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Abstract

When an unknown object with Lambertian re
ectance is viewed orthographically, there is

an implicit ambiguity in determining its 3-d structure: we show that the object's visible

surface f(x; y) is indistinguishable from a \generalized bas-relief" transformation of the

object, �f(x; y) = �f(x; y)+�x+�y: For each image of the object illuminated by an arbi-

trary number of distant light sources, there exists an identical image of the transformed

object illuminated by similarly transformed light sources. This result holds both for the

illuminated regions of the object as well as those in cast and attached shadows. Further-

more, neither small motion of the object, nor of the viewer will resolve the ambiguity

in determining the 
attening (or scaling) � of the object's surface. Implications of this

ambiguity on structure recovery and shape representation are discussed.
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Figure 1: Frontal and side views of a pair of marble bas-relief sculptures: Notice how the frontal views

appear to have full 3-dimensional depth, while the side views reveal the 
attening { the sculptures

rise only 5 centimeters from the background plane. While subtle shading is apparent on the faces,
the shadows on the women's pleats are the dominant perceptual cue in the body.

1 Introduction

Since antiquity, artisans have created 
attened forms, i.e., so-called \bas-reliefs," which when

viewed from a particular vantage point are di�cult, if not impossible, to distinguish from full

reliefs. See Figure 1. As the sun moves through the sky, the shading and shadows change, yet

the degree of 
attening cannot be discerned on well sculpted bas-reliefs. Even if an observer's

head moves by a small amount, this ambiguity cannot be resolved. This paper does not

simply present an explanation for the e�ectiveness of relief sculpture, but demonstrates that

the ambiguity is implicit in recovering the structure of any object.

Consider the set of images produced by viewing an object from a �xed viewpoint, but under

all possible combinations of distant light sources. An ambiguity in determining the object's

structure arises if there exist other objects that di�er in shape yet produce the same set of

images. We show that there exists a whole family of transformations, termed \generalized

bas-relief transformations," for which this is true.

A generalized bas-relief (GBR) transformation changes both the surface shape and albedo

pattern. In particular, if (x; y) denotes the coordinates of points in an image plane, and

z = f(x; y) denotes the distance from an object's surface to the image plane, a generalized

bas-relief transformation of the surface shape is given by �f(x; y) = �f(x; y) + �x + �y with

� > 0, and the corresponding generalized bas-relief transformation of the surface albedo is

given by Eq. 3. Relief sculptures are constructed using a subset of the transformation on shape

with 0 < � < 1 and � = � = 0 but without { to the best of our knowledge { the corresponding

transformation on albedo. Bas-reliefs (low reliefs) are usually de�ned as having � < 0:5.

Yet the subtleties of the bas-relief ambiguity may have eluded Renaissance artists. Leonardo

da Vinci, while comparing painting and sculpture, criticized the realism a�orded by reliefs [11]:

As far as light and shade are concerned low relief fails both as sculpture and as

painting, because the shadows correspond to the low nature of the relief, as for
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example in the shadows of foreshortened objects, which will not exhibit the depth

of those in painting or in sculpture in the round.

It is true that { when illuminated by the same light source { a relief surface (� < 1) and a

surface \in the round" (� = 1) will cast di�erent shadows. However, Leonardo's comment

appears to overlook the fact that for any classical bas-relief transformation of the surface,

there is a corresponding transformation of the light source direction such that the shadows

are the same. This is not restricted to classical reliefs but, as we will show, applies equally to

the greater set of generalized bas-relief transformations.

The fact that an object and every GBR transformation of the object produce the same

shadow regions arises from an implicit duality. For each image of a Lambertian [15, 8] surface f

viewed under orthographic projection (parallel lines of sight) and illuminated by a distant light

source s (e.g., the sun), there exists an identical image of a GBR surface �f with transformed

albedo produced by a transformed light source �s. This equality holds not only for the shadowed

regions of the surfaces, but for the shading in the illuminated regions as well. Furthermore,

due to superposition, the equality holds for an arbitrary { possibly in�nite { number of

light sources. It will be shown in the Appendix that for objects with convex shapes the

generalized bas-relief transformation is the only transformation with this property: no other

such ambiguity exists.

Thus, from a single viewpoint, there is an ambiguity in determining the 3-d Euclidean

geometry of a surface: one can { at best { determine the relief of the surface up to a three

parameter family of linear transformations. No information in either the shadowing or shading

of the surface can resolve this. Yet, if the viewer moves relative to the surface, or the surface

moves relative to the viewer, can this ambiguity be resolved?

As discussed by Helmholtz [27], image changes produced by an observer's motion reveal

both the depth and shape of viewed objects. For an object undergoing rigid motion and

viewed under perspective projection, the object's Euclidean structure can be determined from

as few as two images [17, 20, 28]. If the object is viewed orthographically in two images,

its structure can only be recovered up to a one parameter family of a�ne distortions. For

in�nitesimal motion under orthographic projection, there is a genuine bas-relief ambiguity:

the shape of the surface can only be recovered up to a scale factor in the direction of the

camera's optical axis, i.e., a classical bas-relief transformation for which � is unknown [13].

Beyond explaining the e�ectiveness of relief sculptures, the generalized bas-relief ambiguity

also has implications for our understanding of human surface perception and for the devel-

opment of computational vision algorithms. Our results support the recent psychophysical

�ndings of [14] that for a variety of surfaces this ambiguity exists and is often unresolved in the

human visual system. Likewise, the results suggest that the aim of structure recovery might

be a weaker non-Euclidean representation, such as an a�ne representation [13, 21, 22, 26], a

projective representation [5], or an ordinal representation [6]; for many applications, machine
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vision systems need not resolve this ambiguity.

A summary of these and other results follow:

� The set of cast and attached shadows produced by a surface and a GBR transformed

surface are identical, irrespective of the material type.

� If the material can modeled as having Lambertian re
ectance, then the set of possible

images including shadowing under any lighting condition (illumination cone [2]) for a

surface and its transformed surface are identical. Therefore, these objects cannot be

distinguished by any recognition algorithm.

� The generalized bas-relief transformation is the only transformation which has these �rst

two properties.

� Under orthographic projection, the set of motion �elds produced by a surface and its

classical bas-relief are identical. Therefore, an object and its relief cannot be distin-

guished from small unknown camera motion.

� For photometric stereo where the light source directions are unknown, the structure can

only be determined up to a generalized bas-relief transformation, and shadows do not

provide further information. Using prior information about the albedo and light source

strength, the structure can be determined up to a re
ection in depth. Cast shadows can

be used to distinguish these two cases.

Illustrating the GBR ambiguity, Fig. 2 shows four graphically rendered human heads: a

\normal" head and three distorted heads obtained through a GBR transformation of the

original. When the heads are observed frontally and under appropriately positioned light

sources, the resulting images are so similar that their di�erences provide few cues to the

true structure. Even when the head is rotated by a small amount, the ambiguity cannot be

resolved. Only through a large motion (e.g., the side views) is the bas-relief transformation

revealed.

2 Bas-Relief Ambiguity: Illumination

In this section we present details explaining the complicity of factors that give rise to the

generalized bas-relief ambiguity. In particular, we show that there is a duality between a

particular set of transformations of an object's shape and the light sources which illuminate

it. Here we consider distant illumination (parallel illuminating rays) of objects viewed under

orthographic projection (parallel lines of sight).

Consider a surface observed under orthographic projection and de�ne a coordinate system

attached to the image plane such that the x and y axes span the image plane. In this

coordinate system, the depth of every visible point in the scene can be expressed as
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Figure 2: Three-dimensional data for the human head (top row) was obtained using a laser scan

(Cyberwave) and rendered as a Lambertian surface with constant albedo (equal grey values for all

surface points). The subsequent three rows show images of heads whose shapes have been transformed

by di�erent generalized bas-relief transformations, but whose albedos have not been transformed.

The pro�le views of the face in the third column reveal the nature the individual transformations

and the direction of the light source. The top row image is the true shape; the second from top is a


attened shape (� = 0:5) (as are classical bas-reliefs); the third is an elongated shape (� = 1:5); and

the bottom is a 
attened shape plus an additive plane (� = 0:7, � = 0:5, and � = 0:0). The �rst
column shows frontal views of the faces in the third column. From this view the true 3-d structure

of the objects cannot be determined; in each image the shadowing patterns are identical, and even

though the albedo has not been transformed according to Eq. 3, the shading patterns are so close

as to provide few cues as to the true structure. The second column shows near frontal views of the

faces from the same row, after having been separately rotated to compensate for the degree of the


attening or elongation. The rotation about the vertical axis is 7� for the �rst row of the second

column; 14� for the second row; 4:6� for the third; and 14� for the fourth row. To mask the shearing

produced by the additive plane, the fourth row has also been rotated by 5� about the line of sight.
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Figure 3: The image points that lie in shadow for a surface under light source s are identical to

those in shadow for a transformed surface under light source �s = Gs. In this 2-d illustration, the

lower shadow is an attached shadow while the upper one is composed of both attached and cast

components. A generalized bas relief transformation with both 
attening and an additive plane has

been applied to the left illustration, yielding the right one. For diagrammatic clarity, the surface
normals are drawn outward.

z = f(x; y)

where f is a piecewise di�erentiable function. The graph of f(x; y), i.e., (x; y; f(x; y)), de�nes

a surface which will also be denoted by f . The direction of the inward pointing surface normal

n(x; y) can be expressed as

n(x; y) =

2
64
�fx

�fy

1

3
75 (1)

where fx and fy denote the partial derivatives of f with respect to x and y respectively.

Consider transforming the surface f to a new surface �f in the following manner. We �rst


atten (or scale) it along the z axis and then add a plane, i.e.,

�f(x; y) = �f(x; y) + �x+ �y
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where � 6= 0 [3]. We call this transformation the generalized bas-relief (GBR) transformation.

See Figures 2 and 3. When � = 0 and � = 0, we call this transformation the classical bas-relief

transformation, since for � < 1 the surface is 
attened like classical bas-relief sculptures.

Note that if p = (x; y; f(x; y)) and �p = (x; y; �f(x; y)), then �p = Gp where

G =

2
64
1 0 0

0 1 0

� � �

3
75 : (2)

Under the matrix product operation, the set GBR = fGg forms a subgroup of GL(3) with

G
�1 =

1

�

2
64
� 0 0

0 � 0

�� �� 1

3
75 :

Also, note that for image point (x; y), the relation between the direction of the surface normal

of �f and f is given by �n = G
�Tn where G�T

� (GT )�1 = (G�1)T . As will be seen in Section 4,

this is the only linear transformation of the surface's normal �eld which preserves integrability.

Let the vector s denote a point light source at in�nity, with the magnitude of s proportional

to the intensity of the light source. (For a more general model of illumination, e.g., one that

does not restrict light sources to be at in�nity, see [16].) We �rst show that shadowing on a

surface f for some light source s is identical to that on a GBR transformed surface �f with

an appropriate light source �s; we then show that if the surfaces are Lambertian, the set of all

possible images of both surfaces are identical.

We can identify two types of shadows: attached shadows and cast shadows [1, 23]. See

Figure 3. A surface point p = (x; y; f(x; y)) lies in an attached shadow for light source

direction s i� n(x; y)Ts < 0. This de�nition leads to the following lemma.

Lemma 2.1 A point p = (x; y; f(x; y)) lies in an attached shadow for light source direction

s i� �p = (x; y; �f(x; y)) lies in an attached shadow for light source direction �s = Gs.

Proof. If a point p on f lies in an attached shadow, then nT s < 0. On the transformed surface,

the point �p = (x; y; �f(x; y)) also projects to (x; y), and for this point �nT�s = (G�Tn)TGs = nT s.

Therefore, �p is also in an attached shadow. The converse clearly holds as well.

A necessary condition for a point p1 = (x1; y1; f(x1; y1)) on the surface to fall on the

cast shadow boundary for light source direction s is that there exists another point p2 =

(x2; y2; f(x2; y2)) on the surface such that the light ray in the direction s passing through p2

grazes the surface at p2 and intersects the surface at p1. The point p2 is the boundary of an

attached shadow.

Lemma 2.2 A point p = (x; y; f(x; y)) satis�es the necessary condition for lying on a cast

shadow boundary for light source direction s i� �p = (x; y; �f(x; y)) satis�es the condition for

light source direction �s = Gs.
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Proof. The condition for a point p1 to be on a shadow boundary cast by p2 is that(
nT

2
s = 0

p2 � p1 = 
s

for some 
 < 0. For the transformed surface, the �rst condition for a point to be on the

shadow boundary is

�nT

2
�s = (G�T

n2)
T
Gs = n

T

2
s = 0:

Under the GBR transformation �p = �Gp, and the second condition can be expressed for the

relief surface as

�p2 � �p1 � �
�s = G(p2 � p1)� �
Gs

= (p2 � p1)� �
s = 0:

This condition clearly holds when �
 = 
. The converse of this lemma can be similarly proven.

This lemma becomes both necessary and su�cient for a point to lie on a shadow boundary

when the ray from p1 passing through p2 does not intersect any other portion of the surface

for both f and �f . In general, this is true when � > 0.

Taking these two lemmas together, it follows that if some portion of the surface f is in a

cast or attached shadow for a light source direction s, then if the surface is subject to a GBR

transformation G, there exists a lighting direction �s = Gs such that the same portion of the

transformed surface is also shadowed. Let us specify these shadowed regions { both attached

and cast { through a binary function 	f;s(x; y) such that

	f;s(x; y) =

(
0 if (x; y) is shadowed

1 otherwise.

Using this notation and the above two lemmas, we can then write 	f;s(x; y) = 	 �f;�s(x; y).

We should stress that the shadowing 	f;s(x; y) from direct illumination by a light source is a

function of the object's geometry { it is una�ected by the re
ectance properties of the surface.1

For any surface, any light source direction, and any GBR transformation of that surface, there

exists a light source direction such that the shadowing will be identical. Furthermore, the GBR

transformation is the only transformation for which this is true. See the Appendix for a proof

of this for objects with convex shape.

We now show that if the surface re
ectance is Lambertian [8, 15], then the sets of images

produced by a surface (i.e., the surface's illumination cone [2]) and a transformed surface under

1It should be noted that the image location of a specularity is not preserved under GBR, and so shadows

arising due to indirect illumination of the surface from the virtual light source of a specularity will not be

preserved under GBR.
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all possible lighting conditions are identical. Letting the albedo of a Lambertian surface f be

denoted by a(x; y), the intensity image produced by a light source s can be expressed as

If;a;s(x; y) = 	f;s(x; y)b(x; y)
T
s

where b(x; y) is the product of the albedo a(x; y) of the surface and the inward pointing unit

surface normal n̂(x; y).

The set of images produced by f and �f are identical when �f has albedo �a(x; y) given by

�a =
a

�

q
(�n̂1 � �n̂3)2 + (�n̂2 � �n̂3)2 + n̂2

3 (3)

where n̂ = (n̂1; n̂2; n̂3)
T . The e�ect of applying Eq. 3 to a classical bas-relief transformation

0 < � < 1 is to darken points on the surface where n points away from the optical axis.

This transformation on the albedo is subtle and warrants discussion. For � close to unity,

the transformation on albedo is nearly impossible to detect. That is, if you transform the shape

of a surface by a GBR transformation, but leave the albedo unchanged, then the di�erences

in the images produced under varying illumination are too small to reveal the structure. In

Fig. 2, we left the albedo unchanged, �a(x; y) = a(x; y); and even though � ranges from 0.5

to 1.5, the di�erences in shape cannot not be discerned from the frontal images. However,

when the albedo is unchanged and the 
attening is more severe, e.g., tenfold (� = 0:1), the

shading patterns can reveal the 
atness of the surface. This e�ect is often seen on very low

relief sculptures (e.g., Donatello's rilievo schiacciato) which reproduce shadowing accurately,

but shading poorly.

For the set of images to be identical it is necessary that the albedo be transformed along

with the surface and � > 0. When � < 0, the surface �f is inverted (as in intaglio); for

a corresponding transformation of the light source �s, the illuminated regions of the original

surface f and the transformed surface �f will be the same. This is the well known \up/down"

(convex/concave) ambiguity. However, the shadows cast by �f and f may di�er quite dramat-

ically.

Lemma 2.3 For each light source s illuminating a Lambertian surface f(x; y) with albedo

a(x; y), there exists a light source �s illuminating a surface �f(x; y) (a GBR transformation of

f) with albedo �a(x; y) (as given in Eq. 3), such that If;a;s(x; y) = I �f;�a;�s(x; y).

Proof. The image of f is given by

If;a;s(x; y) = 	f;s(x; y)b
T (x; y)s

For any 3� 3 invertible matrix A, we have that

If;a;s(x; y) = 	f;s(x; y)b
T (x; y)A�1

As:
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Since GBR is a subgroup of GL(3) and 	f;s(x; y) = 	 �f;�s(x; y),

If;a;s(x; y) = 	f;s(x; y)b
T (x; y)G�1

Gs

= 	 �f;�s(x; y)
�bT (x; y)�s

= I �f;�a;�s(x; y)

where �b(x; y) = G
�Tb(x; y) and �s = Gs.

With the above three lemmas in hand, we can now state and prove the central proposition

of this section:

Proposition 2.1 The set of images under all possible lighting conditions produced by a Lam-

bertian surface f with albedo a(x; y) and those surfaces �f di�ering by any GBR transformation

with albedo �a(x; y) given by Eq. 3 are identical.

Proof. From Lemmas 2.1, 2.2, and 2.3, we have that the image of a surface f produced by a

single light source s is the same as the image of a GBR transformed surface �f produced by the

transformed light source �s = Gs, i.e., If;a;s(x; y) = I �f;�a;�s(x; y): When the object is illuminated

by a set of light sources fsig, then the image is determined by the superposition of those

images that would be formed under the individual light sources. Similarly, the same image

can be produced from the transformed surface if it is illuminated by the set of light sources

given by f�sig; where �si = Gsi.

Taken together, the above results demonstrate that when both the surface and light source

direction are transformed by G, both the shadowing and shading are identical in the images of

the original and transformed surface. An implication of this result is that given any number of

images taken from a �xed viewpoint, neither a computer vision algorithm nor biological process

can distinguish two objects that di�er by a GBR transformation. Knowledge (or assumptions)

about surface shape, surface albedo, light source direction, or light source intensity must be

employed to resolve this ambiguity. See again Fig. 2.

3 Bas-Relief Ambiguity: Motion

While neither the shading nor shadowing of an object, seen from a single viewpoint, reveals

the exact 3-d structure, motion does provide additional cues [27]. If the surface undergoes a

rigid motion and is viewed under perspective projection, the object's Euclidean structure can

be determined from as few as two images [17, 20, 28]. If the object is viewed orthographically,

the object's structure can only be determined up to a one parameter family of a�ne distortions

from two images [13]. To determine the Euclidean structure under orthographic projection,

at least three images, taken from separate viewpoints, are needed.

Yet, complications arise when the object's motion is small. For in�nitesimal motion under

perspective projection, the structure estimates are sensitive to noise, producing an implicit
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error in the estimate of the relief of the surface [19, 25]. For small (in�nitesimal) unknown

motion under orthographic projection, there is a genuine bas-relief ambiguity: the shape of

the surface can only be recovered up to a scale factor in the direction of the camera's optical

axis, i.e., a classical bas-relief transformation (� > 0; � = � = 0).

To see this, let us assume that the surface does, in fact, undergo an arbitrary in�nitesimal

motion. The velocity _p = ( _x; _y; _z) of a point p(x; y; z) on the surface f induces a velocity ( _x; _y)

in the image plane. The collection of velocities for all points in the image plane is often called

the motion �eld [8]. In the following proposition, we show that the set of motion �elds induced

by all 3-d in�nitesimal motions of a surface f is the same, under orthographic projection, as

the set of all motion �elds of a surface di�ering by a classical bas-relief transformation (not a

generalized bas-relief transformation).

Proposition 3.1 The set of motion �elds induced by all 3-D in�nitesimal motions of a surface

f is the same, under orthographic projection, as the set of all motion �elds of a surface di�ering

by a bas-relief transformation �f(x; y) = �f(x; y) where � 6= 0.

Proof. Let 
 = (
x;
y;
z) and v = (vx;vy;vz) respectively denote the angular and linear

velocity of the surface f with respect to the observer. The 3-d velocity of a point p on f is

_p = 
 � p + v. For the transformed surface, �p = Gp with � = � = 0, and the velocity of

the point is given by _�p = �
 � (Gp) + �v. It is easy to show that the motion �elds for both

surfaces will be identical (i.e., _x = _�x and _y = _�y) when �vx = vx, �vy = vy, �
z = 
z, �
x = 
x=�

and �
y = 
y=�. That is, the component of the angular velocity parallel to the image plane

is scaled inversely with respect to the relief. Thus, for every motion f there is a motion of �f

that will yield the same motion �eld and so the set of motion �elds is identical.

This proof follows the results in [13, 21]. An implication of Proposition 3.1 is that under

orthographic projection, a small motion of either the object or the observer cannot resolve

the bas-relief ambiguity. Furthermore, since the motion �eld is linear in f(x; y), the classical

bas-relief transformation is the only transformation of f that will be preserve the set of motion

�elds.

Revisit the second column in Figure 2. The image produced by the \normal" relief after

a rotation of 7� from frontal is nearly identical to the images produced by a rotation of 14�

for the 
attened head and 4:6� for the elongated head. No rotation, however, will completely

disguise the distortions produced by the bottom image in the second row where � 6= 0; here

we rotated the head by 10� around the vertical axis and then by 5� about the line of sight.

4 Integrability, Reconstruction, and the Bas-Relief Ambiguity

In this section, we investigate the role of the generalized bas-relief ambiguity on surface recon-

struction using photometric stereo. Let us assume that a Lambertian surface is illuminated by
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a point light source at in�nity. When there is no shadowing (i.e., 	f;s(x; y) = 1), the intensity

image produced by a light source s can be expressed as

If;a;s(x; y) = b(x; y)Ts (4)

where b(x; y) is the product of the albedo a(x; y) of the surface and the inward pointing unit

surface normal n̂(x; y). From multiple images of the object seen from a �xed viewpoint but

with di�erent light source direction, we can solve Eq. 4 for b when the light source strengths

and directions are known. This, of course, is the standard photometric stereo technique, see

[8, 24, 29].

However, if the light source strengths and directions are not known, then we can only deter-

mine the vector �eld b(x; y) of surface normals and albedos up to a 3�3 linear transformation.

For any invertible 3� 3 linear transformation A 2 GL(3) [7, 3, 21]

b
T
s = (Ab)TA�T

s: (5)

If b(x; y) is the true vector �eld of surface normals then the recovered vector �eld b�(x; y) is

any vector �eld in the orbit of b(x; y) under the group GL(3). For a pixelated image with no

surface point in shadow, b� can be estimated from a collection of images using singular value

decomposition; when some of the surface points are shadowed, Jacobs' method can be used to

estimate b� [10]. Note, however, that not all vector �elds b�(x; y) correspond to continuous

(or even piecewise continuous) surfaces. We will use this observation to restrict the group of

allowable transformations on b(x; y) [3].

If b is transformed by an arbitrary A 2 GL(3) (i.e., any vector �eld b�(x; y) in the orbit

of b under GL(3)), then in general, there will be no surface f
�(x; y) with unit normal �eld

n̂�(x; y) and albedo a�(x; y) that could have produced the vector �eld b
�(x; y). For f �(x; y) to

be a surface, it must satisfy the following integrability constraint [9]:

f
�
xy

= f
�
yx

which, in turn, means b�(x; y) must satisfy

 
b
�
1

b�3

!
y

=

 
b
�
2

b�3

!
x

(6)

where b� = (b�
1
; b

�
2
; b

�
3
)T and the subscripts x and y denote partial derivatives.

Proposition 4.1 If b(x; y) corresponds to a surface f(x; y) with albedo a(x; y), then the set

of linear transformation b�(x; y) = Ab(x; y) which satisfy the integrability constraint in Eq. 6

are A = G
�T

where the generalized bas-relief transformations G is given in Eq. 2.
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Proof. The integrability constraint given in Eq. 6 can be written as (b�
1y
� b

�
2x
)b�

3
+ b

�
3x
b
�
2
�

b
�
3y
b
�
1
= 0. Letting Aij be the i; j-th element of A, and recalling that b� = Ab, the left hand side

is a function of bi(x; y); bix(x; y) and biy(x; y) for i = 1; 2; 3. Since these functions are generally

independent, the coe�cients of these function must all vanish for the integrability constraint

to hold for all (x; y). This leads to the following algebraic constraints on the elements of A.

8>>>>>><
>>>>>>:

A22A31 � A21A32 = 0

A21A33 � A23A31 = 0

A12A33 � A13A32 = 0

A12A31 � A11A32 = 0

A22A33 � A11A33 + A13A31 � A32A23 = 0

Since this system is homogeneous, for any A satisfying this system, �A also satis�es the

system; varying � corresponds to changing the light source intensity while making a corre-

sponding global scaling of the albedo function. It can be shown that if A33 = 0, the matrix

A satisfying the constraints is singular. So we can let A33 = 1, and solve for the remaining

coe�cients. The only nonsingular solution is A11 = A22 and A12 = A21 = A31 = A32 = 0.

That is, A must be a generalized bas-relief transformation.

The choice of b�(x; y) is, of course, not unique since b�(x; y) = Gb satis�es the integrability

constraint for any G 2 GBR. Yet, every b� has a corresponding surface f � with a correspond-

ing albedo a(x; y), and these surfaces di�er by a GBR ambiguity. Thus, if we have at least

three images { each acquired under di�erent light source directions { of a Lambertian surface

f(x; y), then by imposing the integrability constraint in Eq. 6, we can recover the surface

f(x; y) up to a GBR transformation �f(x; y) = �f(x; y)+�x+ �y: See [30] for a method to es-

timate an integrable b� from image data. Note that no information given in the image shadows

can resolve this ambiguity, as Section 2 showed that the set of all possible images of a surface

f(x; y) is invariant under the GBR transformation. It should be noted that Fan and Wol�

showed that the Hessian of f(x; y) can be determined from three images up to scale factor

using the integrability constraint to enforce equality of the o�-diagonal elements, fxy = fyx [4].

The unknown scale of the Hessian corresponds to the parameter � and the unknown initial

conditions of Fan and Wol�'s di�erential equation correspond to the parameters � and �.

If, however, we have additional information about the albedo or the strength of the light

sources we can further restrict the ambiguity.

Corollary 4.1 If the albedo a(x; y) is constant (or known), or the light sources si all have

the same intensity, then the GBR ambiguity G is restricted to the binary subgroup given by

� = �1; � = 0; and � = 0.

Proof. If a(x; y) = jb(x; y)j is constant (or known), then for jb(x; y)j = jb�(x; y)j =

jAb(x; y)j, A must preserve length for any b. The only matrices that preserve length are

the orthonormal matrices. The only orthonormal matrices that are also GBR transformations
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correspond to � = �1; � = 0; and � = 0. A similar argument holds when the light source

intensities are known.

Thus, we can determine the true surface up to a sign, i.e., �f(x; y) = �f(x; y). This is

the classical in-out ambiguity that occurs in shape from shading [8, 18]. Note however, that

the shadowing con�gurations change when � changes sign, and if shadowing is present, this

ambiguity can be resolved.

5 Conclusion

We have shown that under any lighting condition, the shading and shadowing on an object

with Lambertian re
ectance are identical to the shading and shadowing on any generalized

bas-relief transformation of the object. The GBR transformation is unique in that it is the only

transformation of the surface having this property. Thus, from a single viewpoint, there is an

ambiguity in the recovery of the surface: we can only determine the relief of the surface up to

a three parameter family of linear transformations. No information in either the shadowing or

shading can resolve this. Furthermore, not even the motion �elds produced by small motions

of the viewer (or object) can resolve the surface relief.

Leonardo da Vinci's statement in the introduction that shadows of relief sculpture are

\foreshortened" is, strictly speaking, incorrect. However, reliefs are often constructed in a

manner such that the cast shadows will di�er from those produced by sculpture in the round.

Reliefs have been used to depict narratives involving numerous �gures located a di�erent

depths within the scene. Since the slab is usually not thick enough for the artist to sculpt

the �gures to the proper relative depths, sculptors like Donatello and Ghiberti employed

rules of perspective to determine the size and location of �gures, sculpting each �gure to the

proper relief [12]. Barring the e�ects of constant albedo, the shading and shadowing for each

�gure is self consistent; however, the shadows cast from one �gure onto another are incorrect.

Furthermore, the shadows cast onto the background slab, whose orientation usually does not

correspond to that of a wall or 
oor in the scene, are also inconsistent. Thus, Leonardo's

statement is an accurate characterization of complex reliefs such as Ghiberti's East Doors on

the Baptistery in Florence, but does not apply to �gures sculpted singly such as the ones

shown in Figure 1.

Putting the subtleties of relief sculpture aside, we should point out that while shadowing is

preserved exactly under GBR transformations of an object, there are certain shading e�ects

which are not. Specularities arising from non-Lambertian (glossy) surfaces and the e�ect

of inter-re
ection of light from one part of a surface onto another depend on the surface

relief. Nevertheless, these e�ects may be secondary in that they may not allow a human

observer to resolve the GBR ambiguity { even when viewing a known object. Recently,

Koenderink, Van Doorn and Christon performed a series of psychophysical experiments in
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which subjects observe images of sculptures (one abstract and one torso) and provide estimates

of the orientation of the surface normals at about 300 points [14]. Since the estimated vector

�eld of normals satis�es an integrability constraint for all subjects, this experiment provides

evidence that humans maintain a surface representation of an observed scene. Furthermore,

while the subjects correctly estimate the overall shape of the surface, they consistently miss-

estimate its relief and slant.

The nature of GBR ambiguity and its apparent presence in the human visual system suggest

that machine vision systems will also be similarly impaired. One objective of computer vision is

the recovery of models of surfaces from multiple images. In photometric stereo, the Euclidean

structure is estimated from multiple images of a scene taken from a �xed viewpoint, but under

di�erent lighting conditions for which the illuminant directions are known [8]. While it had

been thought that photometric stereo with unknown light source directions could be solved

by �rst estimating the light source directions and then estimating the surface structure, this

paper has shown that these estimates are coupled through a GBR transformation. The only

way to resolve these ambiguities is to use additional information beside that contained in the

image data [7].

Recently, it has been proposed that structure recovery methods should be strati�ed ac-

cording to the available information about the image formation process [5, 13, 21]. So for

example, the Euclidean structure of a scene observed under perspective can be recovered from

two images when the camera's intrinsic parameters (e.g., focal length, principal point) are

known. When they are unknown, the structure can only be recovered up to a projective

transformation. Here, we introduce a new layer of the strati�cation between a�ne and Eu-

clidean structure. These non-Euclidean representations (a�ne [13, 21, 22, 26], projective [5] or

ordinal [6]), can still be used to solve numerous vision-based tasks such as object recognition,

vehicle navigation, robotic manipulation and synthetic image generation without resolution

of these ambiguities.

Appendix: Uniqueness of the Generalized Bas-Relief Transforma-

tion

Here we prove that the generalized bas-relief transformation is unique in that there is no

other transformation of the object's surface which preserves the set of images produced by

illuminating the object with all possible point sources at in�nity. We consider only the simplest

case { an object with convex shape casting no shadows on its own surface { and show that

the set of attached shadow boundaries and, thus, the set of images are preserved only under

a GBR transformation of the object's surface.

Recall that an attached shadow boundary is de�ned as the contour of points (x; y; f(x; y))

satisfying nT s = 0, for some s. Here the magnitude and the sign of the light source are
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unimportant as neither e�ects the location of the attached shadow boundary. Thus, let the

vector s = (s1; s2; s3)
T denote a point light source at in�nity, but let us equate all light

sources producing the same attached shadow boundary, i.e., (s1; s2; s3)
T = (ks1; ks2; ks3)

T

8k 2 IR; k 6= 0. With this, the space of light source directions S is equivalent to the real

projective plane (IRIP2), with the line at in�nity given by coordinates of the form (s1; s2; 0).

Let the triple n = (n1; n2; n3)
T denote a surface normal. Again, the magnitude and

sign of the surface normal are unimportant, so we equate (n1; n2; n3)
T = (kn1; kn2; kn3)

T

8k 2 IR; k 6= 0. Thus, the space of surface normals N is, likewise, equivalent to IRIP2. Note

that under the equation nT s = 0, the surface normals are the dual of the light sources. Each

point in the IRIP2 of light sources has a corresponding line in the IRIP2 of surface normals,

and vice versa.

Let us now consider the image contours de�ned by the points (x; y) satisfying nT s = 0, for

some s. These image contours are the attached shadow boundaries orthographically projected

onto the image plane. For lack of a better name, we will refer to them as the imaged attached

shadow boundaries.

The set of imaged attached shadow boundaries for a convex object forms an abstract pro-

jective plane IP2, where a \point" in the abstract projective plane is a single attached shadow

boundary, and a \line" in the abstract projective plane is the collection of imaged attached

shadow boundaries passing through a common point in the image plane. To see this, note the

obvious projective isopmorphism between the real projective plane of light source directions

S and the abstract projective plane of imaged attached shadow boundaries IP2. Under this is

isomorphism, we have a bijection mapping points to points and lines to lines.

Now let us say that we are given two objects whose visible surfaces are described by re-

spective functions f(x; y) and ~f(x; y). If the objects have the same set of imaged attached

shadow boundaries as seen in the image plane (i.e., if the set of image contours produced by

orthographically projecting the attached shadow boundaries is the same for both objects),

then the question arises: How are the two surfaces f(x; y) and ~f(x; y) related?

Proposition 5.1 If two surfaces f(x; y) and ~f(x; y) produce the same set of attached shadow

boundaries as seen in the image plane, then the surfaces are related by a generalized bas-relief

transformation.

Proof. As illustrated in Figure 4, we can construct a projective isomorphism between the

set of imaged attached shadow boundaries IP2 and the real projective plane of light source

directions S illuminating surface f(x; y). The isomorphism is chosen to map the collection

of imaged attached shadow boundaries passing through a common point (x; y) in the image

plane (i.e., a line in IP2) to the surface normal n(x; y). In the same manner, we can construct

a projective isomorphism between IP2 and the real projective plane of light source directions
~S illuminating the surface ~f(x; y): The isomorphism is, likewise, chosen to map the same
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Figure 4: The relationship of di�erent spaces in proof of Proposition 5.1.

collection of imaged attached shadow boundaries passing through (x; y) in the image plane

to the surface normal ~n(x; y). Under these two mappings, we have a projective isomorphism

between S and ~S which in turn is a projective transformation (collineation). Because N and
~N are the duals of S and ~S respectively, the surface normals of f(x; y) are also related to the

surface normals of ~f(x; y) by a projective transformation, i.e., ~n(x; y) = Pn(x; y) where P is

a 3� 3 matrix in the general projective group GP(3).

The transformation P is further restricted in that the surface normals along the occluding

contour of f and ~f are equivalent, i.e., the transformation P pointwise �xes the line at in�nity

of surface normals. Thus, P is of the form given by the generalized bas-relief transformation in

Eq. 2, and the surfaces, in turn, must be related by a generalized bas-relief transformation.

Acknowledgments

Many thanks to David Mumford for leading us to the proof of Proposition 5.1 and to Niko

Troje from Max-Planck-Institute, Tuebingen for the data used in Fig. 2.

References

[1] M. Baxandall. Shadows and Enlightenment. Yale University Press, New Haven, 1995.

[2] P. N. Belhumeur and D. J. Kriegman. What is the set of images of an object under all

possible lighting conditions. In Proc. IEEE Conf. on Comp. Vision and Patt. Recog.,

pages 270{277, 1996.

17



[3] R. Epstein, A. Yuille, and P. N. Belhumeur. Learning and recognizing objects using

illumination subspaces. In Proc. of the Int. Workshop on Object Representation for

Computer Vision, 1996.

[4] J. Fan and L. Wol�. Surface curvature and shape reconstruction from unknown multiple

illumination and integrability. Computer Vision and Image Understanding, 65(2):347{

359, February 1997.

[5] O. Faugeras. Strati�cation of 3-D vision: Projective, a�ne, and metric representations.

J. Opt. Soc. Am. A, 12(7):465{484, 1995.

[6] C. Fermuller and Y. Aloimonos. Ordinal representations of visual space. In Proc. Image

Understanding Workshop, pages 897{904, 1996.

[7] H. Hayakawa. Photometric stereo under a light-source with arbitrary motion. JOSA-A,

11(11):3079{3089, Nov. 1994.

[8] B. Horn. Computer Vision. MIT Press, Cambridge, Mass., 1986.

[9] B. Horn and M. Brooks. The variational approach to shape from shading. In Computer

Vision, Graphics and Image Processing, volume 33, pages 174{208, 1986.

[10] D. Jacobs. Linear �tting with missing data: Applications to structure from motion and

characterizing intensity images. In Proc. IEEE Conf. on Comp. Vision and Patt. Recog.,

1997.

[11] M. Kemp, editor. Leonardo On Painting. Yale University Press, New Haven, 1989.

[12] M. Kemp. The Science of Art: Optical Themes in Western Art from Brunelleschi to

Seurat. Yale University Press, New Haven, 1990.

[13] J. Koenderink and A. Van Doorn. A�ne structure from motion. JOSA-A, 8(2):377{385,

1991.

[14] J. J. Koenderink, A. J. Van Doorn, and C. Christon. Shape constancy in pictorial relief.

In J. Ponce, A. Zisserman, and M. Hebert, editors, Object Representation in Computer

Vision II, pages 151{164. Springer, 1996.

[15] J. Lambert. Photometria Sive de Mensura et Gradibus Luminus, Colorum et Umbrae.

Eberhard Klett, 1760.

[16] M. Langer and S. Zucker. What is a light soruce? In Proc. IEEE Conf. on Comp. Vision

and Patt. Recog., pages 172{178, 1997.

18



[17] H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projec-

tions. Nature, 293:133{135, 1981.

[18] J. Oliensis. Uniqueness in shape from shading. Int. J. Computer Vision, 6(2):75{104,

June 1991.

[19] J. Oliensis. Structure from linear or planar motions. In Proc. IEEE Conf. on Comp.

Vision and Patt. Recog., pages 335{342, June 1996.

[20] J. Roach and K. Aggarwal, J. Computer tracking of objects from a sequence of images.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 1(2):127{135, 1979.

[21] R. Rosenholtz and J. Koenderink. A�ne structure and photometry. In Proc. IEEE Conf.

on Comp. Vision and Patt. Recog., pages 790{795, 1996.

[22] L. Shapiro, A. Zisserman, and M. Brady. 3D motion recovery via a�ne epipolar geometry.

Int. J. Computer Vision, 16(2):147{182, October 1995.

[23] A. Shashua. Geometry and Photometry in 3D Visual Recognition. PhD thesis, MIT,

1992.

[24] W. Silver. Determining Shape and Re
ectance Using Multiple Images. PhD thesis, MIT,

Cambridge, MA, 1980.

[25] R. Szeliski and S. Kang. Shape ambiguities in structure from motion. In European Conf.

on Computer Vision, pages I:709{721, 1996.

[26] S. Ullman and R. Basri. Recognition by a linear combination of models. IEEE Trans.

Pattern Anal. Mach. Intelligence, 13:992{1006, 1991.

[27] H. von Helmholtz. Handbuch der Physiologischen Optik. Verlag von Leopoled Voss,

Hamburg, Germany, 1910.

[28] A. Waxman and S. Ullman. Surface structure and three-dimensional motion from image


ow kinematics. Int. J. Robotics Research, 4:72{92, 1985.

[29] R. Woodham. Analysing images of curved surfaces. Arti�cial Intelligence, 17:117{140,

1981.

[30] A. Yuille and D. Snow. Shape and albedo from multiple images using integrability. In

Proc. IEEE Conf. on Comp. Vision and Patt. Recog., pages 158{164, 1997.

19


