
CS 294-2 Grouping and Recognition 9/13/99 
Lecture 7 (Gibbs Distribution, MRF, MCMC) Scribes Notes by Vito Dai 

 
Gibbs Distribution 
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Proving Gibbs Distribution Implies Markov Random Field  
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Trivial because of exponential 
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 Look at the handout given in class for a detailed proof. 
 In summary, at the end of the day, sites without s cancel. 

 
 

Back to the Image Segmentation Problem 
  
Our image model 
 
 
 
 
 line process l not observed 
 
Goal 
 

• Given observed image g, find a probability distribution of true image f, and the line 
process l. 

 

true image 
f 

observed image 
g 
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 The line process estimate solves the image segmentation problem. 
 The true image estimate solves the image restoration problem. 
 Both problems are simultaneously solved! 
 

• Note: only works for piecewise smoothe images ⇒ no textures 
 
 
Our model assumes: 
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Our solution: 
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Interesting term: 
 

( )

( )

( ) 










 −−−
=

−==

==

2

2

2

)(
exp

2

1

σ
µ

σπ

ω

fg

gfnP

XgGP

n

 
 
 Where we assume every pixel has independent noise η ~ N ( µ , σ ) 
 e.g. Poisson process noise in CCDs 
 
 
 

prior distribution 

normalizing constant 



Result: 
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 is the posterior probability of a particular f, l given g. Note this is also a Gibbs 
distribution! 
 
MAP (maximum a posteriori) Estimate 
 
 If you insist on a single answer then return f*,  l* that maximizes 
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 or equivalently, minimizes the energy function 
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 Problem: f , l space is very large!!  

Solution: Construct samples of f , l in this space with high probablity 
Technique: Markov Chain Monte Carlo (MCMC) lets you sample the posterior 

distribution 
 
 
Sampling a Distribution 
 
 Q:  How do we represent a probability distribution with sampling? 
 A:  Create many samples drawn from that distribution and count! 
 
 Example: 
 
 Q:  P(X > 17) = ? 
 A:  Create samples Xi drawn from the distribution of X. 
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 Count the number of samples greater than 17 and divide by total number of 

samples. 
 



Generating the Samples 
 
 Primitive random number generator X ~ U(0,1). 
 To create Y ~ U(a,b) use 
  
 Y = a + ( b – a ) X 
 
 In general we can use the cumulative distribution function 
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 1987 – Stochastic Simulation (Ripley) for generating samples for “standard stuff” in 
textbooks 
 
Markov Chain Monte Carlo (MCMC) Technique 
 

• Define a suitable Markov Chain whose equilibrium distribution is the desired posterior 
distribution 

• Generate samples from the Markov Chain 
 
Markov Chain Basics 
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 Example:  

 

x x x x 
1 2 3 4 
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This transition probabilities can be written as a matrix 
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 If we write the probability distribution at time t as p(t) then 
 
 p(t+1) = p(t)P 
  
 For example if the drunk’s walk starts at position 2 we denote 
 p( t = 0 ) = [0 1 0 0] 
 
 p(t) is an evolving probability distribution which is a row vector that sums to one 
 
 The equilibrium distribution p(infinity) = π satisfies 
  πP = π 
 and is a left eigenvector of P with eigenvalue one. 
  
Finding the Markov Chain Corresponding to the Posterior Distribution 
  
 Metropolis Sampler – Rosenberg, Teller, Teller 
 Heat Bath ( Gibbs Sampler ) – “rapidly mixing” determines convergence rate 
 
Metropolis Sampler 
 
 We are given that the posterior distribution is of the form f(x)/Z 
 

1. We have a proposal kernal satisfying K(x,y) = K(y,x) 
2. Calculate f(y) 
3. Accept transition with probability = min {1, f(y)/f(x) } 
4. This eventually converges to the “right thing” 

 
 
 


