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Abstract

Tree-structued probabilistic modelsadmit simple fastin-
ference However, they are not well suitedto phenomena
sud as occlusion,whele multiple componentsf an object
maydisappearsimultaneouslyMixturesof treesappearto
addressthis problem, at the cost of representinga large
mixture. We demonstate an efficient and compactrepre-
sentationof this mixture, which admitssimplelearningand
inferencealgorithms.

We usethis methodto build an automatedtradker for
Muybridge sequencesf a variety of human activities.
Tracking is difficult, becausethe tempoal dependencies
rule out simple inferencemethods. We showhow to use
our modelfor efficientinference usinga methodthat em-
ploysalternatespatial and tempoal inference Theresult
is a tradker that (a) usesa veryloosemotionmodel,andso
cantrack manydifferentactivitiesat a variable framerate
and(b) is entirely automatic.

1. Introduction

Oneof themaindifficultiesin objectrecognitionis thevari-
ability of appearancef anobjectof interest. The reasons
for thesevariationsincludethe articulatednatureof an ob-
ject, variationsin aspect,andocclusions. However, artic-
ulated objectscan be representedis assembliesof rigid
parts. For example,a humanbody is often represente@s
anassemblyof cylinderswhich move with respecto each
other Sucharepresentatiosuggests bottom-upapproach
to recognition:first, weidentify candidateprimitivesasim-
ageregionsthat may correspondo the objectparts;then,
theseregionsare groupedinto assemblieshat satisfy con-
straintson therelative configurationof the parts.If the ob-
jectis knownto bein theimage,it canbelocalizedby find-
ing the assemblythat is the most similar to the object of
interest.

We cannotevaluateeachgroup of candidateprimitives
due to the large numberof such groups, and thus need
an efficient groupingmethod. Sucha methodis provided
by tree-structuregrobabilisticmodelswhichadmitsimple,
fastinference[2, 8]. However, they arenot well suitedto
phenomenauchas occlusionand aspectvariation, where
multiple componentf an object may disappeasimulta-
neously This problemcanbe addressedvith mixtures of

trees[3], with eachcomponentmodelinga particularas-
pect. By imposingconstraintson the structureof mixture
componentsywe canrepresenthe large numberof compo-
nentsefficiently and compactly Sucha representatiomd-
mits simplelearningandinferencealgorithms.

We usemixturesof treesto modelpeople andtrackthem
in Muybridge sequencesf a variety of humanactuities.
Tracking is difficult, becausethe temporaldependencies
rule out simple inferencemethods. The problemis often
simplified by imposingtight motion modelsand/ormanual
initialization[1, 7], neitherof which canbe usedin afully
automatidrackeron Muybridgesequencesyhich have low
andvariableframerate. Instead we combinethe mixture-
of-treesmodelfor ahumanbodywith aweakmotionmodel,
andshav how to useour modelto searchfor humancon-
figurationsin motion sequencesfficiently, usinga method
thatemploys alternatespatialandtemporalinference. The
resultis a tracker that (a) usesa very loosemotion model,
andsocantrackmary differentactiitiesatavariableframe
rateand(b) is entirelyautomatic.

2. Modeling with trees

Consideran objectthatis formedfrom a setof primitives.
We will detectsuchan objectby first detectingthe primi-
tives,andthengroupingtheminto assembliesi-or instance,
we canlook for peopleascollectionsof bodyparts.Thereis
little hopeof reliably detectingindividual primitiveswith-
outlooking at a configurationasa whole. Insteadwe pro-
posenot to find the primitivesaccuratelybut ratherfind a
setof possibleconfigurationgor eachprimitive,andusethe
groupingprocesgo determinevhichelemenbf acandidate
setis in facta partof anobject. For instancewe canfind
severalimageregionsthatcouldcorrespondo anarmin the
imageof a personandusegroupingto determinewhich of
thosein factcorrespondso anarm— perhapsaregion that
is adjacento somethinghatlookslik e atorso.

Let ussupposdhatanobjectis a collectionof K primi-
tives,{X; ... Xk}, eachof whichcanbetreatedasavector
representinggs configuation (e.g.,positionandorientation
in theimage).Givenanimage,thelocal detectorswill pro-
vide uswith afinite setof possibleconfigurationdor each
primitive X;. We will referto eachof theseK setsasa
setof candidateprimitives the objective is to build anas-



semblyby choosinganelementfrom eachcandidateset,so
thattheresultingsetof primitivessatisfiessomeglobalcon-
straints(e.g.,limbs mustbe attachedo thetorso).

The global constraintscan be capturedin a distribu-
tion P(X; ... Xk), whichwill behighwhentheassembly
looks like the object of interest,and low whenit doesnt.
Assumingexactly oneobjectpresentin theimage,we can
localize the object by picking the configurationfor each
primitive from the correspondingandidatesetso that the
resultingvalue of P is maximized. In general,this max-
imization requiresa combinatorialcorrespondenceearch
whosecomputationakostis prohibitively large (unlessK
is small,e.g.[10]). It is possible however, to constrainour-
selhesto a family of distributions P for which correspon-
dencesearchs efficient. Thisis the caseif P corresponds
to atree-structuregraphicalmodel.

If P(X;...Xkg) is representedvith a tree, correspon-
dencesearchis efficiently accomplishedwith a Viterbi al-
gorithmwherebythenodesof thetreearesweptfrom leaves
totheroot. If thereare M candidateconfigurationgor each
of the K primitives,thenthe searchtakes O(K M?) time,
whereador a generaldistribution P the complexity would
beO(M¥).

3. Learningthetree model

In additionto making correspondencsearchefficient, the
conditionalindependencesapturedn the treemodelsim-
plify learning,by reducingthe numberof parameterso be
estimateddueto thefactorizedform of the distribution:

P(Xy...Xg) = P(Xpoot) |[ P(Xi|Pay),
k#root

where X0t iS the nodeat the root of the tree, and Pay,
denoteghe parentof the node X,. Learningthe modelin-
volveslearningthe structure(i.e., the tree edges)as well
asthe parameter®of the prior P(X,,0¢) and conditionals
P(X}, | Pay). We learnthe modelby maximizingthelog-

likelihoodof thetraining olatazg:1 log P(z},...,2%) =

(Znii 108 P(oth) ) + S0y (S0 log Plaf | pay) )
wherez} andpaj aretheconfiguration®f thekth primitive
(Xy) andits parent(Pay) in thenth trainingassemblylf the
structureof thetreeis known, thetermswithin parentheses
canbemaximizedindependentlypf eachother, yieldingthe
maximum-likelihoodapproximationgor the prior andcon-
ditionals. If we now assumehattheseapproximationsare
in fact the true prior and conditionals,then the expected
valueof thelog-likelihoodis

—N[H(Xeoot) + > H(Xg | Pay)),
k#root

whereH (Xy00t) andH (X, | Pay,) denoteentropy andcon-
ditionalentropy, respectiely. We seekthetreestructurethat
maximizesthe log-likelihood of the data,or, equivalently,
minimizesthe entrogy of the distribution whosemauginals
areconstrainedy thedata.

To learnthe tree structurewith a fixed root X,¢0¢, W€
learnthe conditionalsP (X}, | Pa,) andthenfind the min-
imum spanningtree in the directed graph, whose edge
weightsarethe appropriateconditionalentropies.Thistree
canbefoundefficiently [9].

4. Mixturesof trees

The tree representatiorof an object allows for efficient
learningand search. However, it is difficult to usea tree
to model caseswheresomeof the primitives constituting
an object are missing— due to occlusions,variationsin

aspector failuresof the local detectors. One approachis
to mamginalize over missingcorrespondencg8], sothata
conditionalP(X}, | Pag) is setto anappropriateconstantf

X}, and/orPay, is absent.However, in this casea missing
primitive will “break” the assemblyby renderingthe de-
scendant®f a missingprimitive independenfrom therest
of theassemblyFurthermorethis solutionignoresthefact
thatthe presencesr absencesf primitivesinfluenceeach
other (for example,if anupperarm segmentis missing, it

is often dueto the poseof a person,which will causethe
lowerarmsegmentto be absentaswell).

Mixtures of trees,introducedin [3], provide analterna-
tive solution. In particular we canthink of assembliess
beinggeneratedy a mixture model, whoseclassvariable
specifieswhatset.S of primitiveswill constitutean object,
while conditionalclassdistributions Ps({ Xy : k € S})
generatethe configurationsof thoseprimitives. The mix-
turedistributionis

P({Xk ke S}) = W(S)Ps({Xk ke S}),

wherem(S) is the probabilitythata randomview of an ob-

ject consistof thoseprimitives. This mixture has2¥ com-

ponents- onefor eachpossiblesubsetS of primitivetypes.

Learninga mixture of treesinvolvesestimatingthe mixture

weights7(S), aswell the structureand the distributions

Ps(Xroot) @and Ps(X}, | Pay) for eachof the component
trees.

In [3], treemixturesarelearnedusingan EM algorithm,
the M-stepinvolving optimizationof the treestructureand
distribution parametersWe cannotake thisapproachhow-
ever: sincewe requirea componenfor eachsetof primi-
tivesconstitutinganobject,themixturehas2X components
and,if eachcomponentis represente@xplicitly, cannotbe
learnedor even representedinlessK is small. One so-
lution might be to selecta small numberof mixture com-
ponents(or subsetsS of primitives)thatadequatelyepre-
sentthe variationsin the object appearance.Instead,we
keepall of the 2% componentsbut representhemimplic-
itly and compactly To do this andto make learningand
inferenceefficient, we must constrainthe structureof the
mixtureandthusenforceconditionalindependencesimilar
to thosepresenin asingletree.

5. Treeswith shared structure

In atreemodel,fixing avalueof anoderendersts descen-
dantsconditionallyindependentrom the othernodesn the



model. This property makes learningand the correspon-
denceon treesefficient; to achieve similar efficiency, and
simply to be ableto representhe hugenumberof mixture
componentsye requireour modelto possessimilar con-
ditionalindependencstructure.

In particular if we specifythe configurationof a primi-
tive X andasserthat X, is a partof the object,thenwe
wantthe setof primitives X; ... Xk to breakinto groups
so that primitivesin differentgroupsare conditionally in-
dependentTo achiere this, we usea singlegenemting tree
whichis usedto generatehe structuref all of themixture
components.

A geneamting treeis a directedtree T whosenodesare
X:1... Xk, with X, at the root. For a given struc-
ture of T, we learnthe prior P(X,,,) and conditionals
P(X} | X;) whereX; is ary ancestorof X}, (not nec-
essarilythe parent). Additionally, we denoteby [X}] the
eventthat X, is oneof theprimitivesconstitutingarandom
view of the object, and learn the distributions P([Xyo0t])
andP([Xy] | [Pax]), wherePay, is the parentof X}, in the
generatingree.

We representr(S) usinga graphicalmodelwith struc-
tureprovidedby thegeneratingreeT:

m(S) = P((Xroot]) [ P(Xk]| [Pax]),

k#root

wherethedistributionsarelearnedoy countingoccurrences
of eachprimitive andpairsof primitivesin thetrainingdata.

Thetree Ps consistsof all the edges(X; — X}) such
thatX; is anancestoof X}, in thegeneratingree,andnone
of thenodeson the pathfrom X; to X}, is in theset{X}, :
k € S}. This meansthat, if the parentof node Xy, is not
presentin a view of the object, then X}, is “adopted” by
its grandparentpr, if that oneis absentaswell, a great-
grandparenttc. If we assumehattheroot X, is always
apartof theobject,then Ps will beatree,since X, qq¢ Will
ensurethat the graphicalmodelis connected An example
of obtainingthe structureof a mixture components shavn
in figurel.

Thedistribution Ps is theproductof theprior Ps(X;o0t)
and conditionalsPs(X} | X;) correspondingo the tree
edges. To ensureconditionalindependencem the mix-
ture, we requirethatif anedge(X; — Xj) is presentn
several mixture componentshenthe correspondingondi-
tionalsare the same;similarly, we requirethat Ps(X;o0t)
beindependenof S. To this end,we setPs (X}, | X;) =
P(X}, | X;) to bethe conditionaldistribution learnedfrom
all of thedata,andsimilar for Ps(X;o0t) = P(Xroot)-

As in the caseof a single tree, we needto determine
the optimal structurefor the mixture components. Since
they areall derivedfrom asinglegeneratingreeT’, only its
structureneedgo belearned andwe dothatby minimizing
the entrogy of the mixture distribution. Therefore we pre-
fer distributionsthataremoreconcentratedanddislike less
informative ones which have high entropy.

Figurel: Usinga genertingtreeto derivethe structure for
a mixture componentThedashedinesare theedgesin the
geneating tree which spansall of the nodes. The nodes
of the mixture componenare shadedandits edges(shown
as solid) are obtainedby makinga grandpaent “adopt”
a nodeif its parentis not presentin this tree (i.e., is not
shaded).Thusmixture componentsire encodedmplicitly,
which allows efficient representation learning and infer-
encefor mixtureswith a large numberof components.

Let us use the notation [X; — Xj] to denotethe
eventthata mixture componentontainsthe edge(X; —
Xy) (for a fixed T, the probability of this is a prod-
uct of mamginals; for instance,if X; is X}’'s grandparent

thenPr([X; — Xi]) = Pr([X;]) - Pr([Pas] | [Xj]) -
Pr([X4] | [Pax])). Then,theentropy of themixtureis

H(P)

K

D H(X] | [X;])

k=1

+ YD Pr((X; - X)) - H(X | X5),

k,j

wherethe first term on the right-handside representghe
amountof informationthat the mixture model P captures
aboutthe presencer absencef primitives,andthe second
termrepresentshe amountof informationthatis captured
abouttherelative configurationof pairsof primitives.

Unlike the caseof a single-treecase wherethe optimal
structureis obtainedby solvingthe minimumspanningree
problem,in thecaseof amixturewe arenotawareof ary ef-
ficientalgorithmsguaranteedo yield the optimal solution.
Insteadwe useagreedyalgorithmthatstartswith aninitial
structureof T' andrepeatedlyapplieslocal mutations(such
asreassigninga nodeto a differentparent),eachof which
increasesheentropy, andstopswhenno furtherincreases
possible.

6. Grouping using mixtures of trees

Assumingthat exactly one objectis presentin the image,
we needto localize it — that is, selecta subsetof prim-
itive types and the configurationsfor thoseprimitives so
that the resulting assemblyis likely to appearin a ran-
domview of the object,but notin arandomview of some-
thing else. Thus,we find the assemblyfor which the pos-
terior Pr(object | assembly is the largest. Maximizing
this posterioris equivalentto maximizingthe BayesFactor
B = P({Xkt})/Pney({X1}), wherethe likelihoodin the



numeratotis the probability of a configurationin arandom
view of the object, andthe denominatotis the probability
of seeingit in the background.Conditionalindependence
structureof our tree mixture model,combinedwith an ap-
propriatelychosermodelof the backgroundmalkesBayes
factormaximizationefficient.

We model backgroundas a collection of independent
primitives: the numberof primitivesin a non-objecthasa
geometrigrior, thetype of aprimitiveis & with probability
Bk, andthe distribution on the configurationof eachprim-
itive is uniformin the region of interestandis commonto
all of the primitives. Therefore,P,,.,({Xy : k € S}) =
[1cs(aBk) whereg is foundasthefraction of a particu-
lar type of primitive amongall the candidatesn imagesof
non-objectsanda is theparametethatis estimatedsothat
the classificatiorerroris minimized.

Becausef theindependenstructureof P, , the Bayes
factorcanbeobtainedoy associatingheterm (a3 ) ~* with
eachmemberof X}'s candidateset,and multiplying those
termsinto thelikelihood P({ X} }). Thus,the Bayesfactor
hasthe samedecoupledstructureasthe likelihood, which
allows usto find the assemblythatmaximizesit efficiently,
usingDynamicProgramming.

As in the caseof the singletree,the mainideais that,
conditionalon a particular primitive selectedas X, in an
assemblythelikelihoodis a productof two parts— onein-
volving only the nodesof the subtreerootedat X, andthe
otherinvolving only the othernodes- andeachof the two
canbe maximizedindependently Therefore,we perform
optimizationusing a Viterbi algorithmon tree T', visiting
childrenbeforeparents Theoptimizationatanodeinvolves
the selectionof not only the bestprimitivesto choosefrom
thechildren’s candidatesets,but alsoof the edgedo bein-
cludedin the tree, sincea nodecanbe a child of X, in a
mixture componentwhenever it is a descendanbf Xy, in
thegeneratingreeT'.

The total runningtime of this optimizationis, asin the
single-treecase O (M 2#edge$, wherel is thesizeof can-
didatesets and#edges= O(K?) sincewe needto consider
all theedgegoining anodeof T" with its descendantviax-
imization of the Bayesfactorallows us not only to local-
ize an objectif it's presentbut alsoto performdetection:
To determineif the image containsthe objectof interest,
we comparethe maximumvalueof the Bayesfactorwith a
threshold.

7. Treeroot asa coordinate frame

In theabove discussionwe requiredthattheroot X, al-
waysbea partof theobject,sothateachmixturecomponent
hasa connectedtructure.However, we would preferto al-
low any primitive to be absent. We achieve this by intro-
ducinganew primitivetype, Xo, andmaleit theroot of the
tree. This primitive is not detectedn theimage;rather it
canbethoughtof asa global coodinateframeroughlyrep-
resentingthe configurationof the objectasa whole (such
asthe position and orientationof a personin the image).

We add X, to eachtraining assemblyduring learning;for
detection,a numberof candidatesrecreatedhatspanthe
necessaryangeof global configurationgin caseof detect-
ing people this meansarangeof positionsandorientation,
ratherwidely spacedecauseXy representtheglobal con-
figurationonly looselyin thetrainingdata).

In additionto keepingthe mixture treesconnectedthe
inclusionof the global frameallows usto specifydistribu-
tionsinvariantwith respecto transformationsuchasrota-
tionsandtranslationsFor example thelik elihoodof abody
configurationshouldnot changef the entireconfiguration,
including Xy, is translatedandrotated. This invarianceis
achievedby associating local coordinateframewith each
primitive X ;, andmakingtheconditional P (X}, | X;) func-
tionsof therelativeconfiguiationof X, in X;’s coordinate
frame. BecauseXj is the root of the tree, the configura-
tion of the entireobjectis relative to Xy, andwe make our
distribution invariantto a setof transformation$y condi-
tioningit ontheglobalframeof referencethatis, replacing
P{Xy: ke S} with P({X: ke S}| Xop).

8. Tracking

We have applied our model of a personto humanfigure
tracking. Trackingis adifficult problem,asbothspatialand
temporalconstraintsmust be combined: we needto find
objectsthat both look like peopleand move like people.
Often, the problemis madeeasierby making the model
tighter in the spatialdimension(manualtracker initializa-
tion) andin the temporalone (tight motion model). While
thesesimplificationsmake trackingeasierthey seemsome-
what unreasonabléor mary applications:if a userwants
to find moving peoplein video sequenceshe should not
have to manuallymark their joint locationsor specify the
preciseway in which they move. In fact, the datawe are
using, collectedby Muybridge[5] over 100yearsago,has
averylow andvariableframerateanda ratherloosealign-
mentbetweerframes(which arephotographsakenby sep-
aratecamerassynchronizedo go off in asequence)which
makes a tight motion modelinapplicable. The large limb
motionsbetweerframesalsomeanthatthe posein aframe
specifiesonly a vagueprior for the next frame, and thus
the resamplingstepof particlefiltering [7] may involve an
expensve search. On the other extreme, one can model
only thespatialconfigurationof a persorandignoretempo-
ral links (e.g.,[8], who performtrackingindependenthfor
pairsof frames,usinglocal motionfields). This approach,
while efficient,is unableto enforcemotionconsisteng over
time. For example,a humanbody canbe foundin theleft
half of a frameandtheright have of the following frame,
eventhoughsuchmotionis not physicallypossible.

We dealwith theseproblemsby combiningamixture-of-
treesmodelfor a personwith a weakmotion model,which
doesnot assumeary particulartype of actity, but simply
boundshemotionof eachbodypart. While exactinference
in this modelis difficult, it canbe doneapproximatelyby
alternatingoptimizationover spaceandovertime.



Figure2: Motioninformationis essentiato inferring the person’s configumtion correctly Temporl coheencewasnotused
for tracking this sequencgthusthe bestassemblywasindependentlyoundfor ead frame Thebig redrectanglerepresents
the torso, while the smalleronescorrespondto limbs. Theresultingtrack is not physicallypossible as illustrated by the

motionof thetorso.

8.1. Detectinq body parts.
Peopleare modéledasassemblie®f body parts. We con-

sider9 typesof body parts: the torso, and the upperand
lower halvesof eachlimb. We assumeo know the scaleof
the persorandthuscanlook for body partsasroughlyrect-
angularimagesegmentsof a fixed size that satisfy certain
appearanceonstraintsThemodelsphotographedy Muy-
bridgewearlittle or no clothes,thusallowing usto ignore
theproblemsassociatedvith looseor texturedclothing. We
detectimbs by templatematchingusingtwo separatéem-
platesfor thetorsoandthelimbs, eachof whichemphasizes
long regionsthatarebright alongthe axisanddarker closer
to the boundariesand have edgesof an appropriateorien-
tation on eitherside. The body partlocationsarefound by
cornvolving theimagewith atemplatein arangeof orienta-
tions, followedby non-maximunsuppressionf responses.
We keepthe body partswherea local maximumwith re-
spectto positionand orientationis achieved, provided the
responsealueis sufficiently large.

Sinceeachbody part hasa direction (so that we know
which endis the shoulderand which is the elbow), each
of the detectedmageregionsis corvertedinto 2 candidate
body parts,with the oppositeorientations. Eachprimitive
is parameterizedby the coordinatef its two ends. Such
a parameterizatiomllows usto definesimpleconditionals,
eventhoughit is redundan{sincethe size of eachlimb is
fixed).

8.2. Modeling the bodP/

In orderto learnamixture-of-treesnodelfor ahumanbody,
we mustspecifythe form of conditionalsP(X}, | X;). We
want our modelto be invariantwith respectto translation
androtation. This is achievedif the conditionalsare rep-
resentedsP (X, | X;) = P(u1,v1, u2,v2) Where(u;, v;)
arethecoordinate®f theith endof thesggmentrepresented
by X, in the frame of referencepositionedand oriented
accordingto the segment.X;. Thisis in facta conditional
distribution for X}, since(u;,v;) areobtainedfrom the pa-
rameterof X, by rotationandtranslationwhich presere

volume. Thedistribution P(u1, v1, us, v2) is modeledasa
Gaussiamwith afull covariancematrix, andis learnedrom
asetof trainingassembliesybtainedoy detectingcandidate
segmentsn asetof imagesandmanuallyselectinghecor-
rectlimbs. Thetrainingdatasetwasquitedifferentfrom the
testset. First, theimagesusedfor trainingweretakenfrom
a book of models[6], featuringpeoplewearingswimsuits
againstwhite background. Only frontal views of stand-
ing peoplewere usedfor training (unlike the Muybridge
sequencesisedin testing, which containlateral views as
well), andthe body partsusedfor training were detected
usinga differentmethodthan describedabove. Neverthe-
less,we have obtaineda modelof ahumanbodythatallows
awiderangeof configuration@ndcapturesonnectvity re-
lationsamonghumanlimbs. A mixtureof treeswaslearned
by minimizing entropy; notsurprisingly theroot X, hasthe
torsoastheonly child, whosechildrenwerethe upperarms
andlegs, eachof which hasthe correspondindower limb
asthe child. This tree structureis widely used(e.qg.,[2])
but now alsoshawn to be optimalin termsof theamountof
informationit captures.

8.3. Modeling a moving person _
Consideran image sequence&ontaininga moving person.
We will representhe personin eachof the F' framesasan
assemblof primitivesA; ... Ar, anddefinethelikelihood
of thesequenceo be

F
P(A; ... Ap |tracK) oc J] P(Af) X Premp(A1 - .. AF),
f=1

where P(Ay) = P(Ay | personXy) is the likelihood of
an individual assemblyand Piemp (A1 . .. Ar) is the term
thatensuresemporalcoherenceWe useanindicatorfunc-
tion suchthat Piemp(-) = 1 if the motion of eachlimb
betweenary two framesdoesnot exceeda certainbound
(which grows with the time interval betweenthe frames),
and= 0 if theseconstraintsarenot satisfied.



Figure3: Exampleftradking a person.In all of thesequencethetracker hascorrectlydeterminedhe genesl positionof
theperson,eventhoughthey engagein a variety of activitiesandundeigo changesin aspect.Top two sequenceare correctly
tracked, while the others alsocontainsomeframeswhele theinferred configuationis incorrect.

The temporalconstraintscapturedin Piep,p(-) are es-
sentialfor enforcingmotion coherenceAlthoughignoring
them(e.g.[8]) would resultin amodelthatallows efficient
exactinferencetrackingin difficult sequences

In our experiments, we consider the problem
of extracting the assembly sequence most likely
to correspondto a moving person. This involves
maximization of the Bayes factor B(4;...Ar) =
P(Ay...Ap | track)/Pne (A1 ... Ar) Where P, is the
distribution for anassemblysequenceaot correspondingo
a person.As in the single-imagecase,we model segment
configurationsin non-humanassembliesas independent;
thereforethe Bayesfactordecouples:

o P(4y)

B(AIAF)O( m

F=1

X -Ptemp(Al .. AF)

In the absencef temporalconstraintsthis would be sim-
ply the productof single-frameBayesfactors B(4;) =
P(Af)/Ppeq(Ay) which do not interactwith eachother
andcouldthusbemaximizedindependenthasin Sectionb.
However, ignoringtemporakonstraintgesultsin sequences
of assembliewith aninconsistentemporabehaior, which
couldnot correspondo a moving person(figure 2).

The constrainton limb motionsaddlinks to our model
that make maximizationdifficult: eachlimb is now con-
nectednot only to all of its ancestoranddescendants its
own frame,but alsoto thelimbs of the sametype in other
frames. Thus, all of thosewill interact,resultingin large
groupsof mutuallyinteractingvariables(cliques)andmak-
ing exactinferencein sucha modelvery expensve. Never-
thelesswe canobtainalocal maximunof the Bayesfactor
by performinga sort of a coodinateascent Eachascent



Figure4: Tracking crawling children. In bothsequenceshetradker attemptedo automaticallyinfer the configuiation of a

person.Eventhoughthetraining datacontainednheitherchildrennor crawling people thetrad hasbeenidentifiedcorrectly
in thetop sequenceln thebottomsequencghetracker confusedhe armsandthe legs, which would not happenif the head
wasusedas oneof the primitives. Comparingthe top sequencsvith theonein figure 2 clearly demonstatestheimportance
of tempoal constaints,imposediy theloosemotionmodel,in tracking the configumation correctly.

stepmaximizegheBayesfactorwith respecto someof the

limbs while keepingthe restunchangedWe usetwo types

of an ascentstep: a spatial step,wherewe maximizethe

Bayesfactorwith respecto the configuration4, in frame

£, while keepingassemblief theotherframesunchanged;
andatempoal step,wherewe choosghebestconfiguration
for a body part of a particulartype in eachframe, without

disturbingthe otherbody parts. Both of thesestepscanbe

madeefficiently with a Viterbi algorithm.

Maximizing the Bayes factor over space; Givenas-
sembliesin eachframeexceptAy, it is easyto choosethe
configurationd ; thatmaximizesB(A; ... Ar). First,aset
of candidateébody partsof eachtypein frame f is narroved
by eliminating thoseinconsistentwith the assembliesn
otherframes. Then, the single-imageBayesfactor B(Ay)
is maximized,asin Section6, by selectingbody partsfrom
thenarrovedcandidatesets.

Maximizing the Bayes factor over time: Let ususe
Torsoas an exampleof the body partwhoseconfiguration
isto beoptimizedin all theframes.Givenasetof candidate
partsof eachtypein eachframe,we look for a sequencef
assembliesuchthatthe productof the single-frameBayes

factors [T_, B(A7) = [Tj—; P(Af)/Pneg(Ay), is max-

imized, subjectto temporalcoherencef the Torso. As the

first stageof this optimization,we maximize B(Ay) sepa-
ratelyfor eachframeandeachchoiceof Torso(includingits

absence)ysingaversionof the methodof Section6. Then,
we choosea Torso (possiblya missingone)in eachframe
sothatthe productof correspondindayesfactorsis max-
imized, subjectto the constraintson motion of the Torso.
This stepis accomplisheavith a Viterbi algorithm.

To maximizethe Bayesfactor B(4; ... Ar), we first
choosean initial sequenceof assemblieshy considering
body partsin orderandchoosingthe bestconfigurationfor
thatpartin eachof the frames,subjectto thetemporalcon-
straints. Then, the Bayesfactoris repeatedlymaximized
overspaceandtime until corvergenceo alocal maximum.
In our experimentswe augmentedhe modelandthe opti-
mization procedureto allow anassemblyto be missingin
animage. We associate likelihood P(f) with a missing
assemblywhich limits the damagethat a poorly detected
assemblycando to thelik elihoodof thewhole sequence.

While our proceduremaximizesa function, a few sim-
ple changegsuchasreplacingmaximizationwith summa-
tion) corvertit into a Markov ChainMonte-Carlosampler
By drawing samplesof the assemblysequencewe would



Figure5: Theglobal frameof refeencecanbe usedto imposeconstaintson the configuiation. In (a), thetradker hasfailed
if the orientationof the bodyis not constained. By makingall of the candidateglobal frames(i.e., theroot X of thetree)
upright, thetradksin (b) are obtained which representhe personbetter

be able to presere uncertaintyso that we could incorpo-
ratenew information,suchasmoreaccuratanotionmodels,
into our resultslater.

8.4. Results
We have appliedthe mixture-of-treesnodelcombinedwith

aweakmotion modelto track a variety of sequencefrom
theMuybridgecollection.

Figure 3 shows several sequencesvith the tracked as-
sembliesoverlaid on top. For thesesequenceshe candi-
dateglobalframesof referenceX, (notshonvn) wereplaced
at a grid of positions,in the 4 directionsspacedby 90°,
which effectively makesrecognitiontranslation-andscale-
invariant,sincetheglobalframeonly looselyrepresentshe
configurationof the body in the training data. Peopleare
tracked in a variety of actiities; in all of the shavn se-
guenceghe body positionis correctlytracked, althoughin
someframethe configurationis not correctlyrepresented.

Theglobalframeof referencecanbeusedio imposecon-
straintson the roughlocation and orientationof a person.
For example,if we know thatthepersonwetrackis upright,
only the upright global frameneedsto be used. This is il-
lustratedin figure 5. Figure 5(a) shavs several sequences
wherethetracker hasfailedif all 4 directionsfor the global
framewere used. All of thosetrackscanbe correctedby
requiring that the global frame be upright, andthe results
areshown in figure5(b).

Becauseof the weak configurationand motion model,
our tracker is able to follow motionsit hasnot seenbe-
fore. In figure 4, two sequencesf crawling children(pho-
tographedy Muybridge[4] overacenturyago)aretracked.
The healthy child is tracked correctly even thoughthere
wereno childrenor crawling subjectsin the training data.
Thehandicappedhild is trackedincorrectly sincehisarms
andlegs are confusedby the tracker — but, up to thatflip,
the configurationis correct. In both of the sequencesye
hadto rejectthe candidateorsosfoundin thelower third of
theimage,dueto the spurioustorsosandlimbs foundin the
floor tiles andgiving riseto humanassemblies.

Comparingdfigure4(top)with figure 2 illustratestheim-

portanceof temporalcoherencen tracking the body cor-
rectly. Thesetwo figurescontainthe samesequencebut
thetemporalconstraintsvereignoredto obtainthetrackin
figure 2. Thus,the performanceof the tracker deteriorates
dramaticallyif a motion model, even a weak one, is not
used.
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