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In this lecture we begin a summary of some statistical techniques that will be useful in
visual grouping problems. Generally, these fall into a few groups:

1. Maximum likelihood framework (\classical" or \objective" method)

2. Bayesian framework (\subjective" method)

3. Spectral graph theory

Today we focus on the �rst framework. Then, motivated by a segmentation problem, we
discuss mixture models and begin to apply the framework to them.

1 Maximum likelihood framework

1.1 The estimation problem

In the traditional estimation problem in statistics, we have a random variable X drawn
from some population. (For example, X could represent the height of a randomly chosen
Californian.) The population has some distribution, which is often assumed to have a special
form. Everyone's favorite continuous distribution is the Gaussian, or normal distribution,
which is expressed by1

f(x) =
1p
2��

e�
1

2
(x��� )

2

;

and abbreviated N(�; �2), where �, the mean, and �2, the variance, are the parameters of
the distribution. Suppose we take a sample of N values of the random variable, x1; : : : ; xN

1What this means is that the chance that X is between x and x + �x approaches f(x)�x as �x ap-
proaches 0.
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(or more shortly (xi)), chosen independently from one another (one says the values are
\independent, identically distributed" or \i.i.d."). From the sample, we wish to estimate
something about the distribution, such as � or �2 in the Gaussian.

It's not clear a priori what is the best way to estimate a given parameter. For example,
one might guess that the average of the xi estimates the mean �, but is this estimate better
than the median? Or the average of the minimum and the maximum of the xi?

1.2 Maximum likelihood method for the Gaussian

The maximum likelihood framework provides a way of choosing an estimator that is quite
good. Speci�cally, it is the best estimation asymptotically as the sample size N becomes
large. (Other estimators can be better for small N , but we will content ourselves with this
one.) For a proof of this property, see a statistics text; here we simply show the method of
determining the estimator.

For concreteness, we will assume our population is Gaussian, though the framework can
be used for any distribution. If we have a sample (xi) of size N , then the likelihood of
observing a particular xi is

P (xi) =
1p
2��

e�
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2

:

The likelihood of seeing all the data is
QN
i=1 P (xi). Viewing this as a function of the param-

eters, we de�ne

L (�; �; (xi)) =
NY
i=1

1p
2��
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2

:

Intuitively, this is how likely it is the population has parameters � and � given the sample
(xi). The maximum likelihood estimators for the parameters are the values �̂ and �̂ that
maximize L (�; �; (xi))

It is convenient (and equivalent) to maximize the \log-likelihood" l = lnL (�; �; (xi)).
We have

l =
NX
i=1

"
ln

1p
2�

� ln� � 1

2

�
xi � �

�

�2#
:

Note
@l

@�
=

1

�2

NX
i=1

(xi � �);

so if @l=@� = 0, then � =
P
xi=N . It's not hard to check this is indeed a minimum for l, so

the maximum likelihood estimator for the mean of a Gaussian is �̂ =
P
xi=N , the average of

the sample. This is not surprising, but it does mean no other estimate (such as the median)
can do better asymptotically.

With some further computation, we can see that the maximum likelihood estimator for
the variance is2 �̂2 =

PN
i=1

P
(xi � �̂)2=N .

2Those acquainted with the usual de�nition of sample variance may wonder why N is not replaced by
N � 1 in this expression. The discrepancy arises because the maximum likelihood estimator is best only
asymptotically. The estimate we get here is in fact biased, especially for small n.
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1.3 Maximum likelihood method for biased coin and die

Suppose we ip a coin that turns up heads with probability �. We'll now �nd the maximum
likelihood estimator for �. Take a sample of N ips (xi). Say we get n1 heads. Then the
likelihood is L(�; (xi)) = �n1(1��)N�n1 and the log-likelihood is l = n1 ln �+(N�n1) ln(1��).
One can check that l is minimized when

@l

@�
=

n1
�
� N � n1

1� �
= 0;

or � = n1=N . Again, this is an intuitively appealing answer.
Similarly, we can estimate the probabilities �1; : : : ; �6 of a biased die rolling numbers

1; : : : ; 6. We observe n1 ones, n2 twos, etc. If we do a similar computation (remembering to
maximize likelihood subject to the constraint

P
�i = 1), we get �̂k = nk=

P
nk.

2 Mixture models

2.1 Motivation: piecewise-constant segmentation problem

Suppose we have an image of pixels, each characterized by a single number indicating its
brightness. (For simplicity, we ignore color at the moment.) The image consists of various
regions representing objects that are piecewise constant in brightness. However, the image
will have \noise," so each region will have some uctuations. We wish to identify these
regions. This is the piecewise-constant segmentation problem.

2.2 Incomplete data

We assume that in region k of the image, the pixel brightness is N(�k; �
2

k). Now if we
already knew the exact position of the regions, we could use the method we've just described
to estimate brightnesses in each region. Of course, in the segmentation problem, we don't
have this information. We can think of each pixel as having two pieces of information: its
brightness xi and a label qi saying to which region it belongs. (For now, we will assume we
know there are K regions.) We know the �rst piece of information, but not the second. That
is, we are solving an estimation problem with incomplete data.

As another example, we could take a set of observations (xi; qi) for N people, where
each xi and qi represent the height and sex of a person, respectively. If we had only height
measurements, how could we determine the sex of the people measured? One process for
solving such problems is called expectation maximization (EM), which will be covered in the
next lecture.

2.3 Dependence between variables

In the height/sex example, we have a joint probability distribution P (x; q) with two variables.
We may wish to model this distribution by considering the distribution among males and
among females separately. That is, we write P (x; q) = P (q)P (xjq) (where P (q) is the
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distribution of q alone and P (xjq) is the distribution of x given the speci�c choice of q) and
represent this graphically:

Æ
��
x

Æ
��

?

q

More generally, we can have a distribution P (x; q) of two variables with q taking val-
ues 1; 2; : : : ; K with probability �1; : : : ; �K, and P (xjq = k) = fk(x;�k), where fk is the
distribution of x given q = k, and �k are its parameters. This is called a mixture model.

Incidentally, note that the graphical representation above can be extended to more vari-
ables. Thus
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indicates that we can write P (w; x; y; z) = P (w)P (xjw)P (yjx)P (zjx; y).

2.4 Maximum likelihood method with complete data

Say we wish to estimate the parameters �k and �k in a mixture model given a sample of
observations (xi; qi). As we have seen, our interest is in a sample with incomplete data
(missing qi in the segmentation problem), but the complete data situation is still useful to
develop notation and familiarity with the problem.

We'll �nd it convenient to use a (perhaps strange) notational convention: regard the
value of q as a vector with K components, and represent the value k by putting a 1 in the
kth component and 0's in all other components. Thus the column vector (0; 0; 1; 0 : : : ; 0)t

represents 3, and qk, the kth component of q, is 0 unless q represents k.
Now the distribution function may be written

P (x; q; �k; �k) =
KY
k=1

[�kfk(x;�k)]
qk

so the log-likelihood function is

l = lnL(�k; �k; xi; qi)

= ln
NY
i=1

KY
k=1

[�kfk(xi;�k)]
qki

=
NX
i=1

KX
k=1

qki ln�k + (terms not involving �k)

=
KX
k=1

nk ln�k + (terms not involving �k)
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where nk is the number of instances of qi's taking value k. Maximizing this with respect
to the �k and subject to the restraint

P
�k = 1 we see the �k must be chosen in the same

proportions as the nk. (For example, substitute �2 = 1 � �1 � �3 � � � � � �K into the last
expression, and note @l=@�1 = 0 implies n1=�1�n2=�2 = 0. This can be done for all pairs of
�i.) Hence the maximum likelihood estimators are �̂k = nk=

P
nk, which is what we would

expect. One could perform a similar procedure to maximize the parameters �k (given a
choice of distributions fk).
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