IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988 849

Hierarchical Chamfer Matching:

A Parametric Edge Matching
Algorithm

GUNILLA BORGEFORS

Abstract—Matching is a key problem in digital image analysis and
edges are perhaps the most important low-level image features. Thus
good edge matching algorithms are important. This paper presents such
an algorithm, the hierarchical chamfer matching algorithm. The al-
gorithm matches edges by minimizing a generalized distance between
them. The matching is performed in a series of images depicting the
same scene, but in different resolutions, i.e., in a resolution pyramid.
Using this hierarchical structure reduces the computational load sig-
nificantly. The algorithm is r bly simple to impl t, and it will
be shown that it is quite insensitive to noise and other disturbances.
This new matching algorithm has been tested in several applications.
Two of them will be briefly presented here. In the first application the
outlines of common tools are matched to gray-level images of the same
tools. Overlapping occurs. In the second application lake edges from
aerial photographs are matched to lake edges from a map. Translation,
rotation, scale, and perspective changes occur. The hierarchical cham-
fer matching algorithm gives correct results using a reasonable amount
of computational resources in all tested applications.

Index Terms—Aerial image registration, camera model, digital im-
age processing, distance transformations, edge matching, resolution
pyramids, robot vision.

I. INTRODUCTION

ATCHING is a key problem in computer vision,
image analysis, and pattern recognition: objects,
units, or other features in the image must be recognized
and named. Often the exact position of those entities must
also be known. The problem is usually aggravated by
noise and unavoidable errors in the preprocessing of the
images, e.g., segmentation and edge extraction. Differ-
ences between images due to translation, rotation, scal-
ing, and perspective must often be taken into account.
Matching methods can be loosely divided into three
classes: algorithms that use the image pixel values di-
rectly, e.g., correlation methods; algorithms that use low-
level features such as edges and corners; and algorithms
that use high-level features such as identified (parts of)
objects, or relations between features, e.g., graph-theo-
retic methods.
Methods that use the image pixel values directly are
very sensitive to any change between images, e.g., a
modest shift in illumination may make matching between

Manuscript received December 30, 1986; revised May 5, 1987.

The author is with the Swedish Defence Research Institute, Box 1165,
S-581 11 Linkdping, Sweden.

IEEE Log Number 8823603.

otherwise equal scenes impossible. The same structures
in images from different sensors cannot be identified.
High-level matching methods are very insensitive to these
disturbances. The drawback is that high-level features
must first be extracted and identified and that is, in most
cases, a difficult matching problem in itself.

The matching method presented here, called the hier-
archical chamfer matching algorithm (HCMA), is on an
intermediate level. It matches edge points or other low-
level feature points, extracted from the digital images. The
HCMA does not only determine the best match (or no
match) and the corresponding position in the image, but
it also gives a measure of the goodness of the match that
is easy to interpret.

As the HCMA matches edge points, the images to be
matched must first be preprocessed by an edge extraction
algorithm. There are many such algorithms, but the ideal
one, that finds all edge points but no non-edge points, is
yet to be discovered. (Indeed that may not be possible. It
may not even be possible to define the desired output of
such an algorithm in a reasonable way.) Thus any edge
matching algorithm must be able to handle imperfect data.
Edge extraction will not be discussed further here. We
suppose that an adequate algorithm is available.

Chamfer matching was first proposed in 1977 [2]. It is
a technique for finding the best fit of edge points from two
different images, by minimizing a generalized distance
between them. The edge points of one image are trans-
formed by a set of parametric transformation equations,
that describe how the images can be geometrically dis-
torted in relation to one another. The original version of
the chamfer matching algorithm is useful only in a limited
number of applications. It is a fine-matching method, that
needs a good start hypothesis of the transfomation that
brings the edges into correspondence. No further work on
the chamfer matching seems to have been published (ex-
cept [3]). However, the original idea has several good
properties, the most important one being the ability to
handle imperfect (noisy, distorted, etc.) data.

The original chamfer matching idea has now been de-
veloped into a universally useful edge matching algo-
rithm. First the matching measure, i.e., the measure of
correspondence between the pattern to be matched, has
been improved [3]. The result of this improvement is

0162-8828/88/1100-0849501.00 © 1988 IEEE

850

fewer false matches. The improved algorithm is presented
in Section II. The second more important improvement is
that the algorithm has been imbedded in a resolution pyr-
amid. The matching is done not only in the original image
resolution, but in a series of images, where each image is
a representation of the original scene at a lower resolu-
tion. The matching will start in very low resolution and
the low resolution results will guide the computations at
finer levels. This multiresolution approach will speed up
the computations considerably, so much so that matching
problems that could not be solved with the single resolu-
tion algorithm (as the computational load was too heavy)
can now be solved using quite moderate computation
times. Large parts of the computations can be performed
in parallel. The HCMA can thus be implemented in a very
efficient way, using hardware capable of parallel compu-
tations. However, even the unsophisticated implementa-
tion used to develop and investigate the algorithm is not
prohibitively slow. The hierarchical algorithm is de-
scribed in Section III.

The algorithm can be adapted to different matching
tasks. One type of application is image to image match-
ing. Examples are the first step in a stereo algorithm,
analysis of image sequences, and change detection.

Another type of application is template to image match-
ing: identifying and locating prespecified objects in digi-
tal images. One example, recognition of common tools,
is shown in Section IV. The camera is fixed. Thus, only
translation and rotation of the templates are necessary.
Overlapping occurs. Other examples of applications of
template to image matching are target detection and iden-
tification, robot vision, and identification of organs or cer-
tain types of cells in biomedical imagery.

Yet another type of application is image to symbolic
image matching (i.e., matching two very different images
depicting the same scene). This type of application is il-
lustrated in Section V, where the example is registration
of aerial photographs. Registering an aerial image is
equivalent to transforming it into the map coordinate sys-
tem. The matching algorithm is used to identify the trans-
formation. The photograph is distorted, not only by trans-
lation and rotation, but also by scale and perspective
changes. All these six degrees of freedom, together with
noise, complicate the matching. If the algorithm performs
well in this complex case (which it does) it will also per-
form well in many other applications. Other examples of
image to symbolic image matching are navigation using
terrain data, and presentation and interpretation of mul-
tisensor data.

II. Basic CONCEPTS

The basic algorithm, used at each resolution level, will
be described in this section.

Two binary images, consisting of feature and nonfea-
ture points, are to be matched. The feature can be any
feature visible in both images, e.g., edges (used here),
corners, bright spots, or areas with a certain texture. The

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

two images are not treated symmetrically by the HCMA.
For reasons that soon will become apparent one image is
called the predistance image and the other the prepolygon
image. In some applications, the assignation of the two
images is arbitrary. In other applications a certain choice
may be advantageous, or even necessary.

A. Distance Transformation

In the predistance image, each non-edge pixel is given
a value that is a measure of the distance to the nearest
edge pixel. The edge pixels get the value zero. The true
Euclidean distance is resource demanding (time, mem-
ory) to compute, therefore an approximation is used. The
operation converting a binary image to an approximate
distance image is called a distance transformation (DT).
It is important that the DT used in the matching algorithm
is a reasonably good approximation of the Euclidean dis-
tance, otherwise the discriminating ability of the match-
ing measure, computed from the distance values, be-
comes poor.

The DT used in the HCMA has been developed by the
author; see [4], [6]. This DT uses iterated local opera-
tions. The basic idea is that global distances in the image
are approximated by propagating local distances, i.e.,
distances between neighboring pixels, over the image. The
propagation of local distances can be done either in par-
allel or sequentially. Sequential DT’s are known as
“‘chamfer’’ distances, hence ‘‘chamfer matching.”” A 3
X 3 pixel neighborhood is used. The two local distances
in a 3 X 3 neighborhood are the distance between hori-
zontal/vertical neighbors and between diagonal neigh-
bors. In the original algorithm the values 2 and 3 were
used, respectively. With these values the maximum dif-
ference from the Euclidean distance becomes about 13
percent. If the values 3 and 4 are used instead, the max-
imum difference is reduced to 8 percent. The well-known
city block distance [11] has a maximum difference of 59
percent [6].

In [3] the city block and the 3-4 DT were compared to
the Euclidean distance. The 3-4 DT was shown to be good
enough, whereas the city block DT was not. Using the
Euclidean distance itself is usually not necessary, as the
edge points are influenced by noise. It is a waste of effort
to compute exact distances from inexact edges.

In the binary edge image each edge pixel is first set to
zero and each non-edge pixel is set to infinity. If the DT
is computed by parallel propagation of local distances,
then at each iteration each pixel obtains a new value using
the expression:

vf; = minimum (0f2!;_, + 4, 0f7!; + 3,
Uf:ll,jﬂ + 4,
vf-‘].ll + 3, vf-‘_/-_l, vfﬁﬂ, + 3,

k-1 k=1
virij-1 t 4 vin; + 3,

(1)

k-1
Uisyj+1 + 4),

BORGEFORS: HIERARCHICAL CHAMFER MATCHING

where vf»‘,,» is the value of the pixel in position (i, j) at
iteration k. The iterations continue until no value changes.
The number of iterations is proportional to the longest dis-
tance occurring in the image.

The sequential DT algorithm also starts from the zero/
infinity image. Two passes are made over the image, first
““forward’’ from left to right and from top to bottom; and
then ‘‘backward’’ from right to left and from bottom to
top:

Forward:
fori =2, ---, rows do
forj =2, -+, columns do
v;; = minimum (v, ;_, + 4, v;_; + 3,
Vicij 4 050 + 3, v5).
Backward:
fori =rows — 1, .-+, 1do
forj = columns — 1, - -+, 1 do
v;; = minimum (v;;, v; 4+, + 3,

Vicrj-1 t 4 Uip1; + 3, 000541 + 4).
(2)

B. Matching Measure

In the prepolygon image the edge pixels are extracted
and converted to a list of coordinate pairs, each pair being
the row and column numbers of an edge pixel. From this
list the edge points that are actually used are later chosen
according to some criterion, which is application depen-
dent. The list of chosen points is henceforth called the
polygon, even though the points may be scattered or rep-
resenting several polygon segments.

The polygon is superimposed on the distance image;
see Fig. 1. An average of the pixel values that the polygon
hits is the measure of correspondence between the edges,
called the edge distance. A perfect fit between the two
edges will result in edge distance zero, as each polygon
point will then hit an edge pixel. The actual matching
consists of minimizing this edge distance. To make this
minimization as simple as possible, the edge distance
function should be as smooth and convex as possible.
Also, the optimal position must, in some sense, really be
the position of best fit..

The root mean square average (abbreviated r.m.s.) was
chosen for the matching measure:

2
i

v

W —
S =
AM3

i=1

where v; are the distance values and n the number of points
in the polygon. The average is divided by three to com-
pensate the unit distance three in the DT. Note that the
value actually used in the algorithm is the sum of the
squares, which is integer. The real number is computed

851

Y

re / /% /|3 /¥
/¥ N3 /3 A#
8 /|3 ol J o /3 ’
(3o N2 /3//3/
o N /e v/ 32 /0 /

7
DAY v VA VEVENS
o /37 % y SV EVEVE
Fig. 1. Computation of the edge distance. The polygon representing an

edge is placed over the distance image. The r.m.s. average of the pixel
values that are hit, divided by 3, is the edge distance, in this case 1.12.

14

only for the convenience of the interpreter of the results
and to compare matches where the number of polygon
points are different.

The original chamfer matching algorithm used the
arithmetic average. Our choice of the r.m.s. is explained
in [3]. There four different ‘‘averages’ were compared:
median, arithmetic, r.m.s., and maximum. The r.m.s.
was found to give significantly fewer false minima in the
edge distance function than any of the other averages. The
test was admittedly heuristic, but quite extensive and
hopefully general enough. To give a theoretical proof of
the superiority of the 3-4 DT and the r.m.s. is probably
impossible, as the number of matching configurations is
infinite.

C. Optimal Positions

Each position of the polygon, determined by the trans-
formation equations, corresponds to an edge distance. The
position with the minimal edge distance is defined as the
position with the best fit. The transformation equations
that change the position of the polygon points must be
parametric, i.e., the polygon position is described by a
number of parameter values. In the simplest case the
transformation is translation. A common case is transla-
tion and rotation, i.e., three parameters. Let (x, y) be the
polygon coordinates and (X, Y) the position in the dis-
tance image. The transformation equations for translation
and rotation become:

X = cx + cos (rot)x — sin (rot)y

and
(4)

where rot is the rotation angle and cy and cy are the trans-
lation parameters in the X- and Y-directions, respectively.
The (X, Y) coordinates are usually not integers. Thus,
they must be rounded to the nearest integer values.
Finding the optimal polygon position is equal to finding
the global minimum of a multidimensional function,
where each dimension corresponds to a parameter in the
polygon transformation equations. Unless the” matching
situation is very simple, the multidimensional function

Y = ¢y + sin (rot)x + cos (rot)y,

852 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

Fig. 2. A toy example to illustrate the matching algorithm. The five-point
configuration to the right is searched for in the horse image (85 X 85
pixels).

that is to be minimized will have many local minima aside
from the global one. A toy example has been prepared to
illustrate this difficulty. Consider the outline of a horse to
the left in Fig. 2. A polygon consisting of five points, to
the right in Fig. 2, was matched to this image. The pol-

gon represents the horse’s nose. A distance image was
computed from the horse’s outline. The edge distance was
computed for every possible translational polygon posi-
tion within the distance image. In Fig. 3 all local minima
of the two-dimensional edge distance function have been
identified (black dots). There is only one position with
perfect fit (the nose), but there are local minima all along
the horse’s edge. All these local minima will disturb any
search algorithm used to find the global minimum. The
total number of minima in Fig. 3 is 65. If the original
matching measure, chamfer 2-3 DT and arithmetic aver-
age, would have been used, then the number of local min-
ima would have been 115.

It must be pointed out that this toy example is more
difficult than almost any realistic example. Five points
from a very small area carry too little information. If more
points were searched for, or the points more spread out,
the number of local minima would decrease dramatically.
However, the example does illustrate the difficulties that
appear even in realistic applications. The properties of the
edge distance function in general are such that to find the
global minimum, the minimization must be started very
close to the optimal position. Thus, searches must be
started in a large number of different positions, so that at
least one of them is close enough to the optimal position.

The averaging in the computation of the edge distance
makes the matching measure relatively tolerant to minor
differences between edges. However, when the matching
is inexact, the global minimum must occur at a position
that can be accepted as actually being the best match. Fig.
4 shows four examples of resulting optimal matches. The
continuous lines are lake edges from a map and the dotted
lines are noisy lake edges extracted from an aerial pho-
tograph (See Section V for details of this application).
The figure shows that the optimal positions, found with
reasonable effort, are acceptable matches, even though the

Fig. 3. The local minima of the edge distance function for the example in
Fig. 2. The global minimum is the one represented by a bigger patch.

dotted edges are severely disturbed (parts missing and
broken up into several contours).

III. HIERARCHICAL ALGORITHM

This section describes the imbedding of the.chamfer
matching algorithm into a hierarchical structure, a reso-
lution pyramid. A resolution pyramid includes not only
the original digital image, but also a number of versions
of it in lower resolutions, [1], [10].

The search for the optimal position, as defined by the
matching measure in Section II, will be made in a reso-
lution pyramid where each level consists of a representa-
tion of the distance image. The search will start at a very
low resolution and the results from the low resolution
matching will guide the computations at finer levels. In
low resolution the computations are fast and noise and
irrelevant small features are averaged out. On the other
hand the image data are coarse and thus not very accurate.
In high resolution the data are accurate, but perhaps noisy,
and computations may be slow. Ideally only final adjust-
ments are made in high resolution.

There were several problems in expanding the algo-
rithm to a resolution pyramid. First, care has to be taken
in the construction of the resolution pyramid itself, Section
III-A. Perhaps the most difficult problem is the compu-
tation of suitable step-lengths for the parameters in the
image transformation equations. If the steps are too big
the final match will be poor. If the steps are to small the
algorithm will be slow and will perhaps not converge to
the optimum. This step-length problem also occurs in the
single-resolution algorithm, and in fact in all parametric

BORGEFORS: HIERARCHICAL CHAMFER MATCHING

3

Fig. 4. The optimal positions for some fuzzy lake edges from an aerial
photograph (dotted) in the map (solid).

matching algorithms. One solution of this problem is out-
lined in Section III-C.

As the example in Section II showed, the edge distance
function to be minimized at each resolution level is usu-
ally nonconvex and have many local minima, apart from
the global one. A simple optimization strategy, which
finds a close local minimum, is used, Section III-E. If the
start positions are too few, or unsuitably placed, the op-
timal position will not be found. If they are very many
the HCMA will become slow. However, the problem of
chosing start positions, Section III-D, is not too difficult,
as many positions can be investigated quickly in low res-
olution. The choice of the resolution level where the com-
putations should start is also important.

As the search for the optimal position is started in very
many positions, an effective way of rejecting bad posi-
tions early (i.e., in low resolution) must be found. If good
rejection criteria cannot be found, then imbedding the al-
gorithm into a hierarchical structure is of no real value.
This is a key problem, which has no simple solution. The
heuristic rejection criteria used here, Section III-F, have
been effective in all tested applications.

A. Resolution Pyramids

The most common resolution pyramid is constructed in
the following way. The original image is the bottom, zero,
level of the pyramid. From this level the next, first, level
is created by letting each block of four pixels be repre-
sented by one pixel at the next level. The single pixel in

853

the upper level is called the ‘‘father’” and the four pixels
in the lower level are called the ‘‘sons.’’ If the image is
a gray level image, then the value of father is an average,
usually arithmetic or median, of the values of the sons.
The new pyramid level is itself used to create a new level.
The process is repeated until only one pixel is left.

The image that will be converted into a pyramid in the
HCMA is the binary predistance edge image. For binary
images the rule used for creating the pyramid is not self-
evident, as the average value of the sons must be trans-
formed to zero or one. The only acceptable rule is: if any
one of the sons is a one, then the father becomes one. The
resulting pyramid is called an OR-pyramid, as the rule is
equivalent to the logical operation OR. This rule ensures
that all connected edges are connected at all resolutions
and that no object, or even isolated point, in the predis-
tance image disappears, [12]. The pyramid created from
the edge image is henceforth called the edge pyramid. The
lowest resolution levels in the pyramid are usually not
used, as they are too coarse to contain any useful infor-
mation.

The chamfer 3-4 DT, Section II-A, is applied to each
level of the binary edge pyramid. Thus a pyramid of dis-
tance images, a distance pyramid, is created.

The distance pyramid could also have been computed
in at least two other ways. It could be computed from the
bottom level distance image directly, by averaging, with-
out creating the edge pyramid. It could also be computed
from the original gray-level image: first the image is con-
verted to a pyramid, then the edges are extracted at each
level, and finally the DT is applied. The first of these al-
ternative methods is less computationally complex than
the chosen one (no intermediate pyramid), but the other
one is more complex (unless the edge extraction algorithm
is very simple).

Both these alternatives are unsuitable. Let us call the
three constructions ‘“HCMA pyramid,’’ ‘‘average pyra-
mid’’ and ‘‘gray-level’’ pyramid. In the HCMA pyramid
it is obvious which fathers have a piece of an edge in any
of their great-great. . .grandsons (the zero ones) and
which fathers do not (the nonzero ones). In the average
pyramid however, the averaging will hide the edges. If
the edges are one pixel thick, then there will be no zero
pixels at the 1st and following levels. This smearing can
and will cause difficulties: Suppose that the start position
of the polygon is perfect, i.e., the edge distance is zero
at the original level of the distance pyramid. In the HCMA
pyramid, the edge distance will be zero at all levels. In
the average pyramid the edge distance will be greater
than zero at all but the Oth level. This is not only unnat-
ural, as the position is correct, but it also makes the
matching algorithm inconsistent, i.e., an optimal start po-
sition may end in a non-optimal position. Inconsistent al-
gorithms may easily fail. The same problem occurs for
the gray-level pyramid: there is no guarantee that the
edges will be found at exactly the same positions at all
levels and thus no guarantee that the algorithm is consis-
tent.

854

The edges in the HCMA pyramid does become thicker,
and thus blurred, at low resolutions. However, the quality
of the low-level results are unimportant, as long as the
pyramid construction ensures that the final results, always
computed at the best resolution level, are optimal. Con-
vergence and consistence of the matching algorithm will
be discussed in Section III-G.

B. Input Data and Transformation Equations

The input data to the HCMA are: the prepolygon im-
age; the approximate transformation equation parameter
values, (i.e., the approximate position of the polygon) to-
gether with an estimate of the accuracy of the approxi-
mation; and the predistance image.

Edges are extracted from the predistance image and a
distance pyramid is created. If the same predistance im-
age is used repeatedly, then storing the ‘‘ready-to-use”’
distance pyramid is preferable, even though this requires
more memory, as it will speed up the algorithm.

Edges are also extracted from the prepolygon image
(unless the polygon is a template). In most cases it is nei-
ther necessary nor desirable to use all edge points. A suit-
able application dependent set of edge points is chosen
and becomes the polygon. This polygon can consist of a
set of isolated points, a few short edge segments, or a
continuous contour. If the two images are to be brought
into the same coordinate system, then the polygon points
should be scattered over the whole image, as the corre-
spondence will probably be best in areas close to polygon
points (Section V). If a certain object is searched for in
an image, then the polygon should be a template, i.e., an
ideal outline of that object, rather than edges extracted
from an image, (Section IV).

The polygon origin should be located in a suitable po-
sition. A natural choice is the center of the smallest rect-
angle enclosing the polygon points. Other origins that
could be considered are the center of gravitation and the
center of the ellipse of inertia. If the polygon covers a
large part of the prepolygon image, then the center of this
image would probably be the best choice.

The number of parameters in the transformation equa-
tions is usually 2 to 6. If the polygon point is (x, y) and
the position of that point is (Xr, Yr), then the equations
become

Xr =PTX (pi, P2, *** 2 P X,),

and

Yr = PTY (Pl’p2’ T s Pes X, y)s (5)

where PTX and PTY are the polygon transformation
equations for the X and Y coordinates respectively, and Di
are the parameters. The values of Xr and Yr are not de-
pendent on the current pyramid level. To determine which
pixel (X,) in the distance image that is hit at each level,
Xr and Yr are rounded to the appropriate resolution. At
level n the formulas are

Xr + 2" — + 2" —
X[Z e ay <[220

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

C. Parameter Step-Lengths

The choice of parameter step-lengths is a crucial part
of the HCMA. A general solution to this different prob-
lem is outlined here.

In the optimization algorithm, the position of the
polygon is changed by changing the parameter values p,
(5) in discrete steps. To ensure a good match, the polygon
position should change very little for each parameter
change (as the edge distance function is complex). From
the matching point of view, two positions differ if at least
one polygon point, (X, Y) in (6), hits a different distance
image pixel. The smallest step in parameter space that
actually changes the position must be determined. The size
of this step is computed for each parameter separately, the
other parameters being constant. This strategy is powerful
enough for our purposes. The computed value is called
parameter step-length.

It is easy to determine step-lengths for the translation
parameters cx and cy. At the original level of the pyramid
the step-lengths are one pixel, i.e., one distance unit. One
step in parameter cy is equivalent to shifting the polygon
one pixel down in the distance image. At the next level
the pixels are twice as large. Therefore, to change the
polygon position, the step-length must be two distance
units. At level n in the pyramid the translational step-
length is 2".

For other parameters, e.g., for rotation, scale, or per-
spective, the situation is more complex. Translation and
rotation change the position of the polygon, but not its
size or shape. Scale changes the size and perspective
changes both the position, size and shape of the polygon.
The step-length of one nontranslation parameter depends
on the values of all nontranslation parameters. It also de-
pends the size and shape of the polygon and on the pyr-
amid level. Exact determination of the step-lengths be-
comes impractical. Thus approximations are used. In most
cases the polygon points farthest from the polygon origin
will change more than (or as much as) other points when
the parameters change. Therefore, the polygon point with
the largest distance to the origin will be used in the ap-
proximation. This point is denoted (max x, max y).

If fis a differentiable function, and d a small number
then

flx +d) = fx) + d*¥'(x),
ie, flx + d) — f(x) =ld*'(x). (7)

Insert the PTX-equation (5) in (7). The change in Xr(max
X, max y) when the parameter p; is changed to p; + d can
be approximated by:

|d*P7XL,(P1, “**,Di """, Pn, Maxx, maxy)‘.

(8)

A similar expression approximates the change in PTY.
During the optimization one parameter step is taken
both in the positive and the negative direction (+d and
—d). The position of (max x, max y) will change for at
least one of these new positions if the change in Xr or Yr

BORGEFORS: HIERARCHICAL CHAMFER MATCHING

is larger than 0.6 * 2" at pyramid level n. The smallest
step df in parameter p; to change X (max x, max y) in (6)
is thus [using (8)]:

e 0.6 *2"

(9)

3
5;,' PTX (p, max x, max y)

and the smallest step d{ to change Y is determined by a
corresponding expression. The approximate and used step-
length for parameter p; is the minimum of d¥ and d’. The
factor 0.6 was introduced in the step-length computation
as tests in complex applications showed that the matching
results are unsatisfactory without it: The steps become too
large and thus the final matches are not good enough. The
factor 0.6 shrinks the steps to a satisfactory size.

Consider the common case where the polygon transfor-
mation is translation and rotation (4). Using our approx-
imation, the step-length for the rotation angle becomes
[insert (4) in (9)]:

0.6 = 2"

d,,; = min - ,
lsm (rot) max x + cos (rot) max y|

0.6 x2"
‘cos (rot) max x — sin (rot) max y| .
(10)

Step-lengths for one set of six-parametric transformation
equations are discussed in Section V.

In low resolutions the computed step-lengths can be-
come very large. A natural upper limit of the step-length
is defined by the start positions. Each start position is only
supposed to find the best match in its own small neigh-
borhood in parameter space. Thus, if the computed step-
length is larger than the distance between start positions
(for each parameter), then the parameter is considered
constant.

D. Start Positions

In cases with simple geometry, or if the correct position
of the polygon is reasonably well known, the set of start
positions can be rather small. If not, a large number of
start positions is needed, so that at least one search will
find the global minimum.

The best set of start positions is usually a regular grid
of points in n-dimensional parameter space. The approx-
imate parameter values define the midpoint of the grid.
The accuracy of the approximations is used to determine,
for each parameter, intervals that definitely include the
optimal values. These intervals define the volume the grid
must span.

The start positions must be far enough apart, so that
there is a significant difference between them at the coarse
resolution start level, but they must still be rather close,
as the number of local minima is large. The parameter
step-lengths are first computed as described in Section

855

III-C. If the start level is suitable, then a spacing of three
a set of scattered points, then for each distance image pixel
one of the pixels (e.g., the first) from the shrunk polygon
that hits that pixel is chosen. These selection methods do
not ensure that all polygon points will hit different pixels,
since the polygon is later transformed, but the points will
be an adequate representation of the polygon.

Many iterative optimization algorithms for minimizing
an n-dimensional function have been suggested. Many of
them depend on the function being relatively smooth, so
that the gradient can be, if not computed exactly, at least
approximated. This is not the case for the edge distance
function. Thus an algorithm that does not use the gradient
must be used. A simple version of the Gauss-Seidel al-
gorithm was chosen. The same optimization algorithm is
used at every pyramid level.

The edge distance is first computed for the start posi-
tion. Then the parameter step-lengths are computed (Sec-
tion III-C). The edge distance is then computed for some
neighboring positions in parameter space, selected by the
rules described below. If a strictly smaller value is found,
the parameter values are changed to this new position.
or four steps between grid-points will be appropriate in
most cases.

What is a “‘suitable’’ start level? If the start level is too
coarse, then the algorithm may not converge to the opti-
mum, as all start points are too far from it. If the start
level is too fine, then the start grid will consist of very
many positions and the benefits of the hierarchical ap-
proach disappear. As an approximate rule, the objects in
the image should still be more or less recognizable at the
start resolution, but only just.

Computations at coarse pyramid levels are much faster
than at finer levels. The main reason is that the number
of points in the polygon is much smaller at coarse reso-
lutions (see Section III-E). Thus fewer look-ups in the
distance image and fewer multiplications and additions are
necessary to compute each edge distance. A large number
of positions can be investigated with reasonable effort.
Most of these positions should be rejected early. Ideally
only a few should be left at the original pyramid level.

E. Optimization

The distance pyramid, the edge point polygon, and the
set of start positions have been computed. Now the actual
matching can start. A flowchart for the HCMA is shown
in Fig. 5. Each of the boxes will be described below.

When the polygon is superimposed on a low resolution
distance image many of the polygon points will hit the
same pixels. This will slow down the computations with-
out improving the edge distance. A suitable subset of the
polygon points should be used. The point selection is the
box “‘select points’’ in the flowchart. The polygon is first
‘‘shrunk’’ to the current resolution (6). If the polygon is
a continuous contour, €.g., a template, the number of dif-
ferent points is counted and that number of points is se-
lected, evenly spaced along the contour. If the polygon is
The process is repeated until no neighbor has a lower edge

856

START
POSITIONS
Z SELECT GO TO NEXT
/JOLYEON POINTS | | l

LEVEL
DISTANCE
PYRAMID

FIND
MINII

Fig. 5. Flowchart for the HCMA.

distance value, i.e., when a local minimum has been
found. This minimization is the central ‘‘find minimum’’
box in the flowchart.

Ideally the function should be evaluated for all neigh-
boring positions. However, in n dimensions each position
has 3" — 1 neighbors. It is infeasible to evaluate the func-
tion in all these positions unless n is very small, e.g., n
< 3. The function is regarded as being dependent on only
one parameter at the time, the others being constant. A
step is taken in both directions from the current position
and if a better value is found the parameter value is
changed. The process is repeated for each of the param-
eters in a cyclic way. One cycle, going through all param-
eters, is called one iteration. Only 2*n neighboring posi-
tions are evaluated in each iteration. The algorithm stops
when no change has occurred during one iteration.

For n= 3 it is still possible to evaluate all neighbors.
Experiments showed that the convergence is faster if all
26 neighbors are evaluated rather than just six (as can be
expected). This observation led to a modification of the
search algorithm. The polygon is easily transformed by
the translation parameters. To find all eight neighbors
reached by translation you just add plus or minus one to
the midpoint coordinates. Evaluating the function in these
positions is thus relatively easy. Each iteration thus starts
with checking all eight translational neighbors. Then the
neighbors in the other parameters follow, one parameter
at a time. Thus 2 * n + 4 rather than 2 * n neighbors are
evaluated in each iteration.

If the parameter step-lengths depend on the parameter
values it is necessary to recompute them after each itera-
tion. If they do not (e.g., only translation and rotation) it
is only necessary to recompute them at each new pyramid
level.

The local minima are found for all start positions. The

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

worst local minima are rejected, the box ‘‘reject minima’’
in Fig. 5. The remaining positions are used as start posi-
tions at the next pyramid level. In principle some pyramid
levels could be excluded, e.g., every other one. Each start
position would, in most cases, end in the same position
at the final resolution level. However, the main rejection
criterion, Section III-F, is dependent on every level being
used. The computation continues down to the original res-
olution level. The smallest remaining minimum is the so-
lution and its parameters are, when the algorithm is suc-
cessful, the optimal] transformation parameters.

F. Rejection Criteria

The success of the HCMA is very dependent on good
rejection criteria. Several rejection criteria are used, both
looking at each minimum by itself and comparing it to
others.

The start grid defines not only the start positions, but
also the hypervolume in which the optimum can occur.
Local minima outside this hypervolume are rejected. An
example: if there is no check on the scale parameter, the
transformed polygon could shrink to a single pixel. These
obvious restrictions reject very few positions.

Another obvious rejection criterion is the magnitude of
the edge distance at the local minimum. If it is too large,
that position should be rejected. If the magnitude of the
global minimum is known beforehand, then all signifi-
cantly larger minima can be rejected. However, the mag-
nitude of the global minimum is usually not known be-
forehand. The main rejection criterion, described below,
does not start rejecting minima effectively until after a
few pyramid levels have been passed. A large absolute
limit, significantly larger than any acceptable optimum, is
used. This limit will reject the worst start positions im-
mediately.

For the optimal position, the minimum is of about the
same magnitude at all resolutions. The edge distance is
somewhat smaller at low resolutions, as the edges are
blurred, and thus wider, there. For positions that are far
from correct, the situation is quite different. At low res-
olutions the polygon hits only a few pixels and can thus
fit well in many different locations. When the resolution
increases the fit rapidly gets worse and worse and the edge
distance increases exponentially. To conclude: for good
positions the edge distance increases roughly linearly and
for bad positions exponentially. This phenomenon is
clearly visible in all cases and in all applications tested so
far. Therefore a simple criterion is used, designed to test
the increase of the edge distance. The first nonzero local
minimum is stored for each position. This value, multi-
plied by a suitable constant, becomes the rejection limit.
If the difference between the new minimal value and the
minimal value at the previous pyramid level exceeds this
limit, then the position is rejected. That ‘‘suitable con-
stant’” will be called reject factor, or RF. It is application
dependent, but much less so than any absolute limit would
be. A small RF will speed up the computations, but risks
the rejection of the correct position. A large RF will slow

BORGEFORS: HIERARCHICAL CHAMFER MATCHING

down the computations. The general rule is: the more dif-
ficult the matching situation is, the larger RF must be.

The three rejection criteria discussed so far only test
one position at a time. This final criterion compares the
minima. The edge distance of the smallest minimum re-
jected by the previous criterion is saved. All larger min-
ima are rejected. In fact, this rejection rule is the one that
discards the most minima. The global minimum can thus
often be found faster if the search is started in many po-
sitions than if it is started only in a few: the more posi-
tions, the smaller the smallest rejected minimum will be
and the more positions will be rejected by that limit.

One important observation have been made in almost
all experiments: what eventually becomes the best posi-
tions do not have the lowest edge distances at course res-
olution levels. There is only a very rough correspondence
between the order of positions at coarse levels and at fine
levels. Thus any ‘‘depth first’’ search, where only the best
minimum (or minima) from the start level is followed
through the pyramid, is doomed to fail.

G. Convergence and Results

Unfortunately, there is no guarantee that the HCMA
will converge to the global minimum of the edge distance
function. This function is simply too complex in most re-
alistic cases. However, two propositions hold.

Proposition 1: The HCMA will always converge to
some parameter values. It will never be caught in a infi-
nite loop.

Proof: The edge distance function that is minimized
is integer valued, as it is the sum of squares of integer
distance values from the distance image. The improve-
ment of the function value at each iteration in the opti-
mization can thus never be less than one. The edge dis-
tance of the start position is finite, say N. The maximum
number of iterations is then N + 1. Q.E.D.

Note that the number of iterations does not increase with
the complexity of the problem. More edge points in the
polygon and less accuracy of the estimated position both
increase the number of necessary start positions, but not
the number of iterations for each position. In fact, using
many polygon points would rather decrease the number of
iterations, as the global minimum of the edge distance
function will become more distinct.

Proposition 2: The algorithm is consistent. If the
matching starts in a correct position, i.e., in a position
with edge distance zero, then it will also end in that po-
sition.

Proof: The edge pyramid is constructed so that the
greatgreat. . .grandfather, at any pyramid level, of any
edge pixel will also be an edge pixel (Section III-A). If
the start position is correct, all polygon points will hit
zero-valued pixels in the distance image at all pyramid
levels. The edge distance will thus be zero at all levels.
No strictly smaller value can be found in any neighboring
position. Thus the start position parameters will never be
changed. Q.E.D.

If the search is started in a global minimum that is not

857

zero, then the search does not necessarily end in this
global minimum. The exact position of the minimum is
often not the same at different pyramid levels. Thus the
position may drift away during the search. Some tests were
made with a six-parametric edge distance function: start-
ing the search at a coarse level in an optimal position
showed that the minimum often does shift position. How-
ever, in all cases tested the minimum returned to the op-
timal position at the final resolution.

Unless the edge geometries are very simple, the edge
distance function is nonconvex and have many local min-
ima. The longer, the more distinct in shape, the more
spread out over the image, the polygon is, the smoother
the edge distance function becomes, the sharper its global
minimum becomes and the better the HCMA performs. If
the minimum is reasonably well-behaved it is probably
possible to achieve subpixel accuracy of the optimal po-
sition. The edge distance is computed at a number of
points around the optimum and an n-dimensional smooth
surface is fitted to these values. The minimum in this sur-
face then defines the improved minimal position.

IV. OBJECT RECOGNITION

In this application the HCMA is used to identify and
find the location of a number of prespecified objects. The
objects are common tools. The implementation of the
HCMA used here and in the next section was written in
Simula and run on a DEC-10 computer. The program was
written to give maximum flexibility and minimum time
spent at programming, rather than to be efficient.

A. The Algorithm

The camera producing gray-level digital tool images is
fixed above a flat surface looking straight down. The
lighting has been arranged so that shadows are minimal.
Only three parameters are necessary to describe the po-
sition of an object: X-translation, Y-translation, and ro-
tation angle (4). Five different tools, scissors, hammer,
screwdriver, wrench, and knife were used. They have, on
purpose, the same basic elongated form and about the
same size. A series of scenes of varying complexity were
photographed and digitized. The results were a number of
512 X 512 pixel images with 256 gray-levels. One of the
images is shown in Fig. 6.

The edge points in the gray-level image were extracted
in the simplest way possible. The image was thresholded
at the minimum in the gray-level histogram separating the
objects (dark) from the background (light). This mini-
mum was reasonably well defined. Edge points in the bi-
nary image were defined by the following rule: an edge
point is a black pixel with at least one white 4-neighbor
and at least one black 4-neighbor that is not an edge pixel
(i.e., is in the interior of the black area). The last rule
exclides small patches lacking interior points and also
short “‘branches’’ on the edges. Overlapping objects get
one single contour. This drawback is actually exploited,
to test the limits of the performance of the algorithm. The

858 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

Fig. 6. Tool image to be analyzed.

edge image is first converted into an edge pyramid and
then the edge pyramid is converted into a distance pyra-
mid.

In this application there is, strictly speaking, no pre-
polygon image. The patterns to be matched to the tool
image are ideal outer contours of the different tools. These
contours are called remplates. Templates for the five tools
were extracted from images, taken with the same camera
arrangement as the other photographs. The edges result-
ing from edge extraction were ‘‘cleaned up’’, i.e., they
were smoothed and false edges resulting from highlights
were removed. The remaining edge points were listed in
polygon files. The polygon origin is the center of the least
rectangle enclosing it. The five templates are shown in
Fig. 7.

Here the distance image and the polygon image are not
interchangeable. In any complex image, with many ob-
jects, it is difficult to extract the true contour, or even a
part of a true contour, of a single object (there can be
shadows, highlights, and overlapping). Thus matching
any polygon extracted from the photograph to a ‘‘tem-
plate’’ distance image may easily fail. When the tem-
plates are compared to the photograph edges this difficulty
disappears. There is no need to know beforehand which
edge points belong to which object. False edges and over-
lapping will of course disturb the matching, but if a large
part of the edge of an object can be extracted, then the
object will be found.

The step-length in rotation angle is computed by (10).
The smallest step allowed is 0.5 degrees. The search for
the optimal position is started in a grid of positions in
parameter space. Grids of different densities were tested.
The start resolution level in the pyramid was the 4th, 32
X 32 pixel, level. The absolute limit on the edge distance
value is set to 10.0. All larger minima are rejected. The
most suitable RF value differs for different types of scenes.
Some examples are given below.

B. Simple Scenes

First the HCMA was used to determine which tool is
depicted in an image showing a single tool, but otherwise
equal to Fig. 6. The tool can be any of the five tools placed
in any position or orientation. No information on the po-
sition was available to the HCMA.

Fig. 7. The template polygons. They have been extracted from a photo-
graph and have then been interactively smoothed.

The template polygons consist of a large number of
points (up to 600). Every 10th point in the polygon were
used, at most. In low resolutions much fewer points are
used, as described in Section III-E. The center of the start
grid was the center of the image (translation) and rotation
angle zero. The grid consisted of 54 positions: 3 X 3
translational points, separated by 30 pixels at the original
level, and 6 equidistant rotation angles (i.e., 60 degrees
apart).

Each template is matched to the image. The result is
either a minimal edge distance or no match (i.e., no re-
maining position). The image is interpreted as depicting
the template with the smallest edge distance optimum. The
difference in edge distances between correct and incorrect
matches is so pronounced that there is no difficulty in in-
terpreting the images. The optimal edge distances for the
different tools when the match is correct are: scissors 0.67,
hammer 1.25, screwdriver 0.70, wrench 0.74, and knife
0.71. The optimal edge distances for incorrect matches
are more than twice these values. When RF = 2 the cor-
rect matches were never rejected, but for RF < 2 the cor-
rect positions sometimes were lost. RF should be 2-3 in
this case. The HCMA is thus well able to identify an ob-
ject, by comparing it to a library of possible objects.

The next scene type to be analyzed was images con-
taining many, but not overlapping, tools. There must be
more translational start positions, otherwise the algorithm
is identical to the single tool case. The different tools in
this type of images are easily identified and their positions
easily found. The ideal RF value seems to be 4 (a little
higher than for single tools), but 3-6 will do nicely.

C. Complex Scenes

If the tools in the image overlap, then parts of their
edges will be missing. The extracted edges of the image
in Fig. 6 are found in Fig. 8. The corresponding edge
pyramid is shown in Fig. 9. The matching is started at the
coarsest level in this figure. The original level distance
image is shown in Fig. 10.

No estimation of the tool positions is available. The
start position grid consists of 120 positions: 4 X 5 trans-
lational positions covering the whole image and 6 equi-
distant rotation angles, as before. Every 10th template

BORGEFORS: HIERARCHICAL CHAMFER MATCHING

Fig. 8. Edge points from the tool image in Fig. 6.

7 e SR

Fig. 9. Edge pyramid computed from the edges in Fig. 8.

Fig. 10. Distance image representing the original level in the distance pyr-
amid. The distances are gray-level coded: the larger the distance the
lighter the tone.

polygon point was used. Two different RE’s were tested:
4 and 8. The scissors, hammer, and knife are found with-
out problem in Fig. 8. These are the tools for which the
contours are the least disturbed. The wrench is found when
RF is large enough, i.e., for RF = 8 but not for RF = 4.
The screwdriver is not found (see below). The minimal
edge distances are larger than in the previous tests, they
are: scissors 1.56, hammer 1.51, wrench 1.42, and knife
1.23. The edge distances increase both because segments
of the edge are missing and because the tools no longer
lie flat on the surface. The templates for the four success-
ful matchings have been overlayed the original image in
their optimal positions, Fig. 11.

The reason that the screwdriver was not found is that
the highlight on the scissors create a false edge (see Fig.

859

Fig. 11. The optimal positions of the different templates (black) in the im-
age in Fig. 6 (gray).

Fig. 12. Tool edge image to be analyzed.

8) and this false edge happen to fit the screwdriver very
well. The edge distance is there 2.00. The edge of the
“‘true’’ screwdriver is severly disturbed by the knife,
which has obliterated the end of the handle. This, together
with the intersection with the hammer, make the edge dis-
tance for this second best, but correct, position 2.16. The
search fails because the edge of the true tool is severly
disturbed and because a false edge happens to create a
good false fit.

In the previous image all tools were present. Thus the
algorithm have answered the question of where they are,
but not if they are present. That the algorithm can answer
this question too is evident from the results in Section
IV-B. But what happens for an image with unknown over-
lapping tools? The edges from such an image are shown
in Fig. 12. The tools depicted in the image are easily
found, using RF = 4. However, the missing tools are also
‘‘found’’ and the edge distance values of the best false
matches are only just a little higher than for the true
matches. Thus the edge distance cannot be used to iden-
tify false matches here. For RF = 2 the false matches are
rejected, but, unfortunately, the true ones are also re-
jected. This image shows the limit of the applicability of
the HCMA: for images with very disturbed edges and
doubtful contents, the algorithm is not powerful enough.

One way of overcoming the difficulty with missing con-
tour segments could be to divide the templates into a num-
ber of subpolygons. Each subpolygon would be matched
to the image. Undisturbed parts of tool edges would fit
very well. If several of the subpolygons have good
matches in consistent positions, that would indicate the

860 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

presence of the tool. That one or two subpolygons did not
match could be disregarded as due to noise.

D. Conclusions

The results of Sections IV-B and IV-C show that the
HCMA can easily recognize an object as one of a prede-
termined set of objects, when the only disturbance of the
edge is some random noise. They also show that finding
an object that is known beforehand to be depicted in an
image is not too difficult, even if parts of the object’s con-
tour are missing and there are false edges. The HCMA
seems to be powerful enough to handle disturbed and
noisy data at least as well as other recent matching algo-
rithms.

When the fit of the edge can be bad either because the
object is missing or because parts of the edge are missing,
then the algorithm fails. The measure of correspondence
used, being one single number, simply cannot distinguish
between these two cases. On the other hand, neither can
any matching method that uses a single number as mea-
sure of correspondence, and simple preprocessing of the
images before matching. For such complex matching
problems high-level methods are necessary. Such meth-
ods are overviewed in [1].

The CPU-time for matching all five templates, each
with about 50 points, 120 start positions, and RF = 4 is
about 8 minutes in the present inefficient implementation.
Some hypothetical CPU-times have been computed, using
data provided by the matching program. If the search were
started in all 120 start positions at the original resolution
level the CPU-time would be at least 18 minutes. How-
ever, then the optimal positions would probably not be
found, as the start positions would be too far from the
optimum. Consider a grid that has the same number of
pixels between the translational start positions as the 120
position grid has at the start level in the hierarchical case
and rotation angle steps that are shrunk correspondingly.
Then the program would run for 50 CPU-days. This es-
timation gives and indication of how much is gained by
using the hierarchical structure.

V. AERIAL IMAGE REGISTRATION

In this section the HCMA is applied to a demanding
problem: transformation of aerial photographs into the
map coordinate system. This transformation is called reg-
istration. When the image has been registered, then ob-
jects in the map can be identified in the image and vice
versa; changes between different scenes can be easily de-
tected; and images from different sensors (e.g., optical,
IR, radar) can be simultaneously displayed and the infor-
mation from them can be integrated.

A. Problem Definition

Traditionally the registration algorithm consists of three
or four parts. A flowchart of the traditional algorithm is
found in Fig. 13. It is a combination of the approaches in
[7] and [9]. The basic data are a geographical image (in
any wavelength band), the approximate position of the

ORIGINAL APPROXIMATI MAP

IMAGE SENSOR POS, DATABASE
FEATURE HYPHOTES. SELECT
EXTRACTION TRANSF. AREA

REGISTER
IMAGE

Fig. 13. Flowchart for geographical image registration.

sensor with which it was obtained, and a database con-
taining maps of the same area. The best matches between
a number of landmarks in the image and the map must be
found. The landmarks are usually points, edges, or ob-
jects. These must first be identified in and extracted from
the image. The approximate sensor position determines
an appropriate area from the map database and is also used
to hypothesize a first guess of the transformation that puts
the features from the image into corresponding map po-
sitions. A coarse match between image and map features
is made, to get approximate results. Then a fine match is
made, to get the best possible matches. The coarse and
fine matches often use quite different algorithms. From all
the resulting feature matches, that always are somewhat
erroneous, the best parameter values for the sensor posi-
tion is computed. This part of the image registration al-
gorithm is known as the location determination problem,
LDP, because the point in space from which the image
was obtained (sensor position and orientation) is deter-
mined. Last, the image must be resampled (registered)
and brought into the map coordinate system.

When the HCMA is used, all parts of the registration
algorithm between the feature extraction and the registra-
tion are merged: the features are matched precisely by
varying the sensor parameters. When the match is opti-
mal, the optimal parameters are also known. The coarse
and fine matches correspond to different resolution levels
in the distance pyramid.

The features used in this example are land/water edges.
These edges are clearly visible not only in optical photo-
graphs, but also in imagery in many other wavelength
bands. Using edges rather than points for matching will
give better results, as the edges contain much more infor-
mation. However, the edges extracted from the photo-
graph will be noisy and differ considerably from the map
edges.

BORGEFORS: HIERARCHICAL CHAMFER MATCHING

The aerial photograph is distorted, not only by trans-
lation and rotation, but also in scale and perspective. The
polygon transformation equations, in this application
usually called the camera model, are six-parametric:
translation (two), scale, rotation and perspective (two).
The geometry is shown in Fig. 14. The focal length of
the camera and the principal point in the image plane (i.e.,
where the optical axis of the camera pierces it) are known.

The ground coordinate system (X, Y, Z) is denoted
GCS and the photograph coordinate system (x, y, z) is
denoted PCS. Both have their origins is in the upper left-
hand corners of the respective images. The position of the
camera is described by the vector ¢, ¢ = (c¢y, ¢y, cz) in
GCS and ¢ = (0, 0, 0) in PCS. The camera is looking
along the z-axis in PCS and along the vector s in GCS.
The relation between these two vectors is described by
three angles: roll, the rotation around the z-axis between
GCS and PCS; tilt, the rotation around the y-axis; and
pan, the rotation around the x-axis. Any point on the vec-
tor s in GCS can be expressed as

s =c + kMp, (11)

were k is the distance between the PCS origin and the
point on §, and M is the 3 X 3 rotation matrix that trans-
forms PCS into GCS. The elements of M will be given
below. The point p = (x, y, f) in the photograph, where
fis the focal length of the camera, corresponds to a point
g = (X, Y, 0) on the ground (i.e., in the map). The point
g is thus the point on the vector s with Z-coordinate zero.
The equation for the Z-coordinate in (11) becomes

0 =Cz + kg(M31x + M32y + M33f). (12)

The value of , can be solved from (12). Substituting this
value into (11) yields these expressions for g = (X, Y,
0):

Myx + Mpy + Mz f

X =cx—
Xz Myx + Mypy + My f

and

Y=c—c Myx + Myy + Myf

13
EMyx + Mypy + Myf (13)

Equations (13) express the relation between map coordi-
nates (X, Y) and photograph coordinates (x, y) and are
thus the polygon transformation equations to be used in
the matching algorithm, cf (5).

The terrain elevation is not taken into account in this
model. This is a reasonable approximation if the ground
is relatively flat, or the camera sufficiently high above the
ground, or if the whole edge that is matched is on the
same elevation. The last condition is fulfilled for lake
edges. If the ground cannot be approximated by a flat sur-
face the model becomes more complex. The point on the
ground then becomes g = (X, Y, H(X, Y)), where H(X,
Y') is the elevation at that point. The left-hand side of (12)
becomes H(X, Y) and thus k becomes dependent on X and
Y. Equations (13) become nonlinear in X and Y (unless H

861

Camera

Photograph

Ground ~ Map

Fig. 14. The camera geometry. The point p in the photograph corresponds
to the point g on the ground (map).

is a very simple function). There is no reason why this
more complex camera model could not be used in the
HCMA, if necessary.

To complete the camera model (13) M must be ex-
pressed in terms of the roll, tilt, and pan angles. The ele-
ments of M become:

M,; = cos (roll) cos (tilt),

M,, = cos (roll) sin (tilt) sin (pan)
— sin (roll) cos (pan),

M3 = cos (roll) sin (tilt) cos (pan)
+ sin (roll) sin (pan),

M,, = sin (roll) cos (tilt),

M,, = sin (roll) sin (tilt) sin (pan)
+ cos (roll) cos (pan),

M,; = sin (roll) sin (tilt) cos (pan)
— cos (roll) sin (pan),

M, = sin (tilt),

= —cos (tilt) sin (pan),

M3 =

—cos (tilt) cos (pan). (14)

The polygon transformations equations can be parameter-
ized in at least one other way: The angles tilt and pan can

be substituted by the coordinates of the point where the
optical axis of the camera pierces the round, Fig. 14.

B. Input Data

The map is a digitized version of the land/water overlay
of the topographical map of Sweden. The edges were ex-
tracted from this binary image, using the rule in Section
IV-A. The resulting edge map is the predistance image,
to which the photograph edges will be matched. Edge
maps can be stored very efficiently, not as images, but as
polygons, e.g., in chain coded form [8]. Thus a large
number of maps can be preprocessed and stored in a map
database. The edge image used here is 512 X 512 pixels,
representing 6.4 X 6.4 km on the ground. The edge maps

862

are converted to edge pyramids and then to distance pyr-
amids.

The aerial photographs are the prepolygon images.
Several photographs have been registered, to test the
HCMA. One of them, Fig. 15, will illustrate the algo-
rithm here. The digitized photograph is 200 X 200 pixels,
roughly 2.5 X 2.5 km on the ground. The lakes are the
darkest objects in the images. Reasonable lake edges can
be extracted by thresholding the gray-level photograph at
a carefully chosen level and using the rule in Section
IV-A. The edge points found in Fig. 15 are shown in Fig.
16. The edges of the large lakes are extracted as poly-
gons, one for each lake.

C. The Algorithm

The edge polygon is transformed by the camera equa-
tions (13). The interdependence of the parameters is a dif-
ficulty: a small change in tilt often gives exactly the same
result as a small translation in the X-direction after round-
ing (6). Similarly, a small change in pan angle is
often indistinguishable from a small translation in the
Y-direction. The shape of the polygon will change only if
the step in the angle is considerably larger than the small-
est step that shifts the polygon. A change in any of the
nontranslational parameters can be regarded as a change
in shape plus a translation of the polygon origin. These
two effects should be separated. Let the results from the
original transformation (13) be denoted (X, Y). Let (x,
y) be the polygon point, p; any of the nontranslation pa-
rameters, and d; a step in that parameter. The position of
the polygon point in the map where the position of the
polygon origin in the map is unchanged (Xc, Yc) is de-
fined as:

Xc(x,y,p + d;)
=X(x,y,p +d;) — (X(0,0,p + d)
- X(0,0, p)),
Ye(x, y,p + d;)
=Y(x,y,p +d;) — (¥(0,0,p + d;)

- Y(0, 0, p)). (15)

The smallest step-lengths that change (Xc, Yc) are ap-
proximated, using (9). The derivation of the actual ap-
proximation formulas is straightforward, even though they
do become rather complex. The nontranslational param-
eters now change the polygon shape and/or orientation,
but not its location. If the camera equations are unmodi-
fied, the step-lengths would become too small: the poly-
gon would almost never change shape. This compensation
for the translation of the polygon origin can be seen as an
orthogonalization of the parameter space: each parameter
should have a unique effect, if possible.

Upper limits on allowed step-lengths are defined by the
start grid. If the step-length is larger than the distance
between start grid positions, then that parameter is con-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

Fig. 15. Original aerial photograph.

Fig. 16. The lake edges (black) extracted from Fig. 15.

sidered constant. A lower limit is also used. For each of
the three angles this smallest step is 1.0 degrees. There
are thus at most 360 different points in parameter space
for each angle. The final matches would have been even
better with a smaller value, but the results are good enough
for demonstration purposes.

The optimization strategy was described in Section
III-E. Thus, 16 neighbors to the current position is eval-
uated at each iteration. It is very difficult to guess before-
hand the magnitude of the optimal edge distance. There-
fore no absolute reject limit is used. The search must be
started in very many positions, to cover variation in all
six parameters, therefore the value of RF is more impor-
tant here than in the previous application.

D. Sample Results

Many different combinations of input data were tested:
different number of polygon points, different choices of
polygon segments from the photographs, different start
levels, different start grids, and different RF’s. Only a few
results are presented here, but they are representative of
a large number of tests.

One lake is situated roughly in the center of the pho-
tograph in Fig. 15. The edge of this lake will first be
matched to the map. To get a good overall fit, however,
it is necessary to use edge points from different parts of
the image. Therefore, two additional lake edge segments
were used. One is the southern end of the lake cut off by
the upper edge of the scene and the other is the upper half
of the round lake at the bottom of the scene. A polygon

BORGEFORS: HIERARCHICAL CHAMFER MATCHING

consisting of these three edge segments is also matched
to the map. The total number of edge points is 108 for the
single lake and 337 for the three lakes. The polygon points
used were every fifth edge point, unless otherwise stated
(i.e., 41 and 67 points).

The start positions are a grid roughly around the *‘true”’
parameter values, known from the approximate camera
position. Five different cx and ¢y values, forming a 5 X
5 grid covering the whole 512 X 512 map, and three dif-
ferent widely separated height, roll, tilt and pan values,
in all 2025 start positions, are used. The start positions
were close enough so that several of them found the op-
timal position. The best start level in the pyramid was the
fourth (32 X 32) level. Surprisingly enough even the tiny
fifth (16 X 16) level gave acceptable results in most
cases.

For each test run the number of minima left at each
pyramid level was recorded. This number should be as
small as possible, but still the global minimum must not
be rejected. The optimal edge distance value was also re-
corded.

First different RF’s were tested. For RF = 1.0 the re-
sults are not acceptable: in many cases all minima are re-
jected. For RF = 1.5 minima remain in all cases, but in
some cases the optimal edge distance is slightly worse
than the optimum for RF = 2.0. However, for RF = 2.0
there were many false minima left at the final pyramid
level. For the three-lake polygon with RF = 1.5 there
remained 1650 (of 2025) minima at the fourth level, 566
at the third, 25 at the second, 7 at the first, and 2 at the
final level. With RF = 2.0 the same number of minima
remained at the fourth level (the rejections start at the sec-
ond level used), 862 remained at the third level, 54 at the
second, 16 at the first, and 10 at the final level. The op-
timal edge distance was 0.79, which is a very good fit.
For the central lake polygon the optimal edge distance
was 0.67. In this application RF should be higher than
1.5, but, considering the many false minima that remain,
not necessarily as high as 2.0. For RF = 2.0 the CPU-
time used is about 30 percent longer than for RF = 1.5,

The same matchings were also made using every sec-
ond edge point in the polygon, i.e., 104 and 168 points.
This change will only affect fine resolutions, because in
low resolutions much fewer points are used in both cases.
Differences begin to occur at the 2nd (128 x 128) pyra-
mid level. The final results are only partly comparable.
The same parameter values will give slightly different
edge distances, because different edge points are used.
Using more polygon points (2.5 times as many), con-
sumes more CPU-time, but, as the differences occur only
at the fine levels, the CPU-time increased only 20-35 per-
cent in the tested cases. There seemed to be no discernible
difference in the results between using every fifth or every
second edge point. Every fifth pixel defines the lake edges
well enough.

The optimal camera parameters have now been com-
puted, using one or three lakes. Now the photograph will
be registered, to see how good these parameters are. Find-

863

ing good registration algorithms is not a trivial problem.
Here a very simple one is used, as the registration of the
photograph is made only to check the results of the
HCMA. First the size of the registered photograph is de-
termined. The camera equations (13) transform straight
lines into straight lines. Thus the registered positions of
the corners of the photograph will define the area covered
by the registered image. These positions are easily com-
puted, using (13). An image of the correct size is defined.
For each pixel (X, Y) in the new image, the point in the
photograph corresponding to the center of that pixel is
computed, using the reverse camera equations. The center
of (X, Y) will fall into some photograph pixel (x, y). The
value of (X, Y) is set to the value of (x, y). This strategy
is called the ‘‘nearest neighbor’’ algorithm. The reverse
camera equations, that transform points on the ground into
points in the photograph, can be derived from (13). They
became (in the notation of Section V-A):

Niu(X = ¢) + No(Y = ¢y) = Nisez

X =f*
Ny (X — cx) + Np(Y — ¢cy) — Nyscz
and
y=f* Ny (X — cx) + Np(Y = ¢y) — Nyycz (16)

N3(X — cx) + Np(Y — ¢y) — Nz’

where N is the inverse of the matrix M. As M is ortho-
normal, N is simply the transpose of M, N; = M;;.
The photograph in Fig. 15 was registered using the op-
timal camera parameters, found when using the three lake
polygon. The registered image should now be in map co-
ordinates. To check this, the lake edges from the map were
overlayed the registered image. The resulting composite
image is shown in Fig. 17. If the registration is success-
ful, the map lake edges should fit the photograph lake
edges well. The fit in Fig. 17 is good. When only the
central lake was used the fit became far from good: The
map edge was up to five pixels from the photograph edge
in the parts of the image farthest from the central lake.

E. Conclusions

This aerial image registration application is the most
complex one of those where the HCMA has been tested.
The main reason is that the search for the optimal match
is six-parametric, which means that very many points in
parameter space must be evaluated. The various variables
in the HCMA, e.g., start level, start positions, choice of
polygon points, reject factor, and parameter step-lengths,
must be rather finely adjusted if the algorithm is to be
successful. If this adjustment is well done, and if edge
points from all parts of the photograph are used, then the
HCMA solves the Location Determination Problem ade-
quately. The camera position becomes known well
enough, so that the edges in the registered photograph and
in the map correspond well.

The original chamfer matching algorithm [2] was used
for this application: matching edges from an aerial pho-
tograph to a map. A coastline was extracted from a map

864

Fig. 17. The photograph, Fig. 15, registered according to the camera po-
sition found matching three different lake edges. Lake edges from the
map are overlayed in white.

and compared to a coastline from an aerial photograph.
The map was there the prepolygon image and the photo-
graph the predistance image, i.e., the opposite of the as-
signations used here. That choice of prepolygon and pre-
distance images has two serious disadvantages. The worst
is that the same edge(s) must be identified in both images
before the matching starts, as the correct edge must be
chosen from the map. Secondly, if a new photograph, or
another edge from the same photograph, is to be matched,
then a new distance pyramid must be computed from the
photograph edge(s), and a new polygon must be extracted
from the map. These disadvantages are not quite obvious
in the original work, as there was only one long contin-
uous contour present in both the map and the photograph,
and as the matching was done only at one resolution.

This algorithm for six-parametric matching can also,
with few changes, be used for other applications. It is
especially suited to stereo matching, since extra or miss-
ing edges (due to different perspectives) do not disturb the
HCMA very much.

VI. CoNcCLUSION

The first step in the development of the hierarchical
chamfer matching method was to improve the matching
measure, i.e., the edge distance. This improvement was
achieved by using the root mean square average instead
of the arithmetic one and using a distance transformation
that is a better approximation of the Euclidean distance
than the original one. The second, more difficult and more
awarding, improvement of the algorithm was to imbed it
into a hierarchical structure.

There were several problems with expanding the algo-
rithm to function in the resolution pyramid. The construc-
tion of the distance pyramid itself must be appropriate,
otherwise the algorithm will not be consistent and will
thus converge badly, or not at all. The choice of start res-
olution level and of the grid of start positions is not very
critical, but still not unimportant. The rejection criteria
used, that stops further computation from bad positions,
must be good enough, so that few computations are done
in high resolutions. The heuristic criteria developed here
seem to be reasonably efficient in all the different appli-
cations were they have been used. The most difficult task

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

is to compute suitable step-lengths for the transformation
equation parameters in the optimization algorithm. If the
step-lengths are not within quite narrow ranges, then the
algorithm will not give acceptable results. The solution
used to compute suitable step-lengths can not be called
elegant, but it does seem adequate. The size of the small-
est steps allowed for each parameter is also important:
small steps ensure a good final match. However, very
small steps slow down the computations (the optimum is
then farther away from a random start position).

The HCMA is rather insensitive to random noise. The
edges can be several pixels away from each other, on the
average, as long as the differences are nonsystematic.
Missing edge segments, false edges, and slight geomet-
rical distortions can also be tolerated. The main reason
for this noise insensitivity is that the matching measure is
an average of the individual fit of many different edge
points. The tool matching application shows the limits of
the algorithm: the HCMA can easily recognize an object
as one of a set of predetermined objects. It can also find
an object that is known beforehand to be depicted in an
image, even if segments of its edge are missing and there
are false edges. However, when the match can be bad
either because the object is missing or because segments
of the edge is missing, then the algorithm often fails. The
matching measure, being one single number, cannot dis-
tinguish between these two cases.

The arithmetic operations in the HCMA are not very
complex. However, as is always the case in image pro-
cessing, large volumes of data have to be handled. In fact,
in the implementation used here a large proportion of the
CPU-time is used for shuffling pixel values. An efficient
implementation should use special hardware capable of
performing parallel operations and capable of handling
image data efficiently. The computation of the distance
images can be made in parallel. So can the transformation
of the polygon points and the now time-consuming com-
putation of the edge distance. The computation of each
edge distance would need ony one look-up in the distance
image. The trigonometric functions needed for the poly-
gon transformation equations should be listed in look-up
tables, as they are needed only for a limited number of
values (there is a smallest step-length in angle parame-
ters). Using special equipment, there is no reason why an
implementation of the HCMA could not be very fast.

In what ways can the HCMA be further developed? Im-
plementing it on parallel hardware, as suggested above,
is one obvious improvement. The function to be opti-
mized is very irregular, except for very simple edge con-
figurations. Therefore, using more sophisticated optimi-
zation algorithms would probably bring only marginal im-
provement. Some modifications of the optimization
algorithm have been tested, without much success. Two
better ways to improve the algorithm are probably to use
better start positions (perhaps found by additional prepro-
cessing) and better rejection criteria. The HCMA can also
be combined with other clues to find correct matches
faster, e.g., combining it with other matching measures

BORGEFORS: HIERARCHICAL CHAMFER MATCHING

or using image context to discriminate between positions.
An example of the latter in the geographical image reg-
istration application would be to ensure that the water is
on the right side of the lake edge.

For many parts of the HCMA a formal analysis of the
algorithm is difficult or even impossible. The solutions of
the problems that occured when the algorithm was devel-
oped are often heuristic. However, the HCMA has been
tested in several difficult and quite different applications.
The interested reader can find a presentation of results of
many experiments with the HCMA elsewhere, [S5]. The
results of these tests are good, even surprisingly good.
The correct matches are found, with an acceptable amount
of computational resources. Thus the HCMA is an excel-
lent tool for edge matching, as long as it is used for
matching tasks within its capability.

ACKNOWLEDGMENT

The author wishes to thank Prof. G. Dahlquist, Prof.
J.-O. Eklundh, Dr. T. Elfving, and Dr. S. Nyberg for
their help, in various ways, in creating this algorithm.

REFERENCES

[1] D. H. Ballard and C. M. Brown, Computer Vision.
Cliffs, NJ: Prentice-Hall, 1982, pp. 106-111, 352-382.

[2] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf,
‘‘Parametric correspondence and chamfer matching: Two new tech-
niques for image matching,”’ in Proc. 5th Int. Joint Conf. Artificial
Intelligence, Cambridge, MA, 1977, pp. 659-663.

[3] G. Borgefors, ‘‘An improved version of the chamfer matching algo-
rithm,”’ in 7th Int. Conf. Pattern Recognition, Montreal, P.Q., Can-
ada, 1984, pp. 1175-1177.

[4] —, *‘Distance transformations in arbitrary dimensions,”” Comput.
Vision, Graphics, Image Processing, vol. 27, pp. 321-345, 1984.

Englewood

865

[S] —, **On hierarchical edge matching in digital images using distance
transformations,’’ Dep. Numerical Analysis and Computing Science,
Royal Inst. Technol., Stockholm, Sweden, Rep. TRITA-NA-8602,
1986.

[6] —, ‘‘Distance transformations in digital images,”’ Comput. Vision,
Graphics, Image Processing, vol. 34, pp. 344-371, 1986.

[71 M. A. Fischler and R. C. Bolles, ‘‘Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,”” Commun. ACM, vol. 24, no. 6, pp. 381-
395, 1981.

8] H. Freeman, ‘‘Computer processing of line drawing images,”” ACM
Comput. Surveys, vol. 6, 1974.

[9] J. G. Hardy and A. T. Zavodny, ‘‘Automatic reconnaissance-based
target-coordinate determinations,’’ in SPIE Conf. Proc., vol. 281,
1981, pp. 95-104.

[10] A. Rosenfeld, ‘‘Multiresolution image representation,’’ in Digital
Image Analysis, S. Levialdi, Ed. London: Pitman, 1984, pp. 18-
28.

[11] A. Rosenfeld and A. C. Kak, Digital Picture Processing, vol. 2.
New York: Academic, 1982, pp. 205-219.

[12] S. L. Tanimoto, ‘‘A hierarchical cellular logic for pyramid com-
puters,’” J. Parallel Distributed Comput., vol. 1, pp. 105-132, 1984.

Gunilla Borgefors received the M.S. and ‘‘Tekn.
lic.”” degrees in applied mathematics from the
Linkoping University of Technology in 1975 and
1983, respectively. The thesis presented for the
Tekn. lic. degree treated statistical models for the
estimation of maintenance times from small sam-
ples. She received the Ph.D. degree in numerical
analysis from the Royal Institute of Technology,
Stockholm, Sweden, in 1986. The subjects of her
dissertation were hierarchical edge matching and
digital distance transformations.

She was employed by the Department of Applied Mathematics at the
Linkoping University of Technology during 1975-1981. Since 1982 she
has been employed as a Senior Scientist at the Swedish Defence Research
Institute, Department of Information Technology, also in Linképing. Her
current interests are computer vision and discrete geometry.

