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Abstract

Tree-structured probabilistic modelsadmit simple, fast in-
ference. However, they are not well suitedto phenomena
such asocclusion,where multiplecomponentsof an object
maydisappearsimultaneously. Mixturesof treesappearto
addressthis problem, at the cost of representinga large
mixture. We demonstrate an efficient and compactrepre-
sentationof this mixture, which admitssimplelearningand
inferencealgorithms.

We usethis methodto build an automatedtracker for
Muybridge sequencesof a variety of human activities.
Tracking is difficult, becausethe temporal dependencies
rule out simple inferencemethods. We showhow to use
our modelfor efficient inference, usinga methodthat em-
ploysalternatespatial and temporal inference. Theresult
is a tracker that (a) usesa veryloosemotionmodel,andso
cantrack manydifferentactivitiesat a variable framerate
and(b) is entirely automatic.

1. Introduction
Oneof themaindifficultiesin objectrecognitionis thevari-
ability of appearanceof an objectof interest. The reasons
for thesevariationsincludethearticulatednatureof anob-
ject, variationsin aspect,andocclusions.However, artic-
ulated objectscan be representedas assembliesof rigid
parts. For example,a humanbody is often representedas
anassemblyof cylinderswhich move with respectto each
other. Sucharepresentationsuggestsabottom-upapproach
to recognition:first, weidentify candidateprimitivesasim-
ageregionsthat may correspondto the objectparts; then,
theseregionsaregroupedinto assembliesthat satisfycon-
straintson therelative configurationof theparts.If theob-
ject is known to bein theimage,it canbelocalizedby find-
ing the assemblythat is the most similar to the object of
interest.

We cannotevaluateeachgroupof candidateprimitives
due to the large numberof such groups, and thus need
an efficient groupingmethod. Sucha methodis provided
by tree-structuredprobabilisticmodelswhichadmitsimple,
fast inference[2, 8]. However, they arenot well suitedto
phenomenasuchasocclusionandaspectvariation,where
multiple componentsof an objectmay disappearsimulta-
neously. This problemcanbe addressedwith mixturesof

trees[3], with eachcomponentmodelinga particularas-
pect. By imposingconstraintson the structureof mixture
components,we canrepresentthe largenumberof compo-
nentsefficiently andcompactly. Sucha representationad-
mits simplelearningandinferencealgorithms.

Weusemixturesof treesto modelpeople,andtrackthem
in Muybridge sequencesof a variety of humanactivities.
Tracking is difficult, becausethe temporaldependencies
rule out simple inferencemethods. The problemis often
simplifiedby imposingtight motionmodelsand/ormanual
initialization [1, 7], neitherof which canbeusedin a fully
automatictrackeronMuybridgesequences,whichhavelow
andvariableframerate. Instead,we combinethe mixture-
of-treesmodelfor ahumanbodywith aweakmotionmodel,
andshow how to useour model to searchfor humancon-
figurationsin motionsequencesefficiently, usinga method
thatemploys alternatespatialandtemporalinference.The
result is a tracker that (a) usesa very loosemotion model,
andsocantrackmany differentactivitiesatavariableframe
rateand(b) is entirelyautomatic.

2. Modeling with trees
Consideran objectthat is formedfrom a setof primitives.
We will detectsuchan objectby first detectingthe primi-
tives,andthengroupingtheminto assemblies.For instance,
wecanlook for peopleascollectionsof bodyparts.Thereis
little hopeof reliably detectingindividual primitiveswith-
out looking at a configurationasa whole. Instead,we pro-
posenot to find the primitivesaccurately, but ratherfind a
setof possibleconfigurationsfor eachprimitive,andusethe
groupingprocessto determinewhichelementof acandidate
setis in facta part of an object. For instance,we canfind
severalimageregionsthatcouldcorrespondto anarmin the
imageof a person,andusegroupingto determinewhich of
thosein factcorrespondsto anarm– perhaps,a region that
is adjacentto somethingthatlookslike a torso.

Let ussupposethatanobjectis a collectionof � primi-
tives, �����	�
�������� , eachof whichcanbetreatedasavector
representingits configuration(e.g.,positionandorientation
in theimage).Givenanimage,thelocal detectorswill pro-
vide uswith a finite setof possibleconfigurationsfor each
primitive ��� . We will refer to eachof these� setsasa
setof candidateprimitives; the objective is to build anas-
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semblyby choosinganelementfrom eachcandidateset,so
thattheresultingsetof primitivessatisfiessomeglobalcon-
straints(e.g.,limbsmustbeattachedto thetorso).

The global constraintscan be capturedin a distribu-
tion ���������
�������� , which will behigh whentheassembly
looks like the objectof interest,and low when it doesn’t.
Assumingexactly oneobjectpresentin the image,we can
localize the object by picking the configurationfor each
primitive from the correspondingcandidatesetso that the
resultingvalueof � is maximized. In general,this max-
imization requiresa combinatorialcorrespondencesearch
whosecomputationalcost is prohibitively large (unless�
is small,e.g.[10]). It is possible,however, to constrainour-
selvesto a family of distributions � for which correspon-
dencesearchis efficient. This is thecaseif � corresponds
to a tree-structuredgraphicalmodel.

If ���������
�������� is representedwith a tree,correspon-
dencesearchis efficiently accomplishedwith a Viterbi al-
gorithmwherebythenodesof thetreearesweptfrom leaves
to theroot. If thereare � candidateconfigurationsfor each
of the � primitives,thenthe searchtakes �������! �� time,
whereasfor a generaldistribution � thecomplexity would
be ���"�  � .
3. Learning the tree model
In additionto makingcorrespondencesearchefficient, the
conditionalindependencescapturedin the treemodelsim-
plify learning,by reducingthenumberof parametersto be
estimated,dueto thefactorizedform of thedistribution:

����� � �
�����  �$#%������&�'('�)��+*�-,. &�'('�) �������0/
1324�5�(6
where ��&�'('�) is the nodeat the root of the tree, and 1325�
denotestheparentof thenode ��� . Learningthemodelin-
volves learningthe structure(i.e., the tree edges)as well
as the parametersof the prior ����� &�'('�) � and conditionals����� � /5132 � � . We learnthemodelby maximizingthe log-
likelihoodof thetrainingdata 798: . �<;>=4? ����@ : � 6��
����6�@ : �A#B 7C8: . �<;>=4? ����@ :&�'('�) ��DFEG7 � . � B 7C8: . �H;I=-? ����@ :� /�JK2 :� �LD
where@ : � andJM2 :� aretheconfigurationsof the N thprimitive
( ��� ) anditsparent( 1325� ) in the O th trainingassembly. If the
structureof thetreeis known, thetermswithin parentheses
canbemaximizedindependentlyof eachother, yieldingthe
maximum-likelihoodapproximationsfor theprior andcon-
ditionals. If we now assumethat theseapproximationsare
in fact the true prior and conditionals,then the expected
valueof thelog-likelihoodis

PRQTS U ��� &�'('�) �VE W�4,. &�'('�) U ��� � /�132 � �YX"6
whereU ��� &�'('�) � and U ��� � /(132 � � denoteentropy andcon-
ditionalentropy, respectively. Weseekthetreestructurethat
maximizesthe log-likelihoodof the data,or, equivalently,
minimizesthe entropy of the distribution whosemarginals
areconstrainedby thedata.

To learn the tree structurewith a fixed root ��&�'('�) , we
learntheconditionals��������/4132-�5� andthenfind themin-
imum spanningtree in the directed graph, whose edge
weightsaretheappropriateconditionalentropies.This tree
canbefoundefficiently [9].

4. Mixtures of trees
The tree representationof an object allows for efficient
learningandsearch. However, it is difficult to usea tree
to model caseswheresomeof the primitivesconstituting
an object are missing – due to occlusions,variations in
aspector failuresof the local detectors.Oneapproachis
to marginalizeover missingcorrespondences[8], so thata
conditional����� � /�132 � � is setto anappropriateconstantif� � and/or 132 � is absent.However, in this casea missing
primitive will “break” the assembly, by renderingthe de-
scendantsof a missingprimitive independentfrom therest
of theassembly. Furthermore,this solutionignoresthefact
that thepresencesor absencesof primitivesinfluenceeach
other(for example,if an upperarm segmentis missing,it
is often dueto the poseof a person,which will causethe
lowerarmsegmentto beabsentaswell).

Mixturesof trees,introducedin [3], provide analterna-
tive solution. In particular, we canthink of assembliesas
beinggeneratedby a mixture model,whoseclassvariable
specifieswhatset Z of primitiveswill constituteanobject,
while conditionalclassdistributions ��[	�Y��� �C\ NG]^Z_�`�
generatethe configurationsof thoseprimitives. The mix-
turedistribution is

���Y�
� ��\ Na]bZ_�`�c#9dc�eZc����[��Y��� �0\ N�]bZ_�f�(6
where dc�eZc� is theprobabilitythata randomview of anob-
ject consistsof thoseprimitives.Thismixturehas g  com-
ponents– onefor eachpossiblesubsetZ of primitivetypes.
Learninga mixtureof treesinvolvesestimatingthemixture
weights dc�"Zc� , as well the structureand the distributions� [ ����&�'('�)�� and � [ �����h/i1324�5� for eachof the component
trees.

In [3], treemixturesarelearnedusinganEM algorithm,
theM-stepinvolving optimizationof thetreestructureand
distributionparameters.Wecannottakethisapproach,how-
ever: sincewe requirea componentfor eachsetof primi-
tivesconstitutinganobject,themixturehasg  components
and,if eachcomponentis representedexplicitly, cannotbe
learnedor even representedunless � is small. One so-
lution might be to selecta small numberof mixture com-
ponents(or subsetsZ of primitives)thatadequatelyrepre-
sent the variationsin the object appearance.Instead,we
keepall of the g  components,but representthemimplic-
itly and compactly. To do this and to make learningand
inferenceefficient, we must constrainthe structureof the
mixtureandthusenforceconditionalindependencessimilar
to thosepresentin a singletree.

5. Trees with shared structure
In a treemodel,fixing a valueof a noderendersits descen-
dantsconditionallyindependentfrom theothernodesin the
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model. This propertymakes learningand the correspon-
denceon treesefficient; to achieve similar efficiency, and
simply to beableto representthehugenumberof mixture
components,we requireour modelto possesssimilar con-
ditional independencestructure.

In particular, if we specifytheconfigurationof a primi-
tive ��� andassertthat ��� is a part of the object,thenwe
want the setof primitives � � ���
���  to breakinto groups
so that primitivesin differentgroupsareconditionally in-
dependent.To achieve this,we usea singlegenerating tree
whichis usedto generatethestructuresof all of themixture
components.

A generating tree is a directedtree j whosenodesare� � �
�����  , with ��&�'('�) at the root. For a given struc-
ture of j , we learn the prior ����� &�'('�) � and conditionals����� � /V�0k�� where �0k is any ancestorof � � (not nec-
essarilythe parent). Additionally, we denoteby S � � X the
eventthat � � is oneof theprimitivesconstitutinga random
view of the object, and learn the distributions ��� S � &�'('�) X��
and ��� S ����X3/ S 132-��X�� , where 1325� is theparentof ��� in the
generatingtree.

We representdc�eZc� usinga graphicalmodelwith struc-
tureprovidedby thegeneratingtree j :

dc�"Zc�c#C��� S �l&�'('�)YX��+*�-,. &�'('�) ��� S ���
XV/ S 1324��Xm�n6
wherethedistributionsarelearnedby countingoccurrences
of eachprimitiveandpairsof primitivesin thetrainingdata.

The tree � [ consistsof all the edges��� k�o ���5� such
that � k is anancestorof ��� in thegeneratingtree,andnone
of thenodeson thepathfrom � k to ��� is in theset �
��� \Np]9Zq� . This meansthat, if the parentof node ��� is not
presentin a view of the object, then ��� is “adopted” by
its grandparent,or, if that one is absentas well, a great-
grandparent,etc. If weassumethattheroot ��&�'('�) is always
a partof theobject,then � [ will bea tree,since �l&�'('�) will
ensurethat the graphicalmodelis connected.An example
of obtainingthestructureof a mixturecomponentis shown
in figure1.

Thedistribution �r[ is theproductof theprior �r[���� &�'('�) �
and conditionals � [ �����T/s� k � correspondingto the tree
edges. To ensureconditional independencesin the mix-
ture, we requirethat if an edge ��� kho ���5� is presentin
severalmixturecomponentsthenthecorrespondingcondi-
tionalsarethe same;similarly, we requirethat � [ ����&�'('�)��
be independentof Z . To this end,we set � [ �����a/4� k �0#�������0/�� k � to betheconditionaldistribution learnedfrom
all of thedata,andsimilar for � [ ����&�'('�)��$#9������&�'('�)�� .

As in the caseof a single tree, we needto determine
the optimal structurefor the mixture components.Since
they areall derivedfrom asinglegeneratingtree j , only its
structureneedsto belearned,andwedothatby minimizing
theentropy of themixturedistribution. Therefore,we pre-
fer distributionsthataremoreconcentrated,anddislike less
informativeones,which havehigh entropy.

Figure1: Usinga generatingtreeto derivethestructure for
a mixturecomponent.Thedashedlinesare theedgesin the
generating tree, which spansall of the nodes. Thenodes
of themixture componentare shaded,andits edges(shown
as solid) are obtainedby makinga grandparent “adopt”
a nodeif its parent is not presentin this tree (i.e., is not
shaded).Thusmixture componentsare encodedimplicitly,
which allows efficient representation,learning and infer-
encefor mixtureswith a largenumberof components.

Let us use the notation S � kto ����X to denote the
event that a mixture componentcontainsthe edge ��� kuo���f� (for a fixed j , the probability of this is a prod-
uct of marginals; for instance,if � k is ��� ’s grandparent
then 1cv
� S � kwo ���`Xm�9#x1$v
� S � k Xm�0y<1cv
� S 1324��X0/ S � k Xm�zy1cv�� S ���`X{/ S 132-��X�� ). Then,theentropy of themixtureis

U �e�z�|# W� . � U � S ����XV/ S � k X��
E W W��} k 1cv
� S ��k o � � X��ry U ��� � /n��k��n6

wherethe first term on the right-handside representsthe
amountof informationthat the mixture model � captures
aboutthepresenceor absenceof primitives,andthesecond
termrepresentsthe amountof informationthat is captured
abouttherelativeconfigurationsof pairsof primitives.

Unlike thecaseof a single-treecase,wheretheoptimal
structureis obtainedby solvingtheminimumspanningtree
problem,in thecaseof amixturewearenotawareof any ef-
ficient algorithmsguaranteedto yield theoptimalsolution.
Instead,weuseagreedyalgorithmthatstartswith aninitial
structureof j andrepeatedlyapplieslocal mutations(such
asreassigninga nodeto a differentparent),eachof which
increasestheentropy, andstopswhenno furtherincreaseis
possible.

6. Grouping using mixtures of trees
Assumingthat exactly oneobject is presentin the image,
we needto localize it – that is, selecta subsetof prim-
itive types and the configurationsfor thoseprimitives so
that the resulting assemblyis likely to appearin a ran-
domview of theobject,but not in a randomview of some-
thing else. Thus,we find the assemblyfor which the pos-
terior 1$v
� object / assembly� is the largest. Maximizing
this posterioris equivalentto maximizingtheBayesFactor~ #����L�
�����f���f� :-��� �L�
���4�`�n6 wherethe likelihood in the
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numeratoris theprobabilityof a configurationin a random
view of the object,andthe denominatoris the probability
of seeingit in the background.Conditionalindependence
structureof our treemixture model,combinedwith anap-
propriatelychosenmodelof thebackground,makesBayes
factormaximizationefficient.

We model backgroundas a collection of independent
primitives: the numberof primitivesin a non-objecthasa
geometricprior, thetypeof aprimitiveis N with probability� � , andthedistribution on theconfigurationof eachprim-
itive is uniform in the region of interestandis commonto
all of the primitives. Therefore,� :-��� �Y��� �T\ N%]�Z_�f��#� ��� [ ��� � �4� where

� � is foundasthefractionof a particu-
lar typeof primitive amongall thecandidatesin imagesof
non-objects,and � is theparameterthatis estimatedsothat
theclassificationerroris minimized.

Becauseof theindependentstructureof � :-��� , theBayes
factorcanbeobtainedbyassociatingtheterm �e� � �-�(� � with
eachmemberof ��� ’s candidateset,andmultiplying those
termsinto thelikelihood ���Y�������`� . Thus,theBayesfactor
hasthe samedecoupledstructureasthe likelihood,which
allowsusto find theassemblythatmaximizesit efficiently,
usingDynamicProgramming.

As in the caseof the single tree, the main idea is that,
conditionalon a particularprimitive selectedas ��� in an
assembly, the likelihoodis a productof two parts– onein-
volving only thenodesof thesubtreerootedat ��� , andthe
otherinvolving only theothernodes– andeachof the two
canbe maximizedindependently. Therefore,we perform
optimizationusinga Viterbi algorithm on tree j , visiting
childrenbeforeparents.Theoptimizationatanodeinvolves
theselectionof not only thebestprimitivesto choosefrom
thechildren’scandidatesets,but alsoof theedgesto bein-
cludedin the tree,sincea nodecanbe a child of � � in a
mixture componentwhenever it is a descendantof � � in
thegeneratingtree j .

The total runningtime of this optimizationis, asin the
single-treecase,���"�! #edges� , where� is thesizeof can-
didatesets,and#edges#C���e�� �� sinceweneedto consider
all theedgesjoining a nodeof j with its descendant.Max-
imization of the Bayesfactorallows us not only to local-
ize an object if it’s present,but alsoto performdetection:
To determineif the imagecontainsthe object of interest,
we comparethemaximumvalueof theBayesfactorwith a
threshold.

7. Tree root as a coordinate frame
In theabovediscussion,we requiredthat theroot ��&�'('�) al-
waysbeapartof theobject,sothateachmixturecomponent
hasa connectedstructure.However, we would preferto al-
low any primitive to be absent.We achieve this by intro-
ducinganew primitivetype, ��� , andmakeit therootof the
tree. This primitive is not detectedin the image;rather, it
canbethoughtof asaglobalcoordinateframeroughlyrep-
resentingthe configurationof the objectasa whole (such
as the position andorientationof a personin the image).

We add � � to eachtraining assemblyduring learning;for
detection,a numberof candidatesarecreatedthatspanthe
necessaryrangeof globalconfigurations(in caseof detect-
ing people,this meansa rangeof positionsandorientation,
ratherwidely spacedbecause�l� representstheglobalcon-
figurationonly looselyin thetrainingdata).

In additionto keepingthe mixture treesconnected,the
inclusionof theglobal frameallows us to specifydistribu-
tionsinvariantwith respectto transformationssuchasrota-
tionsandtranslations.For example,thelikelihoodof abody
configurationshouldnot changeif theentireconfiguration,
including ��� , is translatedandrotated. This invarianceis
achievedby associatinga local coordinateframewith each
primitive ��k , andmakingtheconditional����� � /���k�� func-
tionsof therelativeconfigurationof � � in ��k ’s coordinate
frame. Because��� is the root of the tree, the configura-
tion of theentireobjectis relative to � � , andwe make our
distribution invariantto a setof transformationsby condi-
tioning it on theglobalframeof reference,thatis, replacing���Y����� \ Na]bZ_�`� with ���L�
��� \ N�]bZq��/
� � � .
8. Tracking
We have appliedour model of a personto humanfigure
tracking.Trackingis adifficult problem,asbothspatialand
temporalconstraintsmust be combined: we needto find
objectsthat both look like peopleand move like people.
Often, the problem is madeeasierby making the model
tighter in the spatialdimension(manualtracker initializa-
tion) andin the temporalone(tight motion model). While
thesesimplificationsmaketrackingeasier, they seemsome-
what unreasonablefor many applications:if a userwants
to find moving peoplein video sequences,he shouldnot
have to manuallymark their joint locationsor specify the
preciseway in which they move. In fact, the datawe are
using,collectedby Muybridge[5] over 100yearsago,has
a very low andvariableframerateanda ratherloosealign-
mentbetweenframes(whicharephotographstakenby sep-
aratecameras,synchronizedto gooff in asequence),which
makesa tight motion model inapplicable. The large limb
motionsbetweenframesalsomeanthattheposein a frame
specifiesonly a vagueprior for the next frame, and thus
the resamplingstepof particlefiltering [7] may involve an
expensive search. On the other extreme,one can model
only thespatialconfigurationof apersonandignoretempo-
ral links (e.g.,[8], who performtrackingindependentlyfor
pairsof frames,usinglocal motionfields). This approach,
while efficient,is unableto enforcemotionconsistency over
time. For example,a humanbodycanbe found in the left
half of a frameandthe right have of the following frame,
eventhoughsuchmotionis not physicallypossible.

Wedealwith theseproblemsby combiningamixture-of-
treesmodelfor a personwith a weakmotionmodel,which
doesnot assumeany particulartypeof activity, but simply
boundsthemotionof eachbodypart.While exactinference
in this modelis difficult, it canbe doneapproximately, by
alternatingoptimizationoverspaceandover time.
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Figure2: Motion informationis essentialto inferring theperson’sconfigurationcorrectly. Temporal coherencewasnotused
for tracking this sequence, thusthebestassemblywasindependentlyfoundfor each frame. Thebig redrectanglerepresents
the torso, while the smalleronescorrespondto limbs. Theresultingtrack is not physicallypossible, as illustratedby the
motionof thetorso.

8.1. Detecting body parts
Peoplearemodeledasassembliesof body parts. We con-
sider9 typesof body parts: the torso, and the upperand
lowerhalvesof eachlimb. We assumeto know thescaleof
thepersonandthuscanlook for bodypartsasroughlyrect-
angularimagesegmentsof a fixed sizethat satisfycertain
appearanceconstraints.Themodelsphotographedby Muy-
bridgewearlittle or no clothes,thusallowing us to ignore
theproblemsassociatedwith looseor texturedclothing.We
detectlimbsby templatematching,usingtwo separatetem-
platesfor thetorsoandthelimbs,eachof whichemphasizes
long regionsthatarebrightalongtheaxisanddarkercloser
to the boundariesandhave edgesof an appropriateorien-
tationon eitherside. Thebodypart locationsarefoundby
convolving theimagewith a templatein a rangeof orienta-
tions,followedby non-maximumsuppressionof responses.
We keepthe body partswherea local maximumwith re-
spectto positionandorientationis achieved, provided the
responsevalueis sufficiently large.

Sinceeachbody part hasa direction(so that we know
which end is the shoulderand which is the elbow), each
of thedetectedimageregionsis convertedinto 2 candidate
body parts,with the oppositeorientations.Eachprimitive
is parameterizedby the coordinatesof its two ends. Such
a parameterizationallows us to definesimpleconditionals,
even thoughit is redundant(sincethe sizeof eachlimb is
fixed).
8.2. Modeling the body
In orderto learnamixture-of-treesmodelfor ahumanbody,
we mustspecifytheform of conditionals��������/`� k � . We
want our model to be invariantwith respectto translation
androtation. This is achieved if the conditionalsare rep-
resentedas ����� � /���k��A#������s�f6��4�`6��  6��  � where ���H��6��5���
arethecoordinatesof the � th endof thesegmentrepresented
by � � , in the frame of referencepositionedand oriented
accordingto the segment ��k . This is in fact a conditional
distribution for ��� since ��� � 6�� � � areobtainedfrom thepa-
rametersof ��� by rotationandtranslation,which preserve

volume. Thedistribution �����{�`6��4�`6��  6��  � is modeledasa
Gaussianwith a full covariancematrix,andis learnedfrom
asetof trainingassemblies,obtainedby detectingcandidate
segmentsin asetof images,andmanuallyselectingthecor-
rectlimbs. Thetrainingdatasetwasquitedifferentfrom the
testset.First, theimagesusedfor trainingweretakenfrom
a book of models[6], featuringpeoplewearingswimsuits
againstwhite background. Only frontal views of stand-
ing peoplewere usedfor training (unlike the Muybridge
sequencesusedin testing,which contain lateral views as
well), and the body partsusedfor training were detected
usinga differentmethodthandescribedabove. Neverthe-
less,wehaveobtainedamodelof ahumanbodythatallows
awiderangeof configurationsandcapturesconnectivity re-
lationsamonghumanlimbs. A mixtureof treeswaslearned
by minimizingentropy; notsurprisingly, theroot ��� hasthe
torsoastheonly child, whosechildrenweretheupperarms
andlegs, eachof which hasthe correspondinglower limb
as the child. This treestructureis widely used(e.g., [2])
but now alsoshown to beoptimalin termsof theamountof
informationit captures.
8.3. Modeling a moving person
Consideran imagesequencecontaininga moving person.
We will representthepersonin eachof the � framesasan
assemblyof primitives � � �
������� , anddefinethelikelihood
of thesequenceto be

�����������
��� � / track�c� �*� . � ����� � �q��� )e�Y�3� �����3���
��� � �n6
where ���e� � ��#t����� � / person6������ is the likelihoodof
an individual assemblyand � )e�Y�3� �����3���
��� � � is the term
thatensurestemporalcoherence.We useanindicatorfunc-
tion such that � )��Y�3� ��y ��#|  if the motion of eachlimb
betweenany two framesdoesnot exceeda certainbound
(which grows with the time interval betweenthe frames),
and #%¡ if theseconstraintsarenot satisfied.
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Figure3: Examplesof trackinga person.In all of thesequencesthetracker hascorrectlydeterminedthegeneral positionof
theperson,eventhoughthey engagein a varietyof activitiesandundergochangesin aspect.Toptwosequencesarecorrectly
tracked,while theothersalsocontainsomeframeswhere theinferredconfiguration is incorrect.

The temporalconstraintscapturedin � )��Y�3� ��y � are es-
sentialfor enforcingmotioncoherence.Althoughignoring
them(e.g. [8]) would resultin a modelthatallowsefficient
exactinference,trackingin difficult sequences

In our experiments, we consider the problem
of extracting the assembly sequence most likely
to correspond to a moving person. This involves
maximization of the Bayes factor

~ �e� � �
���¢�£�c� #����� � �����¢�£��/ track�¢�f� :-��� ��� � �
�������$� where � :4��� is the
distribution for anassemblysequencenot correspondingto
a person.As in the single-imagecase,we modelsegment
configurationsin non-humanassembliesas independent;
therefore,theBayesfactordecouples:

~ �����r���
��� � �c� �*� . �
����� � �� :-�Y� �e� � � ��� )��Y�3� �����r�����¢� � �n�

In the absenceof temporalconstraints,this would be sim-
ply the productof single-frameBayesfactors

~ ��� � �¤#����� � �¢�f� :-��� ��� � � which do not interact with eachother
andcouldthusbemaximizedindependentlyasin Section6.
However, ignoringtemporalconstraintsresultsin sequences
of assemblieswith aninconsistenttemporalbehavior, which
couldnot correspondto amoving person(figure2).

Theconstraintson limb motionsaddlinks to our model
that make maximizationdifficult: eachlimb is now con-
nectednot only to all of its ancestorsanddescendantsin its
own frame,but alsoto the limbs of the sametype in other
frames. Thus,all of thosewill interact,resultingin large
groupsof mutuallyinteractingvariables(cliques)andmak-
ing exact inferencein sucha modelveryexpensive. Never-
theless,wecanobtaina local maximumof theBayesfactor
by performinga sort of a coordinateascent. Eachascent
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Figure4: Tracking crawling children. In bothsequences,thetracker attemptedto automaticallyinfer theconfigurationof a
person.Eventhoughthetrainingdatacontainedneitherchildrennor crawlingpeople, thetrack hasbeenidentifiedcorrectly
in thetop sequence. In thebottomsequence, thetracker confusedthearmsandthelegs,which wouldnot happenif thehead
wasusedasoneof theprimitives.Comparingthetop sequencewith theonein figure2 clearly demonstratestheimportance
of temporal constraints,imposedby theloosemotionmodel,in tracking theconfigurationcorrectly.

stepmaximizestheBayesfactorwith respectto someof the
limbs while keepingtherestunchanged.We usetwo types
of an ascentstep: a spatial step,wherewe maximizethe
Bayesfactorwith respectto theconfiguration� � in frame¥

, while keepingassembliesin theotherframesunchanged;
anda temporal step,wherewechoosethebestconfiguration
for a body part of a particulartype in eachframe,without
disturbingtheotherbodyparts.Both of thesestepscanbe
madeefficiently with aViterbi algorithm.

Maximizing the Bayes factor over space: Given as-
sembliesin eachframeexcept � � , it is easyto choosethe
configuration� � thatmaximizes

~ �����3���
��� � � . First,aset
of candidatebodypartsof eachtypein frame

¥
is narrowed

by eliminating thoseinconsistentwith the assembliesin
otherframes.Then,the single-imageBayesfactor

~ �e� � �
is maximized,asin Section6, by selectingbodypartsfrom
thenarrowedcandidatesets.

Maximizing the Bayes factor over time: Let us use
Torsoasan exampleof the body part whoseconfiguration
is to beoptimizedin all theframes.Givenasetof candidate
partsof eachtypein eachframe,we look for a sequenceof
assembliessuchthat theproductof thesingle-frameBayes
factors,

� � � . � ~ ��� � �R# � � � . � ���e� � ���5� :4��� ��� � � , is max-

imized,subjectto temporalcoherenceof theTorso. As the
first stageof this optimization,we maximize

~ �e� � � sepa-
ratelyfor eachframeandeachchoiceof Torso(includingits
absence),usingaversionof themethodof Section6. Then,
we choosea Torso(possiblya missingone)in eachframe
sothat theproductof correspondingBayesfactorsis max-
imized, subjectto the constraintson motion of the Torso.
Thisstepis accomplishedwith a Viterbi algorithm.

To maximize the Bayesfactor
~ ��� � ���
���£�A� , we first

choosean initial sequenceof assemblies,by considering
bodypartsin orderandchoosingthebestconfigurationfor
thatpartin eachof theframes,subjectto thetemporalcon-
straints. Then, the Bayesfactor is repeatedlymaximized
overspaceandtimeuntil convergenceto a localmaximum.
In our experiments,we augmentedthemodelandtheopti-
mizationprocedureto allow an assemblyto be missingin
an image. We associatea likelihood ���e¦4� with a missing
assembly, which limits the damagethat a poorly detected
assemblycando to thelikelihoodof thewholesequence.

While our proceduremaximizesa function, a few sim-
ple changes(suchasreplacingmaximizationwith summa-
tion) convert it into a Markov ChainMonte-Carlosampler.
By drawing samplesof the assemblysequence,we would
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a b

Figure5: Theglobal frameof referencecanbeusedto imposeconstraintson theconfiguration. In (a), thetracker hasfailed
if theorientationof thebodyis not constrained. By makingall of thecandidateglobal frames(i.e., theroot ��� of thetree)
upright, thetracksin (b) are obtained,which representthepersonbetter.

be able to preserve uncertaintyso that we could incorpo-
ratenew information,suchasmoreaccuratemotionmodels,
into our resultslater.

8.4. Results
Wehaveappliedthemixture-of-treesmodelcombinedwith
a weakmotionmodelto tracka varietyof sequencesfrom
theMuybridgecollection.

Figure 3 shows several sequenceswith the tracked as-
sembliesoverlaid on top. For thesesequences,the candi-
dateglobalframesof reference��� (notshown) wereplaced
at a grid of positions,in the 4 directionsspacedby §-¡�¨ ,
which effectively makesrecognitiontranslation-andscale-
invariant,sincetheglobalframeonly looselyrepresentsthe
configurationof the body in the training data. Peopleare
tracked in a variety of activities; in all of the shown se-
quencesthebodypositionis correctlytracked,althoughin
someframetheconfigurationis not correctlyrepresented.

Theglobalframeof referencecanbeusedto imposecon-
straintson the rough locationandorientationof a person.
For example,if weknow thatthepersonwetrackis upright,
only the uprightglobal frameneedsto be used.This is il-
lustratedin figure 5. Figure5(a) shows several sequences
wherethetrackerhasfailedif all 4 directionsfor theglobal
framewereused. All of thosetrackscanbe correctedby
requiring that the global framebe upright, andthe results
areshown in figure5(b).

Becauseof the weak configurationand motion model,
our tracker is able to follow motions it hasnot seenbe-
fore. In figure4, two sequencesof crawling children(pho-
tographedby Muybridge[4] overacenturyago)aretracked.
The healthychild is tracked correctly, even thoughthere
wereno childrenor crawling subjectsin the training data.
Thehandicappedchild is trackedincorrectly, sincehisarms
andlegs areconfusedby the tracker – but, up to that flip,
the configurationis correct. In both of the sequences,we
hadto rejectthecandidatetorsosfoundin thelower third of
theimage,dueto thespurioustorsosandlimbs foundin the
floor tilesandgiving riseto humanassemblies.

Comparingfigure4(top)with figure 2 illustratestheim-

portanceof temporalcoherencein tracking the body cor-
rectly. Thesetwo figurescontainthe samesequence,but
thetemporalconstraintswereignoredto obtainthetrackin
figure 2. Thus,theperformanceof thetracker deteriorates
dramaticallyif a motion model, even a weak one, is not
used.
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