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Abstract

Accelerating Multilinear Maps and Structured Sparse Tensor Kernels

by

Vivek Bharadwaj

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James Demmel, Co-chair

Adjunct Associate Professor Aydın Buluç, Co-chair

Linear maps dominate machine learning and scientific computing workloads today. What
about multilinear maps? Just as a linear map with one argument can be represented by
a 2D matrix, a D-dimensional multilinear map is represented by a (D + 1)-dimensional
tensor. We apply the map by flattening the tensor into a matrix and multiplying it by the
Kronecker product of the inputs. When a batch of inputs is provided, this primitive is known
as the Matricized-Tensor-Times-Khatri-Rao Product (MTTKRP). Efficient multilinear maps
are essential in computational chemistry, multi-way data analysis, and signal processing.
Unfortunately, they receive comparatively less interest from theorists and high-performance
kernel designers.

We optimize the multilinear map in two applications, making contributions that span theory
and practical implementation. We first examine equivariant graph neural networks, which use
a structured sparse tensor to interact node features with edge features. In response, we design
a GPU kernel generator that matches or exceeds the best closed-source implementations for
the problem. Our package, OpenEquivariance, provides 5-6x end-to-end speedup for training
quantum chemical foundation models. Our focus then shifts to Candecomp / PARAFAC
decomposition, a higher-dimensional analogue of the matrix singular value decomposition.
Here, we use randomized linear algebra to accelerate the MTTKRP in tall, overdetermined
linear least-squares problems, scaling our work to thousands of CPU cores. The remaining
chapters detour by adapting this randomized algorithm to sketch tensor trains, structures that
originated in quantum mechanical computations. We also design communication-avoiding
algorithms for a pair of kernels used in matrix completion and graph attention networks. Our
work demonstrates that sustained attention to the multilinear map yields fruit across the
computational stack.
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Chapter 1

Introduction: Multilinear Maps and
Tensors

Linear maps form the backbone of today’s machine learning and scientific computing models.
Consider a linear function f : Rn → Rm; any such map can be written in the form f(x) = Ax
for some matrix A ∈ Rm×n. When a batch of inputs X is provided, f(X) = AX relies
on general matrix-matrix multiplication (GEMM), an extraordinarily-optimized numerical
operation (called a kernel) on modern processors. Matrix multiplication has been studied at
every level of the “computer science stack”: theorists continuously drive down its complexity
[Alm+25] or try to approximate its output [DKM06], algorithm designers study approaches
to reduce its memory / communication traffic [Dem13], and silicon architects design exotic
GEMM accelerators [Che+20b]. When either A or X is sparse, the range of both applications
and computational optimizations expands substantially [Dav19].

Our work goes a step further by examining multilinear maps, multivariate functions that are
linear when restricted to each coordinate [Lan87]. Consider a multilinear map f : Rn×Rm →
Rk; like the prior example, we can write f as

f(x,y) = A (x⊗ y)

for some A ∈ Rk×nm, where ⊗ denotes the Kronecker product (see Table 1.1). A encodes
the map structure and is frequently interpreted as a higher-dimensional array A ∈ Rk×n×m,
or tensor. In an analogous way, we can define multilinear functions that accept arbitrary
argument counts and batched inputs X,Y . Computer scientists have long studied multilinear
maps and ways to implement them efficiently [KB09], but the research landscape has evolved
rapidly. This dissertation exploits new application-specific tensor structures, advances in
theoretical machinery, and novel hardware programming techniques to accelerate tensor kernels
well beyond the state of the art.

Our contributions range from new randomized algorithm development with best-in-class
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Figure 1.1: A batched multilinear map evaluation, illustrated as matrix multiplication against
a column-wise Kronecker product (top) and as a tensor contraction (bottom). Equations for
both formulations are boxed.

asymptotic guarantees to fine-grained accelerator kernel engineering. Some of our approaches
take advantage of specific problem structure (e.g., patterns within the tensor), while others
are more general.

1.1 Notation and the MTTKRP Kernel

This section defines some notation that recurs throughout the text. We use boldface lowercase
characters for vectors (u,v, ...) and boldface uppercase characters for matrices (A,B, ...).
We also use boldface characters to denote vector and matrix-valued functions, and all vector
spaces in this work are over the field R. A tensor is a multidimensional array that generalizes
vectors and matrices to 3+ dimensions. We use script characters (e.g. A, B) to denote such
objects. Matlab notation (e.g. A [i, :] or Ai:) denotes a slice of a tensor across particular
indices [Dem97]; the latter two examples refer to the i-th row A. When slicing a matrix
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Operation Dim(X) Dim(Y ) Dim(Z) Definition

Z = X · Y (m, k) (k, n) (m,n) Z[i, j] =
∑k

a=1X [i, a]Y [a, j]
Z = X ⊛ Y (m,n) (m,n) (m,n) Z [i, j] = X [i, j]Y [i, j]
Z = X ⊗ Y (m1, n1) (m2, n2) (m2m1, n2n1) Z [(i2, i1), (j2, j1)] = X [i1, j1]Y [i2, j2]
Z = X ⊙ Y (m1, n) (m2, n) (m2m1, n) Z [(i2, i1), j] = X [i1, j]Y [i2, j]

Table 1.1: Matrix product definitions.

A ∈ Rn×m, we use the convention that A [i, :] is a 1×m row vector and A [:, i] is an n× 1
column vector. With the notation fixed, a function f : Ri1 × ...×RiN → RiN+1 is multilinear
iff

f (..., αxk, ...) = αf (...,xk, ...)

f (...,xk + δ, ...) = f (...,xk, ...) + f (..., δ, ...) ,

for any α ∈ R, index 1 ≤ k ≤ N , and δ ∈ Rik .

Table 1.1 lists four linear algebraic primitives that we use heavily: standard matrix multipli-
cation, the Hadamard (or entrywise) product, the Kronecker Product, and the Khatri-Rao
Product. We assume readers are familiar with standard multiplication (·) and the elementwise
product (⊛) of two matrices, which are covered thoroughly in linear algebra textbooks [Dem97;
GV13]. Some texts use ⊙ to denote the Hadamard product, but we reserve the latter symbol
for the Khatri-Rao product. All four operators are multilinear in their arguments.

The Kronecker product (⊗) of X ∈ Rm1×n1 and Y ∈ Rm2×n2 produces Z ∈ Rm1m2×n1n2 ,
where each entry of Z is a product of a uniquely-indexed pair of elements from X and Y .
The Kronecker product of column vectors x ∈ Rm1 ,y ∈ Rm2 produces z ∈ Rm1m2 , which can
be reshaped to form the outer product matrix xy⊤ ∈ Rm1×m2 .

A critical operation in this work is the (column-wise) Khatri-Rao product (⊙), a column-wise
Kronecker product of its matrix arguments. For matrix Z = X⊙Y with n columns, we have

Z [:, j] = X [:, j]⊗ Y [:, j] , 1 ≤ j ≤ n.

Now given a batch of inputs x1, ...,xB and y1, ...,yB, we have a straightforward formula for
the batch of outputs z1, ...,zB from f : putting X = [x1 ... xB] (and analogously for Y and
Z, we write

Z = f(X,Y ) = A · (X ⊙ Y ) .

The operation above is known as the Matricized-Tensor-Times-Khatri-Rao product (MT-
TKRP). Just as matrix multiplication allows us to efficiently evaluate a large batch of linear
maps, the MTTKRP allows us to efficiently evaluate a batch of multilinear maps. We can
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easily extend this operation to arbitrary argument count:

Z = f(X1,X2, ...,XN) = A · (X1 ⊙ ...⊙XN) ,

where A can be reshaped into an (N + 1)-dimensional tensor A. Figure 1.1 illustrates the
kernel for N = 2 inputs.

1.2 Why Accelerate Batched Multilinear Maps?

Multilinear maps and the MTTKRP kernel may seem esoteric at first glance, and they
receive less attention than matrix multiplication from the research and industry communities.
Nonetheless, efficient kernels for multilinear maps command our interest for four key reasons:

1. They are critical bottlenecks in a variety of applications that span computational
chemistry [Bat+22b], multidimensional data analysis [BK25] , and signal processing
[YPP10].

2. They are challenging to accelerate, involving unwieldy matrix dimensions and
intractably-large intermediate quantities. The tensor encoding the map structure has a
worst-case parameter count that grows exponentially in the number of map arguments,
quickly overflowing computer memory. Materializing the full Kronecker / Khatri-Rao
products likewise requires exponential storage and high memory traffic; we avoid it
whenever possible. Most of our work will focus on sparse tensors with additional
structure. While such tensors are tractable to store and compute with, their sparsity
results in drastically lower computational efficiency.

3. They offer novel opportunities to exploit structure that does not exist in the
matrix case. For example, we show in Chapter 3, algorithms that do not confer special
advantages for unstructured matrix multiplication become highly advantageous to
approximate the output of the MTTKRP.

4. They offer a springboard to other areas of linear algebra and scientific computing
research. In Chapter 5, we apply theoretical machinery developed for the MTTKRP
to accelerate tensor structures that originated in quantum physics. In Chapter 6, we
explore graph embedding techniques using sparse matrix kernels similar to Chapter 2.

1.3 Prior Work and New Opportunities

The Khatri-Rao product first appeared in 1968 in the context of functional analysis [KR68].
Its definition in the original text and subsequent works [GV13] is more general than what we
use: there, the Kronecker product is performed across an arbitrary tiling of the input matrices,
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not column by column. We restrict ourselves to the column-wise Khatri-Rao product, which
has attractive spectral properties and finds applications across computational science and
engineering [LT08].

The MTTKRP with a column-wise Khatri-Rao product finds its heaviest use in tensor decom-
position, a generalization of the matrix singular value decomposition to higher-dimensional
arrays. A survey by Kolda and Bader [KB09] along with a recent textbook from Ballard
and Kolda [BK25] provide key details, and we explore this application in Chapters 3 and 4.
Unsurprisingly, members of the tensor community have driven major progress in optimizing
multilinear map computations and the MTTKRP. We highlight select contributions below,
many of which build on analogous work for matrix multiplication.

1.3.1 Reducing Memory Traffic

Researchers in high performance computing have long known that many applications are
limited by the rate at which they fetch data from a large pool of slow memory to a limited
pool of fast memory [Don+03]. Modern processors can compute much more rapidly than data
can be retrieved, and the gap between peak performance and memory bandwidth continues
to widen [Dee+25]. Dense matrix multiplication, however, avoids the memory bottleneck
through careful data reuse and tiling (see [Dem97], Chapter 2.6). Given a fast memory
of capacity M , tiling enables the O(n3) algorithm for matrix multiplication to move only
O(n3/

√
M) data words from slow to fast memory, resulting in processor utilization close to

the machine peak [Dem97]. The same tiling techniques extend to dense tensor MTTKRP
and enable high performance [BKR18].

A fascinating line of theoretical work explores whether tiling strategies for matrix multiplica-
tion are optimal. In terms of asymptotic communication, Hong and Kung [HK81] answer this
question affirmatively: for O(n3)-matrix multiplication, there exists no scheduling of memory
transactions and computation that moves fewer than O(n3/

√
M) data words. Irony et al.

[ITT04] reprove the same result using a geometric argument based on the Loomis-Whitney
inequality, and Ballard et al. [BKR18] extend the result to show optimality of tiling strategies
for the MTTKRP.

Data reuse and tiling are major components of the high performance MTTKRP kernels that
we develop in Chapter 2 for chemical foundation models. We use heuristics loosely inspired
by the lower bound proofs by Irony et al. [ITT04] to minimize traffic from GPU DRAM to
the faster SRAM, and from the SRAM to thread registers.

1.3.2 Optimizations for Sparsity

Explicit dense tensors with large side lengths and high dimension rarely appear in practice.
Consider, for example, a multilinear map that takes five vector arguments of dimension 100
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each. The tensor A encoding the map would require 1012 data words if all entries were
nonzero, a significant computational burden without the resources of a large compute cluster.
Thankfully, many real-world tensors are sparse with only a small fraction of nonzero entries.
For example, the Uber pickup tensor [Smi+17] has dimensions 183× 24× 1140× 1717 and
requires ≈ 1010 data words to store as a dense array, but it only contains 3.3× 106 nonzero
entries.

As with sparse matrices, sparse tensors are generally faster to compute with, but exhibit
poorer data reuse and processor utilization. A major concern is the storage of the tensor itself.
Sparse tensors may still occupy several gigabytes of disk space [Smi+17], while the order
of nonzero storage controls the data access pattern to the dense input matrices. Multiple
lines of work [SK15; Nis+19; Hel+21] achieve high performance using compressed, specialized
storage formats for the sparse tensor.

Every MTTKRP computation we optimize in this work involves a sparse tensor. Excepting
Chapter 6, we do not use storage formats more complicated than simple lists of nonzero
coordinates. More complex, compressed storage schemes either introduce high overhead
through memory indirections (Chapter 2) or fail to compose with our proposed algorithmic
improvements (Chapters 3, 4, and 5). As an example, we explore randomized algorithms
requiring random access to the sparse tensor, while formats such as Compressed Sparse Fiber
[Smi+15; Nis+19] optimize for sequential iteration through nonzero elements.

1.3.3 Parallelization Strategies

The inputs to the multilinear maps we consider here are massive, so we rely on parallel
computing to reduce runtime. MTTKRP kernels have been optimized for shared memory
multiprocessors [Hay+18] and on clusters of nodes communicating through an interconnect
[Smi+15; BKR18; BHR18]. In the latter three works, the bottleneck to distributed MTTKRP
is data movement from processor to processor. Techniques such as data replication [ACS90;
Joh93; Aga+95; SD11; Kwa+19] carry over from works that optimize distributed matrix
multiplication, enabling algorithm designers to trade communication for higher per-processor
memory usage. As with matrix multiplication, the same techniques that prove lower bounds
for memory traffic also establish lower bounds for inter-processor communication in the
distributed setting [BKR18].

Both lower bounds and optimal algorithms change, however, when we introduce communica-
tion imbalance with randomized methods (discussed further in 1.3.5). Randomized algorithms
allow us to efficiently communicate a compressed form of the input arguments to a multilinear
map, avoiding more expensive communication of the output. As well, Chapter 2 develops
an execution strategy for a specific MTTKRP calculation that exploits the hierarchy of
parallelism and caches available on GPUs.
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1.3.4 Automatic Tensor Compilers / Execution Engines

Optimizing parallelism, sparsity, and communication quickly results in a vast design space
for MTTKRP kernels. This creates a challenging environment for users, who must trade
off programming efficiency for more complex, high-performance algorithms. To bridge these
competing interests, projects including the Tensor Algebra COmpiler (TACO) [Kjo+17]
can automatically generate a variety of performant tensor kernels for shared-memory CPUs
and GPUs. Likewise, the Cyclops Tensor Framework [Sol+14], DISTAL [YAK22a], and
SpDISTAL [YAK22b] are all capable of executing the MTTKRP on a cluster of interconnected
processors given a lightweight user specification. More general domain specific languages -
including Triton [TKC19] and TileLang [Wan+25] - enable users to quickly write efficient
linear algebra code for GPUs, heavily targeting matrix multiplication.

While promising, these tools have limitations that prevent us from realizing their full potential.
Chapters 3 and 4 require random accesses into a sparse tensor, while Chapter 6 communicates
sparse matrix chunks repeatedly between processors. TACO, on the other hand, stores
tensors in a specialized, opaque format, amortizing away the construction cost over repeated
kernel calls. The format is antagonistic to both distributed-memory communication and
random access slicing. Similarly, Triton enhances programmer productivity by automatically
managing a small pool of fast GPU memory, but introduces overheads that discourage the
warp-asynchronous programming model we adopt in Chapter 2. Sparsity produces yet more
challenges for distributed tensor engines. For example, the sparsity-induced communication
imbalances in Chapters 4 and Chapter 6 require a careful mathematical analysis to exploit,
while communication of sparse tensors proves more difficult than their dense counterparts.

Kernel / operator fusion provides another opportunity for compilers, especially those that
target machine learning models [Li+21]. Programs that combine back-to-back operations
in a data pipeline can elide intermediate memory traffic and reduce runtime significantly.
FlashAttention [Dao+22] serves as a recent high-profile example, fusing matrix multiplication
with a subsequent softmax operation for transformer layers. A variety of compilers - XLA
[Sab20], Halide [Rag+13], and TVM [Che+18] among them - apply some level of operator
fusion to the computational graphs of deep learning models.

We argue that the kernel fusion strategies introduced in this dissertation would prove difficult
for high-level machine learning compilers to discover automatically. In Chapter 2, we fuse an
MTTKRP operation with graph convolution by persisting an SRAM buffer that is only written
out when transitioning between rows of the graph adjacency matrix. This optimization relies
on row-major ordering of the graph adjacency matrix, an external piece of problem-specific
information that programmers must exploit manually. For the distributed-memory case,
Chapter 6 employs kernel fusion within a distributed matrix multiplication algorithm, which
interleaves computation with an intricate schedule of processor-to-processor data shifts.
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1.3.5 Randomized Linear Algebra

From 2008 to 2010, Rokhlin and Tygert [RT08] followed by Avron et al. [AMT10] proved that
randomized algorithms could accelerate matrix QR decomposition with minimal accuracy
loss (up to numerical roundoff). The key ingredient is linear sketching, a lossy compression
technique that preserves the column-space geometry of a target matrix. The linear algebra
community has since poured effort into developing a variety of sketching matrices, each
exhibiting a trade-off between runtime and accuracy [Woo+14]. Sketching finds broad use in
approximate matrix factorization [HMT11; Che+25] and many related applications [Mur+23].

Researchers have only recently turned to sketching matrices with Khatri-Rao or Kronecker
structure [PP13], [Dia+18], [Ahl+20], [FFG22]. Sketching these matrix products is difficult,
as even explicit materialization would an consume inordinate amount of runtime and memory
(typically defeating any benefits a sketch would offer). In Chapter 3, we encounter a linear
least squares problem arg minX ∥AX −B∥F where the design matrix A is a Khatri-Rao
product and the observation matrix B is sparse. Solving the problem involves an MTTKRP
calculation, which we accelerate with a custom sampling algorithm that preserves the structure
of both A and B. Chapter 4 examines efficient implementation of this algorithm on a grid of
communicating processors, while Chapter 5 adapts the algorithm to sketch tensor trains, a
different class of tensor network.

1.4 Outline of this Dissertation

Having previewed our major contributions, we spend the first three chapters of this dissertation
optimizing the MTTKRP using randomization, parallelization, and communication reduction.
Two additional chapters detour by applying our methods to different tensor structures and
exploring related applications. The material is organized as follows:

• In Chapter 2, we optimize the Clebsch-Gordon (CG) tensor product, a key kernel in
rotation-equivariant graph neural networks, using a variety of high-performance GPU
optimizations. The computation takes the form of an MTTKRP with a predefined,
highly-structured tensor. Across multiple GPU models, our optimizations yield an
order of magnitude speedup over the best open-source codes implementing the kernel,
as well as 5-6x end-to-end runtime reduction for large chemistry foundation models.

• In Chapter 3, we devise a new sampling-based sketch to accelerate computation of
arg minX ∥AX −B∥F , where A is Khatri-Rao product of several matrices. The sketch
accelerates an MTTKRP calculation required to solve each linear least-squares problem.
We apply our algorithm to iteratively compute the Candecomp / PARAFAC (CP)
decomposition of large sparse tensors, achieving best-in-class asympototic complexity
for each linear least-squares solve required. In practice, our algorithm is 1.5-2.5x faster
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than a state-of-the-art baseline sampler to achieve a fixed accuracy threshold for tensor
decomposition. We also require (conservatively) 54x fewer samples on certain tensors
compared to the baseline to achieve the same accuracy watermark.

• In Chapter 4, we create distributed-memory parallel formulations of the sketching
algorithm in Chapter 3 and a simpler existing algorithm for the same problem. We
optimize these parallel formulations to avoid processor to processor communication and
demonstrate their effectiveness on thousands of CPU cores. To decompose the Reddit
tensor [Smi+17] with billions of nonzeros on 512 CPU cores, we show an 11x runtime
reduction over SPLATT to achieve more than 99% of the latter’s accuracy.

• In Chapter 5, we use tools from Chapter 3 to efficiently construct subspace embeddings
for data-sparse chains of 3D tensors. These chains—components of the tensor train
decomposition—arise in contexts spanning numerical methods, quantum chemistry,
and machine learning. We consider the case where a specific flattening of each tensor
is an orthonormal matrix, which leads to an efficient sampling data structure. In
addition to our complexity guarantees, we show that our sampler makes fast progress on
sparse tensor train decomposition. Applying randomization to the linear least squares
problems in sparse tensor train decomposition, we exhibit up to 26x speedup over a
simple baseline code.

• In Chapter 6, we revisit graph neural networks and alternating tensor factorization
applications from the prior chapters while studying the sampled-dense dense matrix
multiplication (SDDMM) operation. Optimizing the kernel alongside its counterpart,
sparse-dense matrix multiplication, requires the familiar techniques of theoretical
communication analysis and kernel fusion. With these optimizations, our algorithms
achieve 3-5x speedup over comparable methods in the PETSc package [Bal+21]. We
benchmark strong scaling on real-world sparse matrices, demonstrating consistent
runtime reductions up to 17,000 CPU cores.

• In Chapter 7, we summarize recent progress and remaining technical challenges
unexplored by our work.

1.5 Additional Details

As a warm-up, we provide a straightforward proof of the elementary result that tensor-times-
vector kernels can compute any multilinear map. We restrict ourselves to two inputs, with
the generalization as a straightforward exercise.

Proposition 1.5.1 (Multilinear Maps and Tensor-Times-Vector Kernels). Any function
f : Rm × Rn → Rk of the form

f(x,y) = A · (x⊗ y).
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is multilinear in its arguments. Conversely, any multilinar function of two arguments can be
represented in the form above for an appropriate choice of A ∈ Rk×mn.

Proof. The first statement is straightforward: for any scalar α,

f(αx,y) = A(αx⊗ y)

= αA(x⊗ y) (Multilinearity of ⊗ and ·)
= αf(x,y),

(1.1)

with an analogous proof when the scalar multiplies y. Likewise for u ∈ Rm,

f(x + u,y) = A [(x + u)⊗ y]

= A [x⊗ y] + A [u⊗ y]

= f(x,y) + f(u,y).

(1.2)

To prove the converse, let e1, ..., emax(m,n) be standard basis vectors and define

A [:, (i, j)] = f(ei, ej), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Then given any x =
∑

i αiei and y =
∑

j βjej, we have

f(x,y) = f

(∑
i

αiei,
∑
j

βjej

)
=
∑
i

∑
j

αiβjf (ei, ej) (Multilinearity of f)

=
∑
i

∑
j

αiβjA [:, (i, j)]

= A · (x⊗ y) (Definition of TTV Kernel).

(1.3)

Similarly, it is straightforward to show that the MTTKRP can represent any function that
evaluates a batch of multilinear maps, since the results above hold independently for each
column of the Khatri-Rao product.



11

Chapter 2

Optimizing Tensor Products for
O(3)-Equivariance

Our study of tensor kernels begins with the Clebsch-Gordon (CG) tensor product, an operation
that originated in quantum mechanics and has been co-opted by the deep learning community
[Tho+18; KLT18]. Neural network designers use the CG tensor product to build models
constrained by physical symmetries, which have several practical benefits. This kernel
implements a structured multilinear map, and we will exploit that structure to accelerate
CG contraction. Our implementations enjoy over 10x speedup over e3nn, an open-source
library, and on-par performance with cuEquivariance v0.4.0, a closed-source package from
NVIDIA. We provide 5-6x end-to-end runtime reduction for the chemistry foundation models
Nequip [Bat+22b] and MACE [Bat+24], both of which have since adopted our package as a

Atom metadata and positions Deep Graph Neural Network System Energy and Forces
363 mEV

Figure 2.1: Pipeline for molecular property prediction. A configuration of atoms, typically
encoded as a graph with associated node features, is fed to a graph neural network that
estimates the potential energy and atomic forces.
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x

y

Wz =

Figure 2.2: The CG tensor product, which contracts a block-sparse tensor P with two dense
vectors. It is usually followed by multiplication with a structured weight matrix W , and by
convention,“CG tensor product” refers to the sequence of both operations. Each blue block
is itself sparse (see Figure 2.4), and several blocks may share identical structure.

backend kernel provider.

Although we optimize a narrowly-defined tensor kernel here, the methods we deploy - maximiz-
ing instruction-level parallelism, minimizing global memory traffic, reducing synchronization
overhead - are classic and general. Our kernel generator serves as a case study in exploiting
specific tensor structure before we examine higher-level algorithmic challenges in Chapter 3.

2.1 Introduction

Equivariant deep neural network models have become immensely popular in computational
chemistry over the past seven years [Tho+18; Wei+18; KLT18]. Consider a function f : Rn →
Rm. Informally, f is invariant if a class of transformations applied to its argument results in
no change to the function output. A function is equivariant if a transformation applied to any
input argument of f can be replaced by a compatible transformation on the output of f . For
example: a function predicting molecular energy based on atomic positions should not change
its result if the atom coordinates are rotated, translated, or reflected (invariance). Likewise,
a function predicting 3D forces on point masses should rotate its predictions if the input
coordinate system rotates (equivariance). The latter property is termed rotation equivariance,
and it is the focus of our work. Rotation equivariant neural architectures appear in the
AlphaFold [Jum+21] version 2 model for protein structure prediction, the DiffDock [Cor+23]
generative model for molecular docking, and the Gordon Bell finalist Allegro [Mus+23] for
supercomputer-scale molecular dynamics simulation, among a host of other examples [SUG21;
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AHK19; Bat+22b; Bat+24; Kok+24]. Figure 2.1 illustrates the input and objective for
typical graph neural network chemistry models.

A core kernel in many (though not all) rotation equivariant neural networks is the Clebsch-
Gordon (CG) tensor product, which combines two feature vectors in an equivariant model
to produce a new vector [Tho+18]. This multilinear operation, illustrated in Figure 2.2,
contracts a highly-structured block sparse tensor with a pair of dense input vectors, typically
followed by multiplication with a structured weight matrix. It is frequently used to combine
node and edge embeddings in equivariant graph neural networks, which are used for molecular
energy prediction in computational chemistry [Bat+22b; Bat+22a; Mus+23] (see Figure
2.7). With its low arithmetic intensity and irregular computation pattern, the CG tensor
product is difficult to implement efficiently in frameworks like PyTorch or JAX. Because the
CG tensor product and its derivatives must be evaluated millions of times on large atomic
datasets, they remain significant bottlenecks to scaling equivariant neural networks.

We introduce an open source kernel generator for the Clebsch-Gordon tensor product on both
NVIDIA and AMD GPUs. Compared to the popular e3nn package [Gei+22] that is widely
used in equivariant deep learning models, we offer up to one order of magnitude improvement
for both forward and backward passes. Our kernels also exhibit up to 1.0-1.3x speedup over
NVIDIA’s closed-source cuEquivariance v0.4.0 package [Gei+24] on configurations used in
graph neural networks, although our second derivative kernel is slower by 30% on certain
inputs. Our key innovations include:

Exploiting ILP and Sparsity: Each nonzero block of P in Figure 2.2 is a structured
sparse tensor (see Figure 2.4 for illustrations of the nonzero pattern). Popular existing codes
[Gei+22] fill these blocks with explicit zeros and use optimized dense linear algebra primitives
to execute the tensor product, performing unnecessary work in the process. By contrast, we
use Just-in-Time (JIT) compilation to generate kernels that only perform work for nonzero
tensor entries, achieving significantly higher throughput as block sparsity increases. While
previous works [KT24; Kok24] use similar fine-grained approaches to optimize kernels for each
block in isolation, we achieve high throughput by JIT-compiling a single kernel for the entire
sparse tensor P . By compiling kernels optimized for an entire sequence of nonzero blocks, we
exhibit a degree of instruction level parallelism and data reuse that prior approaches do not
provide.

Static Analysis and Warp Parallelism: The structure of the sparse tensor in Figure
2.2 is known completely at model compile-time and contains repeated blocks with identical
nonzero patterns. We perform a static analysis on the block structure immediately after the
equivariant model architecture is defined to generate a computation schedule that minimizes
global memory traffic. We break the calculation into a series of subkernels (see Figure 2.5),
each implemented by aggressively caching x, y, and z in the GPU register file.



CHAPTER 2. OPTIMIZING TENSOR PRODUCTS FOR O(3)-EQUIVARIANCE 14

NVIDIA GPUs

CUDA Kernels

NVRTC

Computation Scheduler / Python Interface 

Numpy PyTorch

C++ JIT Adapter

HIPRTC

HIP Kernels

AMD GPUs

Figure 2.3: Software stack of our sparse kernel generator. Users request optimized kernels
via a high-level Python specification, which is processed through a template engine. The
generated kernel source code is fed to a C++ adapter that interfaces with vendor-specific
JIT compilers. Users dispatch compiled kernels by interacting with Numpy or PyTorch.

We adopt a kernel design where each GPU warp operates on distinct pieces of coalesced
data and requires no block-level synchronization (e.g. syncthreads()). To accomplish this,
each warp manages a unique portion of the shared memory pool and uses warp-level matrix
multiplication primitives to multiply operands against nonzero blocks of the structured weight
matrix.

Fused Graph Convolution: We demonstrate benefits far beyond reduced kernel launch
overhead by fusing the CG tensor product with a graph convolution kernel (a very common
pattern [Tho+18; Bat+22b; Bat+22a]). We embed the CG tensor product and its backward
pass into two algorithms for sparse-dense matrix multiplication: a simple, flexible implemen-
tation using atomic operations and a faster deterministic version using a fixup buffer. As a
consequence, our work is the first to reap significant model memory savings, a reduction in
global memory writes, and data reuse at the L2 cache level.

Section 2.2 provides a brief introduction to equivariant neural networks, with Section 2.2.2
providing a precise definition and motivation for the CG tensor product. Section 2.3 details our
strategy to generate efficient CG kernels and the design decisions that yield high performance.
We validate those decisions in Section 2.4 on a range of benchmarks from chemical foundation
models and other equivariant architectures.
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Figure 2.4: Three examples of coefficient tensors depicted by blue cubes in Figure 2.2. The
fraction of zero entries increases with the tensor order, and the full CG tensor contains several
copies of the blocks pictured here.

2.2 Preliminaries and Problem Description

Our notation and description of equivariance follow Thomas et al. [Tho+18] and Lim and
Nelson [LN23]. Let G be an abstract group of transformations, and let Din : G→ Rn×n,Dout :
G→ Rm×m be a pair of representations, group homomorphisms satisfying

Din(g1 · g2) = Din(g1) ·Din(g2) ∀g1, g2 ∈ G,

and likewise for Dout. A function f : Rn → Rm is equivariant with respect to Din and Dout

iff
f(Din(g) · v) = Dout(g) · f(v) ∀v ∈ Rn, g ∈ G.

A function is invariant if the equivariance property holds with Dout(g) = Im×m for all g ∈ G.

In our case, f is a neural network composed of a sequence of layers, expressed as the function
composition

f(v) = ϕN ◦ ... ◦ ϕ1(v).

Here, Din and Dout are derived from the dataset, and the task is to fit f to a set of data points
while maintaining equivariance to the chosen representations. Network designers accomplish
this by imposing equivariance on each layer and exploiting a composition property [Tho+18]:
if ϕi is equivariant to input / output representations (Di,Di+1) and ϕi+1 is equivariant to
(Di+1,Di+2), then ϕi+1 ◦ϕi is equivariant to (Di,Di+2). These intermediate representations
are selected by the network designer to maximize predictive capability.

2.2.1 Representations of O(3)

In this paper, we let G = O(3), the group of three-dimensional rotations including reflection.
A key property of real representations of O(3) is our ability to block-diagonalize them into a
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canonical form [LCK24]. Formally, for any representation D : O(3)→ Rn×n and all g ∈ G,
there exists a similarity matrix P and indices i1, ..., iD satisfying

D(g) = P−1

D
(i1)(g) 0

. . .

0 D(iD)(g)

P

where D(0)(g),D(1)(g), ... are a family of elementary, irreducible representations known as
the Wigner D-matrices. For all i ≥ 0, we have D(i)(g) ∈ R(2i+1)×(2i+1). In the models we
consider, all representations will be exactly block diagonal (i.e. P is the identity matrix),
described by strings of the form

D(g) ∼= "3x1e + 1x2o".

This notation indicates that D has three copies of D(1) along the diagonal followed by one
copy of D(2). We refer to the term "3x1e" as an irrep (irreducible representation) with ℓ = 1
and multiplicity 3. The suffix letters, “e” or “o”, denote a parity used to enforce reflection
equivariance, which is not relevant for us (we refer the reader to Thomas et al. [Tho+18] for
a more complete explanation).

2.2.2 Core Computational Challenge

Let x ∈ Rn,y ∈ Rm be two vectors from some intermediate layer ϕ of an equivariant deep
neural network. For example, x could be the embedding associated with a node of a graph
and y a feature vector for an edge (see Figure 2.7, bottom). We can view both vectors as
functions x(v),y(v) of the network input v, which are equivariant to (Din,Dx) and (Din,Dy)
respectively. An equivariant graph convolution layer ϕ interacts x and y to produce a new
vector z. To ensure layer-equivariance of ϕ, z(v) must be equivariant to (Din,Dz), where
Dz is a new representation selected by the network designer.

The Kronecker product provides an expressive, general method to interact x and y: if x(v)
and y(v) are equivariant to the representations listed above, then z(v) = x(v) ⊗ y(v) is
equivariant to (Din,Dx ⊗Dy). Unfortunately, x ⊗ y ∈ Rnm may have intractable length,
and we cannot drop arbitrary elements of the Kronecker product without compromising the
equivariance property.

Let P ∈ Rnm×nm be the similarity transform diagonalizing Dx⊗Dy. To reduce the dimension
of the Kronecker product, we first form P (x(v)⊗ y(v)), an equivariant function with block-
diagonal output representation P (Dx ⊗Dy)P

−1. We can now safely remove segments of
P (x⊗y) corresponding to unneeded higher-order Wigner blocks and recombine its components
through a trainable, structured weight matrix. The result, z(v) = WP (x(v)⊗ y(v)), has a
new output representation Dz and can be much shorter than x⊗ y.



CHAPTER 2. OPTIMIZING TENSOR PRODUCTS FOR O(3)-EQUIVARIANCE 17

When both Dx and Dy are representations in block-diagonal canonical form, the transform
P is a highly structured block-sparse matrix containing nonzero Clebsch-Gordon coefficients.
After potentially reducing P to k rows (removing segments corresponding to unneeded Wigner
D-blocks), we can reshape it into a block-sparse tensor P ∈ Rm×n×k contracted on two sides
with x and y. We call this operation (along with multiplication by a structured weight
matrix W ∈ Rk×k′) the CG tensor product, illustrated in Figure 2.2. It can be expressed
by a matrix equation, a summation expression, multilinear tensor contraction (popular in the
numerical linear algebra community), or Einstein notation:

z = TP(P ,x,y,W )

:= W · P · (x⊗ y)

:= W

m,n∑
i=1,j=1

x [i]y [j]P [ij :]

:= P ×1 x×2 y ×3 W

:= einsum(“ijk, i, j, kk′ → k′”,P ,x,y,W ).

(2.1)

Our goal is to accelerate computation of TP(P ,x,y,W ) for a variety of CG coefficient
tensors P . Given ∂E/∂z for some scalar quantity E, we will also provide an efficient kernel
to compute ∂E/∂x, ∂E/∂y, and ∂E/∂W in a single pass. These gradients are required
during both training and inference for some interatomic potential models.

2.2.3 Structure in the Sparse Tensor and Weights

Suppose Dx, Dy, and Dz each consist of a single Wigner block. In this case, the tensor
P in Figure 2.2 has a single nonzero block of dimensions (2ℓx + 1)× (2ℓy + 1)× (2ℓz + 1).
Figure 2.4 illustrates three blocks with varying parameters, which are small, (current models
typically use ℓx, ℓy, ℓz ≤ 4), highly structured, and sparse.

Every nonzero block of the general tensor P in Figure 2.2 takes the form P(ℓx,ℓy ,ℓz). Therefore,
we could implement the CG tensor product by repeatedly calling the kernel in Figure 2.5A:
a small tensor contraction followed by multiplication by a tile from the weight matrix W .
In practice, this is an inefficient strategy because P may contain hundreds of blocks with
identical nonzero structures and values.

Instead, the CG tensor product splits into a sequence of subkernels [KT24] that match the
structure in P and W . We target two common patterns. First, the CG tensor product
may interact b unique segments of x with a common segment of y using the same block
from P, followed by multiplication by a submatrix of weights from W rearranged along a
diagonal. Figure 2.5B illustrates Kernel B as a contraction of a sparse tensor with a matrix
X (containing the b rearranged segments from x) and the common vector y. It appears
in the Nequip [Bat+22b] and MACE [Bat+22a] models. Kernel C is identical to kernel B,
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Figure 2.5: Fundamental subkernels that compose to implement the CG tensor product in
Figure 2.2. In (A), x, y, and z refer to segments of the longer vectors in Figure 2.2, and
W contains entries from the larger weight matrix rearranged appropriately. In (B) and (C),
X and Z refer to segments from x and z that have been reshaped into matrices to exploit
repeating sparse tensor structure. b and b′ are multiples of 32 in many models.

but arranges the weights in a dense matrix W ∈ Rb′×b. Here, Z and X may have distinct
row counts. The latter operation appears in DiffDock [Cor+23] and 3D shape classifiers by
Thomas et al. [Tho+18]. Both operations can be extended to interact multiple segments from
y, but we could not find this pattern in existing equivariant models. While kernels besides B
and C are possible, they rarely appear in practice.

2.2.4 A Full Problem Description

Armed with the prior exposition, we now give an example of a specific CG tensor product
using the notation of the e3nn software package [Gei+22]. A specification of the tensor
product consists of a sequence of subkernels and the representations that partition x, y, and
z into segments for those kernels to operate on:

Dx
∼= 32x2e + 32x1e

Dy
∼= 1x3e + 1x1e

Dz
∼= 32x5e + 16x2e + 32x3e

[(1, 1, 1, “B”), (1, 2, 2, “C”), (1, 2, 3, “C”)] .

(2.2)



CHAPTER 2. OPTIMIZING TENSOR PRODUCTS FOR O(3)-EQUIVARIANCE 19

Here, x and y are partitioned into two segments, while z is partitioned into three segments.
The list of tuples on the last line specifies the subkernels to execute and the segments they
operate on. The first list entry specifies kernel B with the respective first segments of x, y,
and z (b = 32). Likewise, the second instruction executes kernel C with the first segment of
x and the second segment of y (b′ = 32, b = 16) to produce the second segment of z.

2.2.5 Context and Related Work

Variants of rotation equivariant convolutional neural networks were first proposed by Weiler
et al. [Wei+18]; Kondor et al. [KLT18]; and Thomas et al. [Tho+18]. Nequip [Bat+22b],
Cormorant [AHK19], and Allegro [Mus+23] deploy equivariant graph neural networks to
achieve state-of-the-art performance for molecular energy prediction. Other works have
enhanced these message-passing architectures by adding higher-order equivariant features
(e.g. MACE [Bat+22a; Bat+24] or ChargE3Net [Kok+24]). Equivariance has been integrated
into transformer architectures [Fuc+20; LS23] with similar success.

Equivariant Deep Learning Software The e3nn package [GS22; Gei+22] allows users
to construct CG interaction tensors, compute CG tensor products, explicitly form Wigner
D-matrices, and evaluate spherical harmonic basis functions. PyTorch and JAX versions
of the package are available. The e3x package [UM24] offers similar functionality. Allegro
[Mus+23] modifies the message passing equivariant architecture in Nequip [Bat+22b] to
drastically reduce the number of CG tensor products and lower inter-GPU communication.

The cuEquivariance package [Gei+24], released by NVIDIA concurrent to this project’s
development, offers the fastest implementation of the CG tensor product outside of our work.
However, their kernels are closed-source and do not appear to exploit sparsity within each
nonzero block of P. Our kernel performance matches or exceeds cuEquivariance, often by
substantial margins. Other relevant codes include GELib [KT24], Sphericart [Big+23], and
Equitriton [LGM24b]. The former efficiently computes CG tensor products, while the latter
two accelerate spherical harmonic polynomial evaluation.

Alternatives to CG Contraction The intense cost of the CG tensor product has fueled
the search for cheap yet accurate algorithms. For example, Schütt et al. [SUG21] propose an
equivariant message passing neural network that operates in Cartesian space, eliminating the
need for CG tensor products. For SO(3)-equivariant graph convolution, Passaro and Zitnick
[PZ23] align the node embeddings with spherical harmonic edge features before interacting
the two. This innovation sparsifies the interaction tensor and asymptotically decreases the
cost of each tensor product. We provide a full explication of their algorithm in Section 2.6.
Luo et al. [LCK24] also produce asymptotic speedups by connecting the tensor product with
a spherical harmonic product accelerated through the fast Fourier transform, an operation
they call the Gaunt tensor product. Xie et al. [Xie+24] counter that the Gaunt tensor product
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z[1] += 0x1.6a09e60000000p-2f * x[0] * y[0];
z[0] += -0x1.6a09e60000000p-2f * x[1] * y[0];
z[2] += 0x1.d363d00000000p-2f * x[1] * y[0];
z[1] += -0x1.d363d00000000p-2f * x[2] * y[0];
z[4] += -0x1.6a09e60000000p-1f * x[3] * y[0];
z[3] += 0x1.6a09e60000000p-1f * x[4] * y[0];
z[5] += -0x1.d363d00000000p-2f * x[4] * y[0];
z[4] += 0x1.d363d00000000p-2f * x[5] * y[0];
z[6] += -0x1.6a09e60000000p-2f * x[5] * y[0];
z[5] += 0x1.279a740000000p-1f * x[1] * y[1];
z[4] += 0x1.279a740000000p-2f * x[2] * y[1];
z[2] += -0x1.279a740000000p-2f * x[4] * y[1];
z[1] += -0x1.279a740000000p-1f * x[5] * y[1];

fma.rn.f32 %f4183, %f4126, %f4089, %f4182;
fma.rn.f32 %f4184, %f4152, %f4089, %f4183;
fma.rn.f32 %f4185, %f4112, %f4089, %f4184;
mul.f32 %f4186, %f4094, 0f3F08D677;
mul.f32 %f4187, %f4186, %f4096;
fma.rn.f32 %f4188, %f4187, %f4089, %f4146;
fma.rn.f32 %f4189, %f4100, %f4089, %f4188;
mul.f32 %f4190, %f4133, 0f3EA79762;
mul.f32 %f4191, %f4190, %f4096;
fma.rn.f32 %f4192, %f4191, %f4089, %f4171;
fma.rn.f32 %f4193, %f4137, %f4089, %f4192;
fma.rn.f32 %f4194, %f4135, %f4089, %f4158;
fma.rn.f32 %f4195, %f4137, %f4089, %f4194;
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Figure 2.6: Design overview of our efficient CG kernel generator. Each element of a batch
is dispatched to an independently-operating warp, which loads and evicts segments of its
operands as it computes. These computations materialize as long sequences of arithmetic
from unrolled loops, maximizing instruction-level parallelism.

does not produce results directly comparable to the CG tensor product, and that the former
may sacrifice model expressivity.

GPU Architecture GPUs execute kernels by launching a large number of parallel threads
running the same program, each accessing a small set of local registers. In a typical program,
threads load data from global memory, perform computation with data in their registers,
and store back results. Kernels are most efficient when groups of 32-64 threads (called
“warps”) execute the same instruction and perform memory transactions on contiguous,
aligned segments of data. Warps are grouped into cooperative thread arrays (CTAs) that
communicate through a fast, limited pool of shared memory. Within each CTA, individual
warps may execute asynchronously relative to one another. Warps can synchronize at the
CTA level, but the synchronization incurs overhead.

2.3 Engineering Efficient CG Kernels

Our task is to generate an efficient CG tensor product kernel given a problem specification
outlined in Section 2.2.4. Algorithm 1 describes the logic of a kernel that operates on a
large batch of inputs, each with a distinct set of weights (see Figure 2.7A). We assign each
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(x,y,W ) input triple to a single GPU warp, a choice which has two consequences. First,
it enables each warp to execute contiguous global memory reads / writes for x,y,W and
z. Second, it allows warps to execute in a completely asynchronous fashion without any
CTA-level synchronization, boosting throughput significantly. The weights W are stored in
a compressed form without the zero entries illustrated in Figure 2.2.

After the division of labor, each warp follows a standard GPU kernel workflow. The three
inputs are staged in shared memory, the kernels in Equation (2.2) are executed sequentially,
and each output zb is stored back. Each warp operates on a unique partition of the CTA
shared memory which may not be large enough to contain the the inputs and outputs. In the
latter case, chunks of x, y, W , and z are staged, and the computation executes in phases
according to a schedule described in Section 2.3.1.

Algorithm 1 High-Level CGTP Algorithm

Require: Batch x1, . . . ,xB, y1, . . . ,yB, W1, . . . ,WB

1: for b = 1, . . . , B do
2: for segi ∈ schedule do
3: Load xsmem ← xb[segi (x start) : segi (x end)]
4: Load ysmem,Wsmem similarly
5: Set zsmem ← 0
6: for all kernj ∈ segi do
7: Set Xkern as a reshaped range of xsmem

8: Set ykern,Wkern similarly
9: Compute Zkern ← kernj(Xkern,ykern,Wkern)
10: Flatten and store Zkern to a subrange of zsmem

11: Store zb[segi (z start) : segi (z end)] += zsmem

We launch a number of CTAs that is a constant multiple of the GPU streaming multiprocessor
count and assign 4-8 warps per CTA. The batch size for the CG tensor product can reach
millions [Mus+23] for large geometric configurations, ensuring that all warps are busy. The
computation required for each batch element can exceed 100K FLOPs for typical models
[Mus+23; Bat+22b], ensuring that the threads within each warp are saturated with work.

2.3.1 Computation Scheduling

A key obstacle to efficient kernel implementation is the long length of the x, y, and z feature
vectors that must be cached in shared memory. The sum of their vector lengths for large
MACE [Bat+24] and Nequip [Bat+22b] configurations can exceed 10,000 data words. Given
that the warps in each CTA partition the shared memory, staging all three vectors at once
(along with the weights in W ) is infeasible.
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Figure 2.7: Applications of the CG tensor product. The simplest and most general use case
(A) calls the kernel repeatedly with distinct x, y, and W inputs. Interatomic potential
models embed the operation in a graph convolution (B), where the tensor product combines
node features with edge features.

To manage our limited shared memory, we execute the computation in phases that are
scheduled at model compile-time. We break the list of block tensor contractions from
Equation (2.2) into phases so that the sum of chunks from x, y, W and z in each phase fits
into a warp’s shared memory allotment. We then schedule loads and stores, hard-coding the
relevant instructions into each kernel using our JIT capability. When more than a single
computation phase is required, our goal is to generate a schedule that minimizes global
memory reads and writes. We use a few simple heuristics:

1. If x and y can fit into a warp’s shared memory partition (but not z and W ), then
segments of z and W are streamed in through multiple phases of computation. In each
phase, the kernels that touch each segment of z are executed.

2. Otherwise, we use a greedy algorithm. In each phase, the shared memory pool is filled
with as many segments of x, y, W and z that can fit. Segments are flushed and
reloaded as needed.

Case 1 covers most problem configurations in equivariant graph neural networks and minimizes
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global memory writes, while Case 2 enables reasonable performance even with constrained
shared memory resources. Large CG tensors (e.g. Nequip-benzene in Figure 2.8) may require
20-40 phases of computation per tensor product, and our scheduling substantially reduces
global memory transactions.

2.3.2 JIT Subkernel Implementations

In preparation to execute a subkernel, suppose we have loaded x, y and W into shared
memory and reshaped subranges of all three to form Xkern,ykern, and Wkern. For the rest of
Section 2.3.2 and all of Section 2.3.3, we omit the “kern” subscripts. Algorithm 2 gives the
pseudocode to execute either kernel B or C from Figure 2.5 using these staged operands.

Algorithm 2 Subkernel B & C Warp-Level Algorithm

Require: X ∈ Rb′×(2ℓx+1), y ∈ R(2ℓy+1), W ∈ Rb×b′

Require: Sparse tensor P(ℓx,ℓy ,ℓz) for subkernel
1: for t = 1, . . . , b′ do
2: Load xreg ←X[t, :], yreg ← y
3: Initialize zreg ∈ R2ℓz+1 to 0
4: for (i, j, k, v) ∈ nz(P) do
5: zreg[k] += v · xreg[i] · yreg[j]
6: if W is diagonal then
7: Z[t, :] += W [t, t] · zreg

8: else
9: Store Z ′[t, :]← zreg

10: Compute Z += W ·Z ′

Each thread stages a unique row row of X and Z, as well as the entirety of y, into its local
registers. Models such as Nequip [Bat+22b] and MACE [Bat+24] satisfy ℓx, ℓy, ℓz ≤ 4, so
the added register pressure from the operand caching is manageable. We then loop over all
nonzero entries of the sparse tensor to execute the tensor contraction. Because the nonzero
indices (i, j, k) and entries v of the sparse tensor P are known at compile-time, we emit the
sequence of instructions in the inner loop explicitly using our JIT kernel generator. Finally,
the output Z is accumulated to shared memory after multiplication by W . When multiple
subkernels execute in sequence, we allow values in xreg, yreg, and zreg to persist if they are
reused.

The matrix multiplication by the weights at the end of Algorithm 2 depends on the structure
of W . When W is square and diagonal (kernel B), multiplication proceeds asynchronously
in parallel across all threads. When W is a general dense matrix, we temporarily store zreg

to shared memory and perform a warp-level matrix-multiplication across all threads.
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Our kernel generator maximizes instruction-level parallelism, and the output kernels contain
long streams of independent arithmetic operations. By contrast, common sparse tensor
storage formats (coordinate [Hel+21], compressed-sparse fiber [SK15], etc.) require expensive
memory indirections that reduce throughput. Because we compile a single kernel to handle
all nonzero blocks of P , we avoid expensive runtime branches and permit data reuse at the
shared memory and register level. Such optimizations would be difficult to implement in a
traditional statically-compiled library.

For typical applications, b and b′ are multiples of 32. When b is greater than 32, the static
analysis algorithm in Section 2.3.1 breaks the computation into multiple subkernels with
b ≤ 32, and likewise for b′.

2.3.3 Backward Pass

Like other kernels in physics informed deep learning models [Kar+21], the gradients of the
CG tensor product are required during model inference as well as training for interatomic
force prediction. Suppose E(R,W ) is the scalar energy prediction emitted by our equivariant
model for a configuration of s atoms, where W contains trainable model weights and each
row of R ∈ Rs×3 is an atom coordinate. Then Fpr = −∂E/∂R ∈ Rs×3 is the predicted force
on each atom. Conveniently, we can compute these forces by auto-differentiating E(R,W )
in a framework like PyTorch or JAX, but we require a kernel to compute the gradient of the
CG tensor product inputs given the gradient of its output.

To implement the backward pass, suppose z = TP(P ,x,y,W ) and we have gz = ∂E/∂z.
Because the CG tensor product is linear in its inputs, the product rule gives

∂E/∂x [i] =
∑

(i,j,k)∈nz(P)

P [ijk] · y [j] ·
(
W⊤ · gz

)
[k]

∂E/∂y [j] =
∑

(i,j,k)∈nz(P)

P [ijk] · x [i] ·
(
W⊤ · gz

)
[k]

∂E/∂W [kk′] = gz [k′] ·
∑

(i,j,k)∈nz(P)

P [ijk]x [i]y [j]

Notice the similarity between the three equations above and Equation (2.1): all require
summation over the nonzero indices of P and multiplying each value with a pair of elements
from distinct vectors. Accordingly, we develop Algorithm 3 with similar structure to Algorithm
2 to compute all three gradients in a single kernel. For simplicity, we list the general case
where the submatrix W is a general dense matrix (kernel C).

There are two new key features in Algorithm 3: first, we must perform a reduction over
the warp for the gradient vector gy, since each thread calculates a contribution that must
be summed. Second: when W is not diagonal, an additional warp-level matrix multiply
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Algorithm 3 Subkernel C Warp-Level Backward

Require: X ∈ Rb′×(2ℓx+1), y ∈ R2ℓy+1, W ∈ Rb×b′

Require: GZ ∈ Rb×(2ℓz+1), sparse tensor P(ℓx,ℓy ,ℓz)

Threads collaboratively compute G′
Z = W⊤ ·GZ

for t = 1, . . . , b′ do
Load xreg ←X[t, :], yreg ← y, g′

zreg ← G′
Z [t, :]

Initialize gx reg, gy reg, gw reg, zreg to 0

for (i, j, k, v) ∈ nz(P(ℓx,ℓy ,ℓz)) do
gx reg[i] += v · yreg[j] · g′

zreg[k]
gy reg[j] += v · xreg[i] · g′

zreg[k]
zreg[k] += v · xreg[i] · yreg[j]

Store gy ← warp-reduce(gy reg)
Store Gx[t, :]← gx reg and Z ′[t, :]← zreg

Threads collaboratively compute GW = GZ · (Z ′)⊤

is required at the end of the algorithm to calculate GW . We embed Algorithm 3 into a
high-level procedure akin to Algorithm 1 to complete the backward pass.

2.3.4 Higher Partial Derivatives

For interatomic potential models, we require higher-order derivatives to optimize force
predictions during training [Kar+21], as we explain below. Rather than write new kernels
for these derivatives, we provide a novel (to the best of our knowledge) calculation that
implements them using the existing forward and backward pass kernels.

As in Section 2.3.3, let Fpr = −∂E/∂R ∈ Rs×3 be the predicted atomic forces generated by
our model. During training, we must minimize a loss function of the form

min
W
L(R,W ) = min

W
∥Fpr(R,W )− Fgt(R)∥2F

where Fgt(R) ∈ Rs×3 is a set of ground-truth forces created from a more expensive simulation.
The loss function may include other terms, but only the Frobenius norm of the force difference
is relevant here. We use a gradient method to perform the minimization and calculate

∂L
∂W

= 2 · vec(Fpr(R,W )− Fgt(R))⊤
∂Fpr

∂W

= −2 · vec(Fpr(R,W )− Fgt(R))⊤
∂2E

∂R∂W

(2.3)

where “vec” flattens its matrix argument into a vector and ∂2E/(∂R∂W ) ∈ R3s×(# weights)

is a matrix of second partial derivatives. Equation (2.3) can also be computed by auto-
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differentiation, but the second partial derivative requires us to register an autograd formula
for our CG tensor product backward kernel (i.e. we must provide a “double-backward”
implementation).

To avoid spiraling engineering complexity, we will implement the double-backward pass by
linearly combining the outputs from existing kernels. Let z = TP(x,y,W ) (we omit the
sparse tensor argument P here) and define gz = ∂E/∂z for the scalar energy prediction E.
Finally, let a, b, and C be the gradients calculated by the backward pass, given as

[a, b,C] = [∂E/∂x, ∂E/∂y, ∂E/∂W ]

= backward (x,y,W , gz) .

Now our task is to compute (∂L/∂x, ∂L/∂y, ∂L/∂W , ∂L/∂gz) given (∂L/∂a, ∂L/∂b,
∂L/∂C). We dispatch seven calls to the forward and backward pass kernels:

op1 = backward(∂L/∂a, ∂L/∂b,W , gz)

op2 = backward(x,y, ∂L/∂C, gz)

op3 = TP(∂L/∂a,y,W )

op4 = backward(∂L/∂a,y,W , gz)

op5 = backward(x, ∂L/∂b,W , gz)

op6 = TP(x, ∂L/∂b,W )

op7 = TP(x,y, ∂L/∂C).

(2.4)

By repeatedly applying the product and chain rules to the formulas for a, b, and C in Section
2.3.3, we can show

∂L/∂x = op1 [1] + op2 [1]

∂L/∂y = op1 [2] + op2 [2]

∂L/∂W = op4 [3] + op5 [3]

∂L/∂gz = op3 + op6 + op7,

(2.5)

where op1 [1], op1 [2], and op1 [3] denote the three results calculated by the backward function,
and likewise for op2, op4, and op5. Equations (2.4) and (2.5) could be implemented in less
than 10 lines of Python and accelerate the double-backward pass without any additional
kernel engineering. In practice, we fuse the forward calls into a single kernel by calling
Algorithm 2 three times with different arguments in a procedure like Algorithm 1. The
backward calls fuse in a similar manner, and we adopt this approach to dramatically reduce
memory traffic and kernel launch overhead.

Our approach offers several additional advantages. Equations (2.4) and (2.5) are agnostic to
the structure of P , rendering the double-backward algorithm correct as long as the associated
forward and backward kernels are correct. Because Equation (2.4) recursively calls operations
with registered autograd formulas, an autograd framework can compute arbitrary higher
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partial derivatives of our model, not just double-backward. Finally, these formulas continue
to apply when the CG tensor product is embedded within a graph convolution (see Section
2.3.5), composing seamlessly with the other optimizations we introduce.

2.3.5 Graph Convolution and Kernel Fusion

Figure 2.7 illustrates two typical use cases of the CG tensor product kernel. The first case
(2.7A) calls the kernel illustrated in Figure 2.2 several times with unique triples of (x,y,W )
inputs, and we have already addressed its implementation. The second case (2.7B) embeds
the CG tensor product into a graph convolution operation [Tho+18; Bat+22b; Bat+22a].
Here, the nodes of a graph typically correspond to atoms in a simulation and edges represent
pairwise interactions. For a symmetric, directed graph G = (V,E), let x1...x|V | y1...y|E|, and
W1...W|E| be node embeddings, edge embeddings, and trainable edge weights, respectively.
Then each row zj of the graph convolution output, j ∈ [|V |], is given by

zj =
∑

(j,k,e)∈N (j)

TP(P ,xk,ye,We), (2.6)

where N (j) denotes the neighbor set of node j and (j, k, e) ∈ N (j) indicates that edge e
connects nodes j and k. Current equivariant message passing networks [Bat+22b; Bat+22a]
implement Equation (2.6) by duplicating the node features to form x′

1, ...,x
′
|E|, calling the

large batch kernel developed earlier, and then executing a scatter-sum (also called reduce-by-
key) to perform aggregation. Unfortunately, duplicating the node features incurs significant
memory and communication-bandwidth overhead when |E| ≫ |V | (see Table 2.3).

Notice that graph convolution exhibits a memory access pattern similar to sparse-dense
matrix multiplication (SpMM) [YBO18]. We provide two procedures for the fused CGTP
/ graph convolution based on classic SpMM methods. The first, detailed in Algorithm 4,
requires row-major sorted edge indices and iterates over the phases of the computation
schedule as the outer loop. The latter change enables the algorithm to keep a running buffer
zacc that accumulates the summation in Equation (2.6) for each node. The buffer zacc is
only flushed to global memory when a warp transitions to a new row of the graph adjacency
matrix, reducing global memory writes from O(|E|) to O(|V |). To handle the case where two
or more warps calculate contributions to the same node, we write the first row processed by
each warp to a fixup buffer [YBO18]. We developed a backward pass kernel using a similar
SpMM strategy, but a permutation that transposes the graph adjacency matrix is required
as part of the input.

The second algorithm, which we omit for brevity, functions almost identically to Algorithm 4,
but replaces the fixup / store logic with an atomic accumulation at every inner loop iteration.
This nondeterministic method performs O(|E|) atomic storebacks, but does not require a
sorted input graph or adjacency transpose permutation.
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Algorithm 4 Deterministic TP + Graph Convolution

Require: Graph G = (V,E), E(b) = (ib, jb)
Require: Edges in E sorted by first coordinate
Require: Batch x1, . . . ,x|V |, y1, . . . ,y|E|, W1, . . . ,W|E|
1: for segi ∈ schedule do
2: (s, t)← E[k][0], E[k][1]
3: Set zacc ← 0
4: for b = 1, . . . , |E| do
5: xsmem = xt

[
segi (x start) : segi (x end)

]
6: Load ysmem,Wsmem similarly, set zsmem ← 0
7: Run kernels as in Algorithm 1
8: zacc += zsmem

9: if b = |E| or s < E [b + 1] [0] then
10: if s is the first vertex processed by warp then
11: Send zacc to fixup buffer
12: else
13: -zs

[
segi (z start) : segi (z end)

]
+= zacc

14: zacc = 0
15: Execute fixup kernel

2.3.6 Analysis and Related Work Comparison

Our JIT-based approach embeds the sparse tensor structure and values into the GPU
instruction stream, which is only possible because P has relatively few nonzero entries in
each block. Because GPU instructions must also be fetched from global memory, performance
eventually degrades as blocks exceed several thousand nonzero entries. We do not encounter
such tensors in practical models.

Kondor et al. [KLT18] used the GElib library [KT24] to implement one of the original
O(3)-equivariant deep learning models. Their library also employs fine-grained loop unrolling
in CUDA and parallelizes distinct tensor product evaluations across threads. Despite these
strong innovations, their statically compiled library does not provide an optimized backward
pass, synchronizes at the CTA rather than warp level, and handles each nonzero block of P
with a separate kernel invocation.

2.4 Experiments

Our kernel generator is available online1 as an installable Python package. We adopted the
frontend interface of e3nn [GS22; Gei+22] and used QuTiP [JNN13; Lam+24] to generate CG

1https://github.com/PASSIONLab/OpenEquivariance

https://github.com/PASSIONLab/OpenEquivariance
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coefficients. We tested correctness against e3nn to ensure that our kernels produce identical
results, up to floating point roundoff and a well-defined permutation of the weights W on
certain input configurations. In cases where weight reordering is required, we provide a
function for easy migration. We use the NVIDIA and AMD HIP Runtime Compilers to
compile our generated kernels through a C++ extension to Python. Figure 2.3 illustrates
our software stack.

Quantity Value

FP32 Peak 19.5 TFLOP/s
FP64 SIMT Peak 9.7 TFLOP/s
FP64 Tensor Core Peak 19.5 TFLOP/s
HBM2 Bandwidth 2.04 TB/s

Table 2.1: A100-SXM4-80GB performance characteristics [Cor20].

The majority of experiments were conducted on NVIDIA A100 GPU nodes of NERSC
Perlmutter (each equipped with an AMD EPYC 7763 CPU). Table 2.1 lists the advertised
maximum memory bandwidth and compute peaks for multiple data types, a yardstick for
our results. Section 2.4.4 covers performance on other GPU models.

As baselines, we used the PyTorch versions of e3nn (v0.5.6) [Gei+22] and NVIDIA cuEquiv-
ariance (v0.4.0) [Gei+24]. The e3nn implementation was accelerated with torch.compile

except where prohibited by memory constraints. For Figures 2.8, 2.9, 2.10, and 2.12, we
benchmarked all functions through a uniform PyTorch interface and included any overhead
in the measured runtime. Figures 2.11 and 2.13 (right) rely on kernel runtime measurements
without PyTorch overhead.

cuEquivariance experienced a significant efficiency increase since v0.2.0, the latest version
available when our first preprint was released (see Figures 2.11, 2.13). Since that early release,
the authors also added JIT capability and fused convolution, although the closed source
kernel backend renders the details opaque. Unless otherwise noted, we report all benchmarks
against cuE v0.4.0.

2.4.1 Forward / Backward Throughput

We first profiled our kernels on a large collection of model configurations used by Nequip
[Bat+22b] and MACE [Bat+22a]. For each model, we selected an expensive representative
tensor product to benchmark. Figure 2.8 shows the results of our profiling on configurations
that use only Kernel B (see Figure 2.5). Our median FP32 speedup over e3nn was 5.9x, resp.
4.8x, for the forward and backward passes, with a maximum of 9.2x for the forward pass. We
observed a median speedup of 1.6x over cuE for the FP32 forward pass, which drops to 1.3x
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Figure 2.8: Throughput of CG tensor products (batch size 50K), kernel B configurations
without SpMM kernel fusion. On difficult configurations like Nequip-benzene with massive
output vector lengths, we exhibit more than 10x improvement over e3nn.

in FP64 precision. Our median performance approaches parity with cuE on the backward
pass, with a minimum and maximum speedup of 0.72x and 1.32x in FP64 precision.

To benchmark kernel C, we used the Tetris polynomial from e3nn’s documentation [Gei+22]
and two configurations based on DiffDock [Cor+23]. We exhibit between 1.4x and 2.0x
speedup over cuE for both forward and backward passes on DiffDock. Our speedups over
e3nn are less dramatic for kernel C, which has a workload dominated by the small dense
matrix multiplication in Algorithms 2 and 3.

2.4.2 Second Derivative Performance

We analyzed the double backward pass for the tensor products from the prior section
(excluding the Tetris polynomial, which does not require it). Figure 2.10 shows our results.
Across data types and model configurations, our speedup ranges from 5.5x to 35x over e3nn
and 0.69x-1.69x over cuE. Although our median speedup over cuE is 0.73x in FP32 precision
and 0.93x for FP64 precision, we exhibit lower runtime on all DiffDock tensor products and
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Figure 2.9: Throughput of CG tensor products (batch size 50K), kernel C configurations. We
exhibit up to 2x speedup over cuE on the DiffDock tensor products.

several Nequip configurations.

For many Nequip / MACE configurations, the performance gap between our implementation
and cuE could likely shrink with some judicious kernel tuning. In particular, we could improve
our heuristic selection of the warp count per block, the number of blocks, and the shared
memory allotted to each block. We leave tuning these hyperparameters as future work.

2.4.3 Roofline Analysis

We conducted a roofline analysis [WWP09] by profiling our forward / backward pass imple-
mentations on varied input configurations. We profiled tensor products with a single “B”
subkernel (see Figure 2.5) with FP32 precision, core building blocks for models like Nequip
and MACE. The arithmetic intensity of the CG tensor product depends on the structure
of the sparse tensor, and we profiled configurations with progressively increasing arithmetic
intensity.

Figure 2.11 shows our results, which indicate consistently high compute and bandwidth
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Figure 2.10: Throughput of second derivative kernels (batch size 20K) for chemistry / protein
models.

utilization for both our kernels and the latest version of cuE. An earlier version of cuE (v0.2.0,
indicated on the plot as cuE-old) exhibited significantly lower efficiency, which has since been
corrected by the package authors. The performance of all kernels saturates at 58% of the
FP32 peak, likely because Algorithms 2 and 3 contain contain a significant fraction of non
fused-multiply-add (FMA) instructions.

2.4.4 Additional GPU Models

We also tested our kernels on the NVIDIA A5000 and a single GPU die of the AMD MI250x.
Table 2.2 compares the MACE tensor product runtime across architectures and kernel
providers; our codebase contains a more complete set of benchmarks. The A5000 performance
matches our expectations given its lower memory bandwidth compared to the A100. While we
also saw significant speedup on the MI250x, we detected somewhat lower memory bandwidth
utilization than predicted.

2.4.5 Kernel Fusion Benchmarks

We conducted our kernel fusion experiments on three molecular structure graphs listed in
Table 2.3. We downloaded the atomic structures of human dihydrofolate deductase (DHFR)
and the SARS-COV-2 glycoprotein spike from the Protein Data Bank and constructed a
radius-neighbors graph for each using Scikit-Learn [Ped+11]. The carbon lattice was provided
to us as a representative workload for MACE [Bat+24].
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Figure 2.11: Roofline analysis for input configurations of varying arithmetic intensity, batch
size 200K. Our kernels and the latest version of cuE closely track the slope of the global
memory roofline, indicating high efficiency. An older version of cuE (v0.2.0) is also included
to highlight the performance improvement in their package (see top of Section 2.4).

GPU
forward backward

e3nn cuE ours e3nn cuE ours

A100 13 2.8 2.0 21 3.5 3.7
A5000 29 4.2 3.8 42 9.3 11
MI250x 41 - 3.0 128 - 15

Table 2.2: MACE-large isolated tensor product runtime (ms), batch size 50K, FP32 unfused.

Graph Nodes Adj. Matrix NNZ

DHFR 1DRF 1.8K 56K
COVID spike 6VXX 23K 136K
Carbon lattice 1K 158K

Table 2.3: Molecular graphs for kernel fusion experiments.

Figure 2.12 shows the speedup of fused implementations benchmarked on the most expensive
tensor product in the MACE-large model. The baseline, “cuE-scattersum”, implements the
unfused strategy in Section 2.3.5 by duplicating node embeddings, executing a large batch of
tensor products with cuEquivariance, and finally performing row-based reduction by keys.
Our deterministic fused algorithm offers the greatest speedup in FP64 precision on the carbon
lattice forward pass over cuE (roughly 1.3x speedup). On the other hand, cuE-fused offers
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Figure 2.12: Speedup of convolution kernels over cuE-scattersum, which calls cuEquivariance
and follows it by a scatter-sum operation. cuE-fused refers to a new kernel introduced in cuE
v0.4.0.

1.3-1.4x speedup on the backward pass, and we aim to close this performance gap.

2.4.6 Acceleration of Nequip and MACE

The Nequip [Bat+22b; Tan+25] and MACE [Bat+22a; Bat+24] interatomic potential models
implement the equivariant graph neural network architecture in Figure 2.7B. Both have similar
message passing structures, while MACE incorporates higher order interactions for its node
features. Our first benchmark uses the Nequip-ASE calculator interface to evaluate forces on
a large box of water molecules. Due to recent updates to Nequip’s software [Tan+25] and time
constraints, we only used the nondeterministic fused convolution for our measurements, which
appear in Table 2.4. For simplicity, we report speedup with respect to the Nequip Python
interface without JITScript or torch.compile, although our package is fully compatible with
these subsystems.
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GPU
Speedup over Unmodified Nequip

ours-unfused ours-fused

A100 6.3x 7.8x
MI250x 3.9x 4.4x

Table 2.4: Force evaluation speedup for our kernels on a 4-layer FP32 Nequip model, 5184-
atom water box system.

For MACE, we patched the code to sort nonzero entries of the atomic adjacency matrix
according to compressed sparse row (CSR) order. We then substituted our deterministic
fused convolution into the model and conducted our benchmark on the carbon lattice in
Table 2.3. MACE uses a distinct set of weight matrices for each atomic species, and an
inefficiency in the baseline code causes its runtime to increase disproportionately to the useful
computation involved. Our model has a species dictionary of eight elements (to trigger the
problem in the baseline code, even though the carbon lattice only requires one), and our
package includes a module to optimize away the inefficiency.

Figure 2.13 (left) compares the rate of molecular dynamics simulation among the different
kernel providers. We benchmarked cuE with the optimal data layout for its irreps and
included optimizations for symmetric tensor contraction, linear combination layers, and graph
convolution. In FP32 precision, we provide a 5.1x speeedup over e3nn and 1.5x over the older
v0.2.0 cuE package, noting that the latter does not provide kernel fusion. A similar speedup
exists for the FP64 models. Our implementation, however, achieves 0.73x speedup compared
to the latest version of cuE that introduces kernel fusion.

To further investigate these benchmarks, Figure 2.13 (right) breaks down device runtime
spent in various kernels. Our time spent on the tensor product (CTP kernels) falls within
2-3 milliseconds of cuE, a highly competitive result. Our performance suffers due to the
remaining model components, which contribute to less than 15% of the unoptimized model
runtime. To address this, we created a hybrid model (ours-cuE-hybrid) that combines our
fused convolution with the linear / symmetric contraction layers offered by cuE. While the
hybrid model closes the gap further, the runtime of the remaining kernels is still higher than
cuE. This is because the hybrid model preserves the original data layout of MACE layers,
whereas cuE transposes several key weight matrices to achieve higher performance. As a
consequence, cuE requires a data reordering function for models trained without the package,
whereas our kernels have no such restriction.
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Figure 2.13: Simulation speed of MACE for varying kernel provider (left) and device time
breakdown (right). cuE-old refers to version 0.2.0 of their package, while the hybrid imple-
mentation combines our fused convolution with other model primitives optimized by cuE.

2.5 Conclusions and Further Work

We have established that our sparse kernels achieve consistently high performance on several
common primitives used in O(3)-equivariant deep neural networks. We see several avenues
for future progress:

• Low Precision Data and MMA Support: Our kernels rely on the single-instruction
multiple thread (SIMT) cores for FP32 and FP64 floating point arithmetic. Modern
GPUs offer specialized hardware for lower-precision calculation, both using SIMT
cores and within matrix-multiply-accumulate (MMA) units. We hope to harness these
capabilities in the future.

• Stable Summation During Convolution: Our kernel generator allows us to easily
extend our methods to use stable (Kahan) summation [Kah65] within fused graph
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convolution. Kahan summation reduces numerical roundoff error during feature vector
aggregation across node neighborhoods, promoting energy conservation in simulations.

• Integration into new models: Our open-source software remains accessible to
newcomers while delivering the high performance required for massive workloads. In
conjunction with domain experts, we hope to apply our library to train larger, more
expressive equivariant deep neural networks.

2.6 Further Details: Passaro and Zitnick’s Algorithm

Passaro and Zitnick [PZ23] detail an elegant strategy to accelerate CG tensor contraction that
the EquiformerV2 [Lia+24] model subsequently adopted. This section adapts their description
to our notation, explains their algorithm, and examines its computational characteristics.

For simplicity, we redefine the CG tensor product in this section to omit the weight matrix
from Equation (2.1). Multiplication by the weights can occur after the tensor contraction
without affecting the calculation. We seek an efficient algorithm to compute

z(v) = TP(P ,x(v),y(v))

:= P · (x(v)⊗ y(v)),
(2.7)

where we make explicit that x, y, and z are functions of some common input v. The
equivariance assumptions on all three yield the relations

Dx(g) · x(v) = x (Din(g) · v) , (2.8)

Dy(g) · y(v) = y (Din(g) · v) , (2.9)

Dz(g) · z(v) = z (Din(g) · v) , (2.10)

for all group elements g ∈ O(3). To simplify the analysis further, assume that Dx,Dy and
Dz are all irreducible representations.

Suppose y(v) is a spherical harmonic function evaluated on a 3D coordinate embedded in v
(as is the case for many equivariant neural architectures [Bat+22b; Bat+22a; Lia+24]). Here,
Passaro and Zitnick [PZ23] make a key observation: given an arbitrary vector v, there exists
a group element g∗ satisfying

Dy(g
∗) · y(v) = y (Din(g∗) · v) = ek, (2.11)

for any 1 ≤ k ≤ dim(y), where ek is the k-th standard basis vector. g∗ should properly be
written as g∗(v) to highlight its dependence on v, but we abbreviate the notation when the
dependence is irrelevant. This fact follows from the surjection property of spherical harmonic
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bases when they are viewed as vector-valued functions [PZ23]. Now beginning with Equation
(2.10), we substitute g∗ and derive

z(v) = Dz(g
∗)−1 · z (Din(g∗) · v)

= Dz(g
∗)−1 · P · (x (Din(g∗) · v)⊗ y (Din(g∗) · v))

= Dz(g
∗)−1 · P · (x (Din(g∗) · v)⊗ ek)

= Dz(g
∗)−1 · P · ((Dx(g∗) · x(v))⊗ ek)

= Dz(g
∗)−1 · Psparse ·Dx(g∗) · x(v)

= Dz(g
∗−1) · Psparse ·Dx(g∗) · x(v).

(2.12)

The first step shifts Dz(g
∗) from the left side of Equation (2.10) to the right side. The second

step substitutes the definition of z(v) from Equation (2.7). The third step and fourth steps
use Equations (2.11) and (2.8), respectively. In step 5, observe that multiplying P against a
Kronecker product of a general argument and a standard basis vector effectively removes
columns of P from the computation. We call this downsampled matrix Psparse. In the last
step, we use the properties of the group representation Dz to avoid matrix inversion.

The last line of Equation (2.12) is theoretically faster to compute than Equation 2.7. The
tensor-times-multiple-vector kernel has been replaced by a string of matrix-vector multiplica-
tions, while Psparse has asymptotically fewer nonzero elements than P. The only remaining
details are computation of g∗, g∗−1, Dz, and Dx. Passaro and Zitnick [PZ23] demonstrate
that the desired group elements can be identified efficiently, while e3nn [Gei+22] contains
utilities to materialize the Wigner matrices.

To interact representations of high order, Passaro and Zitnick [PZ23] demonstrate significant
computational advantage over e3nn’s native tensor product. While we leave benchmarking
against our implementation as future work, there exist obstacles to high-performance imple-
mentation of Equation (2.12). To rely on primitives like (batched) dense matrix multiplication,
Dz and Dx must be evaluated and stored for each edge of an atomic graph, as the key
group element g∗(v) is potentially unique for each edge. Though relatively inexpensive, these
evaluations involve matrix exponentiation that is antagonistic to kernel fusion. The string of
matrix-vector products also incurs a longer critical path than directly calculating Equation
(2.1), which benefits from instruction-level parallelism notwithstanding its higher operation
count. For the lower-order representations in practical models, we hypothesize that our
optimized kernel package competes effectively against the discussed sparsification approach.
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Chapter 3

Fast Khatri-Rao Product Leverage
Sampling

In Chapter 2, we leaned heavily on known structure in the tensor kernel to achieve high
performance. In this chapter, one of our main tasks is to discover structure in a tensor by
decomposing it into a set of small matrices. We will use block coordinate descent to optimize
each matrix in turn, and the matricized tensor times Khatri-Rao product (MTTKRP) serves
as the workhorse kernel to achieve this objective.

As we cannot avail of any specific property of the tensor, we resort instead to downsampling
rows of the Khatri-Rao product while preserving its singular value spectrum. The algorithm we
devise achieves best-in-class asymptotic performance for alternating PARAFAC decomposition.
To bolster these theoretical claims, we demonstrate empirically that our method achieves
higher accuracy and lower time to achieve fixed accuracy thresholds compared to recently
proposed randomized methods.

Our algorithm achieves 1.5-2.5x speedup over CP-ARLS-LEV [LK22], a state-of-the art
approximate MTTKRP sampling algorithm, and reduces the required sample count by more
than 50x on certain tensors. The building blocks of our sampling algorithm find broader use
as well. In Chapter 5, we use theorems developed here to downsample an entirely different
tensor network with minimal new theory.

3.1 Introduction

The Khatri-Rao product (KRP, denoted by ⊙) is the column-wise Kronecker product of
two matrices, and it appears in diverse applications across numerical analysis and machine
learning [LT08]. We examine overdetermined linear least squares problems of the form
minX ∥AX −B∥F , where the design matrix A = U1 ⊙ ...⊙UN is the Khatri-Rao product
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of matrices Uj ∈ RIj×R. These problems appear prominently in signal processing [SB02;
Tok+25], inverse problems related to partial differential equations [Che+20a], and alternating
least squares (ALS) CANDECOMP / PARAFAC (CP) tensor decomposition [KB09]. In this
work, we focus on the case where A has moderate column count (several hundred at most).
Despite this, the problem remains formidable because the height of A is

∏N
j=1 Ij. For row

counts Ij in the millions, it is intractable to even materialize A explicitly.

Several recently-proposed randomized sketching algorithms can approximately solve least
squares problems with Khatri-Rao product design matrices [BBK18; JKW20; LK22; Mal22;
WZ22]. These methods apply a sketching operator S to the design and data matrices to solve

the reduced least squares problem minX̃

∥∥∥SAX̃ − SB
∥∥∥
F

, where S has far fewer rows than

columns. For appropriately chosen S, the residual of the downsampled system falls within a
specified tolerance ε of the optimal residual with high probability 1 − δ. In this work, we
constrain S to be a sampling matrix that selects and reweights a subset of rows from both A
and B. When the rows are selected according to the distribution of statistical leverage scores
on the design matrix A, only Õ (R/(εδ)) samples are required (subject to the assumptions
at the end of section 3.2.1). The challenge, then, is to efficiently sample according to the
leverage scores when A has Khatri-Rao structure.

We propose a leverage-score sampler for the Khatri-Rao product of matrices with tens of
millions of rows each. After construction, our sampler draws each row in time quadratic in
the column count, but logarithmic in the total row count of the Khatri-Rao product. Our
core contribution is the following theorem.

Theorem 3.1.1 (Efficient Khatri-Rao Product Leverage Sampling). Given U1, ...,UN with
Uj ∈ RIj×R, there exists a data structure satisfying the following:

1. The data structure has construction time O
(∑N

j=1 IjR
2
)
and requires additional storage

space O
(∑N

j=1 IjR
)
. If a single entry in a matrix Uj changes, it can be updated in time

O(R log (Ij/R)). If the entire matrix Uj changes, it can be updated in time O (IjR
2).

2. The data structure produces J samples from the Khatri-Rao product U1 ⊙ ... ⊙ UN

according to the exact leverage score distribution on its rows in time

O

(
NR3 + J

N∑
k=1

R2 log max (Ik, R)

)

using O(R3) scratch space. The structure can also draw samples from the Khatri-Rao
product of any subset of U1, ...,UN .
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The efficient update property and ability to exclude one matrix are important in CP de-
composition. When the inputs U1, ...,UN are sparse, an analogous data structure with

O
(
R
∑N

j=1 nnz(Uj)
)

construction time and O
(∑N

j=1 nnz(Uj)
)

storage space exists with

identical sampling time. Since the output factor matrices U1, ...,UN are typically dense, we
defer the proof to Section 3.6.6. Combined with error guarantees for leverage-score sampling,
we achieve an algorithm for alternating least squares CP decomposition with asymptotic
complexity lower than recent state-of-the-art methods (see Table 3.1).

Our method provides the most practical benefit on sparse input tensors, which may have
dimension lengths in the tens of millions (unlike dense tensors that quickly incur intractable
storage costs at large dimension lengths) [Smi+17]. On the Amazon and Reddit tensors
with billions of nonzero entries, our algorithm STS-CP can achieve 95% of the fit of non-
randomized ALS between 1.5x and 2.5x faster than a high-performance implementation of
the state-of-the-art CP-ARLS-LEV algorithm [LK22]. Our algorithm is significantly more
sample-efficient; on the Enron tensor, only ∼ 65, 000 samples per solve were required to
achieve the 95% accuracy threshold above a rank of 50, which could not be achieved by
CP-ARLS-LEV with even 54 times as many samples.

Table 3.1: Asymptotic Complexity to decompose an N -dimensional I × ...× I dense tensor
via CP alternating least squares. For randomized algorithms, each approximate least-squares
solution has residual within (1 + ε) of the optimal value with high probability 1− δ. Factors
involving logR and log(1/δ) are hidden (Õ notation). See Section 3.2.2 for details about
each algorithm.

Algorithm Source Complexity per Iteration

CP-ALS [KB09] N(N + I)IN−1R
CP-ARLS-LEV [LK22] N(R+ I)RN/(εδ)
TNS-CP [MBM22] N3IR3/(εδ)
Gaussian TNE [MS22] N2(N1.5R3.5/ε3 + IR2)/ε2

STS-CP Ours N(NR3 log I + IR2)/(εδ)

3.2 Preliminaries and Related Work

Notation We require some additional notation beyond the symbols defined in Section 1.1.
We use [N ] to denote the set {1, ..., N} for a positive integer N . Õ notation indicates the
presence of multiplicative terms polylogarithmic in R and (1/δ) in runtime complexities. For
the complexities of our methods, these logarithmic factors are no more than O(log(R/δ)).

We use angle brackets ⟨·, ..., ·⟩ to denote a generalized inner product. For identically-
sized vectors / matrices, it returns the sum of all entries in their elementwise product. For
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A,B,C ∈ Rm×n,

⟨A,B,C⟩ :=

m,n∑
i=1,j=1

A [i, j]B [i, j]C [i, j] .

3.2.1 Sketched Linear Least Squares

A variety of random sketching operators S have been proposed to solve overdetermined
least squares problems minX ∥AX −B∥F when A has no special structure [Woo+14; AC09].
When A has Khatri-Rao product structure, prior work has focused on sampling matrices
[Che+16; LK22], which have a single nonzero entry per row, operators composed of fast Fourier
/ trigonometric transforms [JKW20], or Countsketch-type operators [Wan+15; Ahl+20]. For
tensor decomposition, however, the matrix B may be sparse or implicitly specified as a
black-box function. When B is sparse, Countsketch-type operators still require the algorithm
to iterate over all nonzero values in B. As Larsen and Kolda [LK22] note, operators similar to
the FFT induce fill-in when applied to a sparse matrix B, destroying the benefits of sketching.
Similar difficulties arise when B is implicitly specified. This motivates our decision to focus
on row sampling operators, which only touch a subset of entries from B. Let x̂1, ..., x̂J be
a selection of J indices for the rows of A ∈ RI×R, sampled i.i.d. according to a probability
distribution q1, ..., qI . The associated sampling matrix S ∈ RJ×I is specified by

S [j, i] =

{
1√
Jqi

, if x̂j = i

0, otherwise

where the weight of each nonzero entry corrects bias induced by sampling. When the
probabilities qj are proportional to the leverage scores of the rows of A, strong guarantees
apply to the solution of the downsampled problem.

Leverage Score Sampling The leverage scores of a matrix assign a measure of importance
to each of its rows. The leverage score of row i from matrix A ∈ RI×R is given by

ℓi = A [i, :] (A⊤A)+A [i, :]⊤ (3.1)

for 1 ≤ i ≤ I. Leverage scores can be expressed equivalently as the squared row norms
of the matrix Q in any reduced QR factorization of A [Dri+12]. The sum of all leverage
scores is the rank of A [Woo+14]. Dividing the scores by their sum, we induce a probability
distribution on the rows used to generate a sampling matrix S. The next theorem has
appeared in several works, and we take the form given by Malik et al. [MBM22]. For an
appropriate sample count, it guarantees that the residual of the downsampled problem is
close to the residual of the original problem.

Theorem 3.2.1 (Guarantees for Leverage Score Sampling). Given A ∈ RI×R and ε, δ ∈
(0, 1), let S ∈ RJ×I be a leverage score sampling matrix for A. Further define X̃ =
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arg minX ∥SAX − SB∥F . If J ≳ Rmax (log (R/δ) , 1/(εδ)), then with probability at least
1− δ it holds that ∥∥∥AX̃ −B

∥∥∥
F
≤ (1 + ε) min

X
∥AX −B∥F .

For the applications considered in this work, R ranges up to a few hundred. As ε and δ tend
to 0 with fixed R, 1/(εδ) dominates log(R/δ). Hence, we assume that the minimum sample
count J to achieve the guarantees of the theorem is Ω(R/(εδ)).

3.2.2 Prior Work

Khatri-Rao Product Leverage Score Sampling Well-known sketching algorithms exist
to quickly estimate the leverage scores of dense matrices [Dri+12]. These algorithms are,
however, intractable for A = U1 ⊙ ... ⊙ UN due to the height of the Khatri-Rao product.
Cheng et al. [Che+16] instead approximate each score as a product of leverage scores
associated with each matrix Uj. Larsen and Kolda [LK22] propose CP-ARLS-LEV, which
uses a similar approximation and combines random sampling with a deterministic selection of
high-probability indices. Both methods were presented in the context of CP decomposition.
To sample from the Khatri-Rao product of N matrices, both require O(RN/(εδ)) samples to
achieve the (ε, δ) guarantee on the residual of each least squares solution. These methods are
simple to implement and perform well when the Khatri-Rao product has column count up
to 20-30. On the other hand, they suffer from high sample complexity as R and N increase.
The TNS-CP algorithm by Malik et al. [MBM22] samples from the exact leverage score
distribution, thus requiring only O(R/(εδ)) samples per least squares solve. Unfortunately, it

requires time O
(∑N

j=1 IjR
2
)

to draw each sample.

Details about Table 3.1 With the background of the prior paragraph in mind, we
give details about the algorithms listed in Table 3.1. CP-ALS [KB09] is the standard, non-
randomized alternating least squares method given by Algorithm 10 in Section 3.6.7. The least
squares problems in the algorithm are solved by exact methods. The per-iteration runtime for
both CP-ALS and the next table entry, CP-ARLS-LEV, are re-derived in Appendix C.3 of
work by Malik [Mal22] from their original sources. Malik [Mal22] proposed the CP-ALS-ES
algorithm (not listed in the table), which is superseded by the TNS-CP algorithm [MBM22].
We report the complexity from Table 1 of the latter work. The algorithm by Ma and
Solomonik [MS22] is based on a general method to sketch tensor networks. Our reported
complexity is listed in Table 1 for Algorithm 1 in their work.

Table 3.1 does not list the one-time initialization costs for any of the methods. All methods
require at least O(NIR) time to randomly initialize factor matrices, and CP-ALS requires
no further setup. CP-ARLS-LEV, TNS-CP, and STS-CP all require O(NIR2) initialization
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time. CP-ARLS-LEV uses the initialization phase to compute the initial leverage scores of all
factor matrices. TNS-CP uses the initialization step to compute and cache Gram matrices of
all factors Uj . STS-CP must build the efficient sampling data structure described in Theorem
3.1.1. The algorithm from Ma and Solomonik requires an initialization cost of O(INm), where
m is a sketch size parameter on the order O(NR/ε2) to achieve the (ε, δ) accuracy guarantee
for each least squares solve.

Comparison to Woodruff and Zandieh The most comparable results to ours appear
in work by Woodruff and Zandieh [WZ22], who detail an algorithm for approximate ridge
leverage-score sampling for the Khatri-Rao product in near input-sparsity time. Their work
relies on a prior oblivious method by Ahle et al. [Ahl+20], which sketches a Khatri-Rao
product using a sequence of Countsketch / OSNAP operators arranged in a tree. Used in
isolation to solve a linear least squares problem, the tree sketch construction time scales as

O
(

1
ε

∑N
j=1 nnz(Uj)

)
and requires an embedding dimension quadratic in R to achieve the

(ε, δ) solution-quality guarantee. Woodruff and Zandieh use a collection of these tree sketches,
each with carefully-controlled approximation error, to design an algorithm with linear runtime
dependence on the column count R. On the other hand, the method exhibits O(N7) scaling
in the number of matrices involved, has O(ε−4) scaling in terms of the desired accuracy,
and relies on a sufficiently high ridge regularization parameter. Our data structure instead
requires construction time quadratic in R. In exchange, we use distinct methods to design
an efficiently-updatable sampler with runtime linear in both N and ε−1. These properties
are attractive when the column count R is below several thousand and when error as low
as ϵ ≈ 10−3 is needed in the context of an iterative solver (see Figure 3.6). Moreover, the
term O(R2

∑N
j=1 Ij) in our construction complexity arises from symmetric rank-k updates,

a highly-optimized BLAS3 kernel on modern CPU and GPU architectures. Section 3.6.1
provides a more detailed comparison between the two approaches.

Kronecker Regression Kronecker regression is a distinct (but closely related) problem
to the one we consider. There, A = U1 ⊗ ... ⊗ UN and the matrices Ui have potentially
distinct column counts R1, ..., RN . While the product distribution of leverage scores from
U1, ...,UN provides only an approximation to the leverage score distribution of the Khatri-
Rao product [Che+16; LK22], it provides the exact leverage distribution for the Kronecker
product. Multiple works [Dia+19; FFG22] combine this property with other techniques,
such as dynamically-updatable tree-sketches [RSZ22], to produce accurate and updatable
Kronecker sketching methods. None of these results apply directly in our case due to the
distinct properties of Kronecker and Khatri-Rao products.



CHAPTER 3. FAST KHATRI-RAO PRODUCT LEVERAGE SAMPLING 45

3.3 An Efficient Khatri-Rao Leverage Sampler

Without loss of generality, we will prove part 2 of Theorem 3.1.1 for the case where A =
U1 ⊙ ...⊙UN ; the case that excludes a single matrix follows by reindexing matrices Uk. We
further assume that A is a nonzero matrix, though it may be rank-deficient. Similar to
prior sampling works [Mal22; WZ22], our algorithm will draw one sample from the Khatri-
Rao product by sampling a row from each of U1,U2, .... in sequence and computing their
Hadamard product, with the draw from Uj conditioned on prior draws from U1, ...,Uj−1.

Let us index each row of A by a tuple (i1, ..., iN) ∈ [I1]× ...× [IN ]. Equation (3.1) gives

ℓi1,...,iN = A [(i1, ..., iN), :] (A⊤A)+A [(i1, ..., iN), :]⊤ . (3.2)

For 1 ≤ k ≤ N , define Gk := U⊤
k Uk ∈ RR×R and G :=

(
⊛N

k=1 Gk

)
∈ RR×R; it is a

well-known fact that G = A⊤A [KB09]. For a single row sample from A, let ŝ1, ..., ŝN be
random variables for the draws from multi-index set [I1]× ...× [IN ] according to the leverage
score distribution. Assume, for some k, that we have already sampled an index from each of
[I1] , ..., [Ik−1], and that the first k − 1 random variables take values ŝ1 = s1, ..., ŝk−1 = sk−1.
We abbreviate the latter condition as ŝ<k = s<k. To sample from Ik, we seek the distribution
of ŝk conditioned on ŝ1, ...ŝk−1. Define h<k as the transposed elementwise product1 of rows
already sampled:

h<k :=
k−1

⊛
i=1

Ui [si, :]
⊤ . (3.3)

Also define G>k as

G>k := G+ ⊛
N

⊛
i=k+1

Gi. (3.4)

Then the following theorem provides the conditional distribution of ŝk.

Theorem 3.3.1 ([Mal22], Adapted). For any sk ∈ [Ik],

p(ŝk = sk | ŝ<k = s<k) = C−1⟨h<kh
⊤
<k,Uk [sk, :]

⊤Uk [sk, :] ,G>k⟩
:= qh<k,Uk,G>k

[sk] ,
(3.5)

where C = ⟨h<kh
⊤
<k,U

⊤
k Uk,G>k⟩ is nonzero.

We include the derivation of Theorem 3.3.1 from Equation (3.2) in Section 3.6.2, while Figure
3.1 illustrates the three key objects required in the theorem to compute the conditional

1For a > b, assume that ⊛b
i=a (...) produces a vector / matrix filled with ones.
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G1 G2 G3 G4 G5 G

G>k G+

⊛

⊛

PINV

s1

s2
s3

h⊤
<k

⊛

Figure 3.1: Key objects from Theorem 3.3.1 for a Khatri-Rao product of five matrices. The
probability of the event (ŝ3 = s3) conditioned on prior draws depends on the product of rows
already selected (h⊤

<k); the Gram matrices G4, G5, and G (all of which contribute to G>k);
and row U3 [s3, :] itself.

distribution. Computing all entries of the probability vector qh<k,Uk,G>k
would cost O(IjR

2)
per sample, too costly when Uj has millions of rows. It is likewise intractable (in preprocess-
ing time and space complexity) to precompute probabilities for every possible conditional
distribution on the rows of Uj, since the conditioning random variable has

∏j−1
k=1 Ik potential

values. Our key innovation is a data structure to sample from a discrete distribution of the
form qh<k,Uk,G>k

without materializing all of its entries or incurring superlinear cost in either
N or ε−1. We introduce this data structure in the next section and will apply it twice in
succession to get the complexity in Theorem 3.1.1.

3.3.1 Efficient Sampling from qh,U ,Y

We introduce a slight change of notation in this section to simplify the problem and generalize
our sampling lemma. Let h ∈ RR be a vector and let Y ∈ RR×R be a positive semidefinite
(p.s.d.) matrix, respectively. Our task is to sample J rows from a matrix U ∈ RI×R according
to the distribution

qh,U ,Y [s] := C−1⟨hh⊤,U⊤ [s, :]U [s, :] ,Y ⟩ (3.6)

provided the normalizing constant C = ⟨hh⊤,U⊤U ,Y ⟩, is nonzero. We impose that all J
rows are drawn with the same matrices Y and U , but potentially distinct vectors h. The
following lemma establishes that an efficient sampler for this problem exists.

Lemma 3.3.2 (Efficient Row Sampler). Given matrices U ∈ RI×R,Y ∈ RR×R with Y p.s.d.,
there exists a data structure parameterized by positive integer F that satisfies the following:
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[1..8]

[1..4]

[1, 2] [3, 4]

[5..8]

[5, 6] [7, 8]

q1 q2 q3 q4 q5 q6 q7 q8

Figure 3.2: A segment tree T8,2 and probability distribution {q1, ..., q8} on [1, ..., 8].

1. The structure has construction time O (IR2) and storage requirement O (R2⌈I/F ⌉). If
I < F , the storage requirement drops to O(1).

2. After construction, the data structure can produce a sample according to the distribution
qh,U ,Y in time O(R2 log⌈I/F ⌉+ FR2) for any vector h.

3. If Y is a rank-1 matrix, the time per sample drops to O(R2 log⌈I/F ⌉+ FR).

This data structure relies on an adaptation of a classic binary-tree inversion sampling technique
[Saa+20]. Consider a partition of the interval [0, 1] into I bins, the i-th having width qh,U ,Y [i].
We sample d ∼ Uniform [0, 1] and return the index of the containing bin. We locate the bin
index through a binary search terminated when at most F bins remain in the search space,
which are then scanned in linear time. Here, F is a tuning parameter that we will use to
control sampling complexity and space usage.

We can regard the binary search as a walk down a full, complete binary tree TI,F with ⌈I/F ⌉
leaves, the nodes of which store contiguous, disjoint segments S(v) = {S0(v)..S1(v)} ⊆ [I]
of size at most F . The segment of each internal node is the union of segments held by its
children, and the root node holds {1, ..., I}. Suppose that the binary search reaches node
v with left child L(v) and maintains the interval [low, high] ⊆ [0, 1] as the remaining search
space to explore. Then the search branches left in the tree iff d < low +

∑
i∈S(L(v)) qh,U ,Y [i] .

This branching condition can be evaluated efficiently if appropriate information is stored at
each node of the segment tree. Excluding the offset “low”, the branching threshold takes the
form ∑

i∈S(v)

qh,U ,Y [i] = C−1⟨hh⊤,
∑
i∈S(v)

U [i, :]⊤U [i, :] ,Y ⟩ := C−1⟨hh⊤,Gv,Y ⟩. (3.7)
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Here, we call each matrix Gv ∈ RR×R a partial Gram matrix. In time O(IR2) and space
O(R2⌈I/F ⌉), we can compute and cache Gv for each node of the tree to construct our data
structure. Each subsequent binary search costs O(R2) time to evaluate Equation (3.7) at
each of log⌈I/F ⌉ internal nodes and O(FR2) to evaluate qh,U ,Y at the F indices held by
each leaf, giving point 2 of the lemma. This cost at each leaf node reduces to O(FR) in case
Y is rank-1, giving point 3. A complete proof of this lemma appears in Section 3.6.3.

3.3.2 Sampling from the Khatri-Rao Product

We face difficulties if we directly apply Lemma 3.3.2 to sample from the conditional distribution
in Theorem 3.3.1. Because G>k is not rank-1 in general, we must use point 2 of the lemma,
where no selection of the parameter F allows us to simultaneously satisfy the space and
runtime constraints of Theorem 3.1.1. Selecting F = R results in cost O(R3) per sample
(violating the runtime requirement in point 2), whereas F = 1 results in a superlinear storage
requirement O(IR2) (violating the space requirement in point 1, and becoming prohibitively
expensive for I ≥ 106). To avoid these extremes, we break the sampling procedure into two
stages. The first stage selects a 1-dimensional subspace spanned by an eigenvector of G>k,
while the second samples according to Theorem 3.3.1 after projecting the relevant vectors
onto the selected subspace. Lemma 3.3.2 can be used for both stages, and the second stage
benefits from point 3 to achieve better time and space complexity.

Below, we abbreviate q = qh<k,Uk,G>k
and h = h<k. When sampling from Ik, observe that

G>k is the same for all samples. We compute a symmetric eigendecomposition G>k = V ΛV ⊤,
where each column of V is an eigenvector of G>k and Λ = diag((λu)Ru=1) contains the
eigenvalues along the diagonal. This allows us to rewrite entries of q as

q [s] = C−1

R∑
u=1

λu⟨hh⊤,Uk [s, :]⊤Uk [s, :] ,V [:, u]V [:, u]⊤⟩. (3.8)

Define matrix W ∈ RIk×R elementwise by

W [t, u] := ⟨hh⊤,Uk [t, :]⊤Uk [t, :] ,V [:, u]V [:, u]⊤⟩

and observe that all of its entries are nonnegative. Since λu ≥ 0 for all u (G>k is p.s.d.), we
can write q as a mixture of probability distributions given by the normalized columns of W :

q =
R∑

u=1

w [u]
W [:, u]

∥W [:, u]∥1
,

where the vector w of nonnegative weights is given by w [u] = (C−1λu ∥W [:, u]∥1). Rewriting
q in this form gives us the two stage sampling procedure: first sample a component u of
the mixture according to the weight vector w, then sample an index in [Ik] according to the
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probability vector defined by W [:, u] / ∥W [:, u]∥1. Let ûk be a random variable distributed
according to the probability mass vector w. We have, for C taken from Theorem 3.3.1,

p(ûk = uk) = C−1λuk

Ik∑
t=1

W [t, uk]

= C−1λuk
⟨hh⊤,V [:, uk]V [:, uk]⊤ ,Gk⟩

= qh,
√
ΛV ⊤,Gk

[uk] .

(3.9)

Hence, we can use point 2 of Lemma 3.3.2 to sample a value for ûk efficiently. Because√
ΛV ⊤ has only R rows with R ∼ 102, we choose the tuning parameter F = 1 to achieve

lower time per sample while incurring a modest O(R3) space overhead. Now, introduce a
random variable t̂k with distribution conditioned on ûk = uk given by

p(t̂k = tk | ûk = uk) := W [tk, uk] / ∥W [:, uk]∥1 . (3.10)

This distribution is well-defined, since we suppose that ûk = uk occurs with nonzero probability
e [uk], which implies that ∥W [:, uk]∥1 ̸= 0. Our remaining task is to efficiently sample from

the distribution above. Below, we abbreviate h̃ = V [:, uk] ⊛ h and derive

p(t̂k = tk | ûk = uk) =
⟨hh⊤,Uk [tk, :]

⊤Uk [tk, :] ,V [:, uk]V [:, uk]⊤⟩
∥W [:, uk]∥1

=
⟨h̃h̃⊤,Uk [tk, :]

⊤Uk [tk, :] , [1]⟩
∥W [:, uk]∥1

= qh̃,Uk,[1]
[tk] .

(3.11)

Based on the last line of Equation (3.11), we apply Lemma 3.3.2 again to build an efficient
data structure to sample a row of Uk. Since Y = [1] is a rank-1 matrix, we can use point 3 of
the lemma and select a larger parameter value F = R to reduce space usage. The sampling
time for this stage becomes O(R2 log⌈Ij/R⌉).

To summarize, Algorithms 5 and 6 give the construction and sampling procedures for our data
structure. They rely on the “BuildSampler” and “RowSample” procedures from Algorithms 7
and 8 in Section 3.6.3, which relate to the data structure in Lemma 3.3.2. In the construction
phase, we build N data structures from Lemma 3.3.2 for the distribution in Equation (3.11).

Construction costs O
(∑N

j=1 IjR
2
)

, and if any matrix Uj changes, we can rebuild Zj in

isolation. Because F = R, the space required for Zj is O (IjR).

In the sampling phase, Algorithm 6 accepts an optional index j of a matrix to exclude from the
Khatri-Rao product. The procedure begins by computing the symmetric eigendecomposition
of each matrix G>k. The eigendecomposition is computed only once per binary tree structure,
and its computation cost is amortized over all J samples. It then creates data structures
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Ek for each of the distributions specified by Equation (3.9). These data structures (along
with those from the construction phase) are used to draw ûk and t̂k in succession. The
random variables t̂k follow the distribution in Theorem 3.3.1 conditioned on prior draws,
so the multi-index (t̂k)k ̸=j follows the leverage score distribution on A, as desired. Section
3.6.4 proves the complexity claims in the theorem and provides further details about the
algorithms.

Algorithm 5 ConstructKRPSampler(U1, ...,UN)

1: for j = 1..N do
2: Zj := BuildSampler(Uj, F = R, [1])
3: Gj := U⊤

j Uj

Algorithm 6 KRPSample(j, J)

1: G := ⊛k ̸=j Gk

2: for k ̸= j do
3: G>k := G+ ⊛⊛N

k=j+1 Gk

4: Decompose G>k = VkΛkV
⊤
k

5: Ek := BuildSampler(
√
Λk · V ⊤

k , F = 1,Gk)
6: for d = 1..J do
7: h = [1, ..., 1]⊤

8: for k ̸= j do
9: ûk := RowSample(Ek,h)
10: t̂k := RowSample(Zk,h⊛ (Vk [:, ûk]))
11: h ∗= Uk

[
t̂k, :
]

12: sd = (t̂k)k ̸=j

13: return s1, ..., sJ

3.3.3 Application to Tensor Decomposition

A tensor is a multidimensional array, and the CP decomposition represents a tensor as a sum
of outer products [KB09]. See Section 3.6.7 for an overview. To approximately decompose
tensor T ∈ RI1×...×IN , the popular alternating least squares (ALS) algorithm begins with
randomly initialized factor matrices Uj, Uj ∈ RIj×R for 1 ≤ j ≤ N . We call the column
count R the rank of the decomposition. Each round of ALS solves N overdetermined least
squares problems in sequence, each optimizing a single factor matrix while holding the others
constant. The j-th least squares problem occurs in the update

Uj := arg min
X

∥∥U̸=j ·X⊤ −mat(T , j)⊤
∥∥
F

where U ̸=j = UN ⊙ ... ⊙Uj+1 ⊙Uj−1 ⊙ ... ⊙U1 is the Khatri-Rao product of all matrices
excluding Uj and mat(·) denotes the mode-j matricization of tensor T . Here, we reverse the
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order of matrices in the Khatri-Rao product to match the ordering of rows in the matricized
tensor (see Section 3.6.7 for an explicit formula for the matricization). These problems are
ideal candidates for randomized sketching [BBK18; JKW20; LK22], and applying the data
structure in Theorem 3.1.1 gives us the STS-CP algorithm.

Corollary 3.3.3 (STS-CP). Suppose T is dense, and suppose we solve each least squares
problem in ALS with a randomized sketching algorithm. A leverage score sampling approach
as defined in section 3.2 guarantees that with Õ(R/(εδ)) samples per solve, the residual of
each sketched least squares problem is within (1 + ε) of the optimal residual with probability
(1− δ). The efficient sampler from Theorem 3.1.1 brings the complexity of ALS to

Õ

(
#it

εδ
·

N∑
j=1

(
NR3 log Ij + IjR

2
))

where “#it” is the number of ALS iterations, and with any term log Ij replaced by logR if
Ij < R.

The proof appears in Section 3.6.7 and combines Theorem 3.1.1 with Theorem 3.2.1. STS-CP
also works for sparse tensors and likely provides a greater advantage here than the dense case,
as sparse tensors tend to have much larger mode size [Smi+17]. The complexity for sparse
tensors depends heavily on the sparsity structure and is difficult to predict. Nevertheless,
we expect a significant speedup based on prior works that use sketching to accelerate CP
decomposition [Che+16; LK22].

3.4 Experiments

Experiments were conducted on CPU nodes of NERSC Perlmutter, an HPE Cray EX
supercomputer, and our code is available at https://github.com/vbharadwaj-bk/fast_

tensor_leverage.git. On tensor decomposition experiments, we compare our algorithms
against the random and hybrid versions of CP-ARLS-LEV proposed by Larsen and Kolda
[LK22]. These algorithms outperform uniform sampling and row-norm-squared sampling,
achieving excellent accuracy and runtime relative to exact ALS. In contrast to TNS-CP
and the Gaussian tensor network embedding proposed by Ma and Solomonik (see Table 1),
CP-ARLS-LEV is one of the few algorithms that can practically decompose sparse tensors
with mode sizes in the millions. In the worst case, CP-ARLS-LEV requires Õ(RN−1/(εδ))
samples per solve for an N -dimensional tensor to achieve solution guarantees like those in
Theorem 3.2.1, compared to Õ(R/(εδ)) samples required by STS-CP. Sections 3.6.8, 3.6.9,
and 3.6.11 provide configuration details and additional results.

https://github.com/vbharadwaj-bk/fast_tensor_leverage.git
https://github.com/vbharadwaj-bk/fast_tensor_leverage.git
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3.4.1 Runtime Benchmark

Figure 3.3 shows the time to construct our sampler and draw 50,000 samples from the
Khatri-Rao product of i.i.d. Gaussian initialized factor matrices. We quantify the runtime
impacts of varying N , R, and I. The asymptotic behavior in Theorem 3.1.1 is reflected
in our performance measurements, with the exception of the plot that varies R. Here,
construction becomes disproportionately cheaper than sampling due to cache-efficient BLAS3
calls during construction. Even when the full Khatri-Rao product has ≈ 3.78× 1022 rows
(for I = 225, N = 3, R = 32), we require only 0.31 seconds on average for sampling (top plot,
rightmost points).

3.4.2 Least Squares Accuracy Comparison

We now test our sampler on least squares problems of the form minx ∥Ax− b∥, where
A = U1⊙ ...⊙UN with Uj ∈ RI×R for all j. We initialize all matrices Uj entrywise i.i.d. from
a standard normal distribution and randomly multiply 1% of all entries by 10. We choose b
as a Kronecker product c1⊗ ...⊗ cN , with each vector cj ∈ RI also initialized entrywise from
a Gaussian distribution. We assume this form for b to tractably compute the exact solution
to the linear least squares problem and evaluate the accuracy of our randomized methods.
We do not give our algorithms access to the Kronecker form of b; they are only permitted
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on-demand, black-box access to its entries.

For each problem instance, define

D(S,A) = κ(SQ)− 1 (3.12)

where Q is an orthonormal basis for the column space of A and κ(SQ) is the condition number
of SQ. A higher-quality sketch S exhibits a lower condition number κ(SQ), which quantifies
the preservation of distances from the column space of A to the column space of SA. Note that
this quantity is the numerator of the distortion metric, calculated as (κ(SQ)−1)/(κ(SQ)+1)
[Mur+23]. We omit the denominator to highlight the rapid condition number growth for
the competing sampler. For details about about computing κ(SQ) efficiently when A is a
Khatri-Rao product, see Section 3.6.10. Next, define ε = residualapprox

residualopt
− 1, where residualapprox

is the residual of the randomized least squares algorithm. ε is nonnegative and (similar to its
role in Theorem 3.2.1) quantifies the quality of the randomized algorithm’s solution.

For varying N and R, Figure 3.4 shows the average values of D and ε achieved by our
algorithm against the leverage product approximation used by Larsen and Kolda [LK22]. Our
sampler exhibits nearly constant D(S,A) for fixed rank R and varying N , and it achieves
ε ≈ 10−2 even when N = 9. The product approximation increases both quantities by at least
an order of magnitude.

3.4.3 Sparse Tensor Decomposition

We next apply STS-CP to decompose several large sparse tensors from the FROSTT collection
[Smi+17] (see Section 3.6.9 for more details on the experimental configuration). Our accuracy
metric is the tensor fit. Letting T̃ be our low-rank CP approximation, the fit with respect to

ground-truth tensor T is fit(T̃ , T ) = 1−
∥∥∥T̃ − T ∥∥∥

F
/ ∥T ∥F .

Table 3.2 compares the runtime per ALS round for our algorithm against existing common
software packages for sparse tensor CP decomposition. We compared our algorithm against
Tensorly version 0.81 [Kos+19] and Matlab Tensor Toolbox version 3.5 [BK08], with dramatic
speedups over both.. We compared our algorithm against both non-randomized ALS and a
version of CP-ARLS-LEV in Tensor Toolbox.

As demonstrated by Table 3.2, our implementation exhibits more than 1000x speedup over
Tensorly and 295x over Tensor Toolbox (non-randomized) for the NELL-2 tensor. STS-CP
enjoys a dramatic speedup over Tensorly because the latter explicitly materializes the Khatri-
Rao product, which is prohibitively expensive given the large tensor dimensions (see Table
3.3). STS-CP consistently exhibits at least 2.5x speedup over the version of CP-ARLS-LEV
in Tensor Toolbox, with more than 10x speedup on the Amazon tensor. To ensure a fair
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Figure 3.5: Average fits (8 trials) achieved by randomized (J = 216) and exact ALS for sparse
tensor CP decomposition. Error bars indicate 3 standard deviations. See Section 3.6.9 for
details.

Table 3.2: Average time (seconds) per ALS round for our method vs. standard CP decompo-
sition packages. OOM indicates an out-of-memory error. All experiments were conducted on
a single LBNL Perlmutter CPU node. Randomized algorithms were benchmarked with 216

samples per least-squares solve.

Method Uber Enron NELL-2 Amazon Reddit

Tensorly, Sparse Backend 64.2 OOM 759.6 OOM OOM
Matlab TToolbox Standard 11.6 294.4 177.4 >3600 OOM
Matlab TToolbox CP-ARLS-LEV 0.5 1.4 1.9 34.2 OOM
STS-CP (ours) 0.2 0.5 0.6 3.4 26.0

comparison with CP-ARLS-LEV, we wrote an improved implementation in C++ that was
used for all other experiments.

As Figure 3.5 shows, the fit achieved by CP-ARLS-LEV compared to STS-CP degrades as
the rank increases for fixed sample count. By contrast, STS-CP improves the fit consistently,
with a significant improvement at rank 125 over CP-ARLS-LEV. Timings for both algorithms
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are available in Section 3.6.11.4. Figure 3.6 explains the higher fit achieved by our sampler
on the Uber and Amazon tensors. In the first 10 rounds of ALS, we compute the exact
solution to each least squares problem before updating the factor matrix with a randomized
algorithm’s solution. Figure 3.6 plots ε as ALS progresses for hybrid CP-ARLS-LEV and
STS-CP. The latter consistently achieves lower residual per solve. We further observe that
CP-ARLS-LEV exhibits an oscillating error pattern with period matching the number of
modes N .

To assess the trade-off between sampling time and accuracy, we compare the fit as a function
of ALS update time for STS-CP and random CP-ARLS-LEV in Figure 3.7 (time to compute
the fit excluded). On the Reddit tensor with R = 100, we compared CP-ARLS-LEV with
J = 216 against CP-ARLS-LEV with progressively larger sample count. Even with 218

samples per randomized least squares solve, CP-ARLS-LEV cannot achieve the maximum fit
of STS-CP. Furthermore, STS-CP makes progress more quickly than CP-ARLS-LEV. See
Section 3.6.11.3 for similar plots for other datasets.

3.5 Discussion and Future Work

Our method for exact Khatri-Rao leverage score sampling enjoys strong theoretical guarantees
and practical performance benefits. Especially for massive tensors such as Amazon and
Reddit, our randomized algorithm’s guarantees translate to faster progress to solution and
higher final accuracies. The segment tree approach described here can be applied to sample
from tensor networks besides the Khatri-Rao product. In particular, modifications to Lemma
3.3.2 permit efficient leverage sampling from a contraction of 3D tensor cores in ALS tensor
train decomposition. We leave the generalization of our fast sampling technique as future
work.
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3.6 Proofs and Supplementary Results

3.6.1 Further Comparison to Prior Work

In this section, we provide a more detailed comparison of our sampling algorithm with the
one proposed by Woodruff and Zandieh [WZ22]. Their work introduces a ridge leverage-score
sampling algorithm for Khatri-Rao products with the attractive property that the sketch can
be formed in input-sparsity time. For constant failure probability δ, the runtime to produce
a (1± ϵ) ℓ2-subspace embedding for A = U1 ⊙ ...⊙UN is given in Appendix B of their work
(proof of Theorem 2.7). Adapted to our notation, their runtime is

O

(
log4R logN

N∑
i=1

nnz(Ui) +
N7s2λR

ε4
log5R logN

)

where sλ =
∑R

i=1
λi

λi+λ
, λ1, ..., λR are the eigenvalues of the Gram matrix G of matrix A, and

λ ≥ 0 is a regularization parameter. For comparison, our runtime for constant failure
probability δ is

O

(
R

N∑
i=1

nnz(Ui) +
R3

ε
log

(
N∏
i=1

Ii

)
logR

)
.

Woodruff and Zandieh’s method provides a significant advantage for large column count R or
high regularization parameter λ. As a result, it is well-suited to the problem of regularized
low-rank approximation when the column count R is given by the number of data points in a
dataset. On the other hand, the algorithm has poor dependence on the matrix count N and
error parameter ε. For tensor decomposition, R is typically no larger than a few hundred,
while high accuracy (ϵ ≈ 10−3) is required for certain tensors to achieve a fit competitive
with non-randomized methods (see section 3.4.3, Figures 3.5 and 3.6). When λ is small, we
have sλ ≈ R. Here, Woodruff and Zandieh’s runtime has an O(R3) dependence similar to
ours. When R ≤ log4R logN , our sampler has faster construction time as well.

Finally, we note that our sampling data structure can be constructed using highly cache-
efficient, parallelizable symmetric rank-R updates (BLAS3 operation dSYRK). As a result,
the quadratic dependence on R in our algorithm can be mitigated by dense linear algebra
accelerators, including GPUs.

3.6.2 Proof of Theorem 3.3.1

Theorem 3.3.1 appeared in a modified form as Lemma 10 in the work by Malik [Mal22].
This original version used the definition G̃>k = Φ ⊛⊛N

a=k+1 Gk in place of G>k defined
in Equation (3.4), where Φ was a sketched approximation of G+. Woodruff and Zandieh
[WZ22] exhibit a version of the theorem with similar modifications. We prove the version
stated in our work below.
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Proof of Theorem 3.3.1. We rely on the assumption that the Khatri-Rao product A is a
nonzero matrix (but it may be rank-deficient). We begin by simplifying the expression for the
leverage score of a row of A corresponding to multi-index (i1, ..., iN ). Starting with Equation
(3.2), we derive

ℓi1,...,iN

= A [(i1, ..., iN), :]G+A [(i1, ..., iN), :]⊤

= ⟨A [(i1, ..., iN), :]⊤A [(i1, ..., iN), :] ,G+⟩

= ⟨

(
N

⊛
a=1

Ua [ia, :]

)⊤( N

⊛
a=1

Ua [ia, :]

)
,G+⟩

= ⟨
N

⊛
a=1

Ua [ia, :]
⊤ Ua [ia, :] ,G

+⟩

= ⟨
k−1

⊛
a=1

Ua [ia, :]
⊤ Ua [ia, :] ,Uk [ik, :]

⊤Uk [ik, :] ⊛
N

⊛
a=k+1

Ua [ia, :]
⊤Ua [ia, :] ,G

+⟩

= ⟨
k−1

⊛
a=1

Ua [ia, :]
⊤ Ua [ia, :] ,Uk [ik, :]

⊤Uk [ik, :] ,G
+ ⊛

N

⊛
a=k+1

Ua [ia, :]
⊤Ua [ia, :]⟩.

(3.13)

We proceed to the main proof. To compute p(ŝk = sk | ŝ<k = s<k), we marginalize over
random variables ŝk+1...ŝN . Using the definition of h<k from Equation (3.3), we have

p(ŝk = sk | ŝ<k = s<k) ∝
∑

ik+1,...,iN

p

(
(ŝ<k = s<k) ∧ (ŝk = sk) ∧

N∧
u=k+1

(ŝu = iu)

)
∝

∑
ik+1,...,iN

ℓs1,...,sk,ik+1,...,iN .

(3.14)

The first line above follows by marginalizing over ŝk+1, ..., ŝN . The second line follows because
the joint random variable (ŝ1, ..., ŝN) follows the distribution of statistical leverage scores on
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the rows of A. We now plug in Equation (3.13) to get∑
ik+1,...,iN

ℓs1,...,sk,ik+1,...,iN

=
∑

ik+1,...,iN

⟨
k−1

⊛
a=1

Ua [sa, :]
⊤Ua [sa, :] ,Uk [sk, :]

⊤ Uk [sk, :] ,G
+ ⊛

N

⊛
a=k+1

Ua [ia, :]
⊤Ua [ia, :]⟩

=
∑

ik+1,...,iN

⟨h<kh
⊤
<k,Uk [sk, :]

⊤Uk [sk, :] ,G
+ ⊛

N

⊛
a=k+1

Ua [ia, :]
⊤Ua [ia, :]⟩

= ⟨h<kh
⊤
<k,Uk [sk, :]

⊤Uk [sk, :] ,G
+ ⊛

N

⊛
a=k+1

Ia∑
ia=1

Ua [ia, :]
⊤Ua [ia, :]⟩

= ⟨h<kh
⊤
<k,Uk [sk, :]

⊤Uk [sk, :] ,G
+ ⊛

N

⊛
a=k+1

Ga⟩

= ⟨h<kh
⊤
<k,Uk [sk, :]

⊤Uk [sk, :] ,G>k⟩.
(3.15)

We compute the normalization constant C for the distribution by summing the last line of
Equation (3.15) over all possible values for ŝk:

C =

Ik∑
sk=1

⟨h<kh
⊤
<k,Uk [sk, :]

⊤ Uk [sk, :] ,G>k⟩

= ⟨h<kh
⊤
<k,

Ik∑
sk=1

Uk [sk, :]
⊤Uk [sk, :] ,G>k⟩

= ⟨h<kh
⊤
<k,Gk,G>k⟩.

(3.16)

For k = 1, we have h<k = [1, ..., 1]⊤, so C = ⟨Gk,G>k⟩. Then C is the sum of all leverage
scores, which is known to be the rank of A [Woo+14]. Since A was assumed nonzero, C ≠ 0.
For k > 1, assume that the conditioning event ŝ<k = s<k occurs with nonzero probability.
This is a reasonable assumption, since our sampling algorithm will never select prior values
ŝ1, ..., ŝk−1 that have 0 probability of occurrence. Let C̃ be the normalization constant for
the conditional distribution on ŝk−1. Then we have

0 < p(ŝk−1 = sk−1 | ŝ<k−1 = s<k−1)

= C̃−1⟨h<k−1h
⊤
<k−1,Uk−1 [sk−1, :]

⊤Uk−1 [sk−1, :] ,G>k−1⟩
= C̃−1⟨h<kh

⊤
<k,G>k−1⟩

= C̃−1⟨h<kh
⊤
<k,Gk ⊛G>k⟩

= C̃−1⟨h<kh
⊤
<k,Gk,G>k⟩

= C̃−1C

(3.17)
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Since C̃ > 0, we must have C > 0.

3.6.3 Proof of Lemma 3.3.2

We detail the construction procedure, sampling procedure, and correctness of our proposed
data structure. Recall that TI,F denotes the collection of nodes in a full, complete binary
tree with ⌈I/F ⌉ leaves. Each leaf v ∈ TI,F holds a segment S(v) = {S0(v)..S1(v)} ⊆ {1..I},
with |S(v)| ≤ F and S(u) ∩ S(v) = ∅ for distinct leaves u, v. For each internal node v,
S(v) = S(L(v)) ∪ S(R(v)), where L(v) and R(v) denote the left and right children of node v.
The root node r satisfies S(r) = {1..I}.

Construction: Algorithm 7 gives the procedure to build the data structure. We initialize a
segment tree TI,F and compute Gv for all leaf nodes v ∈ TI,F as a sum of outer products of
rows from U (lines 1-3). Starting at the level above the leaves, we then compute Gv for each
internal node as the sum of GL(v) and GR(v), the partial Gram matrices of its two children.
Runtime O(IR2) is required to compute I outer products across all iterations of the loop on
line 3. Our segment tree has ⌈I/F ⌉ − 1 internal nodes, and the addition in line 6 contributes
runtime O(R2) for each internal node. This adds complexity O(R2(⌈I/F ⌉ − 1)) ≤ O(IR2),
for total construction time O(IR2).

To analyze the space complexity, observe that we store a matrix Gv ∈ RR×R at all 2⌈I/F ⌉−1
nodes of the segment tree, for asymptotic space usage O(⌈I/F ⌉R2). We can cut the space
usage in half by only storing Gv when v is either the root or a left child in our tree, since
the sampling procedure in Algorithm 8 only accesses the partial Gram matrix stored by left
children. We can cut the space usage in half again by only storing the upper triangle of each
symmetric matrix Gv. Finally, in the special case that I < F , the segment tree has depth 1
and the initial binary search can be eliminated entirely. As a result, the data structure has
O(1) space overhead, since we can avoid storing any partial Gram matrices Gv. This proves
the complexity claims in point 1 of Lemma 3.3.2.

Algorithm 7 BuildSampler(U ∈ RI×R, F , Y )

1: Build tree TI,F with depth d = ⌈log⌈I/F ⌉⌉
2: for v ∈ leaves(TI,F ) do

3: Gv :=
∑

i∈S(v) U [i, :]⊤U [i, :]
4: for u = d− 2...0 do
5: for v ∈ level(TI,F , u) do
6: Gv := GL(v) + GR(v)

Sampling: Algorithm 8 gives the procedure to draw a sample from our proposed data struc-
ture. It is easy to verify that the normalization constant C for qh,U ,Y is ⟨hh⊤,Groot(TI,F ),Y ⟩,
since Groot(TI,F ) = U⊤U . Lines 8 and 9 initialize a pair of templated procedures m̃ and
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q̃, each of which accepts a node from the segment tree. The former is used to compute
the branching threshold at each internal node, and the latter returns the probability vector
qh,U ,Y [S0(v) : S1(v)] for the segment {S0(v)..S1(v)} maintained by a leaf node. To see this
last fact, observe for i ∈ [I] that

q̃(v) [i− S0(v)]

= C−1U [i, :] · (hh⊤ ⊛ Y ) ·U [i, :]⊤

= C−1⟨hh⊤,U [i, :]⊤U [i, :] ,Y ⟩
= qh,U ,Y [i] .

(3.18)

The loop on line 12 performs the binary search using the two templated procedures. Line
18 uses the procedure q̃ to scan through at most F bin endpoints after the binary search
finishes early.

The depth of segment tree TI,F is log⌈I/F ⌉. As a result, the runtime of the sampling procedure
is dominated by log⌈I/F ⌉ evaluations of m̃ and a single evaluation of q̃ during the binary
search. Each execution of procedure m̃ requires time O(R2), relying on the partial Gram
matrices Gv computed during the construction phase. When Y is a general p.s.d. matrix,
the runtime of q̃ is O(FR2). This complexity is dominated by the matrix multiplication
W · (hh⊤ ⊛ Y ) on line 5. In this case, the runtime of the “RowSampler” procedure to
draw one sample is O(R2 log⌈I/F ⌉+FR2), satisfying the complexity claims in point 2 of the
lemma.

Now suppose Y is a rank-1 matrix with Y = uu⊤ for some vector u. We have hh⊤ ⊛ Y =
(h⊛ u)(h⊛ u)⊤. This gives

q̃p(h, C, v) = diag(W · (hh⊤ ⊛ uu⊤) ·W ) = (W · (h⊛ u))2

where the square is elementwise. The runtime of the procedure q̃ is now dominated by
a matrix-vector multiplication that costs time O(FR). In this case, we have per-sample
complexity O(R2 log⌈I/F ⌉+ FR), matching the complexity claim in point 3 of the lemma.

Correctness: Recall that the inversion sampling procedure partitions the interval [0, 1] into
I bins, the i-th bin having width qh,U ,Y [i]. The goal of our procedure is to find the bin that
contains the uniform random draw d. Since procedure m̃ correctly returns the branching
threshold (up to the offset “low”) given by Equation (3.7), the loop on line 12 correctly
implements a binary search on the list of bin endpoints specified by the vector qh,U ,Y . At
the end of the loop, c is a leaf node that maintains a collection S(c) of bins, one of which
contains the random draw d. Since the procedure q̃ correctly returns probabilities qh,U ,Y [i]
for i ∈ S(c) for leaf node c, (see Equation (3.18)), line 18 finds the bin that contains the
random draw d. The correctness of the procedure follows from the correctness of inversion
sampling [Saa+20].
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Algorithm 8 Row Sampling Procedure

Require: Matrices U ,Y saved from construction, partial Gram matrices {Gv | v ∈ TI,F}.
1: procedure mp(h, C, v)
2: return C−1⟨hh⊤,Gv,Y ⟩
3: procedure qp(h, C, v)
4: W := U [S(v), :]
5: return C−1diag(W · (hh⊤ ⊛ Y ) ·W⊤)
6: procedure RowSample(h)
7: C := ⟨hh⊤,Groot(TI,F ),Y ⟩
8: m̃(·) := mp(h, C, ·)
9: q̃(·) := qp(h, C, ·)
10: c := root(TI,F ), low = 0.0, high = 1.0
11: Sample d ∼ Uniform(0.0, 1.0)
12: while c /∈ leaves(TI,F ) do
13: cutoff := low + m̃(L(c))
14: if cutoff ≥ d then
15: c := L(c), high := cutoff
16: else
17: c := R(c), low := cutoff

18: return S0(v) + arg mini≥0

(
low +

∑i
j=1 q̃(c) [j] < d

)

3.6.4 Cohesive Proof of Theorem 3.1.1

In this proof, we fully explain Algorithms 5 and 6 in the context of the sampling procedure
outlined in section 3.3.2. We verify the complexity claims first and then prove correctness.

Construction and Update: For each matrix Uj, Algorithm 5 builds an efficient row
sampling data structure Zj as specified by Lemma 3.3.2. We let the p.s.d. matrix Y
that parameterizes each sampler be a matrix of ones, and we set F = R. From Lemma
3.3.2, the time to construct sampler Zj is O(IjR

2). The space used by sampler Zj is
O(⌈Ij/F ⌉R2) = O(IjR), since F = R. In case Ij < R, we use the special case described in
Section 3.6.3 to get a space overhead O(1), avoiding a term O(R2) in the space complexity.

Summing the time and space complexities over all j proves part 1 of the theorem. To update
the data structure if matrix Uj changes, we only need to rebuild sampler Zj for a cost of
O(IjR

2). The construction phase also computes and stores the Gram matrix Gj for each
matrix Uj. We defer the update procedure in case a single entry of matrix Uj changes to
Section 3.6.5.

Sampling: For all indices k (except possibly j), lines 1-5 from Algorithm 6 compute G>k
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and its eigendecomposition. Only a single pass over the Gram matrices Gk is needed, so
these steps cost O(R3) for each index k. Line 5 builds an efficient row sampler Ek for the
matrix of scaled eigenvectors

√
Λk ·Vk. For sampler k, we set Y = Gk with cutoff parameter

F = 1. From Lemma 3.3.2, the construction cost is O(R3) for each index k, and the space
required by each sampler is O(R3). Summing these quantities over all k ̸= j gives asymptotic
runtime O(NR3) for lines 2-5.

The loop spanning lines 6-12 draws J row indices from the Khatri-Rao product U̸=j . For each
sample, we maintain a “history vector” h to write the variables h<k from Equation (3.3).
For each index k ̸= j, we draw random variable ûk using the row sampler Ek. This random
draw indexes a scaled eigenvector of G>k. We then use the history vector h multiplied by
the eigenvector to sample a row index t̂k using data structure Zk. The history vector h is
updated, and we proceed to draw the next index t̂k.

As written, lines 2-5 also incur scratch space usage O(NR3). The scratch space can be
reduced to O(R3) by exchanging the order of loops on line 6 and line 8 and allocating J
separate history vectors h, once for each draw. Under this reordering, we perform all J draws
for each variable ûk and t̂k before moving to ûk+1 and t̂k+1. In this case, only a single data
structure Ek is required at each iteration of the outer loop, and we can avoid building all the
structures in advance on line 5. We keep the algorithm in the form written for simplicity, but
we implemented the memory-saving approach in our code.

From Lemma 3.3.2, lines 9 and 10 cost O(R2 logR) and O (R2 log⌈Ik/R⌉), respectively. Line
11 costs O(R) and contributes a lower-order term. Summing over all k ̸= j, the runtime to
draw a single sample is

O

(∑
k ̸=j

(R2 log⌈Ik/R⌉+ R2 logR)

)
= O

(∑
k ̸=j

R2 log max (Ik, R)

)
.

Adding the runtime for all J samples to the runtime of the loop spanning lines 2-6 gives

runtime O
(
NR3 + J

∑
k ̸=j R

2 log max (Ik, R)
)

, and the complexity claims have been proven.

Correctness: We show correctness for the case where j = −1 and we sample from the
Khatri-Rao product of all matrices Uk, since the proof for any other value of j requires a
simple reindexing. To show that our sampler is correct, it is enough to prove for 1 ≤ k ≤ N ,

p(t̂k = tk | h<k) = qh<k,Uk,G>k
[tk] , (3.19)

since, by Theorem 3.3.1, p(ŝk = sk | ŝ<k = s<k) = qh<k,Uk,G>k
[sk]. This would imply that the

joint random variable (t̂1, ..., t̂N) has the same probability distribution as (ŝ1, ..., ŝN), which
by definition follows the leverage score distribution on U1 ⊙ ...⊙UN . To prove the condition
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in Equation (3.19), we apply Equations (3.9) and (3.11) derived earlier:

p(t̂k = tk | h<k)

=
R∑

uk=1

p(t̂k = tk | ûk = uk,h<k)p(ûk = uk | h<k) (Bayes’ Rule)

=
R∑

uk=1

w [uk]
W [tk, uk]

∥W [:, uk]∥1
(Equations (3.9) and (3.11), in reverse)

= qh<k,Uk,G>k
[tk] .

(3.20)

3.6.5 Efficient Single-Element Updates

Applications such as CP decomposition typically change all entries of a single matrix Uj

between iterations, incurring an update cost O(IjR
2) for our data structure from Theorem

3.1.1. In case only a single element of Uj changes, our data structure can be updated in time
O (R log Ij).

Proof. Algorithm 9 gives the procedure when the update Uj [r, c] := û is performed. The
matrices Gv refer to the partial Gram matrices maintained by each node v of the segment
trees in our data structure, and the matrix Ũj refers to the matrix Uj before the update
operation.

Algorithm 9 UpdateSampler(j, r, c, û)

1: Let u = Ũj [r, c]
2: Locate v such that r ∈ S(v)
3: Update Gv [c, :] += (û− u)Ũj [r, :]

4: Update Gv [:, c] += (û− u)Ũj [r, :]⊤

5: Update Gv [c, c] += (û− u)2

6: while v ̸= root(TIj ,R) do
7: vprev := v, v := A(v)
8: Update Gv := Gsibling(vprev) + Gvprev

Let TIj ,R be the segment tree corresponding to matrix Uj in the data structure, and let
v ∈ TIj ,R be the leaf whose segment contains r. Lines 3-5 of the algorithm update the row
and column indexed by c in the partial Gram matrix held by the leaf node.

The only other nodes requiring an update are ancestors of v, each holding a partial Gram
matrix that is the sum of its two children. Starting from the direct parent A(v), the loop
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on line 6 performs these ancestor updates. The addition on line 8 only requires time O(R),
since only row and column c change between the old value of Gv and its updated version.
Thus, the runtime of this procedure is O(R log⌈Ij/R⌉) from multiplying the cost to update a
single node by the depth of the tree.

3.6.6 Extension to Sparse Input Matrices

Our data structure is designed to sample from Khatri-Rao products U1 ⊙ ... ⊙ UN where
the input matrices U1, ...,UN are dense, a typical situation in tensor decomposition. Slight
modifications to the construction procedure permit our data structure to handle sparse
matrices efficiently as well. The following corollary states the result as a modification to
Theorem 3.1.1.

Corollary 3.6.1 (Sparse Input Modification). When input matrices U1, ...,UN are sparse,
point 1 of Theorem 3.1.1 can be modified so that the proposed data structure has

O

(
R

N∑
j=1

nnz(Uj)

)
construction time and

O

(
N∑
j=1

nnz(Uj)

)
storage space. The sampling time and scratch space usage in point 2 of Theorem 3.1.1 does
not change. The single-element update time in point 1 is likewise unchanged.

Proof. We will modify the data structure in Lemma 3.3.2. The changes to its construction
and storage costs will propagate to our Khatri-Rao product sampler, which maintains one of
these data structures for each input matrix.

Let us restrict ourselves to the case F = R,Y = [1] in relation to the data structure in
Lemma 3.3.2. These choices for F and Y are used in the construction phase given by
Algorithm 5. The proof in Section 3.6.3 constrains each leaf v of a segment tree TI,F to hold
a contiguous segment S(v) ⊆ [I] of cardinality at most F . Instead, choose each segment
S(v) = {S0(v)..S1(v)} so that U [S0(v) : S1(v), :] has at most R2 nonzero elements, and the
leaf count of the tree is at most ⌈nnz(U )/R2⌉+ 1 for input matrix U ∈ RI×R. Assuming the
nonzero entries of U are sorted in row-major order, we can construct such a partition of [I]
into segments in time O(nnz(U )) by iterating in order through the nonzero rows and adding
each of them to a “current” segment. We shift to a new segment when the current segment
cannot hold any more nonzero elements.

This completes the modification to the data structure in Lemma 3.3.2, and we now analyze
its updated time / space complexity.
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Updated Construction / Update Complexity of Lemma 3.3.2, F = R,Y = [1]:
Algorithm 7 constructs the partial Gram matrix for each leaf node v in the segment tree. Each
nonzero in the segment U [S0(v) : S1(v), :] contributes time O(R) during line 3 of Algorithm
7 to update a single row and column of Gv. Summed over all leaves, the cost of line 3
is O(nnz(U)R). The remainder of the construction procedure updates the partial Gram
matrices of all internal nodes. Since there are at most O (⌈nnz(U )/R2⌉) internal nodes and
the addition on line 6 costs O(R2) per node, the remaining steps of the construction procedure
cost O(nnz(U)), a lower-order term. The construction time is therefore O(nnz(U)R).

Since we store a single partial Gram matrix of size R2 at each of O (⌈nnz(U)/R2⌉) internal
nodes, the space complexity of our modified data structure is O(nnz(U )).

Finally, the data structure update time in case a single element of U is modified does
not change from Theorem 3.1.1. Since the depth of the segment tree ⌈nnz(U)/R2⌉ + 1 is
upper-bounded by ⌈I/R⌉+ 1, the runtime of the update procedure in Algorithm 9 stays the
same.

Updated Sampling Complexity of Lemma 3.3.2, F = R,Y = [1]: The procedure
“RowSample” in Algorithm 8 now conducts a traversal of a tree of depth O(⌈nnz(U)/R2⌉).
As a result, we can still upper-bound the number of calls to procedure m̃ as ⌈I/F ⌉. The
runtime of procedure m̃ is unchanged. The runtime of procedure q̃ for leaf node c is
dominated by the matrix-vector multiplication U [S0(c) : S1(c), :] · h. This runtime is
O (nnz (U [S0(c) : S1(c), :])) ≤ O (R2). Putting these facts together, the sampling complexity
of the data structure in Lemma 3.3.2 does not change under our proposed modifications for
F = R,Y = [1].

Updated Construction Complexity of Theorem 3.1.1: Algorithm 5 now requires

O
(
R
∑N

j=1 nnz(Uj)
)

construction time and O
(∑N

j=1 nnz(Uj)
)

storage space, summing the

costs for the updated structure from Lemma 3.3.2 over all matrices U1, ...,UN . The sampling
complexity of these data structures is unaffected by the modifications, which completes the
proof of the corollary.

3.6.7 Alternating Least Squares CP Decomposition

CP Decomposition CP decomposition represents an N -dimensional tensor T̃ ∈ RI1×...×In

as a weighted sum of generalized outer products. Formally, let U1, ...,UN with Uj ∈ RIj×R be
factor matrices with each column having unit norm, and let σ ∈ RR be a nonnegative coeffi-
cient vector. We call R the rank of the decomposition. The tensor T̃ that the decomposition
represents is given elementwise by

T̃ [i1, ..., iN ] := ⟨σ⊤,U1 [i1, :] , ...,UN [iN , :]⟩ =
R∑

r=1

σ [r]U1[i1, r] · · ·UN [iN , r],
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which is a generalized inner product between σ⊤ and rows Uj [ij, :] for 1 ≤ j ≤ N . Given an
input tensor T and a target rank R, the goal of approximate CP decomposition is to find a

rank-R representation T̃ that minimizes the Frobenius norm
∥∥∥T − T̃ ∥∥∥

F
.

Definition of Matricization The matricization mat(T , j) flattens tensor T ∈ RI1×...×IN

into a matrix and isolates mode j along the row axis of the output. The output of matri-
cization has dimensions Ij ×

∏
k ̸=j Ik. We take the formal definition below from a survey by

Kolda and Bader [KB09]. The tensor entry T [i1, ..., iN ] is equal to the matricization entry
mat(T , j) [iN , u], where

u = 1 +
N∑
k=1
k ̸=j

(ik − 1)
k−1∏
m=1
m ̸=j

Im.

Details about Alternating Least Squares Let U1, ...,UN be factor matrices of a low-
rank CP decomposition, Uk ∈ RIk×R. We use U̸=j to denote

⊙k=1
k=N,k ̸=j Uk. Note the

inversion of order here to match indexing in the definition of matricization above. Algorithm
10 gives the non-randomized alternating least squares algorithm CP-ALS that produces a
decomposition of target rank R given input tensor T ∈ RI1×...×IN in general format. The
random initialization on line 1 of the algorithm can be implemented by drawing each entry of
the factor matrices Uj according to a standard normal distribution, or via a randomized range
finder [HMT11]. The vector σ stores the generalized singular values of the decomposition.
At iteration j within a round, ALS holds all factor matrices except Uj constant and solves a
linear-least squares problem on line 6 for a new value for Uj . In between least squares solves,
the algorithm renormalizes the columns of each matrix Uj to unit norm and stores their
original norms in the vector σ. Section 3.6.9 contains more details about the randomized
range finder and the convergence criteria used to halt iteration.

Algorithm 10 CP-ALS(T , R)

1: Initialize Uj ∈ RIj×R randomly for 1 ≤ j ≤ N .
2: Renormalize Uj [:, i] /= ∥Uj [:, i]∥2, 1 ≤ j ≤ N, 1 ≤ i ≤ R.
3: Initialize σ ∈ RR to [1].
4: while not converged do
5: for j = 1...N do
6: Uj := arg minX

∥∥U̸=j ·X⊤ −mat(T , j)⊤
∥∥
F

7: σ [i] = ∥Uj [:, i]∥2, 1 ≤ i ≤ R
8: Renormalize Uj [:, i] /= ∥Uj [:, i]∥2, 1 ≤ i ≤ R.
9: return [σ;U1, ...,UN ].

We obtain a randomized algorithm for sparse tensor CP decomposition by replacing the exact
least squares solve on line 6 with a randomized method according to Theorem 3.2.1. Below,
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we prove Corollary 3.3.3, which derives the complexity of the randomized CP decomposition
algorithm.

Proof of Corollary 3.3.3. The design matrix U̸=j for optimization problem j within a round
of ALS has dimensions

∏
k ̸=j Ik × R. The observation matrix mat(T , j)⊤ has dimensions∏

k ̸=j Ik × Ij. To achieve error threshold 1 + ε with probability 1 − δ on each solve, we

draw J = Õ (R/(εδ)) rows from both the design and observation matrices and solve the
downsampled problem (Theorem 3.2.1). These rows are sampled according to the leverage
score distribution on the rows of U ̸=j, for which we use the data structure in Theorem

3.1.1. After a one-time initialization cost O(
∑N

j=1 IjR
2)) before the ALS iteration begins, the

complexity to draw J samples (assuming Ij ≥ R) is

O

(
NR3 + J

∑
k ̸=j

R2 log Ik

)
= Õ

(
NR3 +

R

εδ

∑
k ̸=j

R2 log Ik

)
.

The cost to assemble the corresponding subset of the observation matrix is O(JIj) =
Õ(RIj/(εδ)). The cost to solve the downsampled least squares problem is O(JR2) =
Õ(IjR

2/(εδ)), which dominates the cost of forming the subset of the observation matrix.
Finally, we require additional time O(IjR

2) to update the sampling data structure (Theorem
3.1.1 part 1). Adding these terms together and summing over 1 ≤ j ≤ N gives

Õ

(
1

εδ
·

N∑
j=1

[
IjR

2 +
∑
k ̸=j

R3 log Ik

])

= Õ

(
1

εδ
·

N∑
j=1

[
IjR

2 + (N − 1)R3 log Ij
])

.

(3.21)

Rounding N−1 to N and multiplying by the number of iterations gives the desired complexity.
When Ij < R for any j, the complexity changes in Theorem 3.1.1 propagate to the equation
above. The column renormalization on line 8 of the CP-ALS algorithm contributes additional

time O
(∑N

j=1 IjR
)

per round, a lower-order term.

3.6.8 Experimental Platform and Sampler Parallelism

We provide two implementations of our sampler. The first is a slow reference implementation
written entirely in Python, which closely mimics our pseudocode and can be used to test
correctness. The second is an efficient implementation written in C++, parallelized in shared
memory with OpenMP and Intel Thread Building Blocks.
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Each Perlmutter CPU node (our experimental platform) is equipped with two sockets, each
containing an AMD EPYC 7763 processor with 64 cores. All benchmarks were conducted
with our efficient C++ implementation using 128 OpenMP threads. We link our code against
Intel Thread Building blocks to call a multithreaded sort function when decomposing sparse
tensors. We use OpenBLAS 0.3.21 to handle linear algebra with OpenMP parallelism enabled,
but our code links against any linear algebra library implementing the CBLAS and LAPACKE
interfaces.

Our proposed data structure samples from the exact distribution of leverage scores of the
Khatri-Rao product, thereby enjoying better sample efficiency than alternative approaches
such as CP-ARLS-LEV [LK22]. The cost to draw each sample, however, is O(R2 logH),
where H is the number of rows in the Khatri-Rao product. Methods such as row-norm-
squared sampling or CP-ARLS-LEV can draw each sample in time O(logH) after appropriate
preprocessing. Therefore, efficient parallelization of our sampling procedure is required for
competitive performance, and we present two strategies below.

1. Asynchronous Thread Parallelism: The KRPSampleDraw procedure in Algorithm
6 can be called by multiple threads concurrently without data races. The simplest
parallelization strategy divides the J samples equally among the threads in a team,
each of which makes calls to KRPSampleDraw asynchronously. This strategy works
well on a CPU, but is less attractive on a SIMT processor like a GPU where instruction
streams cannot diverge without significant performance penalties.

2. Synchronous Batch Parallelism As an alternative to the asynchronous strategy,
suppose for the moment that all leaves have the same depth in each segment tree. Then
for every sample, STSample makes a sequence of calls to m̃, each updating the current
node by branching left or right in the tree. The length of this sequence is the depth of
the tree, and it is followed by a single call to the function q̃. Observe that procedure m̃
in Algorithm 8 can be computed with a matrix-vector multiplication followed by a dot
product. The procedure q̃ of Algorithm 8 requires the same two operations if F = 1 or
Y = [1]. Thus, we can create a batched version of our sampling procedure that makes
a fixed length sequence of calls to batched gemv and dot routines. All processors march
in lock-step down the levels of each segment tree, each tracking the branching paths
of a distinct set of samples. The MAGMA linear algebra library provides a batched
version of gemv [Hai+15], while a batched dot product can be implemented with an
ad hoc kernel. MAGMA also offers a batched version of the symmetric rank-k update
routine syrk, which is helpful to parallelize row sampler construction (Algorithm 7).
When all leaves in the tree are not at the same level, the the bottom level of the tree
can be handled with a special sequence of instructions making the required additional
calls to m̃.
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Our CPU code follows the batch synchronous design pattern. To avoid dependency on
GPU-based MAGMA routines in our CPU prototype, portions of the code that should be
batched BLAS calls are standard BLAS calls wrapped in a for loop. These sections can be
easily replaced when the appropriate batched routines are available.

3.6.9 Sparse Tensor CP Experimental Configuration

Table 3.3: Sparse tensors from FROSTT collection.

Tensor Dimensions Nonzeros Prep. Init.

Uber Pickups 183 × 24 × 1,140 × 1,717 3,309,490 None IID
Enron Emails 6,066 × 5,699 × 244,268 × 1,176 54,202,099 log RRF
NELL-2 12,092 × 9,184 × 28,818 76,879,419 log IID
Amazon Reviews 4,821,207 × 1,774,269 × 1,805,187 1,741,809,018 None IID
Reddit-2015 8,211,298 × 176,962 × 8,116,559 4,687,474,081 log IID

Table 3.3 lists the nonzero counts and dimensions of sparse tensors in our experiments
[Smi+17]. We took the log of all values in the Enron, NELL-2, and Reddit-2015 tensors.
Consistent with established practice, this operation damps the effect of a few high magnitude
tensor entries on the fit metric [LK22].

The factor matrices for the Uber, Amazon, NELL-2, and Reddit experiments were initialized
with i.i.d. entries from the standard normal distribution. As suggested by Larsen and Kolda
[LK22], the Enron tensor’s factors were initialized with a randomized range finder [HMT11].
The range finder algorithm initializes each factor matrix Uj as mat(T , j)S, a sketch applied
to the mode-j matricization of T with S ∈ R

∏
k ̸=j Ik×R. Larsen and Kolda [LK22] chose S as a

sparse sampling matrix to select a random subset of fibers along each mode. We instead used
an i.i.d. Gaussian sketching matrix that was not materialized explicitly. Instead, we exploited
the sparsity of T and noted that at most nnz (T ) columns of mat(T , j) were nonzero. Thus,
we computed at most nnz (T ) rows of the random sketching matrix S, which were lazily
generated and discarded during the matrix multiplication without incurring excessive memory
overhead.

ALS was run for a maximum of 40 rounds on all tensors except for Reddit, which was run
for 80 rounds. The exact fit was computed every 5 rounds (defined as 1 epoch), and we
used an early stopping condition to terminate runs before the maximum round count. The
algorithm was terminated at epoch T if the maximum fit in the last 3 epochs did not exceed
the maximum fit from epoch 1 through epoch T − 3 by tolerance 10−4.

Hybrid CP-ARLS-LEV deterministically includes rows from the Khatri-Rao product whose
probabilities exceed a threshold τ . The ostensible goal of this procedure is to improve diversity
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in sample selection, as CP-ARLS-LEV may suffer from many repeat draws of high probability
rows. We replicated the conditions proposed in the original work by selecting τ = 1/J [LK22].

Individual trials of non-randomized (exact) ALS on the Amazon and Reddit tensors required
several hours on a single Perlmutter CPU node. To speed up our experiments, accuracy
measurements for exact ALS in Figure 3.4 were carried out using multi-node SPLATT, The
Surprisingly ParalleL spArse Tensor Toolkit [SK16b], on four Perlmutter CPU nodes. The
fits computed by SPLATT agree with those computed by our own non-randomized ALS
implementation. As a result, Figure 3.4 verifies that our randomized algorithm STS-CP
produces tensor decompositions with accuracy comparable to those by highly-optimized,
state-of-the-art CP decomposition software. We leave a distributed-memory implementation
of our randomized algorithms to future work.

3.6.10 Efficient Computation of Sketch Distortion

The variable σ has a definition in this section distinct from the rest of this work. The
condition number κ of a matrix M is defined as

κ(M) :=
σmax(M)

σmin(M )

where σmin(M) and σmax(M) denote the minimum and maximum nonzero singular values
of M . Let A be a Khatri-Rao product of N matrices U1, ...,UN with

∏N
j=1 Ij rows, R

columns, and rank r ≤ R. Let A = QΣV ⊤ be its reduced singular value decomposition
with Q ∈ R

∏
j Ij×r,Σ ∈ Rr×r, and V ∈ Rr×R. Finally, let S ∈ RJ×

∏
j Ij be a leverage score

sampling matrix for A. Our goal is to compute κ(SQ) without fully materializing either A
or its QR decomposition. We derive

κ(SQ) = κ(SQΣV ⊤V Σ−1)

= κ(SAV Σ−1)
(3.22)

The matrix SA ∈ RJ×R is efficiently computable using our leverage score sampling data
structure. We require time O(JR2) to multiply by V Σ−1 and compute the singular value
decomposition of the product to get the condition number. Next observe that A⊤A =
V Σ2V ⊤, so we can recover V and Σ−1 by eigendecomposition of A⊤A ∈ RR×R in time
O(R3). Finally, recall the formula

A⊤A =
N

⊛
j=1

U⊤
j Uj

used at the beginning of Section 3.3 that enables computation of A⊤A in time O
(∑N

j=1 IjR
2
)

without materializing the full Khatri-Rao product. Excluding the time to form SA (which is
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given by Theorem 3.1.1), κ(SQ) is computable in time

O

(
JR2 + R3 +

N∑
j=1

IjR
2

)
.

3.6.11 Further Experiments

3.6.11.1 Probability Distribution Comparison

Figure 3.8 provides confirmation on a small test problem that our sampler works as expected.
For the Khatri-Rao product of three matrices A = U1⊙U2⊙U3, it plots the true distribution
of leverage scores against a normalized histogram of 50,000 draws from the data structure
in Theorem 3.1.1. We choose U1,U2,U3 ∈ R8×8 initialized i.i.d. from a standard normal
distribution with 1% of all entries multiplied by 10. We observe excellent agreement between
the histogram and the true distribution.
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Figure 3.8: Comparison of true leverage score distribution with histogram of 50,000 samples
drawn from U1 ⊙U2 ⊙U3.

3.6.11.2 Fits Achieved for J = 216

Table 3.4 gives the fits achieved for sparse tensor decomposition for varying rank and algorithm
(presented graphically in Figure 3.5). Uncertainties are one standard deviation across 8 runs
of ALS.

3.6.11.3 Fit as a Function of Time

Figures 3.9a and 3.9b shows the fit as a function of time for the Amazon Reviews and NELL2
tensors. The hybrid version of CP-ARLS-LEV was used for comparison in both experiments.
As in section 3.4.3, thick lines are averages of the running max fit across 4 ALS trials, shown
by the thin dotted lines. For Amazon, the STS-CP algorithm makes faster progress than
CP-ARLS-LEV at all tested sample counts.
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Table 3.4: Fits Achieved by Randomized Algorithms for Sparse Tensor Decomposition,
J = 216, and non-randomized ALS. The best result among randomized algorithms is boldfaced.
“CP-ARLS-LEV-H” refers to the hybrid version of CP-ARLS-LEV and “Exact” refers to
non-randomized ALS.

Tensor R CP-ARLS-LEV CP-ARLS-LEV-H STS-CP (ours) Exact

Uber

25 .187 ± 2.30e-03 .188 ± 2.11e-03 .189 ± 1.52e-03 .190 ± 1.41e-03
50 .211 ± 1.72e-03 .212 ± 1.27e-03 .216 ± 1.18e-03 .218 ± 1.61e-03
75 .218 ± 1.76e-03 .218 ± 2.05e-03 .230 ± 9.24e-04 .232 ± 9.29e-04
100 .217 ± 3.15e-03 .217 ± 1.69e-03 .237 ± 2.12e-03 .241 ± 1.00e-03
125 .213 ± 1.96e-03 .213 ± 2.47e-03 .243 ± 1.78e-03 .247 ± 1.52e-03

Enron

25 .0881 ± 1.02e-02 .0882 ± 9.01e-03 .0955 ± 1.19e-02 .0978 ± 8.50e-03
50 .0883 ± 1.72e-02 .0920 ± 6.32e-03 .125 ± 1.03e-02 .132 ± 1.51e-02
75 .0899 ± 6.10e-03 .0885 ± 6.39e-03 .149 ± 1.25e-02 .157 ± 4.87e-03
100 .0809 ± 1.26e-02 .0787 ± 1.00e-02 .164 ± 5.90e-03 .176 ± 4.12e-03
125 .0625 ± 1.52e-02 .0652 ± 1.00e-02 .182 ± 1.04e-02 .190 ± 4.35e-03

NELL-2

25 .0465 ± 9.52e-04 .0467 ± 4.61e-04 .0470 ± 4.69e-04 .0478 ± 7.20e-04
50 .0590 ± 5.33e-04 .0593 ± 4.34e-04 .0608 ± 5.44e-04 .0618 ± 4.21e-04
75 .0658 ± 6.84e-04 .0660 ± 3.95e-04 .0694 ± 2.96e-04 .0708 ± 3.11e-04
100 .0700 ± 4.91e-04 .0704 ± 4.48e-04 .0760 ± 6.52e-04 .0779 ± 5.09e-04
125 .0729 ± 8.56e-04 .0733 ± 7.22e-04 .0814 ± 5.03e-04 .0839 ± 8.47e-04

Amazon

25 .338 ± 6.63e-04 .339 ± 6.99e-04 .340 ± 6.61e-04 .340 ± 5.78e-04
50 .359 ± 1.09e-03 .360 ± 8.04e-04 .366 ± 7.22e-04 .366 ± 1.01e-03
75 .367 ± 1.82e-03 .370 ± 1.74e-03 .382 ± 9.13e-04 .382 ± 5.90e-04
100 .366 ± 3.05e-03 .371 ± 2.53e-03 .392 ± 6.67e-04 .393 ± 5.62e-04
125 .358 ± 6.51e-03 .364 ± 4.22e-03 .400 ± 3.67e-04 .401 ± 3.58e-04

Reddit

25 .0581 ± 1.02e-03 .0583 ± 2.78e-04 .0592 ± 3.07e-04 .0596 ± 4.27e-04
50 .0746 ± 1.03e-03 .0738 ± 4.85e-03 .0774 ± 7.88e-04 .0783 ± 2.60e-04
75 .0845 ± 1.64e-03 .0849 ± 8.96e-04 .0909 ± 5.49e-04 .0922 ± 3.69e-04
100 .0904 ± 1.35e-03 .0911 ± 1.59e-03 .101 ± 6.25e-04 .103 ± 7.14e-04
125 .0946 ± 2.13e-03 .0945 ± 3.17e-03 .109 ± 7.71e-04 .111 ± 7.98e-04
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Figure 3.9: Fit as a function of time, R = 100.

For the NELL-2 tensor, STS-CP makes slower progress than CP-ARLS-LEV for sample
counts up to J = 163, 840. On average, these trials with CP-ARLS-LEV do not achieve the
same final fit as STS-CP. CP-ARLS-LEV finally achieves a comparable fit to STS-CP when
the former uses J = 196, 608 samples, compared to J = 65, 536 for our method.

3.6.11.4 Speedup of STS-CP and Practical Usage Guide

Timing Comparisons. For each tensor, we now compare hybrid CP-ARLS-LEV and
STS-CP on the time required to achieve a fixed fraction of the fit achieved by non-randomized
ALS. For each tensor and rank in the set {25, 50, 75, 100, 125}, we ran both algorithms using
a range of sample counts. We tested STS-CP on values of J from the set {215x | 1 ≤ x ≤ 4}
for all tensors. CP-ARLS-LEV required a sample count that varied significantly between
datasets to hit the required thresholds, and we report the sample counts that we tested in
Table 3.5. Because CP-ARLS-LEV has poorer sample complexity than STS-CP, we tested a
wider range of sample counts for the former algorithm.

Table 3.5: Tested Sample Counts for hybrid CP-ARLS-LEV.

Tensor Values of J Tested

Uber {215x | x ∈ {1..13}}
Enron {215x | x ∈ {1..7} ∪ {10, 12, 14, 16, 18, 20, 22, 26, 30, 34, 38, 42, 46, 50, 54}}
NELL-2 {215x | x ∈ {1..7}}
Amazon {215x | x ∈ {1..7}}
Reddit {215x | x ∈ {1..12}}

For each configuration of tensor, target rank R, sampling algorithm, and sample count J , we
ran 4 trials using the configuration and stopping criteria in Section 3.6.9. The result of each
trial was a set of (time, fit) pairs. For each configuration, we linearly interpolated the pairs
for each trial and averaged the resulting continuous functions over all trials. The result for
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each configuration was a function fT ,R,A,J : R+ → [0, 1]. The value fT ,R,A,J(t) is the average
fit at time t achieved by algorithm A to decompose tensor T with target rank R using J
samples per least squares solve. Finally, let

SpeedupT ,R,M :=
minJ argmint≥0 [fT ,R,CP-ARLS-LEV-H,J(t) > P ]

minJ argmint≥0 [fT ,R,STS-CP,J(t) > P ]

be the speedup of STS-CP to over CP-ARLS-LEV (hybrid) to achieve a threshold fit P on
tensor T with target rank R. We let the threshold P for each tensor T be a fixed fraction of
the fit achieved by non-randomized ALS (see Table 3.4).

Figure 3.10 reports the speedup of STS-CP over hybrid CP-ARLS-LEV for P = 0.95 on all
tensors except Enron. For large tensors with over one billion nonzero elements, we report
a significant speedup anywhere from 1.4x to 2.0x for all tested ranks. For smaller tensors
with less than 100 million nonzero entries, the lower cost of each least squares solve lessens
the impact of the expensive, more accurate sample selection phase of STS-CP. Despite this,
STS-CP performs comparably to CP-ARLS-LEV at most ranks, with significant slowdown
only at rank 25 on the smallest tensor Uber.
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Figure 3.10: Speedup of STS-CP over CP-ARLS-LEV hybrid (LK) to reach 95% of the fit
achieved by non-randomized ALS. Large tensors have more than 1 billion nonzero entries.

On the Enron tensor, hybrid CP-ARLS-LEV could not achieve the 95% accuracy threshold
for any rank above 25 for the sample counts tested in Table 3.5. STS-CP achieved the
threshold accuracy for all ranks tested. Instead, Figure 3.11 reports the speedup to
achieve 85% of the fit of non-randomized ALS on the Enron. Beyond rank 25, our method
consistently exhibits more than 2x speedup to reach the threshold.

Guide to Sampler Selection. Based on the performance comparisons in this section,
we offer the following guide to CP decomposition algorithm selection. Our experiments
demonstrate that STS-CP offers the most benefit on sparse tensors with billions of
nonzeros elements (Amazon and Reddit) at high target decomposition rank. Here,
the runtime of our more expensive sampling procedure is offset by reductions in the least
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Figure 3.11: Speedup of STS-CP over CP-ARLS-LEV hybrid to reach 85% of the fit achieved
by non-randomized ALS, Enron Tensor.

squares solve time. For smaller tensors, our sampler may still offer significant performance
benefits (Enron). In other cases (Uber, NELL-2), CP-ARLS-LEV exhibits better performance,
but by small margins for rank beyond 50.

STS-CP reduces the cost of each least squares solve through a sample selection process that
relies on dense linear algebra primitives (see Algorithms 7 and 8). Because these operations
can be expressed as standard BLAS calls and can be carried out in parallel (see Section
3.6.8, we hypothesize that STS-CP is favorable when GPUs or other dense linear algebra
accelerators are available.

Because our target tensor is sparse, the least squares solve during each ALS iteration requires a
sparse matricized-tensor times Khatri-Rao product (spMTTKRP) operation. After sampling,
this primitive can reduced to sparse-matrix dense-matrix multiplication (SpMM). Development
of accelerators for these primitives is an active area of research [Wij+23; Son+22]. When
such accelerators are available, the lower cost of the spMTTKRP operation reduces the
relative benefit provided by the STS-CP sample selection method. We hypothesize that
CP-ARLS-LEV, with its faster sample selection process but lower sample efficiency, may
retain its benefit in this case. We leave verification of these two hypotheses as future work.
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Chapter 4

Distributed Randomized Sparse CP
Decomposition

Chapter 3 established the theory of a sketching algorithm to accelerate the MTTKRP. We now
focus on the downstream application—randomized Candecomp / PARAFAC decomposition—
and consider the practical details of distributing the algorithm on a cluster of processors.
Because processor-to-processor data exchange forms the main bottleneck, we devise strategies
to avoid communication while obeying local memory constraints on each node. Our deployed
methods rely on a theoretical communication analysis and novel strategies for distributing a
binary tree traversal.

Our distributed-memory randomized algorithms, d-STS-CP and d-CP-ARLS-LEV, have
significant advantages while preserving the accuracy of the final approximation. As Figure
4.2 shows, d-STS-CP computes a rank 100 decomposition of the Reddit tensor (∼ 4.7 billion
nonzero entries) with a 11x speedup over SPLATT, a state-of-the-art distributed-memory
decomposition package. The reported speedup was achieved on 512 CPU cores, with a final
fit within 0.8% of non-randomized ALS for the same iteration count. While the distributed
algorithm d-CP-ARLS-LEV achieves a lower final accuracy, it makes progress faster than
SPLATT and spends less time on sampling (completing 80 rounds in an average of 81 seconds).
We demonstrate that it is well-suited to smaller tensors and lower target ranks.

4.1 Introduction

Randomized algorithms for numerical linear algebra have become increasingly popular in
the past decade, but their distributed-memory communication characteristics and scaling
properties have received less attention. In this work, we examine randomized algorithms to
compute the Candecomp / PARAFAC (CP) decomposition, a generalization of the matrix
singular-value decomposition to a number of modes N > 2. Given a tensor T ∈ RI1×...×IN
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Figure 4.1: A subset of entries from the 3D Amazon Review sparse tensor [Smi+17] and its
illustrated CP decomposition.

and a target rank R, the goal of CP decomposition (illustrated in Figure 4.1) is to find a set
of factor matrices U1, ..., UN , Uj ∈ RIj×R with unit norm columns and a nonnegative vector
σ ∈ RR satisfying

T [i1, ..., iN ] ≈
R∑

r=1

σ [r]U1 [i1, r] ...UN [iN , r] . (4.1)

We consider real sparse tensors T with N ≥ 3, all entries known, and billions of nonzero
entries. Sparse tensors are a flexible abstraction for a variety of data, such as network traffic
logs [Mao+14], text corpora [Smi+17], and knowledge graphs [BAH19].

4.1.1 Motivation

Why is a low-rank approximation of a sparse tensor useful? We can view the sparse CP
decomposition as an extension of well-studied sparse matrix factorization methods, which can
mine patterns from large datasets [KP07]. Each row of the CP factors is a dense embedding
vector for an index ij ∈ [Ij], 1 ≤ j ≤ N . Because each embedding is a small dense vector
while the input tensor is sparse, sparse tensor CP decomposition may incur high relative
error with respect to the input and rarely captures the tensor sparsity structure exactly.
Nevertheless, the learned embeddings contain valuable information. CP factor matrices
have been successfully used to identify patterns in social networks [HKD20; LK22], detect
anomalies in packet traces [Mao+14], and monitor trends in internal network traffic [Smi+18].
As Table 4.1 shows, a wealth of software packages exists to meet the demand for sparse tensor
decomposition.

One of the most popular methods for computing a sparse CP decomposition, the Alternating-
Least-Squares (ALS) algorithm, involves repeatedly solving large, overdetermined linear
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Software Source Notes

SPLATT [Smi+15] CA-Distributed Algorithms, CSF Format
BIGTensor [Par+16] Hadoop MapReduce
ParTI! [LMV18] GPU Support, HiCOO Format
Genten [PK19] Kokkos Parellelism and Performance Portability

Table 4.1: Selected well-documented software packages for non-randomized sparse tensor CP
decomposition and their major contributions.
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Figure 4.2: Running maximum accuracy over time for SPLATT, a state-of-the-art distributed
CP decomposition software package, and our randomized algorithms on the Reddit tensor,
target rank R = 100, on 512 CPU cores. Curves are averages of 5 trials, 80 ALS rounds.

least-squares problems with structured design matrices [KB09]. High-performance libraries
DFacto [CV14], SPLATT [Smi+15], HyperTensor [KU15], and BigTensor [Par+16] distribute
these expensive computations to a cluster of processors that communicate through an
interconnect. Separately, several works use randomized sampling methods to accelerate the
least-squares solves, with prototypes implemented in a shared-memory setting [Che+16;
LK22; Mal22; Bha+23]. These randomized algorithms have strong theoretical guarantees and
offer significant asymptotic advantages over non-randomized ALS. Unfortunately, prototypes
of these methods require hours to run [LK22; Bha+23] and are neither competitive nor
scalable compared to existing libraries with distributed-memory parallelism.

4.1.2 Our Contributions

We propose the first distributed-memory parallel formulations of two randomized algorithms,
CP-ARLS-LEV [LK22] and STS-CP [Bha+23], with accuracy identical to their shared-memory
prototypes. We then provide implementations of these methods that scale to thousands of
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CPU cores. We face dual technical challenges to parallel scaling. First, sparse tensor
decomposition generally has lower arithmetic intensity (FLOPs / data word communicated
between processors) than dense tensor decomposition, since computation scales linearly with
the tensor nonzero count. Some sparse tensors exhibit nonzero fractions as low as 4× 10−10

(see Table 4.5), while the worst-case communication costs for sparse CP decomposition remain
identical to the dense tensor case [SK16a]. Second, randomized algorithms can save an order
of magnitude in computation over their non-randomized counterparts [Mah11; DM16; MT20],
but their inter-processor communication costs remain unaltered unless carefully optimized.
Despite these compounding factors that reduce arithmetic intensity, we achieve both speedup
and scaling through several key innovations, three of which we highlight:

Novel Distributed-Memory Sampling Procedures Random sample selection is chal-
lenging to implement when the CP factor matrices and sparse tensor are divided among P
processors. We introduce two distinct communication-avoiding algorithms for randomized
sample selection from the Khatri-Rao product. First, we show how to implement the CP-
ARLS-LEV algorithm by computing an independent probability distribution on the factor
block row owned by each processor. The resulting distributed algorithm has minimal compute
/ communication overhead compared to the other phases of CP decomposition. The second
algorithm, STS-CP, requires higher sampling time, but achieves lower error by performing
random walks on a binary tree for each sample. By distributing leaf nodes uniquely to
processors and replicating internal nodes, we give a sampling algorithm with per-processor
communication bandwidth scaling as O (logP/P ) (see Table 4.3).

Communication-Optimized MTTKRP We show that communication-optimal schedules
for non-randomized ALS may exhibit disproportionately high communication costs for
randomized algorithms. To combat this, we use an “accumulator-stationary” schedule that
eliminates expensive Reduce-scatter collectives, causing all communication costs to scale
with the number of random samples taken. This alternate schedule significantly reduces
communication on tensors with large dimensions (Figure 4.8) and empirically improves the
computational load balance (Figure 4.11).

Local Tensor Storage Format Existing storage formats developed for sparse CP decom-
position [Smi+15; Nis+19] are not optimized for random access into the sparse tensor, which
our algorithms require. In response, we use a modified compressed-sparse-column format to
store each matricization of our tensor, allowing efficient selection of nonzero entries by our
random sampling algorithms. We then transform the selected nonzero entries into compressed
sparse row format, which eliminates shared-memory data races in the subsequent sparse-dense
matrix multiplication. The cost of the transposition is justified and provides a roughly 1.7x
speedup over using atomic operations in a hybrid OpenMP / MPI implementation.
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Figure 4.3: Top: the linear least-squares problem to optimize factor matrix U2 during the ALS
algorithm for a 3D tensor (column dimension of mat(T , 2) not to scale). Middle: the exact
solution to the problem using the Matricized Tensor Times Khatri-Rao Product (MTTKRP).
Shaded columns of mat(T , 2) and rows of (U3 ⊙U1) are selected by our random sampling
algorithm. Bottom: the downsampled linear least-squares problem after applying random
sampling matrix S.
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Symbol Description

T Sparse tensor of dimensions I1 × . . .× IN
R Target Rank of CP Decomposition
U1, . . . ,UN Dense factor matrices, Uj ∈ RIj×R

σ Vector of scaling factors, σ ∈ RR

J Sample count for randomized ALS

P Total processor count
P1, . . . , PN Dimensions of processor grid,

∏
i Pi = P

U
(pj)
i Block row of Ui owned by processor pj

Table 4.2: Notation for Chapter 4.

4.2 Notation and Preliminaries

Table 4.2 summarizes our notation for this chapter, and we briefly review the details of
alternating least-squares CP Decomposition from Section 3.6.7. Let T be an N -dimensional
tensor indexed by tuples (i1, ..., iN ) ∈ [I1]× ...× [IN ], with nnz(T ) as the number of nonzero
entries. In this work, sparse tensors are always represented as a collection of (N + 1)-tuples,
with the first N elements giving the indices of a nonzero element and the last element
giving the value. We seek a low-rank approximation of T given by Equation (4.1), the
right-hand-side of which we abbreviate as [σ;U1, ...,UN ]. By convention, each column of
U1, ...,UN has unit norm. Our goal is to minimize the sum of squared differences between
our approximation and the provided tensor:

argminσ,U1,...,UN
∥[σ;U1, ...,UN ]− T ∥2F . (4.2)

4.2.1 Non-Randomized ALS CP Decomposition

Minimizing Equation (4.2) jointly over U1, ...,UN is still a non-convex problem (the vec-
tor σ can be computed directly from the factor matrices by renormalizing each column).
Alternating least squares is a popular heuristic algorithm that iteratively drives down the
approximation error. The algorithm begins with a set of random factor matrices and optimizes
the approximation in rounds, each involving N subproblems. The j-th subproblem in a
round holds all factor matrices but Uj constant and solves for a new matrix Ûj minimizing

the squared Frobenius norm error [KB09]. The updated matrix Ûj is the solution to the
overdetermined linear least-squares problem

Ûj := arg min
X

∥∥U̸=j ·X⊤ −mat(T , j)⊤
∥∥
F
. (4.3)

Here, the design matrix is

U̸=j := UN ⊙ ...⊙Uj+1 ⊙Uj−1 ⊙ ...⊙U1,
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which is a Khatri-Rao Product (KRP) of the factors held constant. The matrix mat(T , j)
is a matricization of the sparse tensor T , which reorders the tensor modes and flattens it
into a matrix of dimensions Ij × (

∏
i ̸=j Ii). We solve the problem efficiently using the normal

equations. Denoting the Gram matrix by G = (U ̸=j)
⊤(U̸=j), we have

Ûj := mat(T , j) ·U ̸=j ·G+, (4.4)

where G+ is the Moore-Penrose pseudo-inverse of G. Since U̸=j is a Khatri-Rao product, we
can efficiently compute G through the well-known [KB09] formula

G =⊛
k ̸=j

(U⊤
k Uk), (4.5)

where ⊛ denotes elementwise multiplication. Figure 4.3 illustrates each least-squares problem,
and Algorithm 10 summarizes the ALS procedure, including a renormalization of factor
matrix columns after each solve. We implement the initialization step in line 1 by drawing
all factor matrix entries from a unit-variance Gaussian distribution, a standard technique
[LK22].

The most expensive component of the ALS algorithm is the operation mat(T , j) · U̸=j in
Equation (4.4), an MTTKRP kernel. For a sparse tensor T , this kernel has a computational
pattern similar to sparse-dense matrix multiplication (SpMM): for each nonzero in the sparse
tensor, we compute a scaled Hadamard product between N − 1 rows of the constant factor
matrices and add it to a row of the remaining factor matrix. The MTTKRP runtime is

O(nnz(T )NR), (4.6)

which is linear in the nonzero count of T . Because T may have billions of nonzero entries,
we seek methods to drive down the cost of the MTTKRP.

4.2.2 Randomized Leverage Score Sampling

As Chapter 3 demonstrates, sketching is a powerful tool to accelerate least squares problems
of the form minX ∥AX −B∥F where A has far more rows than columns [Mah11; DM16;
MT20]. We apply a structured sketching matrix S ∈ RJ×I to both A and B, where the row
count of S satisfies J ≪ I. The resulting problem minX̃ ∥S(AX̃ −B)∥F is cheaper to solve,
and the solution X̃ has residual arbitrarily close (for sufficiently high J) to the true minimum
with high probability. We seek a sketching operator S with an efficiently computable action
on A, which is a Khatri-Rao product.

We choose S to be a sampling matrix with a single nonzero per row (see Section 4.3.2 for
alternatives). This matrix extracts and reweights J rows from both A and B, preserving
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the sparsity of the matricized tensor B. The cost to solve the j-th sketched subproblem is
dominated by the downsampled MTTKRP operation mat(T , j)S⊤SU̸=j, which has runtime

O
(
nnz(mat(T , j)S⊤)NR

)
. (4.7)

As Figure 4.3 (bottom) illustrates, mat(T , j)S⊤ typically has far fewer nonzeros than T ,
enabling sampling to reduce the computation cost in Equation (4.6). To select indices to
sample, we implement two algorithms that involve the leverage scores of the design matrix
[Che+16; LK22; Bha+23]. Given a matrix A ∈ RI×R, the leverage score of row i is given by

ℓi = A [i, :] (A⊤A)+A [i, :]⊤ . (4.8)

These scores induce a probability distribution over the rows of matrix A, which we can
interpret as a measure of importance. As the following theorem from Larsen and Kolda
[LK22] (building on similar results by Drineas and Mahoney [DM16]) shows, sampling from
either the exact or approximate distribution of statistical leverage guarantees, with high
probability, that the solution to the downsampled problem has low residual with respect to
the original problem.

Theorem 4.2.1 (Larsen and Kolda [LK22]). Let S ∈ RJ×I be a sampling matrix for
A ∈ RI×R where each row i is sampled i.i.d. with probability pi. Let β = mini∈[I](piR/ℓi).
For a sufficiently high universal constant C and any ε, δ ∈ (0, 1), let the sample count be

J =
R

β
max

(
C log

R

δ
,

1

εδ

)
.

If X̃ = arg minX̃

∥∥∥SAX̃ − SB
∥∥∥
F
, then∥∥∥AX̃ −B
∥∥∥2
F
≤ (1 + ε) min

X
∥AX −B∥2F .

with probability at least 1− δ.

Here, β ≤ 1 quantifies deviation of the sampling probabilities from the exact leverage score
distribution, with a higher sample count J required as the deviation increases. The STS-CP
algorithm samples from the exact leverage distribution with β = 1, achieving higher accuracy
at the expense of increased sampling time. CP-ARLS-LEV samples from an approximate
distribution with β < 1.

Sketching methods for tensor decomposition have been extensively investigated [Che+16;
Ahl+20; LK22; Mal22; BBK18], both in theory and practice. Provided an appropriate sketch
row count J and assumptions common in the optimization literature, some convergence
guarantees for randomized ALS can be derived [GAY20].
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4.3 Related Work

4.3.1 High-Performance ALS CP Decomposition

Significant effort has been devoted to optimizing the shared-memory MTTKRP using new
data structures for the sparse tensor, cache-blocked computation, loop reordering strategies,
and methods that minimize data races between threads [SK15; Nis+19; LMV18; Ngu+22;
PK19; WKP23; KS23]. Likewise, several works provide high-performance algorithms for ALS
CP decomposition in a distributed-memory setting. Smith and Karypis [SK16a] provide an
algorithm that distributes load-balanced chunks of the sparse tensor to processors in an N -
dimensional Cartesian topology. Factor matrices are shared among slices of the topology that
require them, and each processor computes a local MTTKRP before reducing results with a
subset of processors. The SPLATT library [Smi+15] implements this communication strategy
and uses the compressed sparse fiber (CSF) format to accelerate local sparse MTTKRP
computations on each processor.

Ballard et al. [BHR18]. use a similar communication strategy to compute the MTTKRP
involved in dense nonnegative CP decomposition. They further introduce a dimension-tree
algorithm that reuses partially computed terms of the MTTKRP between ALS optimization
problems. DFacTo [CV14] instead reformulates the MTTKRP as a sequence of sparse matrix-
vector products (SpMV), taking advantage of extensive research optimizing the SpMV kernel.
Smith and Karypis [SK16a] note, however, that DFacTo exhibits significant communication
overhead. Furthermore, the sequence of SpMV operations cannot take advantage of access
locality within rows of the dense factor matrices, leading to more cache misses than strategies
based on sparse-matrix-times-dense-matrix-multiplication (SpMM). GigaTensor [Kan+12]
and BIGTensor [Par+16] use the MapReduce model in Hadoop to scale to distributed, fault-
tolerant clusters. Ma and Solomonik [MS21] use pairwise perturbation to accelerate CP-ALS,
reducing the cost of MTTKRP computations when ALS is sufficiently close to convergence
using information from prior rounds.

Our work investigates variants of the Cartesian data distribution scheme adapted for a
downsampled MTTKRP. We face challenges adapting either specialized data structures for
the sparse tensor or dimension-tree algorithms. By extracting arbitrary nonzero elements
from the sparse tensor, randomized sampling destroys the advantage conferred by formats
such as CSF. Further, each least-squares solve requires a fresh set of rows drawn from
the Khatri-Rao product design matrix, which prevents efficient reuse of results from prior
MTTKRP computations.

Libraries such as the Cyclops Tensor Framework (CTF) [Sol+14] automatically parallelize
distributed-memory contractions of both sparse and dense tensors. SpDISTAL [YAK22b]
proposes a flexible domain-specific language to schedule sparse tensor linear algebra on a
cluster, including the MTTKRP operation. The randomized algorithms investigated here
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could be implemented on top of either library, but it is unlikely that current tensor algebra
compilers can automatically produce the distributed samplers and optimized communication
schedules that we contribute.

4.3.2 Alternate Sketching Algorithms and Tensor Decomposition
Methods

Besides leverage score sampling, popular options for sketching Khatri-Rao products include
Fast Fourier Transform-based sampling matrices [JKW20] and structured random sparse
matrices (e.g. Countsketch) [Ahl+20; Dia+18]. The former method, however, introduces
fill-in when applied to the sparse matricized tensor mat(T , j). Because the runtime of the
downsampled MTTKRP is linearly proportional to the nonzero count of mat(T , j)S⊤, the
advantages of sketching are lost due to fill-in. While Countsketch operators do not introduce
fill, they still require access to all nonzeros of the sparse tensor at every iteration, which is
expensive when nnz(T ) ranges from hundreds of millions to billions.

Other algorithms besides ALS exist for large sparse tensor decomposition. Stochastic gradient
descent (SGD, investigated by Kolda and Hong [KH20]) iteratively improves CP factor
matrices by sampling minibatches of indices from T , computing the gradient of a loss function
at those indices with respect to the factor matrices, and adding a step in the direction of the
gradient to the factors. Gradient methods are flexible enough to minimize a variety of loss
functions besides the Frobenius norm error [HKD20], but require tuning additional parameters
(batch size, learning rate) and a distinct parallelization strategy. The CCD++ algorithm
[Yu+12] extended to tensors keeps all but one rank-1 component of the decomposition fixed
and optimizes for the remaining component, in contrast to ALS which keeps all but one
factor matrix fixed.

4.4 Distributed-Randomized CP Decomposition

In this section, we distribute Algorithm 10 to P processors when random sampling is used to
solve the least-squares problem on line 6. Figure 4.4 (left) shows the initial data distribution of
our factor matrices and tensor to processors, which are arranged in a hypercube of dimensions
P1 × ...× PN with

∏
i Pi = P . Matrices U1, ...,UN are distributed by block rows among the

processors to ensure an even division of computation, and we denote by U
(pj)
i the block row

of Ui owned by processor pj ∈ [P ]. We impose that all processors can access the Gram matrix

Gi of each factor Ui, which is computed by an Allreduce of the R×R matrices U
(pj)⊤
i U

(pj)
i

across pj ∈ [1, ..., P ]. Using these matrices, the processors redundantly compute the overall
Gram matrix G through Equation (4.5), and by extension G+.

With these preliminaries, each processor takes the following actions to execute steps 6-8 of
Algorithm 10:
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Figure 4.4: Initial data distribution and downsampled MTTKRP data movement for a 3D
tensor, P = 8 processors. Rectangles along each side of the tensor illustrate factor matrices
corresponding to each mode, divided by block rows among processors. Each black circle
denotes the processor owning a block of a matrix or tensor; multiple circles on an object
indicate replication of a piece of data. Colors / shading indicate communication collectives.

1. Sampling and Allgather: Sample rows of U ̸=j according to the leverage-score distri-
bution and Allgather the rows to processors who require them. For non-randomized
ALS, no sampling is required.

2. Local Computation: Extract the corresponding nonzeros from the local tensor
owned by each processor and execute the downsampled MTTKRP, a sparse-dense
matrix multiplication.

3. Reduction and Postprocessing: Reduce the accumulator of the sparse-dense
matrix multiplication across processors, if necessary, and post-process the local factor
matrix slice by multiplying with G+. Renormalize the factor matrix columns and
update sampling data structures.

Multiple prior works establish the correctness of this schedule [SK16a; BHR18]. We now
examine strategies for drawing samples (step 1), communicating factor matrix rows (steps 2
and 3), and performing local computation efficiently (step 2) tailored to the case of randomized
least-squares.

4.4.1 New Distributed Sampling Strategies

Table 4.3 gives the asymptotic per-processor computation and communication costs to draw J
samples in our distributed versions of CP-ARLS-LEV and STS-CP. We give detailed descrip-
tions, as well as pseudo-code, for each sampling strategy in Sections 4.7.1 and 4.7.2. In this
section, we briefly describe the accuracy characteristics and communication / computation
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Sampler Compute Messages Words Sent/Recv

d-CP-ARLS-LEV JN/P P JN/P
d-STS-CP (JN/P )R2 logP NP logP (J/P )NR logP

Table 4.3: Asymptotic Per-Processor Costs to Draw J Samples

Schedule Words Communicated / Round

Non-Randomized TS 2NR
(∏N

k=1 Ik/P
)1/N

Sampled TS NR
(∏N

k=1 Ik/P
)1/N

Sampled AS JRN(N − 1)

Table 4.4: Communication costs for downsampled MTTKRP.

patterns for each method. Table 4.3 does not include the costs to construct the sampling data
structures in each algorithm, which are subsumed asymptotically by the matrix-multiplication

U
(pj)
i ·G+ on each processor (step 3). The costs of all communication collectives are taken

from Chan et al. [Cha+07].

CP-ARLS-LEV: The CP-ARLS-LEV algorithm by Larsen and Kolda [LK22] approximates
the leverage scores in Equation (4.8) by the product of leverage scores for each factor matrix

U1, ...,UN . The leverage scores of the block row U
(pj)
i owned by processor pj are approximated

by

ℓ̃(pj) = diag
(
U

(pj)
i G+

i U
(pj)⊤
i

)
which, given the replication of G+

i , can be constructed independently by each processor in
time O (R2Ii/P ). The resulting probability vector, which is distributed among P processors,
can be sampled in expected time O(J/P ), assuming that the sum of leverage scores distributed
to each processor is roughly equal (see Section 4.4.4 on load balancing for methods to achieve
this). Multiplying by (N − 1) to sample independently from each matrix held constant, we
get an asymptotic computation cost O(JN/P ) for the sampling phase. Processors exchange
only a constant multiple of P words to communicate the sum of leverage scores that they hold
locally and the exact number of samples they must draw, as well as a cost O(JN/P ) to evenly
redistribute / postprocess the final sample matrix. While this algorithm is computationally
efficient, it requires J = Õ(RN−1/(εδ)) to achieve the (ϵ, δ)-guarantee from Theorem 4.2.1,
which may lead to a higher runtime in the distributed-memory MTTKRP. Larsen and Kolda
note that CP-ARLS-LEV sampling can be implemented without any communication at all
if an entire factor matrix is assigned uniquely to a single processor, which can compute
leverage scores and draw samples independently [LK22]. That said, assigning an entire factor
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Figure 4.5: Example random walk in STS-CP to draw a single sample index from matrix U1,
distributed to P = 4 processors. Annotations on the tree (left) indicate processors that share
data for each node. The schedule to the right indicates the processor that owns the sample at
each stage of the random walk. The sample begins randomly at p2, then branches left to p3
(p4 shares node data and could also have been selected), involving communication of a vector
corresponding to the sample from p2 to p3. The sample remains at p3 for the remainder of
the walk.

matrix to a single processor incurs higher communication costs in the MTTKRP phase of
the algorithm and may be infeasible under tight memory constraints, leading to our adoption
of a block-row distribution for the factors.

STS-CP: The STS-CP algorithm from Chapter 3 samples from the exact leverage distribution
by executing a random walk on a binary tree data structure once for each of the N − 1
factor matrices held constant. Each leaf of the binary tree corresponds to a block of R rows
from a factor matrix Ui and holds the R×R Gram matrix of that block row. Each internal
node v holds a matrix Gv that is the sum of the matrices held by its children. Each sample
begins with a unique vector h at the root of the tree. At each non-leaf node v, the algorithm
computes (h⊤GL(v)h)/(h⊤Gvh). If this quantity is greater than a random number r unique
to each sample, the algorithm sends the sample to the left subtree, and otherwise the right
subtree. The process repeats until the random walk reaches a leaf and a row index is selected.

We distribute the data structure and the random walk as shown in Figure 4.5. We assume
that P is a power of two to simplify our description, but our implementation makes no such
restriction. Each processor pj owns a subtree of the larger tree that corresponds to their

block row U
(pj)
i . The roots of these subtrees all occur at the same depth L = logP . Above

level L, each node stores 2 logP additional matrices, Gv and GL(v), for each ancestor node v
of its subtree.
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To execute the random walks, each sample is assigned randomly to a processor which evaluates
the branching threshold at the tree root. Based on the direction of the branch, the sample and
corresponding vector h are routed to a processor that owns the required node information,
and the process repeats until the walk reaches level L. The remaining steps do not require
communication.

The replication of node information above level L requires communication overhead O(R2 logP )
using the classic bi-directional exchange algorithm for Allreduce [Cha+07]. For a batch
of J samples, each level of the tree requires O(JR2) FLOPs to evaluate the branching
conditions. Under the assumption that the final sampled rows are distributed evenly to
processors, the computation and communication at each level are load balanced in expectation.
Each processor has expected computation cost O((J/P )NR2 logP ) over all levels of the tree
and all matrices Ui, 1 ≤ i ≤ N, i ̸= k. Communication of samples between tree levels is
accomplished through All-to-allv collective calls, requiring O(NP logP ) messages and
O((J/P )NR logP ) words sent / received in expectation by each processor.

4.4.2 A Randomization-Tailored MTTKRP Schedule

The goal of this section is to demonstrate that an optimal communication schedule for
non-randomized ALS may incur unnecessary overhead for the randomized algorithm. In
response, we will use a schedule where all communication costs scale with the number of
random samples taken, enabling the randomized algorithm to decrease communication costs
as well as computation. Table 4.4 gives lower bounds on the communication required for each
schedule we consider, and we derive the exact costs in this section.

The two schedules that we consider are “tensor-stationary”, where factor matrix rows are
gathered and reduced across a grid, and “accumulator-stationary”, where no reduction
takes place. These distributions were compared by Smith and Karypis [SK16a] under the
names “medium-grained” and “course-grained”, respectively. Both distributions exhibit,
under an even distribution of tensor nonzero entries and leverage scores to processors, ideal
expected computation scaling. Therefore, we focus our analysis on communication. We begin
by deriving the communication costs for non-randomized ALS under the tensor-stationary
communication schedule, which we will then adapt to the randomized case.

Although our input tensor is sparse, we model the worst-case communication costs for
the dense factor matrices with standard Allgather and Reduce-scatter primitives. For
non-randomized (exact) ALS, the cost we derive matches that given by Smith and Karypis in
their sparse tensor decomposition work [SK16a]. Furthermore consider the extremely sparse
Reddit tensor, (nonzero fraction 4× 10−10 [Smi+17]), which nonetheless exhibits an average
of 571 nonzeros per fiber along the longest tensor mode and an average of 26,000 nonzeros
per fiber aligned with the shortest tensor mode. The high per-fiber nonzero count induces a
practical communication cost comparable to the worst-case bounds, a feature that Reddit



CHAPTER 4. DISTRIBUTED RANDOMIZED SPARSE CP DECOMPOSITION 90

shares with other datasets in Table 4.5.

Exact Tensor-Stationary: The tensor-stationary MTTKRP algorithm is communication-
optimal for dense CP decomposition [BHR18] and outperforms several other methods in
practice for non-randomized sparse CP decomposition. [SK16a]. The middle image of Figure
4.4 illustrates the approach. During the k-th optimization problem in a round of ALS, each
processor does the following:

1. For any i ≠ k, participates in an Allgather of all blocks U
(pj)
i for all processors pj in a

slice of the processor grid aligned with mode k.

2. Executes an MTTKRP with locally owned nonzeros and the gathered row blocks.

3. Executes a Reduce-scatter with the MTTKRP result along a slice of the processor

grid aligned with mode j, storing the result in U
(pj)
k

For non-randomized ALS, the gather step must only be executed once per round and can be
cached. Then the communication cost for the Allgather and Reduce-scatter collectives
summed over all k = 1...N is

2
∑N

k=1 IkR/Pk.

To choose the optimal grid dimensions Pk, we minimize the expression above subject to the
constraint

∏N
k=1 Pk = P . Straightforward application of Lagrange multipliers leads to the

optimal grid dimensions

Pk = Ik

(
P/
∏N

i=1 Ii

)1/N
.

These are the same optimal grid dimensions reported by Ballard et al. [BHR18]. The
communication under this optimal grid is

2NR
(∏N

k=1 Ik/P
)1/N

.

Downsampled Tensor-Stationary: As Figure 4.4 illustrates, only factor matrix rows
that are selected by the random sampling algorithm need to be gathered by each processor
in randomized CP decomposition. Under the assumption that sampled rows are evenly
distributed among the processors, the expected cost of gathering rows reduces to JR(N−1)/Pk

within slices along mode k. The updated communication cost under the optimal grid
dimensions derived previously is

R
(∏N

k=1 Ik

)1/N
P 1/N

[
N +

N∑
k=1

J(N − 1)

Ik

]
.
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The second term in the bracket arises from Allgather collectives of sampled rows, which
is small if J ≪ Ik for all 1 ≤ k ≤ N . The first term in the bracket arises from the
Reduce-scatter, which is unchanged by the sampling procedure. Ignoring the second term
in the expression above gives the second entry of Table 4.4.

Observe that this randomized method spends the same time on the reduction as the non-
randomized schedule while performing significantly less computation, leading to diminished
arithmetic intensity. On the other hand, this distribution may be optimal when the tensor
dimensions Ik are small or the sample count J is high enough.

Downsampled Accumulator-Stationary: As shown by Smith and Karypis [SK16a], the
accumulator-stationary data distribution performs poorly for non-randomized ALS. In the
worst case, each processor requires access to all entries from all factors U1, ...,UN , leading
to high communication and memory overheads. On the other hand, we demonstrate that
this schedule may be optimal for randomized ALS on tensors where the sample count J is
much smaller than the tensor dimensions. The rightmost image in Figure 4.4 illustrates the
approach, which avoids the expensive Reduce-scatter collective. To optimize Uk, we keep
the destination buffer for a block row of Uk stationary on each processor while communicating
only sampled factor matrix rows and nonzeros of T . Under this distribution, all sampled
factor matrix rows must be gathered to all processors. The cost of the gather step for a
single round becomes O(JRN(N − 1)) (for each of N least-squares problems, we gather at
most J(N − 1) rows of length R). Letting S1, ...,SN be the sampling matrices for each ALS
subproblem in a round, the number of nonzeros selected in problem j is nnz(mat(T , j)Sj).
These selected (row, column, value) triples must be redistributed as shown in Figure 4.4
via an All-to-allv collective call. Assuming that the source and destination for each
nonzero are distributed uniformly among the processors, the expected cost of redistribution
in least-squares problem j is (3/P )nnz(mat(T , j)S⊤

j ). The final communication cost is

JRN(N − 1) +
3

P

N∑
j=1

nnz(mat(T , j)S⊤
j ). (4.9)

The number of nonzeros sampled varies from tensor to tensor even when the sample count
J is constant. That said, the redistribution exhibits perfect scaling (in expectation) with
the processor count P . In practice, we avoid redistributing the tensor entries multiple times
by storing N different representations of the tensor aligned with each slice of the processor
grid, a technique that competing packages (e.g. DFacto [CV14], early versions of SPLATT
[SK15]) also employ. This optimization eliminates the second term in Equation (4.9), giving
the communication cost in the third row of Table 4.4. More importantly, observe that all
communication scales linearly with the sample count J , enabling sketching to improve both
the communication and computation efficiency of our algorithm. On the other hand, the
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Figure 4.6: Shared-memory parallelization of downsampled MTTKRP procedure. Nonzero
sparse coordinates in the sampled gray columns, initially sorted by column, are selected and
remapped into a CSR matrix. The subsequent matrix multiplication is parallelized to threads
t1, t2, t3 without atomic operations or data races, since each thread is responsible for a unique
block of the output.

term JRN(N − 1) does not scale with P , and we expect that gathering rows becomes a
communication bottleneck for high processor counts.

4.4.3 Tensor Storage and Local MTTKRP

As mentioned in Section 4.4.2, we store different representations of the sparse tensor T
across the processor grid to decrease communication costs. Each corresponds to a distinct
matricization mat(T , j) for 1 ≤ j ≤ N used in the MTTKRP (see Figure 4.3). For non-
randomized ALS, a variety of alternate storage formats have been proposed to reduce the
memory overhead and accelerate the local computation. Smith and Karypis support a
compressed sparse fiber format for the tensor in SPLATT [SK15; Smi+15], and Nisa et al.
[Nis+19] propose a mixed-mode compressed sparse fiber format as an improvement. These
optimizations cannot improve the runtime of our randomized algorithms because they are
not conducive to sampling random nonzeros from T .

Instead, we adopt the approach shown in Figure 4.6. The coordinates in each tensor
matricization are stored in sorted order of their column indices, an analogue of compressed-
sparse-column (CSC) format. With this representation, the random sampling algorithm
efficiently selects columns of mat(T , j) corresponding to rows of the design matrix. The
nonzeros in these columns are extracted and remapped to a compressed sparse row (CSR)
format through a “sparse transpose” operation. The resulting CSR matrix participates in the
sparse-dense matrix multiplication, which can be efficiently parallelized without data races
on a team of shared-memory threads.
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Tensor Dimensions NNZ Prep.

Uber 183× 24× 1.1K × 1.7K 3.3M -
Amazon 4.8M × 1.8M × 1.8M 1.7B -
Patents 46× 239K × 239K 3.6B -
Reddit 8.2M × 177K × 8.1M 4.7B log

Table 4.5: Sparse Tensor Datasets from FROSTT.

The key to efficiency in the sparse matrix transpose is that the sampling process extracts
only a small fraction of nonzero entries from the entire tensor. We leave reducing the memory
footprint of our randomized algorithms as future work.

4.4.4 Load Balance

To ensure load balance among processors, we randomly permute the sparse tensor indices
along each mode, a technique also used by SPLATT [SK16a]. These permutations ensure
that each processor holds, in expectation, an equal fraction of nonzero entries from the
tensor and an equal fraction of sampled nonzero entries. For highly-structured sparse tensors,
random permutations do not optimize processor-to-processor communication costs, which
packages such as Hypertensor [KU15] minimize through hypergraph partitioning. As Smith
and Karypis [SK16a] demonstrate empirically, hypergraph partitioning is slow and memory-
intensive on large tensors. Because our randomized implementations require just minutes on
massive tensors to produce decompositions comparable to non-randomized ALS, the overhead
of partitioning outweighs the modest communication reduction it may produce.

4.5 Experiments

Experiments were conducted on CPU nodes of NERSC Perlmutter, a Cray HPE EX super-
computer. Each node has 128 physical cores divided between two AMD EPYC 7763 (Milan)
CPUs. Nodes are linked by an HPE Slingshot 11 interconnect.

Our implementation is written in C++ and links with OpenBLAS 0.3.21 for dense linear
algebra. We use a simple Python wrapper around the C++ implementation to facilitate bench-
marking. We use a hybrid of MPI message-passing and OpenMP shared-memory parallelism
in our implementation, which is available online at https://github.com/vbharadwaj-bk/
rdist_tensor.

Our primary baseline is the SPLATT , the Surprisingly Parallel Sparse Tensor Toolkit [SK16a;
Smi+15]. SPLATT is a scalable CP decomposition package optimized for both communication
costs and local MTTKRP performance through innovative sparse tensor storage structures.

https://github.com/vbharadwaj-bk/rdist_tensor
https://github.com/vbharadwaj-bk/rdist_tensor
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As a result, it remains one of the strongest libraries for sparse tensor decomposition in
head-to-head benchmarks against other libraries [RSK19; Nis+19; KS23]. We used the default
medium-grained algorithm in SPLATT and adjusted the OpenMP thread count for each
tensor to achieve the best possible performance to compare against.

Table 4.5 lists the sparse tensors used in our experiments, all sourced from the Formidable
Repository of Open Sparse Tensors and Tools (FROSTT) [Smi+17]. Besides Uber, which
was only used to verify accuracy due to its small size, the Amazon, Patents, and Reddit
tensors are the only members of FROSTT at publication time with over 1 billion nonzero
entries. These tensors were identified to benefit the most from randomized sampling since
the next largest tensor in the collection, NELL-1, has 12 times fewer nonzeros than Amazon.
We computed the logarithm of all values in the Reddit tensor, consistent with established
practice [LK22].

4.5.1 Correctness at Scale

Table 4.6 gives the average fits (5 trials) of decompositions produced by our distributed-
memory algorithms. The fit [LK22] between the decomposition T̃ = [σ;U1, ...,UN ] and the
ground-truth T is defined as

fit(T̃ , T ) = 1−

∥∥∥T̃ − T ∥∥∥
F

∥T ∥F
.

A fit of 1 indicates perfect agreement between the decomposition and the input tensor. We
used J = 216 for our randomized algorithms to test our implementations on configurations
identical to those in prior work [LK22; Bha+23]. To test both the distributed-memory message
passing and shared-memory threading parts of our implementation, we used 32 MPI ranks and
16 threads per rank across 4 CPU nodes. We report accuracy for the accumulator-stationary
versions of our algorithms and checked that the tensor-stationary variants produced the same
mean fits. The “Exact” column gives the fits generated by SPLATT. ALS was run for 40
rounds on all tensors except Reddit, for which we used 80 rounds.

The accuracy of both d-CP-ARLS-LEV and d-STS-CP match the shared-memory prototypes
in the original works [LK22; Bha+23]. As theory predicts, the accuracy gap between d-CP-
ARLS-LEV and d-STS-CP widens at higher rank. The fits of our methods improves by
increasing the sample count J at the expense of higher sampling and MTTKRP runtime.

4.5.2 Speedup over Baselines

Figure 4.7 shows the speedup of our randomized distributed algorithm per ALS round over
SPLATT at 4 nodes and 16 nodes. We used the same configuration and sample count for
each tensor as Table 4.6. On Amazon and Reddit at rank 25 and 4 nodes, d-STS-CP achieves
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Tensor R d-CP-ARLS-LEV d-STS-CP Exact

Uber
25 0.187 0.189 0.190
50 0.211 0.216 0.218
75 0.218 0.230 0.232

Amazon
25 0.338 0.340 0.340
50 0.359 0.366 0.366
75 0.368 0.381 0.382

Patents
25 0.451 0.451 0.451
50 0.467 0.467 0.467
75 0.475 0.475 0.476

Reddit
25 0.0583 0.0592 0.0596
50 0.0746 0.0775 0.0783
75 0.0848 0.0910 0.0922

Table 4.6: Average Fits, J = 216, 32 MPI Ranks, 4 Nodes
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Figure 4.7: Average speedup per ALS iteration of our distributed randomized algorithms
over SPLATT (5 trials, J = 216).
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Figure 4.8: Average runtime (5 trials, R = 25) per activity for tensor-stationary and
accumulator-stationary distributions with 32 MPI ranks over 4 nodes.

a speedup in the range 5.7x-6.8x while d-CP-ARLS-LEV achieves between 8.0-9.5x. We
achieve our most dramatic speedup at rank 75 on the Reddit tensor, with d-STS-CP achieving
10.7x speedup and d-CP-ARLS-LEV achieving 14.6x. Our algorithms achieve less speedup
compared to SPLATT on the denser Patents tensor. Here, a larger number of nonzero entries
are selected by randomized sampling, with a significant computation bottleneck in the step
that extracts and re-indexes the tensor entries. The bottom half of Figure 4.7 shows that
d-STS-CP maintains at least 2x speedup over SPLATT even at 16 nodes / 2048 CPU cores on
Amazon and Reddit, but has less advantage on the Patents tensor. Table 4.6 quantifies the
accuracy sacrificed for the speedup, which can be changed by adjusting the sample count at
each least-squares solve. As Figure 4.2 shows, both of our randomized algorithms make faster
progress than SPLATT, with d-STS-CP producing a comparable rank-100 decomposition of
the Reddit tensor in under two minutes.

4.5.3 Comparison of Communication Schedules

Figure 4.8 breaks down the runtime per phase of the d-STS-CP algorithm for the tensor-
stationary and accumulator-stationary schedules on 4 nodes. To illustrate the effect of
sampling on the row gathering step, we gather all rows (not just those sampled) for the
tensor-stationary distribution, a communication pattern identical to SPLATT. Observe that
the Allgather collective under the accumulator-stationary schedule is significantly cheaper
for Amazon and Reddit, since only sampled rows are communicated. As predicted, the
Reduce-scatter collective accounts for a significant fraction of the runtime for the tensor-
stationary distribution on Amazon and Reddit, which have tensor dimensions in the millions.
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Figure 4.9: Average runtime (5 trials) per activity vs. CPU core count, R = 25. Each node
has 128 CPU cores, and 8 MPI ranks were used per node.

On both tensors, the runtime of this collective is greater than the time required by all
other phases combined in the accumulator-stationary schedule. By contrast, both schedules
perform comparably on Patents. Here, the Reduce-scatter cost is marginal due to the
smaller dimensions of the tensor.

We conclude that sparse tensors with large dimensions can benefit from the accumulator-
stationary distribution to reduce communication costs, while the tensor-stationary distribution
is optimal for tensors with higher density and smaller dimensions. The difference in MTTKRP
runtime between the two schedules is further explored in Section 4.5.6.

4.5.4 Strong Scaling and Runtime Breakdown

Figure 4.9 gives the runtime breakdown for our algorithms at varying core counts. Besides
the Allgather and Reduce-scatter collectives used to communicate rows of the factor
matrices, we benchmark time spent in each of the three phases identified in Section 4.4:
sample identification, execution of the downsampled MTTKRP, and post-processing factor
matrices.

With its higher density, the Patents tensor has a significantly larger fraction of nonzeros
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Figure 4.10: Average throughput (3 trials per data point) of the d-STS-CP algorithm vs.
increasing node count and rank, measured as the average number of nonzeros iterated over
in the MTTKRP per second of total algorithm runtime (higher is better). Ideal scaling is
a horizontal line. The ratio of node count to rank was kept constant at 16. d-STS-CP was
chosen to preserve decomposition accuracy at high ranks.

randomly sampled at each linear least-squares solve. As a result, most ALS runtime is spent
on the downsampled MTTKRP. The Reddit and Amazon tensors, by contrast, spend a larger
runtime portion on sampling and post-processing the factor matrices due to their larger mode
sizes. Scaling beyond 1024 cores for the Amazon tensor is impeded by the relatively high
sampling cost in d-STS-CP, a consequence of repeated All-to-allv collective calls. The
high sampling cost is because the Amazon tensor has side-lengths in the millions along all
tensor modes, leading to deeper trees for the random walks in STS-CP.

4.5.5 Weak Scaling with Target Rank

We measure weak scaling for our randomized algorithms by recording the throughput (nonzero
entries processed in the MTTKRP per second of total algorithm runtime) as both the processor
count and target rank R increase proportionally. We keep the ratio of node count to rank
R constant at 16. We use a fixed sample count J = 216, and we benchmark the d-STS-CP
algorithm to ensure minimal accuracy loss as the rank increases.

Although the FLOP count of the MTTKRP is linearly proportional to R (see Equation (4.6)),
we expect the efficiency of the MTTKRP to improve with increased rank due to spatial cache
access locality in the longer factor matrix rows, a well-documented phenomenon [Akt+14].
On the other hand, the sampling runtime of the d-STS-CP algorithm grows quadratically
with the rank R (see Table 4.3). The net impact of these competing effects is determined by
the density and dimensions of the sparse tensor.
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any MPI process, for d-STS-CP. 8 MPI Ranks / Node, 5 Trials.

Figure 4.10 shows the results of our weak scaling experiments. Because ALS on the Amazon
tensor spends a large fraction of time drawing samples (see Figure 4.9), its throughput
suffers with increasing rank due to the quadratic cost of sampling. At the other extreme, our
algorithm spends little time sampling from the Patents tensor with its smaller dimensions,
enabling throughput to increase due to higher cache spatial locality in the factor matrices.
The experiments on Reddit follow a middle path between these extremes, with performance
dropping slightly at high rank due to the cost of sampling.

4.5.6 Load Imbalance

Besides differences in the communication times of the tensor-stationary and accumulator-
stationary schedules, Figure 4.8 indicates a runtime difference in the downsampled MTTKRP
between the two schedules. Figure 4.11 offers an explanation by comparing the load balance
of these methods. We measure load imbalance (averaged over 5 trials) as the maximum
number of nonzeros processed in the MTTKRP by any MPI process over the mean of the
same quantity.

The accumulator-stationary schedule yields better load balance over all tensors, with a
dramatic difference for the case of Amazon. The latter exhibits a few rows of the Khatri-Rao
design matrix with high statistical leverage and corresponding fibers with high nonzero
counts, producing the imbalance. The accumulator-stationary distribution (aided by the load
balancing random permutation) distributes the nonzeros in each selected fiber across all P
processors, correcting the imbalance.
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Figure 4.12: Runtime breakdown vs. sample count, R = 25. 512 CPU cores, 5 trials,
accumulator-stationary distribution.

4.5.7 Impact of Sample Count

In prior sections, we used the sample count J = 216 to establish a consistent comparison with
prior work. Figure 4.12 demonstrates the runtime impact of increasing the sample count
for both of our algorithms on all three tensors. For all experiments but one, the MTTKRP
component of the runtime increases the most as J gets larger. For d-STS-CP on the Amazon
tensor, the runtime increase owes primarily to the higher cost of sample selection. The higher
sampling time for d-STS-CP on Amazon is explained in Section 4.5.4. Figure 4.13 gives the
final fits after running our randomized algorithms for varying sample counts. The increase in
accuracy is minimal beyond J = 216 for d-STS-CP on Amazon and Reddit. Both algorithms
perform comparably on Patents. These plots suggest that sample count as low as J = 216 is
sufficient to achieve competitive performance with libraries like SPLATT on large tensors.

4.6 Conclusions and Further Work

We have demonstrated in this work that randomized CP decomposition algorithms are
competitive at the scale of thousands of CPU cores with state-of-the-art, highly-optimized
non-randomized libraries for the same task. Future work includes improving the irregular
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Figure 4.13: Final fit of randomized CP decomposition for varying sample count J . Horizontal
dashed lines indicate the fit produced by SPLATT. ALS was run for 40 iterations on
Amazon and Patents, 80 iterations on Reddit, and for 10 trials each. All other experimental
configuration is identical to Figure 4.12.

communication pattern of the d-STS-CP algorithm, as well as deploying our algorithm on
massive real-world tensors larger than those offered by FROSTT.

4.7 Full Algorithm Descriptions

4.7.1 Distributed CP-ARLS-LEV Sampling

Let i1, ..., iN−1 denote row indices from factor matrices U1, ...,UN−1 that uniquely identify a
row from the Khatri-Rao product U ̸=N . To efficiently sample according to an approximate
leverage score distribution on the rows of U̸=N , the CP-ARLS-LEV algorithm by Larsen and
Kolda [LK22] weights each row by

ℓ̃i1,...,iN−1
:=

N−1∏
k=1

Uk [ik, :]G
+
k Uk [ik, :]

⊤

where Gk := U⊤
k Uk for all k. Because each weight in the distribution above is a product of

scores from each factor, we can draw i1, ..., iN−1 independently and concatenate the indices
to assemble one row sample. Given that the factors are distributed by block rows among
processors, the main challenge is to sample without gathering the probability weight vector
for each Uk to a single processor.

Algorithms 11 and 12 give full procedures to build the distributed CP-ARLS-LEV data
structure and draw samples from it, respectively. The build algorithm is called for all Ui,
1 ≤ i ≤ N , before the ALS algorithm begins. It is also called each time a matrix Ui is
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Algorithm 11 CP-ARLS-LEV-build
(
U

(pj)
i

)
)

1: Gi := Allreduce
(
U

(pj)⊤
i U

(pj)
i

)
2: dist

(pj)
i := diag

(
U

(pj)
i G+

i U
(pj)⊤
i

)
3: C

(pj)
i :=

∥∥∥dist(pj)i

∥∥∥
1

4: dist
(pj)
i / = C

(pj)
i

5: Postcondition: G+
i , dist

(pj)
i , and C

(pj)
i are initialized on each processor.

updated in an ALS round. Each procedure is executed synchronously by all processors pj,

1 ≤ j ≤ P . Recall further that we define U
(pj)
i as the block row of the i-th factor matrix

uniquely owned by processor pj. Algorithm 11 allows all processors to redundantly compute
the Gram matrix Gi and the normalized local leverage score distribution on the block row

U
(pj)
i .

Algorithm 12 enables each processor to draw samples from the Khatri-Rao product U̸=k.
For each index i ̸= k, each processor determines the fraction of J rows drawn from its local

block using a consistent multinomial sample according to the weights C
(pj)
i , 1 ≤ j ≤ P .

By consistent, we mean that each processor executes the multinomial sampling using a
pseudorandom number generator with a common seed that is shared among all processors.
The result of this operation is a vector SCloc ∈ ZP which gives the sample count each
processor should draw locally. Each processor then samples from its local distribution. At the
end of the algorithm, each row of X contains a sample drawn according to the approximate
leverage score distribution.

We note that the sampling algorithm, as presented, involves the Allgather of a J × N
sampling matrix followed by a random permutation. We use this procedure in our code,
since we found that the communication cost O(JN) was negligible for the range of sample
counts we used. However, this cost can be reduced to O(JN/P ), in expectation, with an
All-to-allv communication pattern that permutes the indices without gathering them to a
single processor.

4.7.2 Distributed STS-CP Sampling

We use the same variables defined at the beginning of Section 4.7.1. To draw samples
from the exact leverage score distribution, the STS-CP algorithm conditions each row index
draw ik on draws i1, ..., ik−1. To formalize this, let î1, ..., îN−1 be random variables for each
index that jointly follow the exact leverage distribution. Suppose we have already sampled
î1 = i1, ..., îk−1 = ik−1, and let h = ⊛k−1

j=1 Uj [ij, :]
⊤ be the product of these sampled rows.



CHAPTER 4. DISTRIBUTED RANDOMIZED SPARSE CP DECOMPOSITION 103

Algorithm 12 CP-ARLS-LEV-sample (k, J)

1: Require: Vectors dist
(pj)
i , and normalization constants C

(pj)
i .

2: Initialize sample matrix X ∈ ZJ×N on all processors.
3: for i = 1...N , i ̸= k do

4: C := Allgather
(
C

(pj)
i

)
5: W =

∑P
ℓ=1 C [ℓ]

6: SCloc := consistent-multinomial([C [1] /W, ...,C [P ] /W ] , J)

7: samplesloc := sample
(
dist

(pj)
i ,SCloc [j]

)
8: X [:, i] := Allgather

(
samplesloc

)
//See note

9: Perform a consistent random permutation of X [:, i]
10: return X, a set of samples from the Khatri-Rao product U̸=k.

conditional probability of îk = ik is

p(̂ik = ik | î<k = i<k) ∝
(
Uk [ik, :]

⊤ ⊛ h
)⊤

G>k

(
Uk [ik, :]

⊤ ⊛ h
)

where G>k = G+ ⊛⊛N−1
j=k Gi (see Section 3.3). The STS-CP algorithm exploits this formula

to efficiently sample from the exact leverage distribution.

Algorithms 13 and 14 give procedures to build and sample from the distributed data structure
for STS-CP, which are analogues of Algorithms 11 and 12 for CP-ARLS-LEV. To simplify
our presentation, we assume that the processor count P is a power of two. The general
case is a straightforward extension (see Chan et. al. [Cha+07]), and our implementation
makes no restriction on P . The build procedure in Algorithm 13 computes the Gram matrix
Gi for each matrix Ui using a the bidirectional exchange algorithm for Allreduce [Cha+07].
The difference is that each processor caches the intermediate matrices that arise during the
reduction procedure, each uniquely identified with internal nodes of the binary tree in Figure
4.5.

In the sampling algorithm, the cached matrices are used to determine the index of a row
drawn from Ui via binary search. The matrix of sample indices X and sampled rows H are
initially distributed by block rows among processors. Then for each matrix Ui, i ̸= k, a
random number is drawn uniformly in the interval [0, 1] for each sample. By stepping down
levels of the tree, J binary searches are computed in parallel to determine the containing bin
of each random draw. At each level, the cached matrices tell the program whether to branch
left or right by computing the branching threshold T , which is compared to the random draw
r. The values in each column of X(pj) hold the current node index of each sample at level ℓ
of the search. At level L = log2 P , the algorithm continues the binary search locally on each
processor until a row index is identified (a procedure we denote as “local-STS-CP”. For more
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Algorithm 13 STS-CP-build
(
U

(pj)
i

)
)

1: G̃log2 P := U
(pj)⊤
i U

(pj)
i

2: for ℓ = log2 P...2 do
3: Send G̃ℓ to sibling of ancestor at level ℓ, and receive the corresponding matrix G̃sibling.
4: Assign G̃ℓ−1 = G̃sibling + G̃ℓ

5: if Ancestor at level ℓ is a left child then
6: G̃L

ℓ−1 := G̃ℓ

7: else
8: G̃L

ℓ−1 := G̃sibling

9: Assign Gi := G̃1

10: Postcondition: Each processor stores a list of partial gram matrices G̃ℓ and GL
ℓ , from

the root to its unique tree node. Gi is initialized.

details, see Chapter 3. At the end of the algorithm, the sample indices in X are correctly
drawn according to the exact leverage scores of U̸ = k. The major communication cost of this
algorithm stems from the All-to-allv collective between levels of the binary search. Because
a processor may not have the required matrices G̃ℓ, G̃

L
ℓ to compute the branching threshold

for a sample, the sample must be routed to another processor that owns the information.
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Algorithm 14 STS-CP-sample (k, J))

1: Initialize X ∈ ZJ×N , H ∈ RJ×(R+1) distributed by block rows. Let X(pj),H(pj) be the
block rows assigned to pj.

2: X(pj) := [0] ,H(pj) := [1]
3: for i = 1...N, i ̸= k do
4: G>k := G+ ⊛⊛N

ℓ=k+1Gi

5: H(pj) [:, R + 1] := uniform-samples([0, 1])
6: for ℓ = 1... logP − 1 do
7: J loc = row-count

(
X(pj)

)
8: for k = 1...J loc do
9: r := H(pj) [k,R + 1]
10: h := H(pj) [k, 1 : R]
11: X(pj) [i, k] ∗ = 2

12: T = h⊤
(
G̃L

ℓ ⊛G>k

)
h/
(
h⊤(G̃ℓ ⊛G>k)h

)
13: if r ≥ T then
14: X(pj) [i, k] += 1
15: r := (r − T )/(1− T )
16: else
17: r := r/T
18: H(pj) [k,R + 1] := r
19: Execute an All-to-allv call to redistribute X(pj), H(pj) according to the binary-tree

data structure.
20: J loc = row-count

(
X(pj)

)
21: for k = 1...J loc do
22: idx := local-STS-CP(H(pj) [k, 1 : R] , G̃log 2P ,G>k, r)
23: X(pj) [i, k] := idx

24: H(pj) [k, 1 : R] ∗ = U
(pj)
i [idx− Iipj/P, :]

25: return X(pj),H(pj)
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Chapter 5

Sketches for Orthonormal Core Chains

We now examine subspace embeddings of a tensor structure distinct from the Khatri-Rao
product. Specifically, we consider a linear chain of tensor cores that are related by tensor
contraction, a generalization of standard matrix-matrix multiplication. These structures
arise in computations that involve the tensor train decomposition, which appears in domains
spanning quantum physics to machine learning [Per+07; Ose11]. We focus on the special case
where the matrix flattening of each tensor core is orthonormal, in which case the matricization
of the entire core chain is also orthonormal.

A1

A2

A3

= A≤3 I1I2I3

R3

Figure 5.1: A tensor core chain with a dangling edge and its corresponding matrix representa-
tion. The height of the core chain matricization is generally exponential in the core count N .

While the target matrix now has an ideal condition number, constructing a subspace embed-
ding via sampling is still a formidable task. As Dereziński and Mahoney [DM21] note, random
uniform sampling requires a sample count proportional to the matrix coherence rather than
condition number. The former, defined as the ratio between the largest and average row
leverage scores of the target, inflates the worst-case sample count significantly compared to
row-norm and leverage score sampling.

Without much additional difficulty, we will use Lemma 3.3.2 to construct an efficient row
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sampler for orthonormal tensor core chains. Rows are sampled proportional to the squared
row norms of the matricization of the core chain, which are equal to the row leverage scores.
The resulting sampler selects rows with asymptotic runtime only a log factor worse than
uniform random sampling, but with significantly higher accuracy.

Subspace embeddings of the Khatri-Rao product immediately yield an accelerated randomized
algorithm to compute the CP decomposition via alternating least-squares. Likewise, subspace
embeddings of orthonormal core chains yield efficient ALS algorithms for the tensor train
decomposition, and we demonstrate the utility of our approach by decomposing sparse tensors
from the FROSTT collection [Smi+17]. Our randomized methods exhibit up to 26x speedup
over a simple baseline code to decompose sparse tensors from Chapter 3, achieving up to
99% of the fit of non-randomized TT-ALS.

While our method is a viable and competitive choice to decompose massive sparse tensors, the
components of tensor trains are more difficult to interpret than those of the CP decomposition.
The relative error of tensor train decomposition was also higher than CP decomposition in
our experiments. With these disclaimers, we believe that our sampling data structure is
interesting in its own right. For comparison, drawing samples from a Kronecker product of
orthonormal matrices is much easier, only requiring simple independent sampling from each
matrix. Meanwhile, multiple nontrivial optimizations are needed to efficiently sample from
an orthonormal core chain. Our core chain sampler also exhibits a creative application of
Lemma 3.3.2 and may find use outside tensor decomposition problems.

5.1 Introduction

Let A1, ...,Aj be a set of three-dimensional tensors with Ak ∈ RRk−1×Ik×Rk for 1 ≤ k ≤ j.

We call each tensor a core, and we impose R0 = 1. Consider the matrix AL
≤j ∈ R

∏j
k=1 Ik×Rj

where each row is specified by

AL
≤j [(i1, ..., ij), :] = A1 [:, i1, :] · ... · Aj [:, ij, :] . (5.1)

Figure 5.1 illustrates the matrix and its relationship with the 3D cores. Here, we identify each

multi-index (i1, ..., ij) uniquely with an index in
[
1...
∏j

k=1 Ik

]
. Each row of AL

≤j is a product

of matrix slices from the core tensors. We call the set of cores A1, ...,Aj related in his manner
a core chain, and we refer to AL

≤j as the matricization of the chain. Figure 5.1 illustrates
the relationship between the two structures. Core chains arise naturally in computations
involving the tensor train decomposition [Ose11] (also called the matrix-product state by
the physics community [Per+07]). Figure 5.2 provides two complementary illustrations of a
three-dimensional tensor train, which we discuss further in Section 5.2.

How can we efficiently compute a column subspace embedding of a core chain matricization?
Sketches of AL

≤j can be used to reduce the rank of an existing tensor train decomposition
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Tensor Train

=

(a)

A1 A2 A3

(b)

Figure 5.2: Two illustrations of the tensor train decomposition. Subfigure (a) shows each 3D
tensor train core as a stack of vectors or matrices. To evaluate an entry of the represented
tensor, the highlighted items from each stack are gathered and multiplied together. Subfigure
(b) shows the same structure using tensor network notation.

[Al +23]. In addition, they can accelerate an alternating least-squares algorithm analogous
to the one studied in Chapters 3 and 4 [Mal22]. We focus on the special case where the
left-matricization of each input core is orthonormal. That is, each matrix

AL
k = mat(Ak, 3)

has orthonormal columns (see Section 3.6.7 for the definition of the matricization operator).
By assuming that the input arrives in orthonormal form, the sketching algorithm we devise
cannot speed up tensor train rounding, but proves useful for other applications. Our main
contribution is the following theorem:

Theorem 5.1.1 (Row-norm-squared sampling for orthonormal core chains). Let A≤j be the
left-matricization of a core chain, specified row-wise by Equation (5.1). Suppose each core
A1, ...,Aj is orthonormal. Then there exists a data structure to randomly sample rows from
A≤j according to the distribution of its squared row norms with the following properties:

1. The data structure has construction time O
(∑j

n=1 InRn−1R
2
n

)
. When R = R1 = ... =

Rj and I = I1 = ... = Ij, the runtime is O(jIR3). The space overhead of the data
structure is linear in the sizes of the input cores.

2. The data structure produces a single row sample from A≤j according to the distribution

of its squared row norms in time O
(∑j

k=1 log (IkRk−1/Rk)R2
k

)
. When all ranks Rk

and physical dimensions Ik are equal, this complexity is O(jR2 log I).
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For simplicity, take R1 = ... = Rj = R and I1 = ... = Ij = I. Then the complexity to draw a
row from the core chain is only a factor log I worse than the time to materialize that row
using Equation (5.1).

5.2 Context and Related Work

Tensor trains are attractive because they can represent tensors of extremely high dimension
with only a modest parameter count. An N -dimensional tensor with side-length I decom-
poses with only O(NIR2) parameters, where R is the rank of the decomposition. Such a
decomposition exists for any provided tensor, but the rank R may be exponential in N in
the worst case [Ose11]. Contrast this with PARAFAC and Tucker decompositions [BK25]:
the latter cannot avoid exponential parameter growth in the core tensor, while the former is
empirically less expressive [Nov+15]. As a result, tensor trains have found particular success
in high-dimensional function approximation [Ose11; OT10]. They have also successfully
replaced dense matrices in linear layers of deep neural networks [Nov+15], providing steep
discounts in parameter count and a regularizing effect that sometimes leads to accuracy gain.

We can view a tensor train as a compact representation of a vector of length IN . With
appropriate modifications, it can also represent an IN × IN matrix that can act efficiently
on a tensor train vector. This property makes tensor trains effective for dynamic low rank
approximation, where a system state represented by a TT-vector evolves due to the action of
a TT-matrix [GKT13; YL24]. Likewise, TT-vectors are used in Krylov subspace methods
where the operator is given either as a Kronecker product or a TT-matrix [Al +23].

5.2.1 Orthonormalizing a Core Chain

If each core matricization AL
k is orthonormal for 1 ≤ k ≤ j, it is a well-known fact that AL

≤j

is also orthonormal. We formalize the statement below.

Proposition 5.2.1 (Lemma 3.1 from Oseledets [Ose11], Adapted). Suppose AL⊤
k AL

k = I for
1 ≤ k ≤ j. Then AL⊤

≤j A
L
≤j = I.

Proposition 5.2.1 allows us to orthonormalize a core chain matricization by orthonormalizing
each core in isolation. We refer the reader to Oseledets [Ose11] for a proof and note that
subsequent results in this chapter rely on similar proof techniques. The orthonormalization
property is required for the applications we describe next.

5.2.2 Alternating Core Optimization

We revisit the tensor fitting task from Chapters 3 and 4: given tensor T , the goal is to fit
a tensor train decomposition [A1, ...,AN ]. The core ranks are either selected in advance or
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Reshape
SVD

Reshape

SVD

Reshape

Final Representation

Crude / Random Initialization

Optimize Core 1

Optimize Core 2

More Iterations

Final Representation

SVD-Based Algorithm Iterative Algorithm

Optimize Core 3 Optimize Core 2

Optimize Core 1

Figure 5.3: Sequential vs. iterative algorithms for tensor train decomposition. Left: the
SVD-based algorithm begins with the full tensor flattened into a matrix. It alternates between
reshaping intermediate objects and computing a truncated SVD, producing a single core
of the final decomposition at each step. Right: the iterative algorithm begins with a crude
initialization for the tensor train decomposition and optimizes one core at a time while
keeping the remainder fixed.

determined adaptively as the algorithm progresses. Figure 5.3 illustrates two approaches to
this problem and highlights a contrast to Candecomp / PARAFAC decomposition: namely,
the existence of an SVD-based algorithm that guarantees successful decomposition. When
the tensor is specified explicitly in memory, Figure 5.3 illustrates a process of iteratively
flattening the tensor, computing a singular value decomposition, reshaping one of the outputs,
and repeating these steps [Ose11].

Unfortunately, the runtime of singular value decomposition on large tensors may be prohibitive.
Adding to the problem, the target tensor T may be too large to represent in memory; tensor
train decompositions are routinely computed on inputs with 100+ dimensions [OT10]. Figure
5.3 (right) illustrates an alternate approach: cores are initialized randomly and optimized
iteratively until convergence. This alternating scheme is related to both alternating least
squares [KB09; BK25] and the Density Matrix Renormalization Group (DMRG) algorithms
proposed by White [Whi92]. In the latter approach, a tensor train represents a high-
dimensional quantum state, and alternating optimization produces the minimum energy
eigenstate of a Hamiltonian (which is also specified as a tensor train matrix, or “matrix
product operator”).
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Reshaped TensorDesign Matrix

-

Figure 5.4: Illustrated linear least squares problem from Proposition 5.2.2.

The core update rules proposed by Oseledets and Tyrtyshnikov [OT10] rely on variants
of matrix skeleton decomposition to optimize each core, rather than linear least-squares.
Consequently, these methods are highly efficient for smooth functional tensors with sufficient
structure, but struggle on noisy (high-error) decomposition tasks. We concentrate on
alternating least squares updates:

Proposition 5.2.2 (Tensor Train ALS Update Rule). Given tensor train [A1, ...,AN ] and
target tensor T ,

min
Aj

∥[A1, ...,AN ]− T ∥F = min
Aj=mat(Aj ,2)⊤

∥∥(A<j ⊗A⊤
>j

)
·Aj −mat(T , j)⊤

∥∥
F
,

where A<j is the matricization of the core chain comprising A1, ...,Aj−1 and A>j is the
matricization of the core chain composed of Aj+1, ...,AN .

Figure 5.4 illustrates the key linear least squares problem, where the design matrix is a
Kronecker product of a pair of core chains. We omit the proof of Proposition 5.2.2, which
follows from the linearity of tensor contraction. From Chapter 3, it follows that a fast sampler
for the row leverage scores of A<j produces an efficient randomized algorithm for tensor train
ALS updates.

Note a critical detail: we can cheaply compute the QR decomposition of both A<j and
A⊤

>j via Proposition 5.2.1. The R-factors are irrelevant for the optimization problem in
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Proposition 5.2.2, so we take A<j and A⊤
>j to be orthonormal without loss of generality.

This canonical form leads to an (ideally) conditioned linear least squares problem, as well as
structure that we exploit for leverage score sampling. While the design matrix is orthonormal,
the runtime bottleneck to solve each linear least squares problem is computation of (A<j ⊗
A⊤

>j)
⊤ ·mat(T , j)⊤. This cost remains unchanged by the canonical form, and we will reduce

it through randomization.

5.2.3 Tensor Train Rounding

Before turning to leverage score sampling, we discuss the limitations of our approach for a
second important tensor train primitive. Multiple applications, including dynamic low-rank
approximation [GKT13; YL24] and tensor train Krylov methods [Al +23], maintain a tensor
train with ranks that increase as the algorithm progresses. The rank inflation is a typically a
consequence of adding multiple vectors (represented as tensor trains) or applying a matrix
product operator to an evolving matrix product state. Oseledets [Ose11] describes a rank
reduction procedure to combat this issue and preserve accuracy of the decomposition. The
tensor train is first converted to left-orthonormal canonical form with only the rightmost core
as a general tensor. Successive singular value decompositions are then executed from right to
left for each core, with the lowest singular values dropped to reduce the core ranks.

The bottleneck in tensor train rounding is converting the representation with inflated ranks
into orthonormal canonical form. Al Daas et al. [Al +23] propose a randomized sketch
to accelerate orthonormalization, while Ma and Solomonik [MS22] prove matching lower
bounds on the runtime of sketching-based approaches. By contrast, the leverage score sketch
that we propose requires that the core chain arrive in orthonormal form. While the cost
to orthonormalize each core is negligible in ALS, it is prohibitively large for tensor train
rounding compared to the remaining computation. In this case, our methods do not provide
a benefit.

5.3 An Efficient Orthonormal Core Chain Sampler

We now sketch the proof of Theorem 5.1.1 by exhibiting a data structure that samples a row
from the matrix left chain matricization A≤j with probability proportional to its squared row
norm. With straightforward modifications, such a data structure also draws samples from a
right chain matricization A≥j. Our proof closely mirrors that of the corresponding claim in
Chapter 3, but key modifications are required to adapt the procedure to a tensor core chain.

Let random variables ŝ1, ..., ŝj be random variables defined so that the multi-index (ŝ1, ..., ŝj)
is drawn with probability proportional to the squared norm of the corresponding row from
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A≤j. Each variable ŝk takes on values in the set [Ik], and by definition we have

p(ŝ1 = s1 ∧ ... ∧ ŝj = sj) :=
1

Rj

(
A≤j [(s1, ..., sj), :] ·A≤j [(s1, ..., sj), :]

⊤
)
. (5.2)

In the equation above, we take A≤j [(s1, ..., sj), :] as a row vector and its transpose as a
column vector. Our sampling procedure will draw a slice from each core starting from Aj and
ending with A1, corresponding to a single row from A≤j . By starting the sampling procedure
at the j-th core, we can exploit the left-orthonormality property to derive the conditional
distribution on variable ŝk.

Lemma 5.3.1 (Conditional distribution for ŝk). Consider the event ŝj = sj, ..., ŝk+1 = sk+1,
which we abbreviate as ŝ>k = s>k. Then

p(ŝk = sk | ŝ>k = s>k) =
1

∥H>k∥2F
Tr
[
H⊤

>k · Ak [:, sk, :]
⊤ · Ak [:, sk, :] ·H>k

]
where H>k := Ak+1 [:, sk+1, :] · ... · Aj [:, sj, :]. When k = j, we take ŝ>k = s>k as a trivial
event with probability 1 and H>k = I ∈ RRj×Rj .

The proof appears in Section 5.6.1. Here, H>k functions as a “history matrix” as the product
of slices already selected by our sampler. Unfortunately, this distribution is expensive to
sample. The cost to even update H>k through matrix multiplication as indices are selected
is O(R3) (assuming R1 = ... = Rj = R), which cannot satisfy the complexity requirement in
Theorem 5.1.1.

Instead, we make the following observation: let q be the distribution of squared row norms
on the rows of A≤j. Then

q :=
1

Rj

(
A≤j [:, 1]2 + ... + A≤j [:, Rj]

2) ,
where A≤j [:, ...]2 denotes the componentwise square of each column vector. In other words,
q takes the form of a mixture distribution. Since each column of A≤j has the same norm, it
suffices to select a single column uniformly at random and restrict the sampling procedure
to that column. More concretely, define the random variable r̂ as uniform on [1, .., Rj] and
random variables t̂1, ..., t̂j by the conditional distribution

p(t̂k = tk | t̂k+1 = tk+1 ∧ ... ∧ t̂j = tj ∧ r̂ = r) =
1

∥h>k∥2
∥Ak [:, tk, :] · h>k∥2 (5.3)

where h>k = Ak+1 [:, tk+1, :] · ... · Aj [:, tj, :] · er and er is the r-th standard basis vector in RRj .
Then we have the following lemma:
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Lemma 5.3.2 (Conditional Distribution of t̂k). Fix sj = tj, sj−1 = tj−1, ..., sk = tk. After
marginalizing over r̂, the conditional distribution on t̂k satisfies

p(t̂k = tk | t̂>k = t>k) = p(ŝk = sk | ŝ>k = s>k).

As a consequence of Lemma 5.3.2, the joint random variable (t̂1, ..., t̂j) follows the desired
squared row-norm distribution on the rows of A≤j after marginalizing over r̂. The proof
appears in Section 5.6.2. Notice that the “history matrix” H>k has been replaced by a vector
h>k. This modification allows us to control sampling complexity, as the history vector can
be updated through matrix-vector (rather than matrix-matrix) multiplication.

Our final task is to draw each sample from the distribution in Equation (5.3) in time sublinear
in the dimension Ik (after appropriate preprocessing). Letting AL

k be the left matricization
of core Ak, we have

p(t̂k = tk | t̂>k = t>k ∧ r̂ = r)

=
1

∥h>k∥2
∥∥AL

k [tkRk−1 : (tk + 1)Rk−1, :] · h>k

∥∥2
2

=
1

∥h>k∥2
Rk−1∑
i=0

(
AL

k [tkRk−1 + i, :] · h>k

)2 (5.4)

The probability of selecting the slice sk is proportional to the sum of Rk−1 consecutive entries
from the probability vector (AL

k · h>k)2. As a result, we can sample t̂k by first sampling an
index in the range [1..IkRk−1] given by (AL

k ·h>k)2, then performing integer division by Rk−1

to obtain the corresponding slice index tk. Note that we already have a powerful tool to
sample from the weight vector (AL

k · h>k)2 given arbitrary h>k: Lemma 3.3.2. The following
corollary formalizes the claim.

Corollary 5.3.3 (Narrowing of Lemma 3.3.2). Given a matrix A ∈ RM×R, there exists a
data structure with construction time O(MR2) and space usage O(MR). Given any vector
h ∈ RR, it can draw a single sample from the un-normalized distribution of weights (A · h)2

in time O(R2 log(M/R)).

Proof. Construct the row sampling data structure in Lemma 3.3.2 with U = AL
k with Y = [1],

a matrix of all ones, and set F = R and C = ∥h>k∥2. Then

qh,U ,Y [s] = C−1U [s, :]
(
hh⊤)U [s, :]⊤ = C−1(U [s, :] · h)2

This is the target distribution, and the runtime to draw each sample is O(R2 log(M/R)+R2) =
O(R2 log(M/R)). The choice F = R also induces space usage O(MR), linear in the size of
the input.
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Corollary 5.3.3 enables us to efficiently draw samples according to the distribution in Equation
5.4, and therefore gives us a procedure to sample from the entire core chain. Constructing the
data structure above for each matrix AL

k , 1 ≤ k ≤ j, costs O(IRk−1R
2
k) with a linear space

overhead in the input core sizes. Drawing a sample from the k-th data structure requires time
O(R2

k log(IkRk−1/Rk)). Summing up this runtime over 1 ≤ k ≤ j gives the stated complexity
in Theorem 5.1.1.

Algorithm 15 ConstructChainSampler(A1, ...,AN)

1: for k = 1..N do
2: Zk := BuildSampler(AL

k )

Algorithm 16 ChainSampleLeft(J, j)

1: for d = 1..J do
2: r̂ := Uniform-sample([1...Rj])
3: h := er̂

4: for k = j...1 do
5: t̂k := RowSample(Zk,h)//Rk−1

6: h = h · Ak

[
:, t̂k, :

]
7: td = (t̂k)k≤j

8: return t1, ..., tJ

Algorithms 15 and 16 summarize the procedures to efficiently draw J samples from a left-
orthogonal core chain. The construction procedure builds a set of data structures of the
form given by Lemma 3.3.2 on the left-matricization of each tensor core. For each of J
rows to draw, the sampling algorithm selects a column t̂ uniformly at random from the left
matricization AL

<j. It then initializes the history vector h and successively samples indices
ŝj−1, ..., ŝ1 according to the conditional distribution, updating the history vector at each step.
Section 5.6.3 provides a rigorous proof of the correctness of the procedure sketched in this
section.

While the proof sketched above shares similarities with its analogue in Section 3.3, key
adaptations are required to sample from a tensor train core chain. The factors of a Khatri-
Rao product can be sampled in any order, since the Khatri-Rao product of several matrices is
commutative up to a permutation of its rows. Our sampling procedure requires us to sample
from core Aj down to A1, since Lemma 5.3.1 exploits the left-orthogonality of the each core
in its derivation. Starting the sampling procedure at Aj leads to a “history matrix” to keep
track of prior draws instead of the vector that would arise starting from core A1. Here, our
second innovation of uniform random column selection brings down sample complexity.
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Figure 5.5: Fit as a function of time for three FROSTT tensors, R = 6, J = 216 for rTT-ALS.
Thick lines are averages of 5 fit-time traces, shown by thin dotted lines.

Uber Enron NELL-2

R rTT-ALS TT-ALS Speedup rTT-ALS TT-ALS Speedup rTT-ALS TT-ALS Speedup

4 0.1332 0.1334 4.0x 0.0498 0.0507 17.8x 0.0213 0.0214 26.0x
6 0.1505 0.1510 3.5x 0.0594 0.0611 12.4x 0.0265 0.0269 22.8x
8 0.1646 0.1654 3.0x 0.0669 0.0711 10.5x 0.0311 0.0317 22.2x
10 0.1747 0.1760 2.4x 0.0728 0.0771 8.5x 0.0350 0.0359 20.5x
12 0.1828 0.1846 1.5x 0.0810 0.0856 7.4x 0.0382 0.0394 15.8x

Table 5.1: Average fits and speedup, J = 216 for ALS algorithms, 40 iterations. The speedup
is the average per-iteration runtime for a single exact ALS sweep divided by the average time
for a single randomized sweep.

5.4 Experiments

Experiments were conducted on CPU nodes of NERSC Perlmutter. We reused the core
sampling infrastructure from Chapter 3, and our code is available online at https://github.
com/vbharadwaj-bk/ortho_tt_subspace_embedding. To test our sampling procedure, we
focus on sparse tensor decomposition via alternating least squares.

5.4.1 Approximate Sparse Tensor Train Decomposition

We apply randomized TT-ALS to three large sparse tensors from FROSTT [Smi+17]. Table
5.1 gives the fits achieved by our method to decompose these tensors. The largest of
these tensors, NELL-2, has around 77 million nonzero entries with mode sizes in the tens
of thousands. Fits for sparse tensor decomposition are typically low, but the factors of
the resulting decomposition have successfully been mined for patterns [LK22]. For these
experiments, we chose all decomposition ranks equal with R1 = ... = RN = R and tested over
a range of values for R.

https://github.com/vbharadwaj-bk/ortho_tt_subspace_embedding
https://github.com/vbharadwaj-bk/ortho_tt_subspace_embedding
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Figure 5.6: Final fit of sparse tensor decomposition for varying sample counts. Each box plot
reports statistics for 5 trials. The blue dashed lines show the fit for non-randomized ALS.

The fits produced by rTT-ALS match those produced by the non-randomized ALS method
up to variation in the third significant figure for Uber and NELL-2, with slightly higher
errors on the Enron tensor. We kept the sample count for our randomized algorithms fixed at
J = 216 throughout this experiment. As a result, the gap between the fit of the randomized
and exact methods grows as the target rank increases, which our theory predicts.

Table 5.1 also reports the average speedup per ALS sweep of rTT-ALS over the exact algorithm.
On the NELL-2 sparse tensor with target rank 12, the non-randomized ALS algorithm requires
an average of 29.4 seconds per ALS sweep, while rTT-ALS requires only 1.87 seconds. Figure
5.5 shows that our method makes faster progress than its non-randomized counterpart across
all three tensors. Because we could not find a well-documented, high-performance library for
sparse tensor train decomposition, we wrote a fast multithreaded implementation in C++,
which serves as the baseline method in these figures and tables.

Figure 5.6 shows the impact of varying the sample count on the final fit. We find modest
increases in accuracy for both Uber and NELL-2 as the sample count increases by a factor of
5 (starting from J = 215). Increasing J has a smaller impact for the Enron tensor, which is
more difficult to decompose with i.i.d. random factor initialization [LK22].

5.5 Conclusions and Future Work

We have established, both empirically and theoretically, that our sampling algorithm correctly
draws samples according to the leverage scores of orthonormal core chains. The method
accelerates sparse tensor train decomposition; furthermore. our results testify to the general-
ization power of Theorem 3.3.2, which was originally designed to sample from the Khatri-Rao
product.
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5.6 Complete proofs

5.6.1 Proof of Lemma 5.3.1

In the proof below, we assume that the conditioning event ŝ>k = s>k occurs with nonzero
probability and abbreviate C = p(ŝ>k = s>k). We write

p(ŝk = sk | ŝ>k = s>k)

= p(ŝk = sk ∧ ŝ>k = s>k)p(ŝ>k = s>k)−1

= C−1
∑

s1,...,sk−1

p(ŝ1 = s1 ∧ ... ∧ ŝj = sj)

= C−1
∑

s1,...,sk−1

1

Rj

(
A≤j [(s1, ..., sj), :] ·A≤j [(s1, ..., sj), :]

⊤
)

= C−1
∑

s1,...,sk−1

1

Rj

Tr
[
A≤j [(s1, ..., sj), :]

⊤ ·A≤j [(s1, ..., sj), :]
]

= C−1 1

Rj

∑
s1,...,sk−1

Tr
[
Aj [:, sj, :]

⊤ · ... · A1 [:, s1, :]
⊤ · A1 [:, s1, :] · ... · Aj [:, sj, :]

]
= C−1 1

Rj

∑
s2,...,sk−1

Tr

[
Aj [:, sj, :]

⊤ · ... ·

(∑
s1

A1 [:, s1, :]
⊤ · A1 [:, s1, :]

)
· ... · Aj [:, sj, :]

]

= C−1 1

Rj

∑
s2,...,sk−1

Tr
[
Aj [:, sj, :]

⊤ · ... · A2 [:, s2, :]
⊤ · I · A2 [:, s2, :] · ... · Aj [:, sj, :]

]
.

(5.5)
In the expressions above, the summation over each variable st, 1 ≤ t ≤ k, is taken over the
range 1...It. The first step is Bayes’ rule, and the second step follows by marginalizing over
random variables ŝ1, ..., ŝk−1. The third step follows from the Equation 5.2. The fourth step
rewrites an inner product of two vectors as the trace of their outer product. The fifth step
follows from the definition of A≤j. The sixth step follows from the linearity of the trace by
moving the summation over s1 into the product expression. The last step follows from the
definition of the left-orthonormality property on A1; that is,

∑
s1
A1 [:, s1, :]

⊤ · A1 [:, s1, :] =

AL⊤
1 AL

1 = I. By successively moving summation operators into the product expression to
repeat the last step (exploiting the left-orthonormality of each core in the process), we find

p(ŝk = sk | ŝ>k = s>k)

=
1

CRj

Tr
[
Aj [:, sj, :]

⊤ · ... · Ak [:, sk, :]
⊤ · Ak [:, sk, :] · ... · Aj [:, sj, :]

]
=

1

CRj

Tr
[
H⊤

>k · Ak [:, sk, :]
⊤ · Ak [:, sk, :] ·H>k

]
,

(5.6)
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where the last line follows from the definition of H>k. Our final task is to compute C =
p(ŝ>k = s>k):

1 =
∑
sk

p(ŝk = sk | ŝ>k = s>k)

=
1

CRj

Tr

[
H⊤

>k ·
∑
sk

(
Ak [:, sk, :]

⊤ · Ak [:, sk, :]
)
·H>k

]

=
1

CRj

Tr
[
H⊤

>k · I ·H>k

]
,

=
∥H>k∥2F
CRj

,

(5.7)

where the third step again exploits left-orthonormality of Ak. Therefore C = ∥H>k∥2F /Rj,
and substituting back yields

p(ŝk = sk | ŝ>k = s>k)

=
1

CRj

Tr
[
H⊤

>k · Ak [:, sk, :]
⊤ · Ak [:, sk, :] ·H>k

]
=

1

∥H>k∥2F
Tr
[
H⊤

>k · Ak [:, sk, :]
⊤ · Ak [:, sk, :] ·H>k

]
.

(5.8)

5.6.2 Proof of Lemma 5.3.2

We use induction to simultaneously prove the following two statements from k = j down to
k = 1:

p(r̂ = r | t̂>k = t>k) =
∥h>k∥2

∥H>k∥2F
p(ŝk = sk | ŝ>k = s>k) = p(t̂k = tk | t̂>k = t>k).

(5.9)

The induction base case is k = j; recall here that we take ŝ>j = s>j and t̂>j = t>j as trivial
events that occur with probability 1 and do not change the probability of any other event.
Likewise when k = j, we take H>k = I ∈ RRj×Rj . Then we have

p(r̂ = r | t̂>j = t>j) = p(r̂ = r)

=
1

Rj

=
∥I · er∥2

∥I∥2F

=
∥h>j∥2

∥H>j∥2F
.

(5.10)
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The first step removes conditioning on the trivial event. The second step uses the fact that r̂
is uniform random on [Rj]. The third step rewrites the numerator and denominator, and the
fourth step uses the definitions of h>j and H>j.

Likewise for the second statement,

p(ŝj = sj | ŝ>j = s>j) =
1

∥H>j∥2F
Tr
[
H⊤

>j · Aj [:, sj, :]
⊤ · Aj [:, sj, :] ·H>j

]
=

1

Rj

Tr
[
Aj [:, sj, :]

⊤ · Aj [:, sj, :]
]

=
1

Rj

Rj∑
r=1

(
e⊤
r · Aj [:, sj, :]

⊤ · Aj [:, sj, :] · er

)
=

1

Rj

Rj∑
r=1

∥Aj [:, sj, :] · er∥2

=

Rj∑
r=1

p(t̂j = tj | t̂>j = t>j ∧ r̂ = r)p(r̂ = r)

= p(t̂j = tj | t̂>j = t>j).

(5.11)

The first step uses Lemma 5.3.1. The second step substitutes H>j = I. The third and fourth
steps use properties of the matrix trace. The fifth step uses uniformity of r̂ and substitutes
the conditional distribution for t̂j defined in Equation (5.3). The final step uses the law of
total probability to complete the proof of the base case.

To prove the inductive step, assume both statements hold for k + 1. Then for k, we have

p(r̂ = r | t̂>k = t>k)

= p(r̂ = r | t̂k+1 = tk+1 ∧ t̂>k+1 = t>k+1)

= p(t̂k+1 = tk+1 | r̂ = r ∧ t̂>k+1 = t>k+1) ·
p(r̂ = r | t̂>k+1 = t>k+1)

p(t̂k+1 = tk+1 | t̂>k+1 = t>k+1)

=
∥Ak+1 [:, sk+1, :] · h>k+1∥2

∥h>k+1∥2
· ∥h>k+1∥2

∥H>k+1∥2F
· ∥H>k+1∥2F

Tr [H>k+1 · Ak+1 [:, sk+1, :] · Ak+1 [:, sk+1, :] ·H>k+1]

=
∥Ak+1 [:, sk+1, :] · h>k+1∥2

Tr [H>k+1 · Ak+1 [:, sk+1, :] · Ak+1 [:, sk+1, :] ·H>k+1]

=
∥h>k∥2

∥H>k∥2F
.

(5.12)
The first step splits off the conditioning event t̂k+1 = tk+1. The second step uses Bayes’ rule
with the events t̂k+1 = tk+1 and r̂ = r, both conditioned on t̂>k+1 = t>k+1. At this point, the
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three probabilities in the equation (left quantity, numerator of fraction, and denominator
of fraction) are known from Equation (5.3), statement 1 of the induction hypothesis, and
statement 2 of the induction hypothesis combined with Lemma 5.3.1, respectively. The third
step makes these substitutions, keeping in mind that s>k+1 = t>k+1. The fourth steps cancels
terms, and the last step uses the definitions of h>k and H>k. This completes the induction
step for the first statement.

To prove the induction step for the second statement, we have

p(ŝk = sk | ŝ>k = s>k) =
1

∥H>k∥2F
Tr
[
H⊤

>k · Ak [:, sk, :]
⊤Ak [:, sk, :] ·H>k

]
=

1

∥H>k∥2F

Rj∑
r=1

(
e⊤
r ·H⊤

>k · Ak [:, sk, :]
⊤Ak [:, sk, :] ·H>k · er

)
=

1

∥H>k∥2F

Rj∑
r=1

(
h⊤

>k · Ak [:, sk, :]
⊤Ak [:, sk, :] · h>k

)
=

Rj∑
r=1

p(t̂k = tk | t̂>k = t>k ∧ r̂ = r) · ∥h>k∥2

∥H>k∥2F

=

Rj∑
r=1

p(t̂k = tk | t̂>k = t>k ∧ r̂ = r)p(r̂ = r | t̂>k = t>k)

= p(t̂k = tk | t̂>k = t>k).

(5.13)

The first three steps are similar to the corresponding manipulations in the proof of the base
case. The fourth step substitutes the conditional distribution of t̂k from Equation (5.3), and
the fifth step uses statement 1 from the claim (already proven for k). The sixth step uses the
law of total probability, and the claim follows by induction.

5.6.3 Proof of Theorem 5.1.1

We provide a short end-to-end proof that shows that Algorithms 15 and 16 correctly draw
samples from AL

≤j (the matricization of the left-orthogonal core chain) according to the
distribution of its squared row norms while meeting the runtime and space guarantees of
Theorem 5.1.1.

Construction Complexity: The cost of Algorithm 15 follows from 3.3.2 with M = IRk−1,
the row count of AL

k for 1 ≤ k < j. Using this lemma, construction of each sampling data
structure Zk requires time O(IkRk−1R

2
k). The space required by sampler Zk is O(IkRk−1Rk);

summing over all indices 1 ≤ k ≤ j matches the construction claim in Theorem 5.1.1.
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Sampling Complexity: The complexity to draw samples in Algorithm 16 is dominated by
calls to the RowSample procedure, which as discussed in Section 5.3 is O(R2

k log(IkRk−1/Rk))
Summing the complexity over indices 1 ≤ k ≤ j yields the cost claimed by Theorem 5.1.1
to draw a single sample. The complexity of calling the RowSample procedure repeatedly
dominates the complexity to update the history vector h over all loop iterations, which is

O
(∑j

k=1Rk−1Rk

)
for each sample.

Correctness: Our task is to show in Algorithm 16, each sample td, 1 ≤ d ≤ J , is a
multi-index that follows the squared row norm distribution on A≤j. To do this, we rely on
lemmas proven earlier. For each sample, the r̂ is a uniform random draw from [1, ..., Rj], and
h is initialized to the corresponding basis vector. By Equation (5.4) and Lemma 3.3.2, Line
5 from Algorithm 16 draws each index t̂k correctly according to the probability distribution
specified by Equation (5.3). The history vector is updated by Line 6 of the algorithm so that
subsequent draws past iteration k of the loop are also drawn correctly according to Equation
(5.3). Lemma 5.3.2 (relying on Lemma 5.3.1) shows that the multi-index (t̂1, ..., t̂j) drawn
according to Equation (5.3) follows the same distribution as (ŝ1, ..., ŝj), which was defined to
follow the squared norm distribution on the rows of A≤j.
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Chapter 6

Distributed Sparse Kernels for
Machine Learning

Our penultimate technical chapter examines a kernel called Sampled Dense-Dense Matrix
Multiplication (SDDMM): matrix multiplication with a mask on the output. We optimize
the kernel for the distributed-memory parallel setting and revisit several techniques and
applications from prior chapters. Graph neural networks (Chapter 2) and distributed matrix
completion (related to tensor factorization from Chapter 4) make reappearances as use-cases
for SDDMM.

Echoing techniques used in those chapters, we employ kernel fusion and optimizations that
target imbalanced communication costs for different matrices. We also exploit a key duality
property between distributed memory SDDMM and sparse-dense matrix multiplication, which
has already been exploited in the shared-memory case [Nis+18]. Our communciation-avoiding
algorithms achieve 3-5x speedup over the comparable routines in PETSc and scale up to
17,000 CPU cores of Cori, a Cray supercomputer at Lawrence Berkeley National Lab.

6.1 Introduction

Sampled Dense-Dense Matrix Multiplication and Sparse-Times-Dense Matrix Multiplication
(SpMM) have become workhorse kernels in a variety of computations. Their use in matrix
completion [CZ13] and document similarity computation [TP21] is well documented, and they
are the main primitives used in graph learning [Vel+18]. The recent interest in Graph Neural
Networks (GNNs) with self-attention has led libraries such as Amazon Deep Graph Library
(DGL) [Wan+19] to expose SDDMM and SpMM primitives to users. Typical applications
make a call to an SDDMM operation and feed the sparse output to an SpMM operation,
repeating the pair several times with the same nonzero pattern (but possibly different values)
for the sparse matrix. We refer to the back-to-back sequence of an SDDMM and SpMM as
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FusedMM.

Several works optimize SDDMM and SpMM kernels in shared memory environments, or on
accelerators such as GPUs [Hon+19; Nis+18; JHA20]. Separately, there have been prior
efforts [Koa+16; Sel+21; ASA16] to optimize distributed memory SpMM by minimizing
processor to processor communication. There is no significant work, however, on distributed
algorithms for SDDMM or FusedMM.

We make three main contributions. First, we show that every sparsity-agnostic distributed-
memory algorithm for SpMM can be converted into a distributed memory algorithm for
SDDMM that uses the same input / output data distribution and has identical communication
cost. Second, we give two methods to elide communication when executing an SDDMM and
SpMM in sequence (FusedMM): replication reuse, which elides a second replication of an
input matrix, and local kernel fusion, which allows local SDDMM and SpMM operations
to execute on the same processor without intervening communication. These methods not
only eliminate unnecessary communication rounds, they also enable algorithms that replicate
dense matrices to scale to higher or lower replication factors (depending on which of the
two methods used). Third, we demonstrate, both in theory and practice, these algorithms
that replicate or shift sparse matrices perform best when the ratio of nonzeros in the sparse
matrix to the number of nonzeros in the dense matrices is sufficiently low. When the number
of nonzeros in the sparse matrix approaches the number of nonzeros in either of the dense
matrices, algorithms that shift or replicate dense matrices become favorable.

Our work gives, to the best of our knowledge, the first benchmark of 1.5D SpMM and
SDDMM algorithms that cyclically shift sparse matrices and replicate a dense matrix, which
enables efficient communication scaling when the input dense matrices are tall and skinny. It
also gives the first head-to-head comparison between sparse shifting and dense shifting 1.5D
algorithms, which we show outperform each other depending on the problem setting.

6.2 Definitions

Symbol Definition

S,R m× n sparse matrix
A m× r dense matrix
B n× r dense matrix
ϕ The ratio nnz(S)/nr
p Total processor count
c Replication Factor

Table 6.1: Notation for Chapter 6.
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Let A ∈ Rm×r,B ∈ Rn×r be dense matrices and let S ∈ Rm×n be a sparse matrix. The
SDDMM operation produces a sparse matrix with sparsity structure identical to S given by

SDDMM(A,B,S) := S ⊛ (A ·B⊤) (6.1)

Computing the output with a dense matrix multiplication followed by element-wise multipli-
cation with S is inefficient, since we only need to compute the output entries at the nonzero
locations of S.

For clarity when describing our distributed memory algorithms, we distinguish between the
SpMM operation involving S that takes B as an input vs. the operation involving S⊤ that
takes A as an input. Specifically, define

SpMMA(S,A) := S ·B
SpMMB(S,B) := S⊤ ·A

where the suffix A or B on each operation refers to the matrix with the same shape as
the output. The distinction is useful for applications such as alternating least squares and
graph attention networks, which require both operations at different points in time. Finally,
we borrow notation from prior works on the SDDMM-SpMM sequence [RSA21] and use
FusedMMA, FusedMMB to denote operations that are compositions of SDDMM with SpMMA
or SpMMB, given as

FusedMMA(S,A,B) := SpMMA(SDDMM(A,B,S),B)

FusedMMB(S,A,B) := SpMMB(SDDMM(A,B,S),A)

6.3 Related Work

6.3.1 Shared Memory Optimization

Local SpMM and SDDMM operations are bound by memory bandwidth compared to
dense matrix multiplication. Accelerating either SpMM or SDDMM in a shared memory
environment, such as a single CPU node or GPU, typically involves blocking a loop over
the nonzeros of S to optimize cache reuse of the dense matrices [Nis+18]. For blocked
SDDMM and SpMM kernels, the traffic between fast and slow memory is exactly modeled
by the edgecut-1 metric of a hypergraph partition induced on S (treating the rows of S
as hyper-edges and the columns as vertices, with nonzeros indicating pins). Jiang et al.
[JHA20] reorder the sparse matrix to minimize the connectivity metric, thereby reducing
memory traffic. Instead of reordering S, Hong et al. [Hon+19] adaptively choose a blocking
shape tuned to the sparsity structure to optimize performance. Both optimizations require
expensive processing steps on the sparse matrix S, which are typically amortized away by
repeated calls to the kernel.
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6.3.2 Distributed Sparsity-Aware Algorithms

We can divide distributed-memory implementations for both SpMM and SDDMM into two
categories: sparsity-aware algorithms, and sparsity-agnostic bulk communication approaches.
In the former category, the dense input matrices are partitioned among processors along with
the sparse matrix nonzeros (i, j), such that each processor owns at least one of Ai: or Bj:.
When processing (i, j), if a processor does not own one of the two dense rows needed, it
fetches the embedding from another processor that owns it [ASA16]. Such approaches work
well when S is very sparse. They also benefit from graph / hypergraph partitioning to reorder
the sparse matrix, which can reduce the number of remote fetches that each processor must
make while maintaining load balance. Such approaches suffer, however, from the overhead
of communicating the specific embeddings requested by processors, which typically requires
round-trip communication. As S gets denser, processors are better off broadcasting all of
their embeddings.

6.3.3 Sparsity Agnostic Bulk Communication Algorithms

Sparsity agnostic algorithms resemble distributed dense matrix multiplication algorithms by
broadcasting, shifting, and reducing block rows and block columns of A,B, and S. These
methods cannot significantly benefit from graph partitioning and they often rely on a random
permutation of the sparse matrix to load balance among processors.

Such algorithms are typically described as 1D, 1.5D, 2D, 2.5D, or 3D. 1D and 2D algorithms
are memory-optimal, with processors requiring no more aggregate memory than the storage
required for inputs and outputs (up to a small constant factor for communication buffering).
1.5D, 2.5D, and 3D algorithms increase collective memory consumption of at least one of
the three operands to asymptotically decrease communication costs. In this work, we will
consider only 1.5D and 2.5D algorithms, since 1D, 2D, and 3D algorithms are special cases of
these two.

Koanantakool et al. show when A,B and S are all square, 1.5D SpMM algorithms that
cyclically shift the sparse matrix yield superior performance [Koa+16]. They only benchmark
multiplication of all square matrices, which does not cover the more common case where
r ≪ m,n. In graph embedding problems, r is typically between 64 and 512, whereas m
and n range up to hundreds of millions. For this case, Tripathy et al. [TYB20] introduced
CAGNET, which trains graph neural networks on hundreds of GPUs using 1.5D and 2.5D
distributed SpMM operations. They, along with Selvitopi et al. [Sel+21], showed that 2D
algorithms for SpMM suffer from diminished arithmetic intensity as processor count increases.
In contrast, both demonstrate that 1.5D algorithms communicating dense matrices exhibit
excellent scaling with processor count. Selvitopi et al. did not consider 2.5D algorithms,
however, and neither work benchmarked 1.5D algorithms that cyclically shift sparse matrices.
In addition, the 2.5D algorithms in CAGNET only replicate the dense matrix, whereas it is
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also possible to construct implementations that only replicate the sparse matrix.

6.3.4 Background on Dense Distributed Linear Algebra

Our sparsity-agnostic algorithms resemble 1.5D and 2.5D variants of the the Cannon and
SUMMA distributed dense GEMM algorithms [Can69], [GW95]. In the 2.5D Cannon-like
algorithm to compute compute the matrix product X = Y Z, the submatrix domains of
the output X are replicated among processors [SD11]. E.g., for every entry Xij, different
processors compute different parts of the inner product Yi: ·Y:j and reduce their results at the
end. The inputs are both propagated during the algorithm: submatrices of A and B are
cyclically shifted between processors in stages. The SUMMA algorithm replaces the stages of
cyclic shifts with broadcast collectives. 1.5D variants of these algorithms keep at least one of
the three matrices stationary: submatrices of a stationary matrix are distributed among
processors, but they are not broadcast, reduced, or shifted. It is possible to modify these
algorithms so that an input matrix is replicated rather than an output.

Our algorithm design is dictated by choosing which submatrices we keep stationary, replicate,
and propagate. While these choices do not matter for dense GEMM if all matrices are square,
they impact our kernels due to the sparsity of S and the extremely rectangular shapes of A
and B.

Kwasniewski et al. [Kwa+19] recently proposed COSMA, which uses the classic red-blue
pebbling game to design an optimal parallelization scheme for distributed dense GEMM with
matrices of varying shapes. Their communication-minimizing algorithms achieve excellent
performance relative to SCALAPACK and recent high performance matrix multiplication
work. COSMA, however, does not account for sparsity in either inputs or outputs. Our work,
furthermore, focuses on the FusedMM computation pattern commonly found in applications,
which provides further opportunities for communication minimization than considering the
SpMM and SDDMM kernels in isolation.

6.4 Distributed Memory Algorithms for SDDMM and

FusedMM

This section highlights the connection between SpMM and SDDMM and gives a high-level
procedure to convert between algorithms that compute each one. This enables us to use
a single input distribution to compute SDDMM, SpMMA, and SpMMB, at the cost of
possibly replicating the sparse matrix S by a factor of 2 to store its transpose. Each kernel
requires the same amount of communication. Next, we give two communication elision
strategies when we execute an SDDMM and an SpMM operation in sequence, with the
output of the SDDMM feeding into the SpMM (a FusedMM operation). Optimizing for the
sequence of the two kernels reduces communication overhead compared to simply executing
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one distributed algorithm followed by the other. Subsequently, we detail the implementation
of those high-level strategies.

6.4.1 The Connection between SDDMM and SpMM

SDDMM and SpMM have identical data access patterns, which becomes clear when we
compare their serial algorithms (take SpMMA here). Letting sparse matrix R be the
SDDMM output, we have Rij = Sij

(
Ai: ·B⊤

j,:

)
with R set to zero where S is 0. Compare

this equation to each step required to compute A += SpMMA(S,B): for every nonzero
(i, j) of S, we perform the update Ai: += SijBj:. For both SDDMM and SpMMA, each
nonzero of S results in an interaction between a row of A and a row of B.

Now consider any distributed memory algorithm for SpMMA that does not replicate its
input or output matrices during computation. For each nonzero (i, j) and for every index
k ∈ [1, r], this algorithm must co-locate Sij, Aik, and Bjk on some processor and compute
Aik += SijBjk. Transform the algorithm as follows:

1. Change the input sparse matrix S to an output matrix initialized to 0.

2. Change A from an output matrix to an input matrix.

3. Have each processor execute local update Sij += AikBjk.

Then for all nonzeros (i, j) and every index k ∈ [1, r], the processors collectively execute
computations to overwrite S with AB⊤ masked at the nonzeros of S. This is exactly
the SDDMM operation up to multiplication of AB⊤ with the values initially in S. If
the output distribution of S is identical to its input distribution after execution, then the
post-multiplication with the initial values in S does not require additional communication.
A similar transformation converts an algorithm for SpMMB into an algorithm for SDDMM.

We can extend this transformation procedure to algorithms that replicate input and output
matrices. Typically, inputs are replicated via broadcast, while output replication requires a
reduction at the end of the algorithm to sum up temporary buffers across processors. Since
we interchange in the input / output role between matrices A and S, we convert broadcasts
of the values of S in SpMMA to reductions of its values in SDDMM, and reductions of A to
broadcasts.

Algorithms 17 and 18 illustrate the transformation procedure outlined above by giving unified
algorithms to compute SDDMM, SpMMA, and SpMMB. The local update executed by each
processor changes based on the kernel being executed, and initial broadcasts / terminal
reductions depend on whether matrices function as inputs or outputs.
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Figure 6.1: Communication eliding strategies illustrated. The benefit from replication reuse
and local kernel fusion arises from an increased or decreased optimal replication factor, not
just the elimination of communication phases.

6.4.2 Strategies for Distributed Memory FusedMM

FusedMMA computes each row of its output as

FusedMMA(A,B,S)i: :=
∑

j | (i,j)∈nnz(S)

Sij⟨Ai:,Bj:⟩Bj:

which is a sum of rows j of matrix B weighted by the dot products between rows j of B
and rows i of A. The analogous equation for FusedMMA replaces Sij with S⊤

ij = Sji. The
simplest distributed implementation for FusedMMA computes the intermediate SDDMM,
stores it temporarily, and feeds the result directly to SpMMA, exploiting the common input /
output data layouts in the previous section. The communication cost for this implementation
is twice that of either a single SpMMA operation or SDDMM operation. Such an algorithm
for FusedMMA takes the following structure:

1. Replicate dense matrices A,B in preparation for SDDMM (if either A or B is replicated)

2. Propagate matrices, compute SDDMM

3. Reduce SDDMM output R (if sparse matrix is replicated)

4. Replicate dense matrix B in preparation for SpMMA (if B is replicated)

5. Propagate matrices, compute SpMMA

6. Reduce output matrix A (if A is replicated)

In the outline above, propagation refers to any communication that excludes replication of
inputs / outputs (for example, cyclic shifts of buffers in Cannon’s algorithm). Increased
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replication factors allow us to decrease propagation cost, but increase the required memory
and result in a higher cost to perform the replication. Choosing the optimal replication
factor involves minimizing the sum of the communication overhead paid in replication and
propagation. We can save communication in two ways: first by reducing the replication cost,
and second by reducing the propagation cost. Figure 6.1 illustrates both.

(1) Replication Reuse: This approach performs only a single replication of an input
matrix in both the SDDMM and SpMM computations. If we replicate the dense matrix B,
before the SDDMM operation, we don’t require a second replication before the SpMM phase,
nor do we need a reduction of the output buffer.

(2) Local Kernel Fusion: This approach combines the two propagation steps, 2 and 5,
into a single phase while only replicating matrix A. Using locally available data at each
propagation step, it requires performing a local SDDMM and SpMM in sequence without
intermediate communication. Thus, local kernel fusion with any data distribution that
divides A and B by columns would yield an incorrect result. From the standard definition
of FusedMMA, we must compute the dot product ⟨Ai:,Bj:⟩ that scales every row of B
before aggregating those rows, requiring us to complete the SDDMM before performing any
aggregation. The 1.5D algorithm that replicates and shifts dense matrices (Section 6.5) co-
locates entire rows of A and B on the same processor during the stages of computation, and is
the only candidate that can take advantage of local kernel fusion. Besides the communication
savings that they offer, optimized local FusedMM functions (e.g., [RSA21]) can improve
performance by eliding intermediate storage of the SDDMM result.

Although applying either method would provide moderate communication savings without
modifying any other aspect of the algorithm, their utility really lies in allowing us to change
the degree of replication for any algorithm that replicates a dense matrix. Algorithms that
employ replication reuse can achieve lower communication overhead at higher replication
factors compared to an unoptimized sequence of calls. Intuitively, increasing the replication
factor enables the algorithm to trade away more overhead in the propagation phase before
the cost of replication becomes overwhelming. By contrast, algorithms that employ local
kernel fusion can achieve lower communication overhead at lower replication factors. The
algorithm requires less replication to balance off the lower cost of propagation. Note that
these strategies are mutually exclusive; applying them both to 1.5D dense shifting algorithms
would require propagating a separate accumulation buffer in the propagation phase, which
destroys the benefit of local kernel fusion.

While we have discussed strategies for FusedMMA, we obtain algorithms for FusedMMB
by interchanging the roles of A and B and replacing matrix S with its transpose S⊤. In
practice, this amounts to storing two copies of the sparse matrix across all processors, one
with the coordinates transposed.
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Figure 6.2: Design choices in SpMM algorithms. We do not consider the 1.5D sparse
replicating, dense shifting algorithm, since it is inferior to the 2.5D sparse replicating
algorithm.

6.5 Algorithm Descriptions

We consider formulations for SpMM detailed previously [Koa+16; TYB20; Sel+21], but
some with key modifications. We arrive at each algorithm by deciding which of the three
matrices A,B, and S to replicate, propagate, or keep stationary (see figure 6.2). We consider
formulations where only a single matrix is replicated enabling us to scale to higher replication
factors and take advantage of both communication-eliding strategies described above.

Let p be the total processor count. We list the input distributions of all matrices in Table 6.2.
Each matrix is partitioned by blocks into a grid with the specified dimension. The product of
these dimensions may exceed the total processor count because processors can own multiple
non-contiguous blocks, as in block row / column cyclic distributions. The third column of
Table 6.2 gives the processor that initially owns a block (i, j) as an (u, v) or (u, v, w) tuple,
which identifies the processor position within a 2D / 3D grid. For the 2.5D sparse replicating
algorithm, “*” means all processors along the third axis of the grid share the coordinates of
block (i, j). Figure 6.3 illustrates the data movement in our algorithms for 8 processors with
a replication factor of 2. We will refer to the grid axis along which inputs are reduced or
gathered as the “fiber axis”. It is the second dimension of the computational grid for 1.5D
algorithms and the third dimension for 2.5D algorithms.

To analyze our algorithms, we use the α-β-γ model where α is the per-message latency, β is
the inverse-bandwidth, and γ is the cost per FLOP performed locally on each processor. Since
our algorithms communicate blocks of matrices, they exchange at most a small multiple of p
messages, each of which is a large block of a matrix. Therefore, we focus on minimizing the
number of data words communicated by each processor, the coefficient of inverse-bandwidth in
our model. In the analysis that follows, we use “communication cost” to mean the maximum
amount of time that any processor spends sending and receiving messages.
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We assume sends and receives can make independent progress on each node and use the costs
for collectives in the literature [Cha+07]. To aid the analysis, assume m ≈ n, and let ϕ be
the ratio of the number of nonzeros in S to the number of nonzeros of dense matrix B, i.e.
ϕ = nnz(S)/nr.

Matrix Grid Owner of Block (i, j)

1.5D Dense Shifting

A p× 1 (i/c, i%c)
B p× 1 (i/c, i%c)
S,R (p/c)× p (i, j%c)

1.5D Sparse Shifting

A p× (p/c) (j, i%c)
B p× (p/c) (j, i%c)
S,R 1× p (j/c, j%c)

2.5D Dense Replicating

A
√
pc×

√
p/c (i/c, j, i%c)

B
√
pc×

√
p/c (i/c, j, i%c)

S,R
√
p/c×√pc (i, j/c, j%c)

2.5D Sparse Replicating

A p×
√
p/c (i/c, j, i%c)

B
√
p/c× p (i, j/c, j%c)

S,R
√

p/c×
√

p/c (i, j, ∗)

Table 6.2: Input Matrix Distributions Before Replication

6.5.1 1.5D Dense Shifting, Dense Replicating

1.5D algorithms operate on a (p/c)×c processor grid, where c ≥ 1 is the replication factor. We
can interpret the 1.5D dense shifting, dense replicating algorithm as c layers of concurrently
executing 1D algorithms. To decrease communication as the processor count increases, the
1.5D dense shifting, dense replicating algorithm replicates one of the two dense matrix inputs,
propagates the other dense matrix, and keeps the remaining sparse matrix stationary on each
processor.

The procedure is detailed in Algorithm 17 and illustrated in Figure 6.3. The sparse matrix S
is stored with a column block cyclic distribution across the grid layers. The processors begin
by allocating a buffer T for the replicated matrix A, keeping T initially 0 if A is an output
buffer and otherwise gathering blocks of A of size (n/p) × r within each fiber if A is an
input (replication). For p/c phases, algorithms cyclically shift their local blocks of the matrix
B (propagation). Finally, if A is the output of the computation, the buffer T is reduced
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Figure 6.3: Data movement after replication, illustrated for p = 8 processors and replication
factor c = 2. Within each layer, submatrices shown in yellow are cyclically shifted from
processor to processor (propagation) in the direction indicated by single-headed blue arrows.
Submatrices in orange are replicated across layers and participate in reduce-scatter / allgather
operations outside the propagation phase. Submatrices in red remain stationary on each
processor. Black numbered circles give the processor owning each submatrix at the beginning
of each algorithm (note the initial skew for 2.5D algorithms).

and scattered to processors within the fiber. Increasing the replication factor c decreases
communication costs incurred within each layer due to cyclic shifts of B, but increases the
communication cost of allgather / reduce-scatter primitives between layers.

Communication analysis, No Elision: Consider a pair of SDDMM and SpMMA operations
that execute as two sequential calls to Algorithm 17 with no intervening communication elision.
The allgather and reduce-scatter primitives operate on dense block of size nrc/p within each
fiber, which contains c processors. The allgather within SDDMM and reduce-scatter in
SpMMA communicate 2((c − 1)/c)(nrc/p) words. Each layer contains p/c processors and
executes 2p/c cyclic shifts of dense blocks with size nr/p. Each cyclic shift communicates
nr/p words. Multiplying by the number of phases and adding to the cost of communication
along fibers gives a communication cost nr(2(c− 1)/p + 2/c). Differentiating this expression
and setting equal to 0, we find that c =

√
p minimizes the cost.

Communication analysis, Replication Reuse: If we apply replication reuse to optimize
FusedMMA (by interchanging the roles of A and B, replacing S with S⊤, and performing an
SpMMB), we eliminate the terminal reduce-scatter operation, yielding a communication cost
nr((c− 1)/p + 2/c). The optimal replication factor c becomes c =

√
2p. Since we have less

overall communication within each fiber, we can afford to increase replication further to drive
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Algorithm 17 Unified 1.5D Algorithm Moving Dense Matrices for SpMMA, SpMMB,
SDDMM

Require: Mode ∈ {SDDMM, SpMMA, SpMMB}, Dense Matrices A, B and sparse matrices
S, R distributed on a p

c
× c grid

Ensure: One of A, B, or R filled with the output of an SpMMA, SpMMB, or SDDMM
computation, depending on Mode

1: T := Zeros(cm/P,R)
2: if Mode ∈ {SDDMM, SpMMB} then
3: Allgather(Aloc, T , fiber-axis)
4: for i = 1 to p

c
do

5: if Mode == SDDMM then
6: Rloc += SDDMM(T ,Bloc, Sloc,i)
7: else if Mode == SpMMA then
8: T += SpMMA(Sloc,i,Bloc)
9: else
10: Bloc += SpMMB(Sloc,i,T )
11: Cyclic Shift Bloc within layer
12: if Mode == SpMMA then
13: Reduce-Scatter(T , Aloc, fiber-axis)
14: return One of A, B, or R filled with the computed result

down the cost of cyclic shifts within each layer. The ratio of the communication cost to the
version without FusedMM elision for the optimal choice of c in each is (1− 2

√
2p)/(2− 4

√
p),

which for p→∞ tends to 1/
√

2. Thus, we save roughly 30% of communication compared to
executing two kernels in sequence.

Communication analysis, Local Kernel Fusion: If we use the local kernel fusion strategy
to optimize FusedMMA, we need only a single round of p/c cyclic shifts instead of two. We
still require an initial allgather and terminal reduce-scatter, giving nr(2(c − 1)/p + 1/c)
words communicated. The smaller communication cost from cyclic shifts yields an optimal
replication factor c =

√
p/2, since communication within each fiber costs more relative to

the cyclic shifts. The ratio of the communication cost of local kernel fusion to the case
without any communication elision for the optimal choice of replication factors approaches
1/
√

2 as p → ∞, meaning that either communication eliding strategy produces the same
reduction in communication. Local kernel fusion, however, is the only algorithm that permits
local FusedMMA operations on each processor, since it does not divide row and column
embeddings along the short r-axis.
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6.5.2 1.5D Sparse Shifting, Dense Replicating

1.5D algorithms that shift the sparse matrix operate analogously to the dense shifting, dense
replicating algorithm. In this case, the sparse matrix is propagated while the non-replicated
dense matrix is stationary on each processor. Koanantakool et al. [Koa+16] showed that 1.5D
SpMM algorithms are more efficient than 2.5D algorithms when m=n=r. Their work, however,
both replicates and shifts the sparse matrix to decrease latency at high processor counts and
improve local SpMM throughput. Their approach was also motivated by working with all
square matrices, which means that any dense replication proves prohibitively expensive in
comparison to the sparse matrix communication. By contrast, our dense matrices are tall-
skinny. We cyclically shift the sparse matrix and replicate the dense input matrix to reduce
communication at high processor counts. This is advantageous when nnz(S) is significantly
smaller than nr. The c layers of the grid still participate in scatters / gathers of an input
matrix, but within each layer, block rows of the sparse matrix S are cyclically shifted, and we
now divide A and B by block columns rather than block rows. Dividing the dense matrices
by columns, however, can significantly hurt local kernel throughput on some architectures
[TYB20].

Communication Analysis, FusedMM: We again apply replication reuse to optimize the
FusedMM operation. The algorithm incurs the communication cost of 2p/c cyclic shifts of an
average of nnz(S)/p nonzeros each; each nonzero consists of three words when the sparse
matrix is in coordinate format. We add this to a single allgather operation on blocks of size
nr/p across the c processes in each fiber to produce an aggregate cost

6

(
nnz(S)

c

)
+

nr(c− 1)

p
(6.2)

where the first term arises from cyclic shifts and the second term arises from the allgather.
For ease of analysis, we replace nnz(S) with ϕnr (see the earlier definition of ϕ) and optimize
for c to get c =

√
6pϕ. When ϕ is low and c < 1, we interpret this as indicating that no

amount of replication is favorable. When c < 1, the optimal communication cost is 6ϕnr,
and when c > 1 (which occurs at higher processor counts), the communication cost is

nr
√
p

(
2
√

6ϕ− 1
√
p

)
(6.3)

Ignoring the lower order 1/
√
p term, Equation 6.3 indicates that when ϕ is low, the sparse

shifting algorithm performs better than the 1.5D dense shifting algorithm. As ϕ increases,
the dense shifting 1.5D algorithm performs better.

6.5.3 2.5D Dense Replicating Algorithms

2.5D algorithms operate on a
√

p/c×
√
p/c×c grid. We can interpret each layer as executing a

concurrent version of SUMMA / Cannon on a square 2D grid. This 2.5D algorithm replicates
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a dense matrix and cyclically shifts a sparse matrix and the remaining dense matrix within
each layer. Algorithm 18 gives pseudocode of the procedure; processors within each layer
cyclically shift both S and B along processor row, resp. column, axes, while blocks of A are
reduce-scattered or gathered along the fiber-axis at the beginning (and end). As written, the
algorithm requires an initial shift of its inputs to correctly index blocks of the matrices. In
practice, applications do not need to perform this initial shift if they fill the input and output
buffers appropriately. Thus, we don’t include the initial shift in our communication analysis.

Communication Analysis, FusedMM: We can only apply replication reuse when using
2.5D dense replicating algorithms, as the input dense matrices are divided by columns among
processors. The communication analysis is similar to the 1.5D FusedMM algorithms, so
we omit the details for brevity. The optimal replication factor is c = p1/3(1 + 3ϕ)2/3. The
resulting optimal cost is

nr

p2/3

(
2 + 6ϕ

(1 + 3ϕ)1/3
+ (1 + 3ϕ)2/3 − 1

p1/3

)
= O

(
nrϕ2/3

p2/3

)
Notice the factor p2/3 in the denominator, as opposed to p1/2 for the 1.5D algorithms. As with
the 1.5D sparse shifting algorithm, replication is less favorable when ϕ is low and becomes
more favorable as ϕ increases.

6.5.4 2.5D Sparse Replicating Algorithms

2.5D sparse replicating algorithms operate similarly to the dense replicating version, except
that both dense matrices cyclically shift within each layer and the nonzeros of the sparse
matrix are reduce-scattered / gathered along the fiber axis. The algorithm has the attractive
property that only the nonzero values need to be communicated along the fiber axis, since the
nonzero coordinates do not change between function calls. In contrast to the dense replicating
algorithm, the 2.5D sparse replicating algorithm divides the dense embedding matrices into
successively more block columns as c increases. Because this algorithm does not replicate
dense matrices, it cannot benefit from communication elision when performing a FusedMM
operation.

Communication Analysis, No Communication Elision To execute an SDDMM and
SpMM in sequence, the sparse replicating 2.5D algorithm executes an initial allgather to
accumulate the sparse matrix values at each layer of the processor grid, and an all-reduce
(reduce-scatter + allgather) between the SDDMM and SpMM calls. Over both propagation
steps, it executes 4

√
pc cyclic shifts of dense blocks containing nr/p words. The optimal

replication factor is c = p1/3 (2/(3ϕ))2/3, and the resulting optimal communication cost is

nrϕ1/3

p2/3

(
3
√

(25)3ϕ + 3
√

(22)3− 3ϕ2/3

p1/3

)
= O

(
nrϕ1/3

p2/3

)
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Algorithm 18 Unified 2.5D Dense Replicating Algorithm for SpMMA, SpMMB, SDDMM

Require: Mode ∈ {SDDMM, SpMMA, SpMMB}; Dense matrices A, B and sparse matrices
S, R distributed on a

√
p/c×

√
p/c× c grid (per Table 6.2)

Ensure: One of A, B, or R filled with the output of an SpMMA, SpMMB, or SDDMM
computation, depending on Mode

1: if Input Matrices are not shifted then
2: Cyclic Shift Sloc to processor row-rank− col-rank
3: Cyclic Shift Bloc to processor col-rank− row-rank
4: T := Zeros(cm/P,R)
5: if Mode ∈ {SDDMM, SpMMB} then
6: Allgather(Aloc, T , fiber-axis)
7: for i = 1 to

√
p/c do

8: if Mode == SDDMM then
9: Rloc += SDDMM(T ,Bloc, Sloc)
10: else if Mode == SpMMA then
11: T += SpMMA(Sloc,Bloc)
12: else
13: Bloc += SpMMB(Sloc,T )
14: Cyclic Shift Sloc by 1 within row clockwise
15: Cyclic Shift Bloc by 1 within column clockwise
16: if Mode == SpMMA then
17: Reduce-Scatter(T , Aloc, fiber-axis)
18: return One of A, B, or R filled with the computed result

Note the factor ϕ1/3 instead of ϕ2/3; for ϕ > 1, this is an improvement, and when ϕ < 1 but
is sufficiently far away from 0, the difference is subsumed by the constant factors in front of
the expression. Note also that the optimal value of c has ϕ2/3 in its denominator, indicating
that a sparser input S benefits from higher replication.

6.5.5 Summary

Table 6.3 summarizes the analysis in the previous sections by giving communication and
latency costs for each of the algorithms above embedded in the FusedMM procedure. It also
lists the dimensions of the matrices used in each local call to either SDDMM or SpMM. Table
6.4 gives the optimal replication factors for our algorithms.

Our theory predicts that 1.5D algorithms with correctly tuned replication factors will
marginally outperform the 2.5D algorithms over a range of processor counts, sparse matrix
densities, and dense matrix widths. The choice to use a dense shifting or sparse shifting 1.5D
algorithm depends on the value of ϕ in the specific problem instance. Figure 6.6 (Section 6.6)
illustrates and evaluates these predictions.
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Algorithm Best Replication Factor

1.5D Dense Shift, No Elision
√
p

1.5D Dense Shift, Replication Reuse
√

2p

1.5D Dense Shift, Local Kernel Fusion
√

p/2
1.5D Sparse Shift, Replication Reuse

√
6pϕ

2.5D Dense Replicate, No Elision 3

√
p (1+3ϕ)2

4

2.5D Dense Replicate, Replication Reuse 3
√

p(1 + 3ϕ)2

2.5D Sparse Replicate, No Elision 3

√
p

(2ϕ/3)2

Table 6.4: Optimal replication factors for FusedMM algorithms.

6.6 Experiments

We ran experiments on Cori, a Cray XC40 system at Lawrence Berkeley National Laboratory,
on 256 Xeon Phi Knights Landing (KNL) CPU nodes. Each KNL node is single socket CPU
containing 68 cores running at 1.4 GHz with access to 96 GiB of RAM [Cori]. KNL nodes
communicate through an Aries interconnect with a Dragonfly topology.

Our implementation employs a hybrid OpenMP / MPI programming model, with a single MPI
rank and 68 OpenMP threads per node. We use the MPI_ISend and MPI_Irecv primitives
for point-to-point communication, as well as the blocking collectives MPI_Reduce_scatter

and MPI_Allgather. To load balance among the processors, we randomly permute the rows
and columns of sparse matrices that we read in.

We use the Intel Math Kernel Library (MKL version 18.0.1.163) to perform local SpMM
computations. Because the MKL sparse BLAS does not yet include an SDDMM function, we
wrote a simple implementation that uses OpenMP to parallelize the collection of independent
dot products required in the computation. We rely on CombBLAS [Aza+21] for sparse
matrix IO and to generate distributed Erdős-Rényi random sparse matrices. We use Eigen
[GJ+10] as a wrapper around matrix buffers to handle local dense linear algebra. Our code
is available online1.

6.6.1 Baseline Comparisons

Our work presents, to the best of our knowledge, the first distributed-memory implementation
of SDDMM for general matrices. There is no comparable library to establish a baseline. Among
the PETSc, Trilinos, and libSRB libraries, only PETSc offers a distributed-memory SpMM
implementation as a special case of the MatMatMult routine [Bal+21], which we compare
against. Since PETSc does not support hybrid OpenMP / MPI parallelism [PETScThr],
we ran benchmarks with 68 MPI ranks per node (1 per core). To ensure a fair benchmark

1https://github.com/PASSIONLab/distributed sddmm
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Figure 6.4: Weak scaling experiments with r = 256. The horizontal axis gives the node count
p for each experiment. In setup 1, p processors run FusedMM on S of side-length 216p with
32 nonzeros per row. In setup 2, p processors execute FusedMM on S of side length 216p1/2

with 32p1/2 nonzeros per row.

against FusedMM algorithms that make a call to both SDDMM and SpMM, we compare our
algorithms against two back-to-back SpMM calls from the PETSc library. Since SDDMM and
SpMM have identical FLOP counts and communication requirements, using two back-to-back
SpMM calls offers a reasonable performance surrogate for FusedMM.

Figure 6.8 compares the strong scaling performance of our algorithms to Cray PETSc
(v3.13.3.0, 64-bit). The library requires a 1D block row distribution for all matrices and does
not perform any replication, resulting in poor communication scaling. Due to exceptionally
poor performance from PETSc on sparse matrices with many nonzeros, we omit the baseline
benchmark on the two larger strong scaling workloads.

6.6.2 Weak Scaling on Erdős-Rényi Random Matrices

To benchmark the weak scaling of our algorithms, we keep the FLOP count assigned to each
node constant (assuming a load-balanced sparse matrix) while increasing both the processor
count and the “problem size”. We investigated two methods of doubling the problem size,
each giving different performance characteristics.

Setup 1: In these experiments, node counts double from experiment to experiment as
we double the side-length of the sparse matrix, keeping the number of nonzeros in each
row and the embedding dimension r constant. We begin with sparse matrix dimensions
65, 536 × 65, 536 on a single node with 32 nonzeros per row, and we use r = 256 as the
embedding dimension. We scale to 256 nodes that collectively process a 224× 224 matrix with
500 million nonzeros.

While FLOPs per processor remains constant from experiment to experiment, communication
for our 1.5D algorithms scales as O(n/

√
p). Doubling both n and p results in an expected

increase in communication time of
√

2, giving a projected
√
p-scaling in communication
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Figure 6.5: Weak scaling time breakdown, setup 1. Each section of bars indicates the time
breakdown for successively doubling processor counts, from p = 2 on the left of each subsection
to p = 256 on the right. We expect p1/2-communication scaling for 1.5D algorithms and p1/3

for 2.5D algorithms.

time with processor count. Similarly, our 2.5D algorithms have communication scaling of
O(n/ 3

√
p2), yielding a projected 3

√
p scaling in communication time with processor count.

Notice also under this strategy that ϕ remains constant at 32/256 = 1/8, while the percentage
of nonzeros in S decays exponentially. Figure 6.4 (left) gives the results of these experiments,
for the best observed replication factor at each processor count. Even though each processor
handles the same number of nonzeros across experiments, the communication time (detailed
in figure 6.5) quickly dominates the computation time as we double the processor count.
Among 1.5D algorithms, the sparse shifting, dense replicating algorithm exhibits the best
overall performance. We attribute this to the low, constant value of ϕ = nnz(S)/nr across the
experiments. At 256 nodes, replication reuse allows the replication reusing sparse shifting 1.5D
algorithm to run 1.15 times faster than the 2.5D sparse replicating algorithm, while the variant
without communication elision runs 2% slower than the 2.5D sparse replicating algorithm. For
1.5D dense shifting algorithms, both FusedMM elision strategies have roughly the same gain
over the unoptimized back-to-back kernel sequence until the 256 node experiment. At 256
nodes, the 1.5D algorithm with local kernel fusion exhibits 1.38x speedup over its non-eliding
counterpart, and replication reuse gives 1.16x speedup.

Setup 2: Beginning with the same conditions for a single node as setup 1, node counts
quadruple from experiment to experiment, as we both double the side-length of the sparse
matrix and double its nonzero count per row. The FLOPs per processor again remains
constant. Under this setup, however, the percentage of nonzeros of S remains constant
while nnz(S)/nr doubles from experiment to experiment. Setup 2 provides insight into the
scaling of the 1.5D sparse shifting algorithm as the ratio ϕ successively doubles. Since the
communication cost for 1.5D dense shifting algorithms does not depend on ϕ and scales
as O(n/

√
p), its communication cost should remain constant across experiments, while
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Figure 6.6: Predicted and observed optimal algorithms for p = 32,m = 222. 2.5D algorithms
were also benchmarked, but were neither predicted nor observed as best. The best observed
replication factor in each configuration was used.

the O(n/ 3
√
p2) communication time scaling for 2.5D algorithms even implies a decrease in

communication time. In practice, the decrease in node locality caused by scaling to high
node counts renders a decrease in overall time unlikely.

Figure 6.4 (right half) shows the results, all of which take less than five seconds due to better
communication scaling compared to setup 1. Inverting the results from the first weak scaling
benchmark, the 1.5D sparse shifting algorithm performs progressively worse as node count
increases compared to the best performer, the 1.5D dense shifting algorithm under local kernel
fusion. At 256 nodes, the 1.5D local kernel fusion algorithm is 1.94 times as fast as the sparse
shifting algorithm with replication reuse. For almost all cases, employing replication reuse or
local kernel fusion results in nontrivial performance gains over an unoptimized sequence of
SDDMM and SpMM.

6.6.3 Effect of Embedding Width r

Compiled from 740 trials over different configurations, figure 6.6 shows the best algorithm
out of the four that employ communication elision (along with the 2.5D sparse replicating
algorithm) on a range of r-values and sparse matrix nonzero counts. As predicted, the 1.5D
dense shifting algorithm performs better when ϕ = nnz(S)/(nr) is high, while the 1.5D sparse
shifting algorithm performs better for low ϕ. Both 1.5D algorithms outperform the 2.5D
algorithms in theory as well as practice by margins comparable to those in figure 6.4. From
figure 6.6, we note that the optimal algorithm choice is always a 1.5D sparse shifting or
dense shifting algorithm depending on the value of ϕ, a conclusion that carries some caveats.
Specifically, the performance of the 2.5D algorithms is hurt at p = 32 since the replication
factor is constrained to be either 2 or 8. Our strong scaling experiments indicate that at
high enough node counts, 2.5D algorithms approach (and sometimes outperform) the 1.5D
algorithms.

For weak scaling setup 1, figure 6.7 gives the predicted and observed optimal replication
factor as a function of the processor count for 1.5D dense shifting algorithms. As predicted,
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Figure 6.7: Predicted vs. observed optimal replication factors for weak scaling experiments.

the optimal replication factor c for the 1.5D algorithm with replication reuse is at least
the optimal replication factor for the unfused algorithm. The latter, in turn, is at least
the optimal replication factor of the local kernel fusion algorithm. The plot experimentally
confirms that our fused algorithms save communication by changing the optimal replication
factor in addition to decreasing the number of communication rounds.

Our predictions of optimal replication factor match the observed optimal values on most
experiments. When they disagree, our theory tends to overestimate for two reasons: first,
we did not test replication factors higher than 8 for our weak scaling experiments due to
memory constraints, leading to the gap at the right end of the figure. Second, we used an
ordering of MPI ranks that maximized locality within each layer of the processor grid. As a
result, communication within the fiber axis (i.e. replication costs) are more expensive due to
lack of node locality, a fact that we verified by comparing against an MPI rank order that
optimized for locality along each fiber.

6.6.4 Strong Scaling on Real-World Matrices

We conduct strong scaling experiments on up to 256 KNL nodes with r = 128 on five real-
world matrices given in table 6.5 containing up to ≈ 1.5 billion nonzeros. amazon-large.mtx,
uk-2002.mtx, arabic-2005.mtx, and twitter7.mtx were taken from the Suitesparse matrix
collection [DH11], while eukarya.mtx contains protein sequence alignment information for
eukaryotic genomes [Aza+18]. With ≈ 360 million nonzeros but only ≈ 3 million vertices,
eukarya is the most dense at 111 nonzeros per row, compared with roughly 16 nonzeros per
row for both uk-2002 and amazon-large. Twitter7 and Arabic-2005 fall between the two
extremes at 28-35 nonzeros per row, but have significantly more total nonzeros compared
to the other matrices. We expect that the 1.5D sparse shifting and 2.5D sparse replicating
algorithms will exhibit better communication performance on the sparse Amazon matrix,
while the 1.5D dense shifting and 2.5D dense replicating algorithms become optimal for
eukarya and and twitter7. Because we choose r = 128 conservatively to avoid allocating large
amounts of RAM at small node counts, we enforce a minimum replication factor of 2 for the



CHAPTER 6. DISTRIBUTED SPARSE KERNELS FOR MACHINE LEARNING 144

101 102

101

102

103
amazon-large.mtx uk-2002.mtx eukarya.mtx arabic-2005.mtx twitter7.mtx

101 102

101

102

103

101 102 101 102 101 102 102

Node Count

Ti
m

e 
fo

r 5
 Fu

se
dM

M
 C

al
ls 

(s
)

1.5D Dense Shift, No Elision
1.5D Dense Shift, Repl. Reuse

1.5D Dense Shift, Local Kernel Fusion
1.5D Sparse Shift, No Elision

1.5D Sparse Shift, Repl. Reuse
PetSC (Baseline)

PetSC Timeout
2.5D Sparse Repl., No Elision

2.5D Dense Repl., Repl. Reuse
2.5D Dense Repl., No Elision
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with a minimum of 4 nodes for the smaller workloads, 8 nodes for Arabic-2005, and 16 nodes
for twitter7.

Matrix Rows Columns Nonzeros

amazon-large.mtx 14,249,639 14,249,639 230,788,269
uk-2002.mtx 18,484,117 18,484,117 298,113,762
eukarya.mtx 3,243,106 3,243,106 359,744,161

arabic-2005.mtx 22,744,080 22,744,080 639,999,458
twitter7.mtx 41,652,230 41,652,230 1,468,365,182

Table 6.5: Matrices in strong scaling experiments.

1.5D sparse shifting algorithm at 256 nodes (since we cannot divide 128 into more than 256
parts for c = 1).

Figure 6.8 gives the results of the strong scaling experiments; the performance of each
algorithm is its best runtime over replication factors from 1 through 16. As we expect, the
1.5D sparse shifting algorithm with replication reuse performs best on the amazon-large and
uk-2002 matrices, while it is the second worst on eukarya. With 256 nodes on uk-2002, the 1.5D
sparse shifting algorithm with replication reuse performs 1.19x faster than the version without
communication elision, and it performs 2.1x faster than the dense shifting fused algorithm
with local kernel fusion. On eukarya with 256 nodes, the dense shifting algorithm with local
kernel fusion performs 1.6x faster than the version without communication elision and 1.9x
faster than the sparse shifting algorithm. Among 2.5D algorithms, the dense replicating
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algorithm with replication reuse and the sparse replicating algorithm have similar performance,
and both outperform the 2.5D dense replicating algorithm with no communication elision.
As predicted by our theory, the dense replicating algorithm has slightly better performance
on eukarya.mtx at high node counts, even outperforming all of our 1.5D algorithms.

6.6.5 Applications

Here, we plug in our distributed memory algorithms to machine learning applications to
benchmark their performance. We focus on two: collaborative filtering with alternating least
squares, and graph neural networks with self-attention.

Collaborative Filtering with ALS: Collaborative filtering attempts to factor a matrix
C ∈ Rm×n as C = AB⊤, for A ∈ Rm×r,B ∈ Rn×r; however, we only have access to a set of
sparse observations of C, denoted as the sparse matrix C̃ with nonzero indicators S. We
iteratively minimize the loss, which is the Frobenius norm of C̃ − SDDMM(A,B,S). The
SDDMM kernel in the loss also appears (along with SpMM) in the iterative update equations.

The ALS method alternately keeps A or B fixed and, for each row x of the matrix to
optimize, solves a least squares problem of the form Mx = b. These least squares problems
are distinct for each row due to the varying placement of nonzeros within each column of
S. If we use Conjugate Gradients (CG) as the least squares solver, Canny and Zhao [CZ13]
exhibit the technique of batching computation of the query vectors Mx for all rows at once
using a FusedMM operation.

2.5D sparse replicating and 2.5D dense replicating algorithms suffer slight penalties for this
application compared to 1.5D algorithms, as the output distributions of the dense matrices
are shifted and transposed, respectively, compared to the input distributions. Since the
output query vectors become (after some additional manipulation) inputs to the next CG
iteration, 2.5D algorithms must pay to shift the input and output distributions at each step.
We benchmark 20 CG iterations with our distributed algorithms embedded: 10 to optimize
the matrix A, and 10 to optimize the matrix B.

Graph Attention Network (Forward Pass Workload): Consider a graph with adjacency
matrix S ∈ {0, 1}n×n. Conventional GNNs contain a series of layers, with an r-length vector
of features associated with each node as the input to a layer. These node embeddings are held
in an n× r matrix A. The GNN layer applies a small linear transformation W ∈ Rr×r′ to the
embedding matrix before performing a convolution to sum the feature vectors at neighbors
of any node x. The sum is the new feature vector of x. Application of a nonlinear activation
σ typically follows the convolution, giving the final layer output A′ = σ(SAW ).

The subsequent GNN layer takes A′ as an input, with the final layer generating a node-level
or graph-level prediction. Graph attention networks (GATs) modify this architecture by
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Figure 6.9: Alternating least squares and graph attention network forward pass performance
on amazon.mtx. We use 256 nodes and r = 128. The 1.5D algorithm with local kernel fusion
was not benchmarked for GATs, as it is incompatible with softmax regularization of learned
edge weights.

weighting edges with a self-attention score computed using the embeddings of the incident
nodes. A single self-attention head [Vel+18] replaces S with S′ = σLeakyReLU(S⊛(A·GATA

⊤)).
Here, A ·GAT A⊤ is an n × n matrix with entries given by (A ·GAT A⊤)ij = a⊤(Ai:||Aj:),
where || denotes concatenation and a⊤ is a trainable vector. The computation of S′ involves
a slight modification of Eq. 6.1 and has an identical communication pattern to SDDMM. A
multi-head GAT concatenates the outputs of several attention heads with distinct trainable
weight matrices W and weight vectors a. We simulate the forward pass workload of this
multi-head GAT architecture using random weight matrices to focus on the communication
reduction and scaling of our distributed-memory algorithms.

Figure 6.9 shows the time breakdown of our applications, both inside the FusedMM kernels and
in the rest of the application. The ALS application exhibits some variation in communication
and computation time spent outside FusedMM. The variation is only partially due to additional
processor to processor communication to compute distributed dot products, which is higher
for the sparse replicating and shifting algorithms. More significantly, at the high replication
factors (8 and 16) used in the experiment, the row-major local dense matrices are extremely
tall-skinny for the 1.5D sparse shifting and 2.5D sparse replicating algorithms compared to the
other variants. Careful analysis of the CG solver revealed that the dense batch dot product
operation requires a long sequence of poorly performing dot product calls on short vectors.
Since the sequence grows linearly with local matrix height, hundreds of thousands of these
calls slow performance for the 1.5D sparse shifting and 2.5D sparse replicating algorithms.
Calling an optimized batched BLAS library would fix this issue, which we leave as future
work.
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6.7 Conclusions and Further Work

We gave a theoretical communication analysis of distributed memory sparsity agnostic
approaches for SDDMM and FusedMM. Our theory predicted communication savings using
two distinct approaches to combine the two kernels, and we observed those benefits in our
strong and weak scaling experiments. In both theory and practice, 1.5D sparse shifting and
2.5D sparse replicating algorithms perform better when S has far fewer nonzeros compared
to either dense matrix. When S has a higher nonzero count, dense shifting 1.5D and dense
replicating 2.5D algorithms win out.

Further performance improvement may be possible by overlapping communication in the
propagation phase of any of our algorithms with local computation. Such an implementation
might require one-sided MPI or a similar protocol for remote direct memory access (RDMA)
without CPU involvement.
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Chapter 7

Recent Advances and Open Problems

We conclude by discussing recent progress on the problems explored by this dissertation.
Research on graph / tensor problems is prolific, and we only cover a small tranche of an
exciting body of work.

7.1 Advances in Chemistry Foundation Models

Since the release of OpenEquivariance, the MACE [Bat+24] and Nequip [Bat+22b] models
officially introduced support for our accelerated kernels. Lee et al. [Lee+25] also released
the FlashTP accelerated kernel package, creating a robust marketplace of equivariant model
backends. Both FlashTP and OpenEquivariance provide an interface identical to e3nn
[Gei+22], facilitating integration into new models.

Tan et al. [Tan+25] also explored Triton to accelerate tensor products in the Allegro [Mus+23]
model. They composed custom kernels with PyTorch model compilation tools (e.g., ahead-
of-time-inductor) to reduce the significant overhead of eager execution. Our kernel package
composes with these tools as well, although we do not offer the specific kernels that accelerate
Allegro.

Lin et al. [Lin+25] recently explored a fascinating crossover between tensor decomposition
and equivariant deep neural networks. They replace the sparse tensor of Clebsch-Gordon
coefficients from Chapter 2 with a PARAFAC approximation, boosting computational ef-
ficiency without sacrificing rotational equivariance. The work highlights the versatility of
CP decomposition and the importance of fast tensor kernels to create and evaluate such
structures.

Foundation models for chemistry offer tantalizing possibilities for materials discovery. Their
capabilities are likely to improve with the recent release of several large training datasets for
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molecular property prediction [Cha+21; Tra+23; Lev+25]. Scientists are actively debating
the optimal architecture for such models, including the importance of a conservative force
field [BLC25] and the expressive capability of equivariant features [LGM24a]. Our work in
Chapter 2 empowers researchers to answer these questions while making full use of the latest
hardware.

7.2 Open Problems Related to Leverage Scores

Ghadiri et al. [Gha+25] recently adapted our tensor sketching methods for the tensor
completion problem, analogous to the matrix completion methods from Chapter 6. Along
a related line, Hayashi et al. [Hay+25] investigate leverage score sampling to accelerate
nonnegative matrix factorization. Compared to tensor factorization, leverage score sampling
for matrix completion is more expensive relative to other stages of the alternating solver.
Hayashi et al. [Hay+25] still find advantages to the technique and use a hybrid deterministic
/ random sampling procedure similar to one proposed by Larsen and Kolda [LK22].

Despite the strong theoretical guarantees offered by leverage score sampling, there are
convincing arguments that the method is uncompetitive in many cases compared to oblivious
sketches (see Martinsson and Tropp [MT20], Section 9.6.4). Their point is well-taken:
computing exact leverage scores for a general matrix is expensive, while leverage approximation
relies on intermediate oblivious sketches that could be applied directly to the original problem.
We argue, however, that the exploitable structure in the Khatri-Rao product renders it
uniquely well-suited for leverage score sampling.

An oblivious sketch can be constructed without prior knowledge of the target matrix. As far
as we are aware, there is a theoretical gap between the best oblivious sketches (that have
reasonable runtime) and leverage score samplers for the Khatri-Rao product. Omitting other
relevant variables, the oblivious tree sketch by Ahle et al. [Ahl+20] requires O(R2) samples
to satisfy the subspace embedding property. By contrast, the non-oblivious leverage score
sketch by Woodruff and Zandieh [WZ22] achieves the optimal Θ(R) target row count for the
same residual threshold.

Are there faster oblivious sketching algorithms for Khatri-Rao products that preserve column
space geometry, require only O(R) rows in the target matrix, and run in nearly input-sparsity
time? Such an algorithm would provide a faster alternative to TensorSketch [PP13]. Refuting
the existence of such an algorithm, on the other hand, requires a lower bound proof involving
both sketch computational complexity and the sketch embedding dimension. To the best of
our knowledge, the existence (or disproof thereof) of a faster oblivious sketch for Khatri-Rao
products remains an open problem.
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7.3 Sparsity-Aware SpMM and SDDMM

Our 1.5D and 2.5D distributed sparse matrix kernels are similar to those explored by
Koanantakool et al. [Koa+16]. These kernels move contiguous chunks of the dense and
sparse matrices from processor to processor, relying on random permutations for nonzero load
balance. We call such methods “sparsity-oblivious”. Sparsity-aware reordering strategies,
such as graph partitioning, [Kar11], can drastically reduce communication, but they are costly
to run. In addition, sparsity-aware distributed kernels (which pack and send only the required
entries for sparse computation) are more complex to program and model analytically.

Nevertheless, recent works show that sparsity-aware methods for SpMM and SDDMM are
worth these trade-offs. Block et al. [Blo+24] hybridize sparsity-aware and sparsity-oblivious
methods to reduce communication in sparse matrices with non-uniform nonzero density. In a
similar vein, Gianinazzi et al. [Gia+24] rearrange sparse matrix entries into a block diagonal
form, with two small vertical and horizontal strips containing nonzero entries that span
the entire matrix. The pattern resembles an arrow. The enhanced locality along the block
diagonal reduces communication, while the “arrowheads” relax the overly restrictive conditions
of true graph partitioning. Abubaker and Hoefler [AH24] also explore sparsity-aware 3D
algorithms for SpMM and SDDMM, exhibiting impressive speedups over our own package. In
addition, Mukhopadhyay et al. [Muk+24] demonstrated advantages to sparsity-aware SpMM
in distributed graph neural networks.
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“FLASHATTENTION: fast and memory-efficient exact attention with IO-
awareness”. In: Proceedings of the 36th International Conference on Neural
Information Processing Systems. NIPS ’22. New Orleans, LA, USA: Curran
Associates Inc., 2022. isbn: 9781713871088.

[Dav19] Timothy A. Davis. “Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algo-
rithms in the Language of Sparse Linear Algebra”. In: ACM Trans. Math.
Softw. 45.4 (Dec. 2019). issn: 0098-3500. doi: 10.1145/3322125.

https://doi.org/10.1137/20M1310497
https://doi.org/https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/https://doi.org/10.1002/cpa.22234
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nersc.gov/systems/cori/
https://docs.nersc.gov/systems/cori/
https://doi.org/10.1145/3322125


BIBLIOGRAPHY 156

[Dee+25] Ewa Deelman, Jack Dongarra, Bruce Hendrickson, Amanda Randles, Daniel
Reed, Edward Seidel, and Katherine Yelick. “High-performance computing
at a crossroads”. In: Science 387.6736 (2025), pp. 829–831. doi: 10.1126/
science.adu0801.

[Dem13] James Demmel. “Communication-avoiding algorithms for linear algebra and
beyond”. In: 2013 IEEE 27th International Symposium on Parallel and Dis-
tributed Processing. 2013, pp. 585–585. doi: 10.1109/IPDPS.2013.123.

[Dem97] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, 1997. doi: 10.1137/1.9781611971446.

[DH11] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix
Collection”. In: ACM Trans. Math. Softw. 38.1 (Dec. 2011). issn: 0098-3500.
doi: 10.1145/2049662.2049663.

[Dia+18] Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. “Sketching for
kronecker product regression and p-splines”. In: International Conference on
Artificial Intelligence and Statistics. PMLR. 2018, pp. 1299–1308.

[Dia+19] Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff.
“Optimal Sketching for Kronecker Product Regression and Low Rank Approx-
imation”. In: Advances in Neural Information Processing Systems. Vol. 32.
Curran Associates, Inc., 2019.

[DKM06] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. “Fast Monte Carlo Al-
gorithms for Matrices I: Approximating Matrix Multiplication”. In: SIAM Jour-
nal on Computing 36.1 (2006), pp. 132–157. doi: 10.1137/S0097539704442684.

[DM16] Petros Drineas and Michael W. Mahoney. “RandNLA: Randomized Numerical
Linear Algebra”. In: Commun. ACM 59.6 (May 2016), pp. 80–90. issn: 0001-
0782. doi: 10.1145/2842602.
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Dereziński, Miles E. Lopes, Tianyu Liang, Hengrui Luo, and Jack Dongarra.
Randomized Numerical Linear Algebra : A Perspective on the Field With an
Eye to Software. 2023. arXiv: 2302.11474 [math.NA].

[Mus+23] Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J.
Owen, Mordechai Kornbluth, and Boris Kozinsky. “Learning local equivariant
representations for large-scale atomistic dynamics”. In: Nature Communications
14.1 (Feb. 2023), p. 579. issn: 2041-1723. doi: 10.1038/s41467-023-36329-y.

[Ngu+22] Andy Nguyen, Ahmed E. Helal, Fabio Checconi, Jan Laukemann, Jesmin Jahan
Tithi, Yongseok Soh, Teresa Ranadive, Fabrizio Petrini, and Jee W. Choi. “Ef-
ficient, out-of-Memory Sparse MTTKRP on Massively Parallel Architectures”.
In: Proceedings of the 36th ACM International Conference on Supercomputing.
ICS ’22. Virtual Event: Association for Computing Machinery, 2022. isbn:
9781450392815. doi: 10.1145/3524059.3532363.

[Nis+18] Israt Nisa, Aravind Sukumaran-Rajam, Sureyya Emre Kurt, Changwan Hong,
and P. Sadayappan. “Sampled Dense Matrix Multiplication for High-Performance
Machine Learning”. In: HiPC. Dec. 2018, pp. 32–41. doi: 10.1109/HiPC.2018.
00013.

[Nis+19] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sriram
Krishnamoorthy, and P. Sadayappan. “An Efficient Mixed-Mode Representa-
tion of Sparse Tensors”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’19. Denver,

https://doi.org/10.1109/IPDPS49936.2021.00049
https://doi.org/10.1017/S0962492920000021
https://doi.org/10.1145/3673038.3673152
https://arxiv.org/abs/2302.11474
https://doi.org/10.1038/s41467-023-36329-y
https://doi.org/10.1145/3524059.3532363
https://doi.org/10.1109/HiPC.2018.00013
https://doi.org/10.1109/HiPC.2018.00013


BIBLIOGRAPHY 164

Colorado: Association for Computing Machinery, 2019. isbn: 9781450362290.
doi: 10.1145/3295500.3356216.

[Nov+15] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov.
“Tensorizing neural networks”. In: Proceedings of the 29th International Confer-
ence on Neural Information Processing Systems - Volume 1. NIPS’15. Montreal,
Canada: MIT Press, 2015, pp. 442–450.

[Ose11] Ivan V Oseledets. “Tensor-train decomposition”. In: SIAM Journal on Scientific
Computing 33.5 (2011), pp. 2295–2317.

[OT10] Ivan Oseledets and Eugene Tyrtyshnikov. “TT-cross approximation for multidi-
mensional arrays”. In: Linear Algebra and its Applications 432.1 (2010), pp. 70–
88. issn: 0024-3795. doi: https://doi.org/10.1016/j.laa.2009.07.024.

[Par+16] Namyong Park, Byungsoo Jeon, Jungwoo Lee, and U Kang. “BIGtensor:
Mining Billion-Scale Tensor Made Easy”. In: Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management.
CIKM ’16. Indianapolis, Indiana, USA: Association for Computing Machinery,
2016, pp. 2457–2460. isbn: 9781450340731. doi: 10.1145/2983323.2983332.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[Per+07] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac. “Matrix product
state representations”. In: Quantum Info. Comput. 7.5 (July 2007), pp. 401–430.
issn: 1533-7146.

[PETScThr] Threads and PETSc — PETSc 3.16.2 documentation. url: https://petsc.
org/release/miscellaneous/threads/ (visited on 01/05/2022).

[PK19] Eric T Phipps and Tamara G Kolda. “Software for sparse tensor decomposi-
tion on emerging computing architectures”. In: SIAM Journal on Scientific
Computing 41.3 (2019), pp. C269–C290.

[PP13] Ninh Pham and Rasmus Pagh. “Fast and scalable polynomial kernels via
explicit feature maps”. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’13. Chicago,
Illinois, USA: Association for Computing Machinery, 2013, pp. 239–247. isbn:
9781450321747. doi: 10.1145/2487575.2487591.

[PZ23] Saro Passaro and C. Lawrence Zitnick. “Reducing SO(3) Convolutions to
SO(2) for Efficient Equivariant GNNs”. In: Proceedings of the 40th Inter-
national Conference on Machine Learning. Ed. by Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett. Vol. 202. Proceedings of Machine Learning Research. PMLR, July
2023, pp. 27420–27438.

https://doi.org/10.1145/3295500.3356216
https://doi.org/https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1145/2983323.2983332
https://petsc.org/release/miscellaneous/threads/
https://petsc.org/release/miscellaneous/threads/
https://doi.org/10.1145/2487575.2487591


BIBLIOGRAPHY 165

[Rag+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
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