CONTENTS

1 COLOUR 1

1.1 The Physics of Colour 1
 1.1.1 Radiometry for Coloured Lights: Spectral Quantities 1
 1.1.2 The Colour of Surfaces 2
 1.1.3 The Colour of Sources 3

1.2 Human Colour Perception 6
 1.2.1 Colour Matching 6
 1.2.2 Colour Receptors 9

1.3 Representing Colour 11
 1.3.1 Linear Colour Spaces 11
 1.3.2 Non-linear Colour Spaces 16
 1.3.3 Spatial and Temporal Effects 21

1.4 Application: Finding Specularities 21

1.5 Surface Colour from Image Colour 25
 1.5.1 Surface Colour Perception in People 25
 1.5.2 Inferring Lightness 28
 1.5.3 A Model for Image Colour 32
 1.5.4 Surface Colour from Finite Dimensional Linear Models 35

1.6 Digression: Device-Independent Colour Imaging 37

1.7 Notes 40
 1.7.1 Trichromacy and Colour Spaces 40
 1.7.2 Lightness and Colour Constancy 41
 1.7.3 Colour in Recognition 42

1.8 Assignments 42
COLOUR

Colour is a rich and complex experience, usually caused by the vision system responding differently to different wavelengths of light (other causes include pressure on the eyeball and dreams). While the colour of objects seems to be a useful cue in identifying them, it is currently difficult to use.

We will first describe the physical causes of colour; we then study human colour perception, which will yield methods for describing colours; finally, we discuss how to extract information about the colour of the surfaces we are looking at from the colour of image pixels, which are affected by both surface colour and illuminant colour.

1.1 The Physics of Colour

We will extend our radiometric vocabulary to describe energy arriving in different quantities at different wavelengths and then describe typical properties of coloured surfaces and coloured light sources.

1.1.1 Radiometry for Coloured Lights: Spectral Quantities

All of the physical units we have described can be extended with the phrase “per unit wavelength” to yield spectral units. These allow us to describe differences in energy, in BRDF or in albedo with wavelength. We will ignore interactions where energy changes wavelength; thus, the definitions of Chapter ?? can be extended by adding the phrase “per unit wavelength,” to obtain what are known as spectral quantities.

Spectral radiance is usually written as \(L^\lambda(x, \theta, \phi) \), and the radiance emitted in the range of wavelengths \([\lambda, \lambda + d\lambda] \) is \(L^\lambda(x, \theta, \phi) d\lambda \). Spectral radiance has units Watts per cubic meter per steradian \((W m^{-3} sr^{-1}) \) — cubic meters because of the additional factor of the wavelength. For problems where the angular distribution of the source is unimportant, spectral exitance is the appropriate property; spectral exitance has units \(W m^{-3} \).

Similarly, the spectral BRDF is obtained by considering the ratio of the spectral radiance in the outgoing direction to the spectral irradiance in the incident
direction. Because the BRDF is defined by a ratio, the spectral BRDF will again have units \(sr^{-1}\).

1.1.2 The Colour of Surfaces

The colour of coloured surfaces is a result of a large variety of mechanisms, including differential absorption at different wavelengths, refraction, diffraction and bulk scattering (for more details, see, for example []). Usually these effects are bundled into a macroscopic BRDF model, which is typically a Lambertian plus specular approximation; the terms are now spectral reflectance (sometimes abbreviated to reflectance) or (less commonly) spectral albedo. Figures 1.1 and 1.2 show examples of spectral reflectances for a number of different natural objects.

![Figure 1.1](http://www.it.lut.fi/research/color/lutcs_database.html)

The colour of the light returned to the eye is affected both by the spectral radiance (colour!) of the illuminant and by the spectral reflectance (colour!) of the surface. If we use the Lambertian plus specular model, we have:

\[
E(\lambda) = \rho_{dh}(\lambda)S(\lambda) \times \text{geometric terms} + \text{specular terms}
\]

where \(E(\lambda)\) is the spectral radiosity of the surface, \(\rho_{dh}(\lambda)\) is the spectral reflectance and \(S(\lambda)\) is the spectral irradiance. The specular terms have different colours depending on the surface — i.e. we now need a spectral specular albedo.

Colour and Specular Reflection

Generally, metal surfaces have a specular component that is wavelength dependent — a shiny copper penny has a yellowish glint. Surfaces that do not conduct — dielectric surfaces — have a specular component that is independent of wavelength.
Section 1.1. The Physics of Colour

Figure 1.2. Spectral albedoes for a variety of natural surfaces, measured by Esa Koivisto, Department of Physics, University of Kuopio, Finland. On the left, albedoes for a series of different red flowers. Each is given its Finnish name. On the right, albedoes for green leaves; again, each is given its Finnish name. You should notice that these albedoes don’t vary all that much. This is because there are relatively few mechanisms that give rise to colour in plants. These figures were plotted from data available at http://www.it.lut.fi/research/color/lutcs_database.html.

— for example, the specularities on a shiny plastic object are the colour of the light. Section 1.4 describes how these properties can be used to find specularities, and to find image regions corresponding to metal or plastic objects.

1.1.3 The Colour of Sources

Building a light source usually involve heating something until it glows. There is an idealisation of this process, which we study first. We then describe the spectral power distribution of sunlight, and discuss a number of artificial light sources.

Black Body Radiators

A body that reflects no light — usually called a black body — is the most efficient radiator of illumination. A heated black body emits electromagnetic radiation. It is a remarkable fact that the spectral power distribution of this radiation depends only on the temperature of the body. It is possible to build quite good black bodies (one obtains a hollow piece of metal and looks into the cavity through a tiny hole — very little of the light getting into the hole will return to the eye), so that the spectral power distribution can be measured. In particular, if we write T for the temperature of the body in Kelvins, h for Planck’s constant, k for Boltzmann’s constant, c for the speed of light and λ for the wavelength, we have that

$$E(\lambda) \propto \frac{1}{\lambda^5} \left(\exp\left(\frac{hc}{k\lambda} \right) - 1 \right)$$
This means that there is one parameter family of light colours corresponding to black body radiators — the parameter being the temperature — and so we can talk about the **colour temperature** of a light source. This is the temperature of the black body that looks most similar.

The Sun and the Sky

The most important natural light source is the sun. The sun is usually modelled as a distant, bright point. The colour of sunlight varies with time of day (figure 1.3) and time of year. These effects have been widely studied. Figure ?? shows one standard model of sunlight that is widely used.

![Image of sunlight measurements](http://www.it.lut.fi/research/color/lutcs_database.html)

Figure 1.3. There are significant variations in the relative spectral power of sunlight measured at different times of day and under different conditions. The figure shows a series of seven different sunlight measurements, made by Jussi Parkkinen and Pertti Silfsten, of daylight illuminating a sample of barium sulphate (which gives a very high reflectance white surface). Plot from data obtainable at http://www.it.lut.fi/research/color/lutcs_database.html.

The sky is another important natural light source. A crude geometrical model is as a hemisphere with constant exitance. The assumption that exitance is constant is poor, however, because the sky is substantially brighter at the horizon than at the zenith. The sky is bright because light from the sun is scattered by the air.
The natural model is to consider air as emitting a constant amount of light per unit volume; this means that the sky is brighter on the horizon than at the zenith, because a viewing ray along the horizon passes through more sky.

For clear air, the intensity of radiation scattered by a unit volume depends on the fourth power of the frequency; this means that light of a long wavelength can travel very much further before being scattered than light of a short wavelength (this is known as Rayleigh scattering). This means that, when the sun is high in the sky, blue light is scattered out of the ray from the sun to the earth — meaning that the sun looks yellow — and can scatter from the sky into the eye — meaning that the sky looks blue. There are standard models of the spectral radiance of the sky at different times of day and latitude, too. Surprising effects occur when there are fine particles of dust in the sky (the larger particles cause very much more complex scattering effects, usually modelled rather roughly by the Mie scattering model) — one author remembers vivid sunsets in Johannesburg caused by dust in the air from mine dumps, and there are records of blue and even green moons caused by volcanic dust in the air.

Artificial Illumination

Typical artificial light sources are commonly of a small number of types.

- **An incandescent light** contains a metal filament which is heated to a high temperature. The spectrum roughly follows the black-body law, meaning that incandescent lights in most practical cases have a reddish tinge (Figure 1.10 shows the locus of colours available from the black-body law at different temperatures).

- **Fluorescent lights** work by generating high speed electrons that strike gas within the bulb; this in turn releases ultraviolet radiation, which causes phosphors coating the inside of the bulb to fluoresce. Typically the coating consists of three or four phosphors, which fluoresce in quite narrow ranges of wavelengths. Most fluorescent bulbs generate light with a bluish tinge, but bulbs that mimic natural daylight are increasingly available (figure 1.4).

- In some bulbs, an arc is struck in an atmosphere consisting of gaseous metals and inert gases. Light is produced by electrons in metal atoms dropping from an excited state, to a lower energy state. Typical of such lamps is strong radiation at a small number of wavelengths, which correspond to particular state transitions. The most common cases are **sodium arc lamps**, and **mercury arc lamps**. Sodium arc lamps produce a yellow-orange light extremely efficiently, and are quite commonly used for freeway lighting. Mercury arc lamps produce a blue-white light, and are often used for security lighting.

Figure 1.4 shows a sample of spectra from different light bulbs.
Figure 1.4. There is a variety of illuminant models; the graph shows the relative spectral power distribution of two standard CIE models, illuminant A — which models the light from a 100W Tungsten filament light bulb, with colour temperature 2800K — and illuminant D-65 — which models daylight. Figure plotted from data available at http://www-cvrl.ucsd.edu/index.htm. The relative spectral power distribution of four different lamps from the Mitsubishi Electric corp, measured by ****, data from *****. Note the bright, narrow bands that come from the flourescing phosphors in the fluorescent lamp.

1.2 Human Colour Perception

To be able to describe colours, we need to know how people respond to them. Human perception of colour is a complex function of context; illumination, memory, object identity and emotion can all play a part. The simplest question is to understand which spectral radiances produce the same response from people under simple viewing conditions (section 1.2.1). This yields a simple, linear theory of colour matching which is accurate and extremely useful for describing colours. We sketch the mechanisms underlying the transduction of colour in section 1.2.2.

1.2.1 Colour Matching

The simplest case of colour perception is obtained when only two colours are in view, on a black background. In a typical experiment a subject sees a coloured light — the test light — in one half of a split field. The subject can then adjust a mixture of lights in the other half to get it to match. The adjustments involve changing the intensity of some fixed number of primaries in the mixture. In this form, a large number of lights may be required to obtain a match, but many different adjustments may yield a match.

Write T for the test light, an equals sign for a match, the weights w_i and the primaries P_i (and so are non-negative). A match can then written in an algebraic
Section 1.2. Human Colour Perception

Figure 1.5. Human perception of colour can be studied by asking observers to mix coloured lights to match a test light, shown in a split field. The drawing shows the outline of such an experiment. The observer sees a test light \(T \), and can adjust the amount of each of three primaries in a mixture that is displayed next to the test light. The observer is asked to adjust the amounts so that the mixture looks the same as the test light. The mixture of primaries can be written as \(w_1 P_1 + w_2 P_2 + w_3 P_3 \); if the mixture matches the test light, then we write \(T = w_1 P_1 + w_2 P_2 + w_3 P_3 \). It is a remarkable fact that for most people three primaries are sufficient to achieve a match for many colours, and for all colours if we allow subtractive matching (i.e. some amount of some of the primaries is mixed with the test light to achieve a match). Some people will require fewer primaries. Furthermore, most people will choose the same mixture weights to match a given test light.

form as:

\[T = w_1 P_1 + w_2 P_2 + \ldots \]

meaning that test light \(T \) matches the particular mixture of primaries given by \((w_1, w_2, w_3)\). The situation is simplified if **subtractive matching** is allowed: in subtractive matching, the viewer can add some amount of some primaries to the test light instead of to the match. This can be written in algebraic form by allowing the weights in the expression above to be negative.

Trichromacy

It is a matter of experimental fact that for most observers only three primaries are required to match a test light. There are some caveats. Firstly, subtractive matching must be allowed, and secondly, the primaries must be independent — meaning that no mixture of two of the primaries may match a third. This phenomenon is known as the the principle of **trichromacy**. It is often explained by assuming that there are three distinct types of colour transducer in the eye; recently, evidence has emerged from genetic studies to support this view [7].

It is a remarkable fact that, given the same primaries and the same test light, most observers will select the same mixture of primaries to match that test light. This phenomenon is usually explained by assuming that the three distinct types of colour transducer are common to most people. Again, there is now some direct evidence from genetic studies to support this view [7].
Grassman’s Laws

It is a matter of experimental fact that matching is (to a very accurate approximation) linear. This yields Grassman’s laws.

Firstly, if we mix two test lights, then mixing the matches will match the result, that is, if

\[T_a = w_{a1}P_1 + w_{a2}P_2 + w_{a3}P_3 \]

and

\[T_b = w_{b1}P_1 + w_{b2}P_2 + w_{b3}P_3 \]

then

\[T_a + T_b = (w_{a1} + w_{b1})P_1 + (w_{a2} + w_{b2})P_2 + (w_{a3} + w_{b3})P_3 \]

Secondly, if two test lights can be matched with the same set of weights, then they will match each other, that is, if

\[T_a = w_1P_1 + w_2P_2 + w_3P_3 \]

and

\[T_b = w_1P_1 + w_2P_2 + w_3P_3 \]

then

\[T_a = T_b \]

Finally, matching is linear: if

\[T_a = w_1P_1 + w_2P_2 + w_3P_3 \]

then

\[kT_a = (kw_1)P_1 + (kw_2)P_2 + (kw_3)P_3 \]

for non-negative \(k \).

Exceptions

Given the same test light and the same set of primaries, most people will use the same set of weights to match the test light. This, trichromacy and Grassman’s laws are about as true as any law covering biological systems can be. The exceptions include:

- people with aberrant colour systems as a result of genetic ill-fortune (who may be able to match everything with fewer primaries);
- people with aberrant colour systems as a result of neural ill-fortune (who may display all sorts of effects, including a complete absence of the sensation of colour);
- some elderly people (whose choice of weights will differ from the norm, because of the development of macular pigment in the eye);
• very bright lights (whose hue and saturation look different from less bright versions of the same light);

• and very dark conditions (where the mechanism of colour transduction is somewhat different than in brighter conditions).

1.2.2 Colour Receptors

Trichromacy suggests that there are profound constraints on the way colour is transduced in the eye. One hypothesis that satisfactorily explains this phenomenon is to assume that there are three distinct types of receptor in the eye that mediate colour perception. Each of these receptors turns incident light into neural signals. It is possible to reason about the sensitivity of these receptors from colour matching experiments. If two test lights that have different spectra look the same, then they must have the same effect on these receptors.

The Principle of Univariance

The principle of univariance states that the activity of these receptors is of one kind — i.e. they respond strongly or weakly, but do not, for example, signal the wavelength of the light falling on them. Experimental evidence can be obtained by carefully dissecting light sensitive cells and measuring their responses to light at different wavelengths, or by reasoning backward from colour matches. Univariance is a powerful idea, because it gives us a good and simple model of human reaction to coloured light: two lights will match if they produce the same receptor responses, whatever their spectral radiances.

Because the system of matching is linear, the receptors must be linear. Let us write p_k for the response of the k’th receptor, $\sigma_k(\lambda)$ for its sensitivity, $E(\lambda)$ for the light arriving at the receptor and Λ for the range of visible wavelengths. We can obtain the overall response of a receptor by adding up the response to each separate wavelength in the incoming spectrum so that

$$p_k = \int_{\Lambda} \sigma_k(\lambda)E(\lambda)d\lambda$$

Rods and Cones

Anatomical investigation of the retina shows two types of cell that are sensitive to light, differentiated by their shape. The light sensitive region of a cone has a roughly conical shape, whereas that in a rod is roughly cylindrical. Cones largely dominate colour vision and completely dominate the fovea. Cones are somewhat less sensitive to light than rods are, meaning that in low light, colour vision is poor and it is impossible to read (one doesn’t have sufficient spatial precision, because the fovea isn’t working).

Studies of the genetics of colour vision support the idea that there are three types of cone, differentiated by their sensitivity (in the large; there is some evidence
Figure 1.6. There are three types of colour receptor in the human eye, usually called cones. These receptors respond to all photons in the same way, but in different amounts. The figure shows the log of the relative spectral sensitivities of the three kinds of colour receptor in the human eye. The first two receptors —sometimes called the red and green cones respectively, but more properly named the long and medium wavelength receptors — have peak sensitivities at quite similar wavelengths. The third receptor has a very different peak sensitivity. The response of a receptor to incoming light can be obtained by summing the product of the sensitivity and the spectral radiance of the light, over all wavelengths.

that there are slight differences from person to person within each type). The sensitivities of the three different kinds of receptor to different wavelengths can be obtained by comparing colour matching data for normal observers with colour matching data for observers lacking one type of cone. Sensitivities obtained in this fashion are shown in Figure 1.6. The three types of cone are properly called S cones, M cones and L cones (for their peak sensitivity being to short, medium and long wavelength light respectively). They are occasionally called blue, green and red cones; this is bad practice, because the sensation of red is definitely not caused by the stimulation of red cones, etc.
1.3 Representing Colour

Describing colours accurately is a matter of great commercial importance. Many products are closely associated with very specific colours — for example, the golden arches; the colour of various popular computers; the colour of photographic film boxes — and manufacturers are willing to go to a great deal of trouble to ensure that different batches have the same colour. This requires a standard system for talking about colour. Simple names are insufficient, because relatively few people know many colour names, and most people are willing to associate a large variety of colours with a given name.

Colour matching data yields simple and highly effective linear colour spaces (section 1.3.1). Specific applications may require colour spaces that emphasize particular properties (section 1.3.2) or uniform colour spaces, which capture the significance of colour differences (section 1.3.2).

1.3.1 Linear Colour Spaces

There is a natural mechanism for representing colour: first, agree on a standard set of primaries, and then describe any coloured light by the three values of the weights that people would use to match the light using those primaries. In principle, this is easy to use — to describe a colour, we set up and perform the matching experiment and transmit the match weights. Of course, this approach extends to give a representation for surface colours as well if we use a standard light for illuminating the surface (and if the surfaces are equally clean, etc.).

Performing a matching experiment each time we wish to describe a colour can be practical. For example, this is the technique used by paint stores; you take in a flake of paint, and they’ll mix paint, adjusting the mixture until a colour match is obtained. Paint stores do this because complicated scattering effects within paints mean that predicting the colour of a mixture can be quite difficult. However, Grassman’s laws mean that mixtures of coloured lights — at least those seen in a simple display — mix linearly, which means that a much simpler procedure is available.

Colour Matching Functions

When colours mix linearly, we can construct a simple algorithm to determine which weights would be used to match a source of some known spectral radiance, given a fixed set of primaries. The spectral radiance of the source can be thought of as a weighted sum of single wavelength sources. Because colour matching is linear, the combination of primaries that matches a weighted sum of single wavelength sources is obtained by matching the primaries to each of the single wavelength sources, and then adding up these match weights.

If we have a record of the weight of each primary required to match a single-wavelength source — a set of colour matching functions — we can obtain the weights used to match an arbitrary spectral radiance. The colour matching func-
tions — which we shall write as \(f_1(\lambda) \), \(f_2(\lambda) \) and \(f_3(\lambda) \) — can be obtained from a set of primaries \(P_1, P_2 \) and \(P_3 \) by experiment. Essentially, we tune the weight of each primary to match a unit radiance source at every wavelength. We then obtain a set of weights, one for each wavelength, for matching a unit radiance source \(U(\lambda) \). We can write this process as

\[
U(\lambda) = f_1(\lambda)P_1 + f_2(\lambda)P_2 + f_3(\lambda)P_3
\]

i.e. at each wavelength \(\lambda \), \(f_1(\lambda) \), \(f_2(\lambda) \) and \(f_3(\lambda) \) give the weights required to match a unit radiance source at that wavelength.

The source — which we shall write \(S(\lambda) \) — is a sum of a vast number of single wavelength sources, each with a different intensity. We now match the primaries to each of the single wavelength sources, and then add up these match weights, obtaining

\[
S(\lambda) = w_1P_1 + w_2P_2 + w_3P_3 \\
= \left\{ \int_{\lambda} f_1(\lambda)S(\lambda)d\lambda \right\} P_1 + \left\{ \int_{\lambda} f_2(\lambda)S(\lambda)d\lambda \right\} P_2 + \left\{ \int_{\lambda} f_3(\lambda)S(\lambda)d\lambda \right\} P_3
\]

\[Figure 1.7.\] On the left, colour matching functions for the primaries for the RGB system. The negative values mean that subtractive matching is required to match lights at that wavelength with the RGB primaries. On the right, colour matching functions for the CIE X, Y and Z primaries; the colour matching functions are everywhere positive, but the primaries are not real. Figures plotted from data available at http://www-cvrl.ucsd.edu/index.htm.

General Issues for Linear Colour Spaces

Linear colour naming systems can be obtained by specifying primaries — which imply colour matching functions — or by specifying colour matching functions — which imply primaries. It is an inconvenient fact of life that, if the primaries are
real lights, at least one of the colour matching functions will be negative for some wavelengths. This is not a violation of natural law — it just implies that subtractive matching is required to match some lights, whatever set of primaries is used. It is a nuisance though.

One way to avoid this problem is to specify colour matching functions that are everywhere positive (which guarantees that the primaries are imaginary, because for some wavelengths their spectral radiance will be negative).

Although this looks like a problem — how would one create a real colour with imaginary primaries? — it isn’t, because colour naming systems are hardly ever used that way. Usually, we would simply compare weights to tell whether colours are similar or not, and for that purpose it is enough to know the colour matching functions. A variety of different systems have been standardised by the CIE (the commission international d’éclairage, which exists to make standards on such things).

The CIE XYZ Colour Space

The CIE XYZ colour space is one quite popular standard. The colour matching functions were chosen to be everywhere positive, so that the coordinates of any real light are always positive. It is not possible to obtain CIE X, Y, or Z primaries because for some wavelengths the value of their spectral radiance is negative. However, given colour matching functions alone, one can specify the XYZ coordinates of a colour and hence describe it.

Linear colour spaces allow a number of useful graphical constructions which are more difficult to draw in three-dimensions than in two, so it is common to intersect the XYZ space with the plane $X + Y + Z = 1$ (as shown in Figure 1.8) and draw the resulting figure, using coordinates

$$(x, y) = \left(\frac{X}{X + Y + Z}, \frac{Y}{X + Y + Z} \right)$$

This space is shown in Figure 1.10. CIE xy is widely used in vision and graphics textbooks and in some applications, but is usually regarded by professional colorimetrists as out of date.

The RGB Colour Spaces

Colour spaces are normally invented for practical reasons, and so a wide variety exist. The RGB colour space is a linear colour space that formally uses single wavelength primaries (645.16 nm for R, 526.32nm for G and 444.44nm for B — see Figure 1.7). Informally, RGB uses whatever phosphors a monitor has as primaries. Available colours are usually represented as a unit cube — usually called the RGB cube — whose edges represent the R, G, and B weights. The cube is drawn in figure ??; remember, since the weights are the weights associated with primary lights, red and green mix to give yellow.
Figure 1.8. The volume of all visible colours in CIE XYZ coordinate space is a cone whose vertex is at the origin. Usually, it is easier to suppress the brightness of a colour — which we can do because to a good approximation perception of colour is linear — and we do this by intersecting the cone with the plane \(X + Y + Z = 1 \) to get the CIE xy space shown in figure 1.10.

CMY and Black

Intuition from one’s finger-painting days suggests that the primary colours should be red, yellow and blue, and that red and green mix to make yellow. The reason this intuition doesn’t apply to monitors is that it is about pigments — which mix subtractively — rather than about lights. Pigments remove colour from incident light which is reflected from paper. Thus, red ink is really a dye that absorbs green and blue light — incident red light passes through this dye and is reflected from the paper.

Colour spaces for this kind of subtractive matching can be quite complicated. In the simplest case, mixing is linear (or reasonably close to linear) and the CMY space applies. In this space, there are three primaries: cyan (a blue-green colour); magenta (a purplish colour) and yellow. These primaries should be thought of as subtracting a light primary from white light; cyan is \(W - R \) (white-red); magenta is \(W - G \) (white-green) and yellow is \(W - B \) (white-blue). Now the appearance of mixtures may be evaluated by reference to the RGB colour space. For example cyan and magenta mixed give

\[
(W - R) + (W - G) = R + G + B - R - G = B
\]

that is, blue. Notice that \(W + W = W \) because we assume that ink cannot cause paper to reflect more light than it does when uninked. Practical printing devices use at least four inks (cyan, magenta, yellow and black), because: mixing colour
Figure 1.9. The figure shows a constant brightness section of the standard 1976 standard CIE xy colour space. This space has two coordinate axes. The curved boundary of the figure is often known as the spectral locus — it represents the colours experienced when lights of a single wavelength are viewed. The figure shows a locus of colours due to black-body radiators at different temperatures, and a locus of different sky colours. Near the center of the diagram is the neutral point, the colour whose weights are equal for all three primaries. CIE selected the primaries so that this light appears achromatic. Generally, colours that lie further away from the neutral point are more saturated — the difference between deep red and pale pink — and hue — the difference between green and red — as one moves around the neutral point. (Taken in the fervent hope of receiving permission from Lamb and Bourriau, Colour Art and Science, p. 88)
properties; different papers have different spectral properties, too; and inks can mix non-linearly.

1.3.2 Non-linear Colour Spaces

The coordinates of a colour in a linear space may not necessarily encode properties that are common in language or are important in applications. Useful colour terms include: hue — the property of a colour that varies in passing from red to green;
Figure 1.11. The linear model of the colour system allows a variety of useful constructions. If we have two lights whose CIE coordinates are \(A \) and \(B \) all the colours that can be obtained from non-negative mixtures of these lights are represented by the line segment joining \(A \) and \(B \). In turn, given \(B \), \(C \) and \(D \), the colours that can by obtained by mixing them lie in the triangle formed by the three points. This is important in the design of monitors — each monitor has only three phosphors, and the more saturated the colour of each phosphor the bigger the set of colours that can be displayed. This also explains why the same colours can look quite different on different monitors. The curvature of the spectral locus gives the reason that no set of three real primaries can display all colours without subtractive matching.

saturation — the property of a colour that varies in passing from red to pink; and **brightness** (sometimes called **lightness** or **value**) — the property that varies in passing from black to white. For example, if we are interested in checking whether a colour lies in a particular range of reds, we might wish to encode the hue of the colour directly.

Another difficulty with linear colour spaces is that the individual coordinates do not capture human intuitions about the topology of colours; it is a common intuition that hues form a circle, in the sense that hue changes from red, through orange to yellow and then green and from there to cyan, blue, purple and then red again. Another way to think of this is to think of local hue relations: red is next to purple and orange; orange is next to red and yellow; yellow is next to orange and green; green is next to yellow and cyan; cyan is next to green and blue; blue is next to cyan and purple; and purple is next to blue and red. Each of these local relations works, and globally they can be modelled by laying hues out in a circle. This means that no individual coordinate of a linear colour space can model hue, because that
coordinate has a maximum value which is far away from the minimum value.

Hue, Saturation and Value

A standard method for dealing with this problem is to construct a colour space that reflects these relations by applying a non-linear transformation to the RGB space. There are many such spaces. One, called **HSV space** (for hue, saturation and value) is obtained by looking down the center axis of the RGB cube. Because RGB is a linear space, brightness — called value in HSV — varies with scale out from the origin, and we can “flatten” the RGB cube to get a 2D space of constant value, and for neatness deform it to be a hexagon. This gets the structure shown in figure 1.12, where hue is given by an angle that changes as one goes round the neutral point and saturation changes as one moves away from the neutral point.

Figure 1.12. On the left, we see the RGB cube; this is the space of all colours that can be obtained by combining three primaries (R, G, and B — usually defined by the colour response of a monitor) with weights between zero and one. It is common to view this cube along its neutral axis — the axis from the origin to the point (1, 1, 1) — to see a hexagon, shown in the middle. This hexagon codes hue (the property that changes as a colour is changed from green to red) as an angle, which is intuitively satisfying. On the right, we see a cone obtained from this cross-section, where the distance along a generator of the cone gives the value (or brightness) of the colour, angle around the cone gives the hue and distance out gives the saturation of the colour.

There are a variety of other possible changes of coordinate from between linear colour spaces, or from linear to non-linear colour spaces (Fairchild’s book is a good reference). There is no obvious advantage to using one set of coordinates over another (particularly if the difference between coordinate systems is just a one-one
Section 1.3. Representing Colour

transformation) unless one is concerned with coding and bit-rates, etc. or with perceptual uniformity.

Uniform Colour Spaces

Usually, one cannot reproduce colours exactly. This means it is important to know whether a colour difference would be noticeable to a human viewer; it is generally useful to be able to compare the significance of small colour differences.

Figure 1.13. This figure shows variations in colour matches on a CIE x, y space. At the center of the ellipse is the colour of a test light; the size of the ellipse represents the scatter of lights that the human observers tested would match to the test colour; the boundary shows where the just noticeable difference is. The ellipses in the figure on the left have been magnified 10x for clarity, and on the right they are plotted to scale. The ellipses are known as MacAdam ellipses, after their inventor. Notice that the ellipses at the top are larger than those at the bottom of the figure, and that they rotate as they move up. This means that the magnitude of the difference in x, y coordinates is a poor guide to the difference in colour. Ellipses plotted using data from Macadam’s paper of 194*

Just noticeable differences can be obtained by modifying a colour shown to an observer until they can only just tell it has changed in a comparison with the original colour. When these differences are plotted on a colour space, they form the boundary of a region of colours that are indistinguishable from the original colours. Usually, ellipses are fitted to the just noticeable differences. It turns out that in CIE xy space these ellipses depend quite strongly on where in the space the difference occurs, as the Macadam ellipses in Figure 1.13 illustrate.

1It is usually dangerous to try and compare large colour differences; consider trying to answer the question “is the blue patch more different from the yellow patch than the red patch is from the green patch?”
This means that the size of a difference in \((x, y)\) coordinates, given by \((\Delta x)^2 + (\Delta y)^2)\), is a poor indicator of the significance of a difference in colour (if it was a good indicator, the ellipses representing indistinguishable colours would be circles). A uniform colour space is one in which the distance in coordinate space is a fair guide to the significance of the difference between two colours — in such a space, if the distance in coordinate space was below some threshold, then a human observer would not be able to tell the colours apart.

![Figure 1.14](image.png)

Figure 1.14. This figure shows the CIE 1976 \(u', v'\) space, which is obtained by a projective transformation of CIE \(x, y\) space. The intention is to make the MacAdam ellipses uniformly circles — this would yield a uniform colour space. A variety of non-linear transforms can be used to make the space more uniform (see [?7] for details).

A more uniform space can be obtained from CIE XYZ by using a projective transformation to skew the ellipses; this yields the CIE \(u'v'\) space, illustrated in Figure 1.14. The coordinates are:

\[
(u', v') = \left(\frac{4X}{X + 15Y + 3Z}, \frac{9Y}{X + 15Y + 3Z} \right)
\]

Generally, the distance between coordinates in \(u', v'\) space is a fair indicator of the significance of the difference between two colours. Of course, this omits differences in brightness. CIE LAB is now almost universally the most popular uniform colour space. Coordinates of a colour in LAB are obtained as a non-linear
mapping of the XYZ coordinates:

\[L^* = 116 \left(\frac{Y}{Y_n} \right)^{\frac{1}{3}} - 16 \]

\[a^* = 500 \left[\left(\frac{X}{X_n} \right)^{\frac{1}{3}} - \left(\frac{Y}{Y_n} \right)^{\frac{1}{3}} \right] \]

\[b^* = 200 \left[\left(\frac{Y}{Y_n} \right)^{\frac{1}{3}} - \left(\frac{Z}{Z_n} \right)^{\frac{1}{3}} \right] \]

(here \(X_n, Y_n \) and \(Z_n \) are the \(X, Y, \) and \(Z \) coordinates of a reference white patch).

The reason to care about the LAB space is that it is substantially uniform. In some problems, it is important to understand how different two colours will look to a human observer, and differences in LAB coordinates give a good guide.

1.3.3 Spatial and Temporal Effects

Predicting the appearance of complex displays of colour — i.e. a stimulus that is more interesting than a pair of lights — is difficult. If the visual system has been exposed to a particular illuminant for some time, this causes the colour system to adapt, a process known as chromatic adaptation. Adaptation causes the colour diagram to skew, in the sense that two observers, adapted to different illuminants, can report that spectral radiosities with quite different chromaticities have the same colour. Adaptation can be caused by surface patches in view. Other mechanisms that are significant are assimilation — where surrounding colours cause the colour reported for a surface patch to move towards the colour of the surrounding patch — and contrast — where surrounding colours cause the colour reported for a surface patch to move away from the colour of the surrounding patch. These effects appear to be related to coding issues within the optic nerve, and colour constancy (section 1.5).

1.4 Application: Finding Specularities

Specularities can have quite strong effects on the appearance of an object. Typically, they appear as small, bright patches, often called highlights. Highlights have a substantial effect on human perception of a surface properties; the addition of small, highlight-like patches to a figure makes the object depicted look glossy or shiny. Specularities are often sufficiently bright to saturate the camera, so that the colour can be hard to measure. However, because the appearance of a specularity is quite strongly constrained, there are a number of effective schemes for marking them, and the results can be used as a shape cue.

The dynamic range of practically available albedoes is relatively small. Surfaces with very high or very low albedo are difficult to make. Uniform illumination is
common, too, and most cameras are reasonably close to linear within their operating range. This means that very bright patches cannot be due to diffuse reflection; they must be either sources (of one form or another — perhaps a stained glass window with the light behind it) or specularities [?]. Furthermore, specularities tend to be small. Thus, looking for small very bright patches can be an effective way of finding specularities [].

In colour images, specularities produce quite characteristic effects if they occur on dielectric materials (those that do not conduct electricity). This link to conductivity occurs because electric fields cannot penetrate conductors (the electrons inside just move around to cancel the field), so that light striking a metal surface can be either absorbed or specularly reflected. Dull metal surfaces look dull because of surface roughness effects and shiny metal surfaces have shiny patches that have a characteristic colour because the conductor absorbs energy in different amounts at different wavelengths. However, light striking a dielectric surface can penetrate it. Many dielectric surfaces can be modelled as a clear matrix with randomly embedded pigments; this is a particularly good model for plastics and for some paints. In this model, there are two components of reflection that correspond to our specular and diffuse notions: body reflection, which comes from light penetrating the matrix, striking various pigments and then leaving; and surface reflection, which comes from light specularly reflected from the surface. Assuming the pigment is randomly distributed (and small, and not on the surface, etc.) and the matrix is reasonable, we have that the body reflection component will behave like a diffuse component with a spectral albedo that depends on the pigment and the surface component will be independent of wavelength.

Assume we are looking at a single object dielectric object with a single colour. We expect that the interreflection term can be ignored, and our model of camera pixel brightnesses becomes

\[p(x) = g_d(x)d + g_s(x)s \]

where \(s \) is the colour of the source and \(d \) is the colour of the diffuse reflected light, \(g_d(x) \) is a geometric term that depends on the orientation of the surface and \(g_s(x) \) is a term that gives the extent of the specular reflection. If the object is curved, then \(g_s(x) \) is small over much of the surface, and large only around specularities; and \(g_d(x) \) varies more slowly with the orientation of the surface. We now map the colours produced by this surface in receptor response space, and look at the structures that appear there (Figure 1.15).

The term \(g_d(x)d \) will produce a line that should extend to pass through the origin, because it represents the same vector of receptor responses multiplied by a constant that varies over space. If there is a specularity, then we expect to see a second line, due to \(g_s(x)s \). This will not, in general, pass through the origin (because of the diffuse term). This is a line, rather than a planar region, because \(g_s(x) \) is large over only a very small range of surface normals, and we expect that, because the surface is curved, this corresponds to a small region of surface. The term \(g_d(x) \) should be approximately constant in this region. We expect a line,
Assume we have a picture of a single uniformly coloured surface. Our model of reflected light should lead to a gamut that looks like the drawing. We are assuming that reflected light consists of the diffuse term plus a specular term, and the specular term is the colour of the light source. Most points on the surface do not have a significant specular term, and instead are brighter or darker versions of the same diffuse surface colour. At some points, the specular term is large, and this leads to a “dog-leg” in the gamut, caused by adding the diffuse term to the source term. If the diffuse reflection is very bright, one or another colour channel might saturate (point T); similarly, if the specular reflection is very bright one or another colour channel might saturate (point “S”).

Rather than an isolated pixel value, because we expect surfaces to have (possibly narrow) specular lobes, meaning that the specular coefficient has a range of values. This second line may collide with a face of the colour cube and get clipped.

The resulting dog-leg pattern leads pretty much immediately to a specularity marking algorithm — find the pattern, and then find the specular line. All the pixels on this line are specular pixels, and the specular and diffuse components can be estimated easily. For the approach to work effectively, we need to be confident that only one object is represented in the collection of pixels. This is helped by using local image windows as illustrated by Figure 1.16. The observations underlying the
method hold if the surface is not monochrome — a coffee mug with a picture on it, for example — but finding the resulting structures in the colour space now becomes something of a nuisance, and to our knowledge has not been demonstrated.

Figure 1.16. The linear clusters produced by specularities on plastic objects can be found by reasoning about windows of image pixels. In a world of plastic objects on a black background, a background window produces a region of pixels that are point-like in colour space — all pixels have the same colour. A window that lies along the body produces a line-like cluster of points in colour space, because the intensity varies but the colour does not. At the boundary of a specularity, windows produce plane-like clusters, because points are a weighted combination of two different colours (the specular and the body colour). Finally, at interior of a specular region, the windows can produce volume-like clusters, because the camera saturates, and the extent of the window can include both the boundary style window points and the saturated points. Whether a region is line-like, plane-like or volume like can be determined easily by looking at the eigenvalues of the covariance of the pixels.
1.5 Surface Colour from Image Colour

The colour of light arriving at a camera is determined by two factors: firstly, the spectral reflectance of the surface that the light is leaving, and secondly, the spectral radiance of the light falling on that surface. The colour of the light falling on surfaces can vary very widely — from blue fluorescent light indoors, to warm orange tungsten lights, to orange or even red light at sunset — so that the colour of the light arriving at the camera can be quite a poor representation of the colour of the surfaces being viewed (figures 1.17, 1.18, 1.19 and 1.20).

It would be attractive to have a colour constancy algorithm that could take an image, discount the effect of the light, and report the actual colour of the surfaces being viewed. Colour constancy is an interesting subproblem that has the flavour of a quite general vision problem: we are determining some parameters of the world from ambiguous image measurements; we need to use a model to disentangle these measurements; and we should like to be able to report more than one solution.

1.5.1 Surface Colour Perception in People

There is some form of colour constancy algorithm in the human vision system. People are often unaware of this, and inexperienced photographers are sometimes surprised that a scene photographed indoors under fluorescent lights has a blue cast, while the same scene photographed outdoors may have a warm orange cast.

It is common to distinguish between colour constancy — which is usually thought of in terms of intensity independent descriptions of colour like hue and saturation — and lightness constancy, the skill that allows humans to report whether a surface is white, grey or black (the lightness of the surface) despite changes in the intensity of illumination (the brightness). Colour constancy is neither perfectly accurate [], nor unavoidable. Humans can report:

- the colour a surface would have in white light (often called surface colour);
- colour of the light arriving at the eye, a skill that allows artists to paint surfaces illuminated by coloured lighting [];
- and sometimes, the colour of the light falling on the surface [].

All of these reports could be by-products of a colour constancy process.

The colorimetric theories of Section 1.3 can predict the colour an observer will perceive when shown an isolated spot of light of a given power spectral distribution. The human colour constancy algorithm appears to obtain cues from the structure of complex scenes, meaning that predictions from colorimetric theories can be wildly inaccurate if the spot of light is part of a larger, complex scene. Edwin Land’s demonstrations [?] (which are illustrated in Figure 1.21) give convincing examples of this effect. It is surprisingly difficult to predict what colours a human will see in a complex scene [?, ?]; this is one of the many difficulties that make it hard to produce really good colour reproduction systems (section 1.6).
Light sources can have quite widely varying colours. This figure shows the colour of the four light sources of figure 1.4, compared with the colour of a uniform spectral power distribution, plotted in CIE x, y coordinates.

Figure 1.17. Light sources can have quite widely varying colours. This figure shows the colour of the four light sources of figure 1.4, compared with the colour of a uniform spectral power distribution, plotted in CIE x, y coordinates.

Human competence at colour constancy is surprisingly poorly understood. The main experiments on humans [?; ?; ?] do not explore all circumstances and it is not known, for example, how robust colour constancy is or the extent to which high-level cues contribute to colour judgements. Little is known about colour constancy in other animals — except that goldfish have it [?]. Colour constancy clearly fails — otherwise there would be no film industry — but the circumstances under which it fails are not well understood. There is a large body of data on surface lightness perception for achromatic stimuli. Since the brightness of a surface varies with its
Figure 1.18. Surfaces have significantly different colours when viewed under different lights. These figures show the colours taken on by the blue flower and the violet flower of figure 1.1, when viewed under the four different sources of figure 1.4 and under a uniform spectral power distribution.

Figure 1.19. Surfaces have significantly different colours when viewed under different lights. These figures show the colours taken on by the yellow flower and the orange flower of figure 1.1, when viewed under the four different sources of figure 1.4 and under a uniform spectral power distribution.
Figure 1.20. Surfaces have significantly different colours when viewed under different lights. These figures show the colours taken on by the white petal figure 1.1 and one of the leaves of figure 1.2, when viewed under the four different sources of figure 1.4 and under a uniform spectral power distribution.

orientation as well as with the intensity of the illuminant, one would expect that human lightness constancy would be poor: it is in fact extremely good over a wide range of illuminant variation [?].

1.5.2 Inferring Lightness

There is a lot of evidence that human lightness constancy involves two processes: one compares the brightness of various image patches, and uses this comparison to determine which patches are lighter and which darker; the second establishes some form of absolute standard to which these comparisons can be referred (e.g. [?]). We will describe lightness algorithms first, because they tend to be simpler than colour constancy algorithms.

A Simple Model of Image Brightness

The radiance arriving at a pixel depends on the illumination of the surface being viewed, its BRDF, its configuration with respect to the source and the camera responses. The situation is considerably simplified by assuming that the scene is plane and frontal; that surfaces are Lambertian; and that the camera responds linearly to radiance.

This yields a model of the camera response C at a point X as the product of an
Section 1.5. Surface Colour from Image Colour

Photometer reading
(1, .3, .3)
White light
Audience name
"Red"

Photometer reading
(1, .3, .3)
Coloured light
Audience name
"Blue"

Figure 1.21. Land showed an audience a quilt of rectangles of flat coloured papers - since known as a Mondrian, for a purported resemblance to the work of that artist - illuminated using three slide projectors, casting red, green and blue light respectively. He used a photometer to measure the energy leaving a particular spot in three different channels, corresponding to the three classes of receptor in the eye. He recorded the measurement, and asked the audience to name the patch - say the answer was “red” (on the left). Land then adjusted the slide projectors so that some other patch reflected light that gave the same photometer measurements, and asked the audience to name that patch. The reply would describe the patch’s colour in white light - if the patch looked blue in white light, the answer would be “blue” (on the right). In later versions of this demonstration, Land put wedge-shaped neutral density filters into the slide-projectors, so that the colour of the light illuminating the quilt of papers would vary slowly across the quilt. Again, although the photometer readings vary significantly from one end of a patch to another, the audience sees the patch as having a constant colour.

illumination term, an albedo term and a constant that comes from the camera gain

\[C(x) = k_c I(x) \rho(x) \]

If we take logarithms, we get

\[\log C(x) = \log k_c + \log I(x) + \log \rho(x) \]

A second set of assumptions comes into play here.

- Firstly, we assume that albedoes change only quickly over space — this means that a typical set of albedoes will look like a collage of papers of different greys. This assumption is quite easily justified: firstly, there are relatively few continuous changes of albedo in the world (the best example occurs in ripening fruit); and secondly, changes of albedo often occur when one object occludes another (so we would expect the change to be fast). This means that spatial derivatives of the term \(\log \rho(x) \) are either zero (where the albedo is constant) or large (at a change of albedo).
Secondly, illumination changes only slowly over space. This assumption is somewhat realistic: for example, the illumination due to a point source will change relatively slowly unless the source is very close — so the sun is a source that is particularly good for this example; as another example, illumination inside rooms tends to change very slowly, because the white walls of the room act as area sources. This assumption fails dramatically at shadow boundaries however; we will have to see these as a special case, and assume that either there are no shadow boundaries, or that we know where they are.

Recovering Lightness from the Model

It is relatively easy to build algorithms that use our model. The earliest algorithm, Land’s Retinex algorithm [?], has fallen into disuse. A natural approach is to differentiate the log transform, throw away small gradients, and then “integrate” the results [?]. There is a constant of integration missing, so lightness ratios are available, but absolute lightness measurements are not. Figure 1.22 illustrates the process for a one-dimensional example, where differentiation and integration are easy.

This approach can be extended to two dimensions as well. Differentiating and thresholding is easy: at each point, we estimate the magnitude of the gradient, and if the magnitude is less than some threshold, we set the gradient vector to zero, else we leave it alone. The difficulty is in integrating these gradients to get the log albedo map. The thresholded gradients may not be the gradients of an image, because the mixed second partials may not be equal (integrability again; compare with section ??).

The problem can be rephrased as a minimization problem: choose the log albedo map whose gradient is most like the thresholded gradient. This is a relatively simple problem, because computing the gradient of an image is a linear operation. The x-component of the thresholded gradient is scanned into a vector p and the y-component is scanned into a vector q. We write the vector representing log-albedo as l. Now the process of forming the x derivative is linear, and so there is some matrix M_x such that $M_x l$ is the x derivative; for the y derivative, we write the corresponding matrix M_y.

The problem becomes to find the vector l that minimizes

$$|M_x l - p|^2 + |M_y l - q|^2$$

This is a quadratic minimisation problem, and the answer can be found by a linear process. Some special tricks are required, because adding a constant vector to l cannot change the derivatives, so the problem does not have a unique solution. We explore the minimisation problem in the exercises.

The constant of integration needs to be obtained from some other assumption. There are two obvious possibilities:

- we can assume that the brightest patch is white;
Figure 1.22. The lightness algorithm is easiest to illustrate for a 1D image. In the top row, the graph on the left shows $\log \rho(x)$; that on the center $\log I(x)$ and that on the right their sum which is $\log C$. The log of image intensity has large derivatives at changes in surface reflectance and small derivatives when the only change is due to illumination gradients. Lightness is recovered by differentiating the log intensity, thresholding to dispose of small derivatives, and then integrating, at the cost of a missing constant of integration.

- we can assume that the *average lightness is constant*.

We explore the consequences of these models in the exercises.
Form the gradient of the log of the image

At each pixel, if the gradient magnitude is below a threshold, replace that gradient with zero

Reconstruct the log-albedo by solving the minimization problem described in the text

Obtain a constant of integration

Add the constant to the log-albedo, and exponentiate

Algorithm 1.1: Determining the Lightness of Image Patches

1.5.3 A Model for Image Colour

To build a colour constancy algorithm, we need a model to interpret the colour of pixels. By suppressing details in the physical models of Chapters ?? and above, we can model the value at a pixel as:

\[C(x) = g_d(x)d(x) + g_s(x)s(x) + i(x) \]

In this model

- \(d(x) \) is the image colour of an equivalent flat frontal surface viewed under the same light;
- \(g_d(x) \) is a term that varies over space and accounts for the change in brightness due to the orientation of the surface;
- \(s(x) \) is the image colour of the specular reflection from an equivalent flat frontal surface;
- \(g_s(x) \) is a term that varies over space and accounts for the change in the amount of energy specularly reflected;
- and \(i(x) \) is a term that accounts for coloured interreflections, spatial changes in illumination, and the like.

We are primarily interested in information that can be extracted from colour at a local level, and so we are ignoring the detailed structure of the terms \(g_d(x) \) and \(i(x) \). Nothing is known about how to extract information from \(i(x) \); all evidence suggests that this is very difficult. The term can sometimes be quite small with respect to other terms and usually changes quite slowly over space. We shall ignore
this term, and so must assume that it is small (or that its presence does not disrupt our algorithms too severely).

Specularities are small and bright, and can be found using these properties (section 1.4). In principle, we could use the methods of that section to generate new images without specularities. This brings us to the term \(g_d(x) d(x) \) in the model above. Assume that \(g_d(x) \) is a constant, so we are viewing a flat, frontal surface.

The resulting term, \(d(x) \), models the world as a collage of flat, frontal diffuse coloured surfaces. We shall assume that there is a single illuminant that has a constant colour over the whole image. This term is a conglomeration of illuminant, receptor and reflectance information. It is impossible to disentangle completely in a realistic world. However, current algorithms can make quite usable estimates of surface colour from image colours, given a well populated world of coloured surfaces and a reasonable illuminant.

Finite-Dimensional Linear Models

The term \(d(x) \) is results from interactions between the spectral irradiance of the source, the spectral albedo of the surfaces, and the camera sensitivity. We need a model to account for these interactions. If a patch of perfectly diffuse surface with diffuse spectral reflectance \(\rho(\lambda) \) is illuminated by a light whose spectrum is \(E(\lambda) \), the spectrum of the reflected light will be \(\rho(\lambda) E(\lambda) \) (multiplied by some constant to do with surface orientation, which we have already decided to ignore).

Thus, if a photoreceptor of the \(k \)th type sees this surface patch, its response will be:

\[
p_k = \int_{\Lambda} \sigma_k(\lambda) \rho(\lambda) E(\lambda) d\lambda
\]

where \(\Lambda \) is the range of all relevant wavelengths and \(\sigma_k(\lambda) \) is the sensitivity of the \(k \)th photoreceptor (figure 1.23).

This response is linear in the surface reflectance and linear in the illumination, which suggests using linear models for the families of possible surface reflectances and illuminants. A **finite-dimensional linear model** models surface spectral albedoes and illuminant spectral irradiance as a weighted sum of a finite number of basis functions. We need not use the same bases for reflectances and for illuminants.

If a finite-dimensional linear model of surface reflectance is a reasonable description of the world, any surface reflectance can be written as

\[
\rho(\lambda) = \sum_{j=1}^{n} r_j \phi_j(\lambda)
\]

where the \(\phi_j(\lambda) \) are the basis functions for the model of reflectance, and the \(r_j \) vary from surface to surface.

Similarly, if a finite-dimensional linear model of the illuminant is a reasonable
Figure 1.23. If a patch of perfectly diffuse surface with diffuse spectral reflectance $\rho(\lambda)$ is illuminated by a light whose spectrum is $E(\lambda)$, the spectrum of the reflected light will be $\rho(\lambda)E(\lambda)$ (multiplied by some constant to do with surface orientation, which we have already decided to ignore). Thus, if a photoreceptor of the k'th type sees this surface patch, its response will be: $p_k = \int_\Lambda \sigma_k(\lambda) \rho(\lambda) E(\lambda) d\lambda$ where Λ is the range of all relevant wavelengths and $\sigma_k(\lambda)$ is the sensitivity of the k'th photoreceptor.

model, any illuminant can be written as

$$E(\lambda) = \sum_{i=1}^{m} e_i \psi_i(\lambda)$$

where the $\psi_i(\lambda)$ are the basis functions for the model of illumination.

When both models apply, the response of a receptor of the k'th type is:

$$p_k = \int \sigma_k(\lambda) \left(\sum_{j=1}^{n} r_j \phi_j(\lambda) \right) \left(\sum_{i=1}^{m} e_i \psi_i(\lambda) \right) d\lambda$$

$$= \sum_{i=1,j=1}^{m,n} e_i r_j \int \sigma_k(\lambda) \phi_j(\lambda) \psi_i(\lambda) d\lambda$$

$$= \sum_{i=1,j=1}^{m,n} e_i r_j g_{ijk}$$

where we expect that the $g_{ijk} = \int \sigma_k(\lambda) \phi_j(\lambda) \psi_i(\lambda) d\lambda$ are known, as they are components of the world model (they can be learned from observations; see the exercises).
1.5.4 Surface Colour from Finite Dimensional Linear Models

Each of the indexed terms can be interpreted as components of a vector, and we shall use the notation \(\mathbf{p} \) for the vector with \(k \)'th component \(p_k \), etc. We could represent surface colour either directly by the vector of coefficients \(\mathbf{r} \), or more indirectly by computing \(\mathbf{r} \) and then determining what the surfaces would look like under white light. The latter representation is more useful in practice; among other things, the results are easy to interpret.

Normalizing Average Reflectance

Assume that the spatial average of reflectance in all scenes is constant and is known (for example, we might assume that all scenes have a spatial average of reflectance that is dull grey). In the finite-dimensional basis for reflectance we can write this average as

\[
\sum_{j=1}^{n} r_j \phi_j(\lambda) = \overline{\mathbf{r}}(\lambda)
\]

Now if the average reflectance is constant, the average of the receptor responses must be constant too (the imaging process is linear), and the average of the response of the \(k \)'th receptor can be written as:

\[
\overline{p}_k = m,n \sum_{i=1,j=1}^{m,n} e_{ij} g_{ijk} \overline{r}_j
\]

If \(\overline{\mathbf{p}} \) is the vector with \(k \)'th component \(\overline{p}_k \) (using the notation above) and \(\mathbf{A} \) is the matrix with \(k, i \)'th component

\[
\sum_{j=1}^{n} r_j g_{ijk}
\]

then we can write the above expression as:

\[
\overline{\mathbf{p}} = \mathbf{A} \mathbf{e}
\]

For reasonable choices of receptors, the matrix \(\mathbf{A} \) will have full rank, meaning that we can determine \(\mathbf{e} \), which gives the illumination, if the finite dimensional linear model for illumination has the same dimension as the number of receptors. Of course, once the illumination is known, we can report the surface reflectance at each pixel, or correct the image to look as though it were taken under white light.

The underlying assumption that average reflectance is a known constant is dangerous, however, because it is usually not even close to being true. For example, if we assume that the average reflectance is a medium gray (a popular choice - see, for example, \([?; ?]\)), an image of a leafy forest glade will be reported as a collection of objects of various grays illuminated by green light. One way to try and avoid
Compute the average colour \mathbf{p} for the image.

Compute \mathbf{e} from $\mathbf{p} = \mathbf{Ae}$

To obtain a version of the image under white light, \mathbf{e}^w:

Now for each pixel, compute \mathbf{r} from $p_k = \sum_{i=1,j=1}^{m,ne} g_{ijk} r_j$

Replace the pixel value with $p_k^w = \sum_{i=1,j=1}^{m,ne} w_{igm} g_{ijk} r_j$

Algorithm 1.2: Colour Constancy from Known Average Reflectance

this problem is to change the average for different kinds of scenes [?] - but how do we decide what average to use? Another approach is to compute an average that is not a pure spatial average; one might, for example, average the colours that were represented by ten or more pixels, but without weighting them by the number of pixels present. It is hard to say in practice how well this approach could work; there is no experimental data in the literature.

Normalizing the Gamut

Not every possible pixel value can be obtained by taking images of real surfaces under white light. It is usually impossible to obtain values where one channel responds strongly and others do not - for example, 255 in the red channel and 0 in the green and blue channels. This means that the gamut of an image - the collection of all pixel values - contains information about the light source. For example, if one observes a pixel that has value $(255, 0, 0)$, then the light source is likely to be red in colour.

If an image gamut contains two pixel values, say \mathbf{p}_1 and \mathbf{p}_2, then it must be possible to take an image under the same illuminant that contains the value $tp_1 + (1-t)p_2$ for $0 \leq t \leq 1$ (because we could mix the colorants on the surfaces). This means that the convex hull of the image gamut contains the illuminant information. These constraints can be exploited to constrain the colour of the illuminant.

Write G for the convex hull of the gamut of the given image, W for the convex hull of the gamut of an image of many different surfaces under white light, and \mathcal{M}_e for the map that takes an image seen under illuminant \mathbf{e} to an image seen under white light. Then the only illuminants we need to consider are those such that $\mathcal{M}_e(G) \subseteq W$. This is most helpful if the family \mathcal{M}_e has a reasonable structure; one natural example is to assume that changes in one illuminant parameter affect only the response of a single receptor. In turn, this means that elements of \mathcal{M}_e are diagonal matrices.

In the case of finite dimensional linear models, \mathcal{M}_e depends linearly on \mathbf{e}, so
that the family of illuminants that satisfy the constraint is also convex. This family can be constructed by intersecting a set of convex hulls, each corresponding to the family of maps that takes a hull vertex of G to some point inside W (or we could write a long series of linear constraints on e).

Once we have formed this family, it remains to find an appropriate illuminant. There are a variety of possible strategies: if something is known about the likelihood of encountering particular illuminants, then one might choose the most likely; assuming that most pictures contain many different coloured surfaces leads to the choice of illuminant that makes the restored gamut the largest (which is the approach that generated the results of figure 1.24); or one might use other constraints on illuminants - for example, all the illuminants must have non-negative energy at all wavelengths - to constrain the set even further [7].

1.6 Digression: Device-Independent Colour Imaging

Problems of colorimetry tend to look like insignificant detail bashing until one looks closely. One such problem is growing around us with the proliferation of digital libraries. Typically, universities or museums would like to provide access to their artwork and their documents. One way to do this is via a web library with a search
Obtain the gamut W of many images of many different coloured surfaces under white light (this is the convex hull of all image pixel values)

Obtain the gamut G of the image (this is the convex hull of all image pixel values)

Obtain every element of the family of illuminant maps \mathcal{M}_e such that $\mathcal{M}_e G \in W$
this represents all possible illuminants

Choose some element of this family, and apply it to every pixel in the image

Algorithm 1.3: Colour Constancy by Gamut Mapping

interface. Of course, finding a picture presents interesting problems. However, assume that an image has been found for two experts to discuss on the phone. They will be lucky if they agree on the colours.

This is because the images are displayed on different monitors, of different ages, at different temperatures, and in different rooms. The brand, age and temperature of the monitor affects the colours that it can display.

It would be attractive for a manufacturer to be able to say that on whatever device an observer displayed an image — a monitor, an ink-jet printer, a thermal-wax printer, a dye sublimation printer or a slide imager — the image would evoke substantially the same internal experience, factored by the different resolutions of the devices. Anyone who has worked with printers knows that a colour image looks different — often very substantially so — when printed on different printers.

The technology that is required to build this ideal is known as **device independent colour imaging**. The difficulty is that typical devices can reproduce quite limited ranges of colours: only very good monitors can display anything like a 1000-1 range of brightnesses; deeply saturated pigments are hard to find; and paints and pigments come in a surprisingly limited range of albedos. A 75-1 range from dead black to bright white is a good printer; among other things, the maximum brightness of a printed page depends on the whiteness of the paper, and papers with high albedos are difficult to produce and relatively expensive, as a visit to an office supply store will confirm.

Device independent colour imaging systems are built around two significant components:
Figure 1.25. Device independent colour imaging is a very old problem. Jan Vermeer was a painter particularly competent at rendering the effects of light and shade on complex surfaces. This picture, “Lady writing a letter with her maid,” is a beautiful rendering of sunlight in a room. Look at the writer’s left arm, which is shadowed by her body, and is dark as a result — why is the wall next to that arm bright? In fact, sunlight travelled in straight lines in 17th century Holland; the problem is that Vermeer needs to make the writer's arm look dark, and the paint has a fairly low range of albedoes. As a result, the best way to make it look dark is to place it next to something bright. People are generally poor at spotting errors in the rendering of illumination, so Vermeer has modified the distribution of illumination to make her arm look dark.

- **Colour appearance models** predict the appearance of coloured patches to observers in different states of adaptation. A typical colour appearance model takes X,Y,Z coordinates of a coloured patch and of an adapting field — which models, for example, the room in which the viewer sees the monitor — and constructs a prediction of the viewer’s internal experience.

- **Gamut mapping algorithms** which adjust the collection of colours required to produce an image to line up with the collection of colours that can actually be produced. Gamut mapping is difficult, because good solutions depend quite critically on the semantics of the image being viewed. For example, a good gamut mapping solution for images adjusts all colours reasonably evenly.
whereas gamut mapping business graphics usually requires that highly saturated colours remain highly saturated, but does not require accurate hue representations. Furthermore, human observers profoundly object to poor reproduction of skin colour.

With these components we could build a device independent colour imaging system for the museum problem. The museum, when it is digitizing its pictures, records an estimate of the state of adaptation of an observer in the gallery (usually to medium sunlight). It then records the X,Y,Z coordinates for each pixel in its picture.

When I decide to display this picture on my monitor, the display system must know the state of adaptation I expect in my office and the calibration of my monitor (i.e. what are the XYZ coordinates of the colour obtained by stimulating the red phosphor on the monitor at full blast?). It must apply a colour appearance model to the museum’s data, to predict what I would see in the museum. It must then use a gamut mapping algorithm to massage the result into the gamut into the range that can be displayed, and invert the colour appearance model and the monitor calibration to decide at what intensities to stimulate the phosphors.

All of these steps are uncertain; there is no universally accepted colour appearance model; there is no universally accepted gamut mapping algorithm; and monitor and printer calibrations tend to be poor (for example, most monitors have knobs on the front that the viewer can fiddle with; this makes the viewer happy, but the monitor hard to calibrate). The topic’s importance is growing with the growth of digital imaging systems. A good introduction appears in Fairchild’s book [?].

1.7 Notes

The use of colour in computer vision is surprisingly primitive. One difficulty is some legitimate uncertainty about what it is good for. John Mollon’s remark that the primate colour system could be seen as an innovation of some kinds of fruiting tree [] is one explanation, but it is not much help.

1.7.1 Trichromacy and Colour Spaces

Up until quite recently, there was no conclusive explanation of why trichromacy applied, although it was generally believed to be due to the presence of three different types of colour receptor in the eye. Work on the genetics of photoreceptors by Nathans et al. can be interpreted as confirming this hunch (see []), though a full explanation is still far from clear because this work can also be interpreted as suggesting many individuals have more than three types of photoreceptor [].

There is an astonishing number of colour spaces and colour appearance models available. We discourage the practice of publishing papers that compare colour spaces for, say, segmentation, because the spaces are within one-one transformations of one another. The important issue is not in what coordinate system one measures colour, but how one counts the difference — so colour metrics may still bear some thought.
Colour metrics are an old topic; usually, one fits a metric tensor to MacAdam ellipses. The difficulty with this approach is that a metric tensor carries the strong implication that you can measure differences over large ranges by integration, whereas it is very hard to see large range colour comparisons as meaningful. Another concern is that the weight observers place on a difference in a Maxwellian view and the semantic significance of a difference in image colours are two very different things.

1.7.2 Lightness and Colour Constancy

There has not been much recent study of lightness constancy algorithms. The basic idea is due to Land [1]; his work was formalised for the computer vision community by Horn [1]; and a variation on Horn’s algorithm was constructed by Blake [2]. The techniques are not as widely used as they should be, particularly given that there is some evidence they produce useful information on real images [3]. Classifying illumination vs albedo simply by looking at the magnitude of the gradient is crude, and ignores at least one important cue (very large changes must be illumination, however fast they occur); there is significant room for improvement.

The most significant case in colour constancy occurs when there are three classes of photoreceptor; others have been studied [4, 5, 6, 7], but this is mainly an excuse to do linear algebra.

Finite-dimensional linear models for spectral reflectances can be supported by an appeal to surface physics, as spectral absorption lines are thickened by solid state effects. The main experimental justifications for finite-dimensional linear models of surface reflectance are Cohen’s [8] measurements of the surface reflectance of a selection of standard reference surfaces known as Munsell chips, and Krinov’s [9] measurements of a selection of natural objects. Cohen [8] performed a principal axis decomposition of his data, to obtain a set of basis functions, and Maloney [10] fitted weighted sums of these functions to Krinov’s data to get good fits with patterned deviations. The first three principal axes explained in each case a very high percentage of the sample variance (near 99%), and hence a linear combination of these functions fitted all the sampled functions rather well. More recently, Maloney [11] fitted Cohen’s basis vectors to a large set of data, including Krinov’s data, and further data on the surface reflectances of Munsell chips, and concluded that the dimension of an accurate model of surface reflectance was of the order of five or six.

On surfaces like plastics, the specular component of the reflected light is the same colour as the illuminant. If we can identify specular regions from such objects in the image, the colour of the illuminant is known. This idea has been popular for a long time\(^2\). Recent versions of this idea appear in, for example, [12, 13, 14, 15].

There is surprisingly little work on colour constancy that unifies a study of the spatial variation in illumination with solutions for surface colour, which is why we were reduced to ignoring a number of terms in our colour model. There is substantial

\(^2\)Judd [16] writing in 1960 about early German work in surface colour perception refers to it as “a more usual view”.
room for research here, too.

1.7.3 Colour in Recognition

As future chapters will show, it is quite tricky to build systems that use object colour to help in recognition. A variety of effects cause image colours to be poor measurements of surface colour. Uniform colour spaces offer some help here, if we are willing to swallow a fairly loose evolutionary argument: it is worth understanding the colour differences that humans recognise, because they are adapted to measurements that are useful.

1.8 Assignments

Exercises

1. Sit down with a friend and a packet of coloured papers, and compare the colour names that you use. You will need a large packet of papers — one can very often get collections of coloured swatches for paint, or for the Pantone colour system very cheaply. The best names to try are basic colour names — the terms red, pink, orange, yellow, green, blue, purple, brown, white, gray and black, which (with a small number of other terms) have remarkable canonical properties that apply widely across different languages [1; 2; 3]. You will find it surprisingly easy to disagree on which colours should be called blue and which green, for example.

2. Derive the equations for transforming from RGB to CIE XYZ, and back. This is a linear transformation. It is sufficient to write out the expressions for the elements of the linear transformation — you don’t have to look up the actual numerical values of the colour matching functions.

3. Linear colour spaces are obtained by choosing primaries and then constructing colour matching functions for those primaries. Show that there is a linear transformation that takes the coordinates of a colour in one linear colour space to those in another; the easiest way to do this is to write out the transformation in terms of the colour matching functions.

4. Exercise 3 means that, in setting up a linear colour space, it is possible to choose primaries arbitrarily, but there are constraints on the choice of colour matching functions. Why? What are these constraints?

5. Two surfaces that have the same colour under one light and different colours under another are often referred to as metamers. An optimal colour is a spectral reflectance or radiance that has value 0 at some wavelengths and 1 at others. Though optimal colours don’t occur in practice, they are a useful device (due to Ostwald) for explaining various effects.
 - use optimal colours to explain how metamerism occurs.
• given a particular spectral albedo, show that there are an infinite number of metameric spectral albedoes.

• use optimal colours to construct an example of surfaces that look very different under one light (say, red and green) and the same under another.

• use optimal colours to construct an example of surfaces that swop apparent colour when the light is changed (i.e. surface one looks red and surface two looks green under light one, and surface one looks green and surface two looks red under light two).

6. You have to map the gamut for a printer to that of a monitor. There are colours in each gamut that do not appear in the other. Given a monitor colour that can’t be reproduced exactly, you could choose the printer colour that is closest. Why is this a bad idea for reproducing images? Would it work for reproducing “business graphics” (bar charts, pie charts, and the like which all consist of many different large blocks of a single colour)?

7. Volume colour is a phenomenon associated with translucent materials that are coloured — the most attractive example is a glass of wine. The colouring comes from different absorption coefficients at different wavelengths. Explain (1) why a small glass of sufficiently deeply coloured red wine (a good Cahors, or Gigondas) looks black (2) why a big glass of lightly coloured red wine also looks black. Experimental work is optional.

8. (This exercise requires some knowledge of numerical analysis). In section 1.5.2, we set up the problem of recovering the log-albedo for a set of surfaces as one of minimizing

\[| M_x l - p |^2 + | M_y l - q |^2 \]

where \(M_x \) forms the \(x \) derivative of \(l \) and \(M_y \) forms the \(y \) derivative (i.e. \(M_x l \) is the \(x \)-derivative).

• We asserted that \(M_x \) and \(M_y \) existed. Use the expression for forward differences (or central differences, or any other difference approximation to the derivative) to form these matrices. Almost every element is zero.

• The minimisation problem can be written in the form

\[\text{choose } l \text{ to minimize } (A l + b)^T (A l + b) \]

Determine the values of \(A \) and \(b \), and show how to solve this general problem. You will need to keep in mind that \(A \) does not have full rank, so you can’t go inverting it.

9. In section 1.5.2, we mentioned two assumptions that would yield a constant of integration.

• Show how to use these assumptions to recover an albedo map.
• For each assumption, describe a situation where it fails, and describe the nature of the failure. Your examples should work for cases where there are many different albedoes in view.

Programming Assignments

1. Spectra for illuminants and for surfaces are available on the web (for example http://whereisit?). Fit a finite-dimensional linear model to a set of illuminants and surface reflectances using principal components analysis, render the resulting models, and compare your rendering with an exact rendering. Where do you get the most significant errors? why?

2. Print a coloured image on a colour inkjet printer using different papers and compare the result. It is particularly informative to (a) ensure that the driver knows what paper the printer will be printing on, and compare the variations in colours (which are ideally imperceptible) and (b) deceive the driver about what paper it is printing on (i.e. print on plain paper and tell the driver it is printing on photographic paper). Can you explain the variations you see? Why is photographic paper glossy?

3. Fitting a finite-dimensional linear model to illuminants and reflectances separately is somewhat ill-advised, because there is no guarantee that the interactions will be represented well (they’re not accounted for in the fitting error). It turns out that one can obtain g_{ijk} by a fitting process that sidesteps the use of basis functions. Implement this procedure (which is described in detail in [?]), and compare the results with those obtained from the previous assignment.

4. Build a colour constancy algorithm that uses the assumption that the spatial average of reflectance is constant. Use finite-dimensional linear models. You can get values of g_{ijk} from your solution to exercise 3.

5. We ignore colour interreflections in our surface colour model. Do an experiment to get some idea of the size of colour shifts possible from colour interreflections (which are astonishingly big). Humans very seldom interpret colour interreflections as surface colour — speculate as to why this might be the case, using the discussion of the lightness algorithm as a guide.

6. Build a specularity finder along the lines described in section 1.4.