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Abstract� Fowlkes et al� 	�
 recently introduced an approximation to
the Normalized Cut �NCut� grouping algorithm 	
�
 based on random
subsampling and the Nystr�om extension� As presented� their method
is restricted to the case where W � the weighted adjacency matrix� is
positive de�nite� Although many common measures of image similarity
�i�e� kernels� are positive de�nite� a popular example being Gaussian�
weighted distance� there are important cases that are not� In this work�
we present a modi�cation to Nystr�om�NCut that does not require W to
be positive de�nite� The modi�cation only a�ects the orthogonalization
step� and in doing so it necessitates one additional O�m�� operation�
where m is the number of random samples used in the approximation� As
such it is of interest to know which kernels are positive de�nite and which
are inde�nite� In addressing this issue� we further develop connections
between NCut and related methods in the kernel machines literature� We
provide a proof that the Gaussian�weighted chi�squared kernel is positive
de�nite� which has thus far only been conjectured� We also explore the
performance of the approximation algorithm on a variety of grouping
cues including contour� color and texture�

� Introduction

Among the methods for image segmentation developed in recent years� those
based on pairwise grouping arguably show the most promise� By the term �pair�
wise� we mean that the grouping operation is based on measures of similarity
or dissimilarity between pairs of pixels� In contrast� �central� grouping methods
proceed by comparing all the pixels to a small number of prototypes or cluster
centers� examples include k�means and EM clustering with Gaussian mixture
models� Central grouping methods tend to be computationally cheaper� but have
di�culty dealing with irregularly�shaped clusters and gradual variation within
groups� Moreover� they are sensitive to initialization and require model�selection
�i�e� speci	cation of the number of groups
� Generally speaking� pairwise group�
ing methods either eliminate or simplify these problems� Some of the approaches
that have been proposed for grouping pairwise data include spectral graph par�
titioning ��
� ��� ���� deterministic annealing ����� and stochastic clustering �
��



The drawback� of course� is that approaches based on pairwise data in prin�
ciple require measurements between all possible pairs of pixels� Consequently�
the number of pairs considered is often restricted by placing a threshold on the
number of connections per pixel� e�g� by specifying a cuto� radius� This discour�
ages the use of long�range connections and this can result in over�segmentation
of homogeneous regions� A promising solution to this problem for the case of
spectral graph theoretic methods was recently proposed by Fowlkes et al� ����
Their method� based on the Nystr�om approximation for the integral eigenvalue
problem� works by solving a grouping problem on a small set of m randomly sam�
pled pixels and then extending the solution to the complete set of pixels� Using
this approach� they produced high�quality segmentations of image sequences in
a fraction of the time required to compute the exact solution�

Though not explicitly stated� Fowlkes et al� assume that the function used
for computing the simlarity between pairs of pixels is positive de	nite� i�e� that
the weight matrix comprised of all the pairwise similarities is a Gram matrix�
While this assumption is generally taken for granted in kernel based methods
�e�g� ����
� the same cannot necessarily be said for similarity measures used in
the computer vision literature� In the present work� we show that this restriction
can be lifted by modifying the orthogonalization step used in ���� which requires
positive de	niteness� This proposed change necessitates an additional O�m�

operation� as such it is desirable to know when this alternative is necessary�
To this end we discuss the application of the Nystr�om method to a number of
commonly used similarity functions� both positive de	nite and inde	nite �i�e�
neither positive de	nite nor negative de	nite
�

The organization of this paper is as follows� We begin by reviewing in Sec�
tion � the spectral graph theoretic pairwise grouping algorithm used in this work�
namely Normalized Cuts �NCut
 ��
�� Next we review the Nystr�om extension in
Section �� focusing on its application to NCut� In Section � we discuss the issues
of de	niteness and inde	niteness of commonly used kernels used for measuring
pairwise similarity and provide our modi	cation to the method of ���� Experi�
mental results and discussion are provided in Sections �� Some properties of the
approximation are discussed in Section � and 	nally we conclude in Section ��

� Review of Normalized Cuts

Let the symmetric matrix W � RN�N denote the weighted adjacency matrix
for a graph G � �V�E
 with nodes V and edges E� We will refer to the function
used to compute Wij as a kernel� examples of kernels and their properties are
discussed in Section �� Let A and B represent a bipartition of V � i�e� A � B �
V and A � B � �� Let cut�A�B
 denote the sum of the weights between A

and B� cut�A�B
 �
P

i�A�j�BWij � The degree of the ith node is de	ned as
di �

P
jWij and the volume of a set as the sum of the degrees within that set�

vol�A
 �
P

i�A di and vol�B
 �
P

i�B di� The Normalized Cut between sets A



and B is then given as follows�

NCut�A�B
 � cut�A�B


�
�

vol�A

�

�

vol�B


�
�

� � cut�A�B


vol�A
kvol�B


where k denotes the harmonic mean�
We wish to 	nd A and B such that NCut�A�B
 is minimized� Appealing

to spectral graph theory ���� Shi and Malik ��
� showed that an approximate
solution may be obtained by thresholding the eigenvector corresponding to the
second smallest eigenvalue of the normalized Laplacian L� which is de	ned as

L � D�����D �W 
D���� � I �D����WD����

where D is the diagonal matrix with entries Dii � di� The matrix L is positive
semide	nite� even when W is inde	nite� Its eigenvalues lie on the interval ��� ��
so the eigenvalues of D����WD���� are con	ned to lie inside ���� �� �see ���
�
Finally� extensions to multiple groups are possible via recursive bipartitioning
or through the use of multiple eigenvectors�

� Review of the Nystr�om Approximation to NCut

Since N is quite large for typical images �e�g� ����
� 	nding the eigenvectors
of L is computationally intensive� One approach to dealing with this di�culty
is to connect only to those pixels that are nearby in the image� This makes L
sparse and permits the use of an e�cient eigensolver �e�g� Lanczos
� However� this
discourages the use of long�range connections and the approximation properties
are not easily understood� The Nystr�om approximation provides an alternative
approach based on random sampling�

The application of the Nystr�om approximation to NCut proceeds as follows�
First� choose m samples at random from the full set of N pixels� For simplicity
in notation� reorder the samples so that these m come 	rst and the remaining
n � N �m samples come next� Now partition the weight matrix W as

W �

�
A B

BT C

�
��


with A � Rm�m� B � Rm�n� C � Rn�n� and N � m � n� with m � n� Here
A represents the subblock of weights amongst the random samples� B contains
the weights from the random samples to the rest of the samples� and C contains
the weights between all of the remaining samples� Assuming m� n� C is huge�
The Nystr�om extension implicitly approximates C using BTA��B� The quality
of the approximation of the full weight matrix

�W �

�
A B

BT BTA��B

�
��


can be quanti	ed as the norm of the Schur complement kC � BTA��Bk� The
size of this norm is governed by the extent to which C is spanned by the rows of



B� Thus� rather than set the majority of entries in W to zero to produce a sparse
approximation� the Nystr�om method provides �implicitly
 an approximation to
the entire weight matrix based on a subset of rows�columns�

Fowlkes et al� ��� show that �W can be diagonalized in an e�cient manner�
Let A��� denote the symmetric positive de	nite square root of A� de	ne S �
A�A����BBTA���� and diagonalize it as S � U�UT � If the matrix V is de	ned
as

V �

�
A

BT

�
A����U����� ��


then one can show that �W is diagonalized by V and �� i�e� �W � V �V T and
V TV � I � We assume that pseudoinverses are used in place of inverses as nec�
essary when there is redundancy in the random samples�

To apply this approximation to NCut� it is necessary to compute the row
sums of �W � This is possible without explicitly evaluating the BTA��B block
since

�d � �W� �

�
A�m �B�n

BT�m �BTA��B�n

�

�

�
ar � br

bc �BTA��br

�
��


where ar� br � R
m denote the row sums of A and B� respectively� and bc � R

n

denotes the column sum of B�
With �d in hand� the blocks of �D���� �W �D���� that are needed to approximate

its leading eigenvectors are given as

Aij �
Aijq
�di�dj

� i� j � �� � � � �m

and

Bij �
Bijq

�di�dj�m

� i � �� � � � �m� j � �� � � � � n

to which we can apply equation ��
 as before�

� Nystr�om�NCut for inde�nite kernels

In diagonalizing �D���� �W �D����� Fowlkes et al� assume that A is positive semidef�
inite in order to compute A���� the positive semide	nite square root of A� Pos�
itive de	nite kernels correspond to a dot products in a �feature space� that is
protentially of much higher dimensionality than the input space� This geomet�
ric intuition is the essence of the kernel trick ����� which serves as the basis for
kernel�based methods such as support vector machines �SVM
 and kernel prin�
cipal components analysis �KPCA
� As such� in the kernel�machines literature�
the term �kernel� is often used synonymously with �positive de	nite kernel��



The same assumption cannot be made in general for similarity functions used
in grouping in the computer vision literature� To be sure� Gaussian�weighted
Mahalanobis distance between feature vectors� one of the most common similar�
ity measure used in grouping� is positive de	nite� as are several other popular
choices� However� there are a number of similarity measures one can use that
only satisfy the fairly weak requirements that W is symmetric and Wij is �big�
if pixels i and j are similar and �small� if they are not� It is therefore important
that both cases be properly addressed�

Equation ��
 can be thought of as a �one�shot� combined Nystr�om eigenvec�
tor approximation and orthogonalization operation� By keeping these two steps
separate� we will show that the positive de	niteness requirement can be circum�
vented�� Starting from the approximation of W in Equation ��
� let A � U�UT

denote the diagonalization of A� We may then write �W as

�W �

�
U

BTU���

�
�
�
UT ���UTB

�

where the block BTU��� represents the Nystr�om extension� As Williams and
Seeger ���� noted� this is equivalent to the expression for the projection of a test
point onto the feature�space eigenvectors in Kernel PCA� Although this extension
appears to give us an approximate diagonalization� the extended eigenvectors are
not orthogonal�

We carry out the orthogonalization step as follows� Let �UT � �UT ���UTB�
and de	ne Z � �U���� so that �W � ZZT � Let F�F T denote the diagonalization
of ZTZ� Then the matrix V � ZF����� contains the leading orthonormalized
eigenvectors of �W � i�e� �W � V �V T with V TV � I � As before� a pseudoinverse
can be used in place of a regular inverse when A has linearly dependent columns�

Thus the approximate eigenvectors are produced in two steps� 	rst we use
the Nystr�om extension to produce �U and � and then we orthogonalize �U to
produce V and �� Although this �two�step� approach is applicable in general�
the additional O�m�
 step it requires for the orthogonalization takes extra time
and leads to an increased loss of signi	cant 	gures� Therefore it is expedient
to know when the one�shot method can be applied� i�e� when a given kernel is
positive de	nite�

� Experiments and Discussion

In this section we discuss a number of kernels� both positive de	nite and inde	�
nite� and show examples of their use�

� Since the normalized Laplacian is positive semide�nite even when W is not� it is
tempting to try to apply Nystr�om to L instead of D����WD����� Unfortunately�
the Nystr�om method �nds the leading eigenvectors� and the eigenvectors of L we
need are the trailing ones�



Gaussian weighted distance� Perhaps the most commonly used measure of
similarity between pixels is Gaussian weighted Mahalanobis distance between
feature vectors xi and xj �

Wij � e�
�

�
�xi�xj�

T����xi�xj�

This kernel is positive de	nite and therefore admits the use of the one�shot
Nystr�om method� Fowlkes et al� ��� used this kernel on feature vectors containing
position� color� and optical �ow� Most of the works cited in the introduction use
this kernel �among others
� as such� additional experimental results will not be
provided here�

Histogram comparison using the �� test� The �� test is a simple and
e�ective means of comparing two histograms� It has been shown to be a very
robust measure for color and texture discrimination ����� Given two normalized
histograms hi�k
 and hj�k
 de	ne

��ij �
�

�

KX
k��

�hi�k
� hj�k

�

hi�k
 � hj�k


where it is understood that any term in the sum for which hi�k
 � � and
hj�k
 � � is replaced by zero�

We can then de	ne the similarity between a pair of histograms as Wij �

e��
�

ij��� This kernel is widely conjectured to be positive de	nite �see e�g� ���

but to our knowledge no proof of this has been published� The appendix A
contains our proof that Gaussian�weighted �� is positive de	nite�

An example of Nystr�om�NCut on a color image of a tiger is shown in Figure
�� In this example� we computed a local color histogram inside a �	� box around
each pixel using the color quantization scheme of ����� Finally� since the weight
matrix is positive de	nite� we used the one�shot Nystr�om method� We note that
the same technique can be applied to texture using the �textons� of Malik et al�
����� i�e� vector�quantized 	lter responses�

Intervening contour� To integrate contour information into a pairwise region
based grouping framework� it is convenient to construct a kernel that indicates
points are dissimilar if they lie on oposite sides of an intervening contour �����
We consider a distance between each pair of pixels that takes into account all
possible paths across the image� Each path between a pair is assigned a distance
equal to the maximum contour energy encountered along the path� The distance
rij between the pair is then taken to be the minimum energy over all paths and

the similarity between two pixels is e�r
�

ij��� It is not known whether this kernel
is positive de	nite�

This cue captures the Gestalt notion of closure� If two points are separated
by a closed contour then they will have low similarity while if there is a path



�a� �c�

�b�

Fig� �� Segmentation of tiger image based on Gaussian weighted ���distance between
local color histograms� The image size is 
�� � 
�� and the histogram window size is

�� �� Color quantization was performed as in 	
�
 with � bins� Since the e��
�

ij kernel
is positive de�nite� we can use the one�shot method of 	�
� �a� Original image shown
with m � 
�� random samples used in approximation� �b� Nystr�om�NCut eigenvectors
� through �� sorted in ascending order by eigenvalue� �c� Segment�label image obtained
via k�means clustering on the eigenvectors as described in 	�
�

connecting two points that doesn t cross an edge then they will have high simi�
larity�

The problem of 	nding this minimum over all paths has the same structure as
the classic shortest path problem and is easily solved by application of Dijkstra s
algorithm ���� Since the problem is sparse it is possible to achieve a running time
of O�m � �N logN

 where m is the number of samples and N is the number
of pixels� An illustration of this method applied to a sample image is shown in
Figure ��
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Fig� �� Segmentation using intervening contour� Original image of synthetic shapes
with noise is shown at lower left� At top� the horizontal and vertical boundary energy
is shown� this is computed by squaring the x and y components of the smoothed gra�
dient� The connection weight between a pair of pixels is based on the contour energy
encountered along all paths between the pair of pixels� see text for details� The segmen�
tation label map� obtained via k�means on the Nystr�om�NCut eigenvectors� is shown
at lower right�

One Minus Squared Distance� A simple choice of kernel for expressing sim�
ilarity between pixels is the following�

Wij � ��
r�ij

�



where r�ij represents the squared distance between feature vectors at i and j�

This kernel is in general inde	nite�� moreover� it takes on negative values�� Nev�
ertheless� this kernel makes intuitive sense and� empirically� NCut works well
with it� An example using the two�step Nystr�om method with this kernel on
color and proximity is shown in Figure ��

�a� �b� �c� �d�

�e� �f� �g� �h�

Fig� �� Segmentation of Firetruck image using �nd degree polynomial kernel� The fea�
ture vector for each pixel contains RGB color values and �x� y� coordinates� The form of
the kernel isWij � 
�r�ij�� where r�ij represents the Mahalanobis distance between fea�
ture vectors at pixels i and j� Since this kernel is inde�nite� we applied Nystr�om�NCut
using the proposed two�step method� �a� Original image� �b�h� Segments obtained via
k�means clustering on Nystr�om�NCut eigenvectors as in Figure 
�

	 Properties of the Approximation

Since the Nystr�om method only requires us to diagonalize anm	mmatrix to 	nd
the leading eigenvectors of �D���� �W �D����� this approach can be very e�cient�
A key question is how well a given set of samples allows us to approximate
these eigenvectors� Fowlkes et al� ��� provide empirical results on a large set of
natural images to show that roughly ��� samples do a good job when using
color and proximity� In this section we wish to shed some light on the geometric
interpretation of the use of BTA��B as an approximation to C�

� In Multidimensional Scaling �MDS� 	�
 one applies a �centering operation� to a
squared distance matrix to isolate the positive semide�nite component corresponding
to the inner products between the embedded coordinates� This centering operation
�not repeated here� is more complicated than the one�minus transformation used
in this kernel� and though interesting in its own right� is beyond the scope of the
current discussion�

� In principle this means the degree could be negative� viz� if enough negative entries
conspire in a single row of W to dominate the positive entries� In such cases� one
could do clipping� however in our experiments we found that this was unnecessary�



As we saw in Section �� the quality of the approximation depends on the
extent to which the rows of C are spanned by the rows of B� This is true for W in
general� When W is positive semide	nite� we can say more� In particular� we can
express the blocks A and B as A � XTX and B � XTY where X � R�m�n��m

and Y � R�m�n��n� in the parlance of the kernel�machines literature ����� the
columns of X and Y represent the empirical feature mapping� Let X � QR�
with Q � R�m�n��m� QTQ � I � and upper�triangular R � Rm�m denote the
QR decomposition of X � In other words� Q represents an orthonormal basis for
the space spanned by the columns of X � Then the matrix BTA��B simpli	es as
follows�

BTA��B � Y TX�XTX
��XTY

� Y TQR�RTQTQR
��RTQTY

� Y TQRR��R�TRTQTY

� Y TQQTY

� �QTY 
T �QTY 


Recall that the exact values of C are given by Y TY � i�e� the inner products
between the columns of Y � The quantity �QTY 
T �QTY 
 represents the inner
products of the columns of Y after projecting them onto the subspace spanned by
X � Thus if Y is spanned well by X then Y TQQTY will be a good approximation
to Y TY �


 Conclusion

In this paper we have introduced a modi	cation to the Nystr�om approximation to
Normalized Cuts �Nystr�om�NCut
 that does not require the measure of similarity
between pairs of pixels to be a positive de	nite function� The proposed change
involves separating the steps of the Nystr�om extension and orthogonalization�
As this necessitates an additional O�m�
 operation� where m is the number of
samples used in the approximation� it is important to know whether a kernel
is positive de	nite in order not to waste computation and sacri	ce numerical
precision unnecessarily� In light of this� we examined a number of kernels� both
positive de	nite and inde	nite� and showed image segmentation results using
both versions of Nystr�om�NCut� In the process we have provided what we believe
is the 	rst proof that the Gaussian weighted �� kernel is positive de	nite� Finally�
we provided some geometrical insight into the nature of the approximation for
the case of positive de	nite kernels�
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A Proof of positive de�niteness of e��
�

ij

We now prove that e��
�

ij is positive de	nite� We begin by considering the ��ij
term by itself� Noting that �hi�k
�hj�k

� � �hi�k
 �hj�k

�� �hi�k
hi�k
� we
can rewrite ��ij as

��ij � �� �

KX
k��

hi�k
hj�k


hi�k
 � hj�k


We wish to show that the matrix Q with entries given by

Qij � �

KX
k��

hi�k
hj�k


hi�k
 � hj�k


is positive de	nite� Consider the quadratic form cTQc for an arbitrary 	nite
nonzero vector c�

cTQc �

nX
i�j��

cicjQij

� �
KX
k��

nX
i�j��

cicj
hi�k
hj�k


hi�k
 � hj�k


� �

KX
k��

nX
i�j��

cicjhi�k
hj�k


Z �

�

xhi�k��hj�k���dx

� �
KX
k��

nX
i�j��

Z �

�

cihi�k
xhi�k��
�

� cjhj�k
xhj �k��
�

� dx

� �
KX
k��

Z �

�

�
nX
i��

cihi�k
xhi�k��
�

�

�	

 nX
j��

cjhj�k
xhj�k��
�

�

�
A dx

� �

KX
k��

Z �

�

�
nX
i��

cihi�k
xhi�k��
�

�

��

dx

� �

Thus Q is positive de	nite�
�Alternatively� one can show the positive de	niteness of Q using properties

of Hadamard products as follows� We begin by noting that Q can be written as
a sum of K matrices of the form �

�xixj
xi � xj

�

where xi � �� That is to say� Q is a sum of matrices of harmonic means be�
tween all pairs of entries in hi�k
 over all k� Using 
 to denote the Hadamard



�componentwise
 product ���� this matrix can be rewritten as�
�xixj
xi � xj

�
� ��xixj � 


�
�

xi � xj

�

The 	rst matrix is positive de	nite since it is simply a constant times the outer
product of x with itself� The second matrix is also positive de	nite since it is a
Hilbert matrix ����� By Schur s theorem ���� the Hadamard product of two pos�
itive de	nite matrices is also positive de	nite� Finally� since the sum of positive
de	nite matrices is also positive de	nite ���� this establishes that Q is positive
de	nite�


Returning now to e��
�

ij � we note that it can be written as a positive constant
times eQij � Since the exponential of a positive de	nite function is also positive

de	nite ���� we have established that e��
�

ij is positive de	nite�
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