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Abstract

This paper describes a probabilistic decomposition of hu-
man dynamics at multiple abstractions, and shows how to
propagate hypotheses across space, time, and abstraction lev-
els. Recognition in this framework is the succession of very
general low level grouping mechanisms to increased specific
and learned mode% based grouping techniques at higher lev-
els. Hard decision thresholds are delayed and resolved by
higher level statistical models and temporal context. Low-
level primitives are areas of coherent motion found by EM
clustering, mid-level categories are simple movements rep-
resented %y dynamical systems, and high-level complex ges-
tures are represented by Hidden Markov Models as successive
phases of simple movements. We show how such a represen-
tation can be learned from training data, and apply it to the
example of human gait recognition.

1 Introduction

This paper addresses the problem of learning and rec-
ognizing human and other biological movements in video
sequences of an unconstrained environment. We attack this
problem with a compositional framework consisting of sta-
tistical models at various levels. Starting at raw pixel values
of an input video sequence, we show how hypotheses at
various abstraction levels can be propagated probabilistically
through space and time, and can be used to recognize complex
movements. We demonstrate how to learn such multi-level
decompositions from training data and use it for recognition
of human gait categories in unconstrained cluttered environ-
ments.

Segmentation and recognition is treated as the same
Froblem: Recognition is a succession of very general low
evel grouping mechanisms to increased specific and learned
mode% based grouping techniques at higher levels. Hard de-
cision thresholds are delayed and resolved by higher level
statistical models and temporal context. Speech recognition
is a prime example where multiple levels of abstraction, like
speech features, phoneme categories, word models, and lan-
guage models are integrated in a probabilistic way and esti-
mated from large training corpuses. Although the domain of
speech recognition is much more structured and simplified,
recent trends in the field of statistical learning, and its appli-
cation to low and mid-level computer vision provide a basic
substrate for our ambitious goal to treat the visual domain
with similar principles.

Section 2 describes the framework, which includes a low-
level layered representation, mid-level temporal grouping us-
ing simple dynamical categories, and high-level recognition
of complex movements. Subsection 2.3 describes how such
an architecture can be estimated from training data. In Sec-
tion 3 we describe learning, segmentation, and recognition
experiments on human gait data, and in Section 4 we relate
our approach to previous work.
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2 Probabilistic Compositional Framework

While performing an action or gesture most of the human
body segments are in motion most of the time. This is a
very strong cue that we wish to exploit. The image region
that belongs to a rigid body segment contains one coherent
motion field. Two body segments can be disambiguated by
detecting two different coherent motion areas in the image.

Over multiple frames, characteristic motion sequences
can be detected. Simple movements (for example arm or
leg swings) can be modeled with linear dynamical systems,
wﬁereas more complex movements like a walk cycle can be
represented as a sequence of simple movements. While a leg
has ground support, a certain linear dynamical system has va-
lidity, and while the leg is swinging above the ground, another
linear dynamical system can describe the motion history.

Noisy input images, spatial and temporal ambiguities, oc-
clusion, cluttered environments, and large variability call for
a probabilistic framework. Guiding principles are, (a) no
early commitment to specific hypotheses, (b) besides bottom
up flow, higher level hypothesis should be able to disam-
biguate lower level estimates, (¢) low computation and rep-
resentation costs, (d) mid and higher level models should be
learnable.

Figure 1 shows the 4 level decomposition. Each level
represents a set of random variables and probability distri-
butions over hypotheses. The lowest leveFis a sequence of
input images. For each pixel we represent the spatio-temporal
image gradient and optionally the color value as a random
variable. At the next level are blob hypotheses. Each blob
is represented with a probability distribution over coherent
motion (rotation and translation or full affine motion), color
(HSV values), and spatial “support-regions”. In the third
level, temporal sequences of blo% tracks are grouped to lin-
ear stochastic dynamical models. At the highest level, each
dynamical model corresponds to the emission probability of
the state of a Hidden Markov Model (HMM).

For example, the movement of one leg during a walk
cycle can be decomposed into one coherent motion blob for
the upper leg, and one coherent motion blob for the lower leg,
one dynamical system for all the time frames while the leg
has ground support, and one dynamical system for the case
the leg is swinging above ground, and a “cyclic” HMM with
2 states. The state space of the dynamical systems are the
translation and angular velocities of the blob hypothesis. The
HMM stays in the first state for as many frames as the first
dynamicaf] system is valid, and transits to the second state
once the second dynamical system is valid, and then cycles
back to the first state for the next walk cycle.

Given a sequence of images [y, I, ...J;, corresponding
blob estimates, linear dynamical systems, and HMMs for a
set of different gaits or gestures, we can perform a high-level
classification in computing the following posterior:



—_
Complex

HMMs O O O Movement

O-0-C~ ==
— —

Dynamic

Programming \ ﬁ

Linear [QeD=A1Q0 | [Qu+D=A2QW | | simple

Dynamical Dynamical

Models Categories

ek e Q(1), Q) QB), Q) .

i Coherence
Mixture of Blob
Gaussians Hypotheses
EM clustering =

Input
XYT Gradients Image

Sequence
HSV, Texture

Figure 1: 4 level decomposition of human dynamics.

P(HMM; |11, Iy, ...I;) (1)

The Hidden Markov Model (HMM;) with the highest
score is the most likely complex gesture performed in the
ima%g sequence. If more than one gesture is performed, sev-
eral HMMs corresponding to several blob tracks should have
high score.

In the following subsections we describe the various levels
and the multilevel estimation process.

2.1 Mixtures of Coherence Blobs

The likelihood that a group of pixel belong to the same
blob is based on motion émd colorg similarity, spatial prox-
imity, and groupingsin earlier time frames. For each pixel lo-
cation (z, y) we need to estimate a “hidden variable” S(z, y)
that tells us to which blob it belongs, and we need to estimate
for each blob the motion, color, and spatial distribution. If the
number of blobs is K, the domain of S(z,y) € {1,2, ..., K'}.
This leads to a representation that is already used in so called
“layered motion” approaches [29, 17, 1]. Simultancously
the labels S(z, y) and the motion, color, and spatial param-
eters can be estimated using the Expectation Maximization
(EM) maximum likelihood [9]. There are various ways to
determine the number of layers K as well [1, 29]. Our ap-
proach differs in the way it also incorporates past histories
of groupings in earlier frames, and how it encodes spatial
proximity.

The set of blob hypotheses for a given image frame I(t)
are represented as a mixture of multivariate Gaussians 0(t).
Each single Gaussian 8 (¢) encodes the coherent motion of
that blob (either 2D translation and rotation, or affine motion),
optionally the coherent HSV color values, and the center of
mass and second moments of the (z, y) pixel coordinates in
each blob. An additional outlier or background layer 0 (t) is

defined, that has uniform distribution. )
The likelihood of an image frame I(t) given a “mixture

of blobs™ hypothesis #(t) is defined as:
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wg(t) are the mixing coefficients of the mixture model
which should add up to 1. As we will see later, they are
useful for “track-elimination” as well.

P(z,y|0k(t)) is the spatial proximity prior for blob &
(Gaussian distribution using the mean and second moments,
or uniform for background).

P(I(t,z,y),z,yl0(t)) =

2.1.1 Motion Model

P(I(t,z,y)|z,y, 0k (t)) is defined using the spatio-temporal
image gradient and optionally the color values hsv(¢, z, y).
The standard gradient formulation for optical flow is:

VI(t,z,y) - v(z,y)+ L(t,z,y) =0 4)

where V is the spatial gradient operator in  and y direction,
and I; is the temporal derivative. v(z,y) is the motion at
point (z, y).

In case of an affine motion model:
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where S = [ 52,1 1+50 )71 d, is the affine

warp. In case of rotation and translation only, S is con-
strained to be orthonormal.

The term in (4) can be modeled with a zero-
mean Gaussian distribution ([27]). This defines
P(VI{t,z,y)|s1,1,51,2 82,1, 52,2, de, dy) which we use for

P, z,y)|e,y, k(1))
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2.1.2 EM algorithm

Maximizing (2) is done using the EM algorithm. The E-

step is the estimation of the support layers for each blob.

The support layer for blob k at pixel (, y) is the posteriori
probability:

Sk (ta T, y) = P(S(ta z, y) = kll(ta z,Y, )a T, Y, 6(t)) (6)

O(ka(m)ywk(t))P(I(t:xay)lxvyagk(t)) (7)

The Gaussian distribution P(z, y|x(t)) dies off quickly

beyond a certain region-of-interest, which allows pruning.

We only maintain the support map of this region-of-interest.

M-Step is maximizing the expected lo%—llkelihood which

(8]

can be decomposed into minimizing the following three in-
dependent terms:

=" Sk(t,z,y) logwy (8)
kK zy
S5 Skt @, y) log Pz, yl0k (1)) )

k zy
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(10)
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Figure 2: Two support maps for two coherent motion regions.
The posteriori probabilities that a pixel location belongs to
a coherent motion area is higher at areas with large image
gradients (e.g. boundary of the legs)

Minimizing (8) with to the constraint ), wj = 1isequiv-

D, Sk(B,20)

alent to assigning wg := T Minimizing (9)

is equivalent to computing the weighted means and covari-
ances for support layer. (10) can be minimized using an
extension of the Lucas-Kanade motion estimation described
by Shi and Tomasi [26]. Our experiments have shown that
with just a few E and M steps, we already converge to a stable
estimate.

The initialization of the EM alﬁorithm is done by splitting
up the image into equal tiles. These are the initial support
maps. The id—step then computes so-to-speak optical flow on
these tile “super-pixels”. The next E-step refines the support
maps, and the next M-step refines the motion parameters for
the new support maps. It has been proved that the likelihood
(2) is non-decreasing at each iteration [9]. If it does not
increase, it is at a convergence point.

Figure 2 shows two example support maps of two blob
models covering the lower and upper leg of a runner. The
support map has hil%h probability for the motion model (black
ink) at regions with high gradients, because these areas can
be uniquely matched to the specific motion models. At non-
textured regions, more than one motion model matches the
data, and during the E-step, equal probability to several mo-
tion models is assigned. In some sense this agproach is
implicitly a edge based tracker at regions with high edge gra-
dients, and aregion based tracker at regions with high texture.

2.1.3 Incorporating past estimates

Taking into account that in a physical world objects can’t
change their motion in an arbitrary manner, we can compute
prior distributions for the blob parameters using previous
time frames. Kalman filters [2] are the obvious choice for
computing such priors in a recursive way. The state space of
the filter are the blob parameters #(¢). Based on the Gaussian
distribution of 6(t — 1), the Kalman update computes the
predicted mean and covariance of 6(t), which we use as

priors P(8(t)]0(t — 1), ...6(1)) for the new EM iterations'.
EM is shown to converge to a local maxima only. There-
fore it is sensitive to the starting point. The Kalman filter
provides an elegant solution in allowing for an “innovation”
measurement relative to the predicted state ([2]). In this case
the EM starting point is the predicted Kalman state.
Another interesting feature of the Kalman filter is the use
of a measurement noise covariance. This is very important in
case of motion aperture. For example along the boundary of a
non-textured leg, the motion can only be estimated realiably
Eerpendicular to the boundary line. Perpendicular to the
oundary the covariance should peak sharply, and along the

1[14] have shown a straightforward method, how to extent EM for max-
imum a-posteriori (originally EM is only defined for maximum-likelihood
without model priors).

570

boundary it should have a large extent. The measurement
noise covariance is computed using results from ([27]).

Besides viewing this method of blob segmentation as a
MAP-EM estimate, where the Kalman filter provides the
priors, we also can present this method as propagating a
multinomial distribution (mixtures of Gaussians) of the “sys-
tem state” () through time. This has relationships with the
recently proposed “condensation tracker” [16].

Making only generic assumtions about the domain, the
dynamical system equation of the Kalman filter is chosen to
be a constant velocity update of the motion and spatial pa-
rameters. Ifitis known a-priori what specific motion is been
tracked, better choices would be domain specific dynamical
models learned from training data. The good performance
of such models has been shown on spline based tracking of
edge segments [4]. In our case, we don’t know yet at this
abstraction level which blob performs what specific motion.
For example the lower leg segment during a certain phase
of a running cycle complies to a different linear dynamical
model then the upper arm segment during a different gesture.
It is too early to commit to a certain motion model and this
leads to the next higher abstraction level.

2.2 Mixtures of Dynamical Systems and Motor-
program HMMs

Following the same principle of “soft-commitment” as
we did in the blob segmentation with the hidden variables
Sk (t, 2, y), we introduce another set of higher level hidden
random variables D, (t, k), that group a sequence of blobs
0 (t), Ok (t+1), ... 6k (t+d) tosimple dynamical categories.
The mid-level grouping into dynamical categories is done
across time ¢ for each blob track separately. (Potentially
we also can merge different blob tracks if they comply to
the same dynamical category, and are in spatial proximity to
each other.) The dynamical categories are represented with
a set of M second order linear dynamical systems. Example
categories are hand-waving or certain phases during a gait
that can be approximated with a linear system. We call
these categories “movemes” in relationship to phonemes. A
complex gesture “word” should be composed out of simple
movemes.

To compute the probability Dy, (¢, k) that a certain blob
0 (t) belongs to one of the dynamical categories m, the fol-

lowing notation of a discrete 2nd order stochastic dynamical
system is used [4]:

Q) =Aly - Q- 2) + A0y - Qt — 1) + By -w (11)

The state variable Q(t) is the motion estimate of the specific
blob 0 (t). w is the system noise, and Cpy, = By, - BY is the
system covariance.
Our final goal is to classify complex gestures that are com-
?osed of simple dynamical categories. If these simple phases
ollow in sequential order, like for example during a gait cy-
cle, we can use Hidden Markov Models (HMM). Each HMM
state corresponds to one phase, and the emission probabilities
are represented by the corresponding stochastic dynamical
system. The probability that blob % is in HMM state q,,, at
time ¢ corresponds to the hidden variable D, (¢, k). The top
of figure 1 shows an example HMM topology of a 3 phase
cyclic model. The transition arcs that loop back to the same
state encode the prior probability of staying in the same phase
across time, and the transition arcs to the next state encode
the prior probability that a “phase-transition” occurs.
Unlike in the lower level groupings across space (&, y) in
which we only compute a local maximum, we can compute
across time ¢ the global best segmentation using dynamic
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Figure 3: Footage of a running subject. The white cross close to the front foot shows the center of mass of one blob track. As
you see the Kalman filter can cope with the short occlusion at time ¢ = 72 by the runners hand.

programming. The forward-backward [23] procedure pro-
vides a recursive (linear complexity over time) estimate that
a complex motion model HMM,; fits a track:

P(HMM;|VYmDp (t, k), ... Dm(1,k)) = > a(m,t) (12)

m
where

a(m,t) := P(Dn(t, k) |VrDa(t—-1,k), ...Dn(1, k), HN(Hl\/;))

a(m,t) = P(Dn(t, k) ~Ztrn,ma(n,t -1) (14)

P(Dy,(t, k) is the probability that dynamical system m
fits blob & at time ¢ as defined in (11), and tr, ,,, is the

HMM transition probability between state n and m (transition
matrix TRHMMI))

We do this for each complex category HMM; and an out-
lier model HMM, (HMMj could be a single state HMM with
a constant velocity dynamical system). Comparing the like-
lihoods across the different HMMs allows us to do the final
high-level gesture classification.

2.3 Inducing Hybrid Dynamical Models

Although there exists a huge body of literature about mod-
els of human and biological motion dynamics including data
from physiological studies, we believe that the parameters
of the dynamical representations should be estimated from
example data. Hand-coded domain knowledge is useful for
model selection and initial values, but should be fine-tuned
by statistical estimation techniques.

Given the number of linear dynamical systems M and
the HMM topology, we present an iterative nonlinear train-
ing technique that is able to estimate the system parame-
ters of each dynamical model ¢,,, := [A0,,, Aly,, Bp), and
the entries tr,, , of the HMM transition probability matrix
TREMM:-

Given example motion trajectories Q(1), Q(2), ... Q(T)
and a partition into subsequences Q(t),Q(t + 1),... Q(t +d),
where each subsequence belongs to exactly one dynamical

571

model m, it is straightforward to estimate the parameters
¢m using a linear maximum-likelihood system identification
procedure. For example a training sequence of a walking
subject could be partitioned into the time intervals while the
leg has ground support (dynamical model m = 1), and into
time intervals while the leg is swinging in the air (dynamical
mode m = 2). In this case, following log likelihood func-
tion is maximized for each interval (i.e. dynamical model)
separately (using the notation in [4]):

Llinear(Q(t)a Q(t + 1)> ~~~)Q(t+ d)|¢m) =
d
2 Y 1B (@n — A0 Qo — AL Q)P

n=t+2
—(d—=2)log|B| (15)

Not knowing such a partition a-priori, we apply an itera-
tive system identification technique, that is an extension of
the Baum Welch HMM estimation algorithm [23] (another in-
carnation of EM). It will maximize the total log likelihood of
a set of M dynamical systems and the corresponding HMM:

Lhyoria(Q(1), ..., Q(T)|1, ... o3, TREMM) =
log( Z P(Q(1)..., Q(T)|partition, ¢1, ..., ¢ar)

partition
<P (partition|TRppvm)) — (16)

As shown in [23], we don’t need to sum over all Possible
partitions in (16) to converge to a local maximum of the log

likelihood. Instead, at each iteration a “soft” partition D is
computed using the current guess of the model parameters
(E-step), and the partition is used to compute a new model
parameter estimate (M-step).

A soft partition D of the training set is equal to the previ-
ously described hidden variables D,y (¢, k). (For convenience
we drop the k parameter, which was used in recognition mode
as an index to the blob hypothesis k). D, (¢) is the probabil-
ity that training example @} (¢) was “generated” by dynamical
system ¢, .



In the E-step

the posterior P (D, (1)|Q(1)..., Q(T), é1..., oar, TREMM)
are computed with the forward-backward recursion (dynamic
programming with linear complexity of the length of the
training set). Given these probabilities, it turns out that the
M-step is equal to maximizing following expected log likeli-
hood for each model m:

E{Lweighted(Q(l)) Q(Z), ceey Q(T)|¢m)|D} -

T
23 D )IB (@n — A0 @2 — Al @)
n=3 .
~(3_ Dm(t)) Tog Bl (17)

This term can be maximized by solving a linear equation.

The new estimate of the HMM transition probability ma-
trix TRgMM is computed with the conventional Baum-
Welch update.

This 1s an iterative procedure, that has to start with an ini-
tial guess of the model parameters, or an initial soft partition
D. In case we have an intuition about the present dynamics,
we could provide this knowledge with initial model parame-
ters, and let our procedure “fine-tune” these parameters. As
we will show in the next section, it is also possible to con-
verge to good model parameters with a random initialization
of a partition D.

3 Experiments

Although the described techniques are very general, we
demonstrate its feasibility in this paper on tKe domain of
human gait categories.

Our training and validation data are 33 sequences of 5 dif-
ferent subjects performing 3 different gait categories: run-
ning, walking, and skipping. Anindependent test set of two
additional subjects was set aside for recognition experiments.
The training sequences contained tracked MLD markers or
were hand-Iabeled at the limb joints, so we can use detailed
“ground-truth” data for the training process. The indepen-
dent test set did not contain markers. Figure 3 and 7 shows
three test sequences. As you can see, the test sequences are
recorded in cluttered environment. The running sequence
(sub-sampled from a slow motion recordings of the Olympic
Games) contains many other moving objects, including the
background, which makes this data set a hard segmentation
and tracking problem.

3.1 Training and validation of gait models

The training process was done with the “ground-truth”
data set (translation and angular velocities of the limb seg-
ments computed at the center of the lower or upper leg), but
no labels were given that indicate at which fFhase the trajec-
tory was during a gait cycle (partition). Different sequences
starlted at different parts of the walking, running, or skipping
cycle.

y We experimented with different number of dynamical
models, and concluded that 4 dynamical models (and HMM
states) per gait is a reasonable choice (e.g. a skipping cycle
has 2 ‘ground support phases and 2 non-support phases).

Half of the ground-truth data was used for training, and
the other half was used for validation (the set of “training
people” and “validation people” was disjunct).

e training procedure was started with a partition, where

each Dy, (t) was assigned to % (each 4 models are equal likely

for each training sample). We added a very small random
value (+0.001- white noise). The random component was
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translation and angular velocity of lower leg limb
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Figure 4. Top row: The solid line is the x-translation, the
dashed line is the y-translation, and the dotted line the an-
gular velocity over time. The next 4 plots are the support
probabilities of the HMM states (4 rows in each plot for 4
states each, black ink means high probability).

&
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Figure 5: Increasing log-likelihood during 10 EM-iterations
of the training process for the running model.

necessary; otherwise the iterative learning procedure would
induce the same parameters for all 4 dynamical models.

The state space of the dynamical models was the transla-
tion and angular velocity og the lower leg limb. The first plot
in figure 4 shows one example sequence of 2 running cycles.
The next 4 plots show the first 4 iterations of the training pro-
cedure. Each plot illustrates the current partition [). Each
row corresponds to a specific HMM state m, and each column
to a training sample at time ¢. Black ink means Dy, (t) = 1
and white means D, (¢t) = 0. In the first 2 iterations, the
training procedure is very “uncommitted” to a partition, and
in the next two iterations, the 4 models tune into certain
phases, and therefore the partitions peak sharper. The HMM
topology constrained the partition to stay for a certain time
with one HMM state, and then transit to the next state. Re-
peating this experiment with different random initializations
resulted in difgirent time shifted partitions. But at each ex-
periment, one cycle through the HMM clearly corresponded
with one gait cycle. As you can see in figure 4, HMM state
1 corresponds {o the phase where the x-translation (full line
in top plot) has a negative minimum, and state 3 corresponds
to the phase where the x-translation has a positive maximum.
Therefore the linear dynamical system m = 1 covers the dy-
namics of the translation and angular velocity at that phase of
a running cycle. As we will see later, it actually transcribed
that phase on the independent test footage.

Figure 5 plots the log likelihood of the total hybrid model
(16). %:rom M iteration 3 to 4 we see a sharp rise of the log
likelihood value, which indicates that it was “falling” at this
point into the sharply peaked partition of the training set, and
converged after thatto a locaFmaximum. The plots for the
2 other gait models look similar.

The increasing log-likelihood is just one indication that
our learning technique estimated a good fitting model. We
also need to make sure that the models don’t overfit the
data, so that they are able to generalize. This is done by
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Figure 6: Top plot shows the velocities estimated by one
blob track in the winning sequence (track of frontal foot).
The second plot show the HMM transcription of this track
by the Walkinﬁ-HMM, the third blob by the Running-HMM,
and the fourth blob by the Skipping-HMM. The last plot show
the outlier model, which is only one state, and therefore does
not partition the input sequence. The running HMM has the
highest log-likelihood.

testing the models on the independent validation set collected
from different subjects. The number of correct classified gait
cycles in the validation set varied between 86% correct to
93% correct, depending on the random initialization. The
performance was measured in computing the likelihood of
each of the 3 gait HMMs after one walk cycle (walking-
HMM, running-HMM, skipping-HMM), and choosing the
highest likelihood as the classification category.

3.2 Tracking and recognizing gaits in video se-

quences

The final experiment was to apply the learned dynamical
models and HMMs for the segmentation and classification
task on another set of unseen Input image sequences. For
this task we introduced an additional outlier model HMM,
that had only 1 state and a constant velocity dynamical model.
This was used to discard blob tracks that are very unlikely to
belong to leg segments.

Given a test image sequence containing an unsegmented
and unspecified number of gait cycles (30 — 60 frames), we
propagate 96 blob hypotheses (resulting from the tile grid
initialization) and one background layer through all image
frames. If the score of a blob (mixing coefficient) reached
a lower limit (spurious blob), the blob hypothesis was dis-
carded. The number of biob hypotheses might seem ver
large, assuming the human bo&ly could be described wit
only a few coherent motion regions. As you can see, com-
plex scenes like Figure 3 contains manﬁ other moving objects
that potentially could belong to something recognizable. We
found it is better to track too many hypotheses than too few.
With the help of the outlier model (H o) a large number of
blob tracks could be discarded as “non-gait” tracks (usually
in the order of 75% — 90% of all tracks). The remaining
blob tracks were classified by one of the three gait-models.
The winning model (highest likelihood) was the final gait
classification. In figure %the track following the shoe of the
runner had the highest likelihood. The velocities and HMM
transcription of this track by all three gait models is shown in
figure 6p The running-H had the highest log-likelihood
and therefore the sequence was classified correctly with this
category. .

Figure 8 shows the same models transcribing the track
with the highest likelihood in the walking sequence of figure
7a. In this case the walk model on a track at the middle of the
lower leg had the highest likelihood. The partition of the gait
cycle also fits the partition found in the training example.
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a) Walking

b) Skipping

Figure 7: Example images of the second subject.

translation and angular velocity of blob track

Rygnhg: Log

Figure 8: HMM transcriptions of one blob track in the walk-
ing sequence. As you see the walking model (second plot)
has the highest log likelihood.

In some test sequences the blob track with the highest
likelihood does not cover a lower leg track. Figure 7b shows
such a case where the “winning” blob tracked the upper leg
segment. It was classified correctly (skipping-HMM). The
dynamics of a skipping lower leg was the closest model, even
if the dynamics were measured at the wrong body part in the
test sequence. The second highest likeliﬁood was a blob
that tracked one leg for a while and switched to the other
leg (caused by occlusion). It was classified incorrectly as
running.

We are currently performing more experiments on larger
datasets to further verify this very encouraging classification
performance.

4 Related Work

One influential paper to many other motion-based ap-
roaches is the classic Moving Light Display experiments
y Johansson [18]. Seeing lights attached to the joints of an

actor, human subjects were able to distinguish human gaits,
dance styles, stair climbing, or even can identify gender or
idendity.

The earliest computer vision attempt to recognize hu-
man movements was reported in O’Rouke and Badler [21]
working on synthetic images using constraint satisfaction
techniques. Systems that deal with real input data and
edge fitting to explicit structural models are reported by
[15, 25, 12, 24, 19]. Techniques that don’t use such explicit
model knowledge are usually estimated from example image
sequences. Common representations are space-time curves
[20], and appearance based representations [7, 5, 28, 31].
Some of these techniques use IgMMs to cover the temporal
structure. [22] propose a technique that looks for appearance
based periodicity, and [11] measure spatio-temporal angle
histograms to recognize hand gestures. Motion based recog-
nition techniques were presented in [8, 10, 3], and a system
based on color blobs is described in [30].

Some systems ignore the low-level feature extraction and
only focus on higher level representations and recognition
strategies [6, 13].



Most explicit model approaches assume certain domain
constraints, like calibrated cameras, known background,
initial pose, and uncluttered environments that make ed
matching feasible. In contrast, most appearance based tCC%l-
niques do not impose such constraints but are very special-
ized to the given training data. With the goal in mind to
cover a large set of human actions in unconstrained environ-
ment, purely appearance based techniques might require an
immense amount of training data. Combining layered image
representations with dynamical models and Hidden Markoyv

odels in a coherent probabilistic framework, our approach
is an attempt to find the right balance of supplied structure
and learned parameters.

5 Further work and conclusion

We introduced a new method for probabilistic segment-
ing, tracking, and classifying complex dynamics in video
sequences. Our approach is unique in the way it decom-
poses the domain, and incorporates the different levels of
abstraction using mixtures models, EM, recursive Kalman,
and Markov estimation. A feasible computation can be done
by exploiting various conditional independence assumption
across the abstraction levels and time, and multi modal ap-
proximations within the levels. We demonstrated the tecﬁ-
nique on the domain of classifying human gait categories in
cluttered video sequences.

Many domain constraints are not exploited yet. Besides
additional features like texture coherence and more complex
shape representations, experiments are in progress to group
blob pair hypotheses together based on kinematic and further
dynamical constraints. Ultimately the system should also
estimate 3D pose and additional dynamical state variables,
like speed. To apply this technique to larger corpuses with
more categories, a comprehensive “moveme” decomposition
is needed. Speech recognition is currently applied to vo-
cabularies of more then 20, 000 words and 40 to 70 atomic
phoneme categories. In the visual domain we are still far
away from this goal due to the much larger complexity of the
problem. But we have shown early steps that follow such

rinciples of coherent probabilistic reasoning in a multi-level
ramework.
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