Designing LLM based agents to interact with the embodied
world

Dylan Goetting

..
1

hl--

& i

A .I. II i W | % l: ..II. : -l
i, .“ij1lullll' ! h
i (e, St u

e
!

Electrical Engineering and Computer Sciences
University of California, Berkeley

18

Technical Report No. UCB/EECS-2025-59
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-59.html

May 14, 2025




Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to thank my collaborators in the Malik group, including Antonio
Loquercio, Andrea Bajcsy, Himanshu Gaurav Singh, Haoran Geng who have
provided me with generous guidance throughout my academic career. I'm
grateful for both Jitendra Malik and Dawn Song for their oversight. | also
thank Daniel Flaherty, Ana Cismaru and Tarun Amarnath for helping guide my
process through graduate school and my career.



Designing LLM based agents to interact with the embodied world

by

Dylan Goetting

A thesis submitted in partial satisfaction of the
requirements for the degree of
Masters of Science, Plan II
in
Electrical Engineering and Computer Science
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Jitendra Malik, Chair
Professor Dawn Song, Co-chair

Spring 2025



The thesis of Dylan Goetting, titled Designing LLM based agents to interact with the em-
bodied world, is approved:

Chair :)‘ Y Date °/14/25

vV
Co-chair /@—O\WFL,Jdﬂg/ Date °/14/25
/4

University of California, Berkeley


dawn.assistinfo@gmail.com
Signature

dawn.assistinfo@gmail.com
Free text
5/14/25

dawn.assistinfo@gmail.com
Free text
5/14/25


Designing LLM based agents to interact with the embodied world

Copyright 2025
by
Dylan Goetting



Abstract
Designing LLM based agents to interact with the embodied world
by
Dylan Goetting
Masters of Science, Plan II in Electrical Engineering and Computer Science
University of California, Berkeley
Professor Jitendra Malik, Chair

Professor Dawn Song, Co-chair

Large Language Models (LLMs) have seen rapid advancements across different modalities,
yet they remain mostly isolated from physical environments. Meanwhile, robotics research
continues to face challenges in generalization and scalability, limited by costly and narrow
data collection processes. In this work, we study methods to bridge the gap between LLMs
and physical robotic systems through structured observation and action interfaces. We first
introduce VLMnmEL a novel framework that transforms a Vision-Language Model (VLM)
into an end-to-end navigation policy, allowing it to select low-level actions directly from
visual input without fine-tuning. We evaluate its navigation capabilities on multiple bench-
marks and perform a detailed design analysis. Building on this, we extend to a more complex
manipulation setting, where the agent calls a Vision-Language-Action (VLA) model to han-
dle fine-grained control. We analyze both task performance and design factors and show
how the agent can most effectively utilize the capabilities of the VLA.

!This chapter is based on [14], in collaboration with Himanshu Gaurav Singh and Antonio Loquercio



To my parents



Contents

Contents

[List of Figures|

[List of Tables|
I__Introduction

(Bibliography|

i

ii

iii



List of Figures

iii

LLMs as embodied agents: In our navigation framework, the LLM directly selects low-

level actions based on visual input, whereas our manipulation framework delegates fine-grained

actions to a specialized VLA tool, yielding a higher-level abstraction. . . . .

Prompt: The full action prompt for VLMnav consists of three parts: A system prompt to

describe the embodiment, an action prompt to describe the task, the potential actions, and

the output instruction, and an image prompt showing the current observation along with the

Approach: Our method is made up of four key components: (i) Navigability, which determines

locations the agent can actually move to, and updates the voxel map accordingly. An example

update step to the map shows the marking of new area as explored (gray) or unexplored
p P )% g p gray p

(green). (ii) Action Proposer, which refines a set of final actions according to spacing and

exploration. (iii) Projection, which visually annotates the image with actions. (iv) Prompting,

which constructs a detailed chain-of-thought prompt to select an action. | . .

0.3

Navigability: An example step of the Navigability subroutine. The navigability mask is shown

in blue and polar actions making up Ainitia] are in green| . . .

(2.4

Prompting: The separate prompt for determining episode termination| . . .

[2.0

Baselines: Comparing the four different methods on a sample image. Qurs contains arrows

that point to navigable locations, PIVOT has arrows sampled from a random 2-D Gaussian,

Ours w/o nav sees uniformly spaced arrows (note arrows 3 and 5 point into a wall), and Prompt

Only sees just the raw RGB image] . . . .

[2.6

Impact of sensor FOV: We evaluate the performance of four different sensor FOVs, and find

that a wider FOV invariably leads to higher performance|. . .

51

Robotic generalists require several layers of abstraction:. VLAs can generalize across

tasks, but they fall short of the high-level planning capabilities of LLMs. Works shown in blue

bridge this gap by allowing LLMs to solve tasks by calling low-level robotic APIs. This work

builds off of those ideas by connecting LLMs to VLAs, enabling a higher level of abstraction| .

B2

Overview of the proposed framework: In one process, the VLA continuously executes an

nstruction in its environment. Concurrently, a central planning agent chooses what instructions

to send to the VLA, and a feedback module periodically sends updates to the planning agent.

The trajectory results are stored offline for future prompting of the central agent|




v

[3.0 Language sensitivity analysis: OpenVLA is very sensitive to the specific phrasing used in |

[ theinstructionl. . . . . . . . . . ... S |




List of Tables

ObjectNav Results: We evaluate four different prompting strategies on the ObjectNav bench-

mark, and see our method achieves highest performance in both accuracy (SR) and efficiency

(SPL). Ablating the allow_slide parameter shows our method is dependent on sliding past obstacles| 12

GOAT Results: Comparison of prompting strategies on GOAT Bench, a more challenging

navigation task. Across three different goal modalities, our method strongly outperforms base-

12

GOAT comparison: Directly comparing to other works, we see that specialized systems still

produce superior performance. We also note these other works use a narrower FOV, lower

image resolution, and a different action space, which could explain some of the differences|

13

Impact of adding context history: We compare our method to alternatives of keeping the

past 0, 5, 10, and 15 observations and actions. We see that adding context history does not

improve the performance of our method| .

14

Depth Ablation: We evaluate two alternate approaches that only require RGB. We find that

semantic segmentation performs close to using ground truth depth, whereas estimating depth

values leads to a significant performance drop | .

15

VLMs as a classifier: Using video with in-context learning proves to be the strongest method,

but is limited by its high latency]

20

Evaluating instruction translation: Rephrasing the instructions causes a 37% reduction

1n success rate, but the agent i1s able to mitigate this through in-context learning. Privileged

examples increase success by 17% while examples from autonomous exploration increase success

22



vi
Acknowledgments

I would like to thank my collaborators in the Malik group, including Antonio Loquercio,
Andrea Bajcsy, Himanshu Gaurav Singh, Haoran Geng who have provided me with generous
guidance throughout my academic career. I'm grateful for both Jitendra Malik and Dawn
Song for their oversight. I also thank Daniel Flaherty, Ana Cismaru and Tarun Amarnath
for helping guide my process through graduate school and my career.



Chapter 1

Introduction

1.1 LLMs and Robotics

Recent years have witnessed remarkable advancements in the capabilities of Large Language
Models (LLMs), as new models consistently improve state-of-the-art performance across
diverse benchmarks. These models are also becoming more multi-modal, capable of reasoning
across images, videos, audio, and different file types, moving well beyond plain text [46],
32]. This shift toward multi-modality moves LLMs closer to the embodied world, yet they
remain isolated from any physical interaction. Nevertheless, the high-level knowledge derived
from large-scale internet training holds substantial promise for achieving more generalizable
robotic intelligence.

In stark contrast to these gains, robotics research has seen modest progress, particularly
when it comes to generalization and scalability. While LLMs have now made their way
into the lives of millions of people and significantly enhanced their everyday tasks, robotic
systems have yet to achieve widespread utility or societal impact. The few commercial
robot policies deployed in the real world are typically highly specialized, tailored to narrow
tasks, and developed through expensive and labor-intensive data collection processes [50].
The inherent scarcity and specificity of robotics data, especially compared to the wealth of
textual and visual data contained on the internet, remains a critical bottleneck for robotic
advancements.

Inspired by the successful scaling trends in training data and parameter count observed
with LLMs, Vision-Language-Action (VLA) models have emerged as a promising framework
for developing robotic policies capable of performing diverse tasks across varying embodi-
ments |21} 5, 6, 48]. Typically initialized with a pretrained Vision-Language Model (VLM)
backbone, these models have shown some degree of internet-level knowledge [7] and lan-
guage understanding. Concurrently, significant efforts have been dedicated to constructing
large-scale robotic datasets comprised of clean, diverse data sources |10, [20} |15].



CHAPTER 1. INTRODUCTION 2

T ©

Physical World

(a) General paradigm of an embodied LLM agent

LLM LLM

PID controller PID controller
moves robot moves robot

b) Comparing the abstraction layers for navigation and manipulation

Figure 1.1: LLMs as embodied agents: In our navigation framework, the LLM directly selects low-
level actions based on visual input, whereas our manipulation framework delegates fine-grained actions to a
specialized VLA tool, yielding a higher-level abstraction.

An alternative line of research involves connecting LLMs to external tools, allowing them
to interact beyond the original text sandbox. Such frameworks have seen success in appli-
cations such as database querying , web navigation [22], and software engineering ,
where well-defined tools can cleanly integrate into an LLM workflow. Naturally, substan-
tial work has been done to extend this paradigm closer to the embodied world. Recent



CHAPTER 1. INTRODUCTION 3

benchmarks ScienceWorld [52] and ALFWorld [44] have proposed simulated textual envi-
ronments that mimic the real world, providing early evidence that LLMs can act in this
domain. To go a step further, [1}, |62, 25] enable the outputs from LLM-controlled tools to
directly translate to physical actions on a robot manipulator, effectively bridging symbolic
reasoning with real-world interaction. This framework offers a compelling foundation upon
which this work builds, exploring new methodologies to harness the strengths of LLMs for
robust, generalizable robotic intelligence.

1.2 Designing Embodied Agents

In this paper, we study methodologies to effectively connect the general intelligence of LLMs
to physical robotic systems, first for navigation and then for manipulation. In both scenarios,
we treat the LLM as a true agent: provided with a task description in natural language, the
agent perceives its environment through structured observations and uses carefully designed
tools to interact with the world. Importantly, the implementation details of these low-level
tools are abstracted away from the agent, allowing it to focus on the high-level reasoning
and planning aspects of the task.

Figure shows a broad overview of our framework: the agent operates above a clearly
defined layer of abstraction, which separates it from the physical environment. In the navi-
gation setting, this abstraction is relatively low: the LLM directly selects discrete movement
commands based on visual input (Figure . In contrast, the manipulation setting ne-
cessitates a significantly higher layer of abstraction, due to the increased complexity of the
action space. Therefore, we design the agent to issue specific language commands, which a
specialized VLA module translates into fine-grained motor actions.

More concretely, Chapter [2| presents VLMnav[14], an embodied framework to transform a
VLM into an end-to-end navigation policy. In contrast to prior work, we do not rely on
a separation between perception, planning, and control; instead, we use a VLM to select
actions in one step. Without any fine-tuning or exposure to navigation data, we show that a
VLM can be used as an end-to-end policy zero-shot. This makes our approach open-ended
and generalizable to any downstream navigation task. We run an extensive study to evaluate
the performance of our approach in comparison to baseline prompting methods. In addition,
we perform a detailed ablation study to understand the most impactful design decisions.

In Chapter [3] we study how a VLA can be leveraged as a specialized tool for an embodied
LLM agent. We propose a framework to address this greater action and observation-space

complexity, and analyze the design choices that let the agent most effectively leverage the
VLA’s capabilities.



Chapter 2

Navigation

2.1 Introduction

The ability to navigate effectively within an environment to achieve a goal is a hallmark of
physical intelligence. Spatial memory, along with more advanced forms of spatial cognition, is
believed to have begun evolving early in the history of land animals and advanced vertebrates,
likely between 400 and 200 million years ago [28|. Because this ability has evolved over such
a long period, it feels almost instinctual and trivial to humans. However, navigation is, in
reality, a highly complex problem. It requires the coordination of low-level planning to avoid
obstacles alongside high-level reasoning to interpret the environment’s semantics and explore
the directions that are most likely to get the agent to achieve their goals.

A significant portion of the navigation problem appears to involve cognitive processes similar
to those required for answering long-context image and video questions, an area where con-
temporary VLMs excel [31, 46]. However, when naively applied to navigation tasks, these
models face clear limitations. Specifically, when given a task description concatenated with
an observation-action history, VLMs often struggle to produce fine-grained spatial outputs
to avoid obstacles and fail to effectively utilize their long-context reasoning capabilities to
support effective navigation |34} 30, 33].

To address these challenges, previous work has included VLMs as a component of a modular
system to perform high-level reasoning and recognition tasks. The systems generally contain
an explicit 3D mapping module and a planner to deal with the more embodied part of the
task, e.g., motion and exploration [21 [27, 12, 61, |24]. While modularity has the advantage
of utilizing each component only for the sub-task it excels at, it comes at the disadvantage
of system complexity and task specialization.

In this chapter, we show that an off-the-shelf VLM can be used as a zero-shot and end-to-end
language-conditioned navigation policy. The key idea to achieve this goal is transforming the
navigation problem into something VLMs excel at: answering a question about an image.



CHAPTER 2. NAVIGATION 5

MAGE PROMPT SYSTEM PROMPT

You are an embodied robotic assistant, with an RGB image
sensor. You observe the image and instructions given to
you and output a textual response, which is converted into
actions that physically move you within the environment

ACTION PROMPT

TASK: Navigate to the {goal object) and get as close to
it as possible. Use your prior knowledge about where
items are typically located within a home. There are red
arrows superimposed ontoc your observation which represent
potential actions. These are labeled with a number in a
white circle, which represent the location you would move
to if you took that action. NOTE: choose action 0 if you
want to TURN AROUND or DON’T SEE ANY GOOD ACTIONS. First,
tell me what you see in your sensor observations, and if
you have any leads on finding the {goal objfect}. Second,
tell me which general direction you should go in. Lastly,
explain which action achieves that best, and return it as
{'action': <action key>}. Note you CANNOT GO THROUGH
CLOSED DOORS, and you DO NOT NEED TO GO UP OR DOWN STAIRS

Figure 2.1: Prompt: The full action prompt for VLMnav consists of three parts: A system prompt
to describe the embodiment, an action prompt to describe the task, the potential actions, and the output
instruction, and an image prompt showing the current observation along with the annotated actions

To do so, we develop a novel prompting strategy that enables VLMs to explicitly consider
the problem of exploration and obstacle avoidance. This prompting is general, in the sense
that it can be used for any vision-based navigation task.

Compared to prior approaches, we do not employ modality-specific experts [35] (61} 39], do
not train any domain-specific models and do not assume access to probabilities from

the models [35, [61].

We evaluate our approach on established benchmarks for embodied navigation , , where
results confirm that our method significantly improves navigation performance compared to
existing prompting methods. Finally, we draw design insights from ablation experiments
over several components of our embodied VLM framework.

2.2 Related Work

The most common approach for learning an end-to-end navigation policy involves training a
model from scratch using offline datasets , @], , . However, collecting large-scale
navigation data is challenging, and as a result, these models often struggle to generalize to
novel tasks or out-of-distribution environments.

An alternative approach to enhance generalization is fine-tuning existing VLMs with robot-
specific data [@, , 7 . Although this method can lead to more robust end-to-end policies,
fine-tuning may destroy features not present in the fine-tuning dataset, ultimately limiting
the model’s generalization ability.



CHAPTER 2. NAVIGATION 6

| @ AGENT SELECTS
THE BEST ACTION

CHAIN OF THOUGHT TEXT
PROMPT + TASK DESCRIPTION

VLM AGENT &
PROJECT PROPOSED
ACTIONS ONTO IMAGE

UPDATE MAP WITH DEPTH INFORMATION ‘ @ FILTER ACTIONS FOR
S|

TO GET NAVIGABLE REGIONS & ACTIONS PACING & EXPLORATION

(91 )
(62, "!) (91 |)
(9: r3)

’ D (@)
(a- )

Figure 2.2: Approach: Our method is made up of four key components: (i) Navigability, which determines
locations the agent can actually move to, and updates the voxel map accordingly. An example update step
to the map shows the marking of new area as explored (gray) or unexplored (green). (ii) Action Proposer,
which refines a set of final actions according to spacing and exploration. (iii) Projection, which visually
annotates the image with actions. (iv) Prompting, which constructs a detailed chain-of-thought prompt to
select an action.

An alternate line of work focuses on using these models zero-shot , , , ,
, by prompting them such that the responses align with task specifications. For instance,
, @ﬂ use CLIP or DETIC features to align visual observations to language goals, build a
semantic map of the environment, and use traditional methods for planning. Other works
design specific modules to handle the task of exploration [39} [35| [24] |49]. These systems often
require an estimation of confidence to know when to stop exploring, which is commonly done
using token or object probabilities , . In addition, many of these approaches also use
low-level navigation modules, which abstract away the action choices to a pre-trained point-
to-point policy such as the Fast Marching Method [9] [12} 39, 24} 61].

Visual Prompting Methods: To enhance the task-specific performance of VLMs, recent
work has involved physically modifying images before passing them to the VLM. Examples
include , which annotates images to help recognize spatial concepts. [60] introduces set-
of-mark, which assigns unique labels to objects in an image and references these labels in the
textual prompt to the VLM. This visual enhancement significantly improves performance on
tasks requiring visual grounding. Building on this, , apply similar visual prompting
methods to the task of web navigation and show VLMs are able to complete such tasks zero
shot.

Prompting VLMs for Embodied Navigation: CoNVOI overlays numerical markers



CHAPTER 2. NAVIGATION 7

on an image and prompts the VLM to output a sequence of these markers in alignment with
contextual cues (e.g., stay on the pavement), which is used as a navigation path. Unlike
our work, they (i) rely on a low-level planner for obstacle avoidance rather than using the
VLM’s outputs directly as navigational actions, and (ii) do not leverage the VLM to guide
the agent toward a specific goal location. PIVOT [30], introduces a visual prompting method
that is most similar to ours. They approach the navigation problem by representing one-step
actions as arrows pointing to labeled circles on an image. At each step, actions are sampled
from an isotropic Gaussian distribution, with the mean and variance iteratively updated
based on feedback from the VLM. The final action is selected after refining the distribution.
While PIVOT is capable of handling various real-world navigation and manipulation tasks,
it has two significant drawbacks: (i) it does not incorporate depth information to assess the
feasibility of action proposals, leading to less efficient movement; and (ii) it requires many
VLM calls to select a single action, resulting in higher computational costs and latency.

2.3 Overview

We present VLMnav, designed as a navigation system that takes as input goal G, which
can be specified in language or an image, RGB-D image I, pose &, and subsequently outputs
action a. The action space consists of rotation about the yaw axis and displacement along the
frontal axis in the robot frame, which allows all actions to be expressed in polar coordinates.
As it is known that VLMs struggle to reason about continuous coordinates [33], we instead
transform the navigation problem into the selection of an action from a discrete set of options
[60]. Our core idea is to choose these action options in a way that avoids obstacle collisions
and promotes exploration.

Figure summarizes our approach. We start by determining the navigability of the local
region by estimating the distance to obstacles using a depth image (Sec. . Similar to [9,
39, 135, 136, (12, (61} |49] we use the depth image and pose information to maintain a top-down
voxel map of the scene, and notably mark voxels as explored or unexplored. Such a map is
used by an Action Proposer (Sec. to determine a set of actions that avoid obstacles and
promote exploration. We then project this set of possible actions to the first-person-view
RGB image with the Projection (Sec. component. Finally, the VLM takes as input this
image and a carefully crafted prompt, described in Sec. 2.3} to select an action, which the
agent executes. To determine episode termination, we use a separate VLM call, detailed in

Sec. 2.3

Navigability



CHAPTER 2. NAVIGATION 8

Using a depth image, we compute a navi-
gability mask that contains the set of pixels
that can be reached by the robot without
crashing into any obstacles.

Next, for all directions 6 € fov, we use the
navigability mask to calculate the farthest .
straight-line distance r that the agent can
travel without colliding. This creates a set of
actions Aj,iia that are collision-free. Figure

- \ o\ “k " yi “‘. iy /
illustrates an example calculation of the | M \ \ \ \ T /
mask and navigable actions.

At the same time, we use the depth image
and the pose information to build a 2D voxel
map of the environment. All observable ar-
eas within 2 meters of the agent are marked
as explored, and the ones beyond as unez-
plored.

Figure 2.3: Navigability: An example step of
the Navigability subroutine. The navigability mask
is shown in blue and polar actions making up Ajnitial
are in green

Action Proposer

We design the Action Proposer routine to refine Ajpnitiai — Agfnal, an action set that is in-
terpretable for the VLM and promotes exploration. Taking advantage of the information
accumulated in our voxel map, we look at each action and define an exploration indicator
variable e; as
)1 if region (6;,7;) is unexplored
“ 10 if region (6;,7;) is explored
To build Ag,., we need to prioritize unexplored actions, and also ensure there is enough

visual spacing between actions for the VLM to discern. We start by adding unexplored
actions to Agna if an angular spacing of s is maintained.

Afinal < Afna U{(0;,7:) | e, =1 and |6, — 0;| > 05,Y(0;,7;) € Agnar }

To sufficiently cover all directions but still maintain an exploration bias, we supplement Ag,a
by adding explored actions subject to a larger angular spacing of 5 > 65 :

Afinal < Afina U {(91', 7”2‘) | e; = 0 and |9i - ‘9j| > 9A,V(9j; Tj) € Aﬁna,l}

Lastly, we want to ensure these actions don’t move the agent too close to obstacles, so we
clip

2
i min(g “Tiy Tmaz) V(0i,73) € Afinal



CHAPTER 2. NAVIGATION 9

Occasionally, the agent can get stuck in a corner where there are mo navigable actions
(Ainitiar = 0). To address this, we add a special action (7,0), which rotates the agent by
180°. This also allows efficient entry/exit of rooms where the agent quickly identifies that
the goal is not in that room.

The proposed set Ag,a now has three important properties: (i) actions correspond to nav-
igable paths, (ii) there is sufficient visual spacing between actions, and (iii) there is an
engineered bias towards exploration. We call this approach to exploration explore bias.

Projection

Visually grounding these actions in a space the VLM can understand and reason about is
the next step. The Projection component takes in Agn. from and RGB image I, and
outputs annotated image I. Similarly to |30], each action is assigned a number and overlayed
onto the image. We assign the special rotation action with 0 and annotate it onto the side
of the image along with a label Turn Around. We find that visually annotating it, instead
of just describing it in the textual prompt, helps ground its probability of being chosen to
that of the other actions.

Prompting

To elicit a final action, we craft a detailed textual prompt T, which is fed into the VLM
along with I. This prompt primarily describes the details of the task, the navigation goal,
and how to interpret the visual annotations. Additionally, we ask the model to describe the
spatial layout of the image and to make a high-level plan before choosing the action, which
serves to improve reasoning quality as found by [55, [23]. For image-based navigation goals,
the goal image is simply passed into the VLM in addition to T" and I. The full prompt can
be found in Figure [2.1]

The action chosen by the VLM, Pvlm(a*]f ,T) € Agnar is then directly executed in the envi-
ronment. Notably, this does not involve any low-level obstacle avoidance policy as in other
works [9), 39, 12, (61} [24].

Termination

To complete a navigation task, the agent must terminate the episode by calling special
action stop within a threshold distance of the goal object. Compared to other approaches
that leverage a low-level navigation policy [9) 39, 12, 61}, 24], our method does not explicitly
choose a target coordinate location to navigate to, and therefore we face an additional
challenge of determining when to stop. Our solution is to use a separate VLM prompt that



CHAPTER 2. NAVIGATION 10

[ TERMINATION PROMPT J

The agent has the following navigation task: \n{task}\n. The agent
has sent you an image taken from its current location. Your jeb is to
determine whether the agent is close to the specified {goal object}.
First, tell me what you see in the image, and tell me if there is a
{goal object} that matches the description. Then, return 1 if the
agent is close to the {goal object}, and 0 if it isn't. Format your
answer in the json {'done': <1 or 0>}

Figure 2.4: Prompting: The separate prompt for determining episode termination

explicitly asks whether or not to stop, which is shown in Figure 2.4, We do this for two
reasons:

1. Annotations: The arrows and circles from Sec. introduce noise and clutter to the
image, making it more difficult to understand.

2. Separation of tasks. To avoid any task interference, the action call is only concerned
with navigating and the stopping call is only concerned with stopping.

To avoid terminating the episode too far away from the object, we terminate the episode
when the VLM calls stop two times in a row. After the VLM calls stop the first time, we
turn off the navigability and explore bias components to ensure the agent doesn’t move away
from the goal object.

2.4 Experiments

We evaluate our approach on two popular embodied navigation benchmarks, ObjectNav
3] and GoatBench [19], which use scenes from the Habitat-Matterport 3D dataset [58|
. Further, we analyze how the performance of an end-to-end VLM agent changes with
variations in design parameters such as field-of-view, length of the contextual history used
to prompt the model, and quality of depth perception.

Setup: Similar to , the agent adopts a cylindrical body of radius 0.17m and height 1.5m.
We equip the agent with an egocentric RGB-D sensor with resolution (1080, 1920) and a
horizontal field-of-view (FOV) of 131°. The camera is tilted down with a pitch of 25° similar
to 7 which helps determine navigability. We use Gemini Flash as the VLM for all our
experiments, given its low cost and high effectiveness.



CHAPTER 2. NAVIGATION 11

Metrics: As in prior work [19, 57, [2], we use the following metrics: (i) Success Rate (SR):
fraction episodes that are successfully completed (ii) Success Rate Weighted by Inverse Path
Length (SPL): a measure of path efficiency.

Baselines: We use PIVOT as a baseline as it is most similar to ours. To investigate
the impact of our action selection method, we ablate it by evaluating Ours w/o nav: the
same as ours but without the Navigability and Action Proposer components. The action
choices for this baseline are a static set of evenly-spaced action choices, including the turn
around action. Notably, these actions do not consider navigability or exploration. To further
evaluate the impact of visual annotation, we also evaluate a baseline Prompt Only, which
sees actions described in text (“turn around”, “turn right”, “move forward”, ...) but not
annotated visually. These different prompting baselines can be visualized in Fig [2.5

Figure 2.5: Baselines: Comparing the four different methods on a sample image. Ours contains arrows
that point to navigable locations, PIVOT has arrows sampled from a random 2-D Gaussian, Ours w/o nav
sees uniformly spaced arrows (note arrows 3 and 5 point into a wall), and Prompt Only sees just the raw
RGB image

We note that in our experiments and baselines, we turn the allow_slide parameter on, which
allows the agent to slide against obstacles in the simulator. Our experiments show that
removing this assumption leads to large drops in performance.

ObjectNav

The Habitat ObjectNav benchmark requires navigation to an object instance from one of six
categories [Sofa, Toilet, TV, Plant, Chair, Bed]. As in , to get the optimal path length,
we take the minimum of the shortest paths to all instances of the object. These experiments
are evaluated with a success threshold of 1.2 meters .

Table 2.1 summarizes our results. Our method outperforms PIVOT by over 25%, and nearly
doubles its navigation efficiency in terms of SPL. We see that our action selection method is
highly effective as shows a 17% improvement over Ours w/o nav. Removing visual annota-
tions leads to a slight decrease in success rate but a significant reduction in SPL, indicating
that visual grounding is important for navigation efficiency. Interestingly, we find that
PIVOT performs worse than both of our ablations. We attribute this to limited expressivity



CHAPTER 2. NAVIGATION 12

Run SR SPL Table 2.1: ObjectNav Results: We evaluate four

Ours 50.4% | 0.210 different prompting strategies on the ObjectNav bench-

Ours w /O nav 33.2% | 0.136 mark, and see our method achieves highest performance

Prompt Only 20.8% | 0.107 in both accuracy (SR) and efficiency (SPL). Ablating the
' ' allow_slide parameter shows our method is dependent on

PIVOT ISOI. ) 24'6% 0.106 sliding past obstacles

Ours w/o sliding | 12.9% | 0.063

in its action space, which prevents it from executing large rotations or turning around fully.
This often leads to the agent getting stuck in corners, hindering its ability to recover and
navigate effectively.

We note that disabling sliding results in a large drop in performance, signaling that while
effective in simulation, our method would likely lead to collisions with obstacles in the real
world. While our Navigability module can identify navigable locations, it does not consider
the specific size and shape of the robot in this calculation, leading to occasional collisions
where the agent gets stuck since we lack an explicit action to backtrack previous motions.

Go To Anything Benchmark (GOAT)

GOAT Bench [19] is a recent benchmark that establishes a higher level of navigation difficulty.
Each episode contains 5-10 sub-tasks across three different goal modalities: (i) Object names,
such as refrigerator, (ii) Object images, and (iii) Detailed text descriptions such as Grey couch
located on the left side of the room, next to the picture and the pillow. Table shows our
results, evaluated on the val unseen split.

Run SR SPL | Image SR | Object SR | Description SR
Ours 16.3% | 0.066 14.3% 20.5% 13.4%
Ours w/o nav | 11.8% | 0.054 7.8% 16.5% 10.2%
Prompt Only | 11.3% | 0.037 7.7% 15.6% 10.1%
PIVOT [30] 8.3% | 0.038 7.0% 11.3% 5.9%

Table 2.2: GOAT Results: Comparison of prompting strategies on GOAT Bench, a more
challenging navigation task. Across three different goal modalities, our method strongly
outperforms baseline methods

Across all goal modalities, our model achieves significant improvements over baselines. These
improvements are especially evident in image goals, where our model achieves nearly twice
the success rate of all baseline methods. This highlights the robustness and general nature of
our system. As with the ObjectNav results, Ours w/o nav and Prompt only perform compa-
rable, and both outperform PIVOT. For all prompting methods, the image and description



CHAPTER 2. NAVIGATION 13

modalities prove more challenging than the object modality, similarly to what was found by
[19].

Comparison to state-of-the-art: We turn the allow_slide parameter off and compare to
two state-of-the-art specialized approaches: (i) SenseAct-NN [19] is a policy trained with rein-
forcement learning, using learned submodules for different skills; and (ii) Modular GOAT [9]
is a compound system that builds a semantic memory map of the environment and uses a
low-level policy to navigate to objects within this map. Unlike SenseAct-NN, our work is
zero-shot, and unlike Modular GOAT, we do not rely on a low-level policy or a separate
object-detection module.

Run SR SPL Table 2.3: GOAT comparison: Directly

- - comparing to other works, we see that special-
SenseAct-NN Skill Chain | 29.5% | 0.113 ized systems still produce superior performance.
Modular GOAT 24.9% | 0.172 We also note these other works use a narrower
Ours w/ sliding 16.3% | 0.066 FOV, lower image resolution, and a different ac-
Ours 6.9% 0.049 tion space, which could explain some of the dif-

ferences

We compare the results of our approach to these baselines in Table [2.3] Interestingly, these
methods have different strengths: a reinforcement learning approach leads to the highest
success rate. Conversely, the modular navigation system achieves the highest navigation
efficiency.

Our method shows lower performance compared to these specialized baselines across both
metrics, even when permitted to slide over obstacles. Notably, we observe that in 13.9%
of the runs, the VLM prematurely calls stop when it is between 1 to 1.5 meters from the
target object. These instances are classified as failures, as the benchmark defines a run
as successful only if the agent is within 1 meter of the object. This finding suggests that
our VLM lacks the fine-grained spatial awareness necessary to accurately assess distances to
objects. However, it also indicates that in over 30% of the runs, our VLM agent is able to
approach the goal object closely, highlighting its capability to reach near-target positions.

As shown in previous experiments, when not allowed to slide over objects, our approach’s
performance drastically decreases, as it gets frequently blocked between obstacles and does
not have a way to backtrack its actions.

Exploring the design space of VLM agents for navigation

In this section, we look at major design choices that impact the navigation ability of VLM-
based agents in our setup, all evaluated on the ObjectNav dataset.



CHAPTER 2. NAVIGATION 14

How important is camera FOV for navigation?

Success Rate SPL

0.50
0.20
0.48

0.45 0.18

0.43 0.16

0.40
0.14

0.38

035 0.12

0.33 0.10

82 100 115 131 82 100 115 131
Field of View Field of View

Figure 2.6: Impact of sensor FOV: We evaluate the performance of four different sensor FOVs,
and find that a wider FOV invariably leads to higher performance

An agent’s navigation abilities largely depend on how fine-grained its vision is. In this section,
we study whether our VLM agent can benefit from high-resolution images. Specifically, we
run our method using four different FOVs: 82° [57], 100°, 115° and 131° (iPhone 0.5 camera).
The results of this experiment, shown in Fig. [2.6] indicate positive scaling behaviors on both
navigation accuracy and efficiency.

Do longer observation-action histories help?

In this section, we study whether a VLM navigation agent can effectively use a history of
observations. We create a prompt containing the observation history in a naive way, i.e., we
concatenate observations and actions from the K most recent environment steps and feed
this into the VLM as context. For all these experiments, we remove our exploration bias
(see Sec. to specifically isolate the contribution of a longer history.

History Length | SR | SPL
No history 46.8% | 0.193

Table 2.4: Impact of adding context history: We com-
pare our method to alternatives of keeping the past 0, 5, 10,

i) 42.7% | 0.180 and 15 observations and actions. We see that adding context
10 45.4% | 0.196 | history does not improve the performance of our method
15 40.4% | 0.170

The results of these experiments are shown in Table 2.4, We find that when naively concate-
nating past observations and actions, our prompt strategy is unable to use a longer context.
Indeed, the performance remains the same or decreases when increasing the history length.



CHAPTER 2. NAVIGATION 15

How important is perfect depth perception?

Within the simulator, the depth sensor provides accurate pixel-wise depth information, which
is important for determining the navigability mask. To investigate the importance of quasi-
perfect depth perception, we evaluate two alternate approaches that only use RGB: (i)
Segformer, which uses [56] to semantically segment pixels belonging to the floor region.
We use this region as the navigability mask and bypass the need for any depth information.
We estimate the distances to obstacles by multiplying the number of pixels with a constant
factor. (ii) ZoeDepth, which uses [4] to estimate metric depth values. We use such predicted
values instead of the ground-truth distances from the simulator and compute navigability in
the original way.

Run SR | SPL Table 2.5: Depth Ablation: .We evaluate two alter-
Denth 50.4% 1 0.210 nate approaches that only require RGB. We find that
epth sensor <E/0 : semantic segmentation performs close to using ground
Segformer [56] | 47.2% | 0.183 truth depth, whereas estimating depth values leads to

ZoeDepth [4] 39.1% | 0.161 a significant performance drop

The results of this study are presented in Table 2.5l We find that depth estimation from
[4] is not accurate enough to identify navigable areas. Indeed, depth noise leads to a 10%
drop in SR. However, using a segmentation mask instead of relying on depth information
surprisingly proves to be quite effective, with only a decrease of 3% with respect to using
perfect depth perception. Overall, our experiments show that a VLM-based navigation agent
can perform well with only RGB information.

2.5 Conclusion

In this chapter, we present VLMnav, a novel visual prompt-engineering approach that enables
an off-the-shelf VLM to act as an end-to-end navigation policy. The main idea behind this
approach is to carefully select action proposals and project them on an image, effectively
transforming the problem of navigation into one of question-answering. Through evaluations
on the ObjectNav and GOAT benchmarks, we see significant performance gains over the
iterative baseline PIVOT, which was the previous state-of-the-art in prompt engineering for
visual navigation. Our design study further highlights the importance of a wide field of view
and the possibility of deploying our approach with minimal sensing, i.e., only an RGB image.

Our method has a few limitations. The drastic decrease in performance from disabling the
allow_slide parameter indicates that there are several collisions with obstacles, which could
be problematic in a real-world deployment. In addition, we find that specialized systems such



CHAPTER 2. NAVIGATION 16

as [19] outperform our work. However, as the capabilities of VLMs continue to improve, we
hypothesize that our approach could help future VLMs reach or surpass the performance of
specialized systems for embodied tasks.



17

Chapter 3

Manipulation

3.1 Introduction

Vision-Language-Action (VLA) models |21, |7, 48, [5] have exhibited early promise in per-
forming diverse tasks through natural language prompting. However, as highlighted in [54],
current VLA models have difficulty interpreting and executing complex tasks. To address
these shortcomings, this work proposes a framework that leverages the strengths of LLMs as
central planning agents in conjunction with VLA models. The core idea is to have the plan-
ning agent interact with the environment by prompting a VLA, observing the outcome of
the robotic trajectory executed by the VLA, and iteratively refining the subsequent instruc-
tions. In addition, this work makes the following contributions. First, we evaluate several
approaches for autonomously communicating feedback and task status from the robot envi-
ronment to the planning agent. Second, we present a sensitivity analysis of an off-the-shelf
VLA to variations in language prompting. Third, we show that through exploration, the
planning agent can autonomously improve its ability to use the VLA.

3.2 Related Work

Connecting the rich space of language commands with the world of robotic policies has been
attempted in a few ways. As mentioned previously, VLAs [21] 7] |48] |5, 47], are one approach
to developing generalist policies that span natural language inputs. A survey paper [54],
extensively evaluates several VLAs and concludes that OpenVLA |21] achieves the highest
performance, but like the other models, is very sensitive to out-of-distribution inputs.

Another line of existing research leverages LLMs as high-level planners that call low-level
robotic primitives |1, 51} 25, 62, |16], which has enabled significant improvements in the range
of language commands a robot can execute. However, these low-level primitives are often
limited in scope and constrain the robot to a set of pre-defined behaviors.



CHAPTER 3. MANIPULATION 18

Code as Policy,
SayCan, BOSS

Standard trained policy

Primitive Policy

Inverse Kinematics Solver

Jadderof &% 2 .. @ 2 el
Abstractions Low Level PID

Figure 3.1: Robotic generalists require several layers of abstraction:. VLAs can generalize across
tasks, but they fall short of the high-level planning capabilities of LLMs. Works shown in blue bridge this
gap by allowing LLMs to solve tasks by calling low-level robotic APIs. This work builds off of those ideas
by connecting LLMs to VLAs, enabling a higher level of abstraction

VLMs have also gained traction as a method for autonomously evaluating robotic perfor-
mance due to their improved visual capabilities , , . This has taken the form of
training reward functions, estimating task completion values, and classifying robotic trajec-
tories.

Additionally, some recent works explore ways in which to improve VLAs in a zero-shot
setting, treating them as black-box models [17, [29, 43]. Surprisingly, an area that has
been less explored is employing LLMs as planners to use VLAs as black-box tools, taking
advantage of the shared language space between both models.

Figure [3.1] illustrates the many levels of abstractions present in the manipulation space,
and where previous works fall. Highlighted in red, our approach builds a direct connec-
tion between high-level LLM reasoning and low-level execution by prompting a VLA as an
intermediate policy layer.



CHAPTER 3. MANIPULATION 19

3.3 VLA as Tools

The core idea of the proposed system involves a central planning agent that can send in-
structions for a VLA to execute, effectively making the VLA a tool. Unlike the traditional
agent and tool paradigm, which has seen tremendous success in tasks such as web navigation
and software development, the problem setting here poses two significant challenges: (i) the
tool icannot be documented and described easily, and (ii) the time horizon at which actions
are executed is also unknown. To address the former, we take advantage of the ability for
LLMs to learn by example . To address the latter, we design a feedback module to
periodically provide the agent with updates on the impact of its previous actions.

r Accumulated data
In context
learning
— a»
V\ 4
V\/
N’
e T {<instruction> —> <bool success>}
— A\ Feedback
. Module
> Environment > Ul

Frame buffer

Figure 3.2: Overview of the proposed framework: In one process, the VLA continuously executes an
instruction in its environment. Concurrently, a central planning agent chooses what instructions to send to
the VLA, and a feedback module periodically sends updates to the planning agent. The trajectory results
are stored offline for future prompting of the central agent

A system overview can be seen in Figure[3.2l The VLA operates at high frequency, executing
some instruction provided by the planning agent, and writing third-person images to a shared
memory buffer. The feedback module periodically reads from this buffer and reports whether
the current instruction was completed successfully, failed, or is still in progress. The central
planning agent (green), upon receiving this feedback, decides what subsequent instruction
to send to the VLA. The individual results of the attempted tasks are then stored offline for
future prompting of the planning agent.

In addition to the proposed system, this work investigates three hypotheses.



CHAPTER 3. MANIPULATION 20

1. LLMs can visually determine the completion status of a task
2. The space of instructions that VLAs can successfully execute is limited

3. LLMs can learn to translate general instructions into such a space

Setup: We utilize OpenVLA as the VLA model, given that it is the best available open-
source model [54]. As in [21], we use the Libero environment and task suites, which contain
a diverse selection of manipulation tasks. The environment provides rendered third-person
images, which are used as input to OpenVLA, and also provides ground truth success infor-
mation for each task. We use Gemini-flash-1.5[46] for both the central planning agent and
the feedback module.

What is the best design for a feedback module?

VLMs have gained popularity in robotics in a variety of ways. [53] use VLM feedback to train
a reward function for various robotic tasks. [26] propose a method for VLMs to estimate a
task completion percentage from a sequence of frames. Most similar to this work, [65] use a
VLM to classify the success value of a trajectory from the last frame. Surprisingly, there has
been little work on passing robotic videos into the VLM as opposed to just single images.
To address this, we present a small-scale study on four different designs: using just the last
frame as in [65], using a video of the whole trajectory, and both methods but with a prompt
consisting of several example trajectories and their respective labels, labeled as ICL[§|. The
VLM is then asked to output a binary success value for each robot trajectory, and this is
compared to the ground-truth success value to calculate accuracy.

Method Accuracy | Accuracy w ICL | Latency
Last frame 56% 61% (+5%) 1.5s
Video 60% 78% (4+18%) 6s

Table 3.1: VLMs as a classifier: Using video with in-context learning
proves to be the strongest method, but is limited by its high latency

As seen in Table[3.1, VLMs are indeed able to reason about robotic videos, likely due to recent
advances in context length and vision capabilities. Videos also capture important information
that may not be visible in the last frame. Surprisingly, adding few-shot examples improves
the video approach by a much larger margin, which is contrary to Gemini’s documentation
that recommends only using one video per prompt. However, the video method comes with
a significant efficiency drawback, as most of the additional latency comes from sending the
video over the network. From these results, we choose to use a video-based feedback module
that uses in-context learning.



CHAPTER 3. MANIPULATION 21

How sensitive is OpenVLA to variations in prompting language?

To investigate the space of instructions OpenVLA is able to successfully complete, we use
an LLM to generate a new dataset of tasks, where each original task is mapped to several
slightly rephrased tasks. For example, the original task put the wine bottle on the rack might
get rephrased to locate the wine bottle and transfer it to the wine rack.

Figure[3.3shows how the success rate
on the rephrased instructions com-
pares to the original success rate. Ev-
idently, these small changes in the in-
struction language lead to very large
decreases in performance, especially
on the harder task suites goal and
long. While these rephrased instruc-
tions are out of the model’s training
distribution, the performance drop

is still concerning, as we expect

the model’s pre-trained language en- Figure 3.3: Language sensitivity analysis: OpenVLA is
coder to be able to handle these in- very sensitive to the specific phrasing used in the instruction
structions.

=3 oOriginal
KX Rephrased

o
®

0.70

0.65

Success Rate
1=
E

o
kY

0.28

o
N

Spatial Object Goal Long
LIBERO TASK SUITE

Can a planning agent learn to use a VLA autonomously?

With the findings from Sec [3.3] the natural question to ask is whether the planning agent
can learn to translate these instructions into the space that the VLA can successfully com-
plete. To investigate this, we design a prompt that includes several instruction-success tuples
sampled from the other task suites, which were collected in the previous experiment. The
LLM then reads the current (rephrased) instruction, along with these sampled results, and
then outputs a modified instruction for the VLA to execute. With this method, the average
success rate across the task suites increases by 17%, indicating that the planning agent
can learn the space of successful VLA instructions to some degree.

However, this study relies on ground-truth success information from the simulator, which
is not practical for real-world deployment, and furthermore, the in-context examples were
not chosen by the agent. To investigate whether the previous results can be reproduced
without any supervision or privileged information, we propose the following exploration
procedure: First, the planning agent is given an image of the scene and is told to learn the
capabilities of the robot. It then outputs a list of tasks for the VLA to execute, importantly
involving no knowledge of what tasks the VLA was trained on. The VLA then attempts each
proposed task, and a success value is derived from the VLM feedback module, instead of



CHAPTER 3. MANIPULATION 22

the environment. These instruction-success tuples are then saved and sampled in the same
prompting mechanism.

Method Success Rate
Original 77.5%
Rephrased 40.6%
Rephrased ICL 57.5%
Exploration ICL 49.4%

Table 3.2: Evaluating instruction translation: Rephrasing the instructions causes
a 37% reduction in success rate, but the agent is able to mitigate this through in-context
learning. Privileged examples increase success by 17% while examples from autonomous
exploration increase success by 9%

As seen in Table[3.2] this exploration method leads to a 9% increase in success rate. While
not as strong of an increase as using the ground-truth data, this result shows a promise
of autonomous learning. We believe this method to be most limited by the VLM feedback
signal, as we observe it to be unreliable at times, especially when the agent proposes strange
tasks.

Conclusion and Limitations

In this chapter, we present an exploratory framework aimed at bridging the fine-grained con-
trol capabilities of VLA models with the robust planning abilities of LLMs. Recognizing the
limitations of current VLAs, particularly their sensitivity to instruction phrasing and con-
strained execution capabilities, we introduce an LLM-based planning agent that dynamically
leverages VL As as execution tools.

Our evaluation revealed several key insights: VLM-based feedback modules, especially when
leveraging video inputs and few-shot prompting, are mostly able to assess the accuracy of
robotic tasks. Furthermore, we found significant sensitivity in OpenVLA’s performance with
respect to subtle variations in prompt phrasing, highlighting a weakness that LLM agents
are well-positioned posed to address.

Encouragingly, the our agent demonstrated a ability to learn effective translations from
general instructions into actionable commands for the VLA, achieving performance gains
even without direct access to ground-truth task success information. However, exploration
method, while promising, faced limitations primarily due to inaccuracies in the VLM’s feed-
back signal, especially when confronted with unconventional tasks.

We acknowledge that our experiments were conducted in a purely simulated setting, which
differs significantly from the real-world image distributions on which OpenVLA was originally



CHAPTER 3. MANIPULATION 23

trained. This discrepancy likely constrained the VLA’s execution effectiveness, regardless
of the planning agent’s proficiency. We believe deploying similar LLM-VLA systems to
real world robots presents an exciting direction of future work. Despite these challenges,
this exploratory work lays a path toward integrating high-level planning and generalized
robotic execution, establishing a preliminary method for future advancements in autonomous
manipulation systems.



24

Bibliography

[1] Michael Ahn et al. Do As I Can, Not As I Say: Grounding Language in Robotic Af-
fordances. 2022. arXiv: 2204.01691 [cs.RO]. URL: https://arxiv.org/abs/2204.
01691.

[2] Peter Anderson et al. On FEwvaluation of Embodied Navigation Agents. 2018. arXiv:
1807.06757 [cs.AI]. URL: https://arxiv.org/abs/1807.06757.

[3] Dhruv Batra et al. ObjectNav Revisited: On Evaluation of Embodied Agents Navigating
to Objects. 2020. arXiv: 2006.13171 [cs.CV]. URL: https://arxiv.org/abs/2006.
13171l

[4] Shariq Farooq Bhat et al. ZoeDepth: Zero-shot Transfer by Combining Relative and
Metric Depth. 2023. arXiv: 2302.12288 [cs.CV]. URL: https://arxiv.org/abs/
2302.12288.

[5] Kevin Black et al. my: A Vision-Language-Action Flow Model for General Robot Con-
trol. 2024. arXiv: 2410.24164 [cs.LG]. URL: https://arxiv.org/abs/2410.24164.

[6] Anthony Brohan et al. “Rt-1: Robotics transformer for real-world control at scale”. In:
arXiv preprint arXiv:2212.06817 (2022).

[7]  Anthony Brohan et al. “Rt-2: Vision-language-action models transfer web knowledge
to robotic control”. In: arXiv preprint arXiv:2307.15818 (2023).

[8] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165
[cs.CL]. URL: https://arxiv.org/abs/2005.14165.

[9] Matthew Chang et al. “Goat: Go to any thing”. In: arXiv preprint arXiv:2311.06430
(2023).
[10] Open X-Embodiment Collaboration et al. Open X-Embodiment: Robotic Learning Datasets
and RT-X Models. https://arxiv.org/abs/2310.08864. 2023.

[11] Kiana Ehsani et al. “Imitating Shortest Paths in Simulation Enables Effective Navi-
gation and Manipulation in the Real World”. In: arXiv (2023). eprint: 2312.02976.

[12] Samir Yitzhak Gadre et al. “Cows on pasture: Baselines and benchmarks for language-
driven zero-shot object navigation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2023, pp. 23171-23181.


https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/1807.06757
https://arxiv.org/abs/1807.06757
https://arxiv.org/abs/2006.13171
https://arxiv.org/abs/2006.13171
https://arxiv.org/abs/2006.13171
https://arxiv.org/abs/2302.12288
https://arxiv.org/abs/2302.12288
https://arxiv.org/abs/2302.12288
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2310.08864
2312.02976

BIBLIOGRAPHY 25

[13]

[14]

[15]

[16]

[17]

[21]

[22]

[23]

[24]

Dawei Gao et al. Text-to-SQL Empowered by Large Language Models: A Benchmark
Evaluation. 2023. arXiv: 2308.15363 [cs.DB]. URL: https://arxiv.org/abs/2308.
15363.

Dylan Goetting, Himanshu Gaurav Singh, and Antonio Loquercio. End-to-End Navi-
gation with Vision Language Models: Transforming Spatial Reasoning into Question-
Answering. 2024. arXiv: 2411.05755 [cs.RO]. URL: https://arxiv.org/abs/2411.
05755.

Kristen Grauman et al. EgoD: Around the World in 3,000 Hours of Eqocentric Video.
2022. arXiv: 2110.07058 [cs.CV]. URL: https://arxiv.org/abs/2110.07058.

Huy Ha, Pete Florence, and Shuran Song. Scaling Up and Distilling Down: Language-
Guided Robot Skill Acquisition. 2023. arXiv: 2307 . 14535 [cs.RO]. URL: https://
arxiv.org/abs/2307.14535.

Asher J. Hancock, Allen Z. Ren, and Anirudha Majumdar. Run-time Observation In-
terventions Make Vision-Language-Action Models More Visually Robust. 2024. arXiv:
2410.01971 [cs.RO]. URL: https://arxiv.org/abs/2410.01971.

Carlos E. Jimenez et al. SWE-bench: Can Language Models Resolve Real-World GitHub
Issues? 2024. arXiv: 2310.06770 [cs.CL]. URL: https://arxiv.org/abs/2310.
06770.

Mukul Khanna* et al. GOAT-Bench: A Benchmark for Multi-Modal Lifelong Naviga-
tion. 2024. arXiv: 2404.06609 [cs.AI].

Alexander Khazatsky et al. DROID: A Large-Scale In-The-Wild Robot Manipulation
Dataset. 2024. arXiv: 2403 .12945 [cs.RO]. URL: https://arxiv.org/abs/2403.
12945,

Moo Jin Kim et al. “OpenVLA: An Open-Source Vision-Language-Action Model”. In:
arXiv preprint arXiv:2406.09246 (2024).

Jing Yu Koh et al. VisualWebArena: Evaluating Multimodal Agents on Realistic Visual
Web Tasks. 2024. arXiv: 2401.13649 [cs.LG]. URL: https://arxiv.org/abs/2401.
13649.

Takeshi Kojima et al. “Large language models are zero-shot reasoners”. In: Advances
in neural information processing systems 35 (2022), pp. 22199-22213.

Yuxuan Kuang, Hai Lin, and Meng Jiang. OpenFMNav: Towards Open-Set Zero-Shot
Object Navigation via Vision-Language Foundation Models. 2024. arXiv: 2402.10670
[cs.CL]. URL: https://arxiv.org/abs/2402.10670.

Jacky Liang et al. Code as Policies: Language Model Programs for Embodied Control.
2023. arXiv: 2209.07753 [cs.RO]. URL: https://arxiv.org/abs/2209.07753.

Yecheng Jason Ma et al. Vision Language Models are In-Context Value Learners. 2024.
arXiv: 2411.04549 [cs.RO]. URL: https://arxiv.org/abs/2411.04549.


https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2411.05755
https://arxiv.org/abs/2411.05755
https://arxiv.org/abs/2411.05755
https://arxiv.org/abs/2110.07058
https://arxiv.org/abs/2110.07058
https://arxiv.org/abs/2307.14535
https://arxiv.org/abs/2307.14535
https://arxiv.org/abs/2307.14535
https://arxiv.org/abs/2410.01971
https://arxiv.org/abs/2410.01971
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2404.06609
https://arxiv.org/abs/2403.12945
https://arxiv.org/abs/2403.12945
https://arxiv.org/abs/2403.12945
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2402.10670
https://arxiv.org/abs/2402.10670
https://arxiv.org/abs/2402.10670
https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2411.04549
https://arxiv.org/abs/2411.04549

BIBLIOGRAPHY 26

[27]

28]

[29]

[30]

Arjun Majumdar et al. “Zson: Zero-shot object-goal navigation using multimodal
goal embeddings”. In: Advances in Neural Information Processing Systems 35 (2022),
pp- 32340-32352.

Rubén N. Muzio and Verner P. Bingman. “Brain and Spatial Cognition in Amphibians:
Stem Adaptations in the Evolution of Tetrapod Cognition”. In: Fvolution of Learning
and Memory Mechanisms. Cambridge University Press, 2022, pp. 105—-124.

Mitsuhiko Nakamoto et al. Steering Your Generalists: Improving Robotic Foundation
Models via Value Guidance. 2024. arXiv: 2410.13816 [cs.R0O]. URL: https://arxiv.
org/abs/2410.13816.

Soroush Nasiriany et al. PIVOT: Iterative Visual Prompting Elicits Actionable Knowl-
edge for VLMs. 2024. arXiv: 2402.07872 [cs.R0O]|

OpenAl et al. GPT-/ Technical Report. 2024. arXiv: 2303 . 08774 [cs.CL]. URL:
https://arxiv.org/abs/2303.08774.

OpenAl et al. GPT-4o System Card. 2024. arXiv: 2410.21276 [cs.CL]. URL: https:
//arxiv.org/abs/2410.21276.

Pooyan Rahmanzadehgervi et al. Vision language models are blind. 2024. arXiv: 2407 .
06581 [cs.AI]. URL: https://arxiv.org/abs/2407.06581.

Santhosh Kumar Ramakrishnan et al. Does Spatial Cognition Emerge in Frontier Mod-
els? 2024. arXiv: 2410.06468 [cs.AI]. URL: https://arxiv.org/abs/2410.06468.

Allen Z. Ren et al. “Explore until Confident: Efficient Exploration for Embodied Ques-
tion Answering”. In: arXiv preprint arXiv:2403.159/1. 2024.

Adarsh Jagan Sathyamoorthy et al. CoNVOI: Context-aware Navigation using Vi-
sion Language Models in Qutdoor and Indoor Environments. 2024. arXiv: 2403.15637
[cs.RO]. URL: https://arxiv.org/abs/2403.15637.

Manolis Savva et al. Habitat: A Platform for Embodied AI Research. 2019. arXiv:
1904.01201 [cs.CV]L URL: https://arxiv.org/abs/1904.01201.

Dhruv Shah et al. GNM: A General Navigation Model to Drive Any Robot. 2023. arXiv:
2210.03370 [cs.RO]. URL: https://arxiv.org/abs/2210.03370.

Dhruv Shah et al. “Navigation with Large Language Models: Semantic Guesswork as
a Heuristic for Planning”. In: 7th Annual Conference on Robot Learning. 2023. URL:
https://openreview.net/forum?id=PsV65r0itpo.

Dhruv Shah et al. Rapid Ezploration for Open-World Navigation with Latent Goal
Models. 2023. arXiv: 2104 .05859 [cs.RO]. URL: https://arxiv.org/abs/2104.
05859.

Dhruv Shah et al. “ViNG: Learning Open-World Navigation with Visual Goals”.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021,
pp. 13215-13222. poI: 10.1109/ICRA48506.2021.9561936.


https://arxiv.org/abs/2410.13816
https://arxiv.org/abs/2410.13816
https://arxiv.org/abs/2410.13816
https://arxiv.org/abs/2402.07872
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2407.06581
https://arxiv.org/abs/2407.06581
https://arxiv.org/abs/2407.06581
https://arxiv.org/abs/2410.06468
https://arxiv.org/abs/2410.06468
https://arxiv.org/abs/2403.15637
https://arxiv.org/abs/2403.15637
https://arxiv.org/abs/2403.15637
https://arxiv.org/abs/1904.01201
https://arxiv.org/abs/1904.01201
https://arxiv.org/abs/2210.03370
https://arxiv.org/abs/2210.03370
https://openreview.net/forum?id=PsV65r0itpo
https://arxiv.org/abs/2104.05859
https://arxiv.org/abs/2104.05859
https://arxiv.org/abs/2104.05859
https://doi.org/10.1109/ICRA48506.2021.9561936

BIBLIOGRAPHY 27

[42]

[43]

[44]

[51]

[52]

[53]

Dhruv Shah et al. ViNT: A Foundation Model for Visual Navigation. 2023. arXiv:
2306.14846 [cs.RO]. URL: https://arxiv.org/abs/2306.14846.

Lucy Xiaoyang Shi et al. Hi Robot: Open-Ended Instruction Following with Hierarchical
Vision-Language-Action Models. 2025. arXiv: 2502.19417 [cs.RO]. URL: https://
arxiv.org/abs/2502.19417.

Mohit Shridhar et al. ALFWorld: Aligning Text and Embodied Environments for In-
teractive Learning. 2021. arXiv: 2010.03768 [cs.CL]. URL: https://arxiv.org/
abs/2010.03768.

Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. What does CLIP
know about a red circle? Visual prompt engineering for VLMs. 2023. arXiv: 2304 .06712
[cs.CV]. URL: https://arxiv.org/abs/2304.06712.

Gemini Team et al. Gemini 1.5: Unlocking multimodal understanding across millions
of tokens of context. 2024. arXiv: 2403.05530 [cs.CL]. URL: https://arxiv.org/
abs/2403.05530.

Gemini Robotics Team et al. Gemini Robotics: Bringing Al into the Physical World.
2025. arXiv: 2503.20020 [cs.RO]. URL: https://arxiv.org/abs/2503.20020.

Octo Model Team et al. Octo: An Open-Source Generalist Robot Policy. 2024. arXiv:
2405.12213 [cs.RO]. URL: https://arxiv.org/abs/2405.12213.

Anirudh Topiwala, Pranav Inani, and Abhishek Kathpal. Frontier Based Exploration
for Autonomous Robot. 2018. arXiv:|1806.03581 [cs.RO]. URL: https://arxiv.org/
abs/1806.03581.

Claudio Urrea and John Kern. “Recent Advances and Challenges in Industrial Robotics:
A Systematic Review of Technological Trends and Emerging Applications”. In: Pro-
cesses 13.3 (2025). I1SSN: 2227-9717. URL: https://www.mdpi.com/2227-9717/13/3/
832.

Beichen Wang et al. VLM See, Robot Do: Human Demo Video to Robot Action Plan
via Vision Language Model. 2024. arXiv: 2410.08792 [cs.RO]. URL: https://arxiv.
org/abs/2410.08792.

Ruoyao Wang et al. Science World: Is your Agent Smarter than a 5th Grader? 2022.
arXiv: 2203.07540 [cs.CL]. URL: https://arxiv.org/abs/2203.07540.

Yufei Wang et al. RL-VLM-F: Reinforcement Learning from Vision Language Foun-
dation Model Feedback. 2024. arXiv: 2402.03681 [cs.RO]. URL: https://arxiv.org/
abs/2402.03681.

Zhijie Wang et al. Towards Testing and Evaluating Vision-Language-Action Models for
Robotic Manipulation: An Empirical Study. 2024. arXiv: 2409.12894 [cs.SE]. URL:
https://arxiv.org/abs/2409.12894.


https://arxiv.org/abs/2306.14846
https://arxiv.org/abs/2306.14846
https://arxiv.org/abs/2502.19417
https://arxiv.org/abs/2502.19417
https://arxiv.org/abs/2502.19417
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2304.06712
https://arxiv.org/abs/2304.06712
https://arxiv.org/abs/2304.06712
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2503.20020
https://arxiv.org/abs/2503.20020
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/1806.03581
https://arxiv.org/abs/1806.03581
https://arxiv.org/abs/1806.03581
https://www.mdpi.com/2227-9717/13/3/832
https://www.mdpi.com/2227-9717/13/3/832
https://arxiv.org/abs/2410.08792
https://arxiv.org/abs/2410.08792
https://arxiv.org/abs/2410.08792
https://arxiv.org/abs/2203.07540
https://arxiv.org/abs/2203.07540
https://arxiv.org/abs/2402.03681
https://arxiv.org/abs/2402.03681
https://arxiv.org/abs/2402.03681
https://arxiv.org/abs/2409.12894
https://arxiv.org/abs/2409.12894

BIBLIOGRAPHY 28

[55]

[63]

[64]

[65]

Jason Wei et al. Chain-of-Thought Prompting FElicits Reasoning in Large Language
Models. 2023. arXiv: 2201.11903 [cs.CL]. URL: https://arxiv.org/abs/2201.
11903l

Enze Xie et al. SegFormer: Simple and Efficient Design for Semantic Segmentation
with Transformers. 2021. arXiv: 2105. 15203 [cs.CV]. URL: https://arxiv.org/
abs/2105.15203.

Karmesh Yadav et al. Habitat Challenge 2022. https://aihabitat.org/challenge/
2022/. 2022.

Karmesh Yadav et al. Habitat-Matterport 3D Semantics Dataset. 2023. arXiv: 2210.
05633 [cs.CV]. URL: https://arxiv.org/abs/2210.05633.

An Yan et al. GPT-4V in Wonderland: Large Multimodal Models for Zero-Shot Smart-
phone GUI Navigation. 2023. arXiv: 2311.07562 [cs.CV]. URL: https://arxiv.org/
abs/2311.07562.

Jianwei Yang et al. “Set-of-Mark Prompting Unleashes Extraordinary Visual Ground-
ing in GPT-4V”. In: arXiv preprint arXiv:2810.11441 (2023).

Bangguo Yu, Hamidreza Kasaei, and Ming Cao. “L3mvn: Leveraging large language
models for visual target navigation”. In: International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2023.

Jesse Zhang et al. Bootstrap Your Own Skills: Learning to Solve New Tasks with Large
Language Model Guidance. 2023. arXiv: 2310.10021 [cs.R0O]. URL: https://arxiv.
org/abs/2310.10021.

Jiazhao Zhang et al. “NaVid: Video-based VLM Plans the Next Step for Vision-and-
Language Navigation”. In: arXiv preprint arXiv:2402.15852 (2024).

Gengze Zhou, Yicong Hong, and Qi Wu. NavGPT: Ezxplicit Reasoning in Vision-and-
Language Navigation with Large Language Models. 2023. arXiv: 2305.16986 [cs.CV].
URL: https://arxiv.org/abs/2305.16986.

Zhiyuan Zhou et al. Autonomous Improvement of Instruction Following Skills via Foun-
dation Models. 2024. arXiv: 2407 .20635 [cs.RO]. URL: https://arxiv.org/abs/
2407.20635.


https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2105.15203
https://arxiv.org/abs/2105.15203
https://arxiv.org/abs/2105.15203
https://aihabitat.org/challenge/2022/
https://aihabitat.org/challenge/2022/
https://arxiv.org/abs/2210.05633
https://arxiv.org/abs/2210.05633
https://arxiv.org/abs/2210.05633
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2310.10021
https://arxiv.org/abs/2310.10021
https://arxiv.org/abs/2310.10021
https://arxiv.org/abs/2305.16986
https://arxiv.org/abs/2305.16986
https://arxiv.org/abs/2407.20635
https://arxiv.org/abs/2407.20635
https://arxiv.org/abs/2407.20635

	Contents
	List of Figures
	List of Tables
	Introduction
	LLMs and Robotics
	Designing Embodied Agents

	Navigation
	Introduction
	Related Work
	Overview
	Experiments
	Conclusion

	Manipulation
	Introduction
	Related Work
	VLA as Tools

	Bibliography

