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Abstract. This paper demonstrates a new visual motion estimation technique that is able to recover high degree-of-
freedom articulated human body configurations in complex video sequences. We introduce the use and integration of
a mathematical technique, the product of exponential maps and twist motions, into a differential motion estimation.
This results in solving simple linear systems, and enables us to recover robustly the kinematic degrees-of-freedom
in noise and complex self occluded configurations. A new factorization technique lets us also recover the kinematic
chain model itself. We are able to track several human walk cycles, several wallaby hop cycles, and two walk
cycels of the famous movements of Eadweard Muybridge’s motion studies from the last century. To the best of our
knowledge, this is the first computer vision based system that is able to process such challenging footage.
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1. Introduction

The estimation of image motion without any domain
constraints is an underconstrained problem. Therefore
all proposed motion estimation algorithms involve
additional constraints about the assumed motion
structure. One class of motion estimation techniques
are based on parametric algorithms (Bergen et al.,
1992). These techniques rely on solving a highly
overconstrained system of linear equations. For exam-
ple, if an image patch could be modeled as a planar
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surface, an affine motion model with low degrees of
freedom (6 DOF) can be estimated. Measurements
over many pixel locations have to comply with this
motion model. Noise in image features and ambiguous
motion patterns can be overcome by measurements
from features at other image locations. If the motion
can be approximated by this simple motion model,
sub-pixel accuracy can be achieved.

Problems occur if the motion of such a patch is not
well described by the assumed motion model. Others
have shown how to extend this approach to multiple
independent moving motion areas (Jepson and Black,
1993; Ayer Sawhney, 1995; Weiss and Adelson, 1995).
For each area, this approach still has the advantage that
a large number of measurements are incorporated into
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a low DOF linear motion estimation. Problems occur
if some of the areas do not have a large number of
pixel locations or have mostly noisy or ambiguous mo-
tion measurements. One example is the measurement
of human body motion. Each body segment can be ap-
proximated by one rigid moving object. Unfortunately,
in standard video sequences the area of such body seg-
ments are very small, the motion of leg and arm seg-
ments is ambiguous in certain directions (for exam-
ple parallel to the boundaries), and deforming clothes
cause noisy measurements.

If we increase the ratio between the number of mea-
surements and the degrees of freedom, the motion
estimation will be more robust. This can be done us-
ing additional constraints. Body segments don’t move
independently; they are attached by body joints. This
reduces the number of free parameters dramatically. A
convenient way of describing these additional domain
constraints is the twist and product of exponential map
formalism for kinematic chains (Murray et al., 1994).
The motion of one body segment can be described as
the motion of the previous segment in a kinematic chain
and an angular motion around a body joint. This adds
just a single DOF for each additional segment in the
chain. In addition, the exponential map formulation
makes it possible to relate the image motion vectors
linearly to the angular velocity.

Others have modeled the human body with rigid seg-
ments connected at joints (Hogg, 1983; Rohr, 1993;
Regh and Kanade, 1995; Gavrila and Davis, 1995;
Concalves et al., 1995; Clergue et al., 1995; Ju et al.,
1996; Kakadiaris and Metaxas, 1996), but use differ-
ent representations and features (for example Denavit-
Hartenburg and edge detection). The introduction of
twists and product of exponential maps into region-
based motion estimation simplifies the estimation dra-
matically and leads to robust tracking results. Besides
tracking, we also outline how to fine-tune the kine-
matic model itself. Here the ratio between the number
of measurements and the degrees of freedom is even
larger, because we can optimize over a complete image
sequence.

Alternative solutions to tracking of human bodies
were proposed by Wren et al. (1995) in tracking color
blobs, and by Davis and Bobick (1997) in using motion
templates. Nonrigid models were proposed by Pentland
and Horowitz (1991), Blake et al. (1995), Black and
Yacoob (1995) and Black et al. (1997).

Section 2 introduces the new motion tracking and
kinematic model acquisition framework and its mathe-

matical formulation, Section 3 details our experiments,
and we discuss the results and future directions in
Section 4.

The tracking technique of this paper has been pre-
sented in a shorter conference proceeding version in
Bregler and Malik (1998). The new model acquisition
technique has not been published previously.

2. Motion Estimation

We first describe a commonly used region-based mo-
tion estimation framework (Bergen and Anandan,
1992; Shi and Tomasi, 1994), and then describe the ex-
tension to kinematic chain constraints (Murray et al.,
1994).

2.1. Preliminaries

Assuming that changes in image intensity are only due
to translation of local image intensity, a parametric im-
age motion between consecutive time frames t and t+1
can be described by the following equation:

I (x + ux (x, y, φ), y + uy(x, y, φ), t + 1) = I (x, y, t)

(1)

I (x, y, t) is the image intensity. The motion model
u(x, y, φ) = [ux (x, y, φ), uy(x, y, φ)]T describes the
pixel displacement dependent on location (x, y) and
model parameters φ. For example, a 2D affine motion
model with parameters φ = [a1, a2, a3, a4, dx , dy]T is
defined as

u(x, y, φ) =
[

a1 a2

a3 a4

]
·
[

x

y

]
+

[
dx

dy

]
(2)

The first-order Taylor series expansion of (1) leads
to the commonly used gradient formulation (Lucas and
Kanade, 1981):

It (x, y) + [Ix (x, y), Iy(x, y)] · u(x, y, φ) = 0 (3)

It (x, y) is the temporal image gradient and
[Ix (x, y), Iy(x, y)] is the spatial image gradient at loca-
tion (x, y). Assuming a motion model of K degrees of
freedom (in case of the affine model K = 6) and a re-
gion of N > K pixels, we can write an over-constrained
set of N equations. For the case that the motion model
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is linear (as in the affine case), we can write the set of
equations in matrix form (see Bergen et al., 1992 for
details):

H · φ + �z = �0 (4)

where H ∈ �N×K , and �z ∈ �N . The least squares
solution to (3) is:

φ = −(HT · H)−1 · HT �z (5)

Because (4) is the first-order Taylor series lineariza-
tion of (1), we linearize around the new solution and it-
erate. This is done by warping the image I (t +1) using
the motion model parameters φ found by (5). Based
on the re-warped image we compute the new image
gradients (3). Repeating this process is equivalent to a
Newton-Raphson style minimization.

A convenient representation of the shape of an im-
age region is a probability mask w(x, y) ∈ [0, 1].
w(x, y) = 1 declares that pixel (x, y) is part of the re-
gion. Equation (5) can be modified, such that it weights
the contribution of pixel location (x, y) according to
w(x, y):

φ = −((W · H)T · H)−1 · (W · H)T �z (6)

W is an N × N diagonal matrix, with W(i, i) =
w(xi , yi ). We assume for now that we know the exact
shape of the region. For example, if we want to estimate
the motion parameters for a human body part, we sup-
ply a weight matrix W that defines the image support
map of that specific body part, and run this estimation
technique for several iterations. Section 2.4 describes
how we can estimate the shape of the support maps as
well.

Tracking over multiple frames can be achieved by
applying this optimization technique successively over
the complete image sequence.

2.2. Twists and the Product of Exponential Formula

In the following we develop a motion model u(x, y, φ)
for a 3D kinematic chain under scaled orthographic
projection and show how these domain constraints can
be incorporated into one linear system similar to (6). φ
will represent the 3D pose and angle configuration of
such a kinematic chain and can be tracked in the same
fashion as already outlined for simpler motion models.

2.2.1. 3D Pose. The pose of an object relative to
the camera frame can be represented as a rigid

body transformation in �3 using homogeneous coor-
dinates (we will use the notation from Murray et al.
(1994)):

qc = G · qo with G =




r1,1 r1,2 r1,3 dx

r2,1 r2,2 r2,3 dy

r3,1 r3,2 r3,3 dz

0 0 0 1


 (7)

qo = [xo, yo, zo, 1]T is a point in the object frame
and qc = [xc, yc, zc, 1]T is the corresponding point
in the camera frame. Using scaled orthographic pro-
jection with scale s, the point qc in the camera frame
gets projected into the image point [xim, yim]T =
s · [xc, yc]T .

The 3D translation [dx , dy, dz]T can be arbitrary, but
the rotation matrix:

R =




r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3


 ∈ SO(3) (8)

has only 3 degrees of freedom. Therefore the rigid body
transformation G ∈ SE(3) has a total of 6 degrees of
freedom.

Our goal is to find a model of the image motion
that is parameterized by 6 degrees of freedom for the
3D rigid motion and the scale factor s for scaled ortho-
graphic projection. Euler angles are commonly used to
constrain the rotation matrix to SO(3), but they suffer
from singularities and don’t lead to a simple formula-
tion in the optimization procedure (for example Basu
et al. (1996) propose a 3D ellipsoidal tracker based on
Euler angles). In contrast, the twist representation pro-
vides a more elegant solution (Murray et al., 1994) and
leads to a very simple linear representation of the mo-
tion model. It is based on the observation that every
rigid motion can be represented as a rotation around a
3D axis and a translation along this axis. A twist ξ has
two representations: (a) a 6D vector, or (b) a 4×4 matrix
with the upper 3 × 3 component as a skew-symmetric
matrix:

ξ =




v1

v2

v3

ωx

ωy

ωz




or ξ̂ =




0 −ωz ωy v1

ωz 0 −ωx v2

−ωy ωx 0 v3

0 0 0 0


 (9)
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ω is a 3D unit vector that points in the direction of
the rotation axis. The amount of rotation is specified
with a scalar angle θ that is multiplied by the twist:
ξθ . The v component determines the location of the
rotation axis and the amount of translation along this
axis. It can be shown that for any arbitrary G ∈ SE(3)
there exists a ξ ∈ �6 twist representation. See (Murray
et al., 1994) for more formal properties and a detailed
geometric interpretation. It is convenient to drop the
θ coefficient by relaxing the constraint that ω is unit
length. Therefore ξ ∈ �6.

A twist can be converted into the G representation
with following exponential map:

G =




r1,1 r1,2 r1,3 dx

r2,1 r2,2 r2,3 dy

r3,1 r3,2 r3,3 dz

0 0 0 1




= eξ̂ = I + ξ̂ + (ξ̂ )2

2!
+ (ξ̂ )3

3!
+ · · · (10)

2.2.2. Twist Motion Model. At this point we would
like to track the 3D pose of a rigid object under
scaled orthographic projection. We will extend this
formulation in the next section to a kinematic chain
representation. The pose of an object is defined as
[s, ξ T ]T = [s, v1, v2, v3, ωx , ωy, ωz]T . A point qo in
the object frame is projected to the image location
[xim, yim] with:

[
xim

yim

]
=

[
1 0 0 0

0 1 0 0

]
· s · eξ̂ · qo

=
[

1 0 0 0

0 1 0 0

]
· qc (11)

s is the scale change of the scaled orthographic projec-
tion. The image motion of point [xim, yim] from time t
to time t + 1 is:

[
ux

uy

]
=

[
xim(t + 1) − xim(t)

yim(t + 1) − yim(t)

]

=
[

1 0 0 0

0 1 0 0

]

· (s(t + 1) · eξ̂ (t+1) · qo − s(t) · eξ̂ (t) · qo
)

=
[

1 0 0 0

0 1 0 0

]

· ((1 + �s) · e�ξ̂ − I) · s(t) · eξ̂ (t) · qo

=
[

1 0 0 0

0 1 0 0

]
· ((1 + �s) · e�ξ̂ − I) · qc

(12)

with

eξ̂ (t+1) = eξ̂ (t) · e�ξ̂

s(t + 1) = s(t) · (1 + �s) (13)

qc = s(t) · eξ̂ (t) · qo

Using the first order Taylor expansion from (10) we
can approximate:

(1 + �s) · e�ξ̂ ≈ (1 + �s) · I + (1 + �s) · �ξ̂ (14)

and can rewrite (12) as:

[
ux

uy

]
=

[
�s −�ωz �ωy �v1

�ωz �s −�ωx �v2

]
· qc (15)

with

�ξ = [�v1, �v2, �v3, �ωx , �ωy, �ωz]
T

φ = [�s, �v1, �v2, �ωx , �ωy, �ωz]T codes the rel-
ative scale and twist motion from time t to t + 1. Note
that (15) does not include �v3. Translation in the Z
direction of the camera frame is not measurable under
scaled orthographic projection.

2.2.3. 3D Geometric Model. Equation (15) describes
the image motion of a point [xim, yim] in terms of the
motion parameters φ and the corresponding 3D point qc

in the camera frame. As previously defined in Eq. (7) qc

is a homogenous vector [x, y, z, 1]T . It is the point that
intersects the camera ray of the image point [xim, yim]
with the 3D model. The 3D model is given by the user
(for example a cyclinder, superquadric, or polygonial
model) or is estimated by an initialization procedure
that we will describe below. The pose of the 3D model
is defined by G(t) = s(t) · eξ̂ (t). We assume G(t) is
the correct pose estimate for image frame I (x, y, t)
(the estimation result of this algorithm over the previ-
ous time frame). Since we assume scaled orthographic
projection (11), [xim, yim] = [x, y]. We only need to
determine z. In this paper we approximate the body
segments by ellipsoidal 3D blobs. The 3D blobs are
defined in the object frame. Following quadratic equa-
tion is the implicit function for the ellipsodial surface
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with length 1/ax , 1/ay, 1/az along the x, y, z axis and
centered around M = [mx , my, mz, 1]T :

(qo − M)T ·




a2
x 0 0 0

0 a2
y 0 0

0 0 a2
z 0

0 0 0 0


 · (qo − M) = 1 (16)

Since qo = G−1qc = G−1[xim, yim, z, 1]T we can
write the implicit function in the camera frame with:


G−1




xim

yim

z

1


 − M




T

·




a2
x 0 0 0

0 a2
y 0 0

0 0 a2
z 0

0 0 0 0




·


G−1




xim

yim

z

1


 − M


 = 1 (17)

Therefore z is the solution of this quadratic Eq. (17).
For image points that are inside the blob it has 2 (close-
form) solutions. We pick the smaller solution (z value
that is closer to the camera). Using (17) we can calculate
for all points inside the blob the qc points. For points
outside the blob it has no solution. Those points will
not be part of the estimation setup.

For more complex 3D shape models, the z cal-
culation can be replaced by standard graphics ray-
casting algorithms. We have not implemented this
generalization yet.

2.2.4. Combining 3D Motion and Geometric Model.
Inserting (15) into (3) leads to following equation for
each point [xi , yi ] inside the blob:

It + Ix · [�s, −�ωz, �ωy, �v1] · qc

+ Iy · [�ωz, �s, −�ωx , �v2] · qc = 0

⇔ It (i) + Hi · [s, �v1, �v2, �ωx , �ωy, �ωz]
T = 0

(18)

Hi = [Ix · xi + Iy · yi , Ix , Iy, −Iy · zi , Ix · zi ,

− Ix · yi + Iy · xi ] ∈ �1×6 with

It := It (xi , yi ), Ix := Ix (xi , yi ), Iy := Iy(xi , yi )

For N pixel positions we have N equations of the

form (18). This can be written in matrix form:

H · φ + �z = 0 (19)

with

H =




H1

H2

. . .

HN


 and �z =




It (x1, y1)

It (x2, y2)

. . .

It (xN , yN )




Finding the least-squares solution (3D twist motion
φ) for this equation is done using (6).

2.2.5. Kinematic Chain as a Product of Exponen-
tials. So far we have parameterized the 3D pose and
motion of a body segment by the 6 parameters of a
twist ξ . Points on this body segment in a canonical
object frame are transformed into a camera frame by
the mapping G0 = eξ̂ . Assume that a second body
segment is attached to the first segment with a joint.
The joint can be defined by an axis of rotation in
the object frame. We define this rotation axis in the
object frame by a 3D unit vector ω1 along the axis,
and a point q1 on the axis (Fig. 1). This is a revolute
joint, and can be modeled by a twist (Murray et al.,

Figure 1. Kinematic chain defined by twists.
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1994):

ξ1 =
[−ω1 × q1

ω1

]
(20)

A rotation of angle θ1 around this axis can be written
as:

g1 = eξ̂1·θ1 (21)

The global mapping from object frame points on the
first body segment into the camera frame is described
by the following product:

g(θ1) = G0 · eξ̂1·θ1

(22)
qc = g(θ1) · qo

If we have a chain of K + 1 segments linked with
K joints (kinematic chain) and describe each joint by
a twist ξk , a point on segment k is mapped from the
object frame into the camera frame dependent on G0

and angles θ1, θ2, . . . , θk :

gk(θ1, θ2, . . . , θk)

= G0 · eξ̂1·θ1 · eξ̂2·θ2 · · · · · eξ̂k ·θk (23)

This is called the product of exponential maps for
kinematic chains.

The velocity of a segment k can be described
with a twist Vk that is a linear combination of twists
ξ ′

1, ξ
′
2, . . . , ξ

′
k and the angular velocities θ̇1, θ̇2, . . . , θ̇k :

Vk = ξ ′
1 · θ̇1 + ξ ′

2 · θ̇2 + · · · ξ ′
k · θ̇ k (24)

The twists ξ ′
k are coordinate transformations of ξk . The

coordinate transformation for ξ ′
k is done relative to gk−1

(as defined in (23)) and can be computed with a so
called Adjoint transformation Adgk−1 (Murray et al.,
1994). If R is the rotation matrix of gk−1 and p̂ is the

translation vector of gk−1 (gk−1 = [R p̂
0 1]) then we can

calculate a 6 × 6 adjoint matrix:

Adgk−1 =
[

R p̂ · R

0 R

]
(25)

ξ ′
k is computed in multiplying the adjoint matrix to ξk :

ξ ′
k = Adgk−1ξk (26)

Given a point qc on the k’th segment of a kinematic
chain, its motion vector in the image is related to the
angular velocities by:

[
ux

uy

]
=

[
1 0 0 0

0 1 0 0

]

· [ξ̂ ′
1 · θ̇1 + ξ̂ ′

2 · θ̇2 + · · · + ξ̂ ′
k · θ̇ k] · qc (27)

Recall (18) relates the image motion of a point qc

to changes in pose G0. We combine (18) and (27) to
relate the image motion to the combined vector of pose
change and angular change � = [�s, v′

1, v
′
2, �ωx ,

�ωy, �ωz, φ̇1, φ̇2, . . . , φ̇K ]T :

It + Hi · [s, v′
1, v

′
2, �ωx , �ωy, �ωz]

T

+ Ji · [θ̇1, θ̇2, . . . θ̇ K ]T = 0 (28)

[H, J] · � + �z = 0 (29)

with

J =




J1

J2

. . .

JN


 and H, �z as before

Ji = [Ji,1, Ji,2, . . . , Ji,K ]

Ji,k =




[Ix , Iy] ·
[

1 0 0 0

0 1 0 0

]
· ξ̂k · qc

0
if pixel i is on a segment that
is not affected by joint ξk

(30)

The least squares solution to (29) is:

� = −([H, J]T · [H, J])−1 · [H, J]T · �z (31)

� is the new estimate of the pose and angular change
between two consecutive images. As outlined earlier,
this solution is based on the assumption that the local
image intensity variations can be approximated by the
first-order Taylor expansion (3). We linearize around
this new solution and iterate. This is done in warping
the image I (t + 1) using the solution �. Based on the
re-warped image we compute the new image gradients.
Repeating this process of warping and solving (31) is
equivalent to a Newton-Raphson style minimization.
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2.3. Multiple Camera Views

In cases where we have access to multiple synchro-
nized cameras, we can couple the different views in
one equation system. Let’s assume we have C differ-
ent camera views at the same time. View c corresponds
to following equation system (from (29)):

[Hc, Jc] ·




�c

φ̇1

φ̇2

. . .

φ̇K




+ �zc = 0 (32)

�c = [s ′
c, v

′
1,c, v

′
2,c, ω

′
x,c, ω

′
y,c, ω

′
z,c]T describes the

pose seen from view c. All views share the same an-
gular parameters, because the cameras are triggered at
the same time. We can simply combine all C equation
systems into one large equation system:




H1 0 . . . 0 J1

0 H2 . . . 0 J2

. . . . . . . . . . . . . . .

0 0 . . . HC JC


 ·




�1

�2

. . .

�C

φ̇1

φ̇2

. . .

φ̇K




+




�z1

�z2

. . .

�zC


 = 0

(33)

Operating with multiple views has three main ad-
vantages. The estimation of the angular parameters is
more robust because (1) the number of measurements
and therefore the number of equations increases with
the number of views, (2) some angular configurations
might be close to a singular pose in one view, whereas
they can be estimated in a orthogonal view much better.
(3) With more camera views, the chance decreases that
one body part is occluded in all views.

2.4. Adaptive Support Maps Using EM

As in (3), the least squares estimation (31) can be gen-
eralized to a weighted least squares estimation:

� = −((Wk · [H, J])T · [H, J])−1 · (Wk · [H, J])T �z
(34)

Wk is a diagonal matrix that codes the support map
for segment k. The values along the diagonal of the
matrix are the different weights for each pixel location.
If we only allow values 0 and 1 for the weights, we do
exactly the same as in (30). If the value is 1, that spe-
cific pixel is used in the estimation (that specific row in
[H, J] is multiplied by 1). If the value is 0, that specific
pixel is discarded in the estimation (that specific row
in [H, J] is multiplied by 0). With continuous weight
values between 0 and 1 the different pixels (rows in
[H, J]) contribute with different strength to the final
solution.

We approximate the shape of the body segments
as ellipsoids, and can compute the support map as
the projection of the ellipsoids into the image. Such
a support map usually covers a larger region, in-
cluding pixels from the environment. That distracts
the exact motion measurement. Sometimes a few
outliers (fast motion from the background or other
errors) can dominate the estimatimation and cause
larger erros. Robust statistics would be one solu-
tion to this problem (Black and Anandan, 1996). An-
other solution is an EM-based layered representation
(Ayer and Sawhney, 1995; Dempster et al., 1977;
Jepson and Black, 1993; Weiss and Adelson, 1996)
that compute for those pixel locations low weight
values.

We use the EM-based solution for fine tuning the
shape of the support maps Wk. EM (Expectation Max-
imization) is a iterative maximum-likelihood estima-
tion technique. Work by Ayer and Sawhney (1995),
Jepson and Black (1993) and Weiss and Adelson (1996)
proposed to use this technique to iteratively estimate
motion models and support maps.

We start with an initial guess of the support map (all
weights inside the ellipsoidal projection are set to 1).
Given the initial Wk , we iterate between the M-step
and E-steps. The M-step is the application of Eq. (34)
to all body segments. The result are new twist motions
� for all segments. Using those parameters, we can
calculate the posteriori probabilities for each pixel lo-
cation that it belongs to the specific segment k. It is
done in the same way as in Ayer and Sawhney (1995):
For each pixel location i the difference di of current
frame t warped by the estimated motion and the next
frame at t + 1 is computed. Assuming a zero mean
gaussian noise model of the pixel difference, the pos-
teriory probabilites for each pixel i are computed and
assigned to Wk . For the results reported in this paper
we only iterate once.
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2.5. Tracking Recipe

We summarize the algorithm for tracking the pose and
angles of a kinematic chain in an image sequence:

• Input: I (t), I (t + 1), G0(t), θ1(t), θ2(t), . . . , θK (t)
(Two images and the pose and angles for
the first image).

• Output: G0(t + 1), θ1(t + 1), θ2(t + 1), . . . ,
θK (t + 1).
(Pose and angles for second image).

1. Compute for each image location [xi , yi ]
in I (t) the 3D point qc(i) (using ellip-
soids or more complex models and ren-
dering algorithm).

2. Compute for each body segment the
support map Wk.

3. Set G0(t + 1) := G0(t), ∀k : θk(t + 1) :=
θk(t).

4. Iterate:

(a) Compute spatiotemporal image gra-
dients: It , Ix , Iy.

(b) Estimate � using (34)
(c) Update G0(t + 1) := G0(t + 1)·(1 + �s)·

e
ξ̂ ′

1+�s

(d) ∀k Update θk(t + 1) := θk(t + 1) + θ̇ k.
(e) ∀k Warp the region inside Wk of

I (t + 1) by G0(t + 1) · gk(t + 1) · (G(t) ·
gk(t))−1.

2.6. Initialization

The visual tracking is based on an initialized first frame.
We have to know the initial pose and the initial angular
configuration. If more than one view is available, all
views for the first time step have to be known. A user
clicks on the 2D joint locations in all views at the first
time step. Given that, the 3D pose and the image projec-
tion of the matching angular configuration is found by
minimizing the sum of squared differences between the
projected model joint locations and the user supplied
model joint locations. The optimization is done over the
poses, angles, and body dimensions. Example body di-
mensions are “upper-leg-length”, “lower-leg-length”,
or “shoulder-width”. The dimensions and angles have
to be the same in all views, but the pose can be differ-
ent. Symmetry constraints, that the left and right body
lengths are the same, are enforced as well. Minimizing
only over angles, or only over model dimensions re-
sults in linear equations similar to what we have shown

so far. Unfortunately the global minimization criteria
over all parameters is a tri-linear equation system, that
cannot be easily solved by simple matrix inversions.
There are several possible techniques for minimizing
such functions. We achieved good results with a Quasi-
Newton method and a mixed quadratic and cubic line
search procedure.

2.7. Model Fine Tuning (Factorization Based
Kinematic Model Reconstruction)

The above method assumes that we have a correct
model for the locations of the joints. However, in re-
ality, it is often difficult to measure the exact joint po-
sitions, which may in turn affect the accuracy of the
method. If we extend the state space of our motion
tracking framework to include a sequence of more than
two images, we are able to iteratively solve for the joint
locations, and thus determine the kinematic model di-
rectly from the video data.

Our technique starts with an initial guess of the kine-
matic model ξ1, . . . , ξk . Given the initial guess, we
compute for each time frame t the pose ξ0(t), and all
angles θ1(t), . . . , θk(t) (using the tracking technique
described in the previous sections). Given all poses
and angles, we can recompute a better fitting kinematic
model, and re-iterate.

We can rewrite (29), such that it is parameterized by
by a specific twist ξl :

It + Hi · [s, v′
1, v

′
2, �ωx , �ωy, �ωz]

T

+ Ji · [θ̇1, θ̇2, . . . θ̇ K ]T = 0 (35)

Ci + Ji · [θ̇1, θ̇2, . . . θ̇ K ]T = 0 (36)

Ci +
(∑

k 	=l

Ji,k · θ̇ k

)
+ Ji,l · θ̇ l = 0 (37)

Di + Ji,l · θ̇ l = 0 (38)

Di + [Ix , Iy, 0, −Iy · z, Ix · z, −Ix · y + Iy · x]

· Adgl−1 · ξl · θ̇ l = 0 (39)

Di + Mi · ξl · θ̇ l = 0 (40)

The scalar Di and the 1 × 6 vector Mi contain all
the spatio-temporal gradients Ix , Iy, It and 3D point
locations x, y, z for image point at location i . Stacking
all N equations together for all N pixel locations leads
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Figure 2. Example configurations of the estimated kinematic structure. First image shows the support maps of the initial configuration. In
subsequent images the white lines show blob axes. The joint is the position on the intersection of two axes.

(a) (b)

Figure 3. Comparison of (a) data from Murray et al. (left) and (b) our motion tracker (right).

Figure 4. Example configurations of the estimated kinematic structure of a person seen from an oblique view.
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to another system of equations:

M · ξl · θ̇ l = D

with M =




M1

M2

. . .

MN


 and D =




−D1

−D2

· · ·
−DN


 (41)

We can write out the least square solution:

ξl · θ̇ l = (MT · M)−1 · D = E (42)

Equation (42) descibes only one specific instance in
time. Computing E for all time steps let us write
following bilinear equation:

ξl · [θ̇ l(1), θ̇ l(2), . . . , θ̇ l(T )]

= [E(1), E(2), . . . , E(T )] (43)

ξl · [θ̇ l(1), θ̇ l(2), . . . θ̇ l(T )] = W (44)

The right side contains a 6×T matrix W . As derived
above, W is computed from all spatio-temporal gradi-

Figure 5. Eadweard Muybridge, the human figure in motion, Plate 97: Woman walking. The first row show a walk cycle from one example
view, and the second and third row shows the same time steps from a different views.

ent measurements at all pixels and all time instances,
and from the current guess of the kinematic model and
angles.

The left side is the twist ξl multiplied with all angu-
lar velocities over the entire time period. The structure
of this equation tells us, that W is of rank 1. Similar to
the Tomasi-Kanade factorization (Tomasi and Kanade,
1992) of a tracking matrix into a pose and shape matrix,
we can factor W into a twist and angular velocity ma-
trix. Using SVD, ξl is a normal vector. The constraint
that only the lower part of the twist (ωx , ωy, ωz) has to
be normal can be enforced with a simple rescaling of
the SVD solution.

Our reconstruction algorithm computes this factor-
ization for each twist ξl . Given the new more accurate
twist model, it re-tracks the entire footage to compute
new poses and angles. It then iterates.

3. Results

We applied this technique to video recordings in
our lab, to photo-plate sequences of Eadweard
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Figure 6. Eadweard Muybridge, The human figure in motion, Plate 7: Man walking and carrying 75-LB boulder on shoulder. The first row
shows part a walk cycle from one example view, and the second and third row shows the same time steps from different views.

Figure 7. Initialization of Muybridge’s woman walking: This visualizes the initial angular configuration projected to 3 example views.
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Muybdrige’s motion studies (Muybridge, 1901), and
to Wallaby Hopping sequences

3.1. Single Camera Recordings

Our lab video recordings were done with a single cam-
era. Therefore the 3D pose and some parts of the body
can not be estimated completely. Figure 2 shows one
example sequences of a person walking in a frontopar-
allel plane. We defined a 6 DOF kinematic structure:
One blob for the body trunk, three blobs for the frontal
leg and foot, connected with a hip joint, knee joint, and
ankle joint, and two blobs for the arm connected with a
shoulder and elbow joint. All joints have an axis orien-
tation parallel to the Z -axis in the camera frame. The
head blob was connected with one joint to the body
trunk. The first image in Fig. 2 shows the initial blob
support maps.

After the hand-initialization we applied the motion
tracker to a sequence of 53 image frames. We could
successfully track all body parts in this video sequence

Figure 8. Muybridge’s woman walking: Motion capture results. This shows the tracked angular configurations and its volumetric model
projected to all 3 example views.

(see web-page). The video shows that the appearance
of the upper leg changes significantly due to moving
folds on the subject’s jeans. The lower leg appearance
does not change to the same extent. The constraints
were able to enforce compatible motion vectors for the
upper leg, based on more reliable measurements on the
lower leg.

We can compare the estimated angular configura-
tions with motion capture data reported in the literature.
Murray, Brought, and Kory published (Murray et al.,
1964) such measurements for the hip, knee, and angle
joints. We compared our motion tracker measurements
with the published curves and found good agreement.
Figure 3(a) shows the curves for the knee and ankle
reported in Murray et al. (1964) and Fig. 3(b) shows
our measurements.

We also experimented with a walking sequence of
a subject seen from an oblique view with a similar
kinematic model. As seen in Fig. 4, we tracked the an-
gular configurations and the pose successfully over the
complete sequence of 45 image frames. Because we use
a scaled orthographic projection model, the perspective
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effects of the person walking closer to the camera had
to be compensated by different scales. The tracking al-
gorithm could successfully estimate the scale changes.

3.2. Digital Muybridge

The next set of experiments was done on historic
footage recorded by Eadweard Muybridge in 1884
(Muybridge, 1901). His methods are of independent
interest, as they predate motion pictures. Muybridge
had his models walk in an open shed. Parallel to the
shed was a fixed battery of 24 cameras. Two portable
batteries of 12 cameras each were positioned at both
ends of the shed, either at an angle of 90 deg relative to
the shed or an angle of 60 deg. Three photographs were
take simultaneously, one from each battery. The effec-

Figure 9. Muybridge’s man walking: Motion capture results. This shows the tracked angular configurations and its volumetric model projected
to all 3 example views.

tive ‘framerate’ of his technique is about two times
lower then current video frame rates; a fact which
makes tracking a harder problem. It is to our advan-
tage that he took for each time step three pictures from
different viewpoints.

Figures 5 and 6 shows example photo plates. We ini-
tialize the 3D pose by labeling all three views of the first
frame and running the minimization procedure over the
body dimensions and poses. Figure 7 shows one exam-
ple initialization. Every body segment was visible in
at least one of the three camera views, therefore we
could track the left and the right side of the person.
We applied this technique to a walking woman and a
walking man. For the walking woman we had 10 time
steps available that contained 60% of a full walk cy-
cle (Fig. 5). For this set of experiments we extended
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our kinematic model to 19 DOFs. The two hip joints,
the two shoulder joints, and the neck joint, were mod-
eled by 3 DOFs. The two knee joints and two elbow
joints were modeled just by one rotation axis. Figure 8
shows the tracking results with the model overlayed.
As you see, we could successfully track the complete
sequence. To animate the tracking results we mirrored
the left and right side angles to produce the remaining
frames of a complete walk cycle. We animated the 3D
motion capture data with a stick figure model and a
volumetric model(Fig. 10), and it looks very natural.
The video shows some of the tracking and animation
sequences from several novel camera views, replicat-
ing the walk cycle performed over a century ago on the
grounds of University of Pennsylvania.

For the visualization of the walking man sequence,
we did not apply the mirroring, because he was car-

Figure 10. Computer models used for the animation of the Muybridge motion capture. Please check out the web-page to see the quality of the
animation.

Figure 11. Hopping Wallaby and acuired kinematic model overlayed.

rying a boulder on his shoulder. This made the walk
asymmetric. We re-animated the original tracked mo-
tion (Fig. 9) capture data for the man, and it also looked
very natural.

3.3. Acquistion of Kinematic Models
for Wallaby Recordings

As an initial test of the fitting technique described
in Section 2.7, we used video data of a wallaby (a
small species of kangaroo) hopping on a treadmill.
The animal had markers placed on its joints, as the
data was originally intended for biomechanical studies
of the forces on its joints. However, it was clear that
measuring the locations of the markers and computing
the angles directly from that data would not be accurate,
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as the distance between any given pair of consecutive
markers (for example, the hip and knee markers) varied
by up to 50% over one hop cycle due to the soft de-
formations of the skin and muscle. As a result, this is
a situation where a method such as ours that could ac-
tually determine the kinetmatic structure of the animal
would be valuable.

Equation (44) is greatly simplified in 2D, because
ωx and ωy are zero. Because the wallaby hops with its
legs together, it is a valid approximation to assume the
motion occurs in a plane. The frame rate of the data was
250 fps, yielding roughly 80 frames per hop cycle. As
an initial guess for the kinematic model at each time, the
markers on the joints were used. Then 8–10 succesive
frames were used to solve for the twist parameters.
When this process was repeated over a series of initial
time points, we achieved consistant results for the limb
lengths. Results are shown in Fig. 11 in which we have
overlayed the resulting model on the images.

4. Conclusion

In this paper, we have developed and demonstrated
a new technique for articulated visual motion track-
ing and acquisition. We demonstrated results on video
recordings of animals and people hopping and walk-
ing both in frontoparallel and oblique views, as well
as on the classic Muybridge photographic sequences
recorded more than a century ago.

Visually tracking and acquistion of animal and hu-
man motion at the level of individual joints is a very
challenging problem. Our results are due, in large
measure, to the introduction of a novel mathematical
technique, the product of exponential maps and twist
motions, and its integration into a differential motion
estimation scheme. The advantage of this particular
formulation is that it results in the equations that need
to be solved to update the kinematic chain parameters
from frame to frame being linear, and that it is not
necessary to solve for any redundant or unnecessary
variables.

Future work will concentrate on dealing with very
large motions, as may happen, for instance, in video-
tapes of high speed running. The approach developed in
this paper is a differential method, and therefore may be
expected to fail when the motion from frame-to-frame
is very large. We propose to augment the technique by
the use of an initial coarse search stage. Given a close
enough starting value, the differential method will con-
verge correctly.
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