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Parametric correspondence is a technique for
matching images to a three dimensional symbolic
reference map. An analytic camera model is used to
predict the location and appearance of landmarks in
the image. generating a projection for an assumed
viewpoint. Correspondence is achieved by adjusting
the parameters of the camera model until the
appearances of the landmarks optimally match a
symbolic description extracted from the image

™

The matching of image and map features is
performed rapidly by a new technique, called
"chamfer matching" . that compares the shapes of two
collections of shape fragments. at a cost
proportional to linear dimension, rather than area
These two techniques permit the matching-of
spatially extensive features on the basis of shape.
which reduces the risk of ambiguous matches and the
dependence on viewing conditions inherent in
conventional image-based correlation matching.

Introduction

Many tasks involving pictures require the
ability to put a sensed image intoc correspondence
with a reference image or map. Examples include
vehicle guidance, photo interpretation (change
detection and monitoring) and cartography (map
updating). The conventional approach is to
determine a large number of points of
correspondence by correlating small patches of the
reference image with the sensed image. A
polynomial interpolation is then used to estimate
correspondence for arbitrary intermediate points
[Bernstein]. This approach is computationally
expensive and limited to cases where the reference
and sensed images were obtained under similar
viewing conditions. 1In particular, it cannot
images obtained from radiecally different
viewpoints, sensors, or seascnal or climatic
conditions, and it cannot match images against
symbolic maps.

matech

Parametric correspondence matches images to a
symbolic reference map, rather than a reference
image. The map contains a compact three
dimensional representation of the shape of major
landmarks. such as coastlines, buildings and
roads. An analytic camera model is used to predict
the location and appearance of landmarks in the
image, generating a projection for an assumed
viewpoint. Correspondence is achieved by adjusting
the parameters of the camera model (i.e. the
assumed viewpoint) until the appearances of the
landmarks optimally match a symbolic description
extracted from the image

The success of this approach requires the
ability to rapidly match predicted and sensed
appearances after each projection The matching of
image and map features is performed by a new
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technique, called "chamfer matching", that compares
the shapes of two collections of curve fragments at
a cost proportional to linear dimension. rather
than area.

In principle. this approach should be
superior, since it exploits more knowledge of the
invariant three dimensional structure of the world
and of the imaging process. At a practical level,
this permits matching of spatially extensive
features on the basis of shape. whizh reduces the
risk of ambiguous matches and dependence on viewing
conditions.

Point landmarks such as
promontories. are represented
associated three dimensional world coordinates.
Linear landmarks. such as roads or coastlines
represented as curve fragments with associated
ordered lists of world coordinates. Volumetric
structures. such as buildings or bridges, are
represented as wire frame models.

intersections or
in the map with their

are

From a knowledge of the expected viewpoint, a
prediction of the image can be made by projecting
world coordinates into corresponding image
coordinates. suppressing hidden lines. The problem
in matching is to determine how well the predicted
features correspond with image features, such
edges and lines.
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The first step is to extract image features by
applying edge and line operators or tracing
boundaries. Edge fragment linking [Nevatia,
Perkins] or relaxation enhancement [Zucker, Barrow]
is optional. The net result is a feature array
each element of which records whether or not line
fragment passes through it. This process preserves
shape information and discards greyscal
information, which is invariant.
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To correlate the extracted feature array
directly with the predicted feature array would
encounter several problems: The correlation peak
for two arrays depicting identical linear features
is very sharp and therefore intolerant of slight
misalignment or distortion (e.g., lines,
slightly rotated with respe to each other. can
have at most one point of correspondence) [Andrus];
A sharply peaked correlation surface is an
inappropriate optimization criterion because it
provides little indication of closeness to the true
match, nor of the proper direction in which to
proceed; Computational cost heavy with -large
feature arrays.
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A more robust measure of similarity between
the two sets of feature points is the sum of the
distances between each predicted feature point and
the nearest image point. This can be computed
efficiently by transforming the image feature array
into an array of numbers representing distance to
the nearest image feature point. similarity
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The distance values can be determined in two
passes through the image feature array by a process
known as "chamfering" [Munson, Rosenfeld]. The
feature array (F[1i j]. i.j=1 N) is initially two
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Similarly, the backward pass operates as follows:

e—(N-11 STEP -1 UNTIL 1 DO
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i,j] <« MINIMUM(F[i,j].
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of 2 and

The incremental distance values 3 provide
relative distances that approximate the Euclidean
distances 1 and the square -root of 2

Chamfer matching provides an efficient way of

computing the integral distance (i.e. or
integral squared distance. between two

fragments, two commonly used measures of
similarity. - Note that the distance arra
cmputed only e after
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erspective. A similarity score is computed with
chamfer matching and used to update parameter
values. Initial parameter values are estimated
from navigational data.

Integrating the two sfaﬂe: lows the
simultaneous matching of 2 la rks in their
correct spatial relationships. Viewpoint problems
with extended features are avoided because features
are precisely projected by the camera model prior
to matching Parametrie correspondence has the

same advantages as rubber-sheet template matching
[Fisechler, Widrow] in that it obtains the best
embedding of a map in an image, but avoids the
combinatories of trying arbitrary distortions by

s
only considering thoss corresponding to som
possible viewpoint.

The following example illustrates the major
concepts in chamfer matching and parametric
correspondence. A sensed image (Figure 1) was
input along with manually derived initial estimates
of the camera parameters. A& reference map of the
coastline was obtained. using a digitizing tablet
to encode coordinates of a set of 51 sample points
on a USGS map Elevations for the points were
entered manually. Figure 2 is an orthographic

projection of this three dimensional map.
A simple edge follower traced the high
contrast boundary of the harbor, producing the edge
cture shown in Figure 3. The chamfering
gorithm was applied to this edge array to obtain
a distance array. Figure U depicts this distanc
array; distance is encoded by brightness with

ightness
an edge poin

maximum br
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corresponding to zero distance

\—r

Using the initial camera param r estimates,

> map was projected onto the sensed image (Figure
5)s The average dlst“nbe between projected points

and the nearest edge point, as determined by

hamfer matching, was 25.8 pixels.
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pixels. This result, obtained with 51 sample
peints, compares favorably with a 1.1 pixel average
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each parameter from its optimal wvalue.
Approximately 60 i involving a
parameter adjustment and reprojection). were
required for this example The number of
iterations could be reduced by using a better
ization algorithm example., a gradient
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of this approach stem from 1) matching shape,
rather than brightness, 2) matching spatially
extensive features, rather than small patches of
image, 3) matching simultaneously to all features,
rather than searching the combinatorial space of
alternative local matches, 1) using a compact three
dimensional model, rather than many two dimensional
templates.

Snape has proved to be much easier to model
and predict than brightness. Shape is a relatively
invariant geometriec property whose appearance from
arbitrary viewpoints can be precisely predicted by
the camera model. This eliminates the need for
multiple deseriptions, corresponding to different
viewing conditions, and overcomes difficulties of
matching large features over small changes of
viewpolnt.

The ability to treat the entirety of the
relevant portion of the reference map as a single
extensive feature reduces significantly the risk of
ambiguous matches, and avoids the combinatorial
complexity of finding the optimal embedding of
multiple local features.

A number of obstacles have been encountered in
reducing the above ideas to practice The distance
metric used in chamfer matching provides a smooth,
monotonic measure near the correct correspondence,
and nicely interpolates over gaps in curves.
However, scores can be unreliable when image and
reference are badly out of alignment. 1In
particular, discrimination is poor in textured
areas, aliasing can occur with parallel linear
features, a single isolated image feature can
support multiple reference features.

The main problem is that edge position is not
a distinguishing feature. and consequently many
alternative matches receive equal weight. One way
of overcoming this problem, therefore, is to use
more descriptive features: brightness
discontinuities can be classified, for example. by
orientation, by edge or line, and by local spatial
context (texture versus isolated boundary). Each
type of feature would be separately chamfered and
map features would be matched in the appropriate
array. Similarly, features at a much higher level
could be used, such as promontory or bay, area
features having particular internal t=xiures or
structures, and even specific landmarks, such as
"the top of the Transamerica pyramid". Ideally,
with a few highly differentiated features
distributed widely over the image the carametric
correspondence process would be able t. home in
directly on the solution regardless of inifial
conditions.

Another dimension for possible improvement is
the chamfering process itself. Determining for
each point of the array a weighted sum of distances
to many features (e.g. a convolution with the
feature array), instead of the distance to the
nearest feature. would provide more immunity from
isolated noise points. Alternatively, propagating
the coordinates of the nearest point instead of
merely the distance to it, it becomes possible to
use characteristics of features. such as local
slope or curvature, in evaluating the goodness of
match. It also makes possible a more directed
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search, since corresponding pairs of points are now
known, an improved set of parameter estimates can
be analytically determined.

Chamfer matching and parametric correspondence
are separable techniques. Conceptually, parametric
correspondence can be performed by re projecting
image chips and evaluating the match with
correlation. However, the cost of projection and
matching grows with the square of the template
size: The cost for chamfer matching grows linearly
with the number of feature points. Chamfer
matching is an alternative to other shape matching
techniques, such as chain-code correlation
[Freeman], Fourier matching [Zahn], and graph
matching [e.g. Davis]. Also, the smoothing
obtained by transforming two edge arrays to
distance arrays via chamfering can be used to
improve the robustness of conventional area-based
edge correlation.

Parametriec correspondence, in its most general
form, is a technique for matching two
parametrically related representations of the same
geometric structure. The representations can be
two- or three-dimensional, iconic or symbolic; the
parametric relation can be perspective projection.
a simple similarity transformation, a polynomial
warp, and so forth. This view is similar to
rubber-sheet template matching as conceived by
Fischler and Widrow [Fischler, Widrow]. The
feasibility of the approach in any application, as
Widrow points cut, depends on efficient algorithms
for "pattern stretching, hypothesis testing, and
pattern memory", corresponding to our camera model.
chamfer matching, and three dimensional map.

As an illustration of its versatility, the
technique can be used with a known camera location
to find 2 known object whose position and
orientation are known only approximately. In this
case, the object's position and orientation are the
parameters; the object is translated and rotated
until its projection best matches the image data
Such an application has a more iconic flavor, as
advocated by Shepard [Shepard], and is more
integrated than the traditional feature extraction
and graph matching approach [Roberts, Falk and
Grape].

As a final consideration, the approach is
amenable to efficient hardware implementation.
There already exists commercially available
hardware for generating parametrically specifie
perspective views of wire frame models at video
rates, complete with hidden line suppression. The
chamfering process itself requires only two pasues
through an array by a local operator, and match
scoring requires only summing table lookups in the
resulting distance array.

Conclusion

Iconiec matching techniques, such as
correlation, are known for efficiency and precision
obtained by exploiting all available pictorial
information, especially geometry. However, they
are overly sensitive to changes in viewing
conditions and cannot make use of non-pictorial
information. Symbolic matching techniques, on the
other hand, are more robust because they rely on
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Figure 3. The traced boundary of the coastline. Figure 6. Projection of map points onto che image
after some adjustment of camera
parameters.

Figure 4. The distance array produced by Figure. 7. Projection of map points onto the image
chamfering the boundary. after optimization of camera
= parameters.

Figure 5, Initial projection of map points onto Figure 8. Behavior of average distance score with
the image. variation of the six camera parameters
from their optimal values.
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