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Abstract

We study the challenging problem of localizing and clas-

sifying category-specific object contours in real world im-

ages. For this purpose, we present a simple yet effective

method for combining generic object detectors with bottom-

up contours to identify object contours. We also provide a

principled way of combining information from different part

detectors and across categories. In order to study the prob-

lem and evaluate quantitatively our approach, we present

a dataset of semantic exterior boundaries on more than

20, 000 object instances belonging to 20 categories, using

the images from the VOC2011 PASCAL challenge [7].

1. Introduction

Consider Figure 1. We are interested in identifying

which contours belong to each of the objects in the image:

the boy, the bicycle and the cars. The top-central panel dis-

plays the output of the contour detector [2], which uses mul-

tiple low-level cues (brightness, color, texture) to estimate

the probability of having a boundary at each location in the

image. Such a detector is unable to discriminate among

contours of different objects, because it does not have ac-

cess to any category-specific information. We developed

a new method for detecting class-specific contours, whose

results are shown in the bottom row. The top-right panel

shows the annotations we present here in order to study this

task, which delineate the exterior outline of each instance of

objects for 20 semantic categories.

The inputs of our approach are the output of a bottom-up

contour detector such as [2] and the top down detections of

an object detector. We present an approach that can be ap-

plied to any generic object detector; the only requirement

is that it outputs a set of activation windows and corre-

sponding scores. Our approach assigns weights to bottom-

up contours based on where they occur in relation to the

activations of the detectors. The final strength of the con-

tour is its bottom-up contrast modulated by these weights.
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Figure 1. Top: Original image, low-level contours using the detec-

tor of [2] and ground-truth from our new annotated dataset. Bot-

tom: Result of our semantic contour detector for the categories

bicycle (green), car (gray) and person (pink).

For generic object detectors, these weights can be learnt.

For the specific case of quasi-linear detectors such as HOG,

these weights can be determined analytically.

We call the task of localizing class-specific contours se-

mantic contour detection. Like in the case of low-level

contour detection, we allow semantic contours to be open

curves and don’t impose the restriction of forming regions.

Detecting semantic contours appears to be a novel problem

in the field, and only a handful of methods, which we review

below, have addressed it explicitly. However, the dual prob-

lem, semantic segmentation, has received a lot of attention

from the community. Thus, one may wonder, why would

semantic contours be useful? One can debate the relative

merits of contours and regions. However, as low-level edges

have found application in many computer vision problems,

we regard semantic contours as an important intermediate

representation which is worth studying. For instance, car-

rying the analogy with segmentation, a semantic contour

detector can be thought of as a unary potential in a proba-

bilistic framework for contour-based recognition.

For the purpose of studying semantic contour detection,

we present a large-scale annotated dataset of precisely lo-

cated outlines of 20, 000 objects from 20 categories which

we make public. We defined the annotation task as mark-

ing closed exterior boundaries in order to make our ground-
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truth also useful for the evaluation of semantic segmenta-

tion.

2. Related Work

The problem of recovering full-object boundaries with-

out category-specific information has been extensively stud-

ied in the past. Several research directions have been ex-

plored towards that goal. For example, grouping edge pix-

els based on mid-level Gestalt cues, e.g. [18, 23, 12], or

recovering occlusion boundaries from a single image [11],

or from a sequence [21].

However, the problem of class-specific contour detection

in real world images has not yet received the attention it de-

serves from the community, mainly because of the inherent

complexity of the task and the lack of a standardized evalu-

ation framework. Although a minority trend, a seminal line

of work has addressed the problem within the paradigm of

representing and classifying local image patches. In [20], a

boosting framework is proposed for aggregating weak tex-

ture classifiers for the purpose of tracking object bound-

aries. Dollar et al. [5] propose an extension of probabilis-

tic boosting trees to combine a rich set of local features.

Prasad et al. [17] regularize the problem by restricting the

set of pixels under consideration to those detected by a low-

level edge detector, and use simpler local features and a

linear SVM classifier. Mairal et al. [13] also reason on

low-level edges, but learn dictionaries on multiscale RGB

patches with sparse coding and use the reconstruction error

curves as features for a linear logistic classifier.

A second factor that has hindered the study of seman-

tic contours is the lack of a large-scale annotated dataset

and a standard evaluation protocol. In low-level contour de-

tection, the Berkeley Segmentation Data Set (BSDS) [16]

and the Precision-Recall methodology of [15] have served

that purpose, and were used in [5, 13] to evaluate the pro-

posed methods without object-specific knowledge. An al-

ternative approach is to measure the improvement obtained

in a given application when switching from low-level to

category-specific contours, as was done in [17, 13], with

an image classification algorithm based on contour match-

ing. However, such a strategy measures only indirectly the

accuracy of contours.

The usefulness of annotating at the boundary level has

been acknowledged in other vision problems, for instance,

Hoeim et al. [11] select a subset of contours in the LabelMe

dataset [19] to evaluate occlusion boundary detection from

a single image; Stein et al. [21] released the CMU mo-

tion dataset for a similar task, but using a sequence of im-

ages. In [6], the annotations of the BSDS are extended to

the level of complete objects. Wang et al. [22] proposed

a dataset with instance-level segmentations, but only for a

single category (pedestrians) and at a reduced scale (345 in-
stances). Recently, Ferrari et al. [10] have evaluated class-

specific boundaries on the ETHZ-shape dataset [9]. How-

ever, ETHZ-shape was designed to study object categories

that can be represented by a single global shape. Therefore,

its 5 object classes are either rigid (apple logo, bottle, mug)

or appear in the same canonical pose in all the images (gi-

raffes, swans). Furthermore, the total number of images is

reduced (255), each image contains objects of a single cat-

egory and often only one instance. The largest and most

complex recognition dataset possessing instance-level seg-

mentations is the PASCAL VOC2011 challenge [7], with

object masks for 20 categories in 2223 images. However,

since its exclusive purpose is the evaluation of semantic seg-

mentation, only interior pixels are marked and a bordering

region with a width of five pixels labeled void hides the ex-

act boundary locations.

In this work, we provide a large-scale annotated dataset

of semantic boundaries in real world images, which we call

Semantic Boundaries Dataset (SBD). This dataset has ob-

ject instance boundaries on almost 10, 000 images contain-

ing more than 20, 000 objects from 20 categories, using the

trainval set of the PASCAL VOC2011 challenge. Thus, we

introduce the study of a new task in the most challenging

recognition dataset currently available, while providing a

natural experimental testbed for the development and eval-

uation of contour-based matching techniques.

3. The inverse detector

In our approach to detecting semantic contours we build

on two sources of information. The first is the output of a

bottom-up contour detector. The contours output by such

a detector are highly localized since they are based on low

level gradient and texture information, but have no class-

specificity. The second source of information is the set of

activations of various object detectors in the image. The

output of an object detector is merely a set of windows

where the object is likely to occur. Thus this information,

though category specific, is very coarse. Our contribution is

to combine these two signals to get the best of both worlds:

localized, class-specific contours.

Consider first a simplified situation: suppose we want

to detect the contours of a particular category, and suppose

that we also have a single monolithic detector φ for this cat-

egory. The central component of our system is a function

that takes an image I , the detector φ and produces a contour

image S(I, φ). We call this function the inverse detector

for φ because while φ goes from the image to activations,

S goes from the activations back to the image (in particular

a contour image). In this section we motivate and describe

this “inverse detector”. In the next section we use this for-

mulation of inverse detectors as a building block within a

complete system that handles more sophisticated object de-

tectors, and leverages information from other categories.

A detector when run on the image produces a set of ac-



tivation windows. One naive approach would be to high-

light all contours that lie inside the activation windows and

suppress everything else. However, detectors often include

considerable context around the object and hence these win-

dows can contain spurious contours. The problem will be

exacerbated when the object suffers from heavy occlusion.

Hence we need to extract more fine-grained information.

Our intuition is that, given an activation of an object de-

tector, it is possible to guess the rough locations and ori-

entations of the object contours in the activation window.

For instance, given a window in which a pedestrian detector

has fired, we can predict the rough location of the head and

shoulders, and hence we can predict the rough locations and

orientations of the corresponding contours. The location of

a pixel in the activation window, and the strength and rough

orientation of the contour at that pixel, are useful cues in

deciding if the pixel lies on the contour of the object.

We now formalize this intuition. Given an image I de-

note the output of the contour detector by G, where Gij

scores the likelihood of a pixel (i, j) lying on a contour.

Denote the l activation windows of the detector φ on I by

R1, . . . , Rl. Each activation window Rk has a correspond-

ing score sk.
For each pixel (i, j) we construct a feature vector as fol-

lows. Each activation window is divided into S spatial bins

or cells. The contours are also binned into O orientation

bins, giving rise to a total of N = SO bins. For a pixel

(i, j), for an activation window Rk, we assign the pixel into

one of the bins, thus encoding the rough location of the pixel

relative to Rk and the rough orientation of the contour at

(i, j). Let n(Rk, i, j) be the index of the bin into which the

pixel (i, j) falls. Define a vector that encodes n(Rk, i, j):

xφ(i, j, Rk) =

{

Gijen(Rk,i,j) if (i, j) ∈ Rk

0 otherwise
(1)

where en is an N -dimensional vector with 1 in the nth po-

sition and 0 otherwise. The feature vector for pixel (i, j)
is the weighted sum of all the vectors xφ(i, j, Rk), with the
scores sk as the weights. That is, define the feature vector:

xφ(i, j) =
l

∑

k=1

skxφ(i, j, Rk) (2)

Thus xφ(i, j) encodes the orientation and typical location

of (i, j) in a detection template. For example, if (i, j)
lies on the top of a person’s head, xφ(i, j) will be highly

spiked around the bin corresponding to ”location=top, ori-

entation=horizontal”. Our “inverse detector” then has the

form:

S(I, φ)ij = wt
φxφ(i, j) (3)

The important task now is to define the weights wφ. In

the next section we describe how we can learn the weights

Figure 2. The first panel from the left shows an image and the

detections of a pedestrian detector. The activation windowsRk are

shown in red boxes and the scores sk are indicated on the top of

the boxes. Some of these activation windows, such as the smaller

one in the figure, might be false positives. The second panel shows

the bottom-up contoursG. The third panel shows the weightswφ

and the final panel shows the output of the inverse detector. Note

how only the relevant contours of the person are highlighted.

wφ for any generic detector. The binning process that we

have used here is similar to that used in HOG detectors [4]

and so when φ is a HOG detector, or a similar quasi-linear

detector, we can “look inside” the detector and come up

with weights w analytically, a method we explore in Ap-

pendix A.

4. Localizing semantic contours using inverse

detectors

Armed with this formulation of inverse detectors, we

now describe our complete system.

As a bottom-up contour detector, we use as is the contour

detector of[2], which has shown state of the art performance

on benchmarks such as the BSDS [16]. The object detec-

tion framework we consider is Poselets [3], although our

approach can easily be applied to other systems such as [8].

In the poselets framework, each object category has roughly

100-200 poselet types. Each poselet type can be thought

of as a detector for a part of the object: for instance there

might be a poselet corresponding to the head and shoulders

of a person. The final detector for the category combines

the activations of all the poselets.

Our system consists of two stages. In the first stage, we

train inverse detectors for each poselet type. In the sec-

ond stage we combine the output of these inverse detec-

tors to produce category-specific contours for each category.

Finally, we also consider ways of combining information

across classes in order to improve performance.

4.1. Inverse detectors for each poselet

Let φC1 , φ
C
2 , . . . φ

C
P be the P poselet types for category

C. Each of these poselet types provides information about

where the contours of C can be, and so we train separate

inverse detectors for each of these poselets.

To train each inverse detector, we pose the task of detect-

ing contours of C as a problem of classifying pixels: each

pixel must be classified as belonging to a contour of C or



not. We then train a linear SVM using the feature vector

xφ(i, j) described in (2):

f(xφ(i, j)) = sign(wtxφ(i, j)) (4)

We use the weight vector of the SVM as the weights wφ to

define the inverse detector (3). (In other words, the inverse

detector output for a pixel is simply the score of the SVM)

The positive training examples for each of the inverse

detectors are pixels that lie on the contours of C, while all
other pixels are negative examples. Because human annota-

tion is in general noisy, we do not take the human annotated

boundaries directly. Instead, we threshold the bottom-up

contour image at a low threshold, and match it to the human

annotated boundaries using the bipartite matching of [15].

The pixels that are matched form the positive examples, and

those that are not matched form the negative examples.

4.2. Combining the inverse detectors

After we have trained inverse detectors for each poselet,

we are faced with the task of combining the outputs of each

of these inverse detectors. Again we frame this as a pixel

classification task, and train a linear SVM. The features we

use in this case are the outputs of the inverse detectors cor-

responding to each of the poselets:

xC(i, j) = [S(I, φC1 )ij , . . . S(I, φ
C
P )ij ]

t (5)

Our contour detector then outputs, for each pixel, the

score of the linear SVM:

S(I, C)ij = wT
CxC(i, j) (6)

4.3. Combining information across categories

Our contour detector as we have described it considers

each category independently. However, this disregards cru-

cial information. For instance, cow heads might be fre-

quently mistaken for sheep heads, but if we have both the

cow and sheep head detectors, we might be able to tell the

difference.

Note however, that at the pixel level a particular pixel can

belong to the contours of two categories, because pixels on

the boundary between two categories belong to both cate-

gories. Hence we will still train a separate contour detector

per category. The difference however is that the features we

consider here combine information across categories. We

consider two choices:

1. We first train independent contour detectors for each

category as in the previous subsection. Then we use as

features the outputs of these contour detectors to train

a second level of contour detectors. The feature vector

for this second level of contour detectors becomes:

x(i, j) = [S(I, C1)ij , . . . , S(I, CM )ij ]
t (7)

where C1, . . . CM are the various categories.

Figure 3. Example of annotations in the Semantic Boundaries

Dataset. Top: Original Images. Middle: Per instance bound-

aries. Bottom: Per category boundaries. We display the seman-

tic boundaries using the same color code for object classes as the

PASCAL dataset.

2. We train only one level of contour detectors. But as

features we use the inverse detectors corresponding to

the poselets of all categories and not just the category

in question. The feature vector in this case is merely

the concatenation of the feature vectors xC defined

in (5) :

x(i, j) = [xC1
(i, j), . . . ,xCM

(i, j)]t (8)

Again, we train a linear SVM and use the score of the SVM

at each pixel as the output of our semantic contour detector:

S∗(I, C)ij = wt
Cx(i, j) (9)

where x(i, j) is either as in (8) or (7).

We evaluate empirically these choices, and other aspects

of our system, in section 6.

5. Semantic Boundaries Dataset (SBD)

5.1. Ground­truth

Binary figure-ground segmentations were collected for

all the objects and categories in the images of the trainval

set of the VOC2011 PASCAL challenge. In order to obtain

precisely located boundaries, the cropped bounding box of

each instance was rescaled to a standard size of 500 × 500
pixels and presented to human observers, who outlined the

object boundary by marking vertices of a polygon. We im-

plemented the task using Amazon Mechanical Turk [1] and

retrieved an average of 5 annotations made by different sub-

jects per object instance, for a total number of initial fig-

ure/ground object masks above 100, 000[14].



Figure 4. Comparison of our benchmark with standard recognition

evaluation metrics from PASCAL. The bounding box(red) over-

laps by more than 50% with that of the ground truth and is con-

sidered correct. The region(blue) obtains a segmentation score of

0.5, the value of its overlap with the ground-truth mask. In con-

trast, both Precision and Recall in our evaluation are practically

zero in this case, because the boundary localization is inaccurate.

For each instance, we counted as object pixels those

marked by the majority (three or more) subjects. The in-

stances where less than three humans agreed were labeled

as void. This provides consolidated object masks for all

the instances, from which we extract boundaries. However,

in the presence of partial occlusion between different ob-

jects, human annotations may vary, as some subjects may

mark only the visible parts while others the full object. To

solve this ambiguity, we considered all the pairs of object

masks that conflict spatially and deleted manually the se-

mantic boundaries that were occluded. Figure 3 presents

some examples of our Semantic Boundaries dataset.

Note that our annotations provide ground-truth for the

study of category-specific boundary detection and seman-

tic segmentation and also for recognition methods based on

contour matching . The SBD can be seen as a scaling of the

current PASCAL segmentation subset to the full dataset, an

increase by a factor of 5 in the number of images and ob-

jects. The 11318 images in the SBD are divided into 8498

training images and 2820 test images. The test images form

a subset of the VOC2011 validation set.

5.2. Benchmarks

In order to benchmark semantic contours, we adopt the

widely used Precision-Recall framework. For a detector

producing binary output, Precision (P) is defined as the frac-

tion of true contours among detections and Recall (R) is the

fraction of ground-truth contours detected. For a detector

with soft output, a Precision-Recall curve, parametrized by

the detection score, characterizes its performance across all

operating regimes. We report two summary statistics: the

Average Precision (AP) over the whole Recall range and the

maximal F-measure (MF), defined as F = 2PR/(P +R).
Figure 4 compares our benchmark with standard recogni-

tion evaluation metrics.

We evaluate semantic contours for each category inde-

pendently on the 2820 test images of the SBD and produce

individual Precision-Recall curves. We consider as posi-

tives the exterior boundaries of the objects of that category

and as negatives the background and all pixels belonging to

objects from other categories. Pixels in the interior of ob-

jects from the category of interest are not taken into account

in the evaluation because internal contours might prove use-

ful for downstream applications such as recognition.

We follow the implementation of [15], based on bipartite

matching of boundary pixels and used also in, e.g. [21, 10,

11]. In the experiments, we tolerate a localization error of

2% of the image diagonal for declaring a detected pixel as

true positive.

Note that one could also consider evaluating all the cat-

egories jointly for the task of parsing the boundaries in the

image. However, per-category evaluation provides more de-

tailed information about the performance of each individual

semantic boundary detector. Furthermore, assigning a sin-

gle label to a boundary pixel is not always correct, as contact

boundaries belong to the two objects they separate.

6. Experiments on Semantic Contour Detec-

tion

We evaluate our semantic contour detector on the SBD

for the 20 PASCAL categories. For each category, we train

a semantic contour detector on the train data and then mea-

sure its performance on all the images of the test set.

The low-level contour detector of [2] is an indicator of

the inherent difficulty of the semantic contour detection

task, as it does not have access to any category-specific in-

formation. It is also a natural baseline for comparison with

our approach, because it provides the initial locations where

we predict the probability of being an object contour. Both

the low level contour detector and our contour detector fire

exactly at the same locations in the image, and the differ-

ence is the strength of their response.

Table 1 and Figure 5 present the complete results. The

performance of the bottom-up contour detector confirms the

generality of the PASCAL images and the difficulty of the

task of semantic contour detection. It obtains an average

maximal F-measure of only 2% and a mean Average Preci-

sion of 4%. In 19/20 categories, both statistics are below

10% and the curves lie flat at the bottom of the graph.

The results of our semantic contour detector validate em-

pirically our approach. On average across categories, we

improve both the MF and the AP by a factor of 5 with re-

spect to bottom-up contour detection. Further, the single

stage contour detector that combines the outputs of all in-

verse detectors across all categories does significantly better

than the two stage contour detector. This is to be expected

since the former operates on strictly more information and

hence can make better choices. Our algorithm performs the

best (MF ≥20%) on transportation means (aeroplane, bi-

cycle, bus, car, motorbike, train), people and objects with

simple shape (bottles and TV monitors). Our performance
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Figure 6. The effect of the choice of contour detector on our ap-

proach, evaluated on the person category. We compare tap filter

outputs with the contour detector [2]

on animals (horse, cat, dog, sheep, cow) is lower but still

much better than the baseline. We perform the worst on

hard to detect categories, such as chairs, dining tables, pot-

ted plants, boats and birds. Note that our method preserves

full recall for low-enough thresholds in all the curves of Fig.

5.

We also show in the table results for when the inverse

detector is not learnt but constructed from the object detec-

tor, as explained in Appendix A. This method is slightly

inferior to learning the inverse detector directly, which is

to be expected since the weights are not optimized for the

semantic contour detection task. However, because it re-

quires no training, this method can potentially prove useful

when training an inverse detector from scratch is infeasible

either because of computational complexity or because of

unavailability of training data.

Figure 6 and Table 2 show some more results on peo-

ple. We compare our results with what we get when we

replace the bottom-up contour detector with tap filter out-

puts. (The tap filter involves convolution with the matrix

[−1 0 1] for the gradient in x, and a transposed matrix for

the gradient in y.) Tap outputs are very noisy and fire at

many more locations. Hence, as expected, the results with

tap filter are significantly worse. Nevertheless, our semantic

contour detector still provides a significant boost compared

to the baseline (MF of 32% as opposed to 11% for the base-

line).

7. Conclusions

This paper proposes three distinct contributions: A new

task, a new annotated dataset with evaluation framework

and a semantic contour detector that can be used for fu-

ture reference. Our semantic contour detector is completely

general and can be used with any object detector.

method Bottom Bottom 1-stage 1-stage tap

up up(tap) (all classes) (all classes)

MF(%) 21.8 11.1 48.2 32.3

AP(%) 10.7 5.1 45.7 25.7
Table 2. Results on the person category
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method Baseline 1-stage 2-stage 1-stage 1-stage HOG Baseline 1-stage 2-stage 1-stage 1-stage HOG

[2] (1 class) (all classes) (all classes) [2] (1 class) (all classes) (all classes)

metric MF MF MF MF MF AP AP AP AP AP

Aeroplane 4.7 40.3 40.5 42.6 43.3 2.0 29.3 35.5 38.4 39.5

Bicycle 2.1 47.9 48.0 49.5 46.7 0.8 24.1 25.3 29.6 29.3

Bird 3.1 16.2 16.6 15.7 15.0 1.3 9.5 9.8 9.6 8.8

Boat 1.7 16.6 16.4 16.8 20.7 0.7 9.7 9.6 9.9 12.1

Bottle 3.1 35.9 35.9 36.7 35.5 1.0 24.8 24.1 24.2 23.4

Bus 3.7 42.0 42.0 43.0 39.4 1.3 33.9 29.1 33.6 32.2

Car 4.1 39.8 39.9 40.8 36.7 1.7 30.8 32.8 31.3 28.7

Cat 6.5 21.3 21.9 22.6 18.9 2.5 15.4 17.3 17.3 14.1

Chair 5.7 15.3 16.6 18.1 19.0 2.3 8.6 9.1 10.7 11.6

Cow 2.7 20.5 24.1 26.6 27.2 0.9 12.4 14.1 16.4 16.9

Dining Table 2.4 8.3 9.2 10.2 11.6 0.8 2.9 3.1 3.7 4.6

Dog 7.2 15.6 18.0 18.0 17.8 3.1 10.3 12.1 12.1 10.5

Horse 3.7 32.4 33.5 35.2 33.8 1.4 25.5 26.7 28.5 26.6

Motorbike 2.5 27.7 28.1 29.4 28.8 1.0 19.3 20.8 20.4 21.4

Person 21.8 47.8 47.6 48.2 44.9 11.1 46.0 46.5 45.7 41.2

Potted Plant 1.7 13.7 13.9 14.3 15.9 0.6 7.7 7.0 7.6 9.0

Sheep 1.5 23.8 25.0 26.8 26.6 0.6 13.1 14.0 16.1 16.0

Sofa 4.3 10.7 9.7 11.2 12.1 1.4 5.4 4.5 5.7 5.6

Train 2.6 20.8 20.6 22.2 22.6 1.0 13.4 13.3 14.6 14.3

TV Monitor 4.6 31.7 31.8 32.0 30.5 1.3 22.7 22.8 22.7 21.2

Average 4.5 26.4 27.0 28.0 27.3 1.8 18.2 18.9 19.9 19.3

Table 1. Comparison of our semantic contour detector with respect to the baseline given by low-level contour detector [2]. We report the

Average Precision (AP) and the maximal F-measure (MF) in%. “1-stage(1-class)” treats each class independently. “2-stage” combines all

categories in two stages(see (8)) while “1-stage (all classes)” does so using only a single stage(see (7)). “1-stage HOG (all classes)” uses

inverse detector weights that are determined analytically as explained in Appendix A.

A. Inverse detectors for HOG-based detectors

A HOG-based object detector works in the following

way. Given a detection window R, the window is divided

into spatial bins or cells. Orientations are also divided into

bins. (Observe that this binning process is identical to the

one we described in section 3.) Each pixel (i, j) in R con-

tributes a vote proportional to gij to its bin n(R, i, j) where
g is the image gradient, thus giving a histogram h(g). In

the simplest HOG detector, the final classifier is a linear

classifier of the histogram:

score(R) = wt
HOGh(g) (10)

The image gradients or edges that are discriminative for the

object are those that fall in bins that have a high weight. We

claim that the contours of an object are discriminative for

the object and hence must fall in positively weighted bins.

In other words, wHOG gives a high weight to the probable

locations of the contours. Hence we can take wφ = wHOG

in (3).

Most common HOG based object detectors however in-

volve a non-linear contrast normalization step before the

linear classifier. The window is divided into overlapping

blocks, and the histograms of each block are separately nor-

malized and concatenated together to give the feature vec-

tor. Thus the detector is a non-linear function of the his-

togram:

score(R) = ψ(h(g)) (11)

One way to get around this non-linear function is to con-

struct a linear approximation. To do so, we first observe that

what we want is to find out which contour pixels have the

most positive impact on the detection score. This suggests

that we are concerned with the action of ψ on the contour

image G, and so we should linearize ψ about G. Further,

sinceG is sparse and almost 0, we can do a further approx-

imation and linearize ψ around 0:

ψ̃(h) , ψ(0) +
∑

n

hn
∂ψ(h)

∂hn

∣

∣

∣

∣

h=0

(12)

where n indexes the histogram bins and the partial deriva-

tive can be approximated by a finite difference. The linear

approximation ψ̃ gives the weights wHOG, which we can

then use. The results corresponding to this version of the

inverse detector are shown in Table 1.
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Figure 5. Evaluation results on the Semantic Boundaries Dataset.

Figure 7. Results on semantic contour detection. The category is indicated by the color(motorbike: blue, car: gray, bicycle: green, horse:

magenta, person: pink), following the PASCAL convention.


