Future Work

	 Systems for Remote Fleet Supervision
	Real-Time Remote Robot Manipulation
	Introduction
	Related Work
	The Google Reach Testbed
	Garment Folding Algorithms
	Experiments
	Conclusion and Future Work

	FogROS2-SGC: Cloud Robotics with Secure Global Connectivity
	Introduction
	Related Work
	Ten FogROS2-SGC Features
	FogROS2-SGC Design
	Evaluation
	Conclusions and Limitations

	 Conclusion
	Conclusion
	Summary
	Limitations and Opportunities for Future Work
	Broader Perspective on Robot Learning

	Bibliography

	Appendices
	Appendix for Chapter 2
	MuJoCo
	LazyDAgger Switching Thresholds
	Fabric Smoothing in Simulation
	Fabric Manipulation with the ABB YuMi

	Appendix for Chapter 3
	Algorithm Details
	Hyperparameter and Implementation Details
	Environment Details
	User Study Details

	Appendix for Chapter 5
	Mathematical Details of the IFL Problem Formulation
	Fleet-DAgger Algorithm Details
	Additional Experiment Details
	Hyperparameter Sensitivity and Ablation Studies

	Appendix for Chapter 6
	Jeffreys Divergence Identity
	Additional Details on Implicit Models
	Uncertainty Estimation with Larger Ensembles
	Additional Experimental Details

	Appendix for Chapter 7
	Flattening Algorithm Details
	Folding Algorithm Details
	Graphical User Interface
	Action Primitive Details
	Ablation Studies

