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Abstract. Region-based image segmentation techniques make use of
similarity in intensity, color and texture to determine the partitioning of
an image. The powerful cue of contour continuity is not exploited at all.
In this paper, we provide a way of incorporating curvilinear grouping into
region-based image segmentation. Soft contour information is obtained
through orientation energy. Weak contrast gaps and subjective contours
are completed by contour propagation. The normalized cut approach
proposed by Shi and Malik is used for the segmentation. Results on a
large variety of images are shown.

1 Introduction

Grouping is a very important problem in visual perception. To humans, an image
is not just a random collection of pixels; it is a meaningful arrangment of regions
and objects. Figure 1 shows a variety of images — (a) an artificial image showing
strong subjective contours in the Kanizsa triangle; (b) a painting which combines
line and paint and; (c) a natural photograph. Despite the large variations of
these images, humans have no problem interpreting them. We can agree about
the different regions in the images and recognize the different objects.
Human visual grouping was studied extensively by the Gestalt psychologists

in the early part of the century [28] . They identified several factors that lead to
human perceptual grouping: similarity, proximity, continuity, symmetry, paral-
lelism, closure and familiarity. In computer vision, these factors have been used as
guidelines for many grouping algorithms. The most studied version of grouping
in computer vision is image segmentation. Image segmentation techniques can
be classified into two broad families–(1) region-based, and (2) contour-based
approaches. Each of these has characteristic advantages and disadvantages.
Region-based approaches try to find partitions of the image pixels into sets

corresponding to coherent image properties such as brightness, color and texture.
This gives rise to proto-surfaces. This is important for a number of reasons
(1) surfaces are the natural units of perception [19]; (2) one can compute tex-
ture/color descriptors for each region, which is necessary for applications such
as content-based image querying.
Region-based techniques usually involve defining a global objective function

(for example, Markov random fields [7] or other variational formulations [18]).
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Fig. 1. Some examples of images. Our goal is to invent a single grouping proce-
dure which can deal with all these types of images. The left image is the Kanizsa
triangle. Subjective contours induced in this image lead us to interpret it as a
triangle occluding 3 circles instead of 3 “pacman” figures. The middle image is
a combination of line drawing and paint. The right image is a photograph with
several low contrast edges, eg. between the man’s jacket and the woman’s blouse.

The advantage of having a global objective function is that hard decisions are
made only when information from the whole image is taken into account at
the same time. The major drawback of region techniques is that curvilinear
continuity, a very powerful constraint, is not exploited.

Contour-based approaches usually start with a first stage of edge detection,
followed by a linking process that seeks to exploit curvilinear continuity. Exam-
ples include dynamic programming [14], relaxation approaches [21] and saliency
networks [23]. The major advantage of contour-based approaches is that the
grouping factor of curvilinear continuity can be treated very naturally. The
disadvantages are: (1) contour-based techniques do not give us closed connected
regions; so the grouping problem of finding closed connected surfaces is not
really solved. As mentioned earlier, surfaces are desirable entities. Thus a post-
processing step remains. This may take the form of explicitly enforcing closure
of contours as in [4,11]. (2) Contour-based techniques cannot deal with textured
regions easily. Basically, for textured regions, we have to find feature vectors
and look for differences — that is more natural in region approaches. (3) Hard
decisions are made locally and prematurely. To detect an extended contour of
very low contrast, a very low threshold has to be set for the edge detector. This
will cause random edge segments being found everywhere in the image. The
linking process then has to deal with all the spurious edge segments everywhere.
In other words, there is no recognition of the fact that extended contours, though
with low contrast, are perceptually more significant than short random edges in
the image.

Our goal in this paper is to incorporate curvilinear grouping in a region-
based setting. In all region approaches, one needs to define a distance function
— a measure of dissimilarity between pairs of pixels. Then, some procedure is
needed to find regions where similarity between pixels in a given region is high
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and similarity between pixels in different regions is low. We propose a distance
function which takes contours into account softly through orientation energy.
Similarity is low if the orientation energy between two pixels is high, hinting
at the possible presence of a contour between them. Low contrast gaps along a
contour are completed by the propagation of orientation energy. We would like to
emphasize that subjective contours, those enabling us to perceive the Kanizsa
triangle in Figure 1(a), are simply the extreme case of low contrast contours
(contrast is zero). Thus, any algorithm exploiting curvilinear continuity should
be able to deal with subjective contours naturally. With the distance function
defined, the normalized cut procedure proposed by Shi and Malik in [25] is
employed to produce the segmentation.

The outline of the paper is as follows. In Section 2, previous work in curvilin-
ear grouping will be reviewed. How we exploit curvilinear continuity in defining
pixel similarity is described in Section 3. The overall image segmentation al-
gorithm is presented in Section 4. A review of the normalized cuts approach
for image segmentation will be given in Section 4.1. In Section 5, we will show
results on various kinds of images like those shown in Figure 1. We conclude in
Section 6.

2 Previous Work on Curvilinear Grouping

Psychophysical studies on curvilinear grouping date back to the early part of the
century. Wertheimer pointed out the factor of good continuation in perceptual
grouping in [28]. Subjective contours, first discovered by Schumann [22], were
studied extensively by Kanizsa [12]. Kanizsa was the first to point out that
subjective contours are simply gradientless edges — the extreme case of low
contrast edges. More recently, Kellman and Shipley [13] and Field et al [5] studied
the formation of curvilinear groups psychophysically.

In computer vision, the problem of contour completion has been approached
in many different ways. Most techniques employ some form of edge detection
followed by a linking process. The linking process can take the form of: dynamic
programming [14], relaxation [21], saliency networks [23], voting [8] or sequential
tracking in a Bayesian framework [2]. In general, these methods can bridge small
gaps along an edge to produce an extended contour.

Another direction of work is the computation of subjective contours. Most
methods involve first the computation of key-points, such as junctions, corners
and line ends. Different models of subjective contour completion from these key-
points are proposed: variational models [6,20], random walk [29] or a grouping
field [9]. Occlusion reasoning is also studied in [9,20]. Most of these approaches
have only been applied to artificial images, while some have been tested on very
simple real images. Since subjective contours are just the extreme case of low
contrast contours, a useful model should be able to work on realistic photographs.
We believe the inadequacy of previous work is partly due to the dependence on
key point detection, which is rather unreliable in realistic images.
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3 Curvilinear Continuity

The main idea of region-based segmentation is to compute local similarity and
then optimize the segmentation over the whole image through a global crite-
rion. For segmentation using intensity alone, local similarity is invariably some
measure of how much the intensities of two pixels are alike. In this section, we
describe how information about curvilinear continuity can be incorporated into
the similarity measure between two pixels.

3.1 Soft Contour Information

Most previous curve detection methods rely on a first step of edge detection,
followed by edge linking. Edge detection is a local process. This has the important
drawback that hard decisions are made prematurely. We propose that contour
information be computed “softly” and hard decisions be made only when the
image is considered as a whole. Information about the strength of a contour
can be obtained through orientation energies [15,16]. Let F1(x, y) be the second
derivative of an elongated gaussian kernel and F2(x, y) be the Hilbert transform
of F1(x, y). More precisely:

F1(x, y) =
d2

dy2
(
1

C
exp(

y2

σ2
) exp(

x2

λ2σ2
))

F2(x, y) = Hilbert(F1(x, y))

where σ is the scale and λ is the elongation of the filter. C is a constant. The
orientation energy at angle 0◦ is defined as:

OE0◦ = (I ∗ F1)
2 + (I ∗ F2)

2

OE0◦ has maximum response for horizontal contours. Rotated copies of the two
filter kernels will be able to pick up edge contrast at various orientations. These
kernels are shown in Figure 2. At each pixel, we can define the orientation energy
and the orientation as:

OEcon(x, y) = max
φ
OEφ(x, y) (1)

φ(x, y) = argmax
φ
OEφ(x, y)

The orientation energy definied in Equation 1 has the following nice prop-
erties: (1) the second derivative of the gaussian and the Hilbert transform of it
are a quadrature pair [15,16]. Quadrature pairs are phase independent and they
will not be affected by exact localization of the edges. (2) The filters are insensi-
tive to linear intensity variations, which are usually caused by smooth shading,
rather than object boundaries. (3) The filters are elongated, thus information is
integrated along the edge. Long contours will produce stronger responses than
shorter ones. Extended low contrast contours will also have significant response
because of the integration. (4) Our filters do not respond well to high curvature
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Fig. 2. Top: rotated copies of the second derivative of an elongated gaussian
kernel. σ = 1.0 and the elongation ratio is 4. Bottom: rotated copies of the
Hilbert transform of the second derivative kernel. In our implementation, we use
12 orientations uniformly sampled in the range from 0◦ to 180◦. This quadrature
pair is chosen because both filters are insensitive to linear variations of intensity,
which are usually caused by smooth shading, rather than object boundaries. The
orientation energy resulting from the quadrature pair is phase independent and
is not affected by the precise localization of the contour.

contours. This property agrees with human perception that curvilinear grouping
does not occur over high curvature contours.
From the orientation energy, we can compute the dissimilarity between two

pixels due to the factor of curvilinear continuity. Intuitively, two pixels belong
to two different groups if there is a contour separating them. The dissimilarity
is stronger if the contour separating them is extended. Figure 3 is a good il-
lustration of this intuition. On the left is the image. The middle figure shows
a magnified part of the original image. On the right is the orientation energy.
Pixels p1, p2 and p3 all have similar intensity values. Based purely on intensity
(normally the only cue for region based segmentation), all three locations will
have strong similarities. However, there is an extended contour separating p3
from p1 and p2. Thus, we expect p1 to be much more strongly related to p2
than p3. This intuition carries over in our definition of dissimilarity between
two pixels: if the orientation energy along the line between two pixels is strong,
the dissimilarity between these pixels should be high. Formally, we define the
dissimilarity, dedg(p1, p2), between two pixels as follows:

dedg(p1, p2) = OEcon(x̂)− avg(OEcon(p1), OEcon(p2); x̂) (2)

where

x̂ = argmax
x∈l
OEcon(x)

avg(OEcon(p1), OEcon(p2); x̂) =
|p2 − x̂|

|p1− p2|
OEcon(p1) +

|x̂− p1|

|p1− p2|
OEcon(p2) (3)

l is the straight line between p1 and p2; x̂ is the location where the orientation
energy is maximum on l; and avg(OEcon(p1), OEcon(p2); x̂) is the weighted aver-
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Fig. 3. Left: the original image. Middle: part of the image marked by the box.
The intensity values at pixels p1, p2 and p3 are similar. However, there is an
edge in the middle, which suggests that p1 and p2 belong to one group while p3
belongs to another. Just comparing intensity values at these three locations will
mistakenly suggest that they belong to the same group. Right: orientation energy.
The orientation energy somewhere on l2 is strong which correctly proposes that
p1 and p3 belong to two different partitions, while orientation energy along l1 is
weak throughout, which will maintain the hypothesis that p1 and p2 belong to
the same group.

age orientation energy of p1 and p2. It is worth noting that in our definition, we
considered the relative difference in orientation energy. When images are noisy,
orientation energy along the path may be high merely due to noise. In this case,
orientation energies at p1 and p2 will be high as well. Thus, the relative difference
is a better indicator of the presence of a contour.

3.2 Contour Propagation

The orientation energy defined in the previous section will be high at a sharp
contour. When there are gaps along a contour where contrast is low (or even
absent in the case of subjective contours), the orientation energy will not do a
very good job. However, it is worth pointing out that due to the integration of
the filter kernels along a contour, orientation energy will still be reasonable when
the gaps are small. It will fail when gaps are large. In this section, we provide
a more explicit way of enhancing the orientation energy at low contrast gaps
by propagation from neighboring pixels along an extended contour. Before we
proceed, let us repeat that subjective contours are just the extreme case of a low
contrast contour (the contrast is zero). Thus, our treatment here will be able
to capture subjective contours in the same way as we enhance the orientation
energy at low contrast gaps.

Consider the oriented element (u1, v1, θ1) where (u1, v1) are the coordinates
and θ1 is the orientation. What is the probability that there is an image con-
tour originating at (x1, y1, φ1), passing through (u1, v1, θ1) and ending up at
(x2, y2, φ2)? There are infinitely many curves that satisfy our requirement. One
popular choice is the curve that minimizes the elastica functional, ie. the im-
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Fig. 4. Consider pixel location (ui, vi). We are interested in the probability
Pcp(si|t1, t2) that there is an image curve originating from t1 and terminating
in t2 which passes through si. This probability can be related to the minimum
energy of all curves passing through the three points. Notice that this probability
will depend heavily on the orientation θi. In this case, Pcp(s1|t1, t2) will be high
while Pcp(s2|t1, t2) will be close to 0.

age curve with the minimum energy. 1 The elastica was already introduced
in Euler’s time. Ullman [27] and Horn [10] are among the first to apply it
to contour completion. For a discussion of the application of the elastica to
computer vision, readers are referred to [17]. Using the elastica, the probability
in which we are interested can be related to the energy of the minimizing curve:
Pcp(s1|t1, t2) = exp(−Eelastica), where si = (ui, vi, θi), ti = (xi, yi, φi) and
Eelastica is the minimum energy. Likewise, the probability that there is no image
curve passing through (u1, v1, θ1) is simply 1 − Pcp(s1 |t1, t2). First notice that
Pcp(s1|t1, t2) should depend heavily on θ1: in Figure 4, Pcp(s1 |t1, t2) should be
close to 1, while Pcp(s2|t1, t2) will be close to 0.
Computing the elastica energy exactly is not necessary and not computa-

tionally advisable. Sharon et al [24] showed that we can have a simple ap-
proximation by assuming that Pcp(si|t1, t2) can be factored into two terms:
Pcp(si|t1, t2) = f(si , t1)f(si, t2) with f(·) as:

f(si, ti) = exp(−
R

σR
−
Dβ

σβ
) (4)

Dβ = β
2
1 + β

2
2 − β1β2

where β1, β2 and R are defined in Figure 5. σR and σβ specify the amount of
variations allowed in the distance and the agreement of the angles.
Using, Pcp(s1|t1, t2), the propagation of orientation energy can be defined as:

OEcp(u, v) = max
θ

max
(x1,y1),(x2,y2)∈N

Pcp((u, v, θ)|t1, t2) ·OEcon

where OEcon =
1
2
(OEcon(x1, y1)+OEcon(x2, y2)) and N is a local neighborhood

of (u, v). Notice that this definition maintains the intuitive requirement that

1 Energy is defined as the integral of the square of the curvature along the curve.
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Fig. 5. Two oriented elements t1 and s1. R is the distance between the two
pixels. β1 is the angle between the orientation at t1 and the line joining the
two pixels. Similarly, β2 is the angle between the orientation at s1 and the line
joining the two pixels.

the propagated orientation energy is never larger than the average energy of
the propagating sites. Moreover, the propagation is biased towards extended
low curvature contours. Combining orientation energy due to contour contrast
(OEcon) and contour propagation (OEcp), we have, at each pixel:

OEtot(x, y) = max(OEcon(x, y), OEcp(x, y))

Let us discuss what the above equation implies. If the orientation energy due to
contour contrast at (u, v) is high (OEcon is large), we do not change anything.
However, when the energy is low, caused by low contrast, we are enhancing the
energy through the propagation from neighboring elements. In the case when
energy at (u, v) is zero (subjective contours), we can complete the curve by
propagating from neighboring contours.
With the combined orientation energy, we can update our dissimilarity mea-

sure (Equation 2) as:

dedg(p1, p2) = OEtot(x̂) − avg(OEtot(p1), OEtot(p2); x̂) (5)

with x̂ = argmaxx∈l OEtot(x) and avg(·, ·; ·) defined in Equation 3.

4 Partitioning Images

All region-based image segmentation techniques start with local measurements
of similarity. Local information is combined over the image through a global
criterion. The “correct” segmentation is the one which maximizes this global cri-
terion. Equation 5 tells us the dissimilarity between two pixels based on contour
information alone. We combine contour information with intensity and/or color
to produce the overall similarity measure between pixels pi and pj as follows:

Wij = exp(−αedgdedg(pi, pj) − αintdint(pi, pj)− αcoldcol(pi, pj)) (6)



552 Thomas Leung and Jitendra Malik

dint(p1, p2) = |I1 − I2| and dcol(p1, p2) = |H1 −H2| + |S1 − S2| where Ii, Hi, Si
are the intensity, hue and saturation at pixel i. The α’s are weighting coefficients
for the different factors. One can think of the α’s as prior knowledge relating
to the relative importance of the different factors. In this paper, we provide
a way of adjusting these parameters for each image. This will be discussed in
section 4.2. First, we will review the normalized cuts algorithm [25] which we
used to segment the image based on the similarity measure in Equation 6.

4.1 Image Segmentation using Normalized Cuts

Let W ∈ RN×N be the association matrix, ie. Wij is the weight between pixels i
and j (Equation 6). We proceed to apply the normalized cut criterion proposed
by Shi and Malik in [25]to partition the image. Shi and Malik formulate visual
grouping as a graph partitioning problem. The nodes of the graph are the entities
that we want to partition, for example, in image segmentation, they will be the
pixels. The edges between two nodes correspond to the strength that these two
nodes belong to one group, again in image segmentation, the edges of the graph
will correspond to how much two pixels agree in intensity, color, etc. Intuitively,
the criterion for partitioning the graph will be to minimize the sum of weights of
connections across the groups and maximize the sum of weights of connections
within the groups.

LetG = {V ,E} be a weighted undirected graph, where V are the nodes and
E are the edges. Let A,B be a partition of the graph: A∪B = V ,A∩B = Ø.
In graph theoretic language, the similarity between these two groups is called
the cut:

cut(A,B) =
∑

u∈A,v∈B

w(u, v)

where w(u, v) is the weight on the edge between nodes u and v. Shi and Malik
proposed to use a normalized similarity criterion to evaluate a partition. They
call it the normalized cut:

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+
cut(B,A)

assoc(B,V )
(7)

where assoc(A,V ) =
∑
u∈A,t∈V w(u, t) is the total connection from nodes in

A to all the nodes in the graph. For discussions on this criterion, please refer
to [25].

One key advantage of using the normalized cut is that a good approximation
to the optimal partition can be computed very efficiently. 2 Let W be the
association matrix, ie. Wij is the weight between nodes i and j in the graph.
Let D be the diagonal matrix such that Dii =

∑
jWij , ie. Dii is the sum of the

weights of all the connections to node i. Shi and Malik showed that the optimal

2 Finding the true optimal partition is an NP-complete problem.



Contour continuity in region based image segmentation 553

partition can be found by computing:

y = argminNcut

= argmin
y

yT (D −W )y

yTDy
(8)

where y = {a, b}N is a binary indicator vector specifying the group identity
for each pixel, ie. yi = a if pixel i belongs to group A and yj = b if pixel j
belongs to B. N is the number of pixels. Notice that the above expression is the
Rayleigh quotient. If we relax y to take on real values (instead of two discrete
values), we can optimize Equation 8 by solving a generalized eigenvalue system.
Efficient algorithms with polynomial running time are well-known for solving
such problems. For details of the derivation of Equation 8, please refer to [25].
Transforming the vector y to a discrete bipartition x̂ can simply be done by

finding the threshold τ such that if we let x̂i = 1 when yi > τ and x̂i = −1
otherwise, the normalized cut value in Equation 7 is minimized. In our imple-
mentation, we try τ at 10 values uniformly distributed between the maximum
and minimum of y. Given a bipartition of the image, we recursively bipartition
each segment until either a pre-defined number of steps is reached, or when the
normalized cut value resulting from the bi-partitioning is too large. When nor-
malized cut value is too large, it means there is no more segmentation necessary
for this group.

4.2 Parameter Estimation

One natural question to ask is that now we have the various factors combined
at the same time, how do we evaluate the importance of each of the them in an
image. In other words how do we determine the α’s in Equation 6? One may
look at this problem as finding prior weights for the various factors. However,
we argue that these weights should change from image to image. For example,
in a line drawing, all information comes from the contours. Intensity and color
should be de-emphasized. Thus, αedg should be much larger than αint and αcol.
On the other hand, in an image with regions of distinctly different colors, but
similar intensities, αcol should dominate.
Since the goodness of each partition is given by the normalized cut value

(the smaller the better), we can simply use gradient descent on the parameters
to minimize this value. The gradient of Ncut with respect to αi is:

∂Ncut

∂αi
=
Ncut(αi + δi) −Ncut(αi)

δi

We update the parameters by moving them in the negative gradient direction of
Ncut. Notice that computing Ncut(αi + δi) is very efficient. When δi is small,
the partition for Ncut(αi+ δi) is similar to the one already found for Ncut(αi).
Therefore, we can use the optimal partition forNcut(αi) as an initial estimate for
solving the generalized eigenvalue system in Equation 8 with the new parameters.
This can save at least an order of magnitude in computation time.
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Fig. 6. Top left: the Kanizsa triangle. While we perceive a triangle occluding 3
circles, any region segmentation technique based just on intensity will invariably
find 3 “pacman” figures. Middle: the orientation energy from contours (OEcon).
Right: orientation energy after contour propagation (OEtot). Notice that contour
propagation also produces spurious extensions around the figure. We argue that
they are unavoidable and the only way to resolve the problem is through a global
criterion. Bottom: The sequence of segmentation as obtained from our recursive
partitioning. Notice that the spurious contour propagation does not affect our
segmentation. The reason is that the global criterion is able to gather information
from the whole image and realize that the spurious contour propagation is not
significant.

5 Results

In this section, we will demonstrate some of the results on various kinds of im-
ages: (1) images with strong subjective contours; (2) line-drawings; (3) paintings
which combine both line-drawing and paint; and (4) gray-level images. In all
the examples shown in this paper, there was no manual tuning of thresholds or
parameters. The large variety of images presented in this paper illustrate the
wide applicability of our algorithm.

Since subjective contours are just the extreme case of low contrast contours,
all curvilinear grouping algorithms should be general enough to deal with this
special case. The Kanizsa triangle and the Kanizsa “2-fish” images [12] shown in
Figures 6 and 7 are good examples to demonstrate how our algorithm performs
in the presense of subjective contours. Orientation energies due to contours
alone (OEcon) and after contour propagation (OEtot) are also shown. Notice
the spurious completion in the orientation energy after contour propagation,
OEtot. These are the results of propagation between points in the middle of two
different contours. In some previous work, this problem is avoided by detecting
key-points (junctions, corners and line ends) and then performing subjective
contour completion only from the key-points. However, we argue that detecting
these features in real images is a problem in itself. We believe that such features
cannot be reliably detected purely from local information. In other words, in
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Fig. 7. Top left: the Kanizsa “2-fish” image — two mutually occluding fishes
with the bodies of each overlapping the tails of the other. Middle and Right:
orientation energy due to contours (OEcon) and after propagation (OEcp). Notice
the spurious completion around the figure. Bottom: the sequence of recursive
partitioning. The “tails” are missed because they are too small.

realistic images, we have to live with such artifacts and rely on a global criterion
to sort out what is significant and what is not. The segmentations of the Kanizsa
figures are also shown in Figures 6 and 7. Notice that the results agree with our
percepts.
The result on a 3D line drawing is shown in Figure 8. Region-based segmenta-

tion usually has problems dealing with these line-drawings because the intensity
values in the different regions are the same. The only information comes from the
contours. Results of the segmentation on graylevel images are shown in Figure 9.
The original image is shown on the left; the segmentations are shown in the
middle. The right column shows the edges of the segmentation. The edges are
shown just because the contrast between two different segments in the middle
figure may not be high enough to be seen. As we have argued earlier, regions
are more useful than just edges. The reader is urged to check the edge image
while examining the segmentation. Notice the extended weak contrast edges in
the images: (1) between the bodies of the penguins and the snow; (2) between
the suit and the pants in the third image; (3) between the man’s jacket and
the woman’s blouse in the fourth image. Our algorithm is able to pick them up
without producing lots of random edgels everywhere, as would be expected from
an edge detector. The fifth image demonstrates a combination of line drawing
and paint, which is segmented by our algorithm as well. Notice once again that
the same parameter settings were used for all segmentation results shown in
Figures 6 to 9. Running times of the algorithm are on the order of 3-5 minutes
for 200× 200 images on a Pentium II.

6 Discussions

In our study, we have not investigated the issue of occlusion. Previous work
on subjective contours has tried to reason about occlusions through junctions,
corners and line ends at the same time contours are formed. However, we believe
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Fig. 8. A linedrawing and its segmentation into regions found by our algorithm.
Traditional region-based segmentation techniques would be completely useless
on this image because the intensity or color in the different regions are identical.

that local detection of key-points is unreliable. Instead, once a reliable segmenta-
tion is produced, junctions can be easily detected as the intersection of regions.
Moreover, junctions in the image does not always correspond to occlusion events.
For example, any objects with surface markings will produce lots of “junctions”
in the image. We believe the problem of occlusion, or more generally figure-
ground segregation is best tackled when contour belongingness and junctions
are considered at the same time. For example, the Gestalt grouping factor of
symmetry is a useful cue for figure-ground determination. A pair of symmetry
contours suggest that the contours and the space in between are likely to belong
to the same object, thus the “figure”. Contours, together with junctions, can
provide better figure ground segregation.

In our work, we have only studied curvilinear grouping in the direction par-
allel to the curve. However, Heitger and von der Heydt [9] showed that contour
completion also occurs at line ends, inducing subjective contours orthogonal to
the direction of the line ends. Our algorithm can be easily extended to take
this into account. Together with orientation energy, we can compute end-stop
energy. Contour propagation will then occur from locations of high end-stop
energy perpendicular to the orientation of the line ends.

Note that in this paper, we have only considered gray-level and color images.
However, real images will also have texture. The normalized cuts framework can
incorporate texture information very naturally. Techniques for doing texture
segmentation in the normalized cuts framework are studied in [1,26]. However,
the effect of contour continuation in textured regions may have to be treated in
a more subtle fashion, depending on the class of texture [3]. We are exploring
this in ongoing work.

To conclude, we have presented a technique of combining information about
curvilinear continuity, intensity and color in a region-based approach to perform
image segmentation. Contour information is obtained through orientation en-
ergy. Low contrast gaps or subjective contours are completed by the propagation
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Fig. 9.The segmentation of gray-level images. Original image in the first column,
segmentation in the middle, and the edges of the segments in the third. The edges
are shown just because the contrast between two different segments in the middle
figure may not be high enough to be seen. As we have argued earlier, regions
are more useful than just edges. For example, we can use the properties in each
region for content-based image retrieval. Notice the weak contrast edges in the
images and our segmentation result. The same parameter settings were used for
all the results shown in Figures 6 to 9.
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of orientation energy. Segmentation results for a large varieties of images are
demonstrated.
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