
Fall 1999, October 14 CS294, J. Malik

Lecture 14 (Segmentation Using Normlized Cuts, Part 3) DRAFT Notes by Alice Zheng

0. Announcements

Course Project

� Will start in early November.

Homework

� Start now to avoid clash with course project.

� Use Matlab. It is a much quicker prototyping language than C++ or C or Java.

1. Review

Previously, we have formulated the normalized cut problem as �nding the solution y to

the following generalized eigenvalue problem:

(D �W)y = �Dy (1:1)

where y is a vector of length N equal to the number of pixels in the images. W = fwijg is

a size NxN sparse symmetric matrix of edge weights between pixels i and j, and D is a

NxN diagonal matrix containing the row sums of W . i.e.

wij = wtexture
ij wcontour

ij � 0

Dii =
X

j

wij

where wtexture
ij and wcontour

ij are formulated using methods from previous lectures. Note

that D is positive de�nite by de�nition.

As an example, consider the following graph of edge weights:

Page 1

CS294-2, Prof. Jitendra Malik Lecture 14 (NCuts Part 3)

2 31

9

5

7 8

4 6

Fig. 1 Example: graph of edge weights between 9 pixels.

The strongly coupled pixel sets are f1; 2; 4; 5g and f3; 6; 7; 8; 9g. It is easy to spot the strongly

coupled pixels by looking at W . In each row, the entries with a much large weight than

the rest of the row correspond to strongly coupled pixels. For example, the row in W for

pixel 1 in the above graph might look like:

W1 = (0:9 0:9 0:1 0:8 0:92 0:05 0:2 0:01 0:05)

Trick 1.

Here is a trick that's used to convert generalized eigenvalue problems to standard

eigenvalue problems if the matrix D is positive de�nite, which is true in our case.

Introduce

z = D1=2y

then

y = D1=2z

(D �W)D�1=2z = �D1=2z

D�1=2(D �W)D�1=2z = �z

Page 2

CS294-2, Prof. Jitendra Malik Lecture 14 (NCuts Part 3)

2. Using y to �nd a partition of the image

Let fy1; y2; : : : ; y9g be the set of solutions to equation (1.1) applied to our example

above. Let f�1; �2; : : : ; �9g be the corresponding set of eigenvalues. For this problem, all

eigenvalues will be in the interval between 0 and 2. The trivial solution to the problem

is a vector of all ones, and the corresponding eigenvalue is 0. So assuming that the

eigenvalues are ordered in increasing order, we have

�1 = 0

y1 = (1 1 : : : 1)
T

All eigenvectors are orthogonal to each other. So

y1 � yi = 0; 2 � i � 9

i.e.

X
negative entries of yi =

X
positive entries of yi (2:1)

This suggests the following approach to dividing the pixels into two groups.

2.1 Straightforward approach

Recall the original formulation for the normalized cuts problem:

Norm cut(A;B) =
cut(A;B)

assoc(A; V)
+

cut(A;B)

assoc(B; V)

which is approximated by

yT (D �W)y

yTDy

Since we want the smallest normalized cut, we should pick the solution y which

corresponds to the smallest non-zero eigenvalue, i.e. �2. The two groups will then be

Page 3

CS294-2, Prof. Jitendra Malik Lecture 14 (NCuts Part 3)

GROUP A = fi : y2(i) > 0g

GROUP B = fj : y2(j) < 0g

This proves to work very well for images with only two groups.

Before continuing on, let us �rst make some observations regarding this problem.

� Eigenvectors y tend to be piecewise constant.

By piecewise constant, we mean the plot of yi vs. i should look something like the

following picture:

α

1 2

β

3 4 5 6 7 8 9

4α − 5β = 0

Fig. 2 Typical plot of eigenvector entries versus indices.

If the eigenvectors were not piecewise constant, then the thresholding at 0 in the above

algorithm would not make sense. If the values in the eigenvector were continuous, then

any thresholding value for dividing the pixels into groups would be too arbitrary.

From another point of view, if the image is not segmentable, then the eigenvectors will

look like a sine wave. This is should make sense intuitively. Think of the spring mass

analogy which we mentioned at the beginning of our discussion on normalized cuts. We

can view the whole image as a network of spring with point masses at each pixel. The

weight wij is then analogous to kij , the spring constant of the spring connecting point

masses i and j. If kij = wij is large, then the spring is sti�, and point masses i and j

are likely to move together when the system is perturbed by external force. The motion

Page 4

CS294-2, Prof. Jitendra Malik Lecture 14 (NCuts Part 3)

vector is analogous to the eigenvector yi. If the springs are sti�, the motion is continuous

across neighboring pixels; if the image is unsegmentable, then yi will resemble a sine wave

rather than a piecewise constant function.

2.2 Generalization to K groups

For the generalization of our 2-group algorithm to K groups, let us �rst look at the

other eigenvectors y3; y4; : : : ; y9. Figure 3 shows a sample image with piecewise constant

brightness values.

15 90

78 42

Fig. 3 Sample piecewise constant image with brightness as indicated.

Page 5

CS294-2, Prof. Jitendra Malik Lecture 14 (NCuts Part 3)

15 90

78 42

15 90

78 42

15 90

78 42

Partition by y2.Partion by y3.

Combined results.

Fig. 4 Sample partitions of Figure 3.

As shown in Figure 4, the eigenvector y3 can possibly partition the image di�erently

from y2, but this suggests that we combine the partition from all eigenvectors to form

the overall partition. Take the region with brightness value 78, for example. Since each

eigenvector is piecewise constant within this group, we can form a piecewise constant

vector in Zd for each pixel, where d is the number of eigenvectors we choose to use for

the partition. We can then use K-means to �nd clusters in Zd.

Page 6

CS294-2, Prof. Jitendra Malik Lecture 14 (NCuts Part 3)

Partition by y2.Partion by y3.

Combined results.

+1

-1

+1

-1

[-1]
[+1] [+1]

[+1]

[-1]
[-1]

[+1]
[-1]

Fig. 5 f(x; y) of each group in image.

Algorithm 2. Dividing an image into K groups using normalized cuts.

� De�ne f(x; y) = fy2(x; y); y3(x; y); : : : ; yd(x; y)g.

� Use K-means to �nd clusters in Zd.

One problem remains. To date, we do not yet have a satisfactory algorithm to choose a

value for K. There are two heuristics available follow in the case of normalized cuts. We

can use the magnitude of the eigenvalue �i to decide whether to include yi in our partition.

Alternatively, one can divide the image �rst into 2 groups using the straightforward

approach, then recursively apply the algorithm to further divide each of the two groups

separately.

Page 7

