CS 294-2 Grouping and Recognition 9/13/99
Lecture 7 (Gibbs Distribution, MRF, MCMC) Scribes Notes by Vito Dai

Gibbs Distribution

Proving Gibbs Distribution Implies Markov Random Field
1. P(X=a)>0
Trivial because of exponential
2. P(X, =x|X, =x,r#s)=P(X, =x|X, =x,r0G,)

P(XS = XX, =x.,r# s)

_ P(XS =X, X, =X, T ¢s)
P(X, =x,,r#s)
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Look at the handout given in class for a detailed proof.
In summary, at the end of the day, sites without s cancel.

Back to the I mage Segmentation Problem

Our image model
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» Given observed image g, find a probability distribution of true image f, and the line
process|.



The line process estimate solves the image segmentation problem.
The true image estimate solves the image restoration problem.
Both problems are simultaneously solved!

* Note: only works for piecewise smoothe images [1 no textures

Our model assumes;

-U(f )T
PFE=fL=1)=2
g="f+n

Our solution:
P(X =ajG=0g)
_P(X=wG=g)

prior distribution
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normalizing constant
Interesting term:

P(G:g|X :w)
=P(=1-g)
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Where we assume every pixel has independent noisesn ~N (4, 0)
e.g. Poisson process hoise in CCDs




Result:
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is the posterior probability of aparticular f, | given g. Note thisis also a Gibbs
distribution!

MAP (maximum a posteriori) Estimate

If you insist on asingle answer then return f*, |* that maximizes

H—Up(f*,l*)/TE

P(X =w*|G = g):%epr oz

or equivalently, minimizes the energy function

U, (f*,1%)

Problem: f, | spaceisvery large!!

Solution: Construct samplesof f, | in this space with high probablity

Technique:  Markov Chain Monte Carlo (MCMC) lets you sample the posterior
distribution

Sampling a Distribution

Q: How do we represent a probability distribution with sampling?
A: Create many samples drawn from that distribution and count!

Example:

Q: P(X>17)=7?
A Create samples X; drawn from the distribution of X.

P(X >17)= N(X'—>17)
total
Count the number of samples greater than 17 and divide by total number of

samples.



Generating the Samples

Primitive random number generator X ~ U(0,1).
TocreateY ~ U(ab) use

Y=a+(b-a)X
In general we can use the cumulative distribution function
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X’ x* X

1987 — Stochastic Simulation (Ripley) for generating samples for “standard stuff’ in
textbooks

Markov Chain Monte Carlo (MCMC) Technique

» Define a suitable Markov Chain whose equilibrium distribution is the desired posterior
distribution

* Generate samples from the Markov Chain

Markov Chain Basics

P(Xt = Y|Xt—1’ Xz Xo): P(Xt = y|Xt—1)

Example:

This transition probabilities can be written as a matrix
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If we write the probability distribution at timet as p(t) then

p(t+1) = p(t)P

For example if the drunk’s walk starts at position 2 we denote
p(t=0)=[0100Q]

p(t) is an evolving probability distribution which is a row vector that sums to one
The equilibrium distribution p(infinity) =t satisfies

TP =Tt
and is a left eigenvector of P with eigenvalue one.

Finding the Markov Chain Corresponding to the Posterior Distribution

Metropolis Sampler — Rosenberg, Teller, Teller
Heat Bath ( Gibbs Sampler ) — “rapidly mixing” determines convergence rate

Metropolis Sampler

We are given that the posterior distribution is of the form f(x)/Z
We have a proposal kernal satisfying K(x,y) = K(y,X)
Calculate f(y)

Accept transition with probability = min {1, f(y)/f(x) }
This eventually converges to the “right thing”
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