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Abstract

Parametric correspondence is a technique for
matching images to a three dimensional symbolic
reference map. An analytic camera model is used to
predict the location and appearance of landmarks in
the image, generating a projection for an assumed
viewpoint. Correspondence is achieved by adjusting
the parameters of the camera model until the
appearances of the landmarks optimally match a
symbolic description extracted from the image

The matching of image and map features is
performed rapidly by a new technique, called
"chamfer matching", that compares the shapes of two
collections of shape fragments. at a cost
proportional to linear dimension, rather than area
These two techniques permit the matching-of
spatially extensive features on the bas1s of shape.
which reduces the risk of ambiguous matches and the
dependence on viewing conditions inherent in
conventional image. based correlation matching.

Introduction

Many tasks involving pictures require the
ability to put a sensed image into correspondence
with a reference image or map. Examples include
vehicle guidance, photo interpretation (change
detection and monitoring) and cartography (map
updating). The conventional approach is to
determine a large number of points of
correspondence by correlating small patches of the
reference image with the sensed image. A
polynomial interpolation is then used to estimate
correspondence for arbitrary intermediate points
[Bernstein]. This approach is computationally
expensive and limited to cases where the reference
and sensed images were obtained under similar
viewing conditions. In particular. it cannot match
images obtained from radically different
viewpoints, sensors, or seasonal or climatic
conditions, and it cannot match images against
symbolic maps.

Parametric correspondence matches images to a
symbolic reference map, rather than a reference
image. The map contains a compact three
dimensional representation of the shape of major
landmarks such as coastlines, buildings and
roads. An analytic camera model is used to predict
the location and appearance of landmarks in the
image, generating a projection for an assumed
viewpoint. Correspondence is achieved by adjusting
the parameters of the camera model (i.e. the
assumed viewpoint) until the appearances of the
landmarks optimally match a symbolic description
extracted from the image

The success of this approach requires the
ability to rapidly match predicted and sensed
appearances after each projection. The matching of
image and map features is performed by a new

technique, called "chamfer matching", that compares
the shapes of two collections of curve fragments at
a cost proportional to linear dimension. rather
than area.

In principle. this approach should be
superior, since it exploits more knowledge of the
invariant three dimensional structure of the world

and of the imaging process. At a practical level,
this permits matching of spatially extensive
features on the basis of shape. which reduces the
risk of ambiguous matches and dependence on viewing
cond it ions.

Chamfer Matching

Point landmarks such as intersections or

promontories are represented in the map with their
associated three dimensional world coordinates.
Linear landmarks. such as roads or coastlines are

represented as curve fragments with associated
ordered lists of world coordinates. Volumetric

structures. such as buildings or bridges, are
represented as wire frame models.

From a knowledge of the expected viewpoint, a
prediction of the image can be made by projecting
world coordinates into corresponding image
coordinates, suppressing hidden lines. The problem
in matching is to determine how well the predicted
features correspond with image features, such as
edges and 1 ines.

The first step is to extract image features by
applying edge and line operators or tracing
boundaries. Edge fragment linking [Nevatia,
Perkins] or relaxation enhancement [Zucker, Barrow]
is optional. The net result is a feature array
each element of which records whether or not a line

fragment passes through it. This process preserves
shape information and discards greyscale
information, which is less invariant.

To correlate the extracted feature array
directly with the predicted feature array would
encounter several problems: The correlation peak
for two arrays depicting identical linear features
is very sharp and therefore intolerant of slight
misalignment or distortion (e.g., two lines,
slightly rotated with respect to each other. can
have at most one point of correspondence) [Andrus];
A sharply peaked correlation surface is an
inappropriate optimization criterion because it
provides little indication of closeness to the true
match. nor of the proper direction in which to
proceed; Computational cost is heavy with .large
feature arrays.

A more robust measure of similarity between
the two sets of feature points is the sum of the
distances between each predicted feature point and
the nearest image point. This can be computed
efficiently by transforming the image feature array
into an array of numbers representing distance to
the nearest image feature point. The similarity
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measure is then easily computed by stepping through

the list of predicted features and simply summing

the distance array values at the predicted

10c'3.tions.

The dist'3.ncev'3.1uescan be determined in b.lO

passes through the image feature array by a process

known as "chamfering" [Munson, Rosenfeld]. The

feature array (F[i j] i.j=l N) is initially two.
valued: a for fe'3.turepoints and infinity

otherwise The forward pass modifies the feature
ar ray as follows

FOR i ~ 2 STEP 1 UNTILN DO
FOR j ~ 2 STEP 1 UNTILN DO

F[i.j] ~ MINIMUM(F[i.j] (F[i-l j]+2).
(F[i-lj-l ]+3) (F[i,j-l ]+2),
(F[i+1. j-1 ]+3»;

Similarly, the backward pass operates as follows:

FOR i ~ (N-1) STEP -1 UNTIL 1 DO
FOR j ~ (N-1) STEP -1 UNTIL 1 DO

F[i,j] <'c MINIt-1UM(F[i,j], (F[i+1,j]+2),
(F[i+1 ,j+1 ]+3), (F[i,j+1 ]+2)
(F[i..1 ,j+1 ]+3»;

The incremental distance values of 2 and 3 provide

relative distances that approximate the Euclidean

distances 1 and the square.root of 2

Chamfer matching provides an efficient way of

computing the integral distance (i,e. area) or

integral squared distance. between two curve

fragments, two commonly used measures of shape

similarity. Note that the distance arr'3.Y is

computed only once. after image feature extr'3.ction.

Parametric Correspondence

Parametric correspondence puts an i~age into

correspondence with a three dimension'3.1 reference

map by determining the parameters of an analytic

camera model (3 position and 3 orientation
parameters).

The traditional method of calibr'3.ting the

camera model takes place in two stages: first, a

number of known landmarks are independently located

in the image, and second. the C'3.mera parameters are

computed from the pairs of corresponding world and

image locations, by solving an over.constr'3.ined set

of equations [Sobel, Quam, Hannah].

The failings of the traditional method stem

from the first stage. The l'3.ndmarks are found

individually, using only very local context (e.g.

a small patch of surrounding image) and with no

mutual constraints. Thus local false matches

commonly occur. The restriction to small features

is mandated by the high cost of area correlation

and by the fact that large image features correlate

poorly over small changes in viewpoint.

Parametric correspondence overcomes these

failings by integr'3.ting the landmark-matching and

camer'3. calibration stages. It operates by hill-

climbing on the camera parameters. A

transformation matrix is constructed for each set

of parameters considered, and it is used to project

landmark descriptions from the map onto the image

at a particular translation, rotation, scale and

perspective. A similarity score is computed with
chamfer matching and used to update parameter
values. Initial parameter values are estimated

from na vigat ional data.

Integrating the two stages allows the

simultaneous matching of all landmarks in their

correct spatial relationships. Viewpoint problems
with extended features are avoided because features

are precisely projected by the camera model prior
to matching, Parametric correspondence has the

same advantages as rubber-sheet template matching
[Fischler, Widrow] in that it obtains the best

embedding of a map in an image, but avoids the
combinatorics of trying arbitrary distortions by

only considering those corresponding to some
possible viewpoint.

An Example

The following example illustrates the major
concepts in chamfer matching and parametric

correspondenc~. A sensed image (Figure 1) was
input along with manually derived initial estimates

of the camera parameters. A reference map of the

coastline was obtained. uSing a digitizing tablet
to encode coordinates of a set of 51 sample points
on a USGS map Elevations for the points were
entered manually. Figure 2 is an orthographic
projection of this three dimensional map.

"'"
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A simple edge follower traced the high

contrast boundary of the harbor, producing the edge

picture shown in Figure 3. The chamfering

algorithm was applied to this edge array to obtain

a distance array. Figure 4 depicts this distance

array; distance is encoded by brightness with

maximum brightness corresponding to zero distance

from an edge point.

Using the initial camera parameter estimates,

the map was projected onto the sensed image (Figure

5). The average distance between projected points

and the nearest edge point, as determined by

chamfer matching, was 25.8 pixels.

A straightforward optimization algorithm

'3.djusted the camera parameters, one at '3.time, to

minimize the aver'3.ge dist'3.nce. Figures 6 and 7

show an intermedi'3.te st'3.te and the final state, in

which the average dist'3.nce has been reduced to 0.8

pixels. This result, obt'3.ined with 51 sample

points, compares f'3.vorably with a 1.1 pixel average
distance for 19 sample points obtained using

conventional image chip correlation followed by

camer'3. calibration. The curves in Figure 8

characterize the local behavior of this minimum,

showing how '3.verage distance varies with v'3.riation

of each parameter from its optimal value.

Approximately 60 iterations (each involving a

parameter adjustment and reprojection). were

required for this example. The number of

iterations could be reduced by using a better

optimization algorithm for example. a gradient
search

Discussion

We have presented a scheme for establishing
correspondence between an image and a reference map

that integrates the processes of landmark matching
and camera calibration. The potential advantages
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of this approach stem from 1) matching shape,

rather than brightness, 2) matching spatially
extensive features, ra~er than small patches of

image, 3) matching simultaneously to all features,
rather than searching the combinatorial space of
alternative local matches, 4) using a compact three

dimensional model; rather than many two dimensional

templates.

Snape has proved to be much easier to model
and predict than brightness. Shape is a relatively
invariant geometric property whose appearance from

arbitrary viewpoints can be precisely predicted by
the camera model. This eliminates the need for

multiple descriptions, corresponding to different
viewing conditions, and overcomes difficulties of

matching large features over small changes of
viewpoint.

The ability to treat the entirety of the

relevant portion of the reference map as a single
extensive feature reduces significantly the risk of

ambiguous matches, and avoids the combinatorial
complexity of finding the optimal embedding of

multiple local features.

A number of obstacles have been encountered in

reducing the above ideas to practice The distance

metric used in chamfer matching provides a smooth,

monotonic measure near the correct correspondence,

and nicely interpolates over gaps in curves.

However, scores can be unreliable when image and

reference are badly out of alignment. In

particular, discrimination is poor in textured

areas, aliasing can occur with parallel linear

features, a single isolated image feature can

support multiple reference features.

The main problem is that edge position is not

a distinguishing feature. and consequently many
alternative matches receive equal weight. One way

of overcoming this problem, therefore, is to use
more descriptive features brightness
discontinuities can be classified, for example. by

orientation, by edge or line, and by local spatial
context (texture versus isolated boundary). Each

type of feature would be separately chamfered and
map features would be matched in the appropriate
array. Similarly, features at a much higher level

could be used, such as promontory or bay, area

features having particular internal tc;x',.uresor
structures, and even specific landmarks, such as

"the top of the Transamerica pyramid". Ideally,
with a few highly differentiated features
distributed widely over the image th(. ,:ara"1etric

correspondence process would be able t, home in
directly on the solution regardless of in~tial
condit ions.

Anpther dimension for possible improvemer,t ii'
the chamfering process itself. Determining for

each point of the array a weighted sum of distances
to many features (e.g. a convolution with the
feature array), instead of the distance to the
nearest feature. would provide more immunity from

isolated noise points. Alternatively, propagating
the coordinates of the nearest point instead of

merely the distance to it, it becomes possible to

use characteristics of features; such as local
slope or curvature, in evaluating the goodness of
match. It also makes possible a more directed

search, since corresponding pairs of points are now

known, an improved set of parameter estimates can
be analytically determined.

Chamfer matching and parametric correspondence

are separable techniques. Conceptually, parametric

correspondence can be performed by re projecting
image chips and evaluating the match with
correlation. However, the cost of projection and

matching grows with the square of the template
size: The cost for chamfer matching grows linearly
with the number of feature points. Chamfer

matching is an alternative to other shape matching
techniques, such as chain-code correlation
[Freeman], Fourier matching [Zahn], and graph

matching [e.g. Davis]. Also, the smoothing
obtained by transforming two edge arrays to
distance arrays via chamfering can be used to

improve the robustness of conventional area-based
edge correlation.

Parametric correspondence, in its most general

form, is a technique for matching two

parametrically related representations of the same

geometric structure. The representations can be

two- or three-dimensional, iconic or symbolic; the

parametric relation can be perspective projection.

a simple similarity transformation, a polynomial

warp, and so forth. This view is similar to

rubber-sheet template matching as conceived by

Fischler and Widrow [Fischler, Widrow]. The

feasibility of the approach in any application, as

Wid row points out, depends on efficient algorithms

for "pattern stretching, hypothesis testing, and

pattern memory", corresponding to our camera model.

chamfer matching, and three dimensional map.

As an illustration of its versatility, the

technique can be used with a known camera location

to find a known object whose position and

orientation are known only approximately. In this

case, the object's position and orientation are the

parameters; the object is translated and rotated

until its projection best matches the image data

Such an application has a more iconic flavor, as

advocated by Shepard [Shepard], and is more

integrated than the traditional feature extraction

and graph matching approach [Roberts, Falk and

Grape].

As a final consideration, the approach is

amenable to efficient hardware implementation.

There already exists commercially available
hardware for generating parametrically specified

perspective views of wire frame models at video
rates, complete with hidden line suppression. The
chamfering process itself requires only two pas~es

through an array by a local operator, and match

scoring requires only summing table lookups in the
resulting distance array.

Conclusion

Iconic matching techniques, such as
correlation, are known for efficiency and precision

obtained by exploiting all available pictorial
information, especially geometry. However, they
are overly sensitive to changes in viewing
conditions and cannot make use of non-pictorial

information. Symbolic matching techniques, on the
other hand, are more robust because they rely on
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invariant abstractions, but are less precise and
less efficient in handling geometrical

relationships. Their applicability in real scenes

is limited by the difficulty of reliably extracting
the invariant description. The techniques we have
put forward offer a way of combining the best

features of iconic and symbolic approaches.
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Figure 1. An aerial image of a section of
coastline.

Figure 2. A set of sample points taken from a
USGS map.
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'" Figure 3. The traced boundary of the coastline.

(

Figure 4. The distance 3rray produced by
chamfering the boundary.

Figure 5. Initial projection of map points onto
the image.

Figure 6. Projection of map pOints onto ehe image

after some adjustment of camera

parameters.

Figure 7. Projection of map points onto the image
after optimization of camera
parameters.

Figure 8. Behavior of average distance score with

variation of the six camera parameters
from their optimal values.

Vi 5 ion-7: Barra,.,
663


